This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2020

http://dx.doi.org/10.1109/JSEN.2020.3031315

\. [EEE ;
6 Sensors Council

A comparative study in the standardisation of
loT devices using geospatial web standards

Daniel Marsh-Hunn, Sergio Trilles, Alberto Gonzalez-Pérez, Joaquin Torres-Sospedra and Francisco

Ramos

Abstract— Although billions of devices are embedded in the World
Wide Web through the Internet of Things, there is still a lack of
a common, interoperable way to connect them and make them
interact seamlessly. loT has also found its way into the spatial web.
Environmental monitoring and sensing platforms connected over
the web by wireless sensor networks are now a common way to
monitor natural phenomena. This study compares two open Web
Standards (OGC’s Sensor Observation Service and SensorThings
API) from the geospatial point of view. An loT platform, called
SEnviro, is used to integrate and evaluate implementations for each
standard and contrast their qualitative and quantitative traits. The
results of the study show that the SensorThings API proves to be
the adequate Web Standard for loT applications in terms of inter-
operability. It outperforms the contesting Web Standard in terms of
flexibility and scalability, which strongly impacts on developer and

loT devices

Sensor
Observation Service

FROST W 52 North

Comparative

. 0GC
Sensor Things API standards

|

Quantitative Qualitative

user experience.

Index Terms— Internet of Things, interoperability, geospatial standards, sensors

. INTRODUCTION

The Internet revolution enabled large-scale interconnection
between people across the globe. Today, technological advance
allows objects to interact over the Internet without the aid
of human intervention, creating an Internet of Things (IoT).
This concept first emerged in 1999 and has since been subject
to constant evolution, redefinition, and expansion. It stepped
out of its infancy and is transforming the current Internet
into the fully integrated future Internet, connecting billions
independent and intelligent devices [1].

Rapidly developing device-to-cloud technologies and the in-
creasing deployment of devices connected to the Internet
bring along a new dimension of possibilities and applications
in various fields of human activities, but also imply new
challenges in making different solutions and heterogeneous
data interact seamlessly, enabling a large-scale IoT [2]. Widely
defined as “a worldwide network of interconnected uniquely

Manuscript received month day, year; revised month day, yea; ac-
cepted month day, yeal. Date of publication month day, yea; date of
current version month day, yea. Sergio Trilles has been funded by the
postdoctoral Juan de la Cierva fellowship programme of the Spanish
Ministry for Science and Innovation (IJC2018-035017-1). The project is
funded by the Universitat Jaume | - PINV 2017 (UJI-A2017-14).

D. Marsh-Hunn is with geOps spatial web (e-mail: daniel.marsh-
hunn@geops.de)

S. Trilles, A. Gonzéalez-Pérez, and F. Ramos, Universitat Jaume |,
Castellon, Spain (e-mail: {strilles,algonzal,jromero}@uiji.es)

J. Torres-Sospedra is with UBIK Geospatial Solutions S.L., Castellén,
Spain (e-mail: torres@ubikgs.com)

Digital Object Identifier 10.1109/JI0T.2020. XXXXXXX

addressable objects, based on standard communication pro-
tocols” [3]], predictions estimate the IoT will consist of 21
billion connected devices exchanging information over the
Internet by 2025 with an economic impact of 1.6 trillion
USS$ [4]]. IoT applications are being developed in significant
sectors such as smart business, inventory management, smart
home, transportation and logistics, health-care, security and
surveillance, and environmental monitoring. This vast number
of ”things” can access and acquire data about devices and their
environment, independent of human interaction [J5]].

Environmental and earth monitoring IoT applications have
received increased attention in recent decades since they
have become a key factor of sustainable growth worldwide.
Observing natural phenomena in the field can be challenging
due to harsh climatic conditions and difficulty of physical
access, resulting in high costs for sensor deployment and
maintenance [5]]. These challenges have been addressed by
technological advances in low power integrated circuits and
wireless communications. Modern sensing devices have drasti-
cally decreased in size, cost, and power consumption, resulting
in the viability of deploying intelligent sensors networks.
These Wireless Sensor Networks (WSN) may consist of a
large number of nodes with limited processing capability and
storage. They can be equipped with several different sensors,
capable of observing multiple natural phenomena []1]].

Modern web technologies are advancing at a high rate and
demand for research in specialised fields is increasing to stay
up to date with state-of-the-art technology. IoT solutions are

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

http://dx.doi.org/10.1109/JSEN.2020.3031315
IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2020

no exception; researchers are developing new implementations
to enhance the quality and efficiency of this kind of systems.
A general challenge, in the IoT domain, as well as in specific
areas, is to achieve full system interoperability. Globally de-
fined as “The ability of two or more systems or components to
exchange information and to use the information that has been
exchanged.” (6], this is a key concept to make environmental
monitoring information accessible to a broader community,
and it is a necessary step to take towards open data. Since IoT
emerged, a large variety of vendors, researchers, and interested
parties have developed IoT solutions in parallel. Although
several device types and protocols for IoT are available on
the market, only a few interoperate among each other [7]. The
importance of interoperability is becoming more evident as the
number of IoT solutions grows. While the worldwide Internet
relies on standard technologies and protocols like HyperText
Transfer Protocol (HTTP), Secure SHell (SSH), etc., these
solutions are not well-suited for devices with severe power
and data loss constraints. Efforts are currently being made to
produce standards compatible with IoT environments [2].

Although the concept of IoT is already established and imple-
mentations are mushrooming manifold, it still lacks a widely
accepted standard model to enable broad-scale interoperability.
Standardisation bodies and alliances are working on defining
web standards and protocols, and their adoption requires user
and developer consensus through trials and testing. Several
interoperable standards are already available, which have mi-
nor functionality, specialisation, and structure difference. With
IoT also finding its way into environmental monitoring, it is
crucial to investigate the potential of existing Web Standards
in an interoperability context within this domain. An important
actor in interoperability research in the geospatial field is the
Open Geospatial Consortium (OGC). This institution provides
some initiatives to standardise the IoT environment |8, 9].

This work aims at investigating open web standard solutions
for IoT applications. The main contribution of this study lies in
producing an in-depth comparison between a selection of web
standard solutions from the geospatial domain. The options
analysed support geospatial functionalities, useful for data
analysis and visualisation [[10], and are considered standards
recognised by the OGC community. They are compared in
terms of performance, semantics, flexibility, and scalability
levels. The comparison is structured in terms of qualitative
and quantitative aspects. The former analyses how to work
with both standards from the point of view of the regulated
specifications. For the latter an implementation for each stan-
dard was chosen and deployed for comparison in terms of
performance. Different computational cost evaluations were
performed, contrasting memory usage and time cost. A previ-
ous environmental monitoring IoT platform, called SEnviro for
Agriculture, has been used to deploy these standards [11} [12].
A broker pattern using standard adapters are used to integrate
each standard. A further goal of the study is to enhance the
interoperability of the already established SEnviro platform.

The remainder of this paper is structured as follows. Section
contains the relevant topics to this paper. Section [III] includes

information about the area and context of experimentation used
in SEnviro for Agriculture [11]] project. Section [[V]|sheds light
on the methodology used to evaluate the potential of applying
open Web Standards. Sections [V|and [VI| present the qualitative
and quantitative evaluation results of the comparing methods.
Next, Section [VII|addresses a discussion of the results obtained
in the previous sections. The paper culminates in Section [VIII|
with conclusions and recommendations for future work.

Il. BACKGROUND

The number of embedded devices within the IoT is increas-
ing drastically, and the IoT producers develop web service
protocols only supported by their proprietary IoT devices. It
results in closed vertical silos of 10T, each having its complete
IoT frameworks, including devices, gateways, services, and
applications. An upcoming issue in IoT is that elements
in different silos cannot connect, leading to scattered IoT
solutions with incompatible, co-existing protocols [3, [13].

An important actor in interoperability research in the geospa-
tial field is the Open Geospatial Consortium (OGC), an
organisation of over 260 members from the academic and
industrial sectors, as well as governmental agencies. Their
primary goal is to find participatory consensus for openly
available interfaces and encodings for the Geospatial Web. The
OGC provides a set of Geospatial Abstract Specifications for
different types of geographical data, upon which the OGC’s
interoperability standards build on [14].

A. Open & Sensor Web Standards

Geo-scientists have been uploading geographical data for
sharing and exploration since the dawn of the World Wide Web
(WWW). Machine-to-Machine (M2M) data harvesting has
led to community-adopted frameworks, common standards,
and enriched metadata, significantly improving observational
accuracy, sensor discovery, and configurability [15].

As one of the main actors in the field of sensor web standards,
the OGC'’s Sensor Web Enablement (SWE) builds on machine-
readable encoding like Sensor Model Language (SensorML),
Observation & Measurement (O&M) and Geography Markup
Language (GML) to fully describe the processes used in
producing observations and their corresponding sensors [[15].

In the scope of the OGC SWE, the organisation released
a set of services to facilitate the exchange of observations
among SWE enabled nodes and to allow clients and servers
to arrange, encode and transfer observations in a semantically
enabled way [16]]. Our contribution will consider the well-
established Sensor Observation Service (SOS) [17] and the
more recent SensorThings API [18]). It is important to note the
age difference of almost a decade between the two standards.
SensorThings API, being the more recent standard, is a lot
more focused on IoT devices, since the IoT concept has
grown profoundly in importance and popularity. SOS is a more
broadly scaled solution for sensor systems in general, but can
nonetheless be applied effectively to IoT networks.

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

http://dx.doi.org/10.1109/JSEN.2020.3031315

AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2020) 3

1) Sensor Observation Service: The OGC approved SOS in
2007 as an official open standard for handling observations
in the WWW. Based on the SWE standard framework, SOS
provides a standardised interface using SOAP XML to manage
and retrieve metadata and observations from heterogeneous
sensor systems and is designed to match the O&M data model
(see Figure [T) [17].

«FeatursTypes
ObservationCollection|

+ metadata: MD_Metadata [0..1]
+ samplingTime: TM_Object L=

+ resultTime: TM_Object [0.1] 10
+ resultQuality: DQ_Element [0..1]
+ parameter. Any[0.]

c
{observedProperty m
of member of feature

{procedure must be uitable fo perty)
fresult type must be suitable for observedProperty)

o
amd
«ingtanceOfs
: et

! stypen
PropertyType Any

1 i}

Fig. 1. O&M data model extract [17].

