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Green functions and the Dirichlet spectrum

G. Pacelli Bessa, Vicent Gimeno and Luquesio Jorge

Abstract. This article has results of four types. We show that the first
eigenvalue λ1(Ω) of the weighted Laplacian of a bounded domain with
smooth boundary can be obtained by S. Sato’s iteration scheme of the
Green operator, taking the limit λ1(Ω) = limk→∞ ‖Gk(f)‖L2/‖Gk+1(f)‖L2

for any f ∈ L2(Ω, µ), f > 0, (Theorems 2.1 & 2.2). Then, we study the
L1(Ω, µ)-moment spectrum of Ω in terms of iterates of the Green oper-
ator G, (Theorem 3.2), extendind the work of MacDonald-Meyers [29]
to the weighted setting. As corollary, we obtain the first eigenvalue of
a weighted bounded domain in terms of the L1(Ω, µ)-moment spectrum,
generalizing the work of Hurtado-Markvorsen-Palmer [25]. Finally, we
study the radial spectrum σrad(Bh(o, r)) of rotationally invariant geodesic
balls Bh(o, r) of model manifolds. In Theorems 5.4 & 5.6, we prove an
identity relating the radial eigenvalues of σrad(Bh(o, r)) to an isoperimet-
ric quotient, i.e.

∑
1/λrad

i =
∫
V (s)/S(s)ds, V (s) = vol(Bh(o, s)) and

S(s) = vol(∂Bh(o, s)). We then consider a proper minimal surface M ⊂ R3

and the extrinsic ball Ω = M ∩ BR3(o, r). We obtain upper and lower es-
timates for the series

∑
λ−2
i (Ω) in terms of the volume vol(Ω) and the

radius r of the extrinsic ball Ω, (Theorem 6.1).

1. Introduction
sec:intro

A weighted manifold is a triple (M,ds2, µ) consisting of a Riemannian manifold
(M,ds2) and a measure µ with positive density function ψ ∈ C∞(M), dµ = ψdν,
where dν is the Riemannian density of (M,ds2). Let Ω⊂M be a relatively compact
open subset with smooth boundary ∂Ω 6= ∅ and consider the weighted Laplace
operator 4µ : C∞0 (Ω)→ C∞0 (Ω), acting on C∞0 (Ω), the space of smooth functions
with compact support on Ω, defined by

4µ =
1

ψ
div(ψ · grad).

The weighted Laplace operator is densely defined and symmetric with respect to
L2(Ω, µ)-inner product, however, as in the classical case, it is not self-adjoint. We
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may consider the Sobolev spaces W 1
0 (Ω, µ) as the closure of C∞0 (Ω) with respect

to the norm

‖u‖2W 1(Ω,µ) : =

∫
Ω

u2dµ+

∫
Ω

|gradu|2dµ

and W 2
0 (Ω, µ), formed by those functions u ∈ W 1

0 (Ω, µ) whose weak Laplacian
4µu exists and belongs to L2(Ω, µ), i.e.

W 2
0 (Ω, µ) = {u ∈W 1

0 (Ω, µ) : 4µu ∈ L2(Ω, µ)}.

The operator L = −4µ|W 2
0 (Ω,µ) is a self-adjoint, non-negative definite elliptic

operator and its spectrum, denoted by σ(Ω, µ), is a discrete increasing sequence of
non-negative real numbers {λk}∞k=1 ⊂ [0,∞), (counted according to multiplicity),
with limk→∞ λk = ∞, (see [22, Thm.10.3]). The weighted Laplace operator 4µ
extends the classical Laplace operator 4, in the sense that, if the density function
ψ ≡ 1 then 4µ = 4.

The weighted Green operator GΩ : L2(Ω, µ)→ L2(Ω, µ), given by

GΩ(f)(x) =

∫ ∞
0

∫
Ω

pΩ
t (x, y)f(y)dµ(y)dt,

where pΩ
t (x, y) is the heat kernel of the operator L = −4µ|W 2

0
(Ω, µ), is a bounded

self-adjoint operator, inverse to L, i.e. GΩ = L−1. For any f ∈ L2(Ω, µ) there is a
unique solution u = GΩ(f) ∈ W 2

0 (Ω, µ) to the equation −4µu = f . In particular,
applying GΩ to the ith-eigenvalue equation

4µui + λi(Ω)ui = 0

we obtain the ith-eigenvalue λi(Ω) = ui/G
Ω(ui). The difficulty with this approach,

in order to obtain the ith-eigenvalue, is that one needs to know the Green operator
and the ith-eigenfunction beforehand. To overcome this inconvenience, in the main
result1 of Section 2, (Theorem 2.1), we apply a bootstrapping argument due to S.
Sato [38] to show that we can obtain the first eigenvalue λ1(Ω) as

λ1(Ω) = lim
k→∞

‖Gk(f)‖L2

‖Gk+1(f)‖L2

for any positive function f ∈ L2(Ω, µ), where Gk =

k−times︷ ︸︸ ︷
G ◦ · · ·G. When Ω = Bh(o, r)

is a rotationally invariant and 4µ = 4 then G can be given explicitly, and by
this result, we can give good numerical approximations for the first eigenvalue of
Bh(o, r), (Theorem 2.2).

In Section 3 we consider the following hierarchy Dirichlet problem on a bounded
open subset with smooth boundary Ω ⊂M ,

eqReferee1eqReferee1 (1.1)

 φ0 = 1 in Ω
4µφk + kφk−1 = 0 in Ω

φk = 0 on ∂Ω.

1For simplicity of notation, if no ambiguity arises, we will suppress the reference to Ω in the
gadgets associated to Ω. Thus, G will be the Green operator of the operator L = −4µ|W2

0 (Ω,µ).
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The set {Ak}∞k=1, Ak =
∫

Ω
φkdµ is called the L1(Ω, µ)-moment spectrum of Ω.

The L1(Ω, µ)-moment spectrum is intertwined with the exit time and the Dirichlet
spectrum of Ω. Indeed, let us consider the hierarchy Dirichlet problem (1.1) for the
Laplacian on a bounded open subset with smooth boundary Ω ⊂M . Suppose Xt

is a Brownian motion in Ω and τ = inf{t ≥ 0: Xt 6∈ Ω} is the first exit time from
Ω. If φk is the solution of (1.1) then Ex

[
τk
]

= φk(x). The generator of the process
Xt associated to weighted Laplacian preserves the relationship between the exit
time and the solutions of the hierarchy problem 1.1 as in the Laplacian case, (for
an explanation and proof see [28]). The main result of this section is Theorem 3.2.
There, we show that φk = k!Gk(1), where G is the 4µ-Green operator of Ω. This
formula was proven by MacDonald and Meyers [29, Formula 2.9, Prop. 2.2] in the
non-weighted setting. We also have that λ1(Ω) = limk→∞ kAk−1/Ak extending
the work of Hurtado-Markvorsen-Palmer [25], to general bounded domains, on the
first eigenvalue of rotationally invariant balls Bh(o, r).

In Section 4 we consider the eigenfunction L2-expansion of the Green kernel of
the weighted Laplacian. Let Ω be a relatively compact open subset of a Riemannian
weighted manifold M with Green function gΩ : Ω × Ω → R. Let {ui}∞i=1 be an
orthonormal basis of eigenfunctions of the Laplacian. An immediate corollary of
Weyl’s asymptotic formula [21, p. 7] is that the necessary and sufficient condition
for the the expansion of the Green function

eqInt1eqInt1 (1.2) g(x, y) =

∞∑
i=1

ui(x) · ui(y)

λi(Ω)

to hold in L2-sense is that dim(Ω) = 1, 2, 3. The convergence of formal expansions
of integral kernels such as the Green function is a classic problem in Mathematics.
For instance, Mercer’s Theorem states that, in dimension one, the convergence of
(1.2) is absolute and uniform, (see [14, Chapter 3, Sec 4]). If Ω ⊂ Rn, n = 2, 3,
this expansion is known to converge in L2-sense, (see [14, Chapt. 5, Sec. 5])
and its proof can naturally adapted to domains in Riemannian manifolds, since it
follows from Weyl’s asymptotic formula. We formalize this observation as Theorem
4.1, showing that (1.2) holds in L2(Ω, µ) sense in dimension n = 1, 2, 3 also for the
Green kernel of weighted Laplacian. In higher dimension the negative result follows
from bounds on the Green function, (see [15, Thm. 3.1.1]).

The spectrum of L = −4µ|W 2
0 (Ω,µ), sometimes called the spectrum of Ω and

denoted by σ(Ω), is the set of all λ ∈ [0,∞) for which L − λI is not injective or
the inverse operator (L− λI)−1 is unbounded, see [16]. The set of all λ for which
(L − λI) is not injective is called the point spectrum and denoted by σp(Ω). The
elements of σp(Ω) are the eigenvalues of L. Each eigenvalue λ ∈ σp(Ω) defines an
associated vector space Vλ = {u ∈ L2(Ω): 4u + λu = 0}. The set of all isolated
eigenvalues of finite multiplicity, i.e., those λ ∈ σp(Ω) for which there exists ε > 0
such that (λ − ε, λ + ε) ∩ σ(Ω) = {λ} and dim(Vλ) < ∞ is called the discrete
spectrum and it is denoted by σd(Ω). The complement of the discrete spectrum is
the essential spectrum, σess(Ω) = σ(M) \ σd(Ω). When Ω is a bounded open set
with smooth boundary ∂Ω, (possibly empty), then the spectrum of L is discrete,
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i.e. a sequence of non-negative real numbers

0 ≤ λ1(Ω) < λ2(Ω) < · · · ↗ ∞,

where each associated eigenspace Vk = {φ : 4φ + λkφ = 0} is finite dimensional
and L2(Ω) = ⊕∞k=1Vk. Moreover, φ ∈ Vk ⇒ φ ∈ C∞(Ω) ∩ C0(Ω) and φ|∂Ω = 0,
([11], [16] and [22, Thm.10.3])2. The main geometric problem here is to describe the
spectrum of a given open subset of a Riemannian manifold in terms of its geometry.
To describe the spectrum of an open set in full generality is a difficult task (see
[3], [4] and references therein). A more attainable problem is the study of the
spectrum of rotationally invariant geodesic balls, i.e. balls of model manifolds Mn

h

with center at the origin, (see Section 5 for the details). The spectrum σ(Bh(o, r))
of a rotationally invariant geodesic ball Bh(o, r) can be decomposed as a union
of spectra σl(Bh(o, r)) of a family of operators Ll acting on smooth functions on
[0, r] indexed by the eigenvalues of the sphere νl = l(l + n − 2), l = 0, 1, . . ., and
we write, σ(Bh(o, r)) = ∪∞l=0σ

l(Bh(o, r)), (see [11, p. 41], [13, Chapters 7 & 8]).
Our first result concerns the spectrum σ0(Bh(o, r)). More precisely, we show in
Theorem 5.4 that ∑

λ∈σ0(Bh(o,r))

λ−1 =

∫ r

0

V (s)/S(s)ds,

where V (s) = vol(Bh(o, s)) and S(s) = vol(∂Bh(o, s)). When Bt(o, r) ⊂ Rn we
obtain a similar result. Indeed, Theorem 5.6 states that

∑
λ∈σl(Bt(o,r))

λ−1 = c(n, l) ·
∫ r

0

V (s)/S(s)ds,

where c(n, l) is a constant depending only on the dimension n of the ambient space
and l. To conclude the Section 5, regarding the spectrum of rotationally invariant
balls, we construct examples of 4-dimensional non-rotationally invariant geodesic
balls Bh(o, r) with the same spectrum σ0(Bh(o, r)) = σ0(Bh(t)=sinh(t)(o, r)) as the
geodesic ball Bsinh(t)(o, r)) of the hyperbolic space H4(−1), (see Example 5.3).

