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Abstract

This paper contributes to the multivariate analysis of marked spatio-temporal
point process data by introducing different partial point characteristics and ex-
tending the spatial dependence graph model formalism. Our approach yields
a unified framework for different types of spatio-temporal data including both,
purely qualitatively (multivariate) cases and multivariate cases with additional
quantitative marks. The proposed graphical model is defined through partial
spectral density characteristics, it is highly computationally efficient and reflects
the conditional similarity among sets of spatio-temporal sub-processes of either
points or marked points with identical discrete marks. The paper considers three
applications, two on crime data and a third one on forestry.

Keywords: Fourier transform; Partial characteristics; Quantitative marks; Spatial de-
pendence graph model.

1 Introduction

Spatio-temporal point patterns, where a finite set of pairs of {(si, ti)}ni=1 with si ∈
W ⊆ R2 and ti ∈ T ⊆ R+ are the point location and the time of occurrence of the
i-th event, respectively, have become ubiquitous in various scientific areas arising in a
number of scientific fields, such as infectious disease epidemiology (Gabriel and Dig-
gle, 2009), the study of tornado events (González et al., 2020), fire dynamics (Møller
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and Dı́az-Avalos, 2010) or seismography (Ogata, 1988; Choi and Hall, 1999). In turn,
an ever-increasing demand for efficient statistical techniques, which not only account
for the spatio-temporal specificity of the data but also facilitate an easy-to-read in-
terpretation, is continuously emerging. Although some progress has been made in the
development of spatio-temporal characteristics and models, and different classical point
process statistics such as the J-function (Cronie and Van Lieshout, 2015), Ripley’s K
and pair correlation function (Diggle et al., 1995; Gabriel and Diggle, 2009; Møller
and Ghorbani, 2012; Gabriel, 2014), or local indicators of spatio-temporal association
functions (Siino et al., 2018) have been extended to the spatio-temporal case, marked
spatio-temporal point patterns, where additional qualitative (yielding so-called multi-
type or multivariate point processes) or quantitative information is available for each
pair {(si, ti)}ni=1, have not been covered much in the literature. Thus there is an increas-
ing need of efficient statistical techniques allowing for the investigation and analysis of
such type of spatio-temporal point processes. For a general review on different spatio-
temporal point process statistics and models commonly used at present we refer the
interested reader to González et al. (2016).
To approach this limitation, the aim of this paper is to contribute to the analysis of
multivariate spatio-temporal point processes, where locations and times for a set of
different types of points, such as a collection of distinct tree species, is under study.
In particular, we consider multivariate marked spatio-temporal point processes where
both qualitative and quantitative marks are available for each single pair {(si, ti)}ni=1.
At present, two different approaches can be identified in the literature focussing on
quantitatively marked spatio-temporal point processes where one, potentially time-
varying, real-valued mark is attached to each single point location. One strand of
the literature, mainly applied in the field of spatio-temporal earthquake research, was
covered by Rathbun (1993), Ogata et al. (2003), Choi and Hall (1999) and Marsan
and Lengliné (2008)) amongst others. They use mechanistic models (Diggle, 2013)
which are defined through a parametric conditional intensity framework and express
the infinitesimal expected rate of events at a particular time ti at point location si
conditional on the history of the complete spatio-temporal process up to time ti (see
Vere-Jones (2009)). While the conditional intensity formalism provides a complete
description of the process, the conditional intensity itself may be intractable or can
not be evaluated exactly without numerical methods. Different from the mechanistic
modelling approach, Särkkä and Renshaw (2006), Renshaw and Comas (2008), Comas
et al. (2009), Renshaw et al. (2009), Cronie and Särkkä (2011), Cronie et al. (2012),
Comas et al. (2013), and Redenbach and Särkkä (2013) discussed so-called growth-
interaction processes to model the evolution of a quantitatively marked spatial point
pattern over equidistant steps in time such as the diameter at breast height (DBH)
value for a set of trees recorded over consecutive times.
While the above specifications consider the analysis of quantitatively marked spatio-
temporal point patterns, the investigation of cross-characteristics through marked ver-
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sions of the spatio-temporal reduced second-order moment measure and Ripley’s K-
function has just recently been discussed by Iftimi et al. (2019). Unlike the classical
second-order summary characteristics such as the spatio-temporal K-function, the cor-
responding marked version allows to investigate the pairwise interrelation between sub-
sets of points within one quantitatively marked spatio-temporal point pattern, e.g. the
pairwise distance between juvenile and adult trees classified subject to a given threshold
computed from the quantitative mark itself. That is, the marked spatio-temporal ver-
sion of Ripley’s K-function describes the expected number of further space-time points
of type j from an arbitrary space-time point of type i of the process, given that the
points in question have space and time separation r ≥ 0 and t ≥ 0, respectively. Besides
these marked spatio-temporal point process characteristics, these authors also shortly
pointed to extensions of classical cross- and dot-type point process characteristics for
the multivariate case over equidistant steps in time in the supplementary material of
their paper. Originating in the purely spatial case, these two types of point process
characteristics for qualitatively marked processes investigate the pairwise distances be-
tween the point locations of two distinct component patterns or between the point
locations of one component and those of any alternative patterns.
Different from the above approaches, the interest of the present paper are pairwise as
well as global structural interrelations between different spatio-temporal components
conditional on all remaining components defined in terms of partial spatio-temporal
point process characteristics and the spatio-temporal dependence graph model, respec-
tively. While spatio-temporal point process characteristics quantify the conditional
interrelation between two distinct components given all remaining components of the
spatio-temporal process, the spatio-temporal dependence graph model simultaneously
elicits the potential structural interrelations between all spatio-temporal components in
form of an undirected graph, and thus allows to detect directed and also induced spatio-
temporal interdependencies. That is, our focus is the extension of the more classical
concepts of partial correlation into the field of multivariate and multivariate-marked
spatio-temporal point processes. Building upon the results of Eckardt (2016), Eckardt
and Mateu (2019a) and Eckardt and Mateu (2019b), this paper introduces different
partial point process characteristics in the frequency domain. In addition, adopting the
ideas of classical multitype point process characteristics, a new dot-type spectra, the
dot-spectra, is introduced which reflects the linear interrelation of one component and
any alternative patterns included.
To the best of our knowledge, the treatment of a combination of discrete with quanti-
tative marks in a context of spatio-temporal point processes is new. If, in addition, we
consider partial characteristics we go a step further with respect to the existing litera-
ture. Finally, the extension of a spatial dependence graph model to the spatio-temporal
context is also new.
The remainder of the paper is structured as follows. Section 2 provides some background
on the main characteristics of point processes in the spatio-temporal domain. Section
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3 develops the main results of the spectral analysis for spatio-temporal point processes.
Then, Section 4 presents the spatio-temporal dependence graph model. Applications to
crime data and forestry are developed in Sections 5 and 6. The paper ends with some
final conclusions.

2 Spatio-temporal point processes

To introduce spatio-temporal point processes, we follow González et al. (2016) and
references therein as well as Iftimi et al. (2019). A spatio-temporal point process X is,
rigorously speaking, a random countable measure defined in a subset W × T of R2×R
such that, for bounded A×B ⊆ W ×T , |X∩(A×B)| is finite, where T is an interval in
R+ = [0,+∞). A realisation of a point process is called a point pattern and it is a finite
set of pairs where the components are intended to state the spatial location si ∈ W ,
and the time associated with that spatial location ti ∈ T . Let N(A × B) denote the
number of points of the set (A×B) ∩X.
Stationarity and isotropy for spatio-temporal point processes can be defined as follows.
X is called (spatio-temporally) stationary when the process (s, t) +X keeps the distri-
bution of the original process X. On the other hand, X is (spatially) isotropic if, for
any rotation r around the origin, the rotated point process rX = {(rs, t) : (s, t) ∈ X}
keeps the distribution of X.
Given a finite point process, it is frequently convenient to project it onto the spatial and
temporal windows, so we can treat separately space and time (Møller and Ghorbani,
2012),

Xspace = {s : (s, t) ∈ X, t ∈ T} , Xtime = {v : (s, t) ∈ X, s ∈ W} .

