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Abstract 22 

New psychoactive substances (NPS), often designed as (legal) substitutes to conventional illicit drugs, 23 

are constantly emerging in the drug market and being commercialized in different ways and forms. 24 

Their use continues to cause public health problems and is therefore of major concern in many 25 

countries. Monitoring NPS use, however, is arduous and different sources of information are required 26 

to get more insight of the prevalence and diffusion of NPS use. The determination of NPS in pooled 27 

urine and wastewater has shown great potential, adding a different and complementary light on this 28 

issue. However, it also presents analytical challenges and limitations that must be taken into account 29 

such as the complexity of the matrices, the high sensitivity and selectivity required in the analytical 30 

methods as a consequence of the low analyte concentrations as well as the rapid transience of NPS 31 

on the drug market creating a scenario with constantly moving analytical targets. Analytical 32 

investigation of NPS in pooled urine and wastewater is based on liquid chromatography hyphenated 33 

to mass spectrometry and can follow different strategies: target, suspect and non-target analysis. This 34 

work aims to discuss the advantages and disadvantages of the different data acquisition workflows 35 

and data exploration approaches in mass spectrometry, but also pays attention to new developments 36 

such as ion mobility and the use of in-silico prediction tools to improve the identification capabilities 37 

in high-complex samples. This tutorial gives an insight into this emerging topic of current concern, and 38 

describes the experience gathered within different collaborations and projects supported by key 39 

research articles and illustrative practical examples. 40 

 41 
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1. Introduction  45 

New psychoactive substances (NPS) are continually evolving and introduced in different ways in the 46 

drug market. The NPS retail market is characterized by its dynamic nature and the large number of 47 

substances covering a broad range of drug categories [1,2]. Whereas most NPS disappear after a short 48 

time, others seem to establish a niche market [2,3]. They are often introduced as legal substitutes for 49 

known controlled drugs, but also explored for their novel effect. Some substances have been known 50 

for years and are now misused for recreational purposes, but most NPS are newly synthesized with 51 

little or no safety data regarding their short or long-term toxicity. Furthermore, purity and composition 52 

of products containing NPS are often not known, which places users at an even higher risk compared 53 

to well-known conventional illicit drugs [1,2]. The NPS market is extremely diverse and differs between 54 

countries. Governments have responded in different ways to the NPS market, but have not been able 55 

to act upon all the NPS which have emerged in an effective way in terms of penalizing its supply and 56 

use [4]. Hence, NPS continue to cause public health problems [5,6] and challenge healthcare 57 

professionals, toxicologists and policymakers in terms of identification, prevention, treatment and 58 

control.  59 

The Early Warning Systems (EWS) established by the European Monitoring Centre for Drugs and Drug 60 

Addiction (EMCDDA), Europol and the United Nations Office of Drugs and Crime (UNODC) play a key 61 

role in collecting data on new NPS appearing on the market. This information together with indications 62 

of the health and social risks associated with these substances is pivotal to respond to the emergence 63 

of NPS [7]. Analytical chemistry has a prominent role in gathering more thorough data which allows 64 

to better understand the situation of NPS use in the population. To complement the existing sources 65 

of information and improve our knowledge about the categories and characteristics of NPS present 66 

on the market, the application of appropriate analytical strategies is of utmost importance.  67 

The discovery and characterization of new substances in commercially available products and drug 68 

seizures is an important source of information for EWS. Since reference standards for unambiguous 69 

confirmation of the identity are often not available, a combination of several techniques, such as 70 

nuclear magnetic resonance (NMR), liquid chromatography (LC) coupled to high resolution mass 71 

spectrometry (HRMS), gas chromatography mass spectrometry (GC-MS) and X-ray crystallography, is 72 

normally applied [8–11]. Although there is a correlation, the identification of new substances in seized 73 

products mainly gives information on the NPS available on the market rather than information on the 74 

prevalence of use. Therefore, the analysis of biological samples is needed, but this implies a different 75 

analytical strategy to deal with the complexity of the matrix and the low analyte concentrations 76 

normally present in the samples [12–14].  77 



4 / 44 
 

The analysis of biological samples can be considered a frontline in the detection of consumed NPS. 78 

Samples of individuals can be collected from, for example, hospital emergency rooms, drug testing 79 

campaigns or post-mortem examinations, where concentrations of some NPS in acute intoxications 80 

may be relatively high. This may facilitate the identification of hitherto unknown intoxicants by means 81 

of the abovementioned analytical techniques [3]. However, it does not give a full picture of NPS use 82 

within a community, rather individuals, and the analyses of many samples required to have a wider 83 

picture is time consuming and expensive. In contrast, pooled urine and urban wastewater can 84 

anonymously provide information of many people in one single aggregated sample. Although the 85 

dilution factor can be rather high in these matrices, for example dilution of the sample with urine of 86 

non-consumers or water used in households and industry, it has demonstrated its utility for 87 

community-wide monitoring of illicit drug use and showed possibilities for getting complementary 88 

insight into the consumption and diffusion of NPS use [15–20].  89 

Liquid chromatography hyphenated to tandem mass spectrometry instruments (LC-MS/MS) with 90 

triple quadrupole mass analyzers (QqQ) or hybrid HRMS/MS systems are the preferred analytical 91 

techniques that have the required high sensitivity and selectivity to deal with the challenges related 92 

to the screening of NPS in pooled urine and wastewater. Furthermore, the polar characteristics of 93 

most NPS and their metabolites, as well as the sample matrix, make them compatible with these 94 

techniques. This article aims to discuss the advantages and disadvantages of relevant mass 95 

spectrometry (MS) data acquisition workflows and data exploration approaches to confront the low 96 

analyte concentrations and ever-changing NPS market and will be supported using key research 97 

articles and illustrative practical examples. This tutorial is not intended to be an extensive review of 98 

the existing literature, but to give an insight into this timely topic and describes the experience 99 

gathered within different collaborations and projects. It also pays attention to new developments such 100 

as ion mobility separation (IMS) and the use of in-silico prediction tools to improve the identification 101 

capabilities.   102 
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2. Sample collection and sample treatment  103 

Well-designed protocols for sample collection and storage, and versatile sample treatment of pooled 104 

urine and wastewater are essential for getting data that provide meaningful information on NPS use. 105 

The collection of anonymous pooled urine samples from portable street urinals has recently 106 

demonstrated its utility to detect the use of recreational drugs, including NPS [18,19]. Generally, 107 

multiple samples are taken from various urine reservoirs, over a 12-hour period, and then mixed to 108 

form pooled urine samples. This sampling method can be applied in cities where stand-alone urinals 109 

are routinely used at weekends [19], but can also be used for monitoring specific night time settings 110 

or recreational events such as music festivals [20–24]. Sampling urine aliquots from urinals ensures 111 

the collection of anonymous and representative samples and results may reflect the direct use of NPS. 112 

Yet, some limitations are related to the fact that urinals are designed for male use only and normally 113 

have no ‘flushing’ mechanism [25]. Thus, the number of contributors to the samples is unknown and, 114 

although quantitative analysis is possible, the comparison of concentrations gives little additional 115 

insight rather than a qualitative overview of the actual use of a certain drug compared to the other 116 

substances quantified in that specific sample.  117 

Wastewater analysis may circumvent these limitations by providing anonymous population-118 

normalized information of an entire community and has recently been explored to gather information 119 

on NPS use [3,15,17,26,27]. The successful application of wastewater-based epidemiology for 120 

assessing spatial differences and temporal changes in illicit drug use has been demonstrated [28,29] 121 

where population-normalized data can be calculated taking into account the measured concentration, 122 

the daily flow rate of sewage and the number of people connected to the wastewater treatment plant 123 