The essential components in SOS are the following:

e Procedure: produces the measured value of an observa-
tion. This can be a single sensor, a sensor platform, or a
numerical simulation process.

o Offering: logical grouping of observations related to each
other belonging to a common service. For example,
the relation can be spatial (share the same location),
temporal (created in the same time interval) or due to
corresponding properties (measure the same phenomena)

e ObservableProperty: a procedure can have multiple ob-
served properties, which represent the physical phenom-
ena measured by a sensor (e.g., temperature)

o FeatureOfInterest. Features of Interest (Fol) represent
identifiable objects on which sensor systems are making
observations. These include spatial information to allow
the location to be harvested by OGC service registries.

o Observation: contains a measurement value for an ob-
served property of an object under observation (Fol).
Observation must include the time stamp when the ob-
servation was created.

SOS includes a set of operations for retrieving observations
and metadata. The three mandatory core operations are:

o GetCapabilities: this operation provides access to meta-
data and details about the service’s capabilities. Either
an HTTP GET, or POST request is used to retrieve the
service Capabilities document, an XML file containing
metadata about the service, like unique identifiers, unique
groupings of observations (Offerings) and physical phe-
nomena measured by the sensors (ObservedProperties).

e DescribeSensor: the unique identifiers retrieved in the
Capabilities document can be used in the DescribeSensor
operation to request sensor metadata (SensorML) if the
procedure with the identifier is present in the service.

o GetObservation: this operation provides access to the
observation data made by sensors in the service. A
request file containing information from the Capabilities
document must be sent via HTTP POST to the server,
which then returns the requested observations. Details
such as the Offerings or the ObservedProperties, as well
as spatial and temporal filters, can be included as query
parameters. SOS returns the requested observation data
in O&M format.

To make SOS configurable for any sensor observation project,
it also provides transactional operations to insert sensors and
observations:

e RegisterSensor: This operation allows users to register
sensors in SOS. An XML file containing the information
about the new sensor in SensorML encoding is sent to
the service via an HTTP POST request.

o InsertObservation: Observation data from sensors is in-
serted into SOS via HTTP POST, using an XML file
following the O&M specification. The file must specify
the procedure which produced the measurement, which
in turn must be present within the service.

Among the several open-source implementations of SOS,
the most established is 52North-SOS. This Java application
is developed at 52North GMBPﬂ It includes a variety of
extended features, including support for INSPIRE download
service and specialised XML encodings (e.g., WaterML 2.0,
GroundWaterML 2), code translators for requests in JSON,
SOAP, KVP and POX, a REST API and an extensive client in-
terface for service configuration and data exploration. 52North
releases new versions of the software every few months, the
most recent one (SOS 4.4.4) at the time of creation of this
document available since December 6, 2018.

Pradilla et al. [[19] developed SOSLit a lightweight SOS
implementation using SOAP binding, XML encoding and
storing data in a NoSQL database. SOSLite reduces SOS to its
operations to a minimum considering the OGC’s best practice
recommendations for a lightweight SOS profile for in-situ
sensors [20]] and aiming to adapt SOS to IoT scenarios. The
results show an improvement in response times for several
SOS operations. In SOSFuﬂ [21], the authors developed
SOSLite further, proposing a REST API using JSON encoding
format which handles core, transactional and enhanced SOS
operations via the core HTTP request types (GET, POST,
PUT, DELETE). SOSFul and SOSLite are openly available
and were both considered for this experiment. They were
eventually discarded due to the lack of documentation and
recent development activity, with stalled development in both
projects since three and four years respectively. The authors

Thttps://52north.org (accessed on 09.09.2020)
Zhttps://github.com/Juanvx/SOSLite (Accessed 24.08.2020)
3https://github.com/Juanvx/SOSFul (Accessed 24.08.2020)

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

http://dx.doi.org/10.1109/JSEN.2020.3031315
IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2020

in [22] extended OGC SOS with the pagination feature to
gain efficiency and can be operated by low-cost devices. This
extension has been validated and tested with promising results.
2) SensorThings API: The OGC approved the SensorThings
API as an official web standard in 2016. It provides an open
standards-based and geospatial-enabled framework to store,
manage, expose, and use IoT-based sensor observation data
over the web. The SensorThings developers boast it furthers
the development of premium quality, lightweight services that
cover a broader spectrum of applications [18]].

The SensorThings API data model is based on the OGC
Observation & Measurement (O&M) model. It consists of a
set of interrelated entities, depicted in Figure |2} In contrast to
SOS, entities are encoded using JSON format.

ObservedPraperty
+name: CharacterString
+definition: URI

+description: CharacterString

Sensor

+name; CharacterString
cf

+encodingType: ValueCode
+metadata: Any

4 | #sensor
0..* | +catastreams
Datastream
+datastreams | O 00|
+name: Charactersting

0.

1 | +observedproperty

Observation

+phenomenonTime: TM_Object
ition: +resultTime: TM_Instant
+observationType: ValueCode |[TOEETEER f result: Any .
g+ |+unitofeasurement: JSON_Object 1 0.+ | *resultQuality: DQ_Element[0..%]
GM_Envelope[0..1] +validTime: TM_Period[0..1]
+datastreams | +phenomenonTime: TM_Period[0..1] +parameters: NamedValue[0.."]
+resultTime: TM_Period[0..1]

0.+ *obsenvations

* | 4thing

Thing
n +things

+description: CharacterString 1

+properties: JSON_Okject[0..1]

1 | +featureOrinteres

FeatureOfinterest
“+name: CharacterString
+desciption: Characterstiing
44444 dingType: ValueCode
+Heature: Any

«CodeList>
ValueCode
——

0.* +historicalLocations

HistoricalLocation

0.5 T sihings

+time: TM_Instant

0. thistoricalLosations

0.*|+locations

Location

~location

+encodingType; ValueCode 1
+location: Any

Fig. 2. SensorThings API data model [18].

Brief specifications of the entities as described in the Sensor-
Things API manual in [[18|] are provided below:

e Thing: the Thing entity follows the definition by the
International Telecommunication Union (ITU): ”..with
regard to the Internet of Things, a thing is an object of
the physical world (physical things) or the information
world (virtual things) that is capable of being identified
and integrated into communication networks”.

e Location: contains information about the location associ-
ated with a corresponding Thing and includes geograph-
ical information using GeoJSON encoding.

o HistoricalLocation: provides the times of the current and
previous Locations of a Thing.

o ObservedProperty: specifies the observed phenomenon of
measurements.

e Datastream: represents the logical grouping of a set of
observations and are associated with a single Thing, a
single observedProperty and a single Sensor.

o Sensor: represents the instrument that observes a property
or phenomenon. A Sensor can be associated with multiple
datastreams.

o FeatureOfinterest: the Fol is the feature being observed.
In many cases, the Fol can be identical to the Location
of a Thing. In the case of remote sensing, it can be the
geographical area or volume being sensed.

e Observation: representation of the act of measuring the
value of a property at a specified time. Each observation
is associated with a single datastream.

SensorThings API data and metadata can be created, read,
updated, and deleted with the HTTP protocol (POST, GET,
PATCH, DELETE). Each entity has a unique ID and is
accessible through the REST API using URLs. The URLs can
be chained to access interrelated entities and can be extended
using a broad set of query parameters to pinpoint the desired
JSON objects.

There are several server implementations of the SensorThings
API available as open-source software. The Fraunhofer Open-
Source Sensor Things (FROST), a Java application developed
by the Fraunhofer IOSB E] (Institute of Optronics, System
Technologies, and Image Exploitation), is considered a well-
established, recent SensorThings implementation. FROST-
developers are still working on the project to extend its features
by the OGC SensorThings API Web Standard.

I1l. SEnviro for Agriculture: A TESTBED IN THE DOMAIN
OF SMART FARMING

Like in several other fields, the IoT paradigm shows excellent
potential in transforming the agricultural industry by connect-
ing it to the web. Embedded WSN enables new methods
to observe and interact with physical objects and promise
unprecedented ways to obtain, organise, and consume infor-
mation [8]. Research projects in IoT and WSN applications for
agriculture have been numerous in recent decades [23| 24].

In this work, an IoT application for smart farming is used as a
scenario. The application is called SEnviro for Agriculture and
it is based on the SEnviro project [25]|. SEnviro for Agricul-
ture takes the previously developed environmental monitoring
system further and puts it into an agricultural context [/11]].
The primary objective of SEnviro for Agriculture is to design
and develop a full system for monitoring crops to improve
the production quality and yield. The SEnviro for Agriculture
monitoring system specialises in observing vineyards. For the
sake of simplicity, the remainder of this section refers to
SEnviro for Agriculture merely as SEnviro. Figure |3| shows
an overview of the SEnviro architecture and components.

At hardware level (represented in the pink section in Figure
[3), the SEnviro sensorised platform was designed as a smart
object, consisting of a similar hardware assembly as the
platform presented in [25]]. SEnviro node components can be
categorised into four groups depending on their functions:
core, sensors, power supply, and communication. SEnviro
nodes contain sensors for measuring eight meteorological
phenomena directly related to plant diseases. These include
soil and air temperature, soil and air humidity, atmospheric
pressure, rainfall, wind direction, and speed.

The blue section in Figure [3] represents all the elements of
SEnviro Connect with their corresponding relations. SEnviro
Connect can be divided into three layers: data, services and

4www.iosb.fraunhofer.de (accessed on 09.09.2020)

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2020)

http://dx.doi.org/10.1109/JSEN.2020.3031315

2
c
Q5 .g 53
—_—0
O% g%
=4
o
<
Serverless APls
functions @
5 User "
z H
E Management 8 - —_— g 5 :
= o ok [= [i2 PO
2 i] [} S8 7 ul 0
S Device 3 2 La o a :0
£ Management g 8> z i
n
¥ & 3
ANALYTICS
@ \
3
4 ’ANCILLARY ‘ ’ SENSOR ’ ALERTS ‘
g £ DATA DATA DATA
O 8 B serverless DB Time series DB
oz

Standards

------------------ @------------------.-------------. BROKER .
[
z
SensorThings API == Ts A ;
§e > [) S

cm
SOS D = ¢ ; é’

{PERSISTENCE

&

SENSOR ‘
DATA
Transactional DB

SENSOR
DATA

____________I___________

loT

physical

Fig. 3. Schema of SEnviro architecture; the purple section represents physical components, the blue section represents
software elements. The integration of the Web Standards in SEnviro is inside the red box.

applications. The most important part resides in the services
layer, which can be split into five different components: broker,
micro-services (RESTful API), persistence module, analytics
module and cloud functions. The broker is used as a bridge to
connect SEnviro nodes with the software platform. The broker
is based on a RabbitMQﬂ instance, which supports Message
Queuing Telemetry Transport (MQTT) publish-subscribe mes-
saging. All these parts are detailed in [11[]. The initial version
did not offer an interoperability module. Below we will detail
how this module has been added.