For the marked case consider the process {(si, ti),mi}ni=1 where mi is a mark in a
suitable mark space M. It is then called a spatio-temporal marked point pattern.
When M = {1, 2, . . . , k}, k ≥ 2, the process is called a multitype spatio-temporal point
process. The associated spatio-temporal point process is called the ground process, and
it is denoted by Xg.

2.1 Spatio-temporal point process descriptors

In analogy with the classical theory of random variables, we would like to deal with the
distribution of the points of X in W × T ×M where M ⊂ M. The product densities
λ(k), k ≥ 1 describe the probability that there is a point of the process in each of the
pairwise disjoints balls with centres in k given points ξ1, . . . , ξk and infinitesimal spatio-
temporal marked volumes dξ1, . . . , dξk ⊆ W×T×M with dξi = dsi×dti×ν(dmi), where
ν() is a bounded reference measure on the mark space, and size |dξi| = dsidtiν(dmi),
i = 1, . . . , k. They can be defined by using Campbell’s formula, which states that
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given a marked spatio-temporal point process X, for any non-negative function h on
(R2 × R×M)k,

E

 ∑ 6=

ξ1,...,ξk∈X
h(ξ1, . . . , ξk)

 =

∫
· · ·
∫
h(ξ1, . . . , ξk)λ

(k)(ξ1, . . . , ξk)dξ1 · · · dξk, (1)

where
∑6= indicates that the summation is over distinct k-tuples of marked spatio-

temporal events.

2.1.1 Intensity function

As a first particular case of Eq. (1), we focus on the intensity measure and intensity
function. Usually, the analysis of a spatio-temporal point pattern starts with the esti-
mation and modelling of the intensity function as it rules the univariate distribution of
X in W × T ×M . Considering the so-called intensity measure given by

µ(A×B × C) = E[N(A×B × C)], A×B × C ⊆ W × T ×M,

when λ = λ(1) exists, we have that

µ(A×B × C) =

∫
A

∫
B

∫
C

λ(s, t,m)dsdtν(dm),

and we call λ(s, t,m) the first-order intensity function of X. Consider the projection
of the process X to only its spatio-temporal coordinates, the resulting process is called
the ground process and it is denoted by Xg. It can be shown that the intensity satisfies

λ(s, t,m) = f(m)λg(s, t),

where λg(s, t) is the intensity of the ground process and f(m) is a conditional density on
M in the spatio-temporal location (s, t). In case that Xg is stationary, or equivalently
homogeneous, then λg(s, t) ≡ λ > 0. This constant is called the intensity of the ground
process and X is said spatio-temporally homogeneous.
The first-order intensity of the ground process can be defined as well as

λg(s, t) = lim
|ds|,|dt|→0

E [N(ds× dt)]

|ds||dt|
. (2)

When the first-order intensity function of the ground process λg(s, t) can be factorised
as

λg(s, t) = λ1(s)λ2(t), (3)

where λ1(·) and λ2(·) are non-negative functions, then the process is called first-order
spatio-temporal separable. This separability is often taken as a working assumption in
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the literature in order to facilitate the estimations. In that case, the effects that are non-
separable could be interpreted as second-order effects. Note that a stationary spatio-
temporal point process X is trivially first-order separable as its intensity is constant.
Once the sets Xspace and Xtime have been defined, it is naturally possible to define the
marginal spatial and temporal intensity functions λspace and λtime as

λspace(s) = λ1(s)

∫
T

λ2(t)dt and λtime(t) = λ2(t)

∫
W

λ1(s)ds,

so that λg(s, t) ∝ λspace(s)λtime(t), with λg, λspace, λtime all being constant when X is
homogeneous.
To estimate the spatio-temporal first-order intensity function of the ground process
Xg, the estimation of the marginal spatial and temporal intensity functions is first
presented. For the spatial intensity function, a non-parametric specification which is
most frequently used at present is defined in the form of a kernel estimator

λ̂space (s) =
n∑
i=1

kε (s− si)

cε (si;W )
, s ∈ W,

where

kε (s) =
1

ε2
k
(s

ε

)
,

k(·) is a bivariate kernel and ε > 0 is the bandwidth, and

cε (si;W ) =

∫
W

kε (s− si) ds

is an edge-correction intended to stabilise the mass of the estimator so that its integral
is roughly the number of points n. The marginal temporal intensity function λtime (t)
can be estimated in the very same non-parametric fashion. The bandwidth is a sen-
sitive parameter extremely delicate to be chosen; however, there are several methods
to approach to a proper value. We note that there are some alternatives to estimate
the spatial and temporal intensity components by using parametric or semi-parametric
methods. The suitability of these approaches depends on how well we know the data if
there are helpful covariates.
We note that under separability, given two unbiased estimators λ̂space(·) and λ̂time(·), an
unbiased estimator of the spatio-temporal first-order intensity function of the ground
process Xg is

λ̂g (s, t) =
1

n

(
λ̂space (s) λ̂time (t)

)
.

When the spatio-temporal separability is not fulfilled there are some options to properly
estimate the intensity, for instance, a non-separable estimator is given by González et al.
(2020)
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λ̂NS
g (s, t) =

n∑
i=1

k2
ε (s− si)k

1
δ (t− ti)

cε(si;W )cδ(ti;T )
,

where k1
δ is a one-dimensional Gaussian kernel with bandwidth δ and cδ(v;T ) is the

analogous to Diggle’s edge-correction for the temporal component.

2.1.2 Marked versions of the product density and K-function

The so-called reduced second-order moment measure or product density function cor-
responds to a particular case (λ(2)) of the family of product densities defined through
Eq. (1). This function depends on two marked spatio-temporal variables (s1, t1,m1)
and (s2, t2,m2) and takes the form

λ(2)((s1, t1,m1), (s2, t2,m2)) = f (2)(m1,m2)λ(2)
g ((s1, t1), (s2, t2)),

where λ
(2)
g ((s1, t1), (s2, t2)) is the product density of Xg, and f (2)(m1,m2) is the density

of the conditional probability of two points having marks m1 and m2 given their spatio-
temporal locations (s1, t1) and (s2, t2).
Considering the ground process, analogously to Eq. (2), the second-order product den-
sity function (or second-order spatio-temporal intensity function) is defined as (Diggle,
2013)

λ(2)
g ((s1, t1), (s2, t2)) = lim

|ds1|,|ds2|,|dt1|,|dt2|→0

E [N(ds1 × dt1)N(ds2 × dt2)]

|ds1||ds2||dt1||dt2|
. (4)

An important summary statistic for marked spatio-temporal point process is the pair
correlation function. This can be defined as the standardised version (and far more
useful) of the product density function,

g((s1, t1,m1), (s2, t2,m2)) =
f (2)(m1,m2)

f(m1)f(m2)
×gg((s1, t1), (s2, t2)), (s1, t1), (s2, t2) ∈ W×T,

where gg is the pair correlation function of the ground process and it is given by

gg((s1, t1), (s2, t2)) =
λ

(2)
g ((s1, t1), (s2, t2))

λg(s1, t1)λg(s2, t2)
, (s1, t1), (s2, t2) ∈ W × T.