(WWTP) [28,30]. Specific sampling protocols have been developed to obtain representative 24-hour 124 

composite wastewater samples collected at the inlet of a WWTP [28]. In addition, a standardized 125 

questionnaire facilitates the collection of relevant meta-data such as the daily flow rate of sewage and 126 

the number of people connected to the WWTP [31]. This meta-data allows quantitative population-127 

normalized information for a limited number of target NPS to be explored. The information provided 128 

by wastewater analysis can be integrated with existing epidemiological data because of the unique 129 

ability to provide objective, updated and nearly real-time information on drug use [16,32]. 130 

One sampling technique not yet fully explored but with potential for monitoring NPS in wastewater is 131 

passive sampling [33], which ensures the concentration of analytes from longer periods (days or 132 

weeks) and increases the possibility to detect substances with low prevalence of use. The main 133 

advantage is that passive samplers, consisting of polymeric-based sorbent material, deployed for 134 

longer periods, can accumulate trace analytes on the sorbent during this period. Moreover, as some 135 

NPS might be consumed sporadically (and thus might not always be present in wastewater), one does 136 
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not need to collect multiple wastewater samples, which all eventually need to be processed i.e. 137 

increasing labor costs. Hence, this technology offers practical and economic advantages for gathering 138 

long-term data. But it has also some challenges related to calibration and quantification, since they 139 

require knowledge about uptake and diffusion of the different substances and are subject to the 140 

variability associated with NPS stability and environmental factors (e.g., flow rates, biofouling) [33,34]. 141 

The uptake of target analytes on sorbent materials needs, therefore, to be determined prior to 142 

deployment in the sampling site.  143 

Stability of NPS is an important aspect of sample collection for both pooled urine and wastewater 144 

analysis. While specific stability studies in pooled urine samples are lacking, they have been carried 145 

out on urine samples for forensic toxicology purposes. Metabolites of synthetic cannabinoids have 146 

been shown to be stable up to 14 days when refrigerated [35]. Many synthetic cathinones, 147 

benzodiazepines and amphetamine-type derivatives are very stable under freezing (-20 °C) storage 148 

conditions for months-years. However, when stored at room temperature or even refrigerated, 149 

degradation of these compounds can occur within days [36–38]. Therefore, it is recommended to 150 

freeze pooled urine samples immediately upon collection to avoid degradation. Regarding 151 

wastewater, it has been shown that acidification to pH 2 improves the stability in both filtered and 152 

unfiltered wastewater for up to 14 days for a wide variety of NPS such as cathinones, 153 

phenethylamines, opioid-derivatives and amphetamine-like stimulants [39]. If samples cannot be 154 

acidified, it is recommended that they are kept either refrigerated (4 °C) or frozen (-20 °C) for no longer 155 

than one week prior to sample processing [39–42]. Several synthetic cannabinoids have been shown 156 

to be unstable at pH 2 and in raw wastewater i.e. the hydroxypentyl metabolites of JWH 122, AM 157 

2201, RCS-4 and JWH 073, while JWH 018 n-pentanoic acid, JWH 073 N-butanoic acid and JWH018 N-158 

5-hydroxypentyl were stable at room temperature for up to 24 hours [42]. Moreover, the use of 159 

sodium metabisulfite as a preservative has been recommended to improve the stability of synthetic 160 

cannabinoids [43]. 161 

A non-selective and versatile sample preparation protocol for the enrichment and clean-up of samples 162 

capable of retaining a wide range of NPS with broad physicochemical properties is preferred and 163 

applied by the vast majority of reported studies. Pooled urine samples are usually treated by 164 

performing a hydrolysis step to cleave drug-glucuronide conjugates with β-glucuronidase and 165 

arylsulfatase prior to solid-phase extraction (SPE), liquid-liquid extraction and/or dilute and shoot 166 

techniques [21,44,45], while wastewater samples do generally not require this hydrolysis step due to 167 

in-sewer deconjugation [46–50] and are normally filtered and solid-phase extracted [17], although a 168 

less labor-intensive and quicker preparation procedure following the QuECHeRS principle has also 169 

been applied [51]. In order to cover the broadest range of substances possible, multiple SPE cartridges 170 
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or cartridges consisting of several layers with different stationary phase chemistries can be used 171 

[27,52]. The use of more cartridges implies several separate extractions, yet these can be optimized 172 

to specific NPS categories of interest such as cathinones or synthetic cannabinoids [15,21]. Typically, 173 

cartridges containing polymeric-based SPE sorbents with reversed phase (RP) properties built of 174 

generic hydrophilic and lipophilic balanced monomers or strong cation-exchange mixed mode 175 

sorbents incorporating RP copolymers are used. For the latter, samples should be acidified to pH 2-3 176 

to ensure that the analytes are positively charged during extraction [53]. This especially aids the 177 

recovery of cathinones, amphetamine-like stimulants, opioid derivatives and phenethylamines 178 

[21,39,45,54,55]. Online SPE has also been utilized for a limited number of NPS using a RP cartridge, 179 

with satisfactory recovery (i.e. 70-120%) [56]. LLE has been shown to aid in the detection of synthetic 180 

cannabinoids in pooled urine [57] and wastewater [43,58]. For wastewater studies, it is important to 181 

note that the removal of the solid fraction through filtration can greatly affect the overall recovery of 182 

synthetic cannabinoids due to their lipophilicity. Therefore, when performing wastewater analysis, 183 

both the aqueous and particulate fraction should be extracted together for optimal recovery of 184 

cannabinoids.  185 

Although both pooled urine and wastewater analyses incorporate SPE, there is a much lower pre-186 

concentration factor needed for pooled urine, with initial volumes of 1-2 mL, due to the generally 187 

higher concentrations found [23,45,57]. Furthermore, lower pre-concentration results in less matrix 188 

effects and potentially an improved chromatographic performance. Higher pre-concentration factors 189 

in wastewater are commonly applied to deal with the very low concentrations of NPS expected in 190 

these samples. However, this can also result in strong matrix effects due to the pre-concentration of 191 

unremoved components present in the sample extract. Matrix effects are alterations of the MS signal 192 

(enhancement or suppression), which have been linked to co-eluting interferences such as proteins, 193 

lipids, sugars or salts, that affect the ionization process [59]. Frequently, isotopically labelled internal 194 

standards (ILIS) are used as surrogates and added to samples prior to processing (i.e., SPE) or analysis 195 

(in the case of dilute and shoot approaches applied in pooled urine analysis), to account for potential 196 

matrix effects, but also to correct for potential errors due to sample preparation. Ideally ILIS of the 197 

corresponding NPS are used as they are supposed to be affected in a similar manner as their non-198 

labelled counterparts. However, ILIS are often expensive and not always commercially available, 199 

especially in the case of NPS. Therefore, ILIS are regularly used to correct for several compounds 200 

[15,40]. Nevertheless, the performance of each ILIS for correcting matrix effects need to be carefully 201 

evaluated. When appropriate ILIS are unavailable, matrix effects may be minimized by applying an 202 

additional clean-up step, but also lower pre-concentration factors may occasionally be desired for 203 

some substances in order to reduce ionization suppression and increase their detection limit [27,60]. 204 
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In general, even when ILIS are available, a reduction of matrix effects is recommended for better 205 

precision, sensitivity and robustness in complex matrix samples [60].  206 
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3. Chromatographic separation 207 

