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ABSTRACT: Herein, a novel silver and chromium nanostructured N-doped carbonaceous 

material has been synthesized by a biomass-annealing approach using readily available chitosan 

as a raw material. The resulting catalyst AgCr@CN-800 has been applied for the dehydrogenative 

coupling reaction of various silanes with different alcohols to obtain the corresponding silyl ethers 

under aerobic and mild conditions. Besides excellent activity and selectivity, the as-prepared 

catalyst exhibits good stability and reusability. Characterization by XRD, XPS, ICP-MS, HRTEM, 

in combination with careful examination of the structure with Cs-corrected HAADF-STEM 

revealed that catalyst AgCr@CN-800 comprises Ag and CrN aggregated particles, as well as 

highly dispersed Ag-Nx and Cr-Nx sites embedded in N-doped graphitic structures. A comparative 

catalytic study using structure-related catalysts in combination with acid-leaching treatments has 

shown that the most active species are the Ag particles, and that their activity is boosted by the 

presence of Cr-derived species. By in-situ Raman spectroscopy experiments, it has been found that 

the dehydrogenative coupling of silanes with alcohols in the presence of catalyst AgCr@CN-800 

takes place through an oxygen-assisted mechanism. 
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INTRODUCTION 

Silyl ethers are valuable raw materials for the silicon industry as well as important commodity 

reagents and protecting groups for alcohols in organic synthesis on laboratory scale.1-5 In addition, 

these compounds have also attracted the attention of scientists from the perspective of material 

science because of their use as reagents for surface coating and modification,6-13 as well as for the 

preparation of hybrid organic–inorganic materials.14-16  

Traditionally, silyl ethers have been synthetized by reaction of halosilanes with alcohols in the 

presence of a base, thus resulting in the formation of stoichiometric amounts of undesired halide 

salts.17-20 In this context, the catalytic dehydrogenative coupling of hydrosilanes with alcohols 

represents a more atom-economical, and hence, a more environmental-friendly synthetic route.21-

22 Advantageously, since hydrogen is the only generated by-product, this reaction is also relevant 

for H2-generation. In fact, the system based on alcohol/silane pairs has been considered as a 

potential liquid organic hydrogen carrier (LOHCs) that releases H2 at low temperatures.23-24 

However, although this coupling reaction is thermodynamically favored, the presence of a catalyst 

is required to improve the reaction kinetics under mild conditions.  

To date, a wide variety of transition-metal-based complexes,25-36 alkaline earth metals,37 and 

alkali metal bases38-39 have been reported as catalysts for the dehydrogenative coupling of 

hydrosilanes with alcohols. Moreover, metal-free boron-based Lewis acids40-43 and N-heterocyclic 

carbenes44 have also efficiently catalyzed this reaction. Nevertheless, despite good activity and 

selectivity toward the production of silyl ethers achieved by these catalysts, the use of reusable 

heterogeneous systems is more advantageous from an environmental point of view. 

In recent times, with the aim of dealing with global challenges related to sustainability, the 

scientific community has paid much attention toward the use of metal nanoparticles (NPs) 
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modified by N-doped carbon as catalysts for innovative organic synthesis because of their good 

activity and controllable selectivity.45 Different strategies have been developed for the preparation 

of this kind of nanostructured materials.46 Among them, the in-situ formation of both metal NPs 

and the N-doped graphitic material is a well-established methodology. Here, non-volatile 

molecularly defined metal-amine ligated complexes impregnated on different supports,47-81 metal-

organic frameworks (MOFs),82-92 or coordination polymers93-95 are typically used as self-sacrificial 

templates to obtain metal NPs embedded in a carbonaceous matrix after pyrolysis under an inert 

gas. 

Alternatively, in order to avoid the use of sophisticated organic ligands and synthetically 

demanding routes of sacrificial template materials, pyrolysis of renewable and available biomass 

in combination with metal salts represents a more practical catalyst preparation approach.96-105 In 

this respect, the natural biopolymer chitosan, which is obtained from industrial fishery bio-waste 

by deacetylation of shrimp or crab shell-derived chitin, is especially useful.106 Chitosan has been 

proposed as an attractive precursor for obtaining N-doped carbon materials.107-122 In addition, its 

particular structure containing amino- and hydroxyl-coordinating groups has made possible its 

application as a chelating agent for transition-metals.123-128 

Taking advantage of these properties of chitosan, Garcia and co-workers synthesized Cu NPs 

supported on N-doped graphene by firstly preparing a homogeneous solution of a Cu salt and 

chitosan, followed by pyrolysis and sonication.129 Later, the same group developed a series of 

facet-oriented Cu2O,130-132 Au,133 Pt,134 and Ag135 NPs on (N-doped) graphene films prepared by 

pyrolysis of nanometer-thick films of chitosan embedding the corresponding transition-metal salt 

and deposited on a quartz substrate. Importantly, a variation or even a completely removal of the 

N content was reported depending on the pyrolysis temperature and the metal nature. Meanwhile, 
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Beller and co-workers prepared Co-based N-doped carbon heterogeneous catalysts by using an 

adapted synthetic methodology, in which chitosan acts as a solid adsorbent for transition metals 

instead of being used in solution before pyrolysis.136-139 In addition to these seminal works, other 

catalytic materials synthesized following a similar preparation approach have also been 

reported.140-149 

In general, metal-based materials prepared by pyrolysis tend to be heterogeneous in composition 

and particle size. In fact, the resulting materials are typically constituted by metal species of 

different nature, such as metallic and/or metal oxide NPs. Moreover, the formation of isolated 

single-atom sites (ISAS) is also feasible when using supports or self-sacrificial templates that have 

a strong coordination ability with metal atoms.150-158 Concretely, this is the case of chitosan, in 

which its unique structure containing amino- and hydroxyl-coordinating groups can promote the 

formation of ISAS embedded in the N-doped carbon matrix besides other multiple metal species 

formed by agglomeration during uncontrolled pyrolysis.159-160 This heterogeneity in chitosan-

derived N-doped carbon-based materials makes challenging the identification of active species 

when they are used in catalysis, however, it is an essential task for future development of catalysts 

with enhanced efficiency. 

