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Abstract: To estimate the user gait speed can be crucial in many topics, such as health care systems,
since the presence of difficulties in walking is a core indicator of health and function in aging and
disease. Methods for non-invasive and continuous assessment of the gait speed may be key to
enable early detection of cognitive diseases such as dementia or Alzheimer’s disease. Wearable
technologies can provide innovative solutions for healthcare problems. Bluetooth Low Energy (BLE)
technology is excellent for wearables because it is very energy efficient, secure, and inexpensive.
In this paper, the BLE-GSpeed database is presented. The dataset is composed of several BLE RSSI
measurements obtained while users were walking at a constant speed along a corridor. Moreover,
a set of experiments using a baseline algorithm to estimate the gait speed are also presented to
provide baseline results to the research community.

Dataset: http://doi.org/10.5281/zenodo.4261381.

Keywords: gait speed; public database; BLE-based technology

1. Introduction

Over the next 40 years, the percentage of people aged 60 and older is expected to rise from
10% to 22% of the total population [1]. This issue will pose a challenge for health care systems,
especially considering that older people have more health-related issues and long-term care needs than
the rest of society. In this context, cognitive decline and dementia are predicted to double their number
of cases every 20 years globally. Health systems have not been oriented toward these needs and may
have difficulties responding to the new demographic reality and the associated changes in population
health. The presence of walking difficulties is a core indicator of health and function in aging and
disease [2]. Gait control is problematic since it integrates multiple systems, including motor, perceptual,
and cognitive processes. As any dysfunction in these systems leads to gait slowing, gait speed (GS)
is a commonly used parameter in health care research. Because walking speed is a quick, reliable,
sensitive, and easy measurement to perform [3–6], it is often included in clinical and epidemiological
research studies [7–9], as a consistent risk factor for adverse outcomes in community-dwelling older
people. In addition to sex and age, it is used to monitor older adults’ functional capacity and forecast
their age-related decline rate. The accuracy of predictions based on these three factors is generally
similar to more elaborate models requiring many other health-related factors [10]. Several studies
have confirmed an association linking gait speed with many significant health-related outcomes,
including hospitalization, falls, nursing home placement, mobility disability, and cognitive diseases
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such as Alzheimer’s disease [7,8,11]. Making better use of technology to stress disease prevention and
early detection is key to meeting upcoming societies’ needs. Future treatments could target cognitive
diseases in their earliest stages, before irreversible brain damage or mental decline. Gait speed, age,
and sex may offer the clinician tools to assess expected survival and tailor care goals in older adults.

Currently, the equipment used to perform GS measurements needs specialized personal to operate
it; therefore, it is only used in clinical environments. For example, the kinetic system, developed by
Microsoft, has been used to study the relationship between GS and other kinematic parameters with
certain conditions [12,13]. Other vision-based techniques like deep cameras have also been used with
similar results [14]. Many technologies have been used for the same task in in-home environments.
For instance, ultrasound [3,15,16], passive infrared sensors (PIR) [17], and radio frequency [4,18]
have been widely used in this context, but only for research purposes. These systems can provide
acceptable results, but they cannot identify different users in a multi-resident context, limiting their
use. Inertial systems can offer a solution to the identification problem, but their precision is still very
low [19].

Despite all the cited developments, there is no standard in-home GS measurement system for
these kinds of environments. Therefore, more research is needed to face future healthcare systems to
challenge and improve the monitoring of certain illnesses. More developments on each technology
and new methods are needed to find the most suitable solution. Unfortunately, it is not always
possible for researchers to build their experiments and work with them due to resource limitations.
This problem could be solved with data results sharing through the means of the databases and data
descriptors. Researchers worldwide can use Databases to test their methods in different environments
and conditions without repeating others’ experiments, which is time and cost consuming. Moreover,
data sharing can create new research partnerships between teams from different institutions and
disciplines with the same objectives and interests. For all these reasons, the use of databases has grown
significantly in recent years.

