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CHROMATOGRAPHY WITH DIODE ARRAY DETECTOR  
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Abstract 

The paper shows a procedure for selecting the control method parameters (factors) to 

obtain a preset ‘analytical target profile’ when a liquid chromatographic technique is 

going to be carried out for the simultaneous determination of five bisphenols (bisphenol-

A, bisphenol-S, bisphenol-F, bisphenol-Z and bisphenol-AF), some of them regulated by 

the European Union. 

The procedure has three steps. The first consists of building a D-optimal combined 

design (mixture-process design) for the control method parameters, which are the 

composition of the ternary mobile phase and its flow rate. The second step is to fit a 

PLS2 model to predict six analytical responses (namely, the resolution between each 

pair of consecutive peaks, and the initial and final chromatographic time) as a function of 

the control method parameters. The third final step is the inversion of the PLS2 model to 

obtain the conditions needed for attaining a preset analytical target profile. 

The computational inversion of the PLS2 prediction model looking for the Pareto front of 

these six responses provides a set of experimental conditions to conduct the 

chromatographic determination, specifically 22% of water, mixed with 58% methanol and 

20% of acetonitrile, keeping the flow rate at 0.66 mL min-1. These conditions give a 
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chromatogram with retention times of 2.180, 2.452, 2.764, 3.249 and 3.775 minutes for 

BPS, BPF, BPA, BPAF and BPZ, respectively, and excellent resolution among all the 

chromatographic peaks.  

Finally, the analytical method is validated under the selected experimental conditions, in 

terms of trueness and precision. In addition, the detection capability for the five 

bisphenols were: 596, 334, 424, 458 and 1156 µg L-1, with probabilities of false positive 

and of false negative equal to 0.05. 

 

Keywords : Process Analytical Technology; Partial Least Squares; Pareto optimality; 

bisphenol A; HPLC-DAD, computational Latent Variable Model Inversion. 

 

1. Introduction 

The Process Analytical Technology (PAT) is a system for designing, analyzing, and 

controlling manufacturing through measurements of raw and in-process materials and 

processes, environmental properties, etc. (that constitute matrix X), with the goal of 

ensuring final product quality established by some values of the critical quality attributes 

(CQA) in matrix Y. Currently, PAT is a standard for the accreditation of pharmaceutical 

processes [1,2].  

In the present work, the relation between X and Y is established by means of a latent 

variable regression model, precisely a PLS2 (‘projection to latent space’ o ‘partial least 

squares’ with more than one response) model that is obtained by computing ‘a’ new set 

of orthogonal variables such that, 

ˆT
a a X XX=TP +R = X+R          (1) 

Y Y
T

a aY=TQ +R =XM+R         (2) 
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In what follows, it is assumed that X (input variables) is representative of the ‘process 

space’, and Y (responses) of the ‘quality space’ of the product characteristics. 

Like in many other data-driven situations, the intended CQA are known and can be 

defined as a vector ydes, not necessarily in the training set. Whether this ydes can be 

attained (the product with these characteristics is feasible) depends on the existence of 

values for the process variables that would give this target product. Therefore, once the 

PLS2 model is built, its inversion is necessary to obtain the values of the input variables, 

xdes, with which a preset quality ydes is obtained [1]. The study of the viability of this 

inversion, with the necessary constraints, to guarantee the existence of a solution is 

known as Latent Variable Model Inversion (LVMI).  

In the literature, there are two alternatives to approach the LVMI. One of them is related 

to the inversion of the matrices in the decomposition (such as the ones in Eqs. (1) and 

(2)). A summary of this approach can be found in Refs. [3, 4]. Ref. [5] contains the 

conditions and necessary constraints, depending on the dimension of the spaces 

spanned by the latent, process and quality variables. In this scenario, no constraints can 

be directly imposed on the quality characteristics.  

This is why the second alternative is to redefine the inversion and, for example, look for 

the scores that minimize the weighted squared difference between the predicted and 

desired characteristics, with a limit to the maximum value allowable for the Hotelling’s T2 

statistics [6]. In this way, the problem is posed as a weighted, and possibly constrained, 

least squares problem, which is also applicable if the type of model is changed, by a 

non-linear PLS in Ref. [3], or with genetic programming in Ref. [7].  

In both alternatives, the inversion ‘goes’ from the space Y to the subspace X̂ in X, Eq. 

(1), reconstructed from the space spanned by the latent variables. Consequently, it is 

implicitly assumed that the subspace X̂ somehow collects the whole correlation between 
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Y and X, and also that the residuals subspaces XR  and YR  are uncorrelated to X and Y, 

respectively, which is not true, in general. Some attempts to tackle this problem include 

pretreatment of predictors, giving rise to the family of Orthogonal Signal Correction 

(OSC) procedures that is explained in Ref. [8], or modifications of the PLS method [9] 

without yet having an acceptable solution to obtain a subspace of X whose orthogonal 

complement is independent of Y.  

The present work uses a third alternative with a computational approach for the model 

inversion [10]. The methodology relies on the properties of the Pareto optimal front 

computed when simultaneously minimizing the expected differences between the 

predicted quality characteristics (model predictions) and the target ones in ydes. The 

advantage of this new approach is that it allows addressing the problem of the feasibility 

of a product with given characteristics from the multidimensional point of view, 

considering each quality characteristic but studying their joint behavior so as not to lose 

the correlation structure. In addition, the solution xdes for a target quality ydes is obtained 

in the space of the raw variables and not in the latent space, even though the relation 

between predictors and responses (process space and quality space) has been built 

using latent variables models.  

Furthermore, the PLS2 model being inverted can include not only the input (measured) 

variables related to the process but also their cross-products (interactions) or any other 

possible transformations necessary to model non-linearities. In this case, the matrix with 

the predictor variables to fit the PLS2 model will contain the additional columns 

corresponding to these new ‘variables’ obtained from the original ones. Consequently, 

the direct inversion of the matrices is not possible, as shown in Ref. [11], but the solution 

obtained with the computational approach, xdes, is still available and is always given in 

terms of the original variables. 
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The properties just summarized can be directly transferred to the analytical laboratory, 

where the ‘process or input variables’ are those that affect sample preparation or 

instrumental factors whereas the quality characteristics are related to analytical signals 

or figures of merit of a fit for purpose analytical procedure. In this context, the term 

Analytical Quality by Design (AQbD) has been coined referring to the version of the 

Quality by Design (QbD) concept applied to the development of an analytical method. 

The AQbD has aroused considerable interest, remarkable reviews on the subjects are 

Refs. [12,13]. It also appears in systematic chromatography reviews, for example, 47 

citations out of the 158 references in Ref. [14] are about AQbD. 

The main idea in AQbD is to develop the analytical method such that the intended quality 

is achieved. This intended quality is defined as an ‘analytical target profile’ (ATP), 

depending on the so-called control method parameters (CMP). In analogy with QbD, a 

model is built to predict the ATP from the CMP. The novelty in the present paper is that, 

then, the inversion of the fitted PLS2 model will give the particular values of the CMP, 

xdes with the notation in the previous paragraphs, to obtain a preset ATP, i.e., a 

predefined ydes.  

A bibliographical revision on the subject gives some papers [15,16] where this AQbD 

approach is used to optimize figures of merit of analytical procedures, although the 

authors have not found any references that include a PLS model inversion for the task. 

The procedure proposed in the present work to guarantee an ATP by inverting a PLS2 

model is a general methodological approach, though it is explained/applied to the 

determination of five bisphenols by means of liquid chromatography coupled with diode 

array detector (HPLC-DAD). The mobile phase composition from the ternary mixture 

(percentages of water, methanol and acetonitrile) together with its flow rate, constitute 

the CMP taken into account. The ATP, on the other hand, is related to the analytical 

characteristics of the resulting chromatogram. It is defined by means of six responses: 

four values of the resolution between consecutive chromatographic peaks (R12, R23, R34, 
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R45), the initial time (ti) to avoid the dead volume and the final time (tf) related with the 

total runtime of the chromatogram.  

A PLS2 model is fitted to simultaneously predict the six characteristics that define the 

ATP as function of the four CMP. PLS2 captures not only the correlation among the 

CMP of the analytical procedure but also the correlation among the ATP-related 

characteristics of the obtained chromatogram, modelling the predictive relation between 

CMP and ATP as well. Moreover, the use of the statistics Q and T2 allows the ‘control’ of 

the process in the sense that the only points for which the PLS2 model is applicable are 

those with values of these statistics bellow some preset thresholds. 

 

Besides being an application of the general methodology proposed, there are some 

other relevant reasons for the determination of these bisphenols. The endocrine 

disruptor nature of BPA, the social alarm generated by its use, the progressive 

substitution by other bisphenols in the manufacture of polycarbonate products for daily 

use, and the attention given by the regulatory bodies, have generated the need for 

methods for the simultaneous determination of these analytes, methods that need to be 

fast and efficient. 

In 1999, The European Union approved a Community Strategy for Endocrine Disrupters 

[17], that included periodic reports from the European Commission on the progress 

made in the fields of research, international co-operation, communication to the public, 

and appropriate policy action.  

