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Solid-state white-light emission from a pyrylium dye obtained in 
one synthetic step  

 Ignacio Muñoz Resta, a Juan F. Miravet,a Minoru Yamaji*b and Francisco Galindo*a

Seven pyrylium salts have been synthesized by condensation of p-

substituted acetophenones and acetic anhydride, and 

characterized their photophysical features. One of the prepared 

compounds (7) constitutes the first example of pyrylium dye 

displaying white light emission in the solid state.  

 During the last decades, a great effort has been devoted to 

the development of new organic materials with appropriate 

emissive properties in the solid state. Materials for the 

manufacture of optoelectronic devices such as light-emitting 

diodes (OLEDs) and organic light-emitting field-effect 

transistors (OLEFETs) are under a permanent innovation 

process. The search for systems with higher emission quantum 

yields (ΦF) along with simpler production processes is a 

constant objective for the technological industry. However, 

most fluorescent molecules in solution become non-emissive in 

the condensed phase due to processes inhibiting the radiative 

decay from the excited to the ground state (aggregation- caused 

quenching, ACQ), typically due to intermolecular interactions, 

although not limited to this reason.1  

 Molecules able to avoid the quenching process in the solid 

phase comprise, for instance, unsymmetrical triarylamines,2 

dipiperidinobenzenes,3 tetraphenylethylenes,4 siloles,5 

benzoxazole and benzothiazole derivatives,6 biindenyls7  and 

tetrasubstituted benzenes.8 Interestingly, some of these 

molecules have been implemented in practical devices shortly 

after the basic development. For instance, Ishow’s triarylamines 

were converted into solid-state lasers9 whereas Zhang’s 

tetrasubstituted benzenes have been used recently to create 

optical waveguides.10 

 Within the field of solid-state emitters, there is a growing 

interest for finding systems capable of attaining a much 

complex objective like emitting white light. To reach this goal, 

two strategies have been followed. On the one hand to combine 

two fluorophores, in a host matrix, one emitting in the blue 

region of the spectrum and the other in the orange-red part, in 

such a way that the combination of them yields the desired 

white luminescence. This is the case, for instance, of 

naphthalimide and triazine derivatives contained in silica 

nanoparticles,11 or of hexanuclear molybdenum clusters 

embedded in an ureasil matrix.12 On the other hand, another 

strategy is the synthesis of organic molecules displaying broad 

emission bands in the range 400-700 nm. This latter approach is 

very attractive from the practical point of view, and has led 

recently to interesting molecules that afford white-light 

emission like, for instance, difunctional 4-pyridone,13 

substituted benzophenones,14 triazole derivatives,15 oxazole 

compounds,16 o-carborane derivatives,17 4-

chlorobenzoyldibenzothiophene18 and 1,2,3,4-

tetraphenyloxazolium cations.19  

 Several reviews have covered the field of solid-state 

emissive materials, including white-light emitters, all showing 

examples of rational and combinatorial approaches for the 

discovery of emissive molecular, macromolecular and soft 

materials.1,20 Currently there is a consensus in the need for 

simple operational procedures for the synthesis of the 

luminescent materials. As stated by M. Shimizu et al. in 2010: 

‘High quantum yield is only one of the requirements for 

versatile emitting materials. Simple, cheap, efficient 

preparations, effortless purification, are all essential for 

practical applications’.20a  

 In this regard we would like to report the synthesis of seven 

pyrylium salts (1-7, see Scheme 1) and their emissive properties, 

both in solution and in the solid state. Among those dyes, 

compound 7 stands out because its luminescence in powder 

(when evaporated from acetonitrile) meet the criteria of the 

Commission Internationale de l’Eclairage (CIE) for white-light 

emission. 
 