With regard to the use of heterogeneous catalysts for the dehydrogenative coupling reaction of 

hydrosilanes with alcohols, among various available heterogeneous systems,36, 161-179 metal 

catalysts modified by (doped) graphitic carbon have shown promising results. Cu NPs supported 

on doped (-boron and/or -nitrogen) graphene,129 Cu2O
130 or Ag135 facet-oriented nanoplatelets on 

graphene films, as well as, atomically dispersed Co species anchored on ultrathin two-dimensional 

N-doped carbon180 have been proved to be active catalysts for the title reaction. In addition, the 

use of a metal-free hierarchically porous N and S co-doped carbon is also noteworthy.181 Despite 
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these findings, the relatively high temperature, long reaction times, the need to perform the reaction 

under inert atmosphere, and/or the difficulty of preparing catalysts with higher metal loading offer 

room for improvement. 

In this contribution, we report the preparation of a N-doped carbonaceous heterobimetallic 

nanostructured material by pyrolysis of silver chromate (Ag2CrO4) highly dispersed on the readily 

available bio-waste polymer chitosan. We show that the resulting material, which comprises a 

heterogeneous composition of metal species, efficiently catalyzes the dehydrogenative coupling 

of hydrosilanes with alcohols under aerobic and mild conditions (even at 0 ºC) with excellent 

selectivity toward the formation of silyl ethers and molecular hydrogen. On the bases of a 

comparative catalytic study, we demonstrate that catalytic activity mainly arises from the Ag 

particles and that their activity is boosted by the presence of Cr-derived species. Furthermore, in-

situ Raman spectroscopic studies have allowed the explanation of the enhanced catalytic activity, 

which is directly related with the oxygen activation ability of the catalyst. 

RESULTS AND DISCUSSION 

Preparation and catalytic performance of catalysts AgCr@CN 

We started our study by preparing a series of silver and chromium bimetallic catalysts according 

to the procedure depicted in Scheme 1. A mixture of chitosan and Ag2CrO4 was homogeneously 

dispersed in ethanol by sonication. After solvent evaporation under atmospheric pressure and 

continuous stirring conditions, the resultant powder was pyrolyzed at different temperatures in the 

range from 400 to 900 °C under a nitrogen flow to yield the heterobimetallic materials AgCr@CN-

X, where X stands for the pyrolysis temperature (see the Experimental Section for more 

preparation details). The metal content in the as-prepared materials was determined by inductively 

coupled plasma mass spectrometry (ICP-MS) analysis. The obtained results revealed an increase 
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of the metal amount (Ag + Cr) from 13.7 to 18.0 wt% with the pyrolysis temperature because of 

increasing weight loss in chitosan decomposition (Table S1). Interestingly, the Ag/Cr ratio is 

maintained constant independently of the pyrolysis temperature.  

 

Scheme 1. Synthesis of heterobimetallic materials AgCr@CN-X (X = 400-900 °C) used as 

catalysts. 

With these materials in hand, we evaluated their catalytic performance for the dehydrogenative 

coupling of hydrosilanes with alcohols using as a benchmark system the reaction between 

dimethyl(phenyl)silane (1a) and methanol (2a) at 60 °C under aerobic conditions. As shown in 

Figure 1a, all prepared heterobimetallic materials displayed catalytic activity with excellent 

selectivity toward the formation of methoxydimethyl(phenyl)silane (3aa) (see also Figure S1). A 

control experiment revealed that no reaction took place in the presence of a metal-free catalyst (M-

free@CN-800) prepared by pyrolysis of chitosan at 800 °C in the absence of Ag2CrO4, thus 

indicating that the catalytically active species are metal-based. The most active catalyst, 

determined by comparison of the initial reaction rates normalized to the mass of metal weights 

(Figure 1b), resulted to be the heterobimetallic material pyrolyzed at 800 °C (AgCr@CN-800). 

Other heterobimetallic catalysts containing silver and a second transition metal different to 

chromium (W or V), which were also prepared following the same preparation methodology 

shown in Scheme 1, displayed lower activity for the investigated reaction (Figure S2).  
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In the presence of the most active catalyst AgCr@CN-800 (15 mg; 2.75 mol% of metal with 

respect to 1a), full conversion of 1a was achieved in 20 min, affording 3aa in 97 % yield with only 

residual amounts (< 3 %) and traces (< 1 %) of the corresponding silanol (4a) and disiloxane (5a) 

compounds as by-products, respectively (Figure 1c). Moreover, H2 release was also detected 

during the reaction between 1a and 2a. This dehydrogenative coupling reaction also proceeds well 

when using lower amounts of catalyst AgCr@CN-800 (5 mg; 0.91 mol% of metal with respect to 

1a), corresponding to a turnover number (TON) of 111. Interestingly, the reaction could also be 

conducted at lower temperature, 30 °C and even 0 °C, achieving full conversion of 1a with 

excellent selectivity to 3aa  in 1 and 2 h, respectively  (Figure S3), together with the formation of 

equimolecular amounts of H2 (see the Supporting Information). It is worth mentioning that 

compared to previously reported Ag-based heterogeneous systems, the catalyst AgCr@CN-800 

catalyzes this reaction at significant lower temperatures (0 ºC).135, 172, 182-185 

 

Figure 1. (a) Catalytic performances of catalysts AgCr@CN-X (X = 400-900) and M-free@CN-

800 for the dehydrogenative coupling reaction of 1a with methanol. (b) Comparison of the metal 

mass activity. (c) Concentration/time diagram for catalyst AgCr@CN-800. 
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Interestingly, the reaction rate was significantly increased when pure O2 was bubbled into the 

reaction solution providing a 98 % yield of 3aa within 20 min at 30 ºC (TOF = 327 h-1). In contrast, 

almost no reaction took place when the reaction was carried out under Ar atmosphere, thus 

revealing that the presence of the catalyst AgCr@CN-800 in combination with O2 is essential to 

achieve the dehydrogenative coupling reaction of 1a with methanol (Figure S3). 