The advantage of having a standardised product density function is that this function
takes the constant value 1 for a spatio-temporal complete random process in the pres-
ence of independent marking. So values above or below this benchmark will be easily
interpreted towards clustering or regularity.
One of the most important working assumptions when dealing with marked spatio-
temporal point processes is the concept of second-order intensity-reweighted stationarity
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defined as follows. A marked spatio-temporal point process X is second-order intensity-
reweighted stationary (SOIRS) (Gabriel and Diggle, 2009) if

g((s1, t1,m1), (s2, t2,m2)) = ḡ(s1 − s2, t1 − t2,m1,m2),

for any (s1, t1), (s2, t2) ∈ W × T , where ḡ is a non-negative function.
If the process is also isotropic, ḡ(s1−s2, t1− t2,m1,m2) = g0(r, t,m1,m2), meaning that
the pair correlation depends only on the distances r = ‖s1− s2‖ and t = |t1− t2|, where
g0 is a non-negative function.
One of the most common methods for the estimation of the pair correlation function
is the non-parametric kernel approach since such estimator is easy to interpret and
implement. Assuming that the spatio-temporal point pattern is given by a sequence of
pairs Xg = {(si, ti)}ni=1, the estimator is given by

ĝg(r, t) =
1

4πr

n∑
i=1

∑
j 6=i

k1ε(‖si − sj‖ − r)k2δ(|ti − tj| − t)
λ̂g (si, ti) λ̂g (sj, tj)wij

, r > ε, t > δ,

where k1ε and k2δ are kernel functions with spatial and temporal bandwidths ε and
δ, and wij is an edge-correction factor for correcting the lack of information occurring
between points close to the edge of W ×T and the unobserved outsider points (see e.g,
Gabriel, 2014).
A spatio-temporal adaptation of the mean product of marks sited a distance r apart
(see e.g, Renshaw, 2002) can be thought of as a natural extension by including the
temporal dimension, i.e, for a stationary and isotropic process

U(r, t) = λ2gg(r, t)S(r, t)ds1dt1ds2dt2,

where ds1 and ds2 are two infinitesimal spatial areas separated by a distance r and dt1
and dt2 are two infinitesimal temporal lengths separated by a distance t. S(r, t) rep-
resents a spatio-temporal mark correlation function that has not yet been examined in
the current literature and that deserves especial attention given its extremely usefulness
for analysing complex point patterns.
Finally, the marked spatio-temporal K-function was defined in Iftimi et al. (2019) in
its general version. We can take advantage of the pair correlation function in the case
of SOIRS processes. Let C,D ⊂M, so the K-function is given by

KCD(r, t) =
1

ν(C)ν(D)

∫
C

∫
D

∫
||s||≤r

∫ t

−t
g((0, 0,m1), (s, v,m2))dsdvν(dm2)ν(dm1).

For Poisson processes, the K-function is 2πr2t. This statistic can be estimated through
the following expression

K̂CD(r, t) =
n∑
i=1

∑
j 6=i

1(‖si − sj‖ ≤ r)1(|ti − tj| ≤ t)1(mi ∈ C)1(mj ∈ D)

λ̂ (si, ti,mi) λ̂ (sj, tj,mj) ν(C)ν(D)wij
,

where 1(·) is the indicator function, and wij is a suitable edge-correction.
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2.1.3 Multitype spatio-temporal point patterns

In analogy with the classical theory of multitype point patterns, we can define some
useful descriptors. Consider a multitype spatio-temporal point process composed by q
types of points, so that X =

⋃q
i=1X

(i). It is straightforward to consider a multitype
point process as a marked point process where M is the set of indices {1, . . . , q}; thus,
the measure ν(·) is the counting measure.
Let Ni(A× B) denote the number of points of type i of the set (A× B) ∩X. We can
naturally define the spatio-temporal cross-product density function as

λ
(2)
ij ((s1, t1), (s2, t2)) = lim

|ds1|,|ds2|,|dt1|,|dt2|→0

E [Ni(ds1 × dt1)Nj(ds2 × dt2)]

|ds1||ds2||dt1||dt2|
. (5)

Note that λ
(2)
ii ≡ λ(2) in Eq. (4). The spatio-temporal cross-covariance density function

for, say, type i-points can be defined by

ζij((s1, t1), (s2, t2)) = λ
(2)
ij ((s1, t1), (s2, t2))− λi(s1, t1)λj(s2, t2). (6)

Having the first- and second-order characteristics at hand, two alternative statistics can
be defined: (a) the spatio-temporal correlation function

Cor((s, t), (s′, t′)) = (dsdtds′dt′)1/2 ζij((s, t), (s
′, t′))

(ζi((s, t), (s′, t′))ζj((s, t), (s′, t′)))1/2

and (b) the scaled cross-covariance density function

τij((s, t), (s
′, t′)) =

ζij((s, t), (s
′, t′))

(λi(s, t)λj(s′, t′))1/2

All these functions are well defined under some regularity conditions, indeed multiple
coincident events are precluded. This assumption implies that

E
[
N2(ds× dt)

]
= E [N(ds× dt)] = λ(s, t)|ds||dt|,

which leads to a natural definition of Bartlett’s complete covariance density function as

κii(s1, s2, t1, t2) = λi(s1, t1)δ(s1 − s, t1 − t2) + ζii(s1, s2, t1, t2)

= λi(s1, t1)δ(s1 − s, t1 − t2) + λ
(2)
ii ((s1, t1), (s2, t2))− λi(s1, t1)λi(s2, t2)

(7)

where δ(·) is a multivariate Dirac delta function with

δ(s1 − s2, t1 − t2) =

{
1 if s1 − s2 = 0 and t1 − t2 = 0

0 otherwise.
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We note that this function simplifies under second-order stationarity to κii(c, h) =

λ
(2)
ii (c, h)− λ2 + λiδ(c, h).

Generalising Bartlett’s complete covariance density function to the spatio-temporal
case, we assume that the spatio-temporal cross-covariance and the complete cross-
covariance density functions coincide, such that

κij(s1, s2, t1, t2) = ζij(s1, s2, t1, t2) and

κji(s1, s2, t1, t2) = ζji(s1, s2, t1, t2) for i 6= j.

3 Spectral analysis of spatio-temporal point pro-

cesses

Extending Dorai-Raj (2001) to the present context, and requiring orderliness and dis-
crete equidistant points in time, we define the auto- and cross-spectral density func-
tions of the i-th and j-th components of a multivariate second-order stationary spatio-
temporal point process as the Fourier transform of the complete spatio-temporal auto-
and cross-covariance density functions at frequencies wst = (ws, wu). By this, the
auto-spectrum of the i-th component is

fii(ws, wu) =

∫
R2

∫
R
κii(c, h) exp

(
−ı(ws

T c + wuh)
)
dhdc

= λ+

∫
R2

∫
R
ζii(c, h) exp

(
−ı(ws

T c + wuh)
)
dhdc,

(8)

where fii(ws, wu) = f
(s)
ii (ws) ◦ f (t)

ii (wu) is the convolution of the auto-spectral density
functions for the spatial and temporal components, ws = (wp, wq) is a two-dimensional
array of spatial frequencies and wu is a vector of temporal frequencies. Applying
Bochner’s theorem, κii(c, k) can be recovered by the inverse Fourier transform of (8),

κii(c, k) =

∫
R2

∫
R

exp(ı(ws
T c + wuh))fii(ws, wu)dwudws.

Further, under second-order spatio-temporal separability, (8) simplifies and allows for
the decomposition into

fii(ws, wu) =

∫
R2

exp(−ıws
T c)κii(c)dc

∫
R

exp(−ıwuh)κii(h)dh

which yields, by inverse Fourier operation, again the complete spatio-temporal auto-
covariance density function in the form of

κii(c, k) =

∫
R2

exp(ıws
T c)f

(s)
ii (ws)dws

∫
R

exp(ıwuh)f
(t)
ii (wu)dwu.