The first report in 2001 [18] contains a provisional list of substances that already 

included BPA as substance with evidence of endocrine disruptor (potential or effective) 

(Category 1) and BPF as substance with insufficient data. Later, BPF was classified as 

substance with no or insufficient data on endocrine disruptor effects (Category 3a and 

3b) [19]. 
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Currently, there are regulations regarding endocrine disruptors in pesticides, biocides, 

sanitary products or water. In particular, BPA is subjected to recent specific regulations 

in toys [20], food contact materials [21], thermal paper (for example, tickets) [22], and 

cosmetics [23]. In fact, in 2019 the European Commission [24] required the prohibition of 

bisphenols in all materials in contact with food, expanding the ban that existed since 

2011 for BPA on polycarbonate baby bottles [21]. Besides, it specifies that BPA is 

frequently replaced by other bisphenols, and suggests that substances with a similar 

chemical structure should be assumed to have toxicological properties just as harmful as 

those of the most toxic known substance of the group. There are several studies on the 

detrimental effects of compounds that are replacing BPA [25,26,27,28,29]. Alternatives 

include BPS, BPF, BPZ and BPAF, reason why these are the bisphenols selected in the 

present work. 

In another bibliographic revision, summarized in Section 4.5, the separation by HPLC-

DAD of these five bisphenols is generally done in gradient elution mode and with binary 

mixtures in the mobile phase, whether MeOH/H2O or ACN/H2O. In the present paper, a 

ternary mixture with both organic solvents is explored, whose composition, together with 

the flow rate of the mobile phase, constitute the selected CMP. 

 

The paper is organized as follows. The analytical materials and methods are described 

in Section 2. Section 3 details the selection of the followed experimental design to obtain 

the training set for fitting the PLS2 model, and its computational inversion that gives the 

CMP that guarantee the ATP defined by the analyst in the determination of the five 

bisphenols. Results, validation of the method and its comparison with data already 

published in the literature are shown in Section 4. 
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2. Material and methods 

2.1. Chemicals and reagents 

Bisphenol-A (CAS no. 80-05-7), bis(4-hydroxyphenyl)methane (CAS no. 620-92-8) and 

4,4’-cyclohexylidenebisphenol (CAS no. 843-55-0) were acquired in Sigma-Aldrich 

(Steinheim, Germany). 4,4’-(hexafluoroisopropylidene)diphenol (CAS no. 1478-61-1) 

was purchased by Alfa Aesar (Kandel, Germany). Bis(4-hydroxyphenyl)sulfone (CAS no. 

80-09-1), acetonitrile (CAS no. 75-05-8; LiChrosolv® isocratic grade for liquid 

chromatography) and methanol (CAS no. 67-56-1; LiChrosolv® isocratic grade for liquid 

chromatography) were supplied by Merck (Darmstadt, Germany). Deionized water was 

obtained by using the Milli-Q gradient A10 water purification system from Millipore 

(Bedford, MA, USA). 

 

2.2. Instrumental 

Determination of the five bisphenols, BPA, BPS, BPF, BPZ and BPAF, was carried out 

using an Agilent 1260 Infinity HPLC chromatograph (Santa Clara, CA, USA) consisting 

of a quaternary pump (G1311C), a sampler (G1329B), a thermostatic column 

compartment (G1316 A), and a diode array detector (G7117C). A Kinetex EVO-C18 

column (150 mm × 4.6 mm, 5 μm) was used for the separation. Deionized water (solvent 

A), methanol (solvent B) and acetonitrile (solvent C) were used as mobile phases. 

The conditions for chromatographic analyses were programmed in isocratic mode. 

Mobile phase consists of different percentages of a mixture of 

water/methanol/acetonitrile (Z1:Z2:Z3, v/v) and different mobile phase flow rate (U4 mL 

min−1), depending on the conditions in the experimental design followed, which is 

explained in Section 3.1. In all analyses, the temperature of the column compartment 

was 20°C and the injection volume was 10 μL. Diode array detector was programmed to 

measure the absorbance at a fixed wavelength of 225 nm.  
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2.3. Standard solutions and samples 

Individual standard stock solutions of 500 mg L−1 were prepared by dissolving each 

standard in methanol. A mixture of 4 mg L-1 of each bisphenol was prepared from the 

individual stock solutions by dilution with methanol for the experiments carried out 

according to the D-optimal design (Section 3.1). Calibration standard solutions were 

prepared from the individual stock solutions by dilution with methanol, mixtures of 1 to 5 

mg L−1 of each bisphenol (see Table 1), to build calibration lines. All solutions were 

stored protected from light at 4°C.  

 

Table 1. Concentration levels (mg L-1) of the standard mixtures used in the 
building of the calibration lines for the five bisphenols. 

Code sample BPA BPS BPF BPZ BPAF 

Standard 1 1 2 3 4 5 

Standard 2 5 1 2 3 4 

Standard 3 4 5 1 2 3 

Standard 4 3 4 5 1 2 

Standard 5 2 3 4 5 1 

 

2.4. Software 

OpenLab CDS ChemStation software was used for acquiring data. The PLS2 models 

were fitted with the PLS_Toolbox [30]. The inversion of the PLS2 model and the Pareto 

optimal front were calculated with in-house programs written in MATLAB [31]. The 

regression models were fitted and validated using STATGRAPHICS Centurion 18 [32]. 

The experimental design is selected with NEMRODW [33]. The capability of detection 

(CCβ) was calculated using the DETARCHI program [34]. 
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3. General procedure 

Given an ATP, the whole procedure to obtain the corresponding CMP has the following 

steps: 

1. To choose the appropriate experimental design for obtaining the training set for 

the PLS2 model. It includes setting the factors (CMP), their variation to define the 

experimental domain, a combined and reduced experimental design, and the 

precise definition of the responses of interest, that is, the definition of the ATP. 

2. Selection of optimal experimental conditions. It includes the fitting and inversion 

of a prediction regression model, PLS2 model in this case, obtaining and 

exploring the Pareto front for the desired ATP and the final selection of a single 

set of CMP (the experimental conditions) to perform the chromatographic 

determination. 

3. Validation of the analytical method with the selected CMP. It includes the 

experimental validation of the found conditions as well as the figures of merit 

(accuracy, decision limit and capability of detection) of the proposed analytical 

procedure to determine the five bisphenols. 

 

3.1 Design of the experiments 

There are four CMP (the ternary composition of the mobile phase and its flow rate), that 

can be varied and whose variation changes the resulting chromatogram.  

Three of them define the composition of the mobile phase, namely proportions of water 

(Z1), methanol (Z2) and acetonitrile (Z3), with some constraints: the composition of water 

in the mixture should be between 20% and 50%, and methanol and acetonitrile cannot 

exceed 70% of the mixture. The proportions used are selected following a mixture 

design in a restricted simplex. 
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The fourth factor, the flow rate of the mobile phase, is a continuous factor that varies 

between 0.6 and 1.0 mL min-1. Table 2 summarizes the conditions for the four factors 

and their constraints. From a Design of Experiments (DOE) point of view, (Z1, Z2, Z3) 

constitute the components of a mixture (varying on the restricted simplex) and factor U4 

is a continuous factor which is codified into [-1, 1]. As usual, X4 refers to the coded 

variable and U4 to the raw factor.  

 

Table 2. CMP (experimental factors, or process variables) and their variation. 

 Factor 
Lower 
bound 

Upper bound Centre Step of variation 

Z1 Water 0.20 0.50  

Z2 Methanol 0 0.70  

Z3 Acetonitrile 0 0.70  

U4 Flow rate (mL min-1)   0.80 0.20 

 

In order to have a ‘representative’ training set that adequately covers the experimental 

domain, the experiments conducted followed an experimental design. As there are 

proportions of a mixture and a continuous factor, the design is a combined design (with 

mixture and process variables) in the domain defined in Table 2 and depicted in Fig. 1, 

which consists of the restricted simplex (for the mixtures) extended along the three levels 

considered for the flow rate. 

Finally, the assumed model for each individual Y in the multiplicative mixture process 

design is quadratic in the continuous variable (flow rate), according to Eq. (3). 

2
0 4 4 44 4 Y X Xγ γ γ= + +  (3) 

where γi represents also a quadratic dependence on the mixture composition (Z1, Z2, Z3). 

For example, γ4 in Eq. (3) means:  
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4 41 1 42 2 43 3 412 1 2 413 1 3 423 2 3      Z Z Z Z Z Z Z Z Zγ β β β β β β= + + + + +  (4) 

By substituting all the terms in Eq. (3), the model has 18 coefficients per each level of X4. 