In Section 6, we consider m-dimensional, m = 2, 3, proper isometric minimal
immersions ϕ : M → Rn, with ϕ(p) = o and extrinsic balls Ωr of radius r, i.e. the
connected component Ωr ⊂ ϕ−1(Bh(o, r)) containing p. The main result in this
section, is the following eigenvalue estimate for Ωr,

Amr
m

vol(Ωr)
r4 ≤

∑
λ∈σ(Ωr)

λ−2 ≤
(

vol(Ωr)

Bmrm

)4/m

r4,

(see Theorem 6.1).

2Notation: in this article, the spectrum of Ω will be written either as a sequence of eigenvalues
with repetition, according to their multiplicities, σ(Ω) = {0 ≤ λ1(Ω) < λ2(Ω) ≤ · · · } or as a
sequence of eigenvalues without repetition σ(Ω) = {0 ≤ λ1(Ω) < λ2(Ω) < · · · }.
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2. Weighted Green operator and the Dirichlet spectrum
sec4

Let (Ω, µ) be a weighted bounded open subset with smooth boundary ∂Ω 6= ∅
of a Riemannian weighted manifold (M,ds2, µ). The (weighted) Green operator
GΩ : L2(Ω, µ)→ L2(Ω, µ) is given by

GΩ(f)(x) =

∫ ∞
0

∫
Ω

pΩ
t (x, y)f(y)dµ(y)dt

=

∫
Ω

gΩ(x, y)f(y)dy,(2.1)

where pΩ
t (x, y) is the heat kernel of the operator L = −4µ|W 2

0 (Ω,µ) and

(2.2) gΩ(x, y) =

∫ ∞
0

pΩ
t (x, y)dt

is the Green function of Ω. The Green operator is a bounded self-adjoint operator
in L2(Ω, µ) and it is the inverse of L, i.e., GΩ = L−1. Thus for any f ∈ L2(Ω, µ)
there is a unique solution u = GΩ(f) ∈ W 2

0 (Ω, µ) to the equation −4µu = f . If
f ∈ C∞0 (Ω) then GΩ(f) ∈ C∞(Ω) see details in [22, Thm. 13.4]. Applying GΩ to
the equation

4µu+ λi(Ω)u = 0

we obtain that the i-th eigenvalue λi(Ω) of Ω is given by λi(Ω) = u/GΩ(u)· The
difficulty to know precisely the ith-eigenvalue applying the Green operator is that
one needs to know an ith eigenfunction to start. For simplicity of notation, if no
ambiguity arises, we will suppress the reference to Ω in the gadgets associated to
Ω. Thus, g and G will be, respectively, the Green function and the Green operator
of the operator L = −4µ|W 2

0 (Ω,µ). Our main result in this section is that in order
to obtain the first Dirichlet eigenvalue, assuming λ1(Ω) > 0, one picks a positive
function f ∈ L2(Ω, µ) and compute the limit

λ1 = lim
k→∞

‖Gk(f)‖L2

‖Gk+1(f)‖L2

,

where ‖u‖L2 =
√∫

Ω
|u|2dµ is the L2(Ω, µ)-norm and Gk =

k−times︷ ︸︸ ︷
G ◦ · · · ◦G.

More generally, let f ∈ L2(Ω, µ) and let ` be the smallest positive integer such
that ∫

Ω

f(x)ui(x) dµ(x) = 0

for i = 1, 2, . . . , ` − 1 and
∫

Ω
f(x)u`(x)dµ(x) 6= 0, where {u`} is an orthonormal

basis of L2(Ω, µ) formed by eigenfunctions u` with eigenvalues λ`. Then the `th-
eigenvalue is given by

λ` = lim
k→∞

‖Gk(f)‖L2

‖Gk+1(f)‖L2

·
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Main2 Theorem 2.1 Let (Ω, ds2, µ) be a weighted bounded open subset of a weighted m-
manifold (M,ds2, µ), with smooth boundary ∂Ω 6= ∅. Let G be the Green operator
of L and let {ui} be an orthonormal basis of L2(Ω, µ) formed with eigenfunctions
ui with eigenvalues λi. Then, for any f ∈ L2(Ω), f 6= 0,

eq3.3eq3.3 (2.3) lim
k→∞

‖Gk(f)‖L2

‖Gk+1(f)‖L2

= λ`,

where ` is the first positive integer such that,

eq1.9eq1.9 (2.4)

∫
Ω

f(x)ui(x) dµ(x) = 0 for i = 1, 2, . . . , `−1 and

∫
Ω

f(x)u`(x)dµ(x) 6= 0.

Moreover,

eq3.5eq3.5 (2.5) lim
k→∞

Gk(f)

‖Gk(f)‖L2

= φ` ∈ ker(4µ + λ`) in L2(Ω, µ).

In particular, for any positive f ∈ L2(Ω, µ),

(2.6) lim
k→∞

‖Gk(f)‖L2

‖Gk+1(f)‖L2

= λ1 and lim
k→∞

Gk(f)

‖Gk(f)‖L2

= u1 in L2(Ω, µ).

In addition, if f ∈ L2(Ω, µ) satisfying (2.4) and denoting by f1 the function defined
by

(2.7) f1 = f − λlG(f),

then, if f1 6= 0,

(2.8) lim
k→∞

‖Gk(f1)‖L2

‖Gk+1(f1)‖L2

= λn

with
λn > λl.

And

(2.9) lim
k→∞

Gk(f1)

‖Gk(f1)‖L2

= φn ∈ ker(4µ + λn).

The effectiveness of Theorem 2.1 is shown when Ω is a rotationally invariant
geodesic ball of a model manifold Mm

h and 4µ = 4, (see section 5). Indeed, let
Crad(Bh(o, r)) be the set of continuous radial functions φ:Bh(o, r)→ R, φ(t, θ) =
φ(t). Define the operator T : Crad(Bh(o, r))→ Crad(Bh(o, r)) by

TT (2.10) T (φ)(t, θ) =

∫ r

t

∫ σ
0
hm−1(s)φ(s)ds

hm−1(σ)
dσ.

The operator T is the Green operator for −L0(f) = −(f ′′+(m−1)
h′

h
f ′) = −4µ(f)

for the measure dµ = ωm−1h
m−1dν. To see this, notice that T can be seen as an

operator T : C0([0, r])→ C0([0, r]) and a straight forward calculations shows that
T = −L−1

0 . Hence, Theorem 2.1 can be applied to obtain the following result.
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theo3 Theorem 2.2 Let Bh(o, r) ⊂Mm
h be rotationally invariant geodesic ball of a model

manifold with boundary ∂Bh(o, r) 6= ∅. For any φ ∈ Crad(Bh(o, r)), φ 6= 0, we have

‖T kφ‖L2

‖T k+1φ‖L2

→ λrad
l (Bh(o, r)) and

T kφ

‖T kφ‖L2

→ φl in L2,(2.11)

as k →∞. With φl ∈ ker(4+λl), λl = λl(Bh(o, r)) is lth-radial eigenvalue, where
l is the first integer such that

(2.12)

∫
Bh(o,r)

φui dν = 0 for i = 1, 2, . . . , `− 1 and

∫
Bh(o,r)

φu`dν 6= 0,

where {ui} is an orthonormal basis of L2([0, r], µ) eigenfunctions of L0. Thus, in
particular, for any positive φ ∈ Crad(Bh(o, r)) we have

‖T kφ‖L2

‖T k+1φ‖L2

→ λ1(Bh(o, r)) and
T kφ

‖T kφ‖L2

→ φ1 in L2,(2.13)

as k →∞.
To show how efficient Theorem 2.2 is, we let Bh(o, r) be the geodesic ball centered
at the origin o and radius r in rotationally symmetric manifold Mn

h. Consider the
following two maps:

T k : Crad(Bh(o, r))→ R, T k(φ) :=
‖T kφ‖L2

‖T k+1φ‖L2

T ∞ : Crad(Bh(o, r))→ R, T ∞(φ) := lim
k→∞

‖T kφ‖L2

‖T k+1φ‖L2

,

and the following family of functions arising from the φ0 = 1

(2.14)

{
φ0 = 1

φk = φk−1 − (T ∞(φk−1))Tφk−1.

Applying Theorem 2.2 we can obtain a subset of the radial spectrum, namely,

(2.15) {T ∞(φk)}∞k=0 ⊂ σ
rad(Bh(o, r)).

If h(t) = t then M2
t = R2, and the radial spectrum of the B(o, 1) is given by

σrad(B(o, 1) = {j2
0,k}∞k=1, where j0,k is the kth-zero of the Bessel function J0. The

following table shows the T j(φi), j = 1, 2, 3, 9 and i = 0, 1, 2. The first radial
eigenvalue j2

0,1 has been estimated by Sato and other authors. The interesting

thing is that T 9(φ1) agrees with j2
0,2 to the 4th-decimal place.

φ0 = 1 φ1 φ2

T 1 5.80381 31.8311 85.7823
T 2 5.78388 30.6656 77.4423
T 3 5.78321 30.5022 75.5737
T 9 5.78319 30.4713 74.8874
λ j2

0,1 ≈ 5.78319 j2
0,2 ≈ 30.4713 j2

0,3 ≈ 74.887
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Remark 2.3 This bootstrapping argument using the Green operator in Theorem
2.1 was discovered, and applied to a particular kind of functions, by S. Sato [38] to
obtain explicit estimates for the first eigenvalue of spherical caps of S2(1). It was
applied by Barroso-Bessa [5] to obtain estimates for the first eigenvalue of balls in
rotationally symmetric manifolds.

2.0.1. Proof of Theorem 2.1. Let (Ω, ds2, µ) be a bounded weighted open
subset, with smooth boundary ∂Ω 6= ∅, of a Riemannian weighted m-manifold
(M,ds2, µ). The Green operator G : L2(Ω, µ)→ L2(Ω, µ) is given by

G(f)(x) =

∫ ∞
0

∫
Ω

pt(x, y)f(y)dµ(y)dt

=

∫
Ω

g(x, y)f(y)dy,(2.16)

where pt(x, y) is the heat kernel of the operator L = −4µ|W 2
0 (Ω,µ) and g(x, y) is

the Green function of Ω. Let {u1, u2, u3, . . .} be a complete L2(Ω, µ)-orthonormal
basis of L2(Ω, µ) formed by eigenfunctions ui with eigenvalue λi(Ω) ∈ σ(Ω). The
proof Theorem 2.1 is divided in few simple propositions.

Proposition 2.4 If λ1(Ω) > 0 then the Green operator G satisfies

eq43eq43 (2.17) G(f)(x) =

∞∑
i=1

f i ui(x)

λi(Ω)
for any f ∈ L2(Ω, µ),

where f i =
∫

Ω
f(x)ui(x)dµ(x). Moreover,

eq42eq42 (2.18) Gk(f) =

∞∑
i=1

f i ui(x)

λki (Ω)
,

where Gk =

k−times︷ ︸︸ ︷
G ◦ · · · ◦G.

Let {ui}∞i=1 be a complete orthonormal basis of L2(Ω) formed by eigenfunctions.
Then for any f ∈ L2(Ω, µ) we have

f(x) =

∞∑
i=1

f iui(x) = Uk + fk,

where fk(x) =
∑∞
k+1 f

iui(x) and Uk(x) =
∑k
i=1 f

iui(x). It is straight forward

that fk ∈ L2(Ω, µ) and therefore Uk = f − fk ∈ L2(Ω, µ), because we have that∑∞
i=k+1

(
f i
)2
<∞ by Bessel’s theorem. Therefore,

eqGimenoeqGimeno (2.19)

∥∥∥∥∥f −
k∑
i=1

f iui(x)

∥∥∥∥∥
L2

= ‖f − Uk‖L2 = ‖fk‖L2 → 0 as k →∞.
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For any k ∈ N,

G(f)(x) =

∫
Ω

g(x, y)f(y)dµ(y)

=

∫
Ω

g(x, y)Uk(y)dµ(y) +

∫
Ω

g(x, y)fk(y)dµ(y)

=

∫
Ω

g(x, y)

k∑
i=1

f iui(y)dµ(y) +

∫
Ω

g(x, y)fk(y)dµ(y)eqGimeno2 (2.20)

=

k∑
i=1

f i
∫

Ω

g(x, y)ui(y)dµ(y) +G(fk)(x)

=

k∑
i=1

f iui(x)

λi(Ω)
+G(fk)(x).