10



Likewise, the spatio-temporal cross-spectral density function fij(ws, wu) = f
(s)
ij (ws) ◦

f
(t)
ij (wu), which measures the linear interrelation of the spatio-temporal components Ni

and Nj, is defined by

fij(ws, wu) =

∫
R2

∫
R

exp(−ı(ws
T c + wuh))κij(c, h)dhdc. (9)

As ζij(c, h) = ζji(−c,−h) and κij(c, h) = κji(−c,−h) under second-order stationar-
ity, we have fij(ws, wu) = fji(−ws,−wu) such that it suffices to consider only one
cross-spectrum. However, at the same time, as the spatio-temporal cross-covariance
density function is not necessarily symmetric, i.e. ζij(c, k) 6= ζij(−c,−k), fij(ws, wu) is
a complex-valued function which can be decomposed into its real and imaginary parts
either in terms of Cartesian or polar coordinates yielding the co-spectrum Cij(ws), the
quadrature spectrumQij(ws, wu), the amplitude spectrum aij(ws, wu) = mod (fij(ws, wu))
and the phase spectrum ℘ij(ws, wu) = tan−1 (−Qij(ws, wu)/Cij(ws, wu)). The ampli-
tude spectrum represents the relative magnitude of the power attributable to frequencies
(ws, wu) while the phase spectrum indicates the similarity of two patterns up to linear
shifts (cf. Chatfield (1989); Priestley (1981)).
Although the spatio-temporal cross-spectrum provides insights into the linear interre-
lation of two components at frequencies wst, it is preferable to compute the spatio-
temporal spectral coherence function,

|Rij(wst)|2 =
fij(wst)

2

[fii(wst)fjj(wst)]
, (10)

satisfying 0 ≤ |Rij(wst)|2 ≤ 1. For a subset of J components, a different spectral coher-
ence function which quantifies the extend to which the i-th component is determinable
from the J components is the multiple coherence function |Rm

iJ(wst)|2,

|Rm
iJ(wst)|2 =

fiJ(wst)f
−1
JJ (wst)fJi(wst)

fii(wst)
. (11)

Defining κi•(c, h) as the complete dot-type cross-covariance function between the i-th
and all N \ {i}-th components and substituting κi•(c, h) for κij(c, h) in (9) yields the
dot-type spatio-temporal cross-spectrum

fi•(ws, wu) =

∫
R2

∫
R

exp(−ı(ws
T c + wuh))κi•(c, h)dhdc (12)

from which, in turn, the dot-type spatio-temporal spectral coherence function |Ri•(ws, wu)|2
and multiple coherence function |Rm

iJ(wst)|2 can be computed. We note that |Rm
iJ(wst)|2

and |Ri•(wst)|2 coincide whenever J equals N \ {i}. Unlike the ordinary cross-spectral
characteristics, the above dot-type functions express the linear interrelation between
one particular component and the set of all remaining components.
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Besides the spectral coherence functions, a different spectral quantity which measures
the linear effect of the j-th on i-th (resp. i-th on j-th) component is the spatio-temporal
gain spectrum Gi|j(ws, wu) (resp. Gj|i(ws, wu)) defined by

Gi|j(ws, wu) =

√
fii(ws, wu)Rij(ws, wu)

fjj(ws, wu)

where Gj|i(ws, wu) can be computed analogous to Gi|j(ws, wu). Defining a dot-type
version of the above functions yields the expression

Gi|•(ws, wu) =

√
fii(ws, wu)Ri•(ws, wu)

f••(ws, wu)

where f•• is the auto-spectrum defined over all components except i. This function
provides information on the linear effect of all the alternative components on the i-th
component.
Analogous to (8), the marked spatio-temporal auto-spectrum for the i-th component of
a multivariate-marked point process is defined as the Fourier transform of the auto-type
spatio-temporal mean product of marks Uii, and is given by

fmii (ws, wu) =

∫
R2

∫
R
Uii(·) exp(−ı(ws

T c + wuh)dhdc. (13)

The cross-term expression of (13) is obtained in the same way through the Fourier
transform of Uij. Recapitulating Bochner’s theorem, we note that again both quantities
Uii and Uij can uniquely be recovered by the inverse Fourier operations. As for the
multitype case, we note that the marked cross-spectrum could be extended to a dot-
type version by substituting Uij by the dot-type spatio-temporal mean product of marks
Ui•. This statistic would then include dot-type versions of the spatio-temporal pair and
mark correlation functions which need further rigorous investigations in future research.
Adopting the ideas of Renshaw and Ford (1983, 1984), two different spectral representa-
tions of the spatio-temporal (marked) spectra can be defined. These spectra, theR- and
the Θ-spectrum at the temporal frequency wu can be computed directly by converting
the spatial frequency ws into polar form wO θ with O =

√
p2 + q2 and θ = tan−1(p/q).

This yields the Rt-spectrum f̂R(O, wu) = 1
nO

∑
O′
∑

θ f̂
◦(wO′ θ, wu), O = 1, 2, . . . where

nO represents the number of periodogram ordinates (p, q) for which 1−O < O′ ≤ O and
the Θ-spectrum f̂Θ(θ, wu) = 1

nθ

∑
O

∑
θ′ f̂
◦(wO θ′ , wu), θ = 0◦, 10◦, . . . , 170◦ where nθ is

the number of periodogram ordinates for which θ− 5◦ < θ′ ≤ θ+ 5◦, respectively. Here
f̂ ◦ denotes the polar form computed from the ordinary (marked) spatio-temporal cross-
spectra at temporal frequency wu. While the R-spectrum provides useful information
on the scales of point patterns under the assumption of isotropy, the Θ-spectrum could
be used to investigate directional features of the point pattern.
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3.1 Estimation of spatio-temporal spectral density functions

Next, the estimation of both functions from empirical data by means of spatio-temporal
auto- and cross-periodograms is presented. Assume that we have a multivariate spatio-
temporal point pattern in a bounded region W × T ⊂ R2×R+ where W is required to
be a rectangular region with sides of length l1 and l2 and independent of t.
Let {si(t)} = {(xik(t); yik(t))} with i = 1, . . . , ni (resp {sj(t)}) denote the locations
of points of type i (resp. of type j) recorded at time t, t ∈ T . To ease notation, we
will be using only the subindex k for the coordinates, whenever no confusion arises.
For simplicity, we assume that the locations have been scaled to the unit square prior
to analysis and that T is an ordered set of consecutive times recorded for equidistant
steps in discrete time. The spatio-temporal auto- and cross-periodograms result from
the DFT of the point locations {si(t)} and {sj(t)} at time t ∈ T . For events of type i,
the DFT is defined as

Fi(p, q, u) =
T∑
t=1

ni∑
k=1

exp (−2πı ((pxk(t) + qyk(t)) + ut/T ))

= ai(p, q, u) + ıbi(p, q, u)

(14)

where ai(p, q, u) and bi(p, q, u) are the real and the imaginary parts of Fi(p, q, u), p =
0, 1, 2, . . . , q = ±1,±2, . . . and u = −

[
T−1

2

]
, . . . ,

[
T
2

]
. In general, p and q are assumed

to be independent of u.
Under second-order separability, (14) factorises to

Fi(p, q, u) =
T∑
t=1

exp

(
−2πı

(
ut

T

)) ni∑
k=1

exp(−2πı(pxk(t) + qyk(t)))

=
T∑
t=1

exp

(
−2πı

(
ut

T

))
F (t)
i (p, q)

(15)

where F (t)
i (p, q) is the Fourier transform of the spatial frequencies (wp, wq) for events

of type i at time t. From this expression, the spatio-temporal auto-periodogram for
frequencies ws = (2πp/ni, 2πq/ni) and wu = 2πu itself follows as

f̂ii(ws, wu) = Fi(p, q, u)F i(p, q, u)

=

[
T∑
t=1

exp

(
−2πı

(
ut

T

))
F

(t)
i (p, q)

]
×

[
T∑
t′=1

exp

(
2πı

(
ut′

T

))
F

(t′)

i (p, q)

]

=
T∑
t=1

T∑
t′=1

F (t)
i (p, q)F (t′)

i (p, q) exp(ıwuh/T )

(16)

13



where h = t− t′ is the time lag and F (t)

i (·) is the complex conjugate of F (t)
i (·).