Characterization of catalyst AgCr@CN-800  

The best heterobimetallic material AgCr@CN-800 in terms of catalytic activity was 

characterized in detail. The XRD pattern (Figure 2) is dominated by the presence of diffraction 

peaks associated with the face-centered cubic (fcc) structure of Ag0 in agreement with the JCPDS 

database (PDF Card 1-1164). Since these peaks are very sharp, it is expected that this phase is 

present in the form of large particles. Moreover, a broad shoulder peak in the range of 20–30° (2θ) 

associated with reflections of the (002) of graphitic carbon could also be inferred.186 However, no 

additional peaks corresponding to chromium species were detected. 

 

Figure 2. XRD pattern for catalyst AgCr@CN-800. 
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Transmission electron microscopy (TEM) images show aggregates of metal particles with non-

homogeneous sizes of tens to hundreds of nanometers. This broad site distribution is likely 

generated by partial metal agglomeration during the pyrolysis treatment because of the high metal 

content (Figures 3a and Figure S4). The high-resolution TEM (HRTEM) images show two types 

of metal particles of different nature, both coated by few layers of a (defect/N-doped) graphitic 

carbon shell (Figure 3b-c). The well-resolved lattice spacing of 0.237 nm consistent with the (111) 

plane of the cubic Ag phase was clearly identified in some of these particles. Besides, an additional 

phase of chromium nitride (CrN) that displays the characteristic lattice spacing of 0.239 nm 

associated with its (111) plane was also detected in the HRTEM images. Moreover, the nature of 

these particles was undoubtedly confirmed by a fast Fourier transform (FFT) analysis, which 

revealed other characteristic lattice fringe spaces of 0.211 and 0.128 nm associated with the (200) 

and (311) planes of CrN, respectively (Figure 3c, inset). 

 

Figure 3. Electron microscopy characterization of catalyst AgCr@CN-800. TEM (a) and HRTEM 

(b-c) micrographs. The inset shows the FFT from the square region in image c). (d-e) HAADF-
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STEM images and EDS elemental mapping of Ag, Cr, C, and N. (f-g) High-magnification images 

for the Cs-corrected HAADF-STEM analysis. 

Spherical aberration (Cs)-corrected scanning transmission electron microscopy (STEM) using a 

high-angle annular dark-field (HAADF) detector coupled with spectroscopic analysis by means of 

energy dispersive X-ray spectroscopy (EDS) was employed to investigate the structure of catalyst 

AgCr@CN-800 in a further extent. These studies revealed that Ag, Cr, N, and C elements overlap 

in spatial locations on each other around the entire sample, including particles (Figure 3d and 

Figure S5) as well as sites where no particles were visualized (Figure 3e and Figure S5), thus 

suggesting that metal species may be atomically distributed along the N-doped graphitic material. 

Interestingly, a closer look at these regions revealed a high density of monodispersed bright dots, 

likely associated with highly dispersed metal atoms of both Ag and Cr, according to the EDS 

elemental mapping analysis results (Figure 3f-g and Figure S6-S7). 

For further characterization of the catalyst surface, X-ray photoelectron spectroscopy (XPS) 

measurements were performed. The high-resolution Ag 3d core level spectrum displays two peaks 

at ⁓ 368 and 374 eV associated with the characteristic spin–orbit splitting of Ag 3d5/2 and Ag 3d3/2 

orbitals, respectively, each of them being possible to be fitted into two separated components 

denoting the presence of two distinct chemical Ag species (Figure 4a). More specifically, the 

components at 368.1 and 374.1 eV correspond to Ag+ species, whereas the ones at 369.3 and 375.3 

eV are related to metallic Ag.187-191 The higher contribution of the component associated with Ag+ 

species suggests that, in spite of the shielding effect of thick N-doped graphitic carbon layers 

encapsulating the Ag particles, these could be constituted by a metallic core and a partially 

oxidized surface. In addition, it should be considered that the XPS-detectable Ag+ species could 

also arise from highly dispersed Ag+ species inserted in the graphitic sheets coordinated to N 
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atoms, that is, as AgNx sites. Comparison of the obtained electron binding energy of Ag 3d5/2 

(368.1 eV) in catalyst AgCr@CN-800 with that one for previously reported molecular-defined 

complexes that contain Ag-N bonds within a related structure (368.4 eV),192 revealed a prominent 

increase of the electron density of the Ag+ species in the graphitized structure, in good agreement 

with previous studies.150  

 

Figure 4. XPS spectra of Ag 3d (a), Cr 2p (b) and N 1s (c) core levels of catalyst AgCr@CN-800. 

(d) N 1s XPS spectrum of catalyst M-free@CN-800. 

Determination of Cr oxidation states in heterobimetallic materials containing Ag is challenging 

because in the Cr 2p region of the XPS spectrum some Cr species have similar electron binding 

energy values than that of the Ag 3p peak (⁓ 573.6 eV) associated with metallic Ag. The Cr 2p 

XPS spectrum (Figure 4b) for catalyst AgCr@CN-800 shows a broad peak, which could be fitted 

into three different components after deconvolution. The major peak at 573.3 eV can be ascribed 
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to metallic Ag, whereas, according to the literature, the other two peaks at 575.4 and 577.2 eV 

denote the presence of CrN193 and atomically dispersed Cr-Nx sites embedded in the graphitic 

sheets,194 respectively. 

The signal deconvolution in the high-resolution N 1s energy-level spectrum (Figure 4c) suggests 

that catalyst AgCr@CN-800 contains different nitrogen species, at least including pyridinic N-

oxide (403.5 eV), graphitic-N (401.0 eV), pyrrolic-N (399.9 eV) and pyridinic-N (398.4 eV). 

Furthermore, an additional component (at 396.7 eV) attributed to CrN could also be inferred, 

which is absent in the XPS spectrum of the metal-free catalyst M-free@CN-800 (Figure 4d). 