SEnviro Connect provides two kinds of analytics: one type
focuses on the SEnviro node to monitor the node status, such
as the battery or last connection, while the other type handles
the vineyard use case. The latter bases its analytics on disease
models and is supported by alert tasks generated by the ana-
Iytics module. These alert tasks are defined using well-known
methods which depend on meteorological phenomena. All
the analytics work in real-time, and when a new observation
arrives, it is used to calculate each task alert and triggers an
alarm for certain types of events.

Five units of the SEnviro node have been deployed; four
nodes have been installed in vineyard fields in the province
of Castello (Spain). The other node was deployed in outdoor
environments for testing proposes. The nodes have run con-
tinuously and uninterruptedly for 140 days. Each node sent an
observation every ten minutes during the vine season 2018.
During this time 671,328 observations were collected from
the SEnviro units. Only 197,887 observations have been used
to realise the quantitative performance analysis.

It should be noted that the selected domain is not influential in
the comparisons made throughout this study. These could be
carried out on another IoT domain, and the outcomes should

5www.rabbitmq.com (accessed on 09.09.2020)

not vary significantly. The reason for their selection is due to
the accessibility of carrying out the evaluation by the authors.

A. Experimental environment

In this experiment 52North-SOS and FROST-Server are inte-
grated the SEnviro architecture, representing implementations
of SOS and SensorThings API. The added components are
deployed on a main server, centralising all IoT devices and
executing all operations autonomously. The same server stores
all data and works without computational cost of the IoT
devices. Another possible approach is to embed the services
in the IoT devices themselves. Since not all current standards
provide the necessary support, this approach will be proposed
as future work.

To embed the instances into the SEnviro architecture, adapter
scripts were created to connect standards with the SEnviro
message broker. The scripts were deployed as stand-alone
Docker containers, distributing the incoming observations
from SEnviro nodes to the corresponding services. In Figure 3]
the highlighted section represents the addition to the already
established SEnviro architecture.

The following sections shed light on the selected web standard
applications deployed for this project and the reasons they
were chosen. The first section introduces 52North-SOS, based
on the OGC SOS. It is followed up by FROST, an implemen-
tation of the OGC SensorThings APIL

1) OGC SOS: During the selection process of SOS imple-
mentations, 52North-SOS was selected due to several reasons.
Firstly, 52North-SOS features the SOS test client, a tool for
generating and testing sample documents for HTTP requests
using several formats including JavaScript Object Notation
(JSON). Since JSON objects are structured the same way
as Python dictionaries, process automation could be ren-
dered more efficiently in the SEnviro integration. Furthermore,

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

http://dx.doi.org/10.1109/JSEN.2020.3031315
IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2020

52North-SOS includes tested Docker configuration files, in
contrast to other SOS implementations and detailed documen-
tation for all operations Finally, also the fact that 52North-SOS
is under ongoing development implies more promising support
by the developer community.

52North-SOS runs on an Apache Tomcatlﬂ web server and
stores data in a PostGIS extended PostgreSQL database.
The downloadable bundle also includes a user-friendly data
exploration tool, the Helgoland Client. The extensive and user-
friendly application includes map and diagram visualisation
for data. After some trials with the latest 52North-SOS version
at the time of the selection process (52North-SOS 4.4.3) and
encountering some inconsistencies with the setup in Docker,
52North-SOS 4.4.2 was successfully deployed. The updates in
version 4.4.3 were considered irrelevant to the scope of this
study. Postgresql 11 and Postgis 2.5 versions were used for
both environments.

2) SensorThings API: Of the present SensorThings API im-
plementations, only FROST includes all the features in the
OGC compliance test suite and passed it with a full success
rate. It includes MQTT extensions for creating and updating
data. Furthermore, FROST provides extensive documentation
and deployment resources for easy deployment in Docker envi-
ronments . FROST 1.8 was used to carry out the study, Which
was the most recent version at the time of experimentation.

By default, the java-based FROST application launches an
Apache Tomcat, but there are also options to configure web
server specifications. The application stores all data in a Post-
GIS extended PostgreSQL database. Fraunhofer IOSB pro-
vides several FROST packages, which either comprise HTTP
and MQTT operations together or keep them as individual
bundles.

B. SEnviro Web Standard Integration

As mentioned, SEnviro nodes transmit new values for observed
phenomena using a broker. In order to store data in real-time,
incoming messages from SEnviro must be caught, decoded,
processed and posted to the deployed open standard instances.
In turn, the deployed standard instances have to be configured
for SEnviro beforehand in order to store the data correctly. This
involved general service configuration and inserting stations
and their properties, which was automated using setup scripts
and JSON files containing the information for each station.

For the integration of web standards into SEnviro, adapters
had to be created for each web standard. In the case of
both standards, this consisted of connecting to the SEnviro
broker to intercept messages, decode them, convert them into
the right format and post them to the corresponding service
via the REST API. Scripts were created in Python for these
operations, making use of Pika, a Python library to connect
to Advanced Message Queuing Protocol (AMQP) -compliant
brokers.

Shttp://tomcat.apache.org (accessed on 09.09.2020)
Swww.github.com/FraunhoferlOSB/FROST-Server
09.09.2020)

(accessed on

RabbitMQ supports the AMQP standard and uses fopics to
categorise messages, which can be chained into routing keys.
AMQP uses the routing key to intercept messages with specific
topics by using * (star) to substitute exactly one word and #
(hash) to substitute zero or more words. SEnviro routing keys
are structured as current/stationID/phenomenon.
For instance, a SEnviro routing key could be:

current/270043001951343334363036/SoilHumidity

oy

CUMeNt/270043001951 343334363036/
SEnviro
Node

Fig. 4. SEnviro message queuing example schema.

current/#

In the example in Figure] queues Q/ and Q2 within SEn-
viro connect intercept messages from SEnviro nodes for the
message consumers C; and C,. Q1 queues all messages from
station 270043001951343334363036. Q2 queues all messages
from all stations.

Web standard adapter scripts connect to the SEnviro message
broker, catch and decode SEnviro messages from all deployed
SEnviro nodes and access the node ID and phenomenon details
via the routing key. Using this information, a new message is
created and sent to the corresponding web service.

1) SOS Adapter: 52North-SOS supports JSON encoding for
inserting observations and a JSON template for this operation
is available on the test client of the 52North-SOS interface.
This file is loaded into the adapter script and the mandatory
information for a successful request inserted. Details about
Procedures (sensor ID), Offerings and ObservedProperties are
retrieved from the intercepted messages. However, some es-
sential information for a successful insertObservation request
could not be extracted. Therefore, two workarounds had to be
included in the adapter.

Firstly, the unit of measurement in SOS is required in each
encoded observation document. This requires including a
Python dictionary within the adapter script, matching each
phenomenon with the corresponding unit of measurement.
Secondly, SOS observation insertions also require the co-
ordinates where the observation was created. Therefore, an
external JSON file containing objects with the station ID and
the corresponding coordinates as attributes has to be loaded
into the script. Once all the information for the observation
insertion is complete it is posted to SOS via an HTTP POST
request.

2) SensorThings Adapter: Similar to the SOS adapter, reads
incoming messages and uses information from the messages
to create a JSON object to post to the FROST server with an
HTTP POST.

In order to post to the correct datastream, the corresponding
datastream ID is required in the target URL. The script does

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

http://dx.doi.org/10.1109/JSEN.2020.3031315

AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2020) 7

this by first requesting all datastream IDs with their corre-
sponding names via HTTP GET request. Datastream names
in the SEnviro FROST instance are defined as a combination
of the node ID and the measured phenomenon, which are
both present in incoming byte messages. The script selects the
datastream ID by matching the information from the message
with the datastream name. The following example target UR]_E]
posts observations to the datastream with ID = 1:

+serverPath:port/FROST-Server/vl.0/Datastreams (1)
/Observations

IV. COMPARATIVE ANALYSIS

To shed light on the potential of open standard integration to
enhance environmental monitoring application interoperability,
a qualitative and a quantitative analysis were performed.
This section structures the framework defined to realise the
comparative.

In the qualitative analysis the deployment and configuration
process for each web service was described and compared.
Subsequently, a comparison of available operations for differ-
ent uses was performed from data producer and data consumer
perspectives. On the data producer side insert, update and
delete operations were evaluated:, where entities are under-
stood to be: sensors, sensor platforms, and observations. On
the consumer side, data and metadata querying and fetch-
ing operations were evaluated. Web standard semantics were
evaluated based on their encoding formats and data traffic
protocols, and they are based on the web standard definition
and not the development for each standard.

The quantification of differences in performance between the
deployed web services were monitored on various levels and
using some well-known tools. These were used to monitor
response time, response size, CPU and memory usage. All
tests have been performed in a virtual machine with four
logic CPUs and 8§ GB RAM maximum size. The underlying
cluster has the following features: 4x Intel(R) Xeon(R) CPU
E5-2690 v2 @ 3.00GHz, 16,719 MB and Operating System:
Ubuntu 16.04.4 LTS. Unlike the qualitative analysis, quan-
titative results are dependent on the particular web standard
implementation and may vary between implementations of the
same web standard.

As noted above, the essential feature in terms of performance
is the observation retrieval since it is the most used operation
to visualise phenomena’s behaviour over time. Hence the
quantitative comparison was done using this operation.

The following tools were used for performance monitoring:

o Postman: Postma is a powerful HTTP Client desktop
application for testing web services. Users can create both
simple and complex HTTP requests, which return the
request status, response times and the size of the returned
file.

o JMeter: JMetelﬂ is a project by the Apache Software

7For all examples serverPath is located at http:/elcano.init.uji.es
8www.getpostman.com (accessed on 20.03.2020)
%https://jmeter.apache.org/download_jmeter.cgi (accessed on 09.09.2020)

Foundation. It is an open-source Java desktop application,
designed to measure web applications’ and distributed
systems’ performance and stress test their functional
behaviour.

e cAdvisor: cAdvisor is provided by Google to monitor
Docker containers’ behaviour. Apart from a simple user
interface showing graph visualisation of the container
metrics, cAdvisor provides several APIs for accessing
container metrics data.