Good chromatographic separation is important to reach the required levels of selectivity, sensitivity 208 

and identification power to monitor NPS through wastewater and pooled urine analysis. GC-MS has 209 

been applied for the determination of NPS in urine. However, because of the high levels of selectivity 210 

and sensitivity provided by this technique, it requires the derivatization of the analytes which results 211 

in a more time-consuming and less generic sample treatment [61,62]. Alternatively, LC-MS allows the 212 

determination of compounds with a broad range of polarity, low volatility and thermolability with the 213 

application of more generic sample treatment strategies. In addition, the aqueous nature of the 214 

matrices makes LC-MS fully compatible with the determination of NPS in wastewater and pooled urine 215 

samples [63]. 216 

Reverse-phase LC (RPLC) separates compounds within the range of low-polarity to non-polarity. 217 

Therefore, it seems to be the most suitable chromatographic technique to achieve generic and good 218 

chromatographic separation especially for wide-scope monitoring of NPS. Consequently, the vast 219 

majority of studies dealing with multi-residue methods in wastewater and/or pooled urine samples 220 

applied RPLC as the separation technique [13,23,25,64,65]. However, more polar (or ionic) substances 221 

such as amphetamine-like stimulants or synthetic cathinones and their metabolites, might require 222 

more specific methodologies. Recent developments in column chemistries and improvement in 223 

robustness of existing stationary phases allowed the analysis of more particular scenarios. Hydrophilic 224 

interaction LC (HILIC) is an alternative approach to effectively separate small and highly polar NPS. For 225 

example, Kinyua et al. [55] successfully developed a multi-residue methodology for the determination 226 

of 7 synthetic cathinones and amphetamine-like stimulants by means of HILIC separation. 227 

Additionally, enantiomeric analysis has also been explored for the determination of NPS [66–68]. 228 

Chiral NPS are usually consumed as racemic mixtures of different forms (i.e. with an enantiomeric 229 

fraction (EF) between the two forms of approximately 0.5), even though both forms might differ 230 

quantitatively and qualitatively in the pharmacological activity [69]. Therefore, enrichment of the R 231 

(or S) form, depending on the stereoselective metabolism in humans, is expected in biological samples 232 

[66]. Consequently, an EF found in wastewater or pooled urine samples deviated from the original EF 233 

value could help in distinguishing between human consumption and direct disposal of unused 234 

substances [66]. Other chromatographic techniques such as capillary chromatography and 235 

supercritical fluid chromatography (SFC) are promising strategies for the monitoring of NPS. The 236 

improvement in sensitivity provided by capillary chromatography, especially for the small 237 

amphetamine-like structures, revealed a technique to explore for this purpose [26]. Also, recent 238 

developments in commercially available instruments has seen an increase in applications of ultra-high 239 

performance (UHP) SFC - MS/MS, in particular using (sub)supercritical carbon dioxide (CO2) with 240 
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various organic additives as mobile phase [58,70]. One of the main advantages of UHPSFC compared 241 

to conventional UHPLC is its increased chromatographic efficiency and resolution [71] also permitting 242 

the separation of several NPS isomers with good results [72].  243 
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4. Quantitative target monitoring  244 

As discussed above, the determination of NPS can be challenging due to the large number of 245 

potentially relevant compounds and the low concentrations expected in samples, in particular when 246 

considering wastewater and pooled urine. In fact, due to the often low prevalence of use of individual 247 

compounds, concentrations of these substances are often orders of magnitudes lower compared to 248 

conventional illicit drugs (< 10 ng L-1) [55]. For this reason, targeted methods, specifically using LC-249 

MS/MS with QqQ or ion-trap mass analyzers, have been implemented for the reliable identification 250 

and quantification of selected NPS in urine and wastewater samples [15,17,73,74]. The development 251 

of such quantitative target methods, however, requires access to reference standards for precursor-252 

product ion transition selection in the Selected Reaction Monitoring (SRM) mode and MS parameters 253 

optimization. Identification and confirmation is achieved through the acquisition of at least two SRM 254 

transitions and matching of the retention time (RT) and ion-intensity ratios between the sample and 255 

reference standard [75,76]. The most sensitive SRM transition is commonly selected for the 256 

quantification at low concentration levels, whereas the second transition allows confident 257 

confirmation [26,40,46]. However, since NPS often retain high structural similarity, the risk of selecting 258 

common transitions is present and therefore the acquisition of more transitions (if feasible) is 259 

recommended to gain more confidence to the confirmation process. Hence, it is also important to 260 

understand fragmentation of each NPS as it allows the selection of specific product ions and avoid 261 

non-specific transitions such as a neutral loss of water or CO2[77]. The latter is especially relevant to 262 

minimize potential matrix interferences when analyzing NPS at low concentrations in highly complex 263 

matrices such as pooled urine and raw wastewater samples. Although quantitative target monitoring 264 

can be performed using LC-HRMS instruments, their application in the field is limited due to the 265 

generally lower sensitivity compared to low resolution MS/MS instruments [17]. Hence, the advantage 266 

of low-resolution instruments for quantitative analysis lies in the robustness, selectivity and sensitivity 267 

which can be achieved by monitoring these specific precursor-product ion transitions. Combined with 268 

their high scanning speed, these instruments can monitor many transitions almost simultaneously, 269 

and consequently high-throughput, multi-residue methods that include many targeted NPS 270 

biomarkers, can relatively easily be developed.  271 

Synthetic cathinones, phenethylamines, tryptamines and piperazine-derivatives have been 272 

quantitatively determined in pooled urine samples collected during weekends at specific night settings 273 

[25] or at music festivals [23]. Although data obtained from quantitative determination of NPS in 274 

pooled urine samples only gives an indication on the extent of use for an NPS compared to other 275 

substances found in a specific sample [23], these findings are still very valuable, as the application of 276 

these selective and sensitive target quantitative methods give high confidence and allows 277 
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confirmation of the NPS identified at low concentration levels. Synthetic cathinones are by far the 278 

most studied group of NPS in wastewater, followed by synthetic cannabinoids and phenethylamines. 279 

Studies using LC-MS/MS to monitor these substances have been carried out in Europe, Asia and 280 

Australia [15,17,26,39,40,78,79] and have shown spatial and temporal trends using population-281 

normalized data. Although LC-MS/MS methods are highly sensitive and multi-residue methods can be 282 

developed, they have a major drawback, namely reference standard materials need to be available 283 

for method development as previously highlighted. Given the high number of NPS that have been 284 

detected in the market and their transient nature, reference standards are mostly available for only a 285 

limited number of compounds. Moreover, by the time reference standards become available, these 286 

compounds might have already disappeared from the market as they may have been less popular or 287 

added to the lists of regulated substances and can thus not be sold legally anymore. Further 288 

exacerbating the determination of these substances is the extent of their metabolism. There have 289 

been studies carried out on the metabolism of NPS using human liver microsome incubations to better 290 

understand the metabolism of certain NPS [80–84]. In addition, recent advances in computing power 291 

have permitted the development of comprehensive knowledge based software to predict the 292 

metabolic fate [85,86]. However, reference standards of most of the metabolites proposed are not 293 

commercially available and therefore unsuitable for quantitative target monitoring. Thus, quantitative 294 

target LC-MS/MS methods, although indispensable to achieve the highest sensitivity needed for 295 

certain types of substances (e.g., fentanyl and its derivatives), need to be complemented by other 296 

analytical approaches which allow a quick and broader monitoring, without the necessity for reference 297 

standards. Although low-resolution mass spectrometry (LRMS), especially tandem MS instruments, 298 

are highly appreciated in quantitative analysis, its application to qualitative analysis and capabilities in 299 

detecting unknowns is, limited due to the relative low resolving power (approximately 1 Da) and low 300 

sensitivity in full scan mode [77]. The use of HRMS offers new possibilities in the determination of NPS 301 

as well as circumventing some of the limitations of LRMS.  302 
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5. Qualitative screening approaches  303 