Importantly, further comparison of both spectra (Figure 4c and 4d) revealed that while the relative 

content of graphitic-N and pyridinic N-oxide species is almost the same, an increase of the ratio 

of pyrrolic-N to pyridinic-N species is observed in catalyst AgCr@CN-800. This increase could 

be associated with the presence of highly dispersed species attached to pyridinic-N that results in 

the formation of M-Nx (M = Ag, Cr) sites, whose binding energies fall in the same range as the 

pyrrolic-N function binding energy. Moreover, an energy shift of over 0.2 eV was detected in the 

pyridinic-N component of catalyst AgCr@CN-800, thus verifying the existence of metal-N 

interactions.150, 152, 195 

Acid-leaching and characterization of catalyst AgCr@CN-800-Acid  

Catalyst AgCr@CN-800 was leached with acid (see details in the Experimental Section) and 

further characterized. The Ag and Cr content, determined by ICP-MS analysis, in the leached 

catalyst (denoted as AgCr@CN-800-Acid) were reduced from 12.74 to 0.12 wt% and from 3.74 

to 2.29 wt%, respectively. In consequence, no diffraction peaks associated with metallic Ag 

species were detected in the XRD pattern of the acid-leached catalyst AgCr@CN-800-Acid 

(Figure 5a). However, besides the broad diffraction peaks of graphitic carbon (at 2θ values of 25.3 
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and 43.6°), other peaks located at 37.5, 43.6, 63.4 and 76.1°, that could be indexed to the (111), 

(200), (220) and (311) planes, respectively, of the cubic phase of CrN (PDF Card 65-2899), 

became known in catalyst AgCr@CN-800-acid. This confirms that the acid-leaching treatment 

fully removed the Ag particles, while keeping almost intact the CrN phase, which is known to 

display an excellent chemical stability to acids.196-197  

The diffraction peaks associated with CrN are also present in the XRD pattern measured after 

the acid treatment of a catalyst (AgCr@CN-800-Ar) pyrolyzed under Ar atmosphere instead of 

using N2 (see Figure S8). This result, besides the fact that only a slight decrease of the N content 

(determined by combustion elemental analysis) was detected in catalyst AgCr@CN-800-Ar (7.6 

wt %) when comparing with catalyst AgCr@CN-800 (7.8 wt %), proves that the CrN phase is 

preferentially formed during the pyrolysis treatment by extracting N atoms from chitosan rather 

than by activation of N2 gas molecules. Moreover, both catalysts AgCr@CN-800 and AgCr@CN-

800-Ar displayed similar catalytic performance for the investigated dehydrogenative coupling 

reaction between dimethylphenylsilane (1a) and methanol (see Figure S8). 
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Figure 5. Characterization of catalyst AgCr@CN-800-Acid. (a) XRD spectrum. Ag 3d (b), Cr 2p 

(c) and N 1s (d) core level XPS spectra. TEM (e, f) and HAADF-STEM (g) images. (h) EDS 

elemental mapping of Ag, Cr, C, and N. 

Morphological characterization of the acid-etched catalyst AgCr@CN-800-Acid by TEM 

showed the presence of coated nanoparticles (⁓ 30 nm) as well as hollow-centered (defect/N-

doped) graphitic carbon layers (Figure 5e-f). These empty carbonaceous spheres result from the 

leaching of Ag particles, further confirming the core-shell structure of this heterobimetallic 

material. The elemental distribution of catalyst AgCr@CN-800-Acid was investigated by EDS 

elemental mapping (Figure 5g-h), and confirms that, as in the case of catalyst AgCr@CN-800, Cr, 

C and N elements overlap well in spatial locations, while monodispersed Ag is present in a 

considerably lower amount, in good agreement with the ICP-MS analysis.  

Interestingly, the Ag 3d core level XPS spectrum of catalyst AgCr@CN-800-acid discloses the 

only presence of Ag+ ionic species (i.e. AgNx sites) represented as two peaks with electron-binding 

energy values of 368.1 and 374.1 eV after deconvolution and fitting (Figure 5b). It should be noted 

that the component associated with the Ag 3p peak (⁓ 573.6 eV) of metallic Ag completely 

disappeared from the Cr 2p core level XPS spectrum (Figure 5c), being possible to fit the observed 

peak into two only components corresponding to CrN (575.4 eV) and to atomically dispersed Cr-

Nx sites embedded in the graphitic carbon (577.2 eV). On the contrary, no relevant changes are 

observed in the high-resolution N 1s energy-level spectrum after the acid leaching treatment 

(Figure 5d). 

Based on all characterization results before and after the acid-leaching treatment, we can 

conclude that catalyst AgCr@CN-800 is a heterobimetallic N-doped carbonaceous material, in 

which different metal species coexist. More specifically, catalyst AgCr@CN-800 comprises Ag 
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and CrN aggregated particles covered by few layers of defect N-doped graphitic carbon containing 

highly dispersed Ag-Nx and Cr-Nx species as well. 

Probing into the metal active species  

To unveil which of these species is catalytically active for the investigated dehydrogenative 

coupling reaction between dimethylphenylsilane (1a) and methanol (2a) to afford 

methoxydimethyl(phenyl)silane (3aa), the titled reaction was carried out in the presence of 

different catalysts (see the Experimental Section and the Supporting Information for preparation 

and characterization details, respectively). As shown in Figure 6a, a significant decrease of the 

initial reaction rate (normalized to the mass of metal weights) was achieved by using the acid-

etched catalyst AgCr@CN-800-Acid. Nevertheless, it is worth mentioning that reaction proceeded 

with excellent selectivity after longer reaction times (Figure 6b). Since Ag particles are the species 

removed with the acid-leaching treatment, this result denotes that they are required for the high 

activity of catalyst AgCr@CN-800, while the remaining species (i.e. CrN particles and highly 

dispersed CrNx and AgNx sites) contribute in a considerable lower extent to the overall catalytic 

activity. 

In the presence of a monometallic Ag-based catalyst (Ag@CN-800), which is constituted by 

core-shell metallic nanoparticles with a narrow size distribution (5-20 nm) and by highly dispersed 

AgNx species (see Figure S9 and accompanying discussion), good activity toward the formation 

of product 3aa was achieved (Figure 6a) as well. However, in spite of the smaller particle size (and 

therefore higher specific surface area to interact with the reactants), catalyst Ag@CN-800 is less 

active than the heterobimetallic one AgCr@CN-800 for the investigated reaction. This result 

unambiguously corroborates that the presence of chromium-derived species in catalyst 

AgCr@CN-800 boosts its catalytic activity. 
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When the monometallic catalyst Ag@CN-800 was leached with acid to remove the metallic Ag 

nanoparticles, and the resulting material (Ag@CN-800-Acid) only containing highly dispersed 

Ag-Nx sites (see Figure S10 and accompanying discussion) was used as a catalyst under otherwise 

the same conditions, a decrease of the selectivity toward the coupling product 3aa was observed 

as the conversion increases (Figure 6c). Similarly, the use of catalyst Cr@CN-800-Acid, which is 

constituted by the same Cr species (i.e. CrN and highly dispersed Cr-Nx sites) than catalyst 

AgCr@CN-800-Acid but in the absence of Ag-Nx species (see Figure S11 and accompanying 

discussion), led to the same loss of selectivity as well (Figure 6d). 