Response times and sizes are measured for observation re-
trieval operations using Postman monitors. Since Postman
monitors run as cloud services, test queries do not depend on
the local machine’s network connectivity (with low latency)
once they have been deployed. Requests for observations are
monitored for 24 hours, with two requests per hour, resulting in
48 values per query. Postman monitors periodically recalculate
the average response time for each number of requested
observations, returning a single average value per request.

To compare the performance for observations retrieval, iden-
tical conditions were created for different services. Queries
using the same parameters request identical sets of obser-
vations with the corresponding REST API of each service.
This approach includes queries to obtain sets of 1, 100, 200,
400, 500, 600, 800 and 1,000 observations. The maximum
of 1,000 observations was selected due to the FROST default
configuration, which sets the maximum number of FROST
observations contained in a single response file to 1,000.

The workflow for metrics monitoring relies on measuring the
metrics of the individual Docker containers. cAdvisor provides
the means to access the container metrics data via an APIL
The selected REST API [117] returns JSON objects containing
metrics data. The API was configured to return a single
measurement and a container monitoring script was created in
Python to send the API request every second once the script
is run. Since each service has separate containers for the web
applications and databases, CPU and memory values from both
the containers are added to show the full amount of resources
used by the corresponding standard implementations. The
container CPU values are divided by the server CPU usage
to reflect how many server resources the containers require in
percentage. Memory values are calculated in bytes and then
converted to megabytes for data visualisation.

The HTTP requests created in JMeter were configured to run
for three minutes launching an HTTP request per second.
52North-SOS and FROST requests for the different quantities
of observations were launched simultaneously to the container
monitoring script, resulting in approx. 180 values per query.

V. QUALITATIVE EVALUATION
A. Service setup & configuration
52North-SOS and FROST require distinct setup process and

service configuration.

10https://github.com/google/cadvisor/blob/master/docs/api_v2.md (accessed
on 09.09.2020)

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

http://dx.doi.org/10.1109/JSEN.2020.3031315
IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2020

1) 52North-SOS: 52North-SOS includes a Graphical User
Interface (GUI) with a broad set of service configuration
options. The interfaces enable users to configure most of the
service’s specifications, including among others the available
SOS operations with their bindings and encodings, the data
source, the spatial reference system, the services’ and data
source’s timezones, access rights and logging.

For the SEnviro configuration of 52North-SOS, transactional
security was disabled, enabling the transactional SOS oper-
ations for inserting sensors and observations. The SEnviro
nodes were inserted by posting a preconfigured InsertSensor
JSON object to the server for each node. The object contains
information about the service provider, the node ID, the
measured phenomena and the node location. As mentioned in
Section [[T]] creating the adapter to divert SEnviro observations
into SOS required an extra file containing the coordinates of
the stations.

2) FROST-SensorThings API: FROST-Server does not include
a GUI for service configuration. Service settings are config-
urable using environment variable or in a XML configuration
file. Since SEnviro nodes all monitor the same phenomena
and are composed of the same sensor constellation, data about
observed properties and sensors were inserted in a first step.
JSON objects relating to the sensors and observed properties
were subsequently used to insert things and datastreams.

B. Register/Update/Delete Things

52North-SOS and FROST handle the insertion of data based
on the corresponding SOS or SensorThings API operations in
order to remain OGC compliant. In SOS these are the Transac-
tional Operations, which are HTTP POST requests to the SOS
service URL and include RegisterSensor and InsertObserva-
tion. 52North-SOS extends the transactional capabilities with
the DeleteSensor and the UpdateSensorDescription operations.
The SensorThings API supports HTTP request types (GET,
POST, PUT, DELETE) for creating, updating and deleting
entities. FROST has fully implemented the SensorThings
API’s sensing functionalities with no significant additions,
and therefore this section will refer to the SensorThings API
operations directly.

1) 52North-SOS: Before observations can be inserted into a
SOS deployment, entities need to be inserted representing
the devices generating the observation data and must also
include information about the phenomena they measure for
a successful observation insertion.

52North-SOS supports several encoding formats, including
JSON, which is used in this project, as mentioned in Section
The 52North-SOS equivalent to the RegisterSensor operation
is InsertSensor. For this operation, an InsertSensor request
file must be posted to the server. An example JSON objeclE]
contains the mandatory information for a successful insertion
request.

The object must contain a list of details, including unique
procedure ID, long procedure name and short name, its of-

An example of 52North-SOS InsertSensor - https://bit.ly/
3d2Bzval (accessed on 15.06.2020)

fering and its observed properties. For each of these details
SML, SWE and GML tags are added to make it ensure its
interoperability with other entities of the sensor web. This
becomes visible in the large string of XML code in the
procedureDescriptionFormat property of the JSON object,
which is the XML version of the InsertSensor operation and
is mandatory in the JSON version of the POST request. As
a consequence, procedure insertion needs the XML version
of the operation, even if the SOS application uses the JSON
version of the operation, adding a full step to the workflow
and inflating the size of the final JSON object to post to the
server to 4,829 bytes. The InsertSensor request creates all the
necessary entities for the insertion of observation, including
its related offering, observed property and feature of interest.

Since SOS 2.0 included some operations to delete or update
details of procedures, 52North added these operations as
extended operations. UpdateProcedureDescription enables the
modification of station details, which resembles the InsertSen-
sor protocol. As in the example JSON code above, the file to
be posted to the server requires the full XML code as a string
value of the corresponding JSON property.

DeleteSensor allows procedures and their affiliated observa-
tions to be removed from the service. This requires posting
a request file containing the procedure unique ID to the
server (Listing [T). The file is comparatively small in size, as
demonstrated in the JSON version of the DeleteSensor request
below. The mandatory SOS offering created with the procedure
will remain in the service even when the linked procedure is
deleted. Offering names act as unique identifiers, which means
if a procedure is reinserted it will need a new offering ID.

Listing 1. JSON example of DeleteSensor in SOS.

1{"request": "DeleteSensor",
2 "service": "SOS",
3 "version": "2.0.0",

4 "procedure": "012345678901234567890123" }

2) FROST-SensorThings API: The SensorThings API data
model demands a different approach when inserting data.
Every entity within a SensorThings API has its unique ID.
It can be referred to by its unique URL for creating further
entities, updating their details and properties and also deleting
them. This makes data management and system maintenance
highly flexible and efficient.

As in SOS, the devices generating the observation data, must
be created to enable the storage of observations. The five
SensorThings API key components (Things, Datatreams, Ob-
servedProperties, Sensors and Observations) are interrelated,
with the Datastreams as core entity. JSON objects need to be
sent to the server via HTTP POST using the corresponding
target URL to create entities. Target URLs are composed of
the base URL and /entity. The example URL below targets the
Thing class:

+serverPath:port/FROST-Server/v1.0/Things

When new entities are created, a unique ID is automatically
assigned. If an entity is removed its ID remains stored in the
system and cannot be used again. All entities have manda-

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

https://bit.ly/3d2Bzva
https://bit.ly/3d2Bzva

1
2
3
4
5

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2020)

http://dx.doi.org/10.1109/JSEN.2020.3031315

tory properties that must be included when posting to the
server. Metadata about the specific Thing can be added in
the properties field. Furthermore, entities can be extended
with their related entities as optional properties when creating
them. These extended entities can either be generated within
the creating process or they can refer to already existing
entities. Extended properties can again be extended, meaning
all necessary entities can be created with a single HTTP POST
request. This is shown in the following Thing object example

(Listing [2)).
Listing 2. JSON example of inserting a Thing in SensorThings
APL

{ "name" :
"description":
"properties": {

"owner":"Universitat Jaume 1",
"maintainer":"student al374901"},
"Locations": [{

"name": "carcagente26_1",

"description": "Carcagente 26",
"encodingType": "application/vnd.geo+json",
"location": {

"type" ;. "Point" ,

"coordinates": [-0.031525,
"Datastreams": [{

"name": "AirTemperature-012345678901234567890
1234",
"description":
temperature",
"observationType": "http://www.senviro.uji.es/",
"unitOfMeasurement": {

"name": "Degree Celsius",

nsymbol": "ec™,

"definition":

"http://www.qudt.org/qudt/owl/1.0.0/unit/

Instances.html#DegreeCelsius"},
"ObservedProperty": {

"name": "Si7021-A20",

"description": "Monolithic CMOS IC integrating
humidity and temperature sensor elements, an
analog-to-digital converter, signal processing,
calibration data, and an I2C Interface",
"encodingType": "application/pdf",

"metadata":
"https://www.silabs.com/documents/public/data-
sheets/S17021-A20.pdf"},
"Sensor": {

"Qiot.id": 1 }}

The example JSON object above (Listing [2) creates a Thing
with its mandatory properties (name and description). It also
creates its related location and datastream by adding corre-
sponding properties to the object. The embedded datastream
creates a related observed property and links to an already
registered sensor. Metadata about the owner and maintainer
are added in the object of the properties key value.

SEnviro nodes were created with no extended properties since

the observed properties and sensors were inserted in a previous

step of the setup. The size for necessary JSON object to create

a SEnviro node with its complete set of datastreams is 4,731

bytes.

Properties of any SensorThings API entity can be updated

by executing an HTTP Patch request its unique URL with a

JSON object containing the properties to be updated and the

new values. The example JSON object and the target URL

shown below update the name and description properties of a

registered sensor with ID=1.

"0123456789012345678901234™",
"A SensorThings station",

39.9801871}11,

"Datastream for recording air

+serverPath:port/FROST-Server/vl1.0/Sensors (1)

Listing 3. JSON example to update a Thing in SensorThings

APIL
1{ "name":"SparkfunSoilMoistureSensor",
2 "description": "Measures soil moisture" }

Entities can be deleted by using its unique URL in an HTTP
DELETE request. Deleting Things will remove all their related
datastreams including their affiliated observations, but will not
remove sensors or observed properties.

C. Insert/Update/Delete observations

In the same way that operations for the management of Things
are offered, the two standards define the operations necessary
for the treatment of the observations generated by Things.

1) 52North-SOS: After setting up sensors and their properties
within SOS, observations can be inserted using the Inser-
tObservation operation. This operation is also executed by
sending a JSON object containing the necessary details for
a successful insertion via HTTP POST to the service URL.
The object must include the ID of the procedure of origin, its
offering ID, the observed property ID, details about the feature
of interest (ID, coordinates, spatial reference system, sampled
feature), unit of measurement and the time and value of the
observation. The object size for SEnviro InsertObservation
requests is approximately 1,185 bytes. The example JSON
InsertObservation (Listing [) request below shows all the
mandatory details required.

Listing 4. JSON example of InsertObservation in SOS.