The computation of the spatio-temporal cross-periodogram follows analogously to (16)
leading to

f̂ij(ws, wu) = Fi(p, q, u)F j(p, q, u)

where p, q and u are defined as above.
Likewise, in the presence of both one qualitative and one quantitative marks for each
point location, both the marked spatio-temporal auto- and the marked spatio-temporal
cross-periodograms result from the discrete Fourier transforms of the marked locations
{si(t),mi(si(t))} and {sj(t),mj(sj(t))} at time t ∈ T . Assuming that the marked
locations have been scaled to the unit square prior to the analysis, the spatial component
F (t)
i (p, q) changes to

Fmi (p, q) =

(
ni∑
k=1

(mk(xk(t), yk(t))− µ(mk(xk(t), yk(t))) exp(−2πı(pxk + qyk))

)
(17)

where µ(mk(xk(t), yk(t)) is the mean computed over all quantitative marks for the i-th

component. Plugging-in this expression for F (t)
i (p, q) into (16) yields

Fmi (p, q, u) =
T∑
t=1

exp

(
−2πı

(
ut

T

)) ni∑
k=1

(mk(xk(t), yk(t))− µ(mk(xk(t), yk(t)))×

exp(−2πı(pxk(t) + qyk(t)))
(18)

where p, q and u are defined as above.

4 Spatio-temporal dependence graph model

Although some progress has been made in the analysis of marked spatio-temporal
point patterns and various point process characteristics can be found in the litera-
ture, the need for efficient exploratory techniques for multivariate and multivariate-
marked spatio-temporal point patterns which allow for the simultaneous investigation
of potential conditional interrelations among all component patterns still remains. To
overcome this limitation, this section extends the framework of the spatial dependence
graph model to introduce a new class of spatio-temporal dependence graph models
which allows for the joint analysis of potential direct and indirect interrelations in
multivariate and multivariate-marked spatio-temporal point patterns. In addition, us-
ing the same ideas underpinning the graphical model, different partial spatio-temporal
point process characteristics are introduced which represent the pair interrelation be-
tween to (marked) components conditional on all remaining patterns. To put it dif-
ferently, we are interested in the partial linear interrelations between two component
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processes which remain conditional on all alternative components as expressed by par-
tial spatio-temporal spectral characteristics, i.e. the partial spatio-temporal spectral
density function fij|V\{i,j}(wst), which are next presented.

4.1 Partial spatio-temporal spectral properties

To formalise the concept of partial spectral properties, let NV denote a d-variate spatio-
temporal point patterns indexed by V = 1, . . . , d where d ≥ 3 and NV\{i,j} denote all
alternative components of NV except Ni and Nj. Different from the ordinary spectral
properties which do not help to distinguish between direct and induced interrelations,
the objective of interest of this section are linear interrelations between any pair of
distinct components (Ni, Nj) conditional on NV\{i,j}. That is, the pairwise linear inter-
relation of Ni and Nj which remains after the linear effect of all alternative components
has been removed. In this respect, the partial cross-spectrum fij|V\{i,j}(wst) can be
regarded as the cross-spectrum of two residual processes εi and εj computed from Ni

and Nj.
Analogously to (10), rescaling of the partial cross-spectral density function yields the
partial spectral coherence function |Rij|V\{i,j}(wst)|2,

|Rij|V\{i,j}(wst)|2 =
fij|V\{i,j}(wst)

2[
fii|V\{i,j}(wst)fjj|V\{i,j}(wst)

] , (19)

which is also bounded between zero and one. However, different from the ordinary spec-
tral coherence function, this function expresses the linear interrelation of two component
processes which remains after the linear effect of all remaining component processes has
been removed by orthogonal projection. In this sense, the partial spectral coherence
can be understood as the partial correlation defined as a function of frequencies wst

such that Ni and Nj are conditionally independent at all spatial and temporal lags
given NV\{i,j} (Ni ⊥⊥ Nj | NV\{i,j}) if |Rij|V\{i,j}(w)st|2 vanishes at all frequencies w (cf.
Brillinger (1981); Rosenberg et al. (1989)).
Having only three distinct components i, j and k under study, the calculation can be
simplified though

Rij|k(wst) =
Rij(wst)−Rik(wst)Rjk(wst)√
1−Rik(wst)2

√
1−Rjk(wst)2

.

Besides, an alternative spectral characteristic called the absolute rescaled inverse spec-
tral density function |dij(w)st| can be calculated from the negative of the partial spectral
coherency function, that is |dij(wst)| = −Rij|V\{i,j}(wst) which measures the strength
of the linear partial interrelation between Ni and Nj at frequencies w (cf. Dahlhaus
(2000)).
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4.2 Estimation of partial spectral spatio-temporal density func-
tions

Whilst Section 4.1 formalises the concept of partial point process spectral properties,
we now briefly review different computational methods for the calculation of the partial
cross-spectrum from empirical data.
Applying well-known results from the theory of the multivariate normal and Brillinger
(1981, Theorem 8.3.1.), a first approach which requires the inversion of a (d−2)×(d−2)
matrix is to compute the partial cross-spectrum using the formula

fij|V\{i,j}(wst) = fij(wst)− fiV\{i,j}(wst)fV\{i,j}V\{i,j}(wst)
−1fV\{i,j}j(wst) (20)

where

fiV\{i,j}(wst) = [fi1(wst), . . . , fii−1(wst), fii+1(wst), . . . , fij−1(wst), fij+1(wst), . . .]

is a (d− 2)× 1 matrix. As an alternative approach, a step-wise procedure for (20) can
be implemented by recursively applying algebraic operations as described by Bendat
(1978). However, as the required number of stepwise calculations strictly depends on the
number of components under study, this recursive calculus is computationally inefficient
in high dimensional settings. Finally, a less computationally intensive approach has
been introduced in Dahlhaus (2000) and effectively extended to the spatial domain by
e.g. Eckardt (2016) where, under regularity assumptions, the partial spectra can be
obtained from the inverse [(wst) of the spectral matrix f(wst) such that

Rij|V\{i,j}(wst) = − [ij(wst)

[[ii(wst)[jj(wst)]
1
2

(21)

whence

|dij(wst)| =
|[ij(wst)|

[[ii(wst)[jj(wst)]
1
2

. (22)

We note that expressions for the multivariate-marked case can analogously be computed
from the inverse of the marked cross-spectra [mij (wst). Likewise, for subsets Xi, XJ and
XK where XJ ∪XK ⊂ XV\{i}, replacing [ij(wst) by [iK(wst), the inverse of fiK(wst),
yields the partial dot-type spectra fiK|K(wst). Different from ordinary partial spectral
characteristics, fiK|J(wst) describes the partial interrelation between component Xi and
subset XK conditional on subset XJ which is identical to fik|V\{i,j} if and only if XK

reduces exactly to component Xk and XJ = XV\{i,k}.

4.3 Spatial dependence graph model for spatial point pro-
cesses

Adopting the ideas of Eckardt (2016) and Eckardt and Mateu (2019a), we now define
the spatio-temporal dependence graph model (henceforth STDGM) aiming to relate the
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structure of an undirected graph to the partial interrelation structure of a multivariate
and multivariate-marked spatio-temporal point pattern. To this end, we identify the
vertices of an undirected graph with the components of any such spatio-temporal point
process such that an edge between the two vertices vi and vj is missing if and only if
the component processes Ni and Nj are conditionally uncorrelated after removal of the
linear effect of NV\{i,j}, e.g. if both components are homogeneous spatio-temporal Pois-
son processes conditional on all remaining components. This assumption is equivalent
to observing a vanishing partial cross-spectrum fij|V\{i,j}(wst), inverse [ij(wst), partial
spectral coherence function Rij|V\{i,j}(wst) or absolute rescaled inverse spectral density
function dij(wst) at all frequencies wst in space and time. This leads to the following
definition of a STDGM.
Let NV be a multivariate or multivariate-marked spatio-temporal point process on
W × T ⊂ R2 × R+. A spatio-temporal dependence graph model is an undirected
graphical model G = (V , E) in which any vi ∈ V encodes a component of NV and
E = {{vi, vj} : Rij|V\{i,j}(wst) 6= 0} such that

Ni ⊥⊥ Nj | NV\{i,j} ⇐ {vi, vj} /∈ E .