 

Figure 6. (a) Comparison of the metal mass activity for catalysts AgCr@CN-800, AgCr@CN-

800-Acid and Ag@CN-800 in the dehydrogenative coupling reaction of 1a with methanol (2a). 

Concentration/time diagram for catalyst AgCr@CN-800-Acid (b), Ag@CN-800-Acid (c), and 
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Cr@CN-800-Acid (d). Reaction conditions: 1a (1 mmol), 2a (1.5 mL), catalyst (15 mg), 60 °C. 

Colored dots represent which active species are present in the catalyst used: Ag particles (yellow), 

CrN particles (green), AgNx sites (red), and CrNx sites (blue). 

Overall, the above comparative catalytic study reveals that Ag particles are the most active species 

and that their activity is boosted by the presence of Cr-derived species. In the absence of Ag 

particles, the rest of metal species (i.e. CrN particles as well as highly dispersed Ag-Nx and Cr-Nx 

sites) cooperatively catalyze this reaction with a slower reaction rate but with high selectivity. 

However, a considerably loss of selectivity is achieved when the catalyst only comprises either 

Ag-Nx sites or Cr-derived species (i.e. CrN particles and Cr-Nx sites), further supporting the 

synergistic role of Ag- and Cr-derived species in catalyst AgCr@CN-800. 

Kinetic and in-situ Raman spectroscopy investigations 

To get insights into the reaction pathway for the dehydrogenative coupling of silanes with 

alcohols in the presence of catalyst AgCr@CN-800, kinetic experiments at 30 ºC under air 

conditions were performed by measuring initial reaction rates at variable concentrations of the 

silane 1a or methanol (2a) while keeping constant the other reactant. The initial reaction rate for 

the generation of 3aa was proportional to the concentration of methanol, but a decrease was 

observed when increasing the amount of the silane (Figure S12). According to 

Hougen−Watson/Langmuir−Hinshelwood principles, developed for describing reaction 

mechanisms occurring on the surface of heterogeneous catalysts, these observations suggest that 

the alcohol activation is the rate-determining step, and that both reactants, i.e. the silane and the 

alcohol, compete by the same active sites.198-201 Furthermore, a kinetic isotope effect (kH/kD = 2.45) 
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was observed when using O-deuterated methanol (CH3OD) as reactant, further confirming that the 

activation of the O-H bond is involved in the slowest reaction step. 

As commented above, the presence of O2 is crucial to accomplish the dehydrogenative coupling 

reaction and higher catalytic activity was obtained in the presence of catalyst AgCr@CN-800 in 

comparison with the Cr-free catalyst (Ag@CN-800). Thus, with the aim of getting more clues into 

the reaction mechanism, we first performed Raman studies of oxygen activation, revealing that 

catalyst AgCr@CN-800 displays a higher ability to activate oxygen than catalyst Ag@CN-800 

(Figure 7a). Apart from the G- (1570 cm-1), D- (1350 cm-1) and 2D- (2500-2800 cm-1) bands 

(Figure S13), characteristic of the formation of graphitic carbon with some degree of defect sites, 

the recorded spectra for both catalysts display different Raman bands as consequence of a 

markedly different reactivity toward O2 activation. The Raman spectrum of catalyst AgCr@CN-

800 exhibits intense bands at 613 cm-1 corresponding to subsurface atomic oxygen species 

(labelled as Oβ), and at 801 and 350 cm-1 associated with the stretching and bending vibration of 

chemisorbed surface atomic oxygen species (denoted as Oγ).202-204 In the opposite, in catalyst 

Ag@CN-800 weakly activated molecular O2 is predominately observed (Raman bands at 911 and 

1012 cm-1)203, 205 together with weakly adsorbed atomic oxygen species at 479 cm-1 (denoted as 

Oα). According to previous studies on Ag-based catalysts, the different reactivity toward oxygen 

activation observed between both catalysts could arise from structural defects and/or electronic 

properties modification in the Ag particles likely provoked in catalyst AgCr@CN-800 by the 

presence of Cr species, which are in intimate contact with the Ag particles, as revealed by electron 

microscopy characterization. 

In order to unravel the role of the surface oxygen species on the reaction mechanism, “in-situ” 

Raman experiments in the presence of catalyst AgCr@CN-800 were undertaken. After dosing 
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methanol on a pre-oxidized catalyst, new Raman bands associated to hydroxyl (575 cm-1) and 

alkoxy ((C-O) at 1013 cm-1) species emerged concomitant with the depletion of the bands at 801 

cm-1 associated with the surface Oγ species (Figure 7b). A similar depletion behaviour of these 

species was also observed after silane dosing on the pre-oxidized catalyst in the absence of 

methanol (Figure S14a), further confirming that both reactants, i.e. the silane and the alcohol, 

compete by the same active sites, as revealed the kinetic study. It should be mentioned that the 

reactivity observed for the surface Oγ species is in line with other studies in the literature where 

they have been reported as active centres for silane206-209 and methanol204 oxidation reactions. 

Interestingly, no O-H bond activation of methanol was observed in a non-oxidized catalyst surface 

(Figure S14b). This result agrees not only with the fact that no reaction took place under an inert 

atmosphere, but also with the higher reaction rate observed by bubbling pure O2 gas into the 

reaction, which agrees with the kinetic findings where methanol activation was found to be the 

rate-limiting step. 

 

Figure 7. (a) Evolution of the bands in the Raman spectra on catalysts AgCr@CN-800 (red line) 

and Ag@CN-800 (black line) in a 20% O2/Ar flow at room temperature. (b) Evolution of the bands 
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in the Raman spectra on catalyst AgCr@CN-800 after sequentially dosing at room temperature a 

20% O2/Ar flow (red line), a methanol/Ar flow (blue line), and a silane 1a/Ar flow (green lines). 