Therefore, from (2.20) and [22, Exercise 13.6 & Definition 14.1] we have

(2.21)

∥∥∥∥∥G(f)−
k∑
i=1

f iui
λi(Ω)

∥∥∥∥∥
L2

= ‖G(fk)‖L2 ≤ ‖fk‖L
2

λ1(Ω)
→ 0 as k →∞.

This implies that G(f) =
∑∞
i=1

f iui
λ1(Ω)

by Fischer-Riesz Theorem, (see [18], [37])

and it proves (2.17). We used that G(ui)(x) =
∫

Ω
g(x, y)ui(y)dµ(y) = ui(x)/λi(Ω).

We will prove (2.18) by induction. Assume that

Gk(f)(x) =

∞∑
i=1

f i ui(x)

λki (Ω)
∈ L2(Ω).

Then, since (Gk(f))i =
f i

λki (Ω)
, we have

Gk+1(f)(x) = G(Gk(f))(x)

=

∞∑
i=1

(Gk(f))i ui(x)

λi(Ω)
(2.22)

=

∞∑
i=1

f i ui(x)

λk+1
i (Ω)

·

propl1 Proposition 2.5 Let Ω ⊂ M be a bounded open set with smooth boundary ∂Ω
such that λ1(Ω) > 0. Then, for any f ∈ L2(Ω),

eq45eq45 (2.23) ‖Gk(f)‖2L2 =

∞∑
i=1

(f i)2

λ2k
i (Ω)

·
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Moreover, if f 6= 0,

eq2.24eq2.24 (2.24) lim
k→∞

‖Gk(f)‖L2

‖Gk+1(f)‖L2

= λl(Ω),

eq2.25eq2.25 (2.25) lim
k→∞

Gk(f)

‖Gk(f)‖L2

→ φl ∈ Ker(4µ + λl) in L2,

where l is the first integer such that,

(2.26)

∫
Ω

f(y)ul(y)dµ(y) 6= 0.

Identity (2.23) follows from equation (2.18) and Parseval’s identity.
To prove the identities (2.24) & (2.25) we let f ∈ L2(Ω, µ) be such that∫

Ω
f(y)ui(y)dµy = 0 for i = 1, . . . , l − 1, where {u1, u2, . . . , } is an orthonormal

basis of eigenfunctions of L2(Ω, µ). Using (2.18) we have

‖Gk(f)‖2L2

‖Gk+1(f)‖2L2

=

∑∞
i=l

(f i)2

λ2k
i (Ω)∑∞

i=l

(f i)2

λ2k+2
i (Ω)

= λ2
l (Ω)

∑∞
i=l(f

i)2

(
λl(Ω)

λi(Ω)

)2k

∑∞
i=l(f

i)2

(
λl(Ω)

λi(Ω)

)2k+2
eq2.27 (2.27)

= λ2
l (Ω)

∑l+ml−1
i=l (f i)2 +

∑∞
i=l+ml

(f i)2

(
λl(Ω)

λi(Ω)

)2k

∑l+ml−1
i=l (f i)2 +

∑∞
i=l+ml

(f i)2

(
λl(Ω)

λi(Ω)

)2k+2
·

where ml is the multiplicity of λl. From (2.27) we have that

λ2
l (Ω)

l+ml−1∑
i=l

(f i)2

l+ml−1∑
i=l

(f i)2 +

(
λl(Ω)

λl+ml(Ω)

)2k+2 ∞∑
i=l+ml

(f i)2

≤
‖Gk(f)‖2L2

‖Gk+1(f)‖2L2

and

‖Gk(f)‖2L2

‖Gk+1(f)‖2L2

≤λ2
l (Ω)

l+ml−1∑
i=l

(f i)2 +

(
λl(Ω)

λl+ml(Ω)

)2k+2 ∞∑
i=l+ml

(f i)2

l+ml−1∑
i=l

(f i)2

·
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Since
λl(Ω)

λl+ml(Ω)
< 1, taking limits we have

(2.28) lim
k→∞

‖Gk(f)‖2L2

‖Gk+1(f)‖2L2

= λ2
l (Ω).

This proves identity (2.3) of Theorem 2.1. To prove identity (2.5) we define

φk :=
Gk(f)

‖Gk(f)‖L2

for every k ≥ 1. Since φk ∈ L2(Ω, µ) we have φk(x) =
∑∞
i=1 φ

i
kui(x), where {ui}

is an orthonormal basis of L2(Ω, µ). We are going to prove that φk converges in
the L2 sense to a function φ∞ when k →∞ and that φ∞ ∈ Ker(4l + λl). By the
identities (2.17) and (2.23) we have that

φik =

∫
Ω

Gk(f)

‖Gk(f)‖
uidµ =

f i

λki (Ω)

1√√√√ ∞∑
j=l

(f j)2

λ2k
j (Ω)

feq2.29 (2.29)

=

(
λl(Ω)

λi(Ω)

)k
f i√√√√l+ml−1∑

j=l

(f j)2 +

∞∑
j=l+ml

(f j)2

(
λl(Ω)

λj(Ω)

)2k
·

The first step is to prove that {φk} is a Cauchy sequence. Observe that for any
N ≥ 0,

‖φk − φk+N‖2L2(Ω,µ) =

∞∑
i=1

(
φik − φik+N

)2
=

∞∑
i=1

(
(φik)2 + (φik+N )2 − 2φikφ

i
k+N

)
=

l+ml−1∑
i=l

(
(φik)2 + (φik+N )2 − 2φikφ

i
k+N

)
+

∞∑
i=l+ml

(
(φik)2 + (φik+N )2 − 2φikφ

i
k+N

)

≤ 2− 2

l+ml−1∑
i=l

(f i)2

√∑l+ml−1
j=l (f j)2+

(
λl(Ω)

λl+ml (Ω)

)2k

‖f‖2

√∑l+ml−1
j=l (f j)2+

(
λl(Ω)

λl+ml (Ω)

)2k+2N

‖f‖2
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+

∞∑
i=l+ml


(
λl(Ω)

λi(Ω)

)2k
(f i)2

l+ml−1∑
j=l

(f j)2

+

(
λl(Ω)

λi(Ω)

)2k+2N
(f i)2

l+ml−1∑
j=l

(f j)2



≤

l+ml−1∑
i=l

(f i)2

l+ml−1∑
j=l

(f j)2 +

(
λl(Ω)

λl+ml(Ω)

)2k

‖f‖L2

+ 2

(
λl(Ω)

λl+ml(Ω)

)2k ‖f‖L2∑l+ml−1
j=l (f j)2

·

Since λl(Ω) < λl+ml(Ω) we have that ‖φk − φk+N‖2 → 0 when k → ∞. Thus
there exists φ∞ ∈ L2(Ω, µ) such that ‖φk−φ∞‖L2

→ 0 when k →∞. By equation
(2.29) we can conclude that(
λl(Ω)

λi(Ω)

)2k
(f i)2

l+ml−1∑
j=l

(f j)2 +

(
λl(Ω)

λl+ml(Ω)

)2k

‖f‖L2

≤ |φik|2 ≤
(
λl(Ω)

λi(Ω)

)2k
(f i)2

l+ml−1∑
j=l

(f j)2

taking into account that f i = 0, for i < l, and λl(Ω) < λi(Ω) for i ≥ l + ml, we
have that

(2.30)



lim
k→∞

|φik|2 = 0 if i < l

lim
k→∞

|φik|2 =
(f i)2

l+ml−1∑
j=l

(f j)2

if l ≤ i ≤ l +ml − 1

lim
k→∞

|φik|2 = 0, if i ≥ l +ml

This shows that φ∞ = limk→∞
Gk(f)

‖Gk(f)‖L2
∈ Ker(4l +λl) = Vl⊕ · · · ⊕Vl+ml−1 and

proves identity (2.5) of Theorem 2.1.

cor17 Corollary 2.6 Under the assumptions of the above proposition and letting f1 be
the function

(2.31) f1 := f − λl(Ω)G(f),

then, if f1 6= 0, we have

(2.32)

limk→∞
‖Gk(f1)‖L2

‖Gk+1(f1)‖L2

= λn(Ω)

limk→∞
Gk(f1)

‖Gk(f1)‖L2

→ φn ∈ Ker(4µ + λn) in L2.

with,
λn(Ω) > λl(Ω).
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We only have to apply the above proposition taking into account that by equality
(2.17)

(2.33)

f − λl(Ω)G(f) =
∑∞
i=l f

iui −
∑∞
i=l f

iui
λl(Ω)

λi(Ω)

=
∑∞
i=l+1 f

iui

(
1− λl(Ω)

λi(Ω)

)
.

Observe that since u1 does not change its sign in Ω, we have that∫
Ω

f(x)u1(x)dµ(x) 6= 0

for any positive or negative function f . Hence, using Proposition 2.5, we have

cor18 Corollary 2.7 Let Ω ⊂ M be a bounded open set with smooth boundary ∂Ω 6= ∅.
Then, for any positive (or negative) f ∈ L2(Ω, µ),

(2.34)

limk→∞
‖Gk(f)‖L2

‖Gk+1(f)‖L2

= λ1(Ω),

limk→∞
Gk(f)

‖Gk(f)‖L2

= φ1 ∈ Ker(4µ + λ1) in L2.

3. L1(Ω, µ)-moment spectrum
sec5

Let (Ω, ds2, µ) be a bounded open subset of a weighted Riemannian manifold with
smooth boundary ∂Ω 6= ∅. Let φk : Ω→ R, k = 0, 1, . . . be a sequence of functions
defined inductively as the solutions to the following hierarchy of boundary value
problems on Ω. Let φ0 = 1 in Ω and for k ≥ 1

eqmomentumeqmomentum (3.1)

{
4µφk + kφk−1 = 0 in Ω

φk = 0 on ∂Ω.

The solution φ1(x) is the mean time for the first exit of Ω of a Brownian motion
t→ Xt in Ω, with X0 = x, .

Definition 3.1 The L1(Ω, µ)-moment spectrum of Ω is the set {Ak(Ω)}∞k=1 of the
L1(Ω, µ)-norms of φk,

Ak(Ω) =

∫
Ω

φkdµ.

The number A1(Ω) is called the torsional rigidity of Ω because, when Ω ⊂ R2,
A1(Ω) is the torque required for a unit angle of twist per unit length when twisting
an elastic beam of uniform cross section Ω, (see [25], [32] and [30]).

Observe that if Ω = Bh(o, r) is a rotationally invariant geodesic ball then the
solutions φk(x) = φk(|x|) of (3.1) are radial functions since φ1 is radial. In [25],
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A. Hurtado, S. Markvorsen and V. Palmer, showed that the first eigenvalue of a
rotationally invariant ball can be given in terms of the moment spectrum. They
proved that

λ1(Bh(o, r)) = lim
k→∞

kφk−1(0)

φk(0)
= lim
k→∞

kAk−1(Bh(o, r))

Ak(Bh(o, r))

and φ∞(r) = limk→∞ φk(r)/φk(0) is a radial first eigenfunction. In this direction,
it should be remarked that for rotationally invariant geodesic balls Bh(o, r), Bessa-
Montenegro (see [8]), proved that

λ1(Bh(o, r)) ≥ inf
0≤t≤r

1

4

[
S(t)

V (t)

]2

In our next result we solve explicitly the problem (3.1) in terms of the Green
operator G for the weighted Laplacian 4µ. It links the moment spectrum with the
Dirichlet spectrum of domains and in case of rotationally invariant geodesic balls
and it recovers Hurtado-Markvorsen-Palmer’s result.

thm4.2 Theorem 3.2 Let (Ω, ds2, µ) be a bounded open subset of a Riemannian weighted
manifold (M,ds2, µ) with smooth boundary ∂Ω 6= ∅. Let φk be the sequence of
functions given by the boundary problem (3.1) and G the 4µ-Green operator of Ω.
Then

eqphi_keqphi_k (3.2) φk = k!Gk(1).