1{ "request": "InsertObservation",

2 "service": "SOS",

3 "wversion": "2.0.0",

4 "offering": "offering0123456789012345678901234",
5 "observation": {

6 "identifier": {

7 "value": "1",

8 "codespace": ""},

9 "type":

"http://www.opengis.net/def/observationType/
0GC-OM/2.0/0OM_Measurement",
"procedure": "0123456789012345678901234",
"observedProperty": "AirTemperature",
"featureOfInterest": {
"identifier": {
"value": "featureOfInterest012345678901234567890
12347,
"codespace":
"name": [
20 { "value":

"codespace":

"sampledFeature": [
"parent" 1,

"geometry": {
"type": "Point",
"coordinates": |
-0.073863,
39.993934
"crs": {
"type": "name",
"properties": {

"name": "EPSG:4326" }}}},
"phenomenonTime": "2018-11-30T16:53:43+00:00",
"resultTime": "2018-11-30T16:53:43+00:00",
"result": {

"uom": "°C",
"value": 84.621094}}}

nwy

"0123456789012345678901234",
oy,

] r

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

http://dx.doi.org/10.1109/JSEN.2020.3031315
IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2020

SOS observations can be assigned a unique identifier. When
inserting observations, SOS rejects the request if an observa-
tion with the same identifier is already present in the database.
This detail is an optional property in the InsertObservation re-
quest, but should always be added to facilitate calling specific
observations from the service and to make insert operations
idempotent.

52North-SOS has included the DeleteObservation operation
into the service. This operation enables clients to remove
observations from the service by posting a JSON object to the
server containing either details about the related entities (e.g.,
Procedures, Offerings...) or a temporal filter. Single observa-
tions can also be removed by using the identifier mentioned
above. Deleting observations does not remove items from the
database, but instead sets the attribute deleted (boolean) of the
observation items in the PostgreSQL database to from “F” to
0

2) FROST-SensorThings API: Inserting SensorThings API ob-
servations is done by sending the observation JSON object to
the corresponding target URL, composed of the Datastream
URL and /Observations. The JSON object must include the
result time as a string in /SO 8601 format and the value of the
measurement, as shown below (Listing [3). The approximate
size of SEnviro observations posted to FROST by the adapter
is 65 bytes.

Listing 5. JSON example of InsertObservation in Sensor-

Things APL
1{ "resultTime" "2019-01-14T12:35:47.000z2",
2 "result" 0.327 }

As showed above, in SensorThing API, each entity can be
updated using an HTTP Patch request using a unique URL
with a JSON object containing the new observation to be
updated. To delete an observation, the HTTP DELETE request
has to be used over the observation entity.

D. Retrieving metadata

The values and timestamps of observations hold little value
without knowing their origin, their nature and the purpose why
they are created. Therefore, it is crucial to obtain not only the
observations themselves but also information about the sensors
and their locations, the features they are observing and the
measured phenomena.

1) 52North-SOS: SOS defines a set of operations to retrieve
metadata from various sources within the service. 52North-
SOS includes these operations and features a couple of further
operations to add functionality. The essential SOS opera-
tion for retrieving service information is the getCapabilities
operation, which provides clients with the complete service
metadata about the deployed service, including information
about the tightly-coupled data served [17]. The code below
shows the 52North-SOS JSON version of the request (Listing
[6). An example for 52North-SOS gerCapabilities response is
not presented here, considering the space needed to show the
response object (over 1,600 lines).

Listing 6. JSON example of a GetCapabilities request in SOS.

1{ "request": "GetCapabilities",
2 "service": "SOS",
3 "sections": [

"ServiceIdentification",
"ServiceProvider",
"OperationsMetadata",
"FilterCapabilities",
"Contents"]}

Further operations use similar requests to get information
about node locations (getFeatureOfInterest) and about the
relations between measured phenomena, stations and features
of interest (getDataAvailability). Finally, DescribeSensor gets
the complete details of a present SOS procedure, including the
station owner and maintainer with contact details, the observed
phenomena, the SOS offering, the location and the time of
registration in the service.

2) FROST-SensorThings API: HTTP Get requests in the Sen-
sorThings API are capable of accessing and obtaining all the
information of all the present entities by using the extendable
URLSs to target, select, enrich output data. The most important
query operators for metadata queries are $expand and $select.
The $expand operator will add related entities to the output
of the requested entity provided they have a direct relation-
ship (see Figure [2). The expanded entity can again expand
directly related entities, allowing users to dig into the data
architecture. This is shown in the following target URL and
its corresponding JSON output (Listing [7)).

® 9 o w B

+serverPath:port/FROST-Server/
v1.0/Things (1) ?$expand=Datastreams ($Sexpand=
ObservedProperty)

Listing 7. JSON response from an expand query option to

display a Thing in SensorThings API.
1{"name" "270043001951343334363036",
2 "description" "SEnviro monitoring station with ID:
3 270043001951343334363036",
4 "Locations@iot.navigationLink"
5 "+serverPath:port/FROST-Server/vl1.0/
6 Things(l)/Locations",
7 "HistoricallLocations@iot.navigationLink"
8 "+serverPath:port/FROST-Server/v1.0/
9 Things(l)/Historicallocations",
10 "Datastreams@iot.navigationLink"
11 "+serverPath:port/FROST-Server/v1.0/
12 Things (1) /Datastreams",
13 "Datastreams" : [{
14 "name" "Battery-270043001951343334363036",

15 "description" "Datastream for recording battery
16 status",

17 "observationType" "http://www.senviro.uji.es/",
18 "unitOfMeasurement" : {

19 "name" "Percent",

20 "symbol" ",

21 "definition" "https://en.wikipedia.org/wiki/
22 Percentage" 1},

23 "phenomenonTime" "2019-01-30T14:27:06.1687Z/

24 2019-01-30T 14:46:55.0602",

25 "resultTime" "2019-01-30T14:26:27.000Z/

26 2019-01-30T 14:46:14.000z2",

27 "ObservedProperty" : {

28 "name" "Battery",

29 "definition" "https://en.wikipedia.org/wiki/
30 Electric_battery",

31 "description" "Battery readings in \%",

32 "Qiot.id" : 9,

33 "Qiot.selfLink" "+serverPath:port/

34 FROST-Server/v1.0/ ObservedProperties(9)" },
35 "@iot.id" : 22,

36 "@iot.selfLink" "+serverPath:port/
37 FROST-Server/v1.0/ Datastreams (22)"
33 "MultiDatastreams@iot.navigationLink"
39 +serverPath:port/FROST-Server/v1.0/

1
"http://

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

40
41
42
43

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2020)

http://dx.doi.org/10.1109/JSEN.2020.3031315

Things (1) /MultiDatastreams",
"Qiot.id" 1,

"@Qiot.selfLink" "+serverPath:port/
FROST-Server/v1.0/ Things(1)" }

The Thing with ID=1 is returned with all its main properties
and with its expanded datastreams, which in this case is
”Battery-270043001951343334363036”. The expanded datas-
tream is once again expanded to show its related observed
property.

In contrast to the $expand operator, the $select operator allows
users to select only certain properties of entities for the JSON
output. This can be used to reduce the size of the output files
by selecting only specific information of entities.

E. Observation retrieval

As one of the core features in both 52North-SOS and FROST-
SensorThings API, the services store observation data over
time and make them available in the WWW. Each service has
its way to access the stored observation data.

1) 52North-SOS: SOS observations are obtained using the
getObservation request. A JSON file containing the query
parameters is posted to the server (Listing [8), which delivers
a response file containing the requested observations. The
query can include one or more parameters among procedure,
offering, observedProperty, featureOfinterest, a spatialFilter
or a temporalFilter.

Listing 8. JSON example of GetObservation in SOS.

{ "request": "GetObservation",
"service": "SOS",
"version": "2.0.0",
"procedure": "270043001951343334363036",
"offering": "offering270043001951343334363036",
"observedProperty": "AirTemperature",

"featureOfInterest": "featureOfInterest270043001
951343334363036",
"spatialFilter":
"bbox": {
"ref": "om:featureOfInterest/
sams:SF_SpatialSamplingFeature/sams:shape",
"value": {

"type": "Polygon",

"coordinates": [[
0.07902860641479492,39.993478961731871,
0.07259130477905273,39.99033902142317],
0.0714111328125,39.99696396205215],
[-0.07902860641479492,39.993478961731871111}}3,

{

[,
[-
[

"temporalFilter": ({
"during": {
"ref": "om:phenomenonTime",

"value": [
"2018-11-29T14:43:00+00:00",
"2018-12-13T15:32:12+00:00"]1}}}

Adding query parameters will narrow down the output obser-
vations. Spatial filters are provided in GeoJSON encoding, and
temporal filters must support ISO8601 format.

52North has added support for the GetObservationByld, an
operation to obtain observation by its unique identifier. A file
needs to be posted to the server containing the observation
identifier. This returns the observation in the same format as
GetObservation, but adds the identifier with its value as an
attribute. The identifier must be known to the client before
invoking the operation. Example request and response objects
are presented below (Listings [9] and [T0).

Listing 9. JSON example of a GetObservationByld request in
SOS.

1{ "request": "GetObservationById",
2 "service": "SOS",

3 "version": "2.0.0",

4 "observation": ["2"]}

Listing 10. JSON example of a GetObservationByld response
in SOS.

"observableProperty"
"featureOfInterest"
"identifier" {
"codespace" "http://www.opengis.net/def/nil/
OGC/0/unknown",
"value" "featureOfInterest27004300195134333
4363036" 1},
"name" {
"codespace" "http://www.opengis.net/def/nil/
OGC/0/unknown",
"value" "270043001951343334363036" 1},
"sampledFeature" "parent2700430019513433343
63036",
"geometry"
"type" "Point",
"coordinates" [
40.133098, -0.061 11},
"phenomenonTime" "2018-12-26T13:47:58.000z2",
"resultTime" "2018-12-26T13:47:58.000z2",
"result" {
"uom" "e",
"value" 81.726563 }}

2) FROST-SensorThings API: Several SensorThings API
query operators come in useful to query observations. The $or-
derby operator is used to sort the output JSON objects, which
can be extended with suffixes for descending or ascending
order (desc, asc). The number of output objects is specified
with the $top and the $skip operator allows the user to skip a
specified number of observations. The $count operator returns
the number of queried observations as a JSON property at the
top of the output file. The above-mentioned operators are used
in the query URL below:

"Battery",
{

1{ "type" "http://www.opengis.net/def/observation
2 Type/OGC-OM/2.0/0OM_Measurement",

3 "identifier" {

4 "codespace" "http://www.opengis.net/def/nil

5 /OGC/0/unknown",

¢ "value" "2y,

7 "procedure" "270043001951343334363036",

8

9

{

+serverPath:port/FROST-Server/v1.0/
Datastreams (1) /Observations?$count=true&$skip=500&
Stop=50&S$select=resultTime, result&$Sorderby=result

The query returns the top 50 observations from the datastream
with ID=1, skipping the first 500 values and ordering by result
value. The total amount of observations is counted, and the
output file only returns the time stamps and the result values
of the observations.