Regarding GS measurement, there are several databases for the evaluation of different illnesses,
like Parkinson [20], and Alzheimer [19], and their relation with GS. However, to the best of the authors’
knowledge, there is only one database for technology evaluation in this field. More databases with a
detailed description of the experimental set-up, the proposed system, and the results are needed to
find a solution to the problem mentioned above.

This work’s primary contribution is to introduce a new Bluetooth Low Energy (BLE) database to
the research community to evaluate the GS in an in-home environment. The database is composed of
BLE RSSI measurements from different wearable devices and different BLE beacons. This is, to the best
of the authors’ knowledge, the first work in this field using BLE as the main technology to evaluate the
GS and among the first databases for technology evaluation. The use of this technology allows the
system to identify the user while measuring the GS automatically. The experiments were carried out in
a hallway at University Jaume I of Castellón in Spain. In these experiments, 13 users walked through
the hallway at different speeds, varying from slow to fast, while wearing a wearable smartwatch
device. The smartwatches recorded the received signal strength indicators (RSSI) of a set of BLE
beacons placed in the ceiling. A set of ultrasonic sensors was used to compute each walk’s average
speed, used as ground truth, to obtain an accurate GS estimation to compare our system’s estimations.
Apart from the data and experimental environment description, a baseline for using this database is
presented in this work. The database [21] contains the data from the experiments and the baseline
source code.

The remainder of this work is organized as follows. In Section 2 related dataset and similar
works with other databases are described. Section 3 explains the experimental set-up and the database
metadata. Section 4 introduces the baseline for the gait speed determination as a how-to-use example.
Finally, a discussion and the main conclusions are presented in Section 5.
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2. Related Work

The publication of databases has become very common in some research fields, especially
when researchers cannot reproduce the experimental developments. Alongside the results, detailed
information on the experiment characteristics and the test environment is vital in the databases’
reproducibility and validation. In another context, where data is gathered from observation of real
activities, databases could help understand and predict people’s behavior. For example, in the
post-COVID-19 era, databases can be used to develop tracking and location-aware systems to control
the epidemic [22]. These databases are accompanied by the development of standardization formats
and specialized tools like Zenodo and Kaggle [23], where the data are maintained for public access.
Here, similar databases to the one presented in this work are described.

People’s behavior in real complex environments has been studied using wearable BLE receivers
carried by the users. BLE is a radio-frequency protocol communication, similar to Wi-Fi, and developed
for short communication in the context of the Internet of Things (IoT). For example, Sikeridis et al.
published the measurements from a set of Raspberry Pi boards measuring the RSSI from 46 students’
wearables, smartwatches and smartphones, in a multi-floor university building during their daily
activities during one-month [24]. Similarly, Tóth and Jamas [25] provide similar databases with
measurements in similar environments from different radio-frequency wireless networks, such as
BLE, Wi-Fi, and traditional Bluetooth. The same kind of experiments has been repeated in controlled
environments where the data, or at least part of it, can be labeled for further analysis. Byrne et al. [26]
present a database with data from multiple houses; in each one, a participant wore a custom wearable
device with an accelerometer, BLE, and camera. A set of image codes distributed over the houses
and recorded by the camera are used to label the measurements to the label de information. In [27]
Iqba et al. propose a BLE passive fingerprinting system that can locate persons inside a medical
building. The training and test data were published in a database [28]. This is becoming a common
practice in fingerprinting positioning where the environment, methodology, and methods can change
the same positioning algorithm’s results. There are several fingerprinting databases using Wi-Fi RSSI
measurements. The first database of this kind is the UJIIndoorLoc [29], which presents RSSI measures
in a university environment taken by more than 20 users and 25 devices. Similar databases have been
published for congress competitions in the development of indoor positioning systems [30,31].