Hence the exit moment spectrum is related to the Dirichlet spectrum as follows

eqphi_k2eqphi_k2 (3.3)

φk(x) = k!
∑∞
i=1

aiui(x)

λki

Ak = k!
∑∞
i=1

a2
i

λki
,

where ai =
∫

Ω
ui(x)dµ(x) and {ui} is an orthonormal basis of L2(Ω, µ) formed by

eigenfunctions of L =−4µ|W 2
0 (Ω,µ).

cor4.1 Corollary 3.3 Let (Ω, ds2, µ) be a bounded open subset of a Riemannian weighted
manifold manifold (M,ds2, µ) with smooth boundary ∂Ω 6= ∅. Then,

lambda1-momlambda1-mom (3.4) λ1 = lim
k→∞

kAk−1

Ak
and λ2 ≤ lim

k→∞
k

(k − 1)Ak−2 − λ1Ak−1

kAk−1 − λ1Ak
·

Hence,

λ2

λ1
≤ lim
k→∞

(k − 1)Ak−2

Ak−1
− λ1

kAk−1

Ak
− λ1

<∞.
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The proof of the Corollary is as follows: Since we know (by Theorem 3.2) that

Ak = k!
∑∞
i=1

a2i
λki

then

kAk−1

Ak
=

∑∞
i=1

a2i
λk−1
i∑∞

i=1
a2i
λki

=

a21
λk−1
1

+
∑∞
i=2

a2i
λk−1
i

a21
λk1

+
∑∞
i=2

a2i
λki

=
a2

1λ1 + λ1

∑∞
i=2 a

2
i (
λ1

λi
)k−1

a2
1 +

∑∞
i=2 a

2
i (
λ1

λi
)k

feq3.5 (3.5)

Now observe that, since λi > λ1 for i > 1,

0 ≤
∞∑
i=2

a2
i (
λ1

λi
)k ≤

∞∑
i=2

a2
i (
λ1

λi
)k−1 =

∞∑
i=2

a2
i (
λ1

λi
)k−2(

λ1

λi
)

≤
∞∑
i=2

a2
i (
λ1

λ2
)k−2(

λ1

λi
) = λ1(

λ1

λ2
)k−2A1

Hence, letting k tend to infinity we conclude that

lim
k→∞

∞∑
i=2

a2
i (
λ1

λi
)k−1 = lim

k→∞

∞∑
i=2

a2
i (
λ1

λi
)k = 0.

Therefore taking limits in equality (3.5) taking into account that

lim
k→∞

(
a2

1 +

∞∑
i=2

a2
i (
λ1

λi
)k

)
= a2

1 6= 0,

and limk→∞

(
a2

1λ1 + λ1

∑∞
i=2 a

2
i (
λ1

λi
)k−1

)
= a2

1λ1

(3.6) lim
k→∞

kAk−1

Ak
=
a2

1λ1

a2
1

= λ1

Likewise,

feq3.7feq3.7 (3.7) k
(k − 1)Ak−2 − λ1Ak−1

kAk−1 − λ1Ak
=

∑∞
i=2

a2i
λk−2
i

− λ1

∑∞
i=2

a2i
λk−1
i∑∞

i=2
a2i
λk−1
i

− λ1

∑∞
i=2

a2i
λki

Let us denote by α the first integer such that α > 1 and a2
α 6= 0. Then

feq3.8feq3.8 (3.8)
k

(k − 1)Ak−2 − λ1Ak−1

kAk−1 − λ1Ak
=

∑∞
i=α

a2i
λk−2
i

− λ1

∑∞
i=α

a2i
λk−1
i∑∞

i=α
a2i
λk−1
i

− λ1

∑∞
i=α

a2i
λki

= I
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We rewrite I as

(3.9) I =
a2
α (λα − λ1) + λα

∑∞
i=α+1 a

2
i (
λα
λi

)k−2 − λ1

∑∞
i=α+1 a

2
i (
λα
λi

)k−1

a2
α

(
1− λ1

λα

)
+
∑∞
i=α+1 a

2
i (
λα
λi

)k−1 − λ1

λα

∑∞
i=α+1 a

2
i (
λα
λi

)k

Suppose that the eigenvalue λα has multiplicity mα. Then

∞∑
i=α+1

a2
i

(
λα
λi

)k
=

∞∑
i=α

a2
i

(
λα
λi

)k
− a2

α=

α+mα−1∑
i=α

a2
i − a2

α +

∞∑
i=α+mα

a2
i

(
λα
λi

)k
Using a completely similar argument as used before we can prove that

lim
k→∞

∞∑
i=α+mα

a2
i (
λα
λi

)k = 0.

Then

lim
k→∞

∞∑
i=α+1

a2
i

(
λα
λi

)k
=

α+mα−1∑
i=α

a2
i − a2

α

Similarly,

lim
k→∞

∞∑
i=α+1

a2
i

(
λα
λi

)k−2

= lim
k→∞

∞∑
i=α+1

a2
i

(
λα
λi

)k−1

=

α+mα−1∑
i=α

a2
i − a2

α

Hence taking into account that

lim
k→∞

a2
α (λα − λ1) + λα

∞∑
i=α+1

a2
i (
λα
λi

)k−2 − λ1

∞∑
i=α+1

a2
i (
λα
λi

)k−1

= a2
α (λα − λ1) + λα

(
α+mα−1∑
i=α

a2
i − a2

α

)
− λ1

(
α+mα−1∑
i=α

a2
i − a2

α

)

= (λα − λ1)

α+mα−1∑
i=α

a2
i

and

lim
k→∞

(
a2
α

(
1− λ1

λα

)
+

∞∑
i=α+1

a2
i (
λα
λi

)k−1 − λ1

λα

∞∑
i=α+1

a2
i (
λα
λi

)k

)
=

= a2
α

(
1− λ1

λα

)
+

(
α+mα−1∑
i=α

a2
i − a2

α

)
− λ1

λα

(
α+mα−1∑
i=α

a2
i − a2

α

)

=

(
1− λ1

λα

) α+mα−1∑
i=α

a2
i 6= 0
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we can take limits in equation (3.8)

lim
k→∞

k
(k − 1)Ak−2 − λ1Ak−1

kAk−1 − λ1Ak
=

(λα − λ1)
∑α+mα−1
i=α a2

i(
1− λ1

λα

)∑α+mα−1
i=α a2

i

= λα ≥ λ2

Finally, since λ1 6= 0,

λ2

λ1
≤ λα
λ1

=

limk→∞ k
(k − 1)Ak−2 − λ1Ak−1

kAk−1 − λ1Ak

limk→∞
kAk−1

Ak

= lim
k→∞

(k − 1)Ak−2 − λ1Ak−1

kAk−1 − λ1Ak
Ak−1

Ak

= lim
k→∞

(k − 1)Ak−2

Ak−1
− λ1

kAk−1

Ak
− λ1

·

In the second part of this proof we have assumed that there existed an α > 1 with
aα =

∫
Ω
uα(x)dµ(x) 6= 0. But this is true because {ui}∞i=1 is complete orthonormal

basis of L2(Ω, µ). Then since 1 ∈ L2(Ω, µ),

1 =

∞∑
i=1

ui(x)

∫
Ω

ui(y)dµ(y) =

∞∑
i=1

aiui(x)

Suppose by the contrary that ai = 0 for any i > 1 then this should imply that

1 = a1u1(x) ⇒ u1(x) =
1

a1

but this is a contradiction because u1|∂Ω = 0 and u1 ∈ C2(Ω) ∩ C0(Ω).

3.0.1. Proof of Theorem 3.2 . Let Ω be an open relatively compact domain
with smooth boundary ∂Ω 6= ∅ of a Riemannian manifold M . Let us consider the
hierarchy Dirichlet problem (1.1) Theorem 3.2 states that this problem admits a
unique family of solutions {φk}∞k=1, given by

eq59eq59 (3.10) φk(x) = k!Gk(1)(x).

In order to show the uniqueness, note that first of all that φ1 is unique. Otherwise
we would have two different functions φ1

1 and φ2
1 such that

(3.11)
4φ1

1 = 4φ2
1 = −1

φ1
1|∂Ω = φ2

1|∂Ω = 0.
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Hence φ1
1 − φ2

1 would be an harmonic function in Ω with φ1
1 − φ2

1 = 0 in the
boundary ∂Ω, then by the minimum principle φ1

1 = φ2
1, a contradiction. Assume

that in the family of solutions {φk}∞k=1 the first j functions φ1, φ2, . . . , φj are unique
but there exists two different φ1

j+1 and φ2
j+1 solutions in the (j + 1)-th slot. Then

4(φ1
j+1−φ2

j+1) = 0 and φ1
j+1−φ2

j+1 = 0 on ∂Ω. Then φ1
j+1 = φ2

j+1 Now, functions
defined by φk(x) = k G(φk−1)(x), k = 1, . . . are the solutions of the problem (1.1).
Since the solution to the problem (1.1) is unique we only have to check that

(3.12) 4 (k G(φk−1)) = −kφk−1.

But that is straightforward because the Green operator is the inverse of −4. To
prove (3.10) let us use the induction method. Observe that φ1 = G(1)(x). Suppose
that equation (3.10) is true and let us compute φk+1(x).

(3.13)
φk+1(x) =(k + 1)G(φk)(x) = (k + 1)G(k!Gk(1))(x)

=(k + 1)k!G(Gk(1))(x) = (k + 1)!Gk+1(1)(x).

This proves (3.2) in Theorem 3.2. On the other hand, by (2.18),

Gk(1)(x) =

∞∑
i=1

aiui(x)

λki (Ω)
,

where ai =
∫

Ω
ui(y)dµ(y). Thus

φk(x) = k!Gk(1) = k!

∞∑
i=1

aiui(x)

λki (Ω)
.

Moreover, the L1(Ω, µ)-moment spectrum of Ω is readily obtained by

Ak(Ω) =

∫
Ω

φkdµ = k!

∞∑
i=1

a2
i

λki (Ω)
.

This proves Theorem 3.2.