1 1 2 2 3 3 12 1 2 13 1 3 23 2 3

41 4 1 42 4 2 43 4 3 412 4 1 2 413 4 1 3 423 4 2 3

2 2 2 2 2 2
441 4 1 442 4 2 443 4 3 4412 4 1 2 4413 4 1 3 4423 4 2 3

      

   

   

Y Z Z Z Z Z Z Z Z Z

X Z X Z X Z X Z Z X Z Z X Z Z

X Z X Z X Z X Z Z X Z Z X Z Z

β β β β β β
β β β β β β
β β β β β β

= + + + + + +
+ + + + + +

+ + + + +

 (5) 

 

The complete experimental design would require 19 experiments per level of X4, which 

would imply the need of carrying out 57 chromatograms because the flow rate is at three 

levels, too many runs. In order to reduce the quantity of solvents (also reducing the 

impact in the environment and the time of analysis), a subset of experiments was 

selected, but without losing quality of the information extracted from the experiments. 

Appling the D-optimal criterion [35], nine out of the 19 experiments in each level of the 

flow rate were selected, maintaining good reliability properties because the maximum of 

the variance function in the experimental domain was 0.8. These 27 experiments are the 

ones in black in Fig. 1. 

It has already been stressed the importance of exploring the effect of ternary mixtures in 

the mobile phase. With that purpose, the ten experiments discarded for the D-optimal 

design (in each level of flow rate) were used. Eight of them contain a ternary mobile 

phase and the other two consist of binary mixtures at some side midpoint of the reduced 

simplex. These ten experiments were distributed among the three levels of flow rate so 

that, in each level, there were at least two ternary mixtures. The resulting distribution is 

depicted with the red points in Fig. 1. 

Finally, two additional replicates in the simplex centroid for each flow rate were included. 

Therefore, matrix X has 43 rows (27+10+6 chromatographic runs) and 4 columns 

corresponding to their CMP values. 

<here Fig. 1>  
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After performing each chromatogram, the six ATP-related characteristics were 

computed, namely the resolution between consecutive peaks, R12, R23, R34 and R45, the 

initial time, ti, and the total (final) time, tf, both in minutes. The resolution Ri,i+1 between 

the consecutive i-th and (i+1)-th chromatographic peaks is computed by means of Eq. 6. 

( )
( )

R,i+1 R,i
i,i+1

0.5,i+1 0.5,i

2.35
 =  

2

t t
R

w w

−

+
 (6) 

where tR,i is the retention time and w0.5,i is the width at half height of the i-th 

chromatographic peak. 

 

3.2 Selection of experimental conditions 

With the notation stablished in the introduction, X is the matrix containing the values of 

CMP corresponding to the 43 experimental conditions selected with the experimental 

design, while Y is the matrix containing the six ATP-related values computed from the 

corresponding chromatograms. Assuming that X is noise free, the customary procedure 

in DOE is to fit separate multilinear regression (MLR) models for each response. 

Although the factors in the present experiment are controlled, and it is assumable at 

least that the variability in X is negligible compared to the one in Y, the correlation 

among responses is expected to be high. Therefore, to handle this correlation while 

fitting the six responses at once, a single PLS2 model will be built.  

However, the intended PLS2 model contains more than the linear terms related to the 

columns already in X, that is, it does not depend exclusively on variables Z1, Z2, Z3 and 

X4 (main factors, the ones that can be modified inside the experimental domain) but also 

on several different cross-terms. This is so because interactions among factors are 

expected, not only among the mixture variables but also between the composition of the 

mixture and the flow rate in the mobile phase, further to possible quadratic effects 

among all the factors in the design. These interactions and non-linear effects will be 
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reflected in the model to be fitted with PLS2, in the present case, the model defined in 

Eq. (7), with sixteen coefficients. 

1 1 2 2 3 3 4 4

12 1 2 13 1 3 23 2 3 41 4 1 42 4 2 43 4 3

412 4 1 2 413 4 1 3 423 4 2 3

2 2 2
441 4 1 442 4 2 443 4 3

     

      

  

   

Y Z Z Z X

Z Z Z Z Z Z X Z X Z X Z

X Z Z X Z Z X Z Z

X Z X Z X Z

β β β β
β β β β β β
β β β
β β β

= + + + +
+ + + + + +

+ + +

+ +

 (7) 

 

This means that matrix X with the CMP is not the actual data matrix used to fit the 

model. On the contrary, each row xT must be ‘expanded’ into a new vector xE (in higher 

dimension) following the terms of the model to be fitted, similar to the construction of the 

model matrix from the design matrix. Hence, the new expanded vector xE has 16 

coordinates as expressed in Eq. (8).  

( )
( )

=

=
1 2 3 4

2 2 2
1 2 3 4 1 2 1 3 2 3 4 1 4 2 4 3 4 1 2 4 1 3 4 2 3 4 1 4 2 4 3

, , ,x

z ,z ,z ,x ,z z ,z z ,z z ,x z ,x z ,x z ,x z z ,x z z ,x z z ,x z ,x z ,x z

T

T
E

z z zx

x
 (8) 

 

To avoid misunderstanding, the training set for fitting the PLS2 model will be denoted as 

XE reflecting the fact that X is enlarged to XE, because the model is in fact built with the 

16-dimensional vectors in XE, which are projected onto a latent space of lower dimension 

to predict Y.  

Let L denote the model fitted from the data X-Y as a function of u, so that ( )ˆ  = Ly u  is 

the predicted response (a six-dimensional vector) for a four-dimensional u in the 

experimental domain in Fig. 1.  

For applying L, each u is codified to obtain x and expand onto the corresponding 16-

dimensional vector xE as in Eq. (8). Then, it is scaled according to the pretreatment used 

when fitting the PLS2 model. As it has been already said, those resulting vectors xS with 
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values of Q or T2 statistics greater than the corresponding 95% confidence limits are 

discarded. 

In the following, a valid point will be any four-dimensional ( )1 2 3 4= z ,z ,z ,uu  for which the 

resulting xS complies with all the constraints to apply the model. The domain is in four 

dimensions, the model is fitted in 16 dimensions, consequently, the common inversion 

method for latent variable models (see for instance Refs. [3,4,5,6,36]) cannot be applied.  

There is, though, an alternative [10] that, driven by an evolutionary algorithm, works by 

moving valid points inside the experimental domain (the four-dimensional experimental 

domain of the CMP) so that the predicted values of the responses be closer and closer 

to ydes, the ideal vector with the desired characteristics for the chromatogram.  

With this approach, the inversion of the PLS2 model is tackled as a multiobjective or 

multiresponse optimization problem. The most distinctive characteristic between 

optimizing a single response or multiple objectives at once is that, usually, in the latter 

case there is not a single solution that comply with all the requisites simultaneously.  

A compromise among all the responses can be defined in the form of Pareto-optimal 

solutions, that is, those that cannot be improved in one response without worsening 

another. These solutions constitute the so-called Pareto front, which is reduced to a 

single point if there were no conflict among responses.  

In a pseudo-code, looking for the Pareto front for the six responses consists of the 

following steps:  

a) Start with a population of ps valid points (four-dimensional u vectors complying with 

the constraints).  

b) Compute ( )ˆ  = Ly u . 

c) Compute the fitness function, defined as the six-dimensional vector of the absolute 

value of the individual differences between the predicted and the target values.  
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d) Apply selection, crossover and mutation operators to build new ps valid CMP, which 

are also evaluated in terms of the fitness function described in c). 

e) Merge the old and newly generated populations. 

f) Arrange the members of the extended population according to the Pareto order for 

multidimensional vectors [37] and select to survive for the next generation the non-

dominated solutions. If there are more than ps, select the most dispersal along the 

front according to the crowding distance [38]. 

g) Repeat a)-f) for a given number of generations. 

 

The final population is made up of different settings for the CMP expected to provide a 

chromatogram whose characteristics are the closest to the desired ones in at least one 

of the responses and, more interestingly, the estimate of the Pareto front describes the 

trade-off among the six responses that are being handled. As such, it is used to decide 

about the needed experimental conditions to perform the determination of the 

bisphenols.  

The code for computation of the Pareto front, in a different context, can be found in the 

annex of ref. [39].  

 

4. Results and discussion 

4.1. Experimental data 

Once conducted the 43 experiments, matrix Y collects the values of the responses 

computed from the obtained chromatograms. As we have anticipated, they are highly 

correlated, as can be seen in the pairwise correlation coefficients in Table 3. The first 

three responses are highly positively correlated but highly negatively correlated with R45. 

This resolution also behaves oppositely when comparing with the time, both the initial 

and final, which in turn are positively correlated to each other.  
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Table 3.  Correlation matrix of ATP variables, Y. 

 R12 R23 R34 R45 ti 

R23 0.9607     

R34 0.9497 0.9874    

R45 -0.6376 -0.7013 -0.7605   

ti 0.5152 0.4919 0.5050 -0.3764  

tf 0.8400 0.8117 0.8456 -0.7173 0.5765 

 

It is not in the table, but there is also correlation among the CMP, even though the 

distribution of their values has been designed. As expected, the lowest correlation 

coefficients are between the flow rate X4 and the proportions of the ternary mixture of the 

mobile phase (Z1, Z2, Z3), but there is a high correlation (-0.899) between Z2 and Z3.  