Hence, a spatial dependence graph model is an undirected graph in which conditional
interrelations can be identified from non-missing edges. Precisely, two components
Ni and Nj are said to be conditionally uncorrelated at all spatial and all temporal
lags after removing the linear effect of all remaining components if the unordered pair
{vi, vj}, i 6= j is not in E .

4.4 Partial characteristics in the spatio-temporal domain

Adopting Bochner’s theorem, different partial spatio-temporal domain characteristics
can be computed directly from the partial spectral characteristics through the inverse
Fourier transformation.
Whence, for the qualitative marks, applying the inverse transformation yields the
spatio-temporal partial complete auto-covariance function,

κii|V \{i,j}(c, t) =

∫
R2

∫
R

exp(ı(ws
T c + wuh))fii|V \{i,j}(ws, wu)dwudws (23)

and the partial complete cross-covariance function

κij|V \{i,j}(c, t) =

∫
R2

∫
R

exp(ı(ws
T c + wuh))fij|V \{i,j}(ws, wu)dwudws. (24)

Recapitulating that κij = ζij, notice that (24) is the partial cross-covariance density
function ζij|V \{i,j}. Further, the partial correlation Corij|V \{i,j} and the partial scaled
covariance density function ξij|V \{i,j} are then defined as
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Corij|V \{i,j}((s, t), (s
′, t′)) = (ds× t, ds′ × t′)

1
2
ζij|V ((s, t), (s′, t′))

(λi(s, t)λj(s′, t′))
1
2

and

ξij|V \{i,j}((s, t), (s
′, t′)) =

ζij|V ((s, t), (s′, t′))

(λi(s, t)λj(s′, t′))
1
2

.

Likewise, similar partial point process characteristics can be computed from the in-
verse transformation of multivariate-marked as well as dot-type partial cross-spectra
expression yielding a rich toolbox of novel numerical summary characteristic for spatial-
temporal point data. E.g., for the multivariate-marked case, inverse transformation of
the marked auto- and cross-spectral density functions yield the partial auto-type mean
product of marks Uii|V \{i,j}(c, t) and the partial cross-type mean product of marks
Uij|V \{i,j}(c, t), respectively, which properties and interpretation has not been investi-
gated yet and highly welcomes deeper evaluations in future research.

5 Multivariate spatio-temporal crime data

This section covers the application of the STDGM to a spatio-temporal crime dataset
provided under the Open Government Licence by the British Home Office for London
and has been downloaded from http://data.police.uk/data/. This data contains
the longitude and latitude for a set of 14 pre-classified crime categories at street-level,
either within a one mile radius of a single point or within a custom area of a street
recorded by the Metropolitan Police as well as the month of occurrence for each single
crime event. For our analysis we preselected all crime events which have been collected
within a four-month period from April to July 2016 yielding a sample of 343427 single
crime events from which 77139 events have been recorded in April, 86915 in May, 85761
in June and, lastly, 93612 in July. Finally, excluding any duplicated events our data
reduces to 127328 events in total.
To give a first impression about the temporal variation of the spatio-temporal point
pattern, the numbers of crimes and different numerical summary characteristics per
month have been computed. The monthly numbers and spatial first-order intensity
functions per crime category are reported in Table 1. Inspecting Table 1, we found that
most of the crime events have been categorised as anti-social behaviour and also violence
and sexual offences, while possession of weapons appeared least often. Further, an
increase in numbers of cases of anti-social behaviour from April to July can be observed
contrasting with a decrease in numbers of cases of violence and sexual behaviour in the
same period. The intensity reports the mean number of events per unit area of the
region considered in London.
We note that this current dataset contains only four temporal instants, and this lack of
temporal information basically prevents from running a formal spatio-temporal anal-
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crime April May June July
Anti-social behaviour 9824 (494.079) 11420 (529.492) 11570 (388.770) 13280 (675.639)
Bicycle theft 800 (40.234) 1008 (46.736) 968 (32.526) 1081 (54.997)
Burglary 3440 (173.008) 3257 (151.012) 3204 (107.660) 3040 (154.664)
Criminal damage and arson 2738 (137.702400) 2940 (136.314000) 2579 (86.659) 2694 (137.061)
Drugs 1188 (59.748) 1108 (51.373) 1056 (35.483) 1056 (53.725)
Other crime 159 (7.997) 150 (6.955) 143 (4.805) 147 (7.479)
Other theft 2673 (134.433) 2816 (130.565) 2799 (94.051) 2682 (136.451)
Possession of weapons 98 (4.929) 99 (4.590) 137 (4.603) 106 (5.393)
Public order 1049 (52.757) 1079 (50.028) 1164 (39.112) 1205 (61.306)
Robbery 444 (22.330) 510 (23.646) 557 (18.716) 502 (25.540)
Shoplifting 380 (19.111) 340 (15.764) 378 (12.701) 324 (16.484)
Theft from the person 422 (21.224) 424 (19.659) 549 (18.447) 459 (23.352)
Vehicle crime 2983 (150.024) 2994 (138.818) 2907 (97.680) 2746 (139.707)
Violence and sexual offences 4024 (202.379) 3946 (182.958) 3905 (131.214) 3777 (192.160)

Table 1: Number of events and average spatial intensity per crime category per month:
Monthly numbers of 14 different crime categories recorded from April 2016 to July 2016
in London and first-order spatial intensity functions per crime type in brackets.

ysis using second-order characteristics as in Section 2. In addition, so many points
in space for each type of crime make computational burden when using for example
the spatial K-function. Two more points are in order. The crime data happens on
the streets of London, and the network structure is key in the spatial structure of the
events. Note that there is a large hole within the spatial region having to do with the
network itself. This is not considered into account in the functions shown in Section
2 for a more classical spatio-temporal analysis. A second aspect is that this classi-
cal approach does not consider conditional relationships, and can only measure global
bivariate cross-relationships when marks are discrete. Due to these number of draw-
backs, we considered the bivariate spatial K-function per month for the pairs (Criminal
damage and arson vs Violence and sexual offences) and (Robbery vs Vehicle crime).
The corresponding K-functions per month are displayed in Figure 1, where the Pois-
son line is also depicted. In addition, they show a sort of regular, inhibitory structure
between the two types of crimes for each pair considered. It is clear that time is not
rightly considered here, and the analysis of the spatial structure neglects the remaining
information from the other types. These facts motivate our new graphical modelling
approach as follows.