HRMS presents strong potential for monitoring a large number of substances, due to its acquisition of 304 

accurate-mass full spectrum data at good sensitivity [63,77,87].  In order to facilitate the reading of 305 

this tutorial, terms that will be used in this section are defined below: 306 

Target screening based on HRMS allows the qualitative screening of NPS after data acquisition based 307 

on large databases, thus evading the pre-selection of analytes for method development and the need 308 

of reference standards. However, the information included in the database is limited by the availability 309 

of reference standards. When reference standards are available, information such as accurate masses 310 

of fragment ions, adduct formation and RT can be included, whereas only the elemental composition, 311 

exact mass and theoretical isotopic pattern can be included when no reference standard is available. 312 

Although the acquisition of data is performed in an untargeted way, the approach is considered 313 

targeted and generally known as suspect screening [77,87], since the search is based on a list of target 314 

compounds that can be expected to be found in the samples. An advantage of this approach is that 315 

retrospective analysis can also be performed at any time from the acquired data to search for 316 

substances initially not considered and included in the database, such as novel NPS or newly 317 

discovered metabolites [88,89]. It should, however, be noted that the detection of some substances 318 

might be restricted by the sample treatment, the chromatographic conditions or the ionization 319 

efficiency [90], since usually a generic analysis is performed and no optimization has been executed 320 

for the NPS included in the database.  321 

Non-targeted screening, without any selection of analytes, allows the investigation of any other NPS 322 

biomarker not included in the database. However, it implies an examination of each chromatographic 323 

peak and extensive investigation of its accurate mass spectrum. This process is challenging and time 324 

consuming and probably does not outweigh the rate of success in identifying of unknown NPS. 325 

Alternatively, the screening can be directed to discover related compounds of known NPS using 326 

characteristic mass spectral information and applying mass-defect filtering or common fragmentation 327 

pathways. 328 

As a starting point for researchers interested in undertaking qualitative screening of NPS by HRMS, 329 

the review article written by Hernandez et al. [63] describing different mass spectrometric strategies 330 

for the investigation of illicit drug biomarkers in wastewater is recommended. Although similar 331 

strategies and identification criteria can be applied for the investigation of NPS in pooled urine and 332 

wastewater, the challenges are different due to the rapid turnover in the NPS drug market creating a 333 

scenario with constantly moving analytical targets and the often lower prevalence of use compared 334 

to conventional illicit drugs. Moreover, the structural similarities of NPS and their metabolites often 335 

requires increased identification confidence in order to minimize reporting false positives. In the text 336 
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below, practical examples are given to discuss different data acquisition workflows and data 337 

exploration approaches to illustrate how HRMS can help in the confident identification of NPS in high-338 

complex pooled urine and wastewater samples. 339 

 340 

5.1. Acquisition modes for hybrid high resolution mass spectrometric systems 341 

The most commonly used HRMS analyzers are time-of-flight (TOF) and Orbitrap, which can be coupled 342 

with LC and possess high mass resolving power (> 20,000 Full Width at Half Maximum (FWHM)) and 343 

mass accuracy (< 5 ppm) for wide scope screening of NPS in pooled urine and wastewater [17,75,76]. 344 

However, hybrid configurations, such as quadrupole-TOF (QTOF) or quadrupole-Orbitrap (Q-Orbitrap), 345 

are nowadays more the standard than the exception as they considerably increase the potential of 346 

HRMS for screening NPS [20,21,27,44,52,91]. When working in MS/MS mode, it is possible to record 347 

accurate mass product-ion spectra of previously detected candidates and obtain relevant structural 348 

information to allow suspected NPS to be confidently identified or disregarded as false positives. 349 

However, the simultaneous accurate-mass acquisition of both full-spectrum and product-ion spectra 350 

data is preferable and collects accurate mass data of both the (de)protonated molecules and its 351 

fragment ions in a single acquisition and without the selection of precursor ions.  352 

In data-dependent acquisition (DDA) mode, the instrument first performs a “survey scan” from which 353 

the analyst chooses (or not) certain ions that fit specific criteria based on, for example, intensity 354 

thresholds. Ions for which these conditions are met, are then selected to be included in a list of 355 

preselected masses and fragmented to provide information-rich product ion scans. Unlike intensity 356 

thresholds, an inclusion (or exclusion) list allows large matrix interferences to be ignored, thereby 357 

facilitating the identification process and saving effort and time [27,52,63,92]. However, the size of 358 

the inclusion list (i.e., suspects to be fragmented) can adversely affect the cycle time of the instrument. 359 

Therefore, a decrease in the number of scans (or data points) across a chromatographic peak will 360 

occur, reducing its detectability. Moreover, any compound not included in the initial inclusion list 361 

cannot later be retrospectively analyzed, so the sample would have to be re-extracted and re-362 

analyzed. Yet, there is a way around this limitation, utilizing complementary targeted and untargeted 363 

DDA. This technique initially conducts an MS scan followed by targeted MS/MS using an inclusion list 364 

and then untargeted MS/MS on n-selected precursors. For example, analysts can look at MS/MS of 365 

the n most abundant precursor ions, which would be of great utility for samples with high levels of 366 

NPS such as seizure samples [14,93]. However, the generally low concentration of NPS found in pooled 367 

urine and wastewater might mask the detection of low abundant peaks, and therefore, many NPS may 368 

remain undetected [94]. 369 
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Data independent acquisition (DIA) allows the acquisition of accurate-mass full-scan spectra under 370 

different collision induced dissociation conditions within a single injection. This acquisition mode is 371 

known under different names depending on the manufacturer (e.g. All-ion-fragmentation (AIF), all-372 

ion MS/MS, MSE and broadband collision-induced dissociation (bbCID)), where all ions generated in 373 

the ion source are sent to the collision cell for fragmentation without precursor ion selection or any 374 

predefined selection criteria. This alternation between full-scan and untargeted MS/MS events at low 375 

collision energy (LE) and high collision energy (HE), respectively, allows one to obtain information 376 

relating to the accurate masses of the (de)protonated molecule as well as their fragment ions. 377 

Furthermore, it conserves highly valuable information on adducts and isotopes since the quadrupole 378 

works as an ion guide [63,77]. The main limitation of DIA is that spectra are non-selective and contain 379 

product ions for all ions formed in the ion source. Hence, the interpretation can be challenging, since 380 

co-eluting compounds or matrix interferences may “contaminate” the spectra, and makes it difficult 381 

to associate product ions with the correct (de)protonated molecule [14,95,96].  382 

Slightly different modes compared to the other DIA modes mentioned above in terms of specificity 383 

have been developed by manufacturers with the objective to have HE spectra approaching to MS/MS 384 

quality data. As an example, in Sequential Window Acquisition of all THeoretical fragment ion spectra 385 

(SWATH) mode, a TOF MS full scan at LE is acquired, alternated by SWATH experiments at HE obtaining 386 

MS/MS data by fragmenting only the (de)protonated molecules present in a much narrower window 387 

(e.g. 15 -25 m/z). In this way, SWATH can distinguish co-eluting compounds of different masses by 388 

having specific experimental mass fragmentation windows which filter out all masses not included in 389 

the specified mass range. This results in cleaner spectra, which facilitates identification [96,97]. This is 390 

a particular important point in the determination of NPS, which are notorious for the analytical 391 

challenges associated with common fragments. Figure 1 shows the utility of SWATH in differentiating 392 

two co-eluting NPS, butyryl fentanyl with m/z 351.2431 and furanylfentanyl with m/z 375.2067 in a 393 

spiked wastewater sample. In the full scan acquisition at LE, it can be observed from the individual 394 

extraction ion chromatograms (XICs) that the two NPS seemingly elute at 12.50 min (Figure 1A, top), 395 

with the mass spectra at this RT showing both masses (Figure 1A, bottom). However, when applying 396 