 
Scheme 1. Synthetic process for compounds 1-7. 
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 This result is notable from the practical point of view since, 

although the emission ΦF is moderate (9%), this salt is made in 

one-step from commercially available starting materials, and its 

purification is done just by precipitation. The results here 

presented can be an opportunity to expand the family of known 

dyes showing white-light emission to the group of pyrylium 

compounds. These salts have been studied so far in fields as 

diverse as photocatalysis,21 photodynamic therapy,22 

fluorescent cellular probes,23 chemosensors,24 polarity 

probes,25 nanoparticle characterization26 and Raman probes.27 

Scarce studies have been published describing the emission of 

solid samples of pyrylium salts, most of them from the 

qualitative viewpoint.28 To the best of our knowledge, there is 

no precedent of describing a pyrylium dye as a white-light 

emitter. Only a related cation (based on the 4’-

methoxyflavylium structure) has been described recently by I. 

E. Serdiuk as white-light fluorophore.28d 

 Synthesis of 1-7 was accomplished by means of a 

condensation reaction between acetic anhydride and two 

molecules of the corresponding p-substituted acetophenone in 

the presence of BF3-etherate as catalyst (Scheme 1).29 After 2 h 

of reaction at 138 ºC, the colored solution was poured into 

excess of diethyl ether and the precipitated product was 

recovered by simple filtration. After washing with abundant 

ether, multigram samples of the dyes can be obtained (20 - 35 

% yields) with excellent purity (checked by 1H / 13C NMR and 

high-resolution mass spectrometry, HR-MS). Full 

characterization details can be seen in the Electronic 

Supporting Information (ESI). The thermal properties have 

been measured (DSC, TGA; see Table S1), and it has been found 

that 1-7 are stable below 240°C (in the same range of 

temperatures than those reported for other pyrylium salts28e). 

 In dichloromethane (DCM) and acetonitrile (ACN) solutions, 

pyrylium dyes display bluish fluorescence except for 4, with 

electron-donating methoxy groups, which has the emission 

displaced to longer wavelengths (Figure 1a). This band is 

affected by the polarity of the solvent suggesting the charge-

transfer nature of the first singlet excited state (S1), i.e. 

occurring the transfer from the external electron-rich aromatic 

rings to the central electron-poor pyrylium core, in accordance 

with the observations made for other pyrylium derivatives.30 

Additionally, the shift of the absorption bands towards higher 

wavelengths in DCM, as compared to ACN, is also compatible 

with this explanation and matches the behavior of related 

pyrylium dyes.30  

 All the studied compounds are strongly emissive, with 

fluorescence ΦF ranging from 0.25 to 0.82 (see Table 1 for all 

the collected data) and with emission lifetimes (τ) ranging from 

1.0 to 3.7 ns. Calculated radiative constants using both ΦF and τ 

(kr = ΦF / τ) afford two subsets of values: kr DCM in the range 2.5-

2.8 x 108 s-1 and kr ACN in the range 1.5-1.9 x 108 s-1. Hucke et al. 

found that the kr ACN of triarylpyrylium dyes is about 10-30% 

lower than the corresponding kr DCM, which is corroborated in 

the present study.30  

  

Table 1. Photophysical parameters in solution for compounds 1-7. 

 Solv. λabs (log ε) 
(nm) 

λem 

(nm) 
ΦF τ 

(ns) 
kr/108 

(s-1) 

1 DCM 345 (4.36), 383 (4.50) 436 0.38 1.5 2.5 

ACN 333 (4.22), 368 (4.27) 440 0.51 3.4 1.5 

2 DCM 360 (4.40), 407 (4.62) 453 0.50 2.0 2.5 

ACN 349 (4.31), 388 (4.45) 465 0.63 3.7 1.7 

3 DCM 363 (4.48), 410 (4.72) 453 0.54 2.0 2.8 

ACN 350 (4.26), 390 (4.37) 461 0.62 3.3 1.9 

4 DCM 384 (4.42), 448 (4.76) 499 0.82 3.2 2.5 

ACN 371 (4.34), 425 (4.60) 516 0.35 2.3 1.5 

5 DCM 362 (4.21), 400 (4.38) 455 0.39 1.5 2.5 

ACN 346 (4.35), 378 (4.45) 477 0.51 3.3 1.5 

6 DCM 349 (4.40), 388 (4.54) 437 0.46 1.8 2.5 

ACN 338 (4.28), 371 (4.36) 447 0.60 3.7 1.6 

7 DCM 334 (4.40), 362 (4.42) 416 0.25 1.0 2.5 

ACN 321 (4.26), 352 (4.25) 420 0.36 2.3 1.6 

 