5.1 Cross-sectional graphical modelling

To investigate the structural interrelations among the 14 crime categories from a cross-
sectional perspective and to evaluate the findings of the STDGM, we first discuss the
SDGMs computed for each month separately. To this end, we split the data per month
into four subsets and computed separate spatial auto- and cross-periodograms. To con-
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Criminal damage and arson vs Violence and sexual offences Robbery vs Vehicle crime
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0

1

2

3

0

1

2

3

Figure 1: Bivariate spatial K-function per month for the pairs Criminal damage and
arson vs violence (left) and Robbery vs vehicle crime (right). Each black line corre-
sponds to each month, and the dashed red line represents the theoretical value under
independence amongst types.

trol for possible variation in strength of the partial interrelations between different pairs
of crimes, we considered a threshold level of ξ = 0.6 to discover partial interrelations
with an intermediate effect size. That is, for each SDGM an edge is drawn between
the nodes i and j if the supremum of the empirical absolute rescaled inverse spectral
density function for components i and j equals or exceeds ξ for at least one frequency w
for p = 0, 1, . . . , 16 and q = −16, . . . , 15 for the particular month. In this case, the point
distributions of the components i and j recorded for a particular time t, t = 1, . . . , 4 are
said to be interrelated. The resulting monthly SDGMs are depicted in Figure 2.
Looking at these plots, we found 6 isolated nodes in Figures 2a to 2c and 7 isolated
nodes in Figure 2d. For Figure 2a and Figure 2b, we observed an identical set of isolated
nodes (public order, other theft, robbery, drugs, theft from the person, bicycle theft)
while different sets of isolated nodes are shown in Figure 2c (possession of weapons,
shoplifting, drugs, other crime, robbery and theft from the person) and Figure 2d (public
order, bicycle theft, vehicle crime, criminal damage and arson, theft from the person,
other theft and robbery). For all isolated nodes, we concluded that none of these crime
patterns are interrelated to any alternative crime pattern included from a cross-sectional
perspective. We note that comparing the isolated nodes over the complete period under
study, only two crimes remain isolated throughout the four months, namely robbery
and theft from the person, while most alternative isolated nodes appeared in, at most,
three SDGMs. Further, other crime and shoplifting (resp. criminal damage and arson
and vehicle crime) are not interconnected to any alternative crime in June (resp. July).
We outline that the isolated nodes would imply that the distributions of point locations
of any of these crimes obey complete spatial randomness conditional on all alternative
crime patterns included by definition in the spatial dependence graph model.
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Besides these isolated nodes, several subgraphs can be identified. Inspecting the upper
panel, two subgraphs are shown in Figure 2a (a 2-node and a 6-node subgraph) while
all alternative crimes are joined in only one 8-node subgraph in Figure 2b. Turning to
the lower panel, we again observed a 2-node and a 6-node subgraph for June (Figure
2c) whereas all non-isolated nodes form a subgraph in Figure 2d. Further, looking
at all four spatial dependence graph models, we found that anti-social behaviour is
only directly connected with violence and sexual offences which implies that anti-social
behaviour is conditionally independent of all remaining crimes given violence and sexual
offences from a purely spatial perspective for all months. Comparing this finding with
Table 1, we found that anti-social behaviour, which appeared most often in all four
months, is directly connected to the second most often crime category. At the same
time, we also found that burglary is linked to violence and sexual offences throughout
the complete period from a cross-sectional perspective. Except for June (Figure 2c),
a direct interrelation can also be detected for possession of weapons and other crime.
Interestingly, unlike anti-social behaviour and violence and sexual offences, we observed
an opposite relation between the numbers of possession of weapons and other crime
throughout all four months with high numbers for other crime while possession of
weapons appeared least often.

5.2 Spatio-temporal dependence graph model results

We now discuss the results of the STDGM computed from the crime data over the
four-month period. Unlike the cross-sectional analysis, the estimation of the STDGM
is related to Fourier transformations of the spatial frequencies over time. We note that,
as time is assumed to be recorded in equidistant steps in discrete time, the interval
length has an important impact on the estimation of the STDGM. As pointed out by
Didelez (2003), large intervals result in a marginalisation over time and information
on short-term dependencies between different components might be lost. At the same
time, additional correlation could emerge due to common causes which occurred in the
meantime.
To control for possible variation in strength of the partial interrelations between different
pairs of crimes over time, we consider a threshold level of ξ = 0.6 in order to detect
conditional partial interrelations with an intermediate effect size such that an edge is
drawn between the nodes i and j if the supremum of the empirical absolute rescaled
inverse spectral density function for components i and j equals or exceeds ξ for at least
one frequency wst for p = 0, . . . , 16, q = −15, . . . , 16 and u = −2, . . . , 2. That is, edges
indicate that the strength of the linear partial interrelation between two component
processes is greater than or equal to ξ = 0.6 over all four months. In this particular
case, the spatial point distributions of the components i and j are said to be interrelated
over time. To state this in a different manner, as the STDGM is defined through the
Fourier transform of the spatial frequencies (p, q) at times t, edges represent periodicities
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of (p, q) over time. The resulting STDGM is depicted in Figure 3.
Inspecting the STDGM, eight isolated nodes (public order, other crime, anti-social be-
haviour, drugs, bicycle theft, shoplifting, theft from the person, possession of weapons)
and one 6-node subgraph can be identified. For the isolated nodes, we concluded that
none of these crimes are interrelated to any alternative crime included over the four-
month period. Further, comparing the isolated nodes of the STDGM with the four
SDGMs depicted in Figure 2, no link is drawn joining anti-social behaviour and vio-
lence and sexual offences for the spatio-temporal case while this interrelation occurred
in all cross-sectional plots from April to July 2016. This implies that, although both
crimes are interrelated from a cross-sectional perspective, no periodic structures can be
found over monthly time intervals. At the same time, as for the analysis of time series,
periodicities might be detected for alternative interval lengths.
Turning to the 6-node subgraph, we observed that the spatio-temporal patterns of
robbery as well as of vehicle crime are conditionally independent of all remaining crime
patterns given the spatio-temporal distribution of other theft. Interestingly, we also
observed that burglary is again linked to violence and sexual offences which also holds
for the purely spatial dependence structures as depicted in Figures 2a to 2d. This implies
that the interrelations of both crimes are also periodic over monthly time intervals. We
emphasise that these findings would not have been detected by the classical spatial
analysis as conditioning nor partialisation are not able in their case.

6 Multivariate spatio-temporal point patterns with

quantitative marks

6.1 Multivariate-marked spatio-temporal forestry data

This section discusses the STDGM computed from the Duke Forest data. The Duke
Forest data contains information on the longitude and latitude, the diameter at breast
height (henceforth DBH) as well as elevation and disease characteristics for 71 different
botanic tree species recorded for different years in the Duke Forest. The DBH is the
diameter of a tree measured at height of 1.30 metres above the ground level and is a
common method used for estimation of the amount of timber and the age of a single
tree. The Duke Forest is owned and managed by the Duke University and covers an
area of 7000 acres of forested land as well as open fields located in Durham, Orange and
Alamance counties in North Carolina (USA). In total, 14992 distinct trees reported in a
wide format data sheet are repeatedly surveyed at a yearly, mostly biennial, basis within
the temporal period from 2000 to 2014. We note that not all trees are investigated
at each single time step yielding time-varying sets of non-missing DBH values over
the complete temporal window. Focussing on the particular years 2000, 2002, 2004,
and 2006, we have 38074 individual tree location with non-missing DBH information
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Figure 3: Spatio-temporal dependence graph model for crime data recorded in London
for a four-month period from April 2016 to July 2016 for a threshold level of ξ = 0.6.

collected over the four-years period. From this subset we finally selected a sample
of 20293 individual locations, where n1 = 5338, n2 = 5052, n3 = 4769 and n4 = 5134
including eight different tree species requiring that for each single species approximately
100 point locations are reported for each time step.
To control for possible variation in strength of the partial interrelations between different
pairs of marked locations over time, we consider a threshold level of ξ = 0.5 in order
to detect conditional partial interrelations with an intermediate effect size such that
an edge is drawn between the nodes i and j if the supremum of the empirical absolute
rescaled inverse spectral density function for components i and j equals or exceeds ξ
for at least one frequency wst for p = 0, . . . , 16, q = −15, . . . , 16 and u = −2, . . . , 2. In
this respect, edges indicate that the strength of the linear partial interrelation between
two component processes is greater than or equal to ξ = 0.5 over all four years. The
resulting STDGM is depicted in Figure 4.
Inspecting the STDGM, three isolated nodes (fraxAmer, caryTome, franCaro) as well
as one pair and one triplet of connected edges can be identified. For the isolated nodes,
we concluded that the quantitative marks and the locations of these particular species
are both unrelated to the quantitative marks and the locations of any alternative species
included over the complete temporal period. We remind that the present formulation of
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Figure 4: Spatio-temporal dependence graph model for a subset of eight tree species
recorded in the Duke forest data and biennial DBH values as quantitative marks, for a
threshold value of ξ = 0.5.