SensorThings API also features the filter operator. This highly
configurable operator is used to make complex queries using
a set of over 35 in-built operators and functions. By using the
operators and functions, the SensorThings API has extensive
possibilities of combining the various query operators and
function as filters for pinpointing specific data. The following
example URL selects datastreams containing ~’SoilHumidity”
as a substring in the name property and expands the selected
datastreams’ observations that have values lower than 2,500
m3/m?3.

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

1
2
3
4
5

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

http://dx.doi.org/10.1109/JSEN.2020.3031315
IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2020

+serverPath:port/FROST-Server/
vl.0/Datastreams?$filter=substringof ('SoilHumidity"
,name) &$Sexpand=Observations ($filter=result 1t 2500)

While the maximum number of observations in a single
response file is limited in the SensorThings API, the output file
always includes a link to the next set of observations until all
the observations called with the query parameters have been
served. Output objects for unmodified FROST observation
requests have the following format (Listing [TT).
Listing 11. JSON example of InsertObservation

{ "Qiot.nextLink"

"t+serverPath:port /FROST-Server/
v1l.0/Observations?$top=1&$skip=1",

"value" : [{

"phenomenonTime" "2018-11-26T13:48:03.94062",
"resultTime" "2018-11-26T13:47:26.000z2",
"result" 21.136395,

"Datastream@iot.navigationLink":
"t+serverPath:port /FROST-Server/v1.0/
Observations (1) /Datastream",
"FeatureOfInterest@iot.navigationLink":
"+serverPath:port/FROST-Server/v1.0/
Observations (1) /FeatureOfInterest",
"Qiot.id" 1,

"@Qiot.selfLink"
"t+serverPath:port/FROST-Server/v1.0/
Observations (1)" }1}

VI. QUANTITATIVE RESULTS

52North-SOS supports all the standard SOS operations, but
their data visualisation tool, the Helgoland Client, uses its
request method and API to obtain observations. Helgoland
is therefore analysed separately to show its potential in the
response time analysis. The data retrieved by the Helgoland
Client contains only information about the time and value of
observations, improving performance. An equivalent FROST-
SensorThings API query, limiting result details to observation
time and value, was created for comparison with Helgoland
(called FROST reduced). The test queries below obtain 1,000
observations.

o 52North-SOS - getObservation: This query uses the
standard SOS getObservation request. A getObservation
request file containing query parameters for procedure
(monitoring station), observed property and temporal
filter, is posted to the server via HTTP POST using
the service URL. The server then sends a response file
with the corresponding observations. Standard SOS uses
XML encoding, but 52North-SOS supports JSON format,
which is used in this request.

— URL:

+serverPath:port/52n-sos-webapp/service

— Post data:
{"request": "GetObservation",
"service": "SOS",
"version": "2.0.0",
"procedure": "270043001951343334363036",
"observedProperty": "Battery",
"temporalFilter": {
"during": {
"ref": "om:phenomenonTime",
"value": ["2019-01-14T14:14:52.000z",

"2019-01-21T11:20:52.000Z2"]}}}

o 52North-SOS Helgoland Client: 52North-SOS Hel-
goland Client queries are executed on the client interface.
The query parameters are inserted by selecting the proce-
dure on a map, observed properties (phenomena) from a
list. The time parameters are selected in a consecutive
step. The API URL is then compiled and sends an
HTTP GET request to the server, which returns the
requested values and time stamps and displays them in
an interactive diagram.

+serverPath:port/52n-sos-webapp/
api/datasets/quantity_9/data?expanded=true&
format=flot&generalize=false&locale=de&
timespan=2019-01-14T14:14:52%2B01:00%
2F2019-01-21T11:20:52%2B01:00

o FROST: FROST observations are obtained with an HTTP
GET request. The target URL is extended with the query
parameters. This query URL uses fop to specify the
number of obtained observations and filfer to add time
constraints.

+serverPath:port/FROST-Server/v1.0/

Datastreams (18) /Observations?$top=1000&$filter=
phenomenonTime%20gt%202019-01-14T14:14:522%20
and%$20phenomenonTime%$201t%$202019-01-21T11:20:5272

e FROST (reduced): Here the query URL from above is
further extended with the select operator, allowing the re-
striction of output attributes of the obtained observations.

+serverPath:port/FROST-Server/vl.0/Datastreams (18)
/Observations?$top=1000&$select=phenomenonTime,
result&S$Sfilter=phenomenonTime%209t%202019-01-14T
14:14:5272%20and%20phenomenonTime$201t%20
2019-01-21T11:20:52%2

The results for the monitored performance parameters were
extracted, stored and analysed. Response times and file sizes
were measured using Postman collections, while JMeter and
cAdvisor was used to monitor CPU and memory.

A. Client side: response times and sizes

This section contains graph visualisation for response time
and size data from the client point of view. Figure [5] shows
the sizes of the response files of the different queries by
the different services. The output file size for 52North-SOS
is the largest, resulting in 1,110 kb at 1,000 observations.
Helgoland Client requests return the smallest file sizes, with
returned files holding 22.77 kb at 1,000 observations, though
the files also contain the shortest amount of metadata. Standard
FROST-SensorThings API requests reach up to 557 kb at 1,000
observations, which is reduced to 81.28 when reducing output
files to contain only timestamps and values. Figure [5] shows
the file sizes growing at a linear rate.

An essential feature in both SOS and SensorThings API is
the SWE DataArray format. This feature is used to reduce
the size of the observations transmitted over the network
for measurement insertion or retrieval. The SWE DataArray
contains 1) values metadata: number of values, time and
values encoding, and 2) values: sensor data according to the

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

http://dx.doi.org/10.1109/JSEN.2020.3031315

AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2020) 13

HTTP response size for observation retrieval

100 200 400 500 600 800 1000
Observations

— 52North-SOS — 52North-SOS Helgoland — FROST-Ser

Fig. 5. Response sizes between 52n-SOS, 52N-SOS
Helgoland, FROST-SensorThings API and
FROST-SensorThings API (reduced).

FROST-SensorThings API (reduced)

value’s metadata. In 52North SOS, a request for 100 SEnviro
observations reaches from a size of 107 KB in the default
format to 8.77 KB using the getObservation operation with
the MergeObservationsIntoDataArray parameter set to true.

Similar to the SWE DataArray in the OGC SOS, SensorThings
API also provides the support of DataArray to aggregate
multiple Observation entities and reduce the request and
response size. SensorThings API mainly uses SWE DataAr-
ray in two scenarios: (1) get observation entities in SWE
DataArray, and (2) create observation entities. In FROST
a request of 100 SEnviro’s observations is 48.6 Kb, and
with the SWE DataArray extension, we obtain a response
of 9.63 KB. In order to request for DataArray, users must
include the query option $resultFormat = dataArray when
requesting Observation entities. FROST response sizes using
SWE DataArray are larger because for each observation five

39 99

resultTime

ITRT)

different components are added (” result ”,
resultQuality)’ validTime)’ parameters ™).

Response times between all implementation variants are dis-
played in Figure[6} This chart shows the fastest response times
for reduced FROST requests at an average speed of 218 ms,
closely followed by 52North-SOS and Helgoland Client at 229
ms and 233 ms respectively. FROST requests hold the longest
response times with an average of 315 ms. Generic FROST
observation requests have the highest response times in most
of the requests, peaking at 436 ms at the 600 observation mark.
Standard 52North-SOS getObservation requests are faster than
FROST by an average of 86.12 ms, though they take longest
for a single observation, FROST by 75 ms. The Helgoland
Client’s API shows a similar behaviour to 52North-SOS, but
spikes when requesting 800 observations with an average
response time of 401 ms. In terms of computational time, all
scenarios follow a linear time (O(n)).

B. Server side: web service metrics

The observation retrieval HTTP requests used for the response
times and sizes analysis for FROST-SensorThings API and
52North-SOS were configured in JMeter and executed in
test runs of three minutes with one request per second as
done in [26| 27]. Using the cAdvisor API and the automated
requests in JMeter, container CPU usage and memory usage
were extracted and written into CSV files by the container
monitoring script. Figure [7| shows graph visualisations of the

HTTP response times for observation retrieval

Milliseconds (ms)

1-S0S — 52North-SOS Helgoland — FROST.

Fig. 6. Response times between 52n-SOS, 52N-SOS Hel-
goland, FROST-SensorThings API and FROST-SensorThings
API (reduced).

CPU metrics output for both services. 52N-SOS Helgoland
and FROST-SensorThings API (reduced) are not considered
because from the client side they carry the same computational
cost as the original standards.

Container CPU usage during requests of 1000 observations in FROST-SensorThings API
and 52North-SOS

Fig. 7. CPU usage behaviour from FROST-SensorThings API
and 52North-SOS during responses of 1000 observations.

Plotting the results for both services in active state (Figure
shows FROST’s higher CPU usage. FROST-SensorThings
API uses an average of 22.58% more processing power than
52North-SOS during observation requests. The difference in
the CPU maximum between the two services lies at 86.03%.
Figure (8] shows the average CPU values of both FROST-
SensorThings API and 52North-SOS increasing amounts of re-
quested observations. FROST-SensorThings API average CPU
usage shows all values for different response sizes between
4.4% and 22.3%. In 52North-SOS, average CPU values lie
between 2.6% and 3.1%. Neither of the services show a con-
tinuous increase of CPU usage with increasing response sizes
in observation requests, instead rising and falling seemingly
at random. The colour areas show the standard deviation;
CPU usage is more fluctuant in FROST-SensorThings API
measurements than in 52North-SOS.

The CPU usage behaviour for FROST-SensorThings API and
52North-SOS, both services show a noticeable activity during
constant observation requests. The usage does not change with
increasing response sizes up to 1,000 observations. Overall,
52North-SOS shows lower and more stable CPU values.