SWATH, the HE experiments carried out at different mass windows (m/z 340.2 – 357.4; Figure 1B and 397 

m/z 372.6 – 389.8; Figure 1C) allowed them to be distinguished by extracting the mass of each of these 398 

fentanyl derivatives in their corresponding acquisition window. With the mass of butyryl fentanyl and 399 

furanylfentanyl falling within separate experiments, they can be individually extracted and identified 400 

using cleaner spectra. This exemplifies the power of this acquisition mode in the elucidation of NPS.   401 

 402 
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[Insert Figure 1 here: Identification of two co-eluting NPS, butyryl fentanyl (m/z 351.2431) and 403 

furanylfentanyl (m/z 375.2067) in a spiked wastewater sample using Sequential Window 404 

Acquisition of all THeoretical fragment ion spectra (SWATH). (A) overlapping extraction ion 405 

chromatograms (XICs) of the two NPS with chromatographic peaks eluting at 12.50 min (top); 406 

full scan acquisition mass spectra with low collision energy (LE) (10 V) at retention time 12.50 ± 407 

0.10 min (bottom). (B) SWATH mass window m/z 340.2-357.4, XIC at m/z 351.24 (middle) and 408 

high collision energy (HE) mass spectra (bottom); (C) SWATH mass window m/z 372.6-389.8, XIC 409 

at m/z 375.21 (middle) and HE mass spectra (bottom)] 410 

 411 

5.2. Suspect screening 412 

Suspect screening approaches usually take advantage of home-made databases. However, the 413 

information included therein is limited by the availability of reference standards, as previously 414 

explained. When no reference standard is available, the minimum suggested requirements for a 415 

tentative identification is the accurate mass of the (de)protonated molecule and, at least, one 416 

significant fragment ion together with the corresponding isotopic pattern. This is in the line with 417 

proposed quality procedures recommended in other research fields [76,98]. The observed fragments 418 

need to be in accordance with the chemical structure and, preferably, in agreement with previously 419 

reported data in scientific literature or online spectral databases [27,52,99,100]. Ideally, reference 420 

standards are available, and information such as accurate masses of fragment ions, adduct formation 421 

and RT can be included, which allow unequivocal identification. However, this entails high costs due 422 

to the high number of compounds and, therefore, huge efforts have been devoted, in the recent years, 423 

to develop community-made or online mass spectral databases for NPS.  The best known databases 424 

are NPS Data Hub [101] and HighResNPS [102,103] with more than 2800 and 3350 entries, respectively 425 

(date accessed: 26 June 2020). The HighResNPS library currently has active users from more than 10 426 

laboratories around the world with the intention to ensure up-to-date analytical information from the 427 

moment a specific NPS becomes available to a given participating laboratory [102]. These libraries are 428 

available to help and facilitate the screening of NPS and their metabolites [101,104–106].  429 

In most laboratories, a suspect screening based on large home-made databases is often the first step 430 

for monitoring samples. Due to the high number of NPS and metabolites, the rapid transience of these 431 

compounds on the market, high costs and limited availability of reference standards, home-made 432 

databases are normally built of merely accurate masses of the (de)protonated NPS and fragment ions. 433 

Yet, the low concentration levels of NPS present in combination with strong matrix interferences 434 

makes the tentative identification of NPS challenging and remark often the necessity to perform some 435 

additional research or experiments to increase the confidence in the tentative identification. As an 436 
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example, Figure 2 shows the tentative identification of 4-chloro-α-pyrrolidinopropiophenone (4-437 

chloro-α-PPP) in a pooled urine sample. Its protonated molecule, the isotopic information related to 438 

the presence of one chlorine atom and at least one fragment ion was observed at accurate mass 439 

(Figure 2A). However, a known and abundant fragment of 4-chloro-α-PPP at m/z 167.0258 [107] 440 

showed an undue high mass error (+143 ppm) under the initial screening conditions, which made the 441 

tentative identification of this NPS questionable. By increasing the mass resolution of the Orbitrap MS 442 

from 20.000 to 35.000 FWHM and zooming in the m/z range of the fragment, it was possible to 443 

distinguish three peaks at m/z 167, one corresponding to the fragment ion m/z 167.0258 (+5.3 ppm) 444 

of 4-chloro-α-PPP (Figure 2B, bottom). This allowed more confidence to be gained in the 445 

identification. Subsequently, the feature could be identified as 4-chloro-α-PPP by means of a reference 446 

standard. The latter is pivotal for the confirmation of the identity of the NPS. However, by using this 447 

approach, laboratories do not need to purchase all reference standards a priori to the analysis [108] 448 

and could prioritize those NPS for which more reliable evidence is obtained. 449 

 450 

[Insert Figure 2 here: Tentative identification of 4'-chloro-α-pyrrolidinopropiophenone (4-chloro-α-451 

PPP) in a pooled urine sample. (A) Extracted ion chromatogram of 4-chloro-α-PPP and 37Cl 452 

isotope (top); Product ion mass spectra of [M+H]+ at m/z 238.10 (bottom). (B) Structure of 4-453 

chloro-α-PPP (top); Zoom in the range of fragment ion with m/z 167 at resolution (R) of 454 

35.000 Full Width at Half Maximum (FWHM) (bottom)] 455 

 456 

Positional isomers or homologues are frequently the first choice to substitute banned NPS [109]. 457 

Hence, NPS often have only minor modifications to a backbone structure and the structural similarities 458 

of NPS and their metabolites are often reflected by their common fragmentation pathways, this poses 459 

one of the principal challenges in suspect screening strategies. As an example, the analysis of a raw 460 

wastewater sample showed a chromatographic peak at 4.51 min giving a positive hit for the isomers 461 

α-methyltryptamine (AMT) and 5-(2-aminopropyl)indole (5-IT) based on the accurate mass of their 462 

protonated molecule and their fragment ions (Figure 3A). These two isomers share the same chemical 463 

backbone with the only difference being the position of the substituent (Figure 3B and 3C, top). The 464 

following MS fragment ions were found: m/z 158.0954, m/z 143.0724, m/z 132.0799, m/z 117.0577 465 

and m/z 115.0541, with the most abundant fragment at m/z 143.0724 (Figure 3A, bottom). The only 466 

difference, described in the literature, between the spectra of AMT and 5-IT resides in the relative 467 

intensities of the fragment ions [110]. The most intense fragment ion of 5-IT has an m/z of 130, 468 

whereas the most abundant fragment ion for AMT corresponds to m/z 143. This slight difference in 469 

the fragmentation pattern (i.e. intensities) gave more confidence in the tentative identification of AMT 470 
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instead of 5-IT in this sample. Therefore, AMT was synthesized and a reference standard of 5-IT was 471 

donated by a collaborating laboratory. When comparing that empirical data to AMT and 5-IT reference 472 

standard MS fragment ions (Figure 3b and 3c, bottom), it can be observed that both substances share 473 

the same fragment ions (in nominal mass; m/z 143, m/z 130, m/z 117 and m/z 115) coinciding with 474 

the fragment ions observed in the sample, but that AMT indeed show a more abundant fragment ion 475 

with m/z 143. This gave more confidence in the positive identification of this NPS and together with 476 

its RT, AMT could finally be confirmed. 477 

 478 

[Insert Figure 3 here: Identification of α-methyltryptamine in a raw wastewater sample using QTOF 479 