Next, the reactivity of the pre-formed methoxy (-OCH3) and hydroxyl (-OH) species was 

investigated after silane feeding. As shown in Figure 7b, the methoxy species (1012 cm-1) rapidly 

disappeared in the presence of the silane together with a decrease in the intensity of the band 

associated to hydroxyl and subsurface oxygen species (575-613 cm-1), thus indicating that reaction 

between activated methanol and the silane to form the silyl ether 3aa and H2 was accomplished. 

The fact that the silanol (4a) and disiloxane (5a) compounds were detected as by-products in the 

macro-kinetic studies agrees with the herein observed progressive depletion of the Raman bands 

at 613 and 801 cm-1 associated with subsurface Oβ and surface Oγ species, respectively, by further 

reaction of these species with the silane. 

 

Scheme 2. Proposed mechanism for the oxygen-assisted dehydrogenative coupling reaction of 

silanes with alcohols in the presence of catalyst AgCr@CN-800. 
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Based on these results, a plausible mechanism for the dehydrogenative coupling of silanes with 

alcohols in the presence of catalyst AgCr@CN-800 is proposed (Scheme 2). Oxygen activated Ag 

surface species act as Brønsted base sites producing hydroxyl and alkoxy species by reaction with 

the alcohol. No direct evidence on the silane activation on the catalyst surface were obtained likely 

because of it is a fast step of the overall catalytic reaction. However, considering the well-

stablished reactivity of silanes with metals, the activation could take place through the formation 

of a silyl-metal hydride intermediate by Si-H bond insertion into the Ag surface.206 Subsequently, 

the nucleophilic attack of the alkoxy species derived from the alcohol to the electrophilic Si atom 

of the silyl-metal hydride intermediate would generate the corresponding silyl ether and molecular 

H2 as well as the recovering of the oxygen activated Ag surface species. It should be noted that, 

accordingly to the work of Belkova, Shubina and co-workers,210 the silane activation could also 

be accounted by coordination of the previously formed alkoxide ionic species yielding hypervalent 

pentacoordinate silicon complexes,211-213 which enable the formation of  dihydrogen bonded 

(MeO)R3SiH···HOMe species making straightforward the proton-hydride transfer and H2 

formation. 

Reusability of catalyst AgCr@CN-800  

In order to investigate the recyclability of catalyst AgCr@CN-800, the model reaction between 

the silane 1a and methanol was scaled-up by the factor of seven for practical reasons. After each 

catalytic run, the catalyst was separated from the reaction mixture, washed with ethyl acetate and 

diethyl ether, and reused without any reactivation treatment. ICP-MS analysis of the reaction 

filtrate after each run revealed that the metal (Ag and Cr) content was below the detection limit, 

thus confirming that no significant metal leaching occurred. Moreover, when the catalyst was 
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removed from the reaction mixture by filtration at 51 % yield of 3aa the reaction did not proceed 

any further (Figure S15). 

 

Figure 8. Recycling of catalyst AgCr@CN-800 for the dehydrogenative coupling reaction of 1a 

with methanol. Reaction conditions: 1a (7 mmol), 2a (10.5 mL), catalyst AgCr@CN-800 (105 

mg), 30 ºC, 75 min (run 1), 90 min (run 2) 135 min (run 3) or 180 min (run 4). Conversions and 

yields determined by GC using anisole as an internal standard (380 μL, 3.5 mmol). 

After the fourth run, the morphology of the catalyst was investigated by TEM and EDS elemental 

mapping (Figure S16). Metal particles were still covered by a few layers of N-doped graphitic 

carbon shell and good dispersion of all elements (C, N, Ag and Cr) overlapping to each other in 

spatial locations could also be observed. Furthermore, no significant changes were detected by 

XRD and XPS analysis (Figure S17). The stability of catalyst AgCr@CN-800, suggested by the 

characterization results, was further confirmed by the excellent yields of the silyl product 3aa 

obtained after each catalytic run with only a slight decrease of the reaction rate, which could be 

overcome by prolonging the reaction time (Figure 8). 
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Reaction scope of catalyst AgCr@CN-800 

The catalytic performance of catalyst AgCr@CN-800 was further explored for the 

dehydrogenative coupling of various silanes with different alcohols. As shown in Table 1, 

excellent selectivity to the corresponding alkoxysilane products (3ab-ag) was achieved in the 

reaction between dimethylphenylsilane (1a) and alcohols (2b-g) with longer alkyl chain length, 

including linear and branched ones. (Table 1, entries 1-7). Comparing to methanol, longer reaction 

times were needed for full (or high) conversions, most likely because of steric effects. Benzyl 

alcohol (2h) also reacted efficiently at higher temperature (100 ºC) with silane 1a affording the 

desired silyl ether product (3ah) in 91 % selectivity (Table 1, entry 8). Interestingly, when the 

reaction was performed in the presence of ethylene glycol, the silyloxy(ethan-1-ol) product (3ai) 

was afforded with high selectivity (Table 1, entry 9).  Besides silane 1a, triphenyl- (1b), diphenyl- 

(1c), and phenylsilane (1d) were also excellent candidates to accomplish the dehydrogenative 

coupling reaction with different alcohols in the presence of catalyst AgCr@CN-800 to the 

corresponding mono- (3ba), di- (3ca, 3cc, 3cd), and trialkoxysilane (3da) products with good to 

excellent selectivity (Table 1, entries 10-14). In general, the discrete loss of selectivity is associated 

with the formation of the corresponding silanol, disiloxane and/or siloxane oligomer products by 

reaction of silanes with oxygen activated Ag surface species and/or with ubiquitous water present 

in alcohols. 