4. L2-expansion of the Green function g(x, y)
sec6

Let (Ω, ds2, µ) be a relatively compact open subset of a Riemannian weighted
manifold (M,ds2, µ) and let σ(Ω, µ) = {λk}∞k=1 ⊂ [0,∞) be the spectrum of
L = −4µ|W 2

0 (Ω,µ), repeated accordingly to their multiplicity. Let {uk}∞k=1 be

an orthonormal basis in L2(Ω, µ) such that each function uk is an eigenfunction
of L with eigenvalue λk. In this basis, the heat kernel pΩ

t (x, y) of the operator L
admits an expansion

eqheatexpeqheatexp (4.1) pΩ
t (x, y) =

∞∑
k=1

e−λktuk(x)uk(y).
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This series converges absolutely and uniformly in the domain t ≥ ε, x, y ∈ Ω for
any ε > 0 as well as in the topology of C∞(R+ × Ω × Ω), (see the details in [22,
Thm. 10.13]). If we could integrate the heat kernel expansion (4.1) in the variable
t we would obtain that

eqgreenexpansioneqgreenexpansion (4.2) gΩ(x, y) =

∞∑
k=1

uk(x) · uk(y)

λk(Ω)
·

The identity (4.2) holds in the sense of distributions, (see [22, exercise 13.14])
and we may ask whether this identity holds in stronger topology, for instance in
L1(Ω × Ω, µ) or L2(Ω × Ω, µ)? It is well known that gΩ(x, y) ∈ L1(Ω × Ω, µ),
(see for instance, [22, Exercise 13.7]), however, gΩ(x, ·) does not need to belong to
L2(Ω, µ). Indeed, let Ω = BR4(1) ⊂ R4 to be the geodesic ball of the 4-dimensional
Euclidean space R4, with its canonical metric, of radius r = 1 and center at the
origin 0. The Green function of Ω is given by

gΩ(0, y) =
1

2ω4

(
1

|y|2
− 1

)
,

which obviously does not belong to L2(BR4(1)). Here ω4 is the volume of the unit
3-sphere in R4. On the other hand, if Ω = BR(1) is the geodesic ball of radius
r = 1 in the real line R then the Green function is gΩ(x, y) = (|x− y| −x · y+ 1)/2
which clearly is in L2(Ω × Ω). We start showing that a necessary and sufficient
condition to gΩ ∈ L2(Ω × Ω, µ), for any measure µ, is that dim(M) = 1, 2, 3 and
in these dimensions identity (4.2) holds in L2(Ω × Ω, µ). Precisely, we have the
following result.

ThmMainA Theorem 4.1 Let (M,ds2, µ) be a weighted Riemannian manifold and let Ω ⊂M
be a bounded open subset of M with smooth boundary ∂Ω 6= ∅. Then the Green
function for the weighted Laplacian gΩ ∈ L2(Ω × Ω, µ) if and only if dim(M) =
1, 2, 3. Furthermore,

eqGreenSerieseqGreenSeries (4.3) gΩ(x, y) =

∞∑
k=1

uk(x) · uk(y)

λk(Ω)
,

where the series converges in L2(Ω × Ω, µ), and {uk}∞k=1 is an orthonormal basis
formed by eigenfunctions associated to the eigenvalues {λk(Ω)}∞k=1 of Ω. Moreover

eq5.3eq5.3 (4.4) ‖gΩ‖L2(Ω×Ω) =

∞∑
k=1

1

λ2
k(Ω)

·

If n = 1 then

(4.5)

∫
Ω

gΩ(x, x)dµ(x) =

∞∑
k=1

1

λk(Ω)
·

As mentioned before, this result above is a direct consequence of Weyl’s asymptotic
formula for the eigenvalues λi(Ω). In dimension one, it is a particular case of
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Mercer’s Theorem (see [14, Chapter 3, Sec 4]). If Ω ⊂ Rn, n = 2, 3, this expansion
is known to converge in L2-sense, (see [14, Chapt. 5, Sec. 5]) and its proof
can naturally adapted to domains in Riemannian manifolds, since it follows from
Weyl’s asymptotic formula. The first consequence of Theorem 4.1 is related to a
result due to Grüter and Widman, see [24, Thm. 1.1]. They proved that for any
y ∈ Ω ⊂ Rn, n ≥ 3, the function

x→ gΩ(x, y) ∈ L∗ n
n−2

(Ω),

where L∗p(Ω) is defined by

L∗p(Ω): = {f : Ω→ R ∪ {∞}, f measurable and ‖f‖L∗
p(Ω) <∞}

with
‖f‖L∗

p(Ω) : = sup
t>0

t · ν({x ∈ Ω: |f(x)| > t})1/p.

It is easy to see that Lp(Ω) ⊂ L∗p(Ω), thus coupling Theorem 4.1 with Grüter and
Widman’s result we obtain a more precise statement.

Corollary 4.2 Let Ω ⊂ Rn, n ≥ 3 be a bounded open subset with smooth boundary.
Let gΩ to be the Green function (associated to the Laplacian 4 ).

• If n = 3 then x→ gΩ(x, y) ∈ L2(Ω) ∩ L∗3(Ω), y ∈ Ω.

• If n ≥ 4 then x→ gΩ(x, y) ∈ L∗ n
n−2

(Ω) \ L2(Ω), y ∈ Ω.

Remark 4.3 In general, L∗3(Ω)\L2(Ω) 6= ∅ and L2(Ω)\L∗3(Ω) 6= ∅. Indeed, letting
Ω = Br(o) ⊂ R3 and fα(x) = 1/|x|α we have that fα ∈ L∗3(Ω) \ L2(Ω) if α > 1
and fα ∈ L2(Ω) \ L∗3(Ω) if 0 < α < 1/2.

4.0.1. Proof of Theorem 4.1. Let (Ω, ds2, µ) be a bounded weighted open
subset of a weighted m-manifold (M,ds2, µ) with smooth boundary ∂Ω 6= ∅. Let
σ(Ω) = {λi(Ω)}∞i=1 be the sequence of eigenvalues of L = −4µ|W 2

0 (Ω,µ), repeated
according to multiplicity. One has that the Weyl’s asymptotic formula holds for
the eigenvalues λi,

(4.6) λi(Ω) ≈ cm ·
(

i

µ(Ω)

)2/m

as i→∞,

where cm > 0 is the same constant as in Rm, depending only on the dimension
m = dim(M), see [21, p.7]. Thus

∞∑
i=1

1

λ2
i (Ω)

<∞⇔ m = 1, 2, 3

and
∞∑
i=1

1

λi(Ω)
<∞⇔ m = 1.
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Let {gk : Ω× Ω→ R} ⊂ L2(Ω× Ω, µ) be a sequence of functions defined by

gk(x, y) =

k∑
i=1

ui(x)ui(y)

λi(Ω)
,

where {ui} is the complete and orthonormal basis of L2(Ω, µ), formed by eigen-
functions ui corresponding to the eigenvalues λi(Ω). Let k2 > k1 and compute

‖gk2 − gk1‖2L2(Ω×Ω,µ) =

k2∑
i=k1+1

1

λ2
i (Ω)

.

The sequence {gk} is a Cauchy sequence in L2(Ω×Ω, µ) iff
∑∞
i=1

1
λ2
i (Ω)

<∞. Then,

gk → g∞ in L2(Ω× Ω, µ) if and only if dim(M) = 1, 2, 3, where

g∞(x, y) =

∞∑
i=1

ui(x)ui(y)

λi(Ω)
∈ L2(Ω× Ω, µ).

On the other hand, the Green function gΩ satisfies the functional identity

gΩ(x, y) =

∞∑
i=1

ui(x)ui(y)

λi(Ω)

in the sense of distributions, see [22, p. 348]. Therefore, gΩ = g∞ ∈ L2(Ω× Ω, µ)
if and only if m = 1, 2, 3 and

‖gΩ‖2L2(Ω×Ω,µ) =

∞∑
i=1

1

λ2
i (Ω)

<∞.

In the case when m = 1 the sequence gk(x) =
∑k
i=1

u2
i (x)

λi(Ω)
converges pointwise

to gΩ(x, x) =
∑∞
i=1

u2
i (x)

λi(Ω)
, since gΩ ∈ L1(Ω, µ) and |gk| ≤ g by the Lebesgue

dominated convergence theorem

∞∑
i=1

1

λi(Ω)
= lim
k→∞

∫
Ω

gk(x)dµ =

∫
Ω

gΩ(x, x)dµ.

5. Spectrum of rotationally invariant balls
sec2

A rotationally invariant Riemannian m-manifold, also called a model manifold,
with radial sectional curvature −G(r) along the geodesic issuing from the origin,
where G : R→ R is a smooth even function, is the quotient space

Mm
h = [0, Rh)× Sm−1/ ∼
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with (t, θ) ∼ (s, β) ⇔ t = s = 0 or t = s and θ = β, endowed with the metric
ds2
h(t, θ) = dt2+h2(t)dθ2 where h : [0,∞)→ R is the unique solution of the Cauchy

problem {
h′′ −Gh = 0,
h′(0) = 1, h(2k)(0) = 0, k = 0, 1, . . . ,

ubs2 (5.1)

and Rh is the largest positive real number such that h|(0,Rh) > 0. If Rh =∞, the
manifold Mm

h is geodesically complete and non-compact with a pole in the origin.
The geodesic ball Bh(o, r) centered at the origin o = {0} × Sm−1/ ∼ with radius
r < Rh, i.e. the set [0, r) × Sm−1/ ∼, is rotationally invariant. The volume V (r)
of the ball Bh(o, r) and the volume S(r) of the boundary ∂Bh(o, r) are given by

V (r) = ωm
∫ r

0
hm−1(s)ds and S(r) = ωmh

m−1(r),

respectively, where ωm = vol(Sm−1). The Laplace operator on Bh(o, r), expressed
in polar coordinates, is given by

4 =
∂2

∂t2
+ (m− 1)

h′

h

∂

∂t
+

1

h2
4θ.

To search for the Dirichlet eigenvalues λ of Bh(o, r) it is enough to seek smooth
functions of the form u(t, θ) = T (t)H(θ) satisfying 4u + λu = 0 in Bh(o, r) and
u|∂Bh(o, r) = 0, see [11, p. 42]. This is equivalent to the following eigenvalue
problems

(5.2)

{ 4θH + νH = 0 in Sm−1(1)

T ′′ + (m− 1)
h′

h
T ′ + (λ− ν

h2
)T = 0 in [0, r]

with initial conditions T ′(0) = 0 if l = 0, T (t) ∼ c · tl as t → 0 when l = 1, 2 . . .
and T (r) = 0. Here T ′ = ∂T/∂t, T ′′ = ∂2T/∂t2.

The eigenvalues of the sphere are given by νl = l(l + m − 2), l = 0, 1, . . . For
each value νl, the set of all λ such that the equation

eqseq0eqseq0 (5.3) T ′′ + (m− 1)
h′

h
T ′ + (λ− νl

h2
)T = 0

has a non-trivial solution satisfying the initial conditions consist of an increasing
sequence of positive real numbers {λl,j}∞j=1,

eqseqeqseq (5.4) 0 ≤ λl,1 < λl,2 < · · · ↑ +∞.

Moreover, each λl,i determines a 1-dimensional space of solutions, say, generated by
Tl,i. The sequence (5.4) is called the νl-spectrum, without repetitions, of Bh(o, r),
denoted by σl(Bh(o, r)). The multiplicity of each νl is given by

δ(l,m) =

(
m− 1 + l

l

)
−
(
m− 2 + l
l − 1

)
.
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Thus, there exists an orthonormal basis formed by eigenfunctions Hl,1, . . . ,Hl,δ of
the vector space Vνl = {φ : 4θφ+ νlφ = 0}. This implies that the set of functions

{Tl,i(t)Hl,1(θ), Tl,i(t)Hl,2(θ), . . . , Tl,i(t)Hl,δ(θ)}

is an orthonormal basis of the vector space Vλl,i = {ψ : 4ψ + λl,iψ = 0}. Thus,
the multiplicity of each eigenvalue λl,i in (5.4), in the spectrum σ(Bh(o, r)) is
δ(l,m). Since all of the eigenvalues of Bh(o, r) are obtained by the procedure
above, the spectrum ofBh(o, r), without repetitions, is the union of the νl-spectrum
σl(Bh(o, r)), l = 0, 1, . . .

σ(Bh(o, r)) = ∪∞l=0σ
l(Bh(o, r)) = {λl,j}∞, ∞l=0,j=1,

each λl,i with multiplicity δ(l,m). i.e. dimVλl,i = δ(l,m). The details of this
discussion can be found in [11, pp. 40-42].