Since the biggest smartphone software developers have limited the scanning times,
BLE fingerprinting positioning has become a suitable alternative. Mendoza et al. [32] present an RSS
BLE database with measurements from two different scenarios, a laboratory where multiple beacon
configurations were tested, and an university library where data from various users and devices were
collected. The database is accompanied by the necessary tools to load and work with it. Similarly,
Aranda et al. [33] provide a BLE RSS database with beacons with multiple slots deployed in three
different indoor/outdoor environments. The database can be found in the Zenodo repository [34],
with a complete description of the experimental environment. Baronti et al. [35] repeat the same
fingerprinting experiment with different configurations for active and passive fingerprinting, using the
same real point in both cases. Moreover, they add data from experiments to explore the tracking and
social interaction between users in the facility.

Some researchers have gathered gait and kinematic information from healthy patients.
This information can be used for health-researchers as a baseline for compare their results when
investigating specific illnesses. For example, Fukuchi et al. [36] developed a database with detailed
kinematic information of 42 healthy volunteers; similarly, Schreiber et al. [37] performed a similar
experiment measuring the GS in 50 free-injury participants. Custom high-precision inertial sensors
have also been used in [38], focusing on the age difference, and in [39], with the focus on detecting
changes in the gait mechanics. All these databases are focused on the health relation between GS
and other parameters. To the best of the authors’ knowledge, only one publicly available database
focuses on evaluating technology for the GS measurement. Chapron et al. [40] combined a set of
PIR sensors with a BLE indoor positioning system to detect the closest user to the PIR sensors.
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With this solution, the system can automatically label the GS measurements to the correct user in a
multi-resident environment. Similarly, the database presented in this work is also designed for GS
evaluation, but using a completely new approach in this field.

Finally, more databases for evaluating different technologies in different environments are needed
to find a standard solution for the GS measurement in the in-home environment. A summary with
some of the most relevant available databases is presented in Table 1, where the references to the
databases and their associated works can be found.

Table 1. References to some of the most relevant available databases for people monitoring, fingerprinting
and GS.

Database People Monitoring Wi-Fi Fingerprinting Bluetooth Fingerprinting GS Monitoring GS Evaluation

Works [24–27] [29–31,41,42] [32,33,35] [36,38,39] [40]
Databases [28,43–45] [46,47] [34,48,49] [50–52] [53]

3. Data

The data collection process was performed in a hallway at the Universitat Jaume I in Castellón,
Spain. Figure 1 shows a view of the deployment. A total of 20 beacons were mounted on the hallway’s
ceiling, with a separation of 30 cm between them. We used two different models alternatively, the iBKS
105 model [54] and the iBKS plus model [55], so the separation between two beacons of the same
model was 60 cm.

Figure 1. A view of the beacons deployed in the ceiling of the corridor.

Figure 2 shows a scheme of: (a) the models and distribution of the ceiling-mounted beacons,
and (b) the infrastructure used to acquire the ground truth and the data. To determine the user’s actual
speed we used five ultrasonic sensors HC-SR04 attached to the wall at the height of 0.7 m and with a
separation of 3.5 m between them, covering a total distance of 14 m. The sensors were connected to an
Arduino UNO board that recorded the readings and associated timestamps for each sensor during the
experiments. This information was stored in real time in a laptop connected through the serial port to
the Arduino board and synchronized through an NTP server to an absolute time frame of reference.
On the other hand, the smartwatches used to capture the RSSI signals also use the server as a reference
to synchronize their scan results with the user’s position captured by the ultrasound sensors.
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For a particular walk, the wall-mounted sensors provide the timestamps at which the user passed
in front of them. For each pair of sensors (i and j), the speed of the user can be obtained as follows:

vi,j =
dij

|ti − tj|
(1)

where vi,j is the speed at which the user moved from sensor i to sensor j, dij is the distance between
sensors, and ti and tj are the timestamps at with the user passed in front of sensors i and j, respectively.
Considering only pairs of consecutive sensors, we obtain four speed values for each walk. The resultant
speed is calculated as the average of all four measurements, but only when their discrepancies are less
than 5 cm/s, since we only want to keep those walks executed at a constant speed.

Figure 2. Scheme of the set-up used to capture the data. (a) disposition of the beacons on the ceiling,
(b) general scheme of the setup used during the data acquisition process.