Table 1     Dehydrogenative coupling of silanes and alcohols catalyzed by AgCr@CN-800a 

Entry Silane  Alcohol Time [min] Conversionb [%] Selectivity to 3b [%] 

1c Me2PhSiH (1a) MeOH (2a) 20 >99 97 (89)d 

2 Me2PhSiH (1a) EtOH (2b) 60 >99 93 

3c Me2PhSiH (1a) n-PrOH (2c) 60 >99 94 

4e Me2PhSiH (1a) n-BuOH (2d) 180 96 96 

5c, e Me2PhSiH (1a) n-HexOH (2e) 60 97 96 
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6e Me2PhSiH (1a) i-PrOH (2f) 60 99 85 

7 Me2PhSiH (1a) sec-BuOH (2g) 360 99 89 

8e, f Me2PhSiH (1a) BzOH (2h) 120 95 95 

9 Me2PhSiH (1a) HOEtOH (2i) 60 >99 (79) 

10c Ph3SiH (1b) MeOH (2a) 60 95 (93) 

11c Ph2SiH2 (1c) MeOH (2a) 45 99 89 

12 Ph2SiH2 (1c) n-PrOH (2c) 45 99 (92) 

13 Ph2SiH2 (1c) n-BuOH (2d) 60 99 (80) 

14c, g PhSiH3 (1d) MeOH (2a) 20 99 89 

aReaction conditions: silane (1 mmol), alcohol (1.5 mL), AgCr@CN-800 (15 mg),  60 ºC. 

bDetermined by GC using anisole (54 μL, 0.5 mmol) as an internal standard. Yield of isolated 

products in parentheses. cAnhydrous alcohol as reactant. dIsolated yield on a gram-scale reaction: 

1a (1 g), MeOH (11 mL), AgCr@CN-800 (110 mg),  30 ºC, 75 min.  eAgCr@CN-800 (30 mg). 

f100 ºC. gAgCr@CN-800 (5 mg). 

 

CONCLUSIONS 

We have developed a series of N-doped carbonaceous heterobimetallic nanostructured materials 

prepared by pyrolysis of chitosan at different temperatures in the presence of highly dispersed 

Ag2CrO4. Their catalytic potential has been investigated for the dehydrogenative coupling reaction 

of various silanes with different alcohols. The most active catalyst AgCr@CN-800 catalyzes this 

reaction under aerobic and mild conditions, even at 0 °C, affording the corresponding silyl ether 

products with excellent selectivity. Furthermore, the catalyst displays good stability and 

recyclability.  

Characterization results revealed that catalyst AgCr@CN-800 comprises Ag and CrN 

aggregated particles, as well as highly dispersed Ag-Nx and Cr-Nx sites embedded in N-doped 

graphitic structures. The rational design of structure-related catalysts in combination with acid-

leaching treatments allowed for carrying out catalytic control experiments, which revealed that the 
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most active species are the Ag particles and that their activity is boosted by the presence of Cr-

derived species. It has been demonstrated by in-situ Raman spectroscopy that this boosting effect 

is related with a higher ability for the generation of oxygen activated surface species, which has 

resulted to play a crucial role as Brønsted base sites for the dissociative activation of the alcohol 

that is the rate-determining step of the whole process. 

This work not only provides solid evidences of a catalyst involving surface oxygen activated 

species as key active sites for environmentally benign reactions for green organic synthesis, but 

also offers insights for disentangling the heterogeneous composition of chitosan-derived annealed 

materials containing metals. 

EXPERIMENTAL SECTION 

Reagents 

Ag2CrO4 was synthesized according to the co-precipitation method previously reported in the 

literature.214 α-Ag2WO4 and α-AgVO3 were prepared according to literature methods as well.215-

216 Chitosan, silanes and alcohols, including anhydrous methanol, were obtained from commercial 

sources (Sigma Aldrich) and were used as received, while n-propanol and n-hexanol were dried 

over molecular sieves prior to be used. 

Synthesis of catalysts AgCr@CN 

In a 250 mL beaker, Ag2CrO4 (0.074 g) and chitosan (0.926 g) were dispersed by sonication in 

30 mL of ethanol for 20 min. Then, the solvent was evaporated under atmospheric pressure and 

stirring conditions at 70 °C, and the residue was dried overnight at this temperature under high 

vacuum. The dried sample was transferred into a quartz tube, and pyrolyzed at temperatures 

between 400-900 °C for 2 h in a vertical tubular oven with a ramp rate of 10 ºC/min while flushing 
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N2 through the tube constantly until the oven was cooled down to room temperature. The resulting 

material was ground in an agate mortar and stored in an Eppendorf under air. Catalyst M-free@CN 

was prepared by directly pyrolyzing chitosan (1 g) under the same annealing treatment, followed 

by grinding in an agate mortar. 

Synthesis of AgW@CN-800 and AgV@CN-800 

The preparation of catalysts AgW@CN-800 and AgV@CN-800 was carried following the same 

procedure to the one described for AgCr@CN materials. 0.070 g of α-Ag2WO4 or 0.078 g of α-

AgVO3, and 0.930 g or 0.922 g of chitosan, respectively, were used as precursors. The other 

experimental procedures were the same, and the pyrolysis temperature was 800 ºC. 

Preparation of catalyst AgCr@CN-800-Acid 

AgCr@CN-800-Acid was prepared by acid leaching of AgCr@CN-800. In a 100 mL beaker, 

200 mg of catalyst AgCr@CN-800 were dispersed in a 0.5 mol/L H2SO4 aqueous solution (50 mL) 

under stirring conditions and heated at 75 °C for 6 h. After that, the resulting material was 

recovered by centrifugation, washed twice with water, twice with ethanol and dried at 60 ºC 

overnight. 

Synthesis of Ag@CN-800 

Chitosan (0.924 g) was dispersed by sonication for 20 min in an ethanol solution of AgNO3 

(0.076 g in 30 mL). The other experimental procedures were the same the ones described for 

AgCr@CN materials, and the pyrolysis temperature was 800 ºC. 
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Synthesis of Ag@CN-800-Acid 

Ag@CN-800-Acid was prepared by five consecutive acid leaching treatments starting from 240 

mg of catalyst Ag@CN-800. After each treatment, the resulting material was recovered by 

centrifugation, washed twice with water, twice with ethanol, dried at 60 ºC, and used for the next 

one. The first three acid leaching treatments were carried out in a 100 mL beaker, in which the 

catalyst was dispersed in a 1, 2 or 4 mol/L H2SO4 aqueous solution (50 mL), respectively, under 

stirring conditions and heated at 75 ºC for 16 h. The last two acid leaching treatments were 

performed in a 100 mL Teflon vessel containing a stirring bar. Once the materials were dispersed 

in a 4 mol/L H2SO4 aqueous solution (50 mL), the Teflon vessel was sealed and heated at 120 or 

140 ºC, respectively, under stirring conditions for 2 h with a heating rate of 5 °C/min in a 

microwave equipment using an irradiation power of maximum 800 W. 