The eigenfunctions associated to the eigenvalues λ ∈ σ0(Bh(o, r)) = {λ0,i},
i = 1, 2 . . . are (radial) eigenfunctions ui(t, θ) = T0,i(t). On the other hand, let us
suppose that λ ∈ ∪∞l=0σ

l(Bh(o, r)) is an eigenvalue whose eigenfunction is radial,
u(t, θ) = Tl,i(t)Hl,i(θ) = c · Tl,i(t), then the eigenfunction of the sphere Hl,i(θ) = c
is constant then its eigenvalue is zero and λ ∈ σ0(Bh(o, r)). This shows that the set
of “radial”eigenvalues is the σ0-spectrum. This motivates the following definition.

Definition 5.1 Let B(p, r) ⊂M be a geodesic ball with center at p and radius r.
The radial spectrum σrad(B(p, r)) of B(p, r) is formed by those eigenvalues λk of
L = −4|W 2

0 (B(p,r)) whose associated eigenspace Vk contains only radial eigenfunc-
tions.

The radial spectrum of a general geodesic ball may be empty. However, if B(p, r)
is rotationally invariant, then its radial spectrum is σrad(B(p, r)) = σ0(B(p, r)). It
should be remarked that there are non-rotationally invariant geodesic balls with
non-empty radial spectrum, (see Example 5.3).

5.1. Stochastically incomplete model manifolds

Let M be a Riemannian manifold and pt(x, y) ∈ C∞ ((0,∞)×M ×M) be the
heat kernel of M . It is well known that∫

M

pt(x, y)dν(y) ≤ 1.

This property allows one to see the heat kernel as a probability distribution in the
space of Brownian paths on M . More precisely, for x ∈ M and an open subset
U ⊂ M , the quantity

∫
U
pt(x, y)dν(y) is the probability that a Brownian path

s → Xs emanating from X0 = x lies in Xt ∈ U at time t. The strict inequality,∫
M
pt(x, y)dν(y) < 1, implies that there is a positive probability that stochastic

process t → Xt ends in finite time, i.e. the Brownian path reach infinity in finite
time t. This motivates the following definition.
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Definition 5.2 A Riemannian manifold M is stochastically complete if for every
x ∈M and t > 0 one has that

heatkernelheatkernel (5.5)

∫
M

pt(x, y)dν(y) = 1,

otherwise M is said to be stochastically incomplete.

There exists a simple and elegant geometric criteria for stochastic incompleteness
of model manifolds Mm

h , proved by many authors in different settings.

Theorem 5.3 ([1], [19], [20], [26]) A geodesically complete model manifold Mm
h

is stochastically incomplete if and only if∫ ∞
0

V (t)

S(t)
dt <∞.

Where V (r) = ωm
∫ r

0
hm−1(s)ds and S(r) = ωmh

m−1(r).thm1.4

The spectrum of a stochastically incomplete model m-manifold Mm
h is discrete,

(see [9, Example 6.12]). Let

eqEspeceqEspec (5.6) σ(Mm
h ) = {0 < λ1(Mm

h ) < λ2(Mm
h ) ≤ · · · },

be the spectrum of Mm
h with repetition and

σ(Bh(o, r)) = {0 < λ1(Bh(o, r)) < λ2(Bh(o, r)) ≤ · · · }

be the spectrum of Bh(o, r) ⊂Mm
h with repetition. It is well known that

λ1(Mm
h ) = lim

r→∞
λ1(Bh(o, r)).

What is less known is that the kth-element λk(Mm
h ) of the sequence (5.6) is also

obtained as a limit

eqmarieqmari (5.7) λk(Mm
h ) = lim

r→∞
λk(Bh(o, r))

for k = 1, 2, . . ..
The identity (5.7) remains true for eigenvalues of more general operators as the

weighted Laplacian 4µ, (see [10, Sec. 2.3 & eq. 2.85]). In particular, it is true for

the eigenvalues of the operator L0(T ) = T ′′+(m−1)
h′

h
T ′ on [0, r], since L0 = 4µ,

for dµ = ωm−1h
m−1dr, where ωm−1 = vol(Sm−1).

The radial spectrum of Bh(o, r) ⊂Mm
h ,

σrad(Bh(o, r)) = {0 < λrad
1 (Bh(o, r)) ≤ λrad

2 (Bh(o, r)) ≤ · · · },

is exactly the spectrum of the operator L0(T ) = T ′′ + (m− 1)
h′

h
T ′ on [0, r] and if

Mm
h has discrete spectrum, the radial spectrum of Mm

h is exactly the spectrum of
the operator L0 on [0,∞). Therefore, the ith-radial eigenvalue of Mm

h is obtained
as a limit

λrad
i (Mm

h ) = lim
r→∞

λrad
i (Bh(o, r))

for i = 1, 2, . . ..
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5.2. “Harmonic series”of radial eigenvalues

Our main result in Section 5 regards the radial spectrum of rotationally invariant
balls of model manifolds. The radial spectrum of a stochastically incomplete model
manifolds Mm

h is deeply related with this geometric criteria as shown by our first
result, Theorem 5.4.

thmMain1-intro Theorem 5.4 Let Bh(o, r) be a geodesic ball of radius r with λ1(Bh(o, r)) > 0 of
a model Mm

h . Let σrad(Bh(o, r)) = {λrad
1 (Bh(o, r)) < λrad

2 (Bh(o, r)) < · · · } be the
radial spectrum of Bh(o, r). Then

eqMain1-introeqMain1-intro (5.8)

∞∑
i=1

1

λrad
i (Bh(o, r))

=

∫ r

0

V (t)

S(t)
dt·

If the model Mm
h is stochastically incomplete then

eqMain2-introeqMain2-intro (5.9)

∞∑
i=1

1

λrad
i (Mn

h)
=

∫ ∞
0

V (t)

S(t)
dt·

Where V (t) = ωm
∫ t

0
hm−1(s)ds and S(t) = ωmh

m−1(t).

Corollary 5.5 Let B(o, 1) be a geodesic ball of radius r = 1 in the model manifold
M2
h, where h(t) = sinh(t), t, sin(t), respectively. Then,

∞∑
i=1

1

λrad
i (B(o, 1))

= log

(
(1 + e)

2

4e

)
≈ 0.240229 if h(t) = sinh(t)

∞∑
i=1

1

λrad
i (B(o, 1))

= 0.25 if h(t) = t

∞∑
i=1

1

λrad
i (B(o, 1))

= log

(
sec(

1

2
)

)
≈ 0.261168 if h(t) = sin(t).

When the model manifold Mm
h is the Euclidean space Rm, the “harmonic series”of

the eigenvalues {λl,i}∞i=1 = σl(Bh(o, r)), (without repetitions), for l = 0, 1, . . ., also
converges.

thmMain2 Theorem 5.6 Let Bh(o, r) be the geodesic ball of Rm with radius r centred at
the origin o . Let σl(Bh(o, r)) = {λl,1(Bh(o, r)) < λl,2(Bh(o, r)) < · · · } be the
νl-spectrum of Bh(o, r) without repetition, l = 0, 1, . . . . Then

eqMain3eqMain3 (5.10)

∞∑
i=1

1

λl,i(Bh(o, r))
=

(
1

1 + 2 l
m

)∫ r

0

V (t)

S(t)
dt =

(
1

1 + 2 l
m

)
r2

2m

and

eqMain4eqMain4 (5.11)

∞∑
i=1

1

λ2
l,i(Bh(o, r))

=
r4

2(2l +m)2(2 + 2l +m)
·
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If we let σ(Bh(o, r)) = {0 < λ1 < λ2 ≤ · · · } be the spectrum of be Bh(o, r) ⊂
Rm, repeating the eigenvalues according to their multiplicities, in this case, σ(Bh(o, r))
is a union of δ(l,m)-copies of σl(Bh(o, r)) for l = 0, 1, . . ., then we can compute
the whole sum

∞∑
k=1

1

λ2
k

=

∞∑
l=0

( ∞∑
i=1

δ(l,m)

λ2
l,i

)
=

∞∑
l=0

δ(l,m) · r4

2(2l +m)2(2 + 2l +m)
·

In the particular case of dimension m = 2 or dimension m = 3,

eq:2.5eq:2.5 (5.12)

∞∑
l=0

δ(l, 2) · r4

2(2l + 2)2(2 + 2l + 2)
=

π2 − 6

96
· r4

∞∑
l=0

δ(l, 3) · r4

2(2l + 3)2(5 + 2l)
=

12− π2

64
· r4

However, this series diverges for m ≥ 4 in agreement with Theorem 4.1 equation
(4.4). The convergence of the series is related to the fact that the Green function
belongs to L2 only in the case of m = 1, 2, 3. We should remark that the divergence
in higer dimension is because of the multiplicity of the eigenvalues. In fact, if we
consider the spectrum σ̃(Bh(o, r)) = ∪∞l=1σ

l(Bh(o, r)) = {0 < λ1 < λ2 < · · · }
without repetition then

suma04suma04 (5.13)

∞∑
k=1

1

λ̃2
k

=

∞∑
l=0

( ∞∑
i=1

1

λ2
l,i

)
=

∞∑
l=0

r4

2(2l +m)2(2 + 2l +m)
<∞.

Morever, lim
m→∞

∞∑
k=1

1

λ̃2
k

= 0.

cor2.2 Corollary 5.7 Let Bh(o, r) be the geodesic ball of Rm with radius r centred at the
origin o . Let σl(Bh(o, r)) = {λl,1(Bh(o, r)) ≤ λl,2(Bh(o, r)) ≤ · · · }, l = 0, 1, . . ..
Then

(5.14) λl,k(Bh(o, r)) ≥ k(m+ 2l)

m
· 1∫ r

0
V (s)
S(s) ds

=
2k(m+ 2l)

r2
·

Corollary 5.7 should be compared with the estimates obtained in [5, Thm.2.1] and
[8, Thm.2.7] for the first eigenvalue. We believe that Theorem 4.1 is also valid for
rotationally invariant geodesic balls of model manifolds. We formalize this in the
following conjecture

Conjecture 5.8 There exists a constant c = c(m, l) < 1 such that for a geodesic
ball Bh(o, r) ⊂Mm

h the harmonic series converges

∞∑
i=1

1

λl,i(Bh(o, r))
= c ·

∫ r

0

V (s)

S(s)
ds, l = 0, 1, 2, . . .
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5.3. Example
examp1

Let {∂/∂x, ∂/∂y, ∂/∂z} be a globally defined non-zero vector fields on S3 satisfying
these conditions

[∂/∂x, ∂/∂y] = 2 ∂/∂z, [∂/∂y, ∂/∂z] = 2 ∂/∂x, [∂/∂z, ∂/∂x] = 2 ∂/∂y

and let dx, dy and dz be their dual 1-forms. Consider, on Ω = [0, r]×S3/ ∼, where
(t, θ) ∼ (s, β)⇔ t = s = 0 or t = s and θ = β, the following metric

ds2 = dt2 + a2(t, θ)dx2 + b2(t, θ)dy2 + c2(t, θ)dz2,

where a, b, c : [0, r]× S3 → R are defined by

a(t, θ) = sinh2[t]/t · f(t, θ)
b(t, θ) = t · f(t, θ)
c(t, θ) = sinh[t]

with f : [0, r]×S3 → (0,∞) given by f(t, θ) = 1+ tkq(θ), k ≥ 3 and q : S3 → (0,∞)
is smooth. This metric is clearly smooth in (0, r]×S3/ ∼. We need only check that
it is smooth at the origin {0}× S3 ∼. The coefficients near t = 0 and every θ ∈ S3

fixed are given by a(t, θ) = t+t3/3+2t5/45+O(t6), b(t, θ) = t+t3/6+t5/120+O(t6),
c(t, θ) = t+O(t6). This shows that ds2 ≈ canH4 in the C2-topology as t ≈ 0, where
canH4 = dt2 + sinh2[t]

(
dx2 + dy2 + dz2

)
is the canonical metric on the hyperbolic

space H4(−1). Let Ω = Bh(o, r) be the geodesic ball with center at the origin
o = {0} × S3/ ∼ and radius r with respect to the metric ds2. It is clear that Ω is
not rotationally symmetric. The Laplace operator 4ds2 is given by

4ds2(t, θ) =
∂2

∂t2
+ 3 coth(t)

∂

∂t

+

[
t2(1 + tkq(θ))2

sinh4(t)

]
∂2

∂x2
+

[
1

t2(1 + tkq(θ))2

]
∂2

∂y2
+

1

sinh2(t)

∂2

∂z2

+

[
2t2+k(1 + tkq(θ))

sinh2(t)

]
∂q

∂x

∂

∂x
−
[

2tk−2

(1 + tkq(θ))3

]
∂q

∂y

∂

∂y
·

Let Ω̃ = ([0, r) × S3/ ∼, canH4) be the geodesic ball of radius r centered at the

origin in the Hyperbolic space H4(−1). The Laplace operator 4canH4 on Ω̃ is given
by

4canH4 (t, θ) =
∂2

∂t2
+ 3 coth(t)

∂

∂t
+

1

sinh2(t)

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
.