Furthermore, if the actual sixteen variables that are used to fit the PLS2 model (columns 

of XE) are taken into account, there are 120 correlation coefficients, 59 of which are 

significantly non-null (5% significance level) and 40, in fact, are greater than 0.8 in 

absolute value. 

To take into account all these correlations, expected in the context of AQbD, a PLS2 

model is fitted. Another reason is that the process control is exerted with the statistics Q 

and T2, whose limits at 95% confidence level define the boundary of the region where 

the feasible solutions lie (provide that they belong to the experimental domain). In this 

way, only one set of limits are used instead of six different sets of threshold values that 

would be needed if a PLS1 model was fitted to each individual response. 

 

4.2. PLS2 model 

A PLS2 model is thus fitted with autoscaled predictor variables in XE (43 × 16) and 

responses in Y (43 × 6). Responses R45 and tf had to be transformed (monotonic 

transformation) to better fit them. In this case, = 45
4 2RY  and ( )=6 10log fY t . The reason is 
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that the range of R45 is 2.98, very short compared to the other four resolutions whose 

range varies between 10 and 27.49. The transformation 452R  increased the range of this 

resolution, helping the joint fit with an explained variance greater than 90%. The opposite 

occurs with tf, whose range is 73.70, so a logarithmic transformation was used.  

With these six responses, seven latent variables were selected, with the characteristics 

in Table 4. The seven latent variables greatly explained the training matrices, 99.53% of 

the covariance in XE with 96.97% of the total variance in Y.  

 

Table 4. Variance captured in predictor XE and response Y variables when adding latent 
variables in the PLS2 model. 

Number 
Variance 
captured in XE 
(%) 

Cumulative variance 
captured in XE (%) 

Variance 
captured in Y 
(%) 

Cumulative 
variance captured in 
Y (%) 

1 41.91 41.91 43.93 43.93 

2 30.72 72.63 17.17 61.10 

3 17.21 89.84 12.92 74.02 

4 7.30 97.14 7.09 81.11 

5 1.41 98.55 3.96 85.07 

6 0.35 98.90 9.09 94.16 

7 0.63 99.53 2.81 96.97 

 

The six responses are more or less equally well fitted, except may be Y4, as can be seen 

in Table 5 that contains the coefficient of determination and coefficient of determination 

in prediction, estimated with 10-fold cross-validation. The similarity of the explained 

variance in fitting and prediction points to models highly predictive, except again for Y4 

for which larger differences are observed. 

 

Table 5. Coefficient of determination and coefficient of determination in prediction 
(estimated by cross-validation) for the six responses fitted with PLS2. 

 Y1 = R12 Y2 = R23 Y3= R34 = 45
4 2RY  Y5 = ti ( )=6 10log fY t  

R2 (%) 98.04 98.75 98.56 91.93 95.50 99.00 
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2
predR  (%)  96.73 97.41 96.21 81.60 92.26 97.17 

 

In addition, permutation tests were conducted to validate the seven latent variables 

model. Broadly speaking, they consist of fitting PLS2 models to random permutations of 

the true response values. If there are not significant differences between the model 

predicting the ‘true’ Y and the ones predicting ‘any other’ permuted values for the same 

XE, it would be an indication of the inadequacy of the PLS2 model originally fitted. For 

the six responses at hand, with 50 iterations, the probability of model significance as 

against the significance with the permuted samples is less than 5·10-3. 

 

4.3. PLS2 inversion to obtain the CMP for a desired  ATP  

After validation, we have a PLS2 model with seven latent variables, depending on 

sixteen input variables and predicting six responses. This is the model used to explore 

the availability of experimental conditions so that the obtained chromatogram has 

resolution between consecutive peaks of 1.1, with initial time of 2 minutes and final time 

of 4 minutes. Given the responses that needed to be transformed, the target vector 

(ATP) is: 

( )( )= 1.1
des 101.1,  1.1, 1.1, 2 , 2.0, log 4.0

T
y  (9) 

Consequently, the fitness function to be minimized is: 

( )( )− − − − − −
T

1.1
1 2 3 4 5 6 10

ˆ ˆ ˆ ˆ ˆ ˆfitness( )= y 1.1, y 1.1, y 1.1, y 2 , y 2.0 , y log 4.0u  (10) 

If one of such chromatograms existed, the fitness function of the corresponding 

experimental conditions would be the null vector. This is not the case here, as we have 

already anticipated due to the high correlations in Y (Table 3).  

With ps = 50, uniform selection of individuals, uniform single point cross-over and 

probability of mutation of 0.1, the population evolves for 500 generations. From the final 
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population, 45 vectors constitute the estimate of the Pareto front for these six responses 

when trying to reach ydes.  

The fact that the front is not reduced to a single point is already an indication of the 

conflicting behavior of the responses, which is also seen in the last row of Table 6 that 

contains the individual minima of the fitness function for these 45 elements. According to 

Eq. (10), we are measuring the magnitude of each individual difference, so that the 

desired value for a response is obtained when the fitness is equal to zero.  

 

Table 6 . Experimental conditions to achieve at least one of the desired response values, 
with their predicted values (original scales for factors and all the responses). 

Z1 
(H2O) 

Z2 
(MeOH) 

Z3 
(ACN) 

U4 
(mL 
min-

1) 

R12 R23 R34 R45 ti 
(min) 

tf 
(min) 

0.32 0.14 0.54 0.61 1.10* 2.28 4.15 3.08 2.21 4.51 

0.33 0.03 0.64 0.95 0.05 1.14* 2.25* 2.85 1.32 2.28 

0.50 0.49 0.01 0.87 10.00 12.49 27.58 1.11* 2.41 59.07 

0.41 0.06 0.53 0.74 1.98 3.99 7.74 2.70 2.00* 4.95 

0.28 0.18 0.54 0.63 0.76 1.74 2.98 3.11 2.15 4.01* 

*Min. 
fitness 

   2.5 10−5 4.4 10−4 1.15 8.2 
10−5 

4.6 
10−6 

1.4 
10−4 

 

 

This is the case, the minimum value is zero, in all the responses, except for R34, so that 

the pursued goal is achieved in all but one response, although not simultaneously. This 

is clearer in the remaining rows in Table 6 that show the solutions achieving the 

corresponding minimum fitness of each individual response. The first four columns 

correspond to the experimental conditions and, rather than writing the fitness values of 

the solutions (that only provide information about the difficulty in reaching ydes) the last 

six columns of Table 6 show the predicted responses themselves, including ‘undoing’ the 

transformations applied, to make the interpretation easier. 
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Therefore, the first row means that with a mixture of 32% water, 14% methanol and 54% 

acetonitrile, and flow rate at 0.61 mL min-1, the desired value R12 = 1.1 is expected, with 

the remaining pair-wise resolution of at least 2.28, with 2.2 minutes of initial time and 4.5 

min of final time.  

The second row says that decreasing Z2 and increasing both Z3 and U4, both R23 = 1.1 

and the value closest to 1.1 for R34, which is 2.25, are achieved. Moreover, in doing so, 

the resolution between the first two peaks, R12, is practically null, not admissible, and 

there is less than a minute between final and initial time, the latter less than 2 min, also 

not admissible. 

In the third row, with almost no acetonitrile (Z3) and flow rate at 0.87 mL min-1, the 

desired value of 1.1 for R45 (the resolution between fourth and fifth peaks) takes more 

than 59 minutes to finish the experiment and, besides, the values of the first three 

responses are very far from their desired values.  

In the last two rows, with 41% of water (Z1) and 6% of methanol (Z2), the desired ti = 2.0 

min is obtained, whereas to get tf = 4.0 min requires to increase Z2 and decrease Z1, 

though in that case, R12 is not admissible.  

Although the previous analysis is reduced to the extremes points of the front (the best 

possible value for each individual response), it serves to illustrate the conflicting behavior 

among responses and introduces the utility of exploring the Pareto front. The conclusion 

so far is that the ideal chromatogram as defined in the ATP cannot be obtained, so a 

compromise is needed to select the experimental conditions for the determination of the 

bisphenols. This compromise is easier to reach knowing the extent of the conflict among 

responses, and the possibilities achievable.  

For the problem at hand, to simplify the selection, all the solutions with any resolution 

less than 1.0, initial time less than 1.7 minutes or final time greater than 5.5 minutes are 
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discarded. Fig. 2 displays the remaining solutions in the form of a parallel coordinates 

plot, first the experimental conditions, then the predicted responses.  

In the graph, the value of each coordinate is plotted against its position in the vector, so 

that each broken line in the plot represents a single vector. Additionally, the different 

scales make it difficult to follow the vectors, so the values have been scaled into a 

common range. As reference, the minimum and maximum values of each coordinate are 

at the bottom and top of the corresponding vertical line.  

The conflicting behavior already mentioned is also seen in the graph: the first three 

resolutions R12, R23, R34 (pair-wise resolution between the first four peaks) increase or 

decrease simultaneously though in different proportion. However, it is clear that their 

behavior is opposed to the one of R45 that, in turn, is also opposed to the initial time ti. 