MS. (A) feature detection of m/z 175.1235 at 4.51 min (top, insert) together with the low 480 

collision energy (LE) spectra (top) and high collision energy (HE) spectra with emphasis on m/z 481 

130-145 (grey areas) (bottom); (B) Structure, fragment ions, LE and HE spectra of α-482 

methyltryptamine; (C) Structure, fragment ions, LE and HE spectra of 5-(2-aminopropyl)indole] 483 

 484 

5.3. In-silico approaches 485 

In some cases, the instrument-specific parameters (i.e. accurate mass ions and isotopic patterns) do 486 

not suffice to tentatively propose a chemical structure, and, therefore, additional studies are required. 487 

For that purpose, predictive models have been used to filter out false positives and increase the 488 

confidence of compound identification when reference standards are unavailable or no information 489 

is within reach in previously reported data [27,111,112]. Aalizadeh et al. developed a RT prediction 490 

model using Quantitative Structure-Retention Relationships (QSSR) and Support Vector Machines 491 

(SVM) to model the RT data for both HILIC and RPLC with high accuracy [111]. A different approach 492 

was proposed by Bade et al. considering the application of Artificial Neural Networks (ANNs) for the 493 

development of a RT predictor for gradient-RPLC using a dataset of more than 500 compounds with 494 

an predictor accuracy of ±2 min [112]. Such RT predictive tools are highly valuable for the 495 

determination of NPS in complex matrices as demonstrated by Diamanti et al. [27]. Since the 496 

availability of reference standards is limited, the suspect screening of NPS usually results in many 497 

candidate structures because of the structural similarity of many NPS, as for example, in the case of 498 

the two isomeric phenethylamines 3,4-methylenedioxy-N-hydroxyethylamphetamine (MDHOET) and 499 

N-hydroxy-N-methyl-3,4-ethylenedioxyamphetamine (EFLEA). The predicted RT using a QSSR 500 

predictor model matched the one for MDHOET and discarded the one for EFLEA, thereby reducing the 501 

number of candidates and increasing the confidence in the tentative identification of MDHOET in 502 

influent wastewater from Athens [27]. In-silico fragmentation tools, such as the MetFrag software, are 503 

pivotal in a suspect screening workflow. This software generates a predicted fragmentation of 504 
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molecules based on their structure and compare it to the empirical data gathered proposing a list of 505 

fitting candidates together with a scoring parameter [113,114]. However, it is common that many 506 

structurally related substances can be assigned to the empirical data with a similar score value [113], 507 

which is a drawback particularly for the investigation of NPS because of the similarity of several 508 

substances.   509 
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6. Ion mobility separation coupled to high resolution mass spectrometry 510 

The recent development of the hyphenation of IMS with LC-QTOF MS instruments (LC-IMS-QTOF MS) 511 

represents an innovative tool for their application in target and non-targeted screening strategies. IMS 512 

separates ions depending on their size, shape and charge in a gas phase, (usually nitrogen or helium), 513 

and in the presence of an electric field [115]. Ion separation occurs in the millisecond time scale, 514 

making it compatible with fast TOF MS acquisitions [116]. The time an ion takes to travel through the 515 

mobility cell i.e. the drift time (DT), adds an extra dimension to the obtained chromatographic RT and 516 

accurate mass, which results in increased selectivity and improved identification, particularly in DIA 517 

modes [116,117]. The increased selectivity is translated into much cleaner and higher-quality spectra 518 

than conventional HRMS DIA spectra, since (de)protonated molecules and fragment ions of interest 519 

with the same DT can be aligned and separated from co-eluting matrix components. Although data 520 

sets inherently become more complex and more comprehensive, the utilization of IMS-HRMS 521 

instruments does not overcomplicate the data revision process thanks to the four-dimensional 522 

automatic feature detection. This allows the software to both deconvolute peaks based on 523 

chromatographic and MS data and align ions with the same RT and DT into unique features. Thus, LE 524 

and HE spectra are DT filtered for the deconvoluted ions (i.e. for each ion detected in the LE spectra 525 

its DT is used to correlate it with the fragment ions obtained in the HE spectra). Cleaner spectra can 526 

also be obtained by improving the chromatographic separation. Although improvements in the quality 527 

of the spectra often relies on spectral discrimination of the compounds, a good chromatographic 528 

separation is recommended especially when analyzing complex matrices such as pooled urine and 529 

wastewater that contain many co-eluting interferences. Yet, IMS provides an extra dimension of 530 

separation which fits between chromatography and MS and results in cleaner spectra, but without 531 

increasing the chromatographic run time or mass resolving power. 532 

A further advantage of IMS is that Collision Cross Section (CCS) values can be derived from the DT and 533 

represent the surface of the sphere created by the ion when moving in the gas phase. Unlike DT, CCS 534 

is an instrument independent value, provided that the same drift gas and ion mobility calibration 535 

standards are used [116,118,119]. The importance of CCS values relies on the fact that they are robust 536 

across multiple platforms (i.e. deviation up to 2%), independent of the chromatographic conditions 537 

used and not affected by matrix composition [118–120]. CCS values depend on the calibration 538 

procedure applied, and the deviation between instruments is caused by the slight experimental 539 

variations in room temperature, gas pressures and other hardware settings. Hence, CCS is a parameter 540 

that can give support to MS-based compound identification in addition to RT, m/z, isotopic pattern 541 

and fragment ions. Finally, IMS enables, in theory, the separation of isomeric compounds not 542 

previously resolved using LC, since they are expected to have a different mobility in the drift cell, and 543 
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therefore different CCS values [121,122]. Although there is a relationship between the m/z and CCS, 544 

Bijlsma et al. [123] showed that a range of 35 Å2 could be observed for molecules of approximately 545 

300 Da, therefore, demonstrating that no direct correlation between m/z and CCS could be established 546 

and that thus IMS may separate isomers. 547 

 Figure 4 illustrates the benefits of IMS in terms of higher-quality spectra in DIA MS/MS events. In this 548 

example, a positive finding of ketamine in a wastewater sample is shown using an ion mobility 549 

separation QTOF MS (Vion from Waters). When searching for ketamine (with m/z 238.0993 ≤ 5ppm) 550 

a chromatographic peak at a RT of 3.33 min was observed (Figure 4A, top (yellow arrow)). The 551 

corresponding conventional DIA MSE spectra (LE and HE) show many ions when no DT alignment is 552 

applied (Figure 4B, top) resulting in a base peak with m/z 263.1386, which does not correspond to 553 

ketamine (i.e. m/z 238.0993, highlighted in green). However, when applying the IMS MSE acquisition 554 

mode (HDMSE, High-Definition MSE), several co-eluting ions at 3.33 min are separated in the mobility 555 

cell, illustrated as red or black dots in Figure 4A, bottom. The DT of the ion with m/z 238.0993 was 556 

4.89 ± 0.20 ms and the corresponding fragment ions in this range, the blue highlighted areas, can be 557 

aligned. All other ions outside this area are filtered out, which results in much cleaner and easier to 558 

interpret spectra (Figure 4B, bottom). Despite the presence of some co-eluting interferences with 559 

similar DT, the resulting spectra contains fragment ions which could be primarily assigned to ketamine 560 