Observe that4ds2 = 4canH4 on the set of the smooth radial functions u(t, θ) = u(t)

with u′(0) = 0, in particular, Ω and Ω̃ has the same radial eigenfunctions and radial
eigenvalues.
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Hence, (Ω, ds2) is a non-rotationally symmetric geodesic ball with the same
radial spectrum of a rotationally symmetric geodesic ball (Ω̃, canH4). Note that
the functions t → V (t) and t → S(t) are the same for both metrics, which can
be checked directly, coherently with the identity (5.8). The example (5.3) is a
variation of the example [7, Examp. 2] which, by its turn, was havily based in the
example of G. Perelman in [35].

5.3.1. Proof of Theorem 5.4. The metric on the geodesic ball Bh(o, r) ⊂ Mn
h

is expressed, in polar coordinates, as ds2 = dt2 + h2(t)dθ2. The Laplacian 4 of
this metric is given by

4(t, θ) =
∂2

∂t2
+ (n− 1)

h′

h
(t)

∂

∂t
+

1

h2
(t)4θ

= L0 +
1

h2
(t)4θ,

and 4θ is the Laplacian on Sn−1. Observe that the radial eigenvalues of Bh(o, r)
are the eigenvalues of the operator L0 in the following eigenvalue problem.

eq2.19eq2.19 (5.15)

 L0u+ λu = 0
u′(0) = 0
u(r) = 0.

In order to study this eigenvalue problem, define the following space of functions

(5.16) Λ :=

{
u ∈W 2([0, r], µ) : lim

t→0+
u′(t) = 0 and u(r) = 0

}
and the density in [0, r] given by dµ(t) = ωnh

n−1(t)dt. Observe that f ∈ L2([0, r], µ)
if and only if f ◦ t ∈ L2(Bh(o, r)). Define the bilinear form Ebf acting on Lipschitz
functions

Ebf (f, g) =

∫ r

0

f ′(s)g′(s)ds

and let F be the closure of Λ in L2([0, r], µ) with respect to the norm

(5.17) ‖f‖2F = ‖f‖2L2([0,r],µ) + Ebf (f, f)

The bilinear form Ebf acting on F , in the distributional sense, is a Dirichlet form,
i.e. it has the following properties.

1. Positivity : Ebf (f) = Ebf (f, f) ≥ 0 for any f ∈ F .

2. Closedness: the space F is a Hilbert space with respect to the following
product

〈f, g〉 = (f, g) + Ebf (f, g).

3. The Markov property : if f ∈ F then the function

g := min{1,max{f, 0}}

also belongs to F and Ebf (g) ≤ Ebf (f). Here we used the shorthand notation
Ebf (f) := Ebf (f, f).
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Any Dirichlet form Ebf has a generator L which is a non-positive definite self-
adjoint operator on L2([0, r], µ) with domains D = D(L) ⊂ F such that

(5.18) Ebf (f, g) = (−L(f), g)

for f ∈ D and g ∈ F where D is dense in F , see details in [23, Sec.2.2].

prop7.1 Proposition 5.9 The operator L|D is an extension of L0|Λ, that is,

(5.19) Lf = L0f, for any f ∈ Λ.

Proof: For any f, g ∈ Λ

(Lf, g) = −Ebf (f, g)

= −ωn
∫ r

0

f ′(t)g′(t)hn−1(t)dt

= −ωn
∫ r

0

[
d

dt

(
f ′(t)g(t)hn−1(t)

)
− g(t)

d

dt

(
f ′(t)hn−1(t)

)]
dt(5.20)

= −ωn
[
f ′(t)g(t)hn−1(t)

]r
0

+

∫ r

0

g(t)L0f(t)dµ(t)

= (L0f, g).

The generator L determines the heat semigroup Pt = e−Lt, t ≥ 0 which posses a
heat kernel p(t, x, y) and Green function g(x, y) =

∫∞
0
p(t, x, y)dt. Observe that

L|D is a self-adjoint extension of L0|Λ. Thus, the solution of eigenvalue problem
(5.15) is an infinite sequence of eigenvalues 0 < λrad

1 < λrad
2 < · · · → ∞, (the radial

spectrum of Bh(o, r)). Observing that L0 = 4µ, for dµ(t) = ωnh
n−1(t), we have

by Theorem 4.1 that

eq6.15eq6.15 (5.21)

∞∑
i=1

1

λrad
i (Bh(o, r))

=

∫ r

0

g(x, x)dµ(x).

We need to determine the Green function g(x, y) for the operator L.

prop-green-rad Proposition 5.10 The Green function g(x, y) for the operator L is given by

green-rad1green-rad1 (5.22) g(x, y) =

∫ r

x

1

ωnhn−1(t)
θy(t)dt,

where

(5.23) θy(t) :=

{
1 if t ≥ y
0 if t < y.

Moreover,

(5.24) G(f)(x) =

∫ r

0

g(x, y)f(y)dµ(y) = T (f)(x).

Here T is the operator defined in (2.10).
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Proof: We need to prove that g(r, y) = 0, limx→0+

∂

∂x
g(x, y) = 0, Lxg(x, y) = 0

for x 6= y and more generally Lg(x, ·) = −δx. The two first properties are straight
forward from equation (5.22). When x 6= y we have

(5.25) g(x, y) =



∫ r

x

1

ωnhn−1(t)
dt if x ≥ y

∫ r

y

1

ωnhn−1(t)
dt if x ≤ y.

Then, applying Proposition 5.9, we have

(5.26) Lxg(x, y) =

 L0

(∫ r

x

1

ωnhn−1(t)
dt

)
= 0 if x ≥ y

0 if y ≤ x.

To prove condition Lxg(x, ) = −δx, and using the definition of δx, it is enough to
prove that given f ∈ F ,

eq7.21eq7.21 (5.27) f(x) =

∫ r

0

−Lxg(x, y)f(y) = −Lx
∫ r

0

g(x, y)f(y)dµ(y), ∀x.

It is enough to show the identity (5.27) in Λ then argue that (5.27) holds on the
closure Λ by continuity. Let f ∈ Λ and compute

∫ r
0
g(x, y)f(y)dµ(y).

∫ r

0

g(x, y)f(y)dµ(y) =

∫ r

0

(∫ r

x

θy(t)

hn−1(t)
dt

)
f(y)hn−1(y)dy

=

∫ r

x

1

hn−1(t)

(∫ t

0

θy(t)f(y)hn−1(y)dy

+

∫ r

t

θy(t)f(y)hn−1(y)dy

)
dt

=

∫ r

x

1

hn−1(t)

(∫ t

0

f(y)hn−1(y)dy

)
dt

= T (f)(x).

Where T is given in (2.10), viewed as an operator T : C0([0, r])→ C0([0, r]). It is
straight forward to show that T (Λ) ⊂ Λ. Thus, since L = L0 on Λ, to prove that
f(x) = −Lx

∫ r
0
g(x, y)f(y)dµ(y), ∀x, it is enough to prove that L0 ◦ T = −idΛ.

This is done next.

L ◦ T (u) = L0 ◦ T (u) =
∂2T (u)

∂t2
+ (n− 1)

h′

h
(t)
∂T (u)

∂t
·eq10 (5.28)
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However,

∂2T (u)

∂t2
(t) = (n− 1)

h′(t)

h(t)

1

hn−1

∫ t

0

hn−1(s)u(s)ds− u(t)

(n− 1)
h′(t)

h(t)
· ∂T (u)

∂t
(t) = −(n− 1)

h′(t)

h(t)

1

hn−1(t)

∫ t

0

hn−1(s)u(s)ds.

Then L ◦ T (u)(x) = −u(x) and the proposition follows. To prove Theorem 5.4 we
have from 5.21 that

∞∑
i=1

1

λrad
i (Bh(o, r))

=

∫ r

0

g(x, x)dµ(x)

=

∫ r

0

(∫ r

x

dt

hn−1(t)

)
hn−1(x)dx

=

∫ r

0

∫ x
0
hn−1(t)dt

hn−1(x)
dxeq6.23 (5.29)

=

∫ r

0

V (s)

S(s)
ds,

This proves identity (5.8). If Mn
h is stochastically incomplete, then its spectrum is

discrete, say σ(Mn
h) = {λ1(Mn

h) < λ2(Mn
h) ≤ · · · }. Taking the limits in (5.29) we

obtain

lim
r→∞

∞∑
i=1

1

λrad
i (Bh(o, r))

=

∫ ∞
0

V (s)

S(s)
ds <∞.

To prove identity (5.9) we recall that λrad
i (Mm

h ) = limr→∞ λrad
i (Bh(o, r)). This

proves that
∞∑
i=1

1

λrad
i (Mn

h)
=

∫ ∞
0

V (s)

S(s)
ds <∞.

Remark 5.11 In the proof of Theorem 5.4, we invoked Theorem 4.1 in order to
show that the Green function of L0 has finite trace. That could be also achieved by
direct computation since the Green function of L0 is given explicitly in Proposition
5.10.

5.3.2. Proof of Theorem 5.6. The proof of Theorem 5.6 is similar to the proof
of Theorem 5.4. The spectrum of Bh(o, r), without repetitions, is the union of the
νl-spectrums σl(Bh(o, r)), l = 0, 1, . . .

σ(Bh(o, r)) = ∪∞l=0σ
l(Bh(o, r)) = {λl,j}∞, ∞l=0,j=1,

each λl,i with multiplicity δ(l,m). The eigenvalues of the l-spectrum σl(Bh(o, r)),
l ≥ 1, are the eigenvalues of the the operator

Ll(T )(t) = T ′′(t) + (n− 1)
1

t
T ′(t)− νl

t2
T (t),
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νl = l(l +m− 2), in the following Dirichlet eigenvalue problem on [0, r].

(5.30) T ′′ + (m− 1)
1

t
T ′ + (λ− νl

t2
)T = 0 in [0, r]

with initial conditions T (t) ∼ c · tl as t → 0 when l = 1, 2 . . . and T (r) = 0. The
procedure to show that the operator Ll has a self-adjoint extension Ll and a Green
function g

l
is similar to the procedure in the proof of Theorem 5.4. By Theorem

4.1 we have that

eq6.151eq6.151 (5.31)

∞∑
i=1

1

λl,i(Bh(o, r))
=

∫ r

0

g
l
(x, x)dx.

We need to find the Green function g
l
.

Proposition 5.12 The Green function g
l
(x, y) for the Ll operator on M = [0, r]

with density dµ(x) = ωnx
n−1dx boundary conditions

u′(0) = u(r) = 0, with u(x) = gl(x, y) for any y ∈ (0, r)

is given by

(5.32) gl(x, y) =


xlyα

βωnyn−1

(
1

yβ
− 1

rβ

)
if 0 ≤ x < y

xlyα

βωnyn−1

(
1

xβ
− 1

rβ

)
if y ≤ x ≤ r

with α = l + n− 1 and β = 2l + n− 2.