Final time tf and initial time also behave oppositely; this is an apparent contradiction with 

their positive correlation observed in Table 3. The reason is that the correlation 

coefficient in Table 3 (for the training data) means that, in general, the chromatogram 

needs more time to finish if it started later. The behavior observed in the solutions in the 

Pareto front says that trying to increase the initial time is an objective that is opposed to 

the objective of reducing the final time. 

 
Here Fig. 2 

 
Among the solutions depicted in Fig. 2, the interest lies in those complying with the 

criteria. Among them, the chosen conditions, solid blue line, correspond to the shortest 

experiment with final time of four minutes and more than two minutes for the initial time.  

In summary, the optimal experimental conditions for the chromatographic determination 

of the five bisphenols were 22% of water, mixed with 58% methanol and 20% of 

acetonitrile, keeping the flow rate at 0.66 mL min-1.  

Fig. 3a) shows a chromatogram obtained in these selected CMP. To see the 

improvement, Fig. 3b) shows three overlapping peaks when the chromatogram is 
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obtained with a mobile phase that consists of a binary mixture (30% of water, 70% of 

acetonitrile) and a flow rate of 0.6 mL min-1. With 0.8 mL min-1 of flow rate, in Fig. 3c) the 

first two peaks are still overlapping although a ternary mixture is used (26% water, 22% 

methanol and 52% acetonitrile). 

<here  Fig. 3> 

 

4.4. Experimental verification of the CMP obtained 

Ten determinations of a mixture of 4 mg L-1 of each bisphenol were performed with the 

control method parameters (experimental conditions for the ternary mixture and flow rate 

of the mobile phase) selected from the inversion of the prediction model.  

The mean of the corresponding retention times (in minutes) of the five bisphenols were 

2.182 for BPS, 2.456 for BPF, 2.769 for BPA, 3.256 for BPAF and 3.784 for BPZ. 

For each of the six characteristics in the ATP, Table 7 shows the mean and 95% 

confidence intervals, comparing those obtained from the predicted values after inversion 

of the PLS2 model, and those computed from the ten experiments carried out. It is seen 

that the actual chromatographic data are included in the confidence intervals computed 

with the PLS2 model, except for the resolution R45 (between the fourth and fifth peaks of 

the chromatogram), which is, on the other hand, the response worst fitted by the model. 

 

Table 7 . 95% confidence intervals for the mean of the six ATP, a) theoretical 
data from the PLS2 model inversion and b) experimental data from HPLC-DAD 
analysis.  

  R12 R23 R34 R45 ti tf 

a) Lower limit 1.015 1.498 0.701 2.823 1.974 3.074 

 Mean 1.545 2.093 2.280 3.047 2.114 3.999 

 Upper limit 2.074 2.688 3.858 3.241 2.254 4.698 

b) Lower limit 1.870 2.121 2.638 2.670 2.099 4.055 

 Mean 1.876 2.125 2.645 2.677 2.105 4.063 

 Upper limit 1.882 2.129 2.652 2.684 2.111 4.070 
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After experimentally confirming that the computed CMP provide the expected ATP, the 

analytical procedure is validated in terms of trueness, decision limit (CCα) and detection 

capability (CCβ) for given fixed values of the risks of false positive and false negative 

(with probabilities α and β, respectively). The decision limit is described as “the value of 

the net concentration the exceeding of which leads, for a given error probability α, to the 

decision that the concentration of the analyte in the analyzed material is larger than that 

in the blank material” [40,41]. Moreover, the detection capability is “the true net 

concentration of the analyte in the material to be analyzed, which will lead, with 

probability 1-β, to the correct conclusion that the concentration in the analyzed material 

is larger than that in the blank material”. 

For the validation, a calibration line was fitted for each bisphenol (five in total) with the 

data obtained with six standard solutions in the range from 0 to 5 mg L-1 (see Table 1 in 

Section 2.3). Then, accuracy lines (that is, predicted concentration vs true concentration) 

were built and used to compute decision limit (CCα) and detection capability (CCβ), 

when both the probability of false positive and of false negative are set to 0.05. 

Table 8 shows the details of both the calibration and accuracy lines, as well as CCα and 

CCβ for the five bisphenols. The p-values in row 6 correspond to the test for significance 

of the corresponding regression line (with null hypothesis, H0: the model does not 

explain the variability of the response). As they are all less than 10-4, the conclusion is 

that all the regression models are significant (5% significance level).  
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Table 8. Performance criteria of the analytical method. Parameters of calibration and 
accuracy lines (syx is the standard error of the regression). Decision limit and 
detection capability for α = β= 0.05. 

 BPA BPS BPF BPZ BPAF 

Calibration line      

Intercept 36.946 0.368 -1.069 -0.007 -0.735 

Slope 55.768 19.644 61.757 41.228 48.886 

Correlation coefficient 0.997 0.995 0.998 0.981 0.997 

syx 7.652 3.785 6.662 15.411 7.233 

P-value (significance 
of regression) <10-4 <10-4 <10-4 <10-4 <10-4 

Accuracy line      

Intercept   -2.14·10-5 4.76·10-6 9.52·10-6 1.19·10-5 -2.38·10-6 

Slope 1.000 1.000 1.000 1.000 1.000 

syx 0.137 0.193 0.108 0.374 0.148 

CCα (mg L-1) 0.217 0.305 0.171 0.591 0.234 

CCβ (mg L-1) 0.424 0.596 0.334 1.156 0.458 

 

 

The property of trueness was tested by computing the 95% joint confidence ellipse for 

the intercept and the slope of each accuracy line that shows that they are significantly 

equal to 0 and 1, as can be seen in the five ellipses depicted in Fig. 4 that contain the 

point (0,1). Therefore, the trueness is fulfilled. CCα and CCβ calculated through the 

accuracy lines, allow concluding that, with probabilities of false positive (α) and false 

negative (β) equal to 0.05, the analytical procedure enables one to determine, 0.424 mg 

L-1 of BPA, 0.596 mg L-1 of BPS, 0.334 mg L-1 of BPF, 1.156 mg L-1 of BPZ and 0.458 

mg L-1 of BPAF. 

Here  Fig. 4 
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4.5. Comparative analysis  

The validated procedure represents an advantage compared to similar works. To 

support this affirmation, Table 9 shows the 29 papers found when searching for 

analytical determination of the bisphenols by HPLC-DAD in the last decade. Except for 

two papers (the one codified as number 19 and the present work, which is in the last row 

of Table 9), all of them used binary mixtures in the mobile phase: MeOH/H2O in 11 

papers, ACN/H2O in the remaining 17. About the elution mode, most of them (23 out of 

29) used gradient, only in six of the papers the isocratic elution mode is utilized.  

 

Table 9. Review of HPLC-DAD methods for the determination of BPA, BPS, 
BPF, BPZ and BPAF. 

Code  Mobile phase Elution mode 
% Organic 
solvent Reference 

1 MeOH/H2O gradient 40 - 100 [42] 

2 ACN/H2O gradient 50 - 70 [43] 

3 MeOH/H2O isocratic 40 [44] 

4 ACN/H2O gradient 42 - 85 [45] 

5 ACN/H2O gradient 42 - 85 [46] 

6 MeOH/H2O gradient 68 - 90 [47] 

7 ACN/H2O gradient 42 - 85 [48] 

8 MeOH/H2O gradient 35 - 100 [49] 

9 MeOH/H2O gradient 35 - 100 [50] 

10 MeOH/H2O gradient 35 - 100 [51] 

11 MeOH/H2O gradient 35 - 100 [52] 

12 MeOH/H2O gradient 35 - 100 [53] 

13 ACN/H2O gradient 50 - 100 [54] 

14 MeOH/H2O isocratic 60 [55] 

15 ACN/H2O gradient 15 - 55 [56] 

16 ACN/H2O gradient 50 - 80 [57] 

17 ACN/H2O gradient 40 - 100 [58] 

18 ACN/H2O gradient 50 - 80 [59] 

19 MeOH/iPrOH/H2O gradient 60/5 - 80/2 [60] 

20 ACN/H2O gradient 23 - 95 [61] 

21 ACN/H2O gradient 15 - 55 [62] 
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22 ACN/H2O isocratic 50 [63] 

23 ACN/H2O isocratic 60 [64] 

24 ACN/H2O gradient 42 and 85 [65] 

25 MeOH/H2O gradient 60 - 100 [66] 

26 ACN/H2O isocratic 40 [67] 

27 ACN/H2O gradient 40 - 70 [68] 

28 ACN/H2O isocratic 35 [69] 

29 MeOH/H2O gradient 40 - 90 [70] 

30 MeOH/ACN/H2O isocratic 58/20 Present work 

 

 

Finally, Fig. 5 depicts the retention time of BPS, BPF, BPA, BPAF and BPZ in the 29 

published papers together with the ones obtained in the present paper. The works are 

identified with the number of the row they occupy in Table 9. In the present work, last 

position (number 30), the chromatogram takes only 4.06 min (total time), the shortest 

among those in Table 9.  