 
Figure 1. (a) Absorption (black) and fluorescence (blue) spectra of compounds 1-7 in 

DCM (full) and ACN (broken). The excitation wavelength for the emission spectra was set 

at 340 nm (360 nm for compound 4); (b) Fluorescence spectra for compounds 1-7 

obtained in DCM solution (broken) and in the solid state evaporated from DCM (black) 

and ACN (blue). Inset: emission features in the solid state (evaporation from ACN) under 

UV illumination (365 nm).    

It has been reported that the conditions for the preparation of 

the solids, either crystalline or amorphous, can have a powerful 

influence on the emission of the molecules, due to the different 

polymorphs that can be formed.31 Taking this possibility into 

account, two solutions of each pyrylium salt were prepared, one 

in DCM and another in ACN, and then allowed to evaporate, 

leading to powders whose spectral features, including solid-

state ΦF, were determined using an integrating sphere (Table 

2). As it can be seen in Figure 1b, the emission wavelengths of 

all the studied compounds are shifted to lower energies, as 

compared to the fluorescence spectra in solution. This 
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phenomenon is quite commonly observed and reported in the 

literature, but there is no general explanation for all the 

described compounds. 
 

Table 2. Photophysical parameters in the solid state for compounds 1-7. 

Comp. Evaporated 
from 

λem  

(nm) 
ΦF CIE 

coordinates 

1 DCM 500 0.43 (0.25, 0.46) 

ACN 500 0.24 (0.25, 0.43) 

2 DCM 560 (shoulder@500) 0.24 (0.43, 0.51) 

ACN 570 0.27 (0.50, 0.47) 

3 DCM 495, 560 0.26 (0.37, 0.47) 

ACN 550 (broad), 710 0.10 (0.35, 0.51) 

4 DCM 595 0.14 (0.57, 0.42) 

ACN 585 0.19 (0.54, 0.46) 

5 DCM 480 0.33 (0.16, 0.38) 

ACN 515, 680 (broad) 0.11 (0.28, 0.51) 

6 DCM 535 (shoulder@475) 0.21 (0.29, 0.42) 

ACN 450, 515, 680 (broad) 0.13 (0.22, 0.33) 

7 DCM 430, 530 0.17 (0.35, 0.46) 

ACN 450, 520 0.09 (0.28, 0.36) 

 

Emissions from excimers (intermolecular) or exciplexes 

(normally intramolecular) can account for such low-energy 

emissions, but also emission from the locally excited S1 in a 

constrained molecular organization is possible.32 In other 

occasions, less common, room temperature phosphorescence 

is observed. For instance, recently the group of B. Z. Tang has 

described a molecule displaying white dual phosphorescence 

(from the triplet excited states T1 and T2) at 300 K with a solid-

state ΦF of 7.2 %.18 

 The room-temperature phosphorescence of pyrylium salts 

have been published, with reported emissions shifted about 40-

90 nm to lower energies relative to fluorescence bands   

(depending on the substitution on the aromatic rings) but 

always in conditions of restricted movement like in poly(methyl 

methacrylate) (PMMA) matrices33 or in cucurbiturils as 

supramolecular hosts.34 Specifically, there is one report 

describing the phosphorescence of a compound related to 1 

(same pyrylium core but ClO4
- instead of BF4

- as counterion) in 

PMMA which situates the emission from T1 at 525 nm (room 

temperature).33 In our case, powders obtained from DCM or 

ACN display emission at 500 nm at room temperature. 