A total of 13 subjects, 11 males and 2 females, aged between 18 and 55, performed several walks
in both directions along the hallway. The subjects were instructed to keep their walking speed constant
during the process. Each user completed several walks at different speeds, from very slow to fast.
Figure 3 shows: (a) the distributions of speeds recorded by each user, (b) the number of walks recorded
by each user, and (c) the overall distribution of speeds in the data set. The minimum speed recorded
was 0.43 m/s and the maximum 1.87 m/s.
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Figure 3. (a) Violin plots of the speeds by user. (b) number of walks by user. (c) general distribution of
speeds in the dataset.

To increase the volume of data recorded, users wore four smartwatches during the acquisition
process, two on each wrist. The model used in the experiments was the Sony smartwatch 3, which runs
Android as its operating system. An application installed in the smartwatches performed continuous
Bluetooth scans, at the maximum frequency allowed by the operating system, and stored the results
for later post-processing. Once all the data has been processed, each register of the resultant data set
represents a scan result, and is composed of the following fields:

• mac. The MAC address of the detected beacon.
• rssi. The RSSI value obtained for the beacon.
• device. A four-character descriptor for the smartwatch that performed the scan.
• timestamp. The timestamp at which the scan was received.
• user. The id of the user that was performing the experiment.
• direction. A number (0 or 1) indicating the direction of the walk.
• walk_id. A number that identifies each walk.
• speed. The actual speed of the user, in m/s.

Overall, the final data set contains a total of 382 walks. Figure 4a compares the distributions of the
scanned RSSI values for each device, as well as the average number of RSSI values acquired per second.
For all devices, the scanning rate oscillates between 40 and 50 results per second. During the acquisition
process, one of the beacons started to malfunction and finally stopped working, so its data has not
been considered. Taking into account that there were 19 functioning beacons, this represents that
the advertising signal of a particular beacon is detected roughly 2.4 times per second by each device.
Since the beacons were programmed to advertise at an interval of 100 + 0− 10 m/s, the expected
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rate should be around 9 values per second. This discrepancy is due to the fact that the smartwatches’
scanning rate cannot be directly set but is controlled by their operating system and designed to preserve
battery life. With regards to the distribution of signals detected by each device, there are no significant
differences. Median values for all devices are in the interval −70 dBm to −75 dBm. Some devices,
especially a 650 but also 14 df, seem to have a broader range of detection, capturing RSSI values in the
range −30 dBm to −105 dBm, while the remaining two devices only report RSSI values in the range
−45 dBm to −105 dBm.

Figure 4. (a) distribution and scanning rate of the smartwatches. (b) RSSI distribution and advertising
rate of the beacons (by model). (c) RSSI distribution and advertising rate for each beacon.

With respect to the beacons’ characteristics, Figure 4b shows the distribution of RSSI values
segmented by beacon model, and the number of beacons of each model detected per second. Beacons of
model iBKs plus are distinctly detected with a stronger RSSI value that the beacons of model iBKS
105. Besides their disparate emitting power, the shape of the distribution of the RSSI values is also
significantly different. Both models are based on the same chipset (Nordic Semiconductors nrf51822),
so the differences in performance might be due to different batteries (a 1000 mAh CR2477 coin cell
battery for the 105 model, four AA alkaline batteries with a total capacity of 5000 mAh for the plus
model) and/or their different casing and shape. BLE chipsets can demand a peak of 20 mA when
transmitting. Coin cell batteries are greatly affected by large current draws [56], while alkaline batteries
can handle larger currents. Figure 4c shows a comparison of the distribution of RSSI values for each
beacon, as well as of their effective rate or advertisement, this is, for a given smartwatch, the number
of scans per second in which the beacon is present. As shown in Figure 4b, the differences between
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advertising RSSI values coming from distinct models are clear and consistent. With respect to their
advertising rates, even though all models have been set up with an advertising interval of 100 ms,
only five out of ten model 105 beacons can reach a detection rate superior to 2.5 scans per second.
On the other hand, all model plus beacons except one are detected at a rate greater than 2.5 scans
per second. The detection rate segmented by smartwatch and beacon is consistent with Figure 4a,
being 14 df the smartwatch with the highest scanning rate for all beacons.