Looking individually to each bisphenol, the minimum retention times (in min) listed in the 

bibliography of Table 9 are: 2.00 (number 28), 3.25 (number 28), 4.20 (number 7), 5.80 

(number 7) and 6.30 (number 25) for BPS, BPF, BPA, BPAF and BPZ, respectively. With 

the exception of the BPS, these times are greater than those obtained in this work, 

already written in Section 4.4: 2.182, 2.456, 2.769, 3.256 and 3.784 min, respectively. 

Here Fig. 5 

 

5. Conclusions 

The methodology developed for the inversion of PLS models is integrated into the scope 

of AQbD and enables the analysis of the conflict among six correlated responses that 

are used to define the ATP for a chromatographic determination of five bisphenols.  
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A systematic use of experimental designs, for a combined design and its reduction via 

the D criterion provide a representative training set for fitting the PLS2 model. After the 

fitting and validation of the prediction model, the study of the Pareto-optimal solutions 

provided by the inversion makes it possible the selection of the CMP to perform the 

chromatographic determination with the preset characteristics. 

With these CMP, the analytical procedure implemented and validated represents an 

improvement with respect to similar works.  

The developed procedure is general and can be applied to handle any other 

instrumental applications. 

 

Conflict of interest 

The authors declare no competing interests. 

 

Acknowledgments 

This work was supported by Spanish MINECO (AEI/FEDER, UE) and Consejería de 

Educación de la JCyL through projects CTQ2017-88894-R and BU052P20, co-financed 

with European Regional Development Funds. M.M. Arce wishes to thank Junta de 

Castilla y León and Fondo Social Europeo for her predoctoral grant. 

 

References

 

[1] FDA, PAT- A Framework for Innovative Pharmaceutical Development, 

Manufacturing and Quality Assurance, Guidance for industry, Pharmaceutical 

CGMPs, Rockville, September 2004. https://www.fda.gov/media/71012/download  

[2] European Commission, EU Guidelines for Good Manufacturing Practice for 

Medicinal Products for Human and Veterinary Use, Volume 4, Annex 15, Brussels, 

Jo
urn

al 
Pre-

pro
of



29 

 

 

2015. Last visit May 22, 2020. 

https://ec.europa.eu/health//sites/health/files/files/eudralex/vol-4/2015-

10_annex15.pdf 

[3] S. García-Muñoz, T. Kourti, J.F. MacGregor, F. Apruzzese, M. Champagne, 

Optimization of Batch Operating Policies. Part I. Handling Multiple Solutions, Ind. 

Eng. Chem. Res. 45 (2006) 7856–7866. https://doi.org/10.1021/ie060314g 

[4] E. Tomba, M. Barolo, S. García-Muñoz, General framework for latent variable 

model inversion for the design and manufacturing of new products, Ind. Eng. 

Chem. Res. 51 (2012) 12886–12900. https://doi.org/10.1021/ie301214c 

[5] M. Ottavian, E. Tomba, M. Barolo, Advanced process decision making using 

multivariate latent variable methods, in: M. Ierapetritou, R. Ramachandran (Eds.), 

Process simulation and data modeling in solid oral drug development and 

manufacture, Humana Press, Springer, New York, 2016, pp. 159-189. 

https://doi.org/10.1007/978-1-4939-2996-2_6 

[6] F. Yacoub, J.F. MacGregor, Product optimization and control in the latent variable 

space of nonlinear PLS models, Chemometr. Intell. Lab. 70 (2004) 63–74. 

https://doi.org/10.1016/j.chemolab.2003.10.004 

[7] S. Lakshminarayanan, H. Fujii, B. Grosman, E. Dassau, D.R. Lewin, New product 

design via analysis of historical databases, Comput. Chem. Eng. 24 (2000) 671–

676. https://doi.org/10.1016/S0098-1354(00)00406-3 

[8] U.G. Indahl, The O-PLS methodology for orthogonal signal correction -is it 

correcting or confusing?, J. Chemometr. 34 (2020) e2884. 

https://doi.org/10.1002/cem.2884 

[9] S. Yin, S.X. Ding, P. Zhang, A. Hagahni, A. Naik, Study on modifications of PLS 

approach for process monitoring, IFAC Proceedings Volumes 44:1 (2011) 12389-

12394. https://doi.org/10.3182/20110828-6-IT-1002.02876 

Jo
urn

al 
Pre-

pro
of



30 

 

 

[10] S. Ruiz, M.C. Ortiz, L.A. Sarabia, M.S. Sánchez, A computational approach to 

partial least squares model inversion in the framework of the process analytical 

technology and quality by design initiatives, Chemometr. Intell. Lab. 182 (2018) 

70–78. https://doi.org/10.1016/j.chemolab.2018.08.014 

[11] S. Ruiz, L.A. Sarabia, M.C. Ortiz, M.S. Sánchez, Residual spaces in latent 

variables model inversion and their impact in the design space for given quality 

characteristics, Chemometr. Intell. Lab. 203 (2020) 104040. 

https://doi.org/10.1016/j.chemolab.2020.104040 

[12] R. Peraman, K. Bhadraya, Y.P. Reddy, Analytical Quality by Design: A tool for 

regulatory flexibility and robust analytics, Int. J. Anal. Chem. 868727 (2015) 1-9. 

https://doi.org/10.1155/2015/868727 

[13] P. Das, A. Maity, Analytical Quality by Design (AQbD): A new horizon for robust 

analytics in pharmaceutical process and automation, International Journal of 

Pharmaceutics and Drug analysis 5 (2017) 324-337. 

http://www.ijpda.com/admin/uploads/4VdJA6.pdf 

[14] T. Tome, N. Žigart, Z. Časar, A. Obreza, Development and Optimization of Liquid 

Chromatography Analytical Methods by Using AQbD Principles: Overview and 

Recent Advances, Org. Process Res. Dev. 23 (2019) 1784−1802. 

https://doi.org/10.1021/acs.oprd.9b00238 

[15] S. Orlandini, S. Pinzauti, S. Furlanetto, Application of quality by design to the 

development of analytical separation methods, Anal. Bioanal. Chem. 405 (2013) 

443–450. https://doi.org/10.1007/s00216-012-6302-2 

[16] S. Orlandini, B. Pasquini, C. Caprini, M. Del Bubba, L. Squarcialupi, V. Colotta, S. 

Furlanetto, A comprehensive strategy in the development of a cyclodextrin-

modified microemulsion electrokinetic chromatographic method for the assay of 

diclofenac and its impurities: Mixture-process variable experiments and quality by 

Jo
urn

al 
Pre-

pro
of



31 

 

 

design, J. Chromatogr. A 1466 (2016) 189–198. 

https://doi.org/10.1016/j.chroma.2016.09.013 

[17] COM (1999) 706. Communication from the Commission to the Council and the 

European Parliament. Community Strategy for Endocrine Disrupters, a range of 

substances suspected of interfering with the hormone systems of humans and 

wildlife. Commission of the European Communities, Brussels, 1999. 

[18] COM (2001) 262. Communication from the Commission to the Council and the 

European Parliament on the implementation of the Community Strategy for 

Endocrine Disrupters, a range of substances suspected of interfering with the 

hormone systems of humans and wildlife, COM (1999) 706. Commission of the 

European Communities, Brussels, 2001.  

[19] SEC (2007) 1635. Commission Staff Working Document on the implementation of 

the Community Strategy for Endocrine Disrupters, a range of substances 

suspected of interfering with the hormone systems of humans and wildlife, (COM 

(1999) 706), (COM (2001) 262) and (SEC (2004) 1372). Commission of the 

European Communities, Brussels, 2007.  

[20] Commission Directive (EU) 2017/898 of 24 May 2017 amending, for the purpose of 

adopting specific limit values for chemicals used in toys, Appendix C to Annex II to 

Directive 2009/48/EC of the European Parliament and of the Council on the safety 

of toys, as regards bisphenol A. Off. J. Eur. Union L 138 (2017) 128. 

[21] Commission Regulation (EU) 2018/213 of 12 February 2018 on the use of 

bisphenol A in varnishes and coatings intended to come into contact with food and 

amending Regulation (EU) No 10/2011 as regards the use of that substance in 

plastic food contact materials. Off. J. Eur. Union L 41 (2018) 6. 

[22] Commission Regulation (EU) 2016/2235 of 12 December 2016 amending Annex 

XVII to Regulation (EC) No 1907/2006 of the European Parliament and of the 

Jo
urn

al 
Pre-

pro
of



32 

 

 

Council concerning the Registration, Evaluation, Authorisation and Restriction of 

Chemicals (REACH) as regards bisphenol A. Off. J. Eur. Union L 337 (2016) 3. 

[23] Regulation (EC) No 1223/2009 of the European Parliament and of the Council of 

30 November 2009 on cosmetic products. Off. J. Eur. Union L 342 (2009) 59. 

[24] 2019/C 404/07. Opinion of the European Committee of the Regions — Towards a 

comprehensive EU framework on endocrine disruptors. Reference document: 

Communication from the Commission to the European Parliament, the Council, the 

European Economic and Social Committee and the Committee of the Regions — 

Towards a comprehensive European Union framework on endocrine disruptors, 

COM(2018) 734 final. Off. J. Eur. Union C 404 (2019) 34. 