Observe first of all that

u′(0) =
∂

∂x
gl(x, y)

∣∣∣∣
x=0

= 0, u(r) = gl(r, y) = 0, ∀y ∈ [0, r].

On the other hand

Ll(u(x)) = u′′(x) + (n− 1)
u′(x)

x
− l(l + n− 2)u(x)

x2
= 0

because

Ll(xl) = Ll(xl−β) = 0.
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For any function f : [0, r]→ R, we have then

G
l
(f)(x) =

∫ r

0

g
l
(x, y)f(y)dµ(y)

=

∫ x

0

g
l
(x, y)f(y)dµ(y) +

∫ r

x

g
l
(x, y)f(y)dµ(y)

=
xl

β

(
1

xβ
− 1

rβ

)∫ x

0

yαf(y)dy +
xl

β

∫ r

x

yα
(

1

yβ
− 1

rβ

)
f(y)dy

=
xl−β

β

∫ x

0

yαf(y)dy +
xl

β

∫ r

x

yα−βf(y)dy − xl

βrβ

∫ r

0

yαf(y)dy.

and

Ll (Gl
(f)(x)) = Ll

(
xl−β

β

∫ x

0

yαf(y)dy

)
+ Ll

(
xl

β

∫ r

x

yα−βf(y)dy

)

−Ll
(
xl

βrβ

)∫ r

0

yαf(y)dy

= Ll
(
xl−β

β

)∫ x

0

yαf(y)dy + Ll
(
xl

β

)∫ r

x

yα−βf(y)dy

−xl+α−β−1f(x)

= −f(x),

where we have applied l + α− β − 1 = 0. Therefore we conclude that,

Ll ◦Gl
(f)(x) = −f(x),

and g
l

is a Green function for our problem. Now

∞∑
i=1

1

λl,i
=

∫ r

0

g
l
(x, x)dµ(x) =

∫ r

0

xl+α

β

(
1

xβ
− 1

rβ

)
dx

=
rl+α−β+1

(l + α+ 1)(l + α− β + 1)

=
r2

2(2l + n)
=

(
1

1 + 2 l
n

)
r2

2n

=

(
1

1 + 2 l
n

)
max

x∈BRn (r)
Er(x).
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This proves (5.10). To prove (5.11) we proceed as follows.

∞∑
i=1

1

(λl,i)
2 =

∫ r

0

∫ r

0

g
l
(x, y)g

l
(y, x)dµ(y)dµ(x)

=

∫ r

0

∫ r

0

ω2
nx

n−1yn−1g
l
(x, y)g

l
(y, x)dydx

=

∫ r

0

ω2
nx

n−1

(∫ x

0

g
l
(x, y)g(y, x)yn−1dy +

∫ r

x

g(x, y)g
l
(y, x)dy

)
dx

=
1

β2

∫ r

0

(∫ x

0

xl+αyl+α
(

1

xβ
− 1

rβ

)2

dy+

∫ r

x

xl+αyl+α
(

1

yβ
− 1

rβ

)2

dy

)
dx

=
r2(l+α−β+1)

(α+ l + 1)2(α+ l − β + 1)(2 + 2α− β + 2l)

=
r4

2(2l + n)2(2 + 2l + n)

6. Spectrum of extrinsic balls of minimal submanifolds
sec3

Let ϕ : M → Rn be a proper and minimal immersion of a complete m-dimensional
Riemannian manifold into Rn. Let Ωr = ϕ−1(Bh(o, r)) be the extrinsic ball of
radius r. It was proved in [6] and [12] that the first Dirichlet eigenvalue of Ωr is
bounded below as

eq2.1eq2.1 (6.1) λ1(Ωr) ≥ λ1(Bh(o, r)) =
c2m
r2
,

where cm is a constant depending only on the dimension of M and λ1(Bh(o, r)) is
the first Dirichlet eigenvalue of the ball of radius r in the Euclidean m-space Rm.
This inequality can be read as

eq2.2eq2.2 (6.2)
1

λ2
1(Ωr)

≤ Cm · r4,

where Cm = 1/c4m. By Theorem 4.1 we have that
∑∞
k=1

1
λ2
k(Ωr)

<∞ in dimensions

m = 2, 3. For a totally geodesic Rm ⊂ Rn with m = 2, 3 we have,

∞∑
k=1

1

λ2
k(Ωr)

= Dmr
4

where Dm is a constant depending only on the dimension (see identity 5.12). For
a non-totally geodesic minimal submanifold we will give lower and upper bounds
for this series in terms of the volume vol(Ωr), of the radius r and the dimension
m = 2, 3. We have the following result.
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thmMark Theorem 6.1 Let ϕ : M → Rn be a complete Riemannian m-manifold, properly
and minimally immersed into the Euclidean n-space. Given o ∈ M , let Ωr be the
extrinsic r-ball with center o, namely,

Ωr = ϕ−1 (B(ϕ(o), r)) .

a. If m = 1, 2, 3, then(
Amr

m

vol(Ωr)

)
· r4 ≤

∞∑
k=1

1

λ2
k(Ωr)

≤
(

vol(Ωr)

Bmrm

)4/m

· r4,

where Am =
ωm−1

m

1

4m2

(
1 +

m

4 +m
− 2m

2 +m

)
, Bm =

2mπ
m
2

e · ζ(4/m)
m
4

and

ζ(4/m) =
∑∞
k=1

1

k4/m
are constants depending only on m.

b. If the second fundamental form α of the minimal immersion ϕ : M → Rn
has finite Lm-norm, ∫

M

‖α‖mdµ <∞,

then M has finite number of ends {End1, · · · ,Endk} and(
mAm
ωm−1E

)
· r4 ≤

∞∑
k=1

1

λ2
k(Ωr)

≤
(
ωm−1E
mBm

)4/m

· r4

where E is related with the finite number of ends of M in the following way:

E =


k∑
i=1

Ii if m = 2

k if m = 3,

where Ii is the geometric index of the end Endi.

6.0.1. Proof of Theorem 6.1. Let ϕ : M → N be a properly immersed m-
submanifold M into a Riemannian manifold N . Let tN (x) = distN (p, x) be the
distance in N from a fixed point p = ϕ(q) ∈ N . Let Ωr = ϕ−1(BN (p, r)) be an
extrinsic ball that contains q, where BN (p, r) is the geodesic ball of N with center
at p and radius r < min{inj(p), π/

√
k}, k = supKN and where π/

√
k = ∞ if

k ≤ 0.
Let Er(x) be the mean time of the first exit from Ωr for a Brownian motion

particle starting at x ∈ Ωr. A fundamental observation of Dynkin [17, vol.II, p.51]
states that the function Er satisfies the Poisson equation

eqdynkineqdynkin (6.3)

{
4Er = −1 in Ωr
Er = 0 on ∂Ωr
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If gΩr (x, y) = g(x, y) is the Green function of Ωr, with Dirichlet boundary data,
then

Er(x) =

∫
Ωr

g(x, y)dν(y).

Applying Cauchy-Schwarz, assuming that m = 1, 2, 3 and by Theorem 4.1, we
obtain ∫

Ωr

E2
r (x)dν(x) =

∫
Ωr

(∫
Ωr

g(x, y)dν(y)

)2

dν(x)

≤ vol(Ωr) ·
∫

Ωr

∫
Ωr

g2(x, y)dν(y)dν(x)eq2.5 (6.4)

= vol(Ωr)

∞∑
k=1

1

λk(Ωr)2
<∞.

Assume that N = Rn, p = 0 ∈ Rn. Let Ẽr : Bm(0, r) → R be the mean exit
time of the first exit from the geodesic ball Bm(0, r) ⊂ Rm. It is known that

Ẽr is radial, i.e. Ẽr(y) = Ẽr(t(y)), t(y) = |y − o|, y ∈ Rm. Denote by Ẽr the

transplant of Ẽr to Bn(0, r), i.e., the function Ẽr : Bn(0, r) ⊂ Rn → R defined

by Ẽr(z) = Ẽr(t(z)). Consider the restriction of Ẽr(z) to the immersion ϕ(M),

i.e. x ∈ Ωr → Ẽr(ϕ(x)). In [31], Steen Markvorsen proved that if the immersion

ϕ : M → Rm+1 is a minimal hypersurface then Er(x) = Ẽr(ϕ(x)) = Ẽr(t(ϕ(x))).
Solving problem (6.3), we have

eq2.6eq2.6 (6.5) Ẽr(t(x)) =

∫ r

t(x)

vol(Bm(0, ζ))

vol(∂Bm(0, ζ))
dζ =

1

2m
(r2 − t2(x)),

therefore, by inequality (6.4), we have

vol(Ωr)

∞∑
k=1

1

λk(Ωr)2
≥ 1

4m2

∫
Ωr

(
r4 + t4(x)− 2r2t2(x)

)
dν(x),

where we identified t(ϕ(x)) = t(x). Applying co-area formula for the extrinsic
distance function t : M → R+ we obtain∫

Ωr

(
r4 + t4(x)− 2r2t2(x)

)
dν(x) =

∫ r

0

(∫
∂Ωs

r4 + t4(x)− 2r2t2(x)

|∇ t|
dA

)
ds

=

∫ r

0

(r4 + s4 − 2r2s2)

(∫
∂Ωs

1

|∇ t|
dA

)
ds

≥
∫ r

0

(r4 + s4 − 2r2s2)vol(∂Ωs)ds.

On the other hand, we have that vol(∂Ωs) ≥ ωm−1s
m−1, see [34]. Then

(6.6)

∫
Ωr

(
r4 + t4(x)− 2r2t2(x)

)
dV (x) ≥ωm−1

∫ r

0

(r4 + s4 − 2r2s2)sm−1ds

=ωm−1r
4+m

(
1

m
+

1

4 +m
− 2

2 +m

)
·
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In order to simplify the notation let us denote byAm := ωm−1

m · 1
4m2

(
1 + m

4+m −
2m

2+m

)
.

Hence,

eq2.61eq2.61 (6.7) vol(Ωr) ·
∞∑
k=1

1

λk(Ωr)2
≥r4 ·Am · rm.

That proves the lower bound of item a. of Theorem 6.1. To prove the upper bound
recall that Cheng, Li and Yau proved in [12] that

(6.8) λk(Ωr) ≥ 4π

(
k

e

)2/m
1

vol(Ωr)2/m
·

Therefore,

∞∑
k=1

1

λk(Ωr)2
≤ e4/m

16π2
vol(Ωr)

4/m
∞∑
k=1

1

k4/m

eq2.8 (6.9)

=
e4/m

16π2
vol(Ωr)

4/mζ(4/m).

Observe that ζ(2) = π2/6. Putting together inequalities (6.7) and (6.9) we obtain(
Amr

m

vol(Ωr)

)
· r4 ≤

∞∑
k=1

1

λ2
k(Ωr)

≤
(

vol(Ωr)

Bmrm

)4/m

· r4.

Here Bm = 2mπ
m
2

e·ζ(4/m)
m
4

and ζ(4/m) =
∑∞
k=1

1
k4/m

. In order to obtain inequality of

the item b. we observe that by the monotonicity formula the function

r → vol(Ωr)

Vmrm
, Vm :=

ωm−1

m
.

is increasing, (see [33, 34]). Moreover by the classical results of Jorge-Meeks in
[27], see also [2, 36],

lim
r→∞

vol(Ωr)

Vmrm
= E .

Therefore

vol(Ωr) ≤ VmErm

and the theorem follows taking in consideration that

E =

{ ∑k
i=1 Ii if m = 2

k if m = 3,

where Ii is the geometric index of the end Ei, see details in [27].
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