[124]. 561 

 562 

[Insert Figure 4 here: Identification of ketamine in a wastewater sample using IMS QTOF MS. (A) 563 

feature detection of m/z 238.0993 at 3.33 min and drift time (DT) 4.89 ms, yellow arrow (top); 564 

co-eluting ions at 3.33 min illustrated as red or black dots and separated by DT. Blue highlighted 565 

areas are the DT ranges of 4.89 ± 0.20 ms at m/z 238.0993 at low collision energy (LE) and high 566 

collision energy (HE) (bottom). (B) LE and HE mass spectra without IMS DT alignment (top); LE 567 

and HE mass spectra with IMS DT alignment (bottom)]  568 

 569 

The additional cleaning of spectra provided by IMS is of particular relevance for the determination of 570 

NPS in challenging matrices such as wastewater or pooled urine where thousands of naturally 571 

occurring compounds can hamper the identification of these substances at the low concentration 572 

levels expected. Moreover, since the CCS value of a certain molecule is not affected by matrix 573 

composition, their utilization as an additional identification point in the determination of NPS pushes 574 

IMS-HRMS as a promising technique in the monitoring of these substances [125,126]. Therefore, the 575 

development of home-made or collaborative on-line databases including ion mobility data will 576 

enhance the efficiency of target NPS screening. However, as has been discussed earlier, due to the 577 
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lack of analytical standards for most of the NPS and metabolites and the still sparse accessibility to 578 

IMS-HRMS instruments in research centers, the availability of CCS values for these substances is still 579 

very limited. Hence, in-silico predictive tools similar to those for RT and MS fragmentation may help 580 

to increase the confidence in the identification of tentative candidates. Several data-driven CCS 581 

predictor systems have been developed for the prediction of CCS values for small molecules [123], 582 

pharmaceuticals and drugs of abuse [127] and metabolites [128]. As an example, the predictor 583 

reported by Bijlsma and Bade et al. [123] was developed using 205 CCS values for small molecules 584 

including pharmaceuticals, pesticides and drugs of abuse with ANNs for modelling the ion mobility 585 

data. Although the empirical variability of CCS measurements across instruments for a certain 586 

molecule is known to be up to 2%, with the developed CCS predictive model, the maximum deviation 587 

at the 95% confidence interval was only 6%. Mollerup et al. [127] were able to reduce the deviation 588 

in the predicted CCS to a 4%, consequently increasing the accuracy of the model. In the case of the 589 

predictor model developed by Zhou et al. [128], support vector regression was applied to the 590 

development of predictive models for different molecular adducts with median relative errors of 591 

approximately 3%. Regardless of the predictive model applied for the prediction of CCS, the utilization 592 

of these strategies facilitates the tentative identification of NPS in suspect screening strategies [125], 593 

especially when combined with RT and MS fragmentation predictive tools.   594 
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7. Future perspectives  595 

The determination of NPS in pooled urine and urban wastewater has shown several challenges due to 596 

distinct factors as discussed in this manuscript. Current analytical instrumentation based on LC 597 

combined with LRMS and HRMS and the application of complementary data acquisition workflows 598 

and data exploration approaches helps to circumvent or confront certain barriers. However, more 599 

research related to NPS biomarkers is required and several trends in analytical chemistry, which is 600 

under continuous development, can be highlighted: 601 

 602 

i. NPS biomarker selection. The high number of existing NPS and the constant introduction of new 603 

compounds on the drug market creates a dynamic scenario of moving target biomarkers. Hence, 604 

monitoring of all NPS is complex and efforts could therefore be initially focused on NPS which are 605 

relatively high-dosed or frequently consumed and excreted (partly) unchanged such as 606 

amphetamine-like substances and cathinones. Especially since scant information on NPS 607 

pharmacokinetics is currently available, which complicates the choice of suitable biomarkers 608 

(parent substance or urinary metabolites) [129,130]. This is particularly relevant for synthetic 609 

cannabinoids and compounds like NBOMes that are highly metabolized in the human body 610 

[42,131,132] and for synthetic opioids that are consumed at very low doses [39], leading in both 611 

cases to very low concentration levels of the corresponding biomarkers in urine and, 612 

consequently, in wastewater. However, there are some published works on the metabolism of 613 

NPS [80–84] and different computational tools exist that predicts the metabolic fate of chemicals 614 

[86,87]. Although the proposed metabolites therein are generally not commercially available for 615 

quantitative target monitoring, these compounds should be included within screening databases 616 

as well as aiding in retrospective data analysis to ensure that the most appropriate analytical 617 

targets are investigated.  618 

ii. Sample collection, storage and treatment of pooled urine and wastewater is pivotal for getting 619 

meaningful information on NPS use. Pooled urine analysis of samples collected from portable 620 

toilets and urinals give an informative snapshot of the NPS used, but is often limited to men only 621 

and it is difficult to extrapolate results to the total number of toilet users. All-gender toilets with 622 

an improved design, complying specific technical requirements like a flushing mechanism and a 623 

visitor counter could circumvent these limitations in future studies. Currently, daily composite 624 

wastewater samples are more representative and analysis provides population-normalized 625 

quantitative information on NPS. A best practice protocol to collect representative wastewater 626 

samples of an entire community is available [32] to ensure the comparability of results from 627 

different countries. However, wastewater is more diluted compared to pooled urine resulting in 628 
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lower concentrations, which may complicate the detection of some NPS. Passive sampling 629 

increases the possibility to detect substances with low prevalence of use, because of the sampling 630 

and concentration of analytes over a longer period of time. Yet, passive sampling also merely 631 

gives a snapshot and has several limitations that need to be overcome or optimized as previously 632 

described. Recent developments, using diffusive gradients in thin films which, in contrast to 633 

conventional samplers, consist of a diffusive and binding gel and are exposed to the medium, are 634 

less dependent to hydrodynamic condition (e.g.  flow rates) and can hence overcome some of 635 

the limitations encountered with conventional passive samplers  [133,134].  636 

A relevant requirement for an NPS biomarker is its stability in pooled urine and wastewater in 637 

order to avoid any loss that can prevent detecting its use. Further work need to be addressed to 638 

test biomarkers stability and potential degradation or transformation in raw wastewater  and 639 

urine [39–41,94]. Until more information is available, it is recommendable to store samples in the 640 

dark at -20 °C directly after sample collection in order to minimize possible degradation. 641 

Sample treatment is very important to improve detection. However, a versatile sample treatment 642 

to retaining a wide range of NPS is not always feasible and specific treatments for certain NPS 643 

classes such as synthetic cannabinoids and synthetic opioids (i.e. high potency NPS such as 644 

fentanyl) need to be developed.  645 

iii. Good chromatographic separation might seem less important when coupled to highly sensitive 646 

and selective mass spectrometers, although it can be essential in the detection and identification 647 

of NPS. Taking into account the many isomers or structurally related compounds and the often 648 

strong matrix effects, more effort could be put into chromatographic separation in future work. 649 

HILIC and enantiomeric analysis have demonstrated a strong potential to move a step forward 650 

into a more comprehensive determination of NPS in wastewater and pooled urine. Capillary 651 

chromatography and UHPSFC-MS/MS have also been explored. Yet, some concerns have also 652 

been raised related to the robustness of the technique to routinely analyze complex matrices. 653 

Future developments in terms of more robust column chemistries will open a new scenario for 654 

the monitoring of NPS. Additionally, UHPSFC has the potential to combine the advantages of LC 655 

and GC, thus improving analytical capabilities of laboratories dealing with the determination of 656 