[25] A. Ullah, M. Pirzada, S. Jahan, H. Ullah, N. Turi, W. Ullah, M.F. Siddiqui, M. 

Zakria, K.Z. Lodhi, M.M. Khan, Impact of low-dose chronic exposure to bisphenol 

A and its analogue bisphenol B, bisphenol F and bisphenol S on hypothalamo-

pituitary-testicular activities in adult rats: A focus on the possible hormonal mode of 

action, Food Chem. Toxicol. 121 (2018) 24-36. 

https://doi.org/10.1016/j.fct.2018.08.024 

[26] J. Moreman, O. Lee, M. Trznadel, A. David, T. Kudoh, C.R. Tyler, Acute toxicity, 

teratogenic, and estrogenic effects of bisphenol A and its alternative replacements 

bisphenol S, bisphenol F, and bisphenol AF in Zebrafish embryo-larvae, Environ. 

Sci. Technol. 51 (2017) 12796-12805. https://doi.org/10.1021/acs.est.7b03283 

[27] G. Russo, A. Capuozzo, F. Barbato, C. Irace, R. Santamaria, L. Grumetto, 

Cytotoxicity of seven bisphenol analogues compared to bisphenol A and 

relationships with membrane affinity data, Chemosphere 201 (2018) 432-440. 

https://doi.org/10.1016/j.chemosphere.2018.03.014 

[28] A. Usman, M. Ahmad, Computational study suggesting reconsideration of BPA 

analogues based on their endocrine disrupting potential estimated by binding 

Jo
urn

al 
Pre-

pro
of



33 

 

 

affinities to nuclear receptors, Ecotox. Environ. Safe 171 (2019) 154-161. 

https://doi.org/10.1016/j.ecoenv.2018.12.071 

[29] K. Owczarek, B. Kudłak, V. Simeonov, Z. Mazerska, J. Namieśnik, Binary mixtures 

of selected bisphenols in the environment: their toxicity in relationship to individual 

constituents, Molecules 23 (2018) 3226. 

https://doi.org/10.3390/molecules23123226 

[30] B.M. Wise, N.B. Gallagher, R. Bro, J.M. Shaver, W. Winding, R.S. Koch, PLS 

Toolbox 8.8.1, Eigenvector Research Inc., Wenatchee, WA, USA, 2020.   

[31] MATLAB, version 9.7.0.1190202 (R2019b), The Mathworks, Inc., Natick, MA, 

USA, 2019. 

[32] STATGRAPHICS Centurion 18 Version 18.1.12, Statpoint Technologies, Inc., 

Herndon, VA, USA, 2020.   

[33] D. Mathieu, J. Nony, R. Phan-Than-Lu, NEMRODW (Version 2015), L.P.R.A.I., 

Marseille, France, 2015. 

[34] L.A. Sarabia, M.C. Ortiz, DETARCHI. A program for detection limits with specified 

assurance probabilities and characteristic curves of detection, TrAC-Trend. Anal. 

Chem. 13 (1994) 1-6. https://doi.org/10.1016/0165-9936(94)85052-6 

[35] L.A. Sarabia, M.C. Ortiz, M.S. Sánchez, Response Surface Methodology, in: S. 

Brown, R. Tauler, B. Walczak (Eds.), Comprehensive Chemometrics. Chemical 

and Biochemical Data Analysis, second ed., Elsevier, 2020, pp. 287-326. 

https://doi.org/10.1016/B978-0-12-409547-2.14756-0 

[36] C.M. Jaeckle, J.F. Macgregor, Product design through multivariate statistical 

analysis of process data, AIChE Journal 44 (1998) 1105-1118. 

https://doi.org/10.1002/aic.690440509 

[37] L.A. Sarabia, M.S. Sánchez, M.C. Ortiz, Introduction to ranking methods, in: M. 

Pavan, R. Todeschini (Eds.), Scientific Data Ranking Methods: Theory and 

Jo
urn

al 
Pre-

pro
of



34 

 

 

Applications, Data Handl. Sci. Techn., Volume 27, 2008, pp. 1-50. 

https://doi.org/10.1016/S0922-3487(08)10001-6 

[38] K. Deb, Multi-Objective Optimization using Evolutionary Algorithms, Wiley 

Interscience Series in Systems and Optimization, Wiley, Chichester, 2001.  

[39]  M.M. Arce, S. Sanllorente, M.C. Ortiz, L.A. Sarabia, Easy-to-use procedure to 

optimise a chromatographic method. Application in the determination of bisphenol-

A and phenol in toys by means of liquid chromatography with fluorescence 

detection, J. Chromatogr. A 1534 (2018) 93-100. 

https://doi.org/10.1016/j.chroma.2017.12.049 

[40] International Organization for Standardization, ISO 11843, Capability of Detection, 

Part 1: Terms and Definitions and Part2: Methodology in the Linear Calibration 

Case, Genève, Switzerland, 2000. 

[41] Commission Decision (EC), No 2002/657/EC Of 12 August 2002 Implementing 

Council Directive 96/23/EC Concerning the Performance of Analytical Methods 

and the Interpretation of Results, Off. J. Eur. Commun. L 221 (2002) 8. 

[42] L. Wang, Q. Li, L. Zhang, A convenient approach for the determination of multiple 

trace BPs using an in-syringe-assisted solid phase microextraction system packed 

with elastic spongy graphene rods coupled with HPLC, Anal. Methods 9 (2017) 

2673–2681. https://doi.org/10.1039/c7ay00352h 

[43] Q. Zhou, Z. Jin, J. Li, B. Wang, X. Wei, J. Chen, A novel air-assisted liquid-liquid 

microextraction based on in-situ phase separation for the HPLC determination of 

bisphenols migration from disposable lunch boxes to contacting water, Talanta 189 

(2018) 116-121. https://doi.org/10.1016/j.talanta.2018.06.072 

[44] L. Wang, D. Zhang,  X. Xu, L. Zhang, Application of ionic liquid-based dispersive 

liquid phase microextraction for highly sensitive simultaneous determination of 

Jo
urn

al 
Pre-

pro
of



35 

 

 

three endocrine disrupting compounds in food packaging, Food Chem. 197 (2016) 

754-760. https://doi.org/10.1016/j.foodchem.2015.11.042 

[45] Y. Li, C. Yang, J. Ning, Y. Yang, Cloud point extraction for the determination of 

bisphenol A, bisphenol AF and tetrabromobisphenol A in river water samples by 

high-performance liquid chromatography , Anal. Methods 6 (2014) 3285-3290.  

https://doi.org/10.1039/C3AY42191K 

[46] Y. Li, Y. Liao, Y. Guoc, Y. Yang, Determination of bisphenol-A, 2,4-dichlorophenol, 

bisphenol-AF and tetrabromobisphenol-A in liquid foods and their packaging 

materials by vortex-assisted supramolecular solvent microextraction/high-

performance liquid chromatography, Anal. Methods 5 (2013) 5037–5043. 

https://doi.org/10.1039/C3AY40586A 

[47] J. Yin, Z. Meng, Y. Zhu, M. Song, H. Wang, Dummy molecularly imprinted polymer 

for selective screening of trace bisphenols in river water, Anal. Methods 3 (2011) 

173–180. https://doi.org/10.1039/C0AY00540A 

[48] D. Yang, G. Li, L. Wu, Y. Yang, Ferrofluid-based liquid-phase microextraction: 

Analysis of four phenolic compounds in milks and fruit juices, Food Chem. 261  

(2018) 96-102. https://doi.org/10.1016/j.foodchem.2018.04.038 

[49] X. Sun, J. Wang, Y. Li, J. Jin, J. Yang, F. Li, S.M. Shah, J. Chen, Highly class-

selective solid-phase extraction of bisphenols in milk, sediment and human urine 

samples molecularly using well-designed dummy molecularly imprinted polymers, 

J. Chromatogr. A 1360 (2014) 9-16. https://doi.org/10.1016/j.chroma.2014.07.055 

[50] X. Sun, J. Wang, Y. Li, J. Jin, B. Zhang, S.M. Shah, X. Wang, J. Chen, Highly 

selective dummy molecularly imprinted polymer as a solid-phase extraction 

sorbent for five bisphenols in tap and river water, J. Chromatogr. A 1343 (2014) 

33-41. https://doi.org/10.1016/j.chroma.2014.03.063 

Jo
urn

al 
Pre-

pro
of



36 

 

 

[51] J. Yang, Y. Li, J. Wang, X. Sun, R. Cao, H. Sun, C. Huang, J. Chen Molecularly 

imprinted polymer microspheres prepared by Pickering emulsion polymerization for 

selective solid-phase extraction of eight bisphenols from human urine samples, 

Anal. Chim. Acta 872 (2015) 35-45. https://doi.org/10.1016/j.aca.2015.02.058 

[52] J. Yang, Y. Li, J. Wang, X. Sun, S.M. Shah, R. Cao, J. Chen, Novel sponge-like 

molecularly imprinted mesoporous silica material for selective isolation of 

bisphenol A and its analogues from sediment extracts, Anal. Chim. Acta 853 

(2015) 311-319. https://doi.org/10.1016/j.aca.2014.09.051 

[53] H. Sun, Y. Li, J. Yang, X. Sun, C. Huang, X. Zhang, J. Chen , Preparation of 

dummy‐imprinted polymers by Pickering emulsion polymerization for the selective 

determination of seven bisphenols from sediment samples, J. Sep. Sci. 39 (2016) 