However, this occurs in air atmosphere, which makes very 

unlikely that such an emission comes from a triplet state.  

 Li and co-workers reported a wide-shape spectrum of a 

diarylpyrylium salt structurally related to 1 but only interpreted 

the longer wavelength emission as arising from some kind of 

aggregated species.28a Most likely, excimeric emission or 

fluorescence from S1 in a distorted geometry are the most 

plausible explanation of the emissions observed for 1-7 (Figure 

1b). As a matter of fact, some of the studied compounds show 

two or even three bands, which points to some kind of 

combination of emissive processes. Moreover, the existence of 

solvates or co-crystals could play a key role in the observed 

emissive properties. The detailed study of all those possibilities, 

including X-ray diffraction studies, will be the topic of a future 

research, paying special attention to the important F···H and 

F···C interactions that could occur due to the -CF3 group.  

 The most remarkable feature of the spectra recorded in the 

solid state becomes apparent when the CIE coordinates for such 

emissions are calculated, and even more clear when looking at 

pictures of powders of 1-7 (Figures 1b, 2c), taken under UV 

excitation (365 nm). The solid-state emission of compounds 1-

3, 5 and 6 oscillates within the blue-green-yellow range, 

whereas the one of compound 4 is clearly orange. Notably, the 

emission of 7 is white when evaporated from ACN (ΦF = 9%).  

 

Figure 2. (a) Chromatic diagram (from Konica-Minolta) showing the coordinates (0.28, 

0.36) for compound 7 evaporated from ACN (black dot in the white area); (b) picture of 

an inverted vial where a solution of 7 in ACN has been evaporated; (c) same vial under 

UV light (365 nm). 

 The recorded chromatic coordinates for 7 (from ACN) are 

(0.28, 0.36), which can be considered as white colour according 

to the published standards (see Figure 2).17,35 This emissive 

property does not appear when 7 is evaporated from DCM. The 

results here presented highlight the importance of the solvent 

on the emission properties of the solids resulting after 

evaporation. Although parameters such as evaporation speed, 

temperature and initial concentration of emitter are not 

optimized, it is expected that fine tuning of those variables 

would lead, in future studies, to a better adjustment of the 

emission, until matching the ideal CIE coordinates for white 

luminescence (0.33, 0.33). In this regard, it is worth to mention 

that the counter-anion can have a profound influence on the 

emission properties of the solids, as it has been recelntly 

demonstrated by G. Zhang and co-workers.36 and consequently, 

replacing tetrafluoroborate by other anions such as chloride, 

perchlorate, nitrate, etc, could help to the fine tunning of the 

emission in a future research. 

 To have an insight into the photophysical features of the 

studied compounds, DFT and TD-DFT calculations were 

performed at the B3LYP/6-31+G(d) level (see ESI). In the 

optimized structures of compounds 1-7, the HOMO and LUMO 

are located over the diphenylpyrylium moiety irrespective of 

the solvent polarity (Figures S11 and S12 in ESI). The S0 → S1 

transitions of compounds 1-7 contributed from the HOMO → 

LUMO configurations can be assigned as a π,π* transition. The 

wavelengths (λtr) estimated from the calculated transition 

energies are in the 380–450 nm wavelength region, and similar 

to the experimental λabs values of the lowest energy absorption 

bands in DCM. The magnitude of the calculated oscillator 

strengths (f) for the S0 → S1 transitions is responsible for the 

allowed π,π* transition. The calculated results well agree with 

those obtained experimentally.  
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 In summary, by means of a straightforward reaction, seven 

pyrylium salts have been synthesized and characterized 

employing 1H/13C NMR, HRMS, absorption and emission 

spectroscopies, including solid-state fluorescence. One of the 

synthesized dyes displays white-light emission (CIE coordinates 

0.28, 0.36) when evaporated from ACN and upon excitation 

with UV light. Provided the simplicity of the synthetic 

procedure, compound 7 could be of utility for diverse 

applications in the optoelectronic industry. 
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