4. Experiments

This section aims to describe a method to determine the user’s speed gait using the presented
dataset. It illustrates a simple case of use that can be easily replicated so that the results may serve
as a future baseline for researchers in this topic. The methods used to achieve these results are
straightforward, and the implementation has been made publicly available.

4.1. Gait Speed Determination

The RSSI value provided by radio-frequency modules represents an indication of the power
strength of the transmitter signal perceived by the receiver node. The RSSI value received at a particular
location can be modeled as a function of the logarithmic distance between the receiver and the emitter,
plus some parameters related to the environment properties and the devices’ characteristics [57].
This analytical model allows estimating the position of a device, the scanning node, knowing the
received RSSI value data and the emitting node’s position. The path loss model reflects the relationship
between the signal strength and the distance to the emitter:

RSSI = RSSI0 − 10γ log10
d
d0

+ Xg (2)

where:

• RSSI is the received signal strength at a distance d from the beacon.
• RSSI0 is the received signal strength at the reference distance (1 m) from the beacon.
• d is the distance between the receiver and the beacon.
• d0 is the reference distance (1 m)
• Xg is a random variable with zero mean, reflecting the attenuation (in decibel) caused by fading,

multipath effect, etc.
• γ is the path loss exponent, whose value is normally in the range of 2 to 6. The actual value

depends on environmental characteristics.

Figure 5a shows the theoretical evolution of the RSSI signal when a user wearing a receiver
device walks at a constant speed along a straight line which passes below a BLE beacon. We consider
the receiver moving at a constant speed v in the presence of a ceiling-mounted emitting device
(see Figure 5b), located at a distance d. Figure 5c shows a real example of RSSI data received from the
emitter when the user follows the path at a constant speed. It also shows a path loss curve fitted to the
data. Even though perceived RSSI signals are subject to noise due to interferences, multipath effects,
signal fluctuations, overlapping channels and other environmental characteristics, the maximum value
received during the walk is likely to happen when the receiver is in the nearest point with respect to
the emitter, this is, when the user is passing beneath the beacon.
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Figure 5. (a) Theoretical evolution of the perceived RSSI value during a walk. (b) Distance between the
smartwatch and the beacon. (c) Theoretical (blue line) and real (red dots) RSSI values perceived during
a walk.

To estimate the gait speed of the user, we performed the following process:

1. For each walk, smartwatch and mac (beacon), we find the timestamp t̂ at which the maximum
RSSI value has been detected. We do so in two different ways; by looking at the raw data and
applying a 13 point moving average and finding the maximum point in the smoothed version of
the RSSI data. We tried different values for the window length, in the range between 3 and 25,
obtaining the best results for a window length of 13 measurements.

2. For two given beacons i, j, separated by a distance dij, and with t̂i, t̂j being the estimated
timestamps at which the user walked below them, the speed of the receiver v̂ij can be estimated
as follows:

v̂ij =
dij

|t̂i − t̂j|
(3)

3. In the general case, when there are more than two beacons installed, the speed can be estimated
as the average of the values obtained for each pair. Given a set of k beacons, the speed of the
device is calculated as follows:

v̂ =
∑ v̂ij

n
(4)

where j ∈ [1, 2, ..., k− 1], i ∈ [j + 1, j + 2, ..., k], and n = (k
2).

4. The speed estimation obtained for each pair is only taken into account when it is comprised in the
interval 0.2 < v̂ < 1.8. This is not just because we want to consider only results that correspond
to a feasible user speed, but also because the low scanning rate of the smartwatches may produce
insufficient data to achieve a good estimation, and can generate artifact results that may not
represent a proper approximation of the actual speed of the user.
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4.2. Results

The results obtained for each smartwatch and beacon model are summarized in Figure 6. The plot
shows the average error in m/s for the gait speed estimation for each smartwatch, for each beacon
model, and for several beacons ranging from 2 to 10.