The graph in Figure [9] shows the RAM behaviour under
request activity of 1,000 observations. Both graphs show very
little activity during the monitoring run, though the average
values are higher than in idle state. In idle state, 52North-SOS
uses approx. 2,572MB RAM, while FROST-SensorThings API

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

http://dx.doi.org/10.1109/JSEN.2020.3031315
IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2020

CPU usage for different response sizes in FROST-SensorThings APl and 52North-SOS

400 500 600 800 1000

Observations

sorThings APl — 52North-SOS

Fig. 8. CPU usage for different response sizes in
FROST-SensorThings API and 52North-SOS.

requires 3,116MB. These values include the RAM for the
corresponding database containers, which may increase with
a growing amount of data. FROST-SensorThings API average
memory usage in an active state lies at 3,363MB, resulting in
an increase of 247MB. Similarly, 52North-SOS memory usage
lies at 2,741.7MB, incrementing RAM usage by 170MB.

Container memory usage during requests of 1000 observations
in FROST-SensorThings APl and 52North-SOS

20 40 60 80 00 120 40 160 180
Time (seconds)

s APl — 52North-SOS

Fig. 9. Memory usage behaviour from FROST-SensorThings
API and 52North-SOS during responses of 1000
observations.

When looking at the RAM behaviour during different ob-
servation requests, average values do not show significant
changes reflecting the response sizes (Figure [I0). This test-
ing method was repeated several times and showed slightly
different results every time, indicating that the memory is not
meaningfully affected by observation requests. In this case,
the standard deviation is grouped in both developments.

Memory usage for different response sizes in FROST-SensorThings APl and 52North-SOS

— FROST-SensorThings AP vations

— 52North-SOS

Fig. 10. Memory usage for different response sizes in
FROST-SensorThings API and 52North-SOS.

VII. DISCUSSION

When comparing SOS and SensorThings API along with their
implementations, one should keep in mind that the more

modern SensorThings API is in many ways tailored for the
usage with IoT devices (hence its name) and therefore may
have an advantage when contrasting it with SOS in terms
of IoT adequacy. However, both standards can be applied
effectively in an IoT context, and therefore a comparison
does highlight the key differences, along with strengths and
weaknesses.

52North started developing its SOS implementation in 2010.
Over the past nine years, technology has advanced consider-
ably, and 52North has been adding features regularly to stay
up-to-date. This becomes evident in the multitude of encoding
formats and bindings, the extended operations with added
functionality and the extent of configuration options. These
extra features enhance the accessibility and configurability of
SOS in several ways, contributing to the interoperability of the
standard.

A significant addition to 52North-SOS is the support for
JSON encoding format. JSON has emerged as a popular
encoding format in recent years due to its simple syntax
and easy serialisation to JavaScript variables, making it more
compatible with modern web applications. Further arguments
that favour the usage of JSON versus XML are that it has
little overhead and that less bandwidth is required to transmit
messages [28]. 52North-SOS supports JSON format for all
the SOS core and transactional operations and most of the
enhanced SOS operations, but XML messages are still encoded
inside the JSON.

All encoding types for 52North-SOS operations including
the JSON version are HTTP POST requests. The objects
posted to the SOS server for transactional operations have
different sizes but are generally larger than data insertions
into FROST-SensorThings API. Requesting observations also
requires posting an object containing the query parameters,
while in FROST-SensorThings API this can be done with
a GET request to the target URL using the API’s query
extensions. Request output is also more abundant in SOS for
the most part than it is in SensorThings API GET requests,
leading to general inflation of data traffic. A list of the different
operations, their request type input and output sizes are shown
in Table [

52North-SOS FROST
Operation Request Size Size Request Size Size
P type In Out type In Out
Insert single POST | 4829 202 POST 4731 223
device
Request device | oo 671 | 15986 | GET 10103
information
Insert single POST 1168 88 POST 105 65
observation
Request single POST 105 1361 GET - 616
observation
Delete device POST 105 230 DELETE - 230
Update single POST | 5733 226 | PATCH a1 148
device property

TABLE I. 52North-SOS and FROST-SensorThings request
types and approximated input and output object sizes in
bytes for SEnviro.

52North-SOS data can be accessed, visualised and maintained
using an extensive client interface. Particularly the integration
of the Helgoland client gives users an effective, easy-to-use

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

http://dx.doi.org/10.1109/JSEN.2020.3031315

AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2020) 15

and resource efficient data visualisation tool, saving users
some effort in developing their interfaces. However, SEnviro
already has its stand-alone web interface for data visualisation
and analysis, therefore the Helgoland Client is not necessary.
Moreover, the 52North-SOS service interface may confuse
some users. The interface has so many options, settings and
features that non-expert users may easily be overwhelmed by
the vastness of its possibilities. SWE standards like SOS are
as complex as needed, aiming to include support tasks ranging
from the management of in-situ stations to the control of satel-
lites. 52North-SOS is designed to support a vast spectrum of
tasks, many of which are not necessary for IoT environmental
monitoring applications like SEnviro, where devices run with
limited resources.

In terms of performance 52North-SOS getObservation re-
quests performs better than SensorThings API GET requests.
This came as a surprise since the data traffic in SOS is heavier
given the number of objects transferred and the object’s sizes
(see Table E[) Furthermore, 52North’s Helgoland client uses
an API that improves response speed even further by reducing
output information.

The SensorThings API (and FROST) surpasses 52North-SOS
by a large margin in terms of flexibility and scalability. While
52North-SOS transactional operations can be configured to
some extent, the input data must follow strict formats and
semantics in order for requests to be successful. Once inserted,
many of the service properties are difficult or impossible to
update. In contrast, the SensorThings API data model and API
makes inserting data extremely flexible [29]. Since multiple
types of related entities can be inserted within the same
request, clients can construct the JSON objects to be inserted
in a "building block” fashion, assembling related entities as a
single object. Additionally, the entities can be inserted sepa-
rately and consequently linked with HTTP PATCH requests.
This also allows any property of any entity within the service
(apart from the unique ID) to be updated in an easy, developer-
friendly way.

SensorThings API also provides a multitude of scaling possi-
bilities for data output. 52North-SOS queries can be configured
using up to five query parameters (e.g., spatial, temporal,
properties) to narrow down output observations, which always
include the full observation object and cannot be modified.
SensorThings API queries can consist of an almost unlimited
amount of query operators, which can be used to query any
property of any entity within the service. The operators can
be chained within the target URL, so no object needs to be
posted to the server.

The fact that FROST does not include a user interface is
irrelevant in a project like SEnviro, since a custom client
interface has already been developed. Furthermore, Fraunhofer
IOSB is developing FROST-Client and FROST-Dashboard
client applications that provide user interfaces connecting to
FROST-Server. Nonetheless, the SensorThings API’s flexi-
bility makes it easy to connect custom client interfaces to
the service. SensorThings’ usage of frequently used data
standards like ISO8601 for dates and GeoJSON for spatial
data combined with JSON encoding format facilitates spatial
web development in countless ways, demonstrating the Web

Standard’s superiority over other standards and ensuring its
interoperability.

In terms of response times, FROST-SensorThings API did not
excel 52North-SOS, instead showing longer response times
for getting observations with the minimum number of query
operators. When applying query filters to reduce the size
of data requested the response times are reduced to similar
response times as SOS getObservation requests.

The results from the CPU and RAM usage show 52North-SOS
as being less demanding than FROST-SensorThings API. This
did come as a surprise since the FROST-SensorThings API
functionalities are more focused on the essential data exposure
using the REST API and does not include the array of different
features 52North-SOS has (e.g., binding and encoding formats,
client interface, configurable settings etc.). To fully understand
the reason for 52North-SOS’ superior performance, further
investigations are necessary, analysing the core mechanisms
of the services in detail. It was eventually concluded that
52North-SOS has been developed for a longer period of time
than FROST-SensorThings API and therefore performance was
optimised.

Unmodified response sizes from observation requests are
smaller in FROST-SensorThings API. This promises reduced
data traffic when requesting observations, for example in web
applications for visualising large amounts of observations. As
mentioned above, to make a tangible quantitative compari-
son requests were limited to 1,000 observations within the
performance analysis. Attempts to retrieve larger amounts of
observations were made though. On the one hand, 52North-
SOS would frequently freeze or crash when requested amounts
of data were too large. FROST-SensorThings API, on the other
hand, can handle any amount of requested observations due
to the approach of limiting file output but providing web links
to the still pending data.

FROST-SensorThings API and 52North-SOS CPU and mem-
ory usage do not increase proportionally to the number of ob-
servation requests. However, this may change when requesting
larger data sets.

Although the performance analysis does not favour FROST-
SensorThings API over 52North-SOS, it was nonetheless
concluded that FROST’s advantages in the qualitative analysis
sufficiently outweigh 52North-SOS. Finally, it is important to
note that the performance results do not only derive from
the web standards themselves, but rather from their imple-
mentations. When looking past FROST-SensorThings API and
52North-SOS at the mere web standards, the SensorThings
API’s data model and operations comply more fully with the
IoT concept and with the requirements of current environmen-
tal monitoring and Smart Farming applications.

VIIl. CONCLUSIONS

Investigating SOS it was concluded to be outdated many of
aspects, lacking support for modern web technology trends,
such as the use of JSON, RESTful binding and MQTT [30].
52North-SOS has compensated many of these shortages with
a multitude of features and has the capabilities to integrate
with a large range of device types and can be applied to

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

http://dx.doi.org/10.1109/JSEN.2020.3031315
IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2020

a wide spectrum of use cases. However, many of these
features are workarounds for the outdated SOS data model
and operations [29]]. What 52North-SOS adds in functionality
it lacks in flexibility and scalability, which has a strong
impact on developer experience. Furthermore, the myriad of
configurations and settings in the client interface render the
software overwhelming. Since SEnviro has it is own client
interface the extensive front-end features of SOS are not
relevant to SEnviro, but may be useful in projects in need of
an effective data visualisation tool such as the 52North-SOS
Helgoland Client.

The SensorThings API proves to be an excellent choice for
interoperability enhancement for SEnviro and environmental
monitoring applications in the IoT field. FROST-SensorThings
API implements the complete SensorThings API data model
and functionalities of the standard as a back-end server in-
stance, making it suitable for the integration into SEnviro. The
API is flexible, scalable and follows modern web development
trends. It focuses on the essential functionalities required in
an IoT environment. Interoperability is guaranteed by using
up-to-date technologies. Data is stored in compact JSON
encoding and can be easily inserted, updated and removed via
HTTP requests. Stored entities can be accessed by HTTP GET
requests and data output can be customised by large variety of
query parameters. A good developer experience is ensured by
making the service flexible and scalable. While showing higher
resource consumption and response times than 52North-SOS,
performance issues can easily be overcome by using URL
extensions to select only the required data, maintaining a low
overhead.