2188-2195. https://doi.org/10.1002/jssc.201501305 

[54] T. Tuzimski, D. Pieniążek, G. Buszewicz, G. Teresiński, QuEChERS-Based 

Extraction Procedures for the Analysis of Bisphenols S and A in Breast Milk 

Samples by LC-QqQ-MS, Journal of AOAC INTERNATIONAL 102 (2019) 23–32. 

https://doi.org/10.5740/jaoacint.18-0297 

[55] L. Wang, Z. Zhang, X. Xu,D. Zhang, F. Wang, L. Zhang, Simultaneous 

determination of four trace level endocrine disrupting compounds in environmental 

samples by solid-phase microextraction coupled with HPLC, Talanta 142 (2015) 

97-103. https://doi.org/10.1016/j.talanta.2015.04.043 

[56] E. Herrero-Hernández, R. Carabias-Martínez, E. Rodríguez-Gonzalo, Use of a 

bisphenol-A imprinted polymer as a selective sorbent for the determination of 

phenols and phenoxyacids in honey by liquid chromatography with diode array and 

tandem mass spectrometric detection, Anal. Chim. Acta 650 (2009) 195-201. 

https://doi.org/10.1016/j.aca.2009.07.043 

Jo
urn

al 
Pre-

pro
of



37 

 

 

[57] D.C. Morelli, G. Bernardi, L. Morés, M.E. Pierri, E. Carasek, A green - high 

throughput –extraction method based on hydrophobic natural deep eutectic solvent 

for the determination of emerging contaminants in water by high performance 

liquid chromatography – diode array detection, J. Chromatogr. A 1626 (2020) 

461377. https://doi.org/10.1016/j.chroma.2020.461377 

[58] T. Tuzimski, S. Szubartowski, Method Development for Selected Bisphenols 

Analysis in Sweetened Condensed Milk from a Can and Breast Milk Samples by 

HPLC–DAD and HPLC-QqQ-MS: Comparison of Sorbents (Z-SEP, Z-SEP Plus, 

PSA, C18, Chitin and EMR-Lipid) for Clean-Up of QuEChERS Extract, Molecules 

24 (2019) 2093. https://doi.org/10.3390/molecules24112093 

[59] P. Baile, J.Medina, L. Vidal, A. Canals, Determination of four bisphenols in water 

and urine samples by magnetic dispersive solid‐phase extraction using a modified 

zeolite/iron oxide composite prior to liquid chromatography diode array detection, 

J. Sep. Sci. 43 (2020) 1808-1816. https://doi.org/10.1002/jssc.201901022 

[60] H. Wang, S. Song, M. Shao, Y. Gao, C. Yang, Y. Li, W. Wang, Y. He, P. Li, 

Determination of bisphenol analogues in food-contact plastics using diode array 

detector, charged aerosol detector and evaporative light-scattering detector, 

Ecotox. Environ. Safe. 186 (2019) 109778. 

https://doi.org/10.1016/j.ecoenv.2019.109778 

[61] M. Eckardt, T. J. Simat, Bisphenol A and alternatives in thermal paper receipts - a 

German market analysis from 2015 to 2017, Chemosphere 186 (2017) 1016-1025. 

https://doi.org/10.1016/j.chemosphere.2017.08.037 

[62] E. Herrero-Hernández, E. Rodríguez-Gonzalo, M. S. Andrades, S, Sánchez-

González, R. Carabias-Martínez, Occurrence of phenols and phenoxyacid 

herbicides in environmental waters using an imprinted polymer as a selective 

sorbent, Sci. Total Environ. 454–455 (2013) 299-306. 

http://doi.org/10.1016/j.scitotenv.2013.03.029 

Jo
urn

al 
Pre-

pro
of



38 

 

 

[63] Z. Liu, Z. Xu, Y. Liu, Y. Liu, B. Lu, L. Ma, Supramolecular imprinted polymeric stir 

bar sorptive extraction followed by high-performance liquid chromatography for 

endocrine disruptor compounds analysis, Microchem. J. 158 (2020) 105163. 

https://doi.org/10.1016/j.microc.2020.105163 

[64] J. Liu, H. oiu, F. Zhang, Y. Li, Zeolitic imidazolate framework-8 coated 

Fe3O4@SiO2 composites for magnetic solid-phase extraction of bisphenols, New J. 

Chem. 44 (2020) 5324-5332. https://doi.org/10.1039/d0nj00006j 

[65] D. Yang, Y. Wang, H. Li, Y. Yang, Acid-base-governed deep eutectic solvent-

based microextraction combined with magnetic solid-phase extraction for 

determination of phenolic compounds, Microchim. Acta 187 (2020) 124. 

https://doi.org/10.1007/s00604-020-4109-y 

[66] M. Háková, L. Chocholoušová  Havlíková, J. Chvojka, Jakub Erben, P. Solich, F. 

Švec, D. Šatínský,  , Polycaprolactone nanofibers functionalized with a dopamine 

coating for on-line solid phase extraction of bisphenols, betablockers, nonsteroidal 

drugs, and phenolic acids, Microchim. Acta 186 (2019) 710. 

https://doi.org/10.1007/s00604-019-3846-2 

[67] N. Li, j. Chen, Y.P. Shi, Magnetic nitrogen-doped reduced graphene oxide as a 

novel magnetic solid-phase extraction adsorbent for the separation of bisphenol 

endocrine disruptors in carbonated beverages, Talanta 201 (2019) 194-203. 

https://doi.org/10.1016/j.talanta.2019.04.002 

[68] X. Han, J. Chen, H. Oiu, Y.P. Shi, Solid/liquid phase microextraction of five 

bisphenol-type endocrine disrupting chemicals by using a hollow fiber reinforced 

with graphene oxide nanoribbons, and determination by HPLC-PDA, Microchim 

Acta 186 (2019) 375. https://doi.org/10.1007/s00604-019-3498-2 

[69] A. Kaleniecka, P. K. Zarzycki, Analysis of Selected Endocrine Disrupters Fraction 

Including Bisphenols Extracted from Daily Products, Food Packaging and Treated 

Jo
urn

al 
Pre-

pro
of



39 

 

 

Wastewater Using Optimized Solid-Phase Extraction and Temperature-Dependent 

Inclusion Chromatography, Molecules 24 (2019) 1285. 

https://doi.org/10.3390/molecules24071285 

[70] G. Peng, Y. Lu, W. You, Z. Yin, Y. Li, Y. Gao, Analysis of five bisphenol 

compounds in sewage sludge by dispersive solid-phase extraction with magnetic 

montmorillonite, Microchem. J. 157 (2020), 105040. 

https://doi.org/10.1016/j.microc.2020.105040 

 

 

 

Jo
urn

al 
Pre-

pro
of



40 

 

Figure Captions 

 

Figure 1. Experimental domain for control method parameters. For each flow rate of the 

mobile phase, the constrained simplex where the ternary mixtures can vary is marked in 

yellow. The experiments from the D-optimal design are in black, the 10 additional 

experiments are in red. (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article). 

Figure 2 . Parallel coordinates plot of the reduced Pareto front, raw experimental 

conditions in the first four coordinates and predicted responses in the last six 

coordinates. All the values were range-scaled with the individual minima and maxima at 

the bottom and top, respectively, of each coordinate.  

Figure 3. Chromatograms obtained with different control method parameters: a) the 

ones selected with the proposed procedure; b) 0.6 mL min-1 of flow rate with a binary 

mixture of 30% water and 70% acetonitrile; c) 0.8 mL min-1 of flow rate flow rate and a 

ternary mixture of 26% water, 22% methanol and 52% acetonitrile. Elution order: BPS, 

BPF, BPA, BPAF and BPZ. 

Figure 4.  95% joint confidence region for intercept and slope of the accuracy lines. BPA 

in blue, BPF in green, BPAF in brown, BPS in yellow and BPZ in dark brown. + indicates 

the point (0,1). For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.  

Figure 5.  Retention time of analytes BPS, BPF, BPA, BPAF and BPZ from the 29 

revised works in Table 9, whose row numbers serve as identification in the abscissa 

axis. Number 30 corresponds to the present work. 
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HIGHLIGHTS 

 

 

Computational inversion of a PLS2 model inside the Analytical Quality by Design 

 

Method to select chromatographic parameters to obtain an analytical target profile 

 

Selection of representative chromatographic conditions using a D-optimal design 

 

Fitting and inversion of a PLS2 looking for the Pareto front of several responses 

 

Five bisphenols (including Bisphenol-A) determined by HPLC-DAD in less than 4 
minutes 
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