the STDGM only allows for the detection of linear partial interrelations and potential
non-linear interrelation are not captured. Turning to the pair and triplet of intercon-
nected nodes, we found that the marks and locations of (a) caryGlab and carpCaro
as well as (b) cercCana, acerRubrand cornFlor are not interrelated to those of any
alternative species in the sample except of those species contained in the correspond-
ing 2-node and 3-node subgraphs. At the same time, focussing on (b) and applying
basic graph terminology we found that the marked locations of cercCana and cornFlor
are conditionally uncorrelated given those of acerRubrand as acerRubrand serves as a
separator in this subgraph.
For completeness, we consider the only analysis we can run from the more classical
spatio-temporal point of view. Two drawbacks are in order here. One is that as we
have only four temporal instants, we can not provide a deep spatio-temporal analysis.
Second, we can only show marginal analysis of the whole problem, one with bivari-
ate K-functions, and the other with mark weighted K-functions, but not an overall
analysis. We then report the cross spatial K-functions for each temporal bin for all
connected types in Figure 4 as well as individual mark weighted K-functions (see e.g.
Penttinen et al., 1992). K-functions are displayed in Figures 5 and 6. In all the cases
the differences between K̂ij(r) and the benchmark clearly suggest that the components
are dependent, which goes in the line found in Figure 4. The mark-weighted K-function
for each recorded time is subtracted from its theoretical value under independence be-
tween locations and marks, i.e, from the classical K-function. We find quite strong
indications of a substantial deviation from independence in this case, again reinforcing
the results in Figure 4.
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Figure 5: Bivariate spatial K-functions per biennial times for the pairs of species
that seem to have dependence through the spatio-temporal dependence graph model.
Dashed red lines represent the theoretical value under non-dependence amongst species.

6.2 Multivariate-marked spatio-temporal crime data

As a second application, the STDGM computed from multivariate-marked crime data
is discussed next. This data contains information on a subset of point locations for
both property and violent crimes provided as longitude and latitude, the precise date
and time of the event, and different attributes of incidents reported in the Analyti-
cal Services Application (ASAP) crime report database by the District of Columbia
Metropolitan Police Department (MPD). It has been provided under an Open Govern-
ment Licence and downloaded from https://dcatlas.dcgis.dc.gov/crimecards/.
This data is shared via an automated process where addresses are geocoded to the
District’s Master Address Repository and assigned to the appropriate street block. To
compute a STDGM from this source, we initially extracted the month and year from
the original time indication and calculated the duration of police investigation at place
in seconds from two additional date and time indications in the data. This duration
was then considered as quantitative mark yielding the desired multivariate-marked rep-
resentation.
Restricted to the year 2019 and excluding any cases with either missing date, time or

26

https://dcatlas.dcgis.dc.gov/crimecards/


cercCana cornFlor

acerRubr carpCaro caryGlab

0 20 40 60 0 20 40 60

0 20 40 60 0 20 40 60 0 20 40 60

0

1000

2000

3000

4000

−5000

−2500

0

2500

0

500

1000

1500

2000

−500

0

500

0

500

1000

Figure 6: Centred estimates of the mark-weighted K-function (by subtracting the K-
function for the respective unmarked point patterns) of the species of Duke forest that
seem to depend on each other. Different lines represent the two-yearly temporal bins
and red line represent the independence.

duration information yields a sample of 28999 events. Taking 12 months into account,
we preselected a set of 27680 point locations from this sample restricted to a set of five
distinct pre-specified crime categories. This data then serves as input for the STDGM
where we, paralleling the STDGM of the Duke forest data, considered a threshold level
of ξ = 0.5 to control for possible variation in strength of the partial interrelations
between different pairs of marked locations over time. This implies that i and j are
joint by an edge if the supremum of the empirical absolute rescaled inverse spectral
density function for components i and j equals or exceeds ξ for at least one frequency
wst for p = 0, . . . , 16, q = −15, . . . , 16 and u = −2, . . . , 2. The resulting STDGM is
depicted in Figure 7.
Inspecting the STDGM, we found one isolated node (motor vehicle theft) and two pairs
of pairwise interconnected nodes indicating that the marked locations of (a) robbery and
burglary, and (b) other theft and car theft meaning theft from car. Interestingly, for (a)
the marks and locations of two different types of crimes (one property and one violent
crime) are interrelated to each other over the complete 12 month period, whereas both
crimes of (b) as well as motor vehicle theft are property related crimes. Neglecting the
spatial component and inspecting the number of incident for all five crimes exclusively
over the complete period under study, both other theft and car theft show a periodic
behaviour with peaks in the summer time while all alternative crimes in the sampled
data reflect less fluctuation over time.

27



burglary

car theft

motor vehicle theft

other theft

robbery

Figure 7: Spatio-temporal dependence graph model for different types of crimes
recorded in the District of Columbia and investigation period in seconds as quanti-
tative mark for 2019 recorded at monthly basis for a threshold value of ξ = 0.5.

Figure 8 shows the estimated cross K-functions for each month for the connected crimes
in Figure 7. In the two cases, there are differences between K̂ij(r) and the benchmark,

Burglary vs Robbery Other theft vs Car theft

0.00 0.01 0.02 0.03 0.04 0.05 0.00 0.01 0.02 0.03 0.04 0.05

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

Figure 8: Bivariate spatial K-functions per month for the pairs of crimes connected by
the spatio-temporal dependence graph model. Dashed red lines represent the theoretical
value under non-dependence amongst types of crimes.

so we can conclude that the components are dependent, reinforcing the results in Figure
7. Once again, the mark-weighted K-function for each recorded time is centred by using
its the classical K-function. As the lines oscillate around the theoretical value, we can
say that there is not enough evidence of substantial deviation from the independence,
meaning that the spatio-temporal locations, in this case, neglect somehow the values
of the marks. This is different from what we have found in Figure 7, and this is a
misleading result due to the marginal analysis done for the marks only in a spatial
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Figure 9: Centred estimates of the mark-weighted K-function of the crime-types in
Columbia previously related on each other. Different lines represent the twelve months
and red line represent the independence.

context. The STDGM highlights relations that with only a classical method could be
missing.

7 Conclusions

The statistical investigation of potential interrelations in marked spatio-temporal point
process is an still unresolved and yet highly challenging field of research which has just
very recently been started to be explored. When extending classical cross-type charac-
teristics for spatial marked point processes to the spatio-temporal domain, these mark
statistics quickly become infeasible and computational burdensome when having large
amounts of point locations in time, space or in space-time. To overcome these limi-
tations, the present paper contributes to the multivariate analysis of spatio-temporal
point process data by introducing different partial point characteristics and extend-
ing the spatial dependence graph model formalism yielding a unified framework for
different types of spatio-temporal data including both, purely qualitatively (multivari-
ate) cases and the so-called multivariate-marked spatio-temporal point processes where
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both qualitative and quantitative information is available for each point location. The
proposed graphical model, defined through partial spectral densities characteristics, is
highly computationally efficient and reflects in the multivariate-marked case the con-
ditional similarity among sets of spatio-temporal sub-processes of marked points with
identical discrete marks.
In addition to the definition of the spatio-temporal dependence graph model, different
partial spatio-temporal point process characteristics are introduced in the frequency
spatio-temporal domain which enhance the classical methodology toolbox in multiple
ways providing alternative information besides classical univariate and bivariate cross-
and dot-type point process statistics as well as traditional multivariate dimensionality
reduction techniques.
Finally, a new class of spectral characteristics is introduced which mirrors the ideas of
classical spatial dot-type point point process characteristics to the frequency domain.
These dot-type spectral characteristics reflect the interrelation between a particular
pattern and one (resp. two) alternative subset (resp. subsets) of components where the
pattern of interest is excluded.
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