One of the main limitations of the work can be seen in
the selection of the chosen web standard implementations.
Although a semantic comparison should not vary, since it is
based on the regulations of the standard itself, the performance
obtained in terms of time and CPU/memory resources of each
option can be strongly linked to the developed software itself,
therefore producing very different results.

An important point to note is that both implementations have
been deployed following the default configuration parameters.
For example, in FROST, only primary and foreign keys have
indexes on them. It implies that if the database grows, a sig-
nificant decrease in performance may occur. So it is advisable
to identify which queries are used most frequently and add
the appropriate indexes. In our study (SEnviro’s use case), a
large number of observations are not stored. It consisted of five
nodes and operated during a vine season (4 months). In total,
the experiments were realised using 197,887 observations. In
case of expanding the number of vine seasons, we would apply
these optimisations as future work.

This study not only answered questions about the researched
topic, but also revealed some further issues and possible
future work. Firstly, more web standards are bound to be
released in the coming years and should be investigated. The
SensorThings API shows great potential as it stands, but also
needs to be further tested, especially considering the OGC’s
release of the SensorThings API’s Tasking capabilities in
January 2019.

A feature that strongly favours SensorThings API over other

standards is its data publish/subscribe support via MQTT,
avoiding larger data traffic via the HTTP protocol. FROST
includes this service, making it possible for devices to publish
directly to the FROST-server. This feature was not experi-
mented on in this research because of the configuration of
SEnviro Nodes and SEnviro Connect. Including the FROST
MQTT support would include modifying the existing SEnviro
architecture, which is outside the scope of this project but
should be considered in future work.

Finally, another experimentation would be to carry out this ap-
proach from the Things’ side. For this, a central server would
not be used, and each Thing would have the ability to execute
operations autonomously. The services would be embedded in
each device. New implementations of the standards should be
developed capable of being performed in environments with
restrictive features in terms of computational cost, memory,
connectivity and energy.

REFERENCES

[11 J. Gubbi, R. Buyya, S. Marusic, et al., “Internet of Things (IoT): A vi-
sion, architectural elements, and future directions,” Future Generation
Computer Systems, 2013.

[2] R. Sutaria and R. Govindachari, “Making sense of Interoperability:
Protocols and Standardization Initiatives in IoT,” The 2nd ComNeT-
IoT workshop in the 14th International Conference on Distributed
Computing and Networking (ICDCN 2013), 2013.

[3] A. Bassi and G. Horn, “Internet of Things in 2020: A Roadmap for
the Future,” European Commission: Information Society and Media,
vol. 22, pp. 97-114, 2008.

[4] R. Alur, E. Berger, A. W. Drobnis, et al., “Systems computing
challenges in the internet of things,” arXiv preprint arXiv:1604.02980,
2016.

[5] M. T. Lazarescu, “Design of a WSN Platform for Long-Term Environ-
mental Monitoring for IoT Applications,” IEEE Journal on Emerging
and Selected topics in Circuits and Systems, Vol. 3, NO. 1, 2013.

[6] IEEE, “IEEE Standard Computer Dictionary: A Compilation of IEEE
Standard Computer Glossaries,” IEEE Std 610, pp. 1-217, Jan. 1991.

[71 B. Weinberg, “The Internet of Things and Open Source (Extended
Abstract),” in Interoperability and Open-Source Solutions for the
Internet of Things, ser. SoftCOM 2014, 2014.

[8] C. Granell, A. Kamilaris, A. Kotsev, et al., “Internet of things,” in
Manual of Digital Earth, Springer, 2020, pp. 387-423.

[91 A. Kotsev, K. Schleidt, S. Liang, et al., “Extending inspire to the

internet of things through sensorthings api,” Geosciences, vol. 8, no. 6,

p. 221, 2018.

S. Trilles, O. Belmonte, L. Diaz, et al., “Mobile access to sensor

networks by using gis standards and restful services,” IEEE Sensors

Journal, vol. 14, no. 12, pp. 4143-4153, 2014.

S. T. Oliver, A. Gonzélez-Pérez, and J. H. Guijarro, “An iot proposal

for monitoring vineyards called senviro for agriculture,” in Proceedings

of the 8th International Conference on the Internet of Things, ser. 10T

18, Santa Barbara, California: ACM, 2018, 20:1-20:4.

S. Trilles, A. Gonzélez-Pérez, and J. Huerta, “An iot platform based on

microservices and serverless paradigms for smart farming purposes,”

Sensors, vol. 20, no. 8, p. 2418, 2020.

C.-Y. Huang and C.-H. Wu, “A Web Service Protocol Realizing

Interoperable Internet of Things Tasking Capability,” Sensors, 2016.

C. Reed, “Data integration and interoperability: Iso/ogc standards for

geo-information,” Development directions, Feb. 2004.

J. Fredericks and M. Botts, “Promoting the capture of sensor data

provenance: a role-based approach to enable data quality assessment,

sensor management and interoperability,” Open Geospatial Data, Soft-

ware and Standards, vol. 3, no. 1, 2018.

Open Geospatial Consortium, opengeospatial.org,

http://www.opengeospatial.org, Accessed: 2019-01-14, 2019.

[17] , Sensor Observation

https://www.opengeospatial.org/standards/sos,

01-14, 2007.

_ oGC SensorThings API -

http://www.opengeospatial.org/standards/sensorthings,

2019-01-14, 2016.

[10]

(1]

[12]

[13]
[14]

[15]

[16]

Service,
Accessed: 2019-
[18] Sensing,
Accessed:

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/JSEN.2020.3031315

AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2020) 17

[19]

J. Pradilla, M. Esteve, and C. Palau, “SOSLite: Lightweight Sensor Ob-
servation Service (SOS),” IEEE LATIN AMERICA TRANSACTIONS,
vol. 13, 2015.

Alberto Gonzalez is currently pursuing his
Ph.D. in Computer Science thanks to an FPU
grant from the Spanish Ministry of Science, Inno-

[20] Open Geospatial Consortium, Best practice for sensor web enablement vation and Universities. Previously, he received
lightweight sos profile for stationary in-situ sensors, Open Geospatial his master's Degree in Intelligent Systems in
Consortium, 2014. 2018 and a bachelor’s degree in Computer Sci-

[21] J. Pradilla, M. Esteve, and C. Palau, “SOSFul: Sensor Observation ence in 2017. He has experience developing
Service (SOS) for Internet of Things (IoT),” IEEE LATIN AMERICA web applications, mobile applications and web
TRANSACTIONS, vol. 16, 2018. services, also working with embedded hard-

[22] A. Samourkasidis and I. N. Athanasiadis, “A sensor observation ware. He aims to expand his developer toolbox
service extension for internet of things,” in International Workshop on adding data scientist skills during his Ph.D. stud-
Interoperability and Open-Source Solutions, Springer, 2016, pp. 56-71. ies, concretely geospatial analysis skills.

[23] S. Trilles, J. Torres-Sospedra, 0. Belmonte, et al., “Development
of an open sensorized platform in a smart agriculture context: A
vineyard support system for monitoring mildew disease,” Sustainable
Computing: Informatics and Systems, 2019.

[24] A. Kamilaris, F. Gaoy, F. X. Prenafeta-Boldd, et al., “Agri-IoT: A
Semantic Framework for Internet of Things-enabled Smart Farming
Applications,” 2016 IEEE 3rd World Forum on Internet of Things (WF-
10T), 2016.

[25] S. Trilles, A. Lujan, O. Belmonte, et al., “Senviro: A sensorized
platform proposal using open hardware and open standards,” Sensors,
vol. 15, no. 3, pp. 5555-5582, 2015.

[26] M. A. da Cruz, J. J. Rodrigues, A. K. Sangaiah, et al., “Performance
evaluation of iot middleware,” Journal of Network and Computer
Applications, vol. 109, pp. 53-65, 2018.

[271 J. d. C. Silva, P. H. Pereira, L. L. de Souza, et al., “Performance
evaluation of iot network management platforms,” in 2018 Interna- 3 . .
tional Conference on Advances in Computing, Communications and Joaquin Torres-Sospedra received his PhD
Informatics (ICACCI), 1EEE, 2018, pp. 259-265. about Ensembles of Neural Networks and Ma-

[28] A. Tamayo, C. Granell, and J. Huerta, “Using SWE Standards for Chm_e Learning from Unlver_snat ‘Jaur_ne '_n_ 2011
Ubiquitous Environmental Sensing: A Performance Analysis,” Sensors l. S_Ince January 2020 he s the S_Clentlflc Co-
2012, 2012. ordinator of UBIK Geospatlgl Solutions. He has

[29] J. A.B.S. Teixeira, “Using sensorthings api to enable a multi-platform authored more _than 120 articles in]_ournals a!'1d
iot environment,” 2018. confergnces. HIS. 'cur'rent resgarch interests In'-

[30] H. Van Der Schaaf, J. Mofigraber, S. Grellet, et al., “An environmental clude indoor positioning solutions based on Wi-

sensor data suite using the ogc sensorthings api,” in International Sym-
posium on Environmental Software Systems, Springer, 2020, pp. 228—
241.

Daniel Marsh-Hunn currently works as a spa-
tial web developer at geOps - Open Source
Spatial Web. He received an Erasmus Mundus
Scholarship for the Erasmus Mundus Master in
Geospatial Technologies at Jaume | University,
from which he graduated in March 2019. More-
over he holds a BSc. in Environmental Systems
Sciences with emphasis on geography. His main
interests lie in all things spatial, be it GIS, spatial
web or geo-enabled loT applications.

Sergio Trilles has a PhD in Integration of
Geospatial Information from the Jaume | Univer-
sity in 2015 and he is currently a post-doctoral
fellow at University Jaime |, holding a Juan de
la Cierva-Incorporacion fellowship. His research
lines are centre on geospatial fields such as
the Internet of Things (sensors), interoperability,
geoprocessing or web mapping. He is author
of more than fifty journal and conference peer-
reviewed publications.

Fi & BLE, Machine Learning and Evaluation. He
is the chair of the IPIN International Standards
Committee and IPIN off-site Competition.

Francisco Ramos is associate professor in the
Department of Computer Languages and Sys-
tems at UJI (Spain). He got his Ph.D. with hon-
ours from this University in 2008. His research
interests are in the areas of mobile interaction,
computer graphics, visualization and GIS. He
is CTO and co-founder of Emotional Apps, an
enterprise which combines technology and emo-
tions by means of creating innovative mobile

apps.

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