NPS. 657 

iv. Highly sensitive targeted methodologies based on LRMS will continue to play an important role 658 

in monitoring NPS use, particularly for those compounds which have established a niche market 659 

and/or are highly potent and require low detection limits. In addition,  complementary suspect 660 

screening approaches based on large home-made databases, including many substances for 661 

which reference standards are not available, will remain the common practice for the foreseeable 662 
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future. Furthermore, the improved sensitivity and quantitative capabilities of HRMS instruments 663 

combined to multi-stage off-line or on-line solid-phase extraction allow achieving targeted 664 

quantitative and qualitative screening analyses in a single run, thus overcoming the need of having 665 

two distinct instruments/methods [27]. Similarly, machine learning algorithms used to relate peak 666 

area of features recorded in HRMS analyses, chromatographic and mass spectrometric conditions 667 

to concentrations, might overcome the need for reference standards to obtain an (indicative) 668 

information about analyte concentrations in measured samples [135]. Qualitative information 669 

about the presence or absence of given NPS in wastewater is informative and studies have shown 670 

some spatial and temporal trends [23,27,136], but only quantitative data can provide absolute 671 

comparisons by showing changes in community prevalence through concentrations or mass loads.  672 

v.  Non-target screening remains predominantly unexplored for the identification of NPS in pooled 673 

urine or wastewater. A genuine non-target screening without any selection of analytes to be 674 

searched is a very challenging and time consuming process and a more successful strategy would 675 

be the application of non-target screening directed towards the discovery of compounds 676 

structurally related to known NPS. In this case, the higher concentrations generally present in 677 

pooled urine makes this matrix most interesting for this approach. The expected improvements 678 

for the forthcoming years in the mass-resolving power of HRMS instruments in combination with 679 

higher scan-speed will allow the acquisition at higher mass resolution with more efficient 680 

chromatography. This development in instrumentation will improve sensitivity and can also be 681 

very useful to differentiate between isobaric compounds (i.e. compounds with the same nominal 682 

mass but different chemical formula and thus different exact mass). Moreover, improved mass 683 

resolving power does not only improve the separation of parent compounds, but can also help 684 

finding characteristic fragment ions and gain confidence in the obtain identification. Furthermore, 685 

improvements in software tools for peak picking and data deconvolution (i.e. the capability to find 686 

chromatographic peaks of compounds and to obtain high quality spectra) will aid to a successful 687 

identification of NPS, but the knowledge of basic rules in mass fragmentation and thus the 688 

expertise of the mass spectrometrists should not be overlooked in both suspect and non-target 689 

screening.  690 

vi. The rapid transience of NPS in the drug market as well as the limited availability of reference 691 

standards for both NPS and known metabolites poses an analytical challenge for the full 692 

confirmation of substances detected. Therefore, the development and continuous updating of 693 

collaborative and public NPS mass spectral databases will smooth the identification process since 694 

contributors and users to those databases will have access to empirical information without the 695 

need of having the reference standards in their own laboratories. Hence, the number of false 696 
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positive identification (based on suspect and non-target screening) will be reduced since tentative 697 

identifications will be supported by empirical data from other researchers.  698 

vii. As is the case with online databases, prediction tools ease the tentative identification of NPS. The 699 

development of metabolic, RT and CCS predictive models represent a turning point in the 700 

investigation of NPS. The continual development of more accurate and refined predictive models 701 

will make prediction tools even more powerful for the application of NPS consumption – 702 

particularly the complexity associated with structural similarities among NPS families. The small 703 

differences in the chemical backbone for most NPS classes and consequently similar 704 

physicochemical properties often make the current predictive tools less than ideal due to the 705 

analogous outcome obtained from the prediction.  706 

viii. Retrospective analysis will continue to play an important role in uncovering trends in NPS 707 

consumption. HRMS analyses allow analysts to continually explore samples, without the time 708 

expense associate with re-extracting and re-analyzing samples. Reprocessing samples should be 709 

performed periodically, which can be a laborious task. Nevertheless, it is an interesting tool, as 710 

‘new’ NPS and metabolites are found, standards become more available and predictive techniques 711 

become more commonplace, retrospective analyses can be performed to better reveal 712 

community use of NPS.  713 

ix. Ion mobility separation coupled to HRMS has arisen as a useful technique and it is expected that 714 

it will gain in popularity. The cleaner and higher-quality mass spectra as well as the increased 715 

sensitivity of the instruments facilitates the identification process of NPS at low concentration 716 

levels and in complex wastewater or pooled urine samples. Future improvements will be related 717 

to the resolution of IMS instrument to enhance the separation of isobaric or isomeric substances 718 

that cannot be previously resolved by chromatography.   719 
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8. Conclusions 720 

Comprehensive analytical strategies can be applied to investigate NPS in pooled urine and 721 

wastewater, from quantification of target biomarkers to the detection and (tentative) identification 722 

of new substances and metabolites. The investigation of NPS in pooled urine and wastewater is a 723 

subject of current interest because, integrated with additional epidemiological information, it can be 724 

a useful tool for a comprehensive assessment of NPS use. In this context, data triangulation with 725 

traditional indicators, such as public surveys, online forums, data of drug testing services, police 726 

seizures and forensic analyses, is pivotal to gauge community consumption. Thus, the analysis of 727 

pooled urine and wastewater can complement other data and provide a more complete picture of 728 

community consumption.  729 
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Figure captions 1243 

Figure 1: Identification of two co-eluting NPS, butyryl fentanyl (m/z 351.2431) and furanylfentanyl 1244 

(m/z 375.2067) in a spiked wastewater sample using Sequential Window Acquisition of all 1245 

THeoretical fragment ion spectra (SWATH). (A) overlapping extraction ion chromatograms 1246 

(XICs) of the two NPS with chromatographic peaks eluting at 12.50 min (top); full scan 1247 

acquisition mass spectra with low collision energy (LE) (10 V) at retention time 12.50 ± 0.10 1248 

min (bottom). (B) SWATH mass window m/z 340.2-357.4, XIC at m/z 351.24 (middle) and high 1249 

collision energy (HE) mass spectra (bottom); (C) SWATH mass window m/z 372.6-389.8, XIC at 1250 

m/z 375.21 (middle) and HE mass spectra (bottom). 1251 

Figure 2: Tentative identification of 4'-chloro-α-pyrrolidinopropiophenone (4-chloro-α-PPP) in a 1252 

pooled urine sample. (A) Extracted ion chromatogram of 4-chloro-α-PPP and 37Cl isotope (top); 1253 

Product ion mass spectra of [M+H]+ at m/z 238.10 (bottom). (B) Structure of 4-chloro-α-PPP 1254 

(top); Zoom in the range of fragment ion with m/z 167 at resolution (R) of 35.000 Full Width at 1255 

Half Maximum (FWHM) (bottom). 1256 

Figure 3: Identification of α-methyltryptamine in a raw wastewater sample using QTOF MS. (A) feature 1257 

detection of m/z 175.1235 at 4.51 min (top, insert) together with the low collision energy (LE) 1258 

spectra (top) and high collision energy (HE) spectra with emphasis on m/z 130-145 (grey areas) 1259 

(bottom); (B) Structure, fragment ions, LE and HE spectra of α-methyltryptamine; (C) Structure, 1260 

fragment ions, LE and HE spectra of 5-(2-aminopropyl)indole. 1261 

Figure 4: Identification of ketamine in a raw wastewater sample using IMS QTOF MS. (A) feature 1262 

detection of m/z 238.0993 at 3.33 min and drift time (DT) 4.89 ms, yellow arrow (top) (*70 1263 

µs/scan); co-eluting ions at 3.33 min illustrated as red or black dots and separated by DT. Blue 1264 

highlighted areas are the DT ranges of 4.89 ± 0.20 ms at m/z 238.0993 at low collision energy 1265 

(LE) and high collision energy (HE) (bottom). (B) LE and HE mass spectra without IMS DT 1266 

alignment (top); LE and HE mass spectra with IMS DT alignment (bottom).   1267 
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