Synthesis of Cr@CN-800-Acid 

Chitosan (0.957 g) was dispersed by sonication for 20 min in an ethanol solution of K2CrO4 

(0.043 g in 30 mL). Afterward, the solvent was evaporated under atmospheric pressure and stirring 

conditions at 70 ºC, and the residue was dried overnight at this temperature under a high vacuum. 

Then, the dried sample was transferred into a quartz tube, and pyrolyzed at 800 ºC for 2 h in a 

vertical tubular oven with a ramp rate of 10 ºC/min while flushing N2 through the tube constantly 

until the oven was cooled down to room temperature again. The resulting material was ground in 

an agate mortar and transferred to a 100 mL beaker containing a stirring bar where it was dispersed 

in a 1 mol/L H2SO4 aqueous solution (50 mL) under stirring conditions and heated at 75 ºC for 16 

h. This material was recovered by centrifugation, washed twice with water, twice with ethanol, 

and dried at 60 ºC. 
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Characterizations 

Powder X-ray diffraction (XRD) measurements were performed in a D/MAX-2500 PC 

diffractometer (Rigaku) with Cu Kα radiation (l = 1.5406 Å). Samples for electron microscopy 

studies were prepared by sprinkling the material directly onto the holey-carbon-coated nickel or 

copper grids. Some of the measurements were performed in a JEM 2100F microscope operating 

at 200 kV both in transmission (TEM) and in scanning-transmission modes (STEM). Cs-corrected 

Scanning Transmission Electron Microscopy (STEM) measurements were performed in a probe 

corrector Titan Themis operated at 300 kV. X-ray photoelectron spectra were acquired with a 

monochromatic Al Kα X-ray source (1486.6 eV) using a pass energy of 20 eV on a Kratos AXIS 

ultra DLD spectrometer. The C1s peak at 284.6 eV was used to provide a precise energy 

calibration. The metal content in catalysts was determined by inductively coupled plasma mass 

spectrometry (ICP-MS) using an ICP-MS Agilent 7500 CX spectrometer. Samples for ICP-MS 

analysis were previously digested in a microwave equipment (CEM Corp, Matthews, NC) 

equipped with a temperature controller (MARS6 iWave). A previously weighted amount of 

material and 10 mL HNO3 (65 % p/p) were introduced in a 100 mL Teflon vessel, sealed and 

heated at 210 ºC under static conditions for 25 min with a heating rate of 12 ºC/min by irradiating 

at a maximum power of 1800 W. After cooling down to room temperature, the resulting solution 

was transferred to a previously tared 25 mL-volumetric flask and diluted with MiliQ H2O. 

1H-NMR spectra of isolated products were recorded on a Bruker AV 300 spectrometer. All 

chemical shifts () are reported in parts per million (ppm) and coupling constants (J) in Hz. For 

1H-NMR and 29Si-NMR chemical shifts are reported relative to tetramethylsilane ( 0.0 ppm in 

CDCl3) or d-solvent peaks ( 77.16 ppm CDCl3) for 13C-NMR. GC analyses were obtained on a 

Shimadzu GC-2010 apparatus equipped with a FID and a Technokroma (TBR-5MS, 30 m x 0.25 
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mm x 0.25m) column. GC-Mass characterization was carried out on a GC-Mass Agilent 6890 

Network equipped with a capillary column Agilent (HP‐5, 30 m×0.32 mm×0.25 μm) and a mass-

selective detector. The unambiguously detection of the H2 evolved from the reaction was carried 

out using an Agilent 490 MicroGC equipped with two columns (Pore Plot Q and MolSieve 5A) 

and one thermal conductivity detector (TCD). 

Raman spectra were recorded at room temperature using a 514 nm laser excitation on a Renishaw 

Raman spectrometer (“in via”) equipped with a CCD detector. The laser power on the sample was 

10-50 mW and a total of 20 acquisitions (10 s exposure time) were taken for each spectrum. 

Analyses on different positions of the sample were recorded (spectral resolution ⁓2 μm). 

Measurements were carried out using a home-made cell, where the catalyst powder was introduced 

without any previous treatment.  

General procedure for the catalytic dehydrogenative coupling of silanes and alcohols 

Catalytic experiments were performed under aerobic conditions in a 50 mL round-bottom flask 

equipped with a reflux condenser and a magnetic stirring bar. Once the catalyst (15 mg) and the 

alcohol (1.5 mL) were introduced, the reaction flask was heated at 60 °C and let equilibrate for 5 

min. Then, the silane (1 mmol) and anisole (54 μL, 0.5 mmol) as an internal standard were added, 

setting this point as the starting time of the reaction. Yields and conversions were determined by 

GC analysis taking samples from the reaction mixture at the reported times. No internal standard 

was added in reactions from which isolated yields were calculated. After reaction completion and 

dilution with ethyl acetate, the catalyst was separated off by filtration, and the solvent was removed 

under reduced pressure. Some of the products were purified by flash-column chromatography 

using n-hexane as an eluent phase (see the Supporting Information). For the recycling experiments, 

the general procedure was scaled up by the factor of 7, and the reaction was performed at 30 °C in 



 31 

an opened 50 ml centrifugation tube. After reaction completion, the reaction mixture was diluted 

with ethyl acetate, and the catalyst was separated off by centrifugation, cleaned with ethyl acetate, 

diethyl ether, and dried at 60 °C for 30 min before using for the next run again. 
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Extended data for the characterization of catalysts, additional catalytic and Raman 

spectroscopic experiments, and characterization data of isolated products. 
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TOC/ABSTRACT GRAPHIC 

 

SYNOPSIS: A silver- and chromium-based heterogeneous catalyst derived from pyrolysis of 

chitosan displays remarkable activity and selectivity for the synthesis of silyl ethers by oxygen-

assisted silane/alcohol dehydrogenative coupling. 

 

 

 