The first conclusion we draw from the results is that using raw data to estimate the gait speed
provides a very uniform average error (see the blue continuous line in Figure 6), which is independent
of the number of beacons considered. There is a slight improvement in accuracy when using three
beacons instead of two, but adding more beacons does not significantly reduce the error, which remains
around 0.2 m/s regardless of the beacon model or the smartwatch considered. On average, the results
obtained when using beacons of model iBKS plus are slightly better than those obtained when using
beacons of model iBKS 105, but in general, results are very similar.

Figure 6. Error in m/s of gait speed estimation for each smartwatch and beacon model.

On the other hand, results look very different when using smoothed data to estimate the timestamp
of the maximum RSSI value received during the walks. The green and discontinuous lines in Figure 6
show a distinctive behavior from the previous case. Now the error in the estimation is strongly
dependent on the number of beacons considered. When using only two beacons, the error is always
greater than when using raw data, but it decreases as the number of beacons increases. This is especially
evident when considering only beacons of model iBKS 105. In this case, the error starts at around
0.3 m/s for 2 beacons and goes below 0.1 m/s for 10 beacons. The same behavior occurs for model
iBKS plus, but with a less pronounced decrease of the error, which arrives at a value of around 0.15 m/s
when we consider 9 beacons.

Mixing different models of beacons (Figure 7) seems not to influence accuracy when using only
raw data. When using smoothed data, results are consistently worse, and they do not improve
substantially when the number of beacons increases. The fact that we obtain worse results when
mixing beacon models may be due to their different characteristics regarding their RSSI distribution
(Figure 4b). Tackling this would probably require a specific approach for each model with respect to
the technique used to perform the data smoothing.
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Figure 7. Error in m/s of gait speed estimation for each smartwatch and a mix of both beacon models.

Better results are obtained when we aggregate the data from all the smartwatches and consider
beacons of model iBKS plus (Figure 8). In this case, the average error is around 0.17 m/s. Again, results
obtained with smoothed data are generally worse than those obtained using raw data, except in cases
where the number of beacons of the same model is large.

Figure 8. Error in m/s of gait speed estimation considering the aggregated data from all smartwatches.

Table 2 shows a summary of the results obtained considering all the smartwatches. The best
results are obtained when using 10 beacons of model iBKS 105 and performing a 13-point moving
average smoothing on the raw data. In general, smoothing provides better results when using a large
number of same-model beacons. On the contrary, when the number of beacons is limited, estimating
the gait speed using the raw data is the best approach.

Table 2. Summary of the best results obtained

Beacon Model Method Error (m) # Beacons

iBKS 105 raw data 0.1935 4
iBKS 105 smoothed data 0.0855 10
iBKS plus raw data 0.1732 4
iBKS plus smoothed data 0.1357 9
mixed raw data 0.1928 8
mixed smoothed data 0.2566 9

5. Conclusions

Intending to support the rising success of data-driven approaches in several fields, such as
computer science, engineering, or healthcare, the availability of specialized datasets has become
decisive. Although the volume of available data grows exponentially from an expanding diversity of
data sources, getting curated data ready for application is a costly and time-consuming process.

In this work, we present a new Bluetooth Low Energy-based dataset for gait speed estimation.
This is the first BLE-based dataset for gait speed estimation that is publicly available to the best of
our knowledge,. The dataset was created by using a large number of devices and actors, trying to
represent a wide variety of gait speeds and styles of walking. We explore the use of the dataset by
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analyzing its properties and showcasing some relevant results, with the purpose that this dataset may
be useful to researchers and practitioners that may use it to experiment and test their algorithms.

Our current and future work aims to develop more automated and general ways of acquiring
user’s speed data, with an eye on more familiar environments such as homes.

6. Reproducibility

The code to reproduce all the plots and experiments described in this work is publicly available
at https://github.com/esansano/ble-gspeed.
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The following abbreviations are used in this manuscript:

BLE Bluetooth Low Energy
GS Gait Speed
RSSI Received Signal Strength Indicator
PIR Passive Infrared Sensors
NTP Network Time Protocol
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