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Abstract

The demand for reliable and replicable short-term probabilistic earthquake forecasts
is becoming increasingly compelling, as we continue to witness seismic sequences
with occasionally multiple disturbing or damaging earthquakes.
Purely statistical models of earthquake clustering adequately capture the patterns
of triggered seismicity and currently represent the standard approach for different
operational earthquake forecasting systems.
On the other hand, developing and testing physics-based forecast models let us vali-
date the most popular physical hypotheses for earthquake triggering and clustering.
These models couple complex stress interactions between faults with laboratory-
derived frictional laws providing a framework for earthquake forecasting in the con-
text of continuum mechanics. However, while featuring the unique characteristic
of integrating many products of observational seismology, they are extremely data-
intensive especially in near real-time settings where their applicability is still con-
tentious.
Over the last decade, the scientific advancements in seismology have provided higher
resolution seismic catalogues as well as improved fault characterisations; this presents
us with great opportunities to (1) evaluate their usefulness in improving the short-
term performance of models of both forecast categories, (2) explore which specific
modelling choices driven by real-time data quality and availability boost our fore-
casting skills and by how much, and (3) assess what are the data products required
for such model improvements to be operationally delivered.
To answer the above points, this thesis presents three forecasting experiments offer-
ing a novel experimental strategy, where the absolute and relative performance of
statistical and physics-based models is formally quantified under different forecast-
ing modes and modelling choices, in both cases of tectonic and induced seismicity.
Looking ahead to the future improvements in near real-time input data quality
promised by the most recent progresses in artificial intelligence techniques, the re-
sults of these experiments suggest what are the pathways that should be undertaken
for future model developments.
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Chapter 1

Introduction

Earthquakes continue to produce losses of human lives and enormous damages

around the world. Predicting the time, location and magnitude of destructive

earthquakes has been considered the ultimate goal of modern seismology since its

birth in the early 20th century.

For many years, scientists have been searching for observable and measurable

precursors that would enable us to precisely anticipate the occurrence of seismic

events. Different hypotheses on earthquake preparatory phenomena were formu-

lated in the 1970s and 1980s with occasional successes and several failures.

Nowadays, that early enthusiasm has mostly vanished as seismicity precursors

proved unreliable, and the so-called ’deterministic’ prediction of earthquakes is

considered as a pipe dream by the seismological community.

The current research in the field focuses instead on probabilistic approaches that

fall into the category of mathematical models known as ’earthquake forecasts’.

Such modelling effort is made possible in the first place by the study of the large

scale characteristics of Earth’s seismicity: our knowledge of plate tectonics, paleo-

seismological investigations of earthquake recurrence times, together with studies

of historical seismicity and fault mapping, provide us with an understanding of

which areas are more likely to experience strong ground shaking in the long term

(i.e. several decades or centuries). These elements contribute to time-independent

earthquake forecasts, which usually take the form of seismic hazard maps express-
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ing the convolution of long term earthquake probabilities with site conditions.

This kind of research product is generally important for uses in risk management

including building code developments but also covers wider applications in the

field of insurance and re-insurance financial products.

However, a critical element comes from the observations that earthquakes tend to

cluster in space and time in what we commonly call ’earthquake sequences’. Such

empirical evidence, which is not considered in time-independent models, suggests

that the occurrence of an earthquake alters the short-term spatiotemporal prob-

abilities of further seismic events, usually called ’aftershocks’. Hence, short-term

models (e.g. few minutes to several months) are required to capture the space-

time fluctuations of the seismic hazard, as aftershock cascades can generate various

moderate to large magnitude events over weeks, months or years that expand the

damage zones extensively causing even more severe disruption to livelihoods.

1.1 Short-term Earthquake Forecasting

A turning point in the field of short-term earthquake forecasting is represented by

the destructive 2009 L’Aquila (Central Italy) earthquake, where an accelerating

pattern of M3+ seismicity was felt by the population a few days before a Mw =

6.3 mainshock that caused more than 300 fatalities. In that case, seven members

of the Italian National Commission for the Forecast and Prevention of Major Risks

were accused of inaccurate risk communication and eventually indicted on charges

of manslaughter (for more details, see Stucchi et al., 2016).

While efforts to develop time-dependent earthquake forecast models were surely

under way well before the 2009 Italian case, these tragic events dramatically epito-

mised (1) the need to quickly move towards a community effort to establish testable

aftershock forecasts to inform short-term decision-making protocols, and (2) the

challenge to enhance societal awareness and preparedness to pending disasters by

delivering hazard information to the general public in an effective and timely man-

ner.

Therefore, following the L’Aquila disaster, the Italian government convened an

International Commission on Earthquake Forecasting for Civil Protection (ICEF),

2
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where a group of experts was asked to describe the state-of-the-art of short-term

earthquake forecasting and provide suggestions for its future developments. In

the resulting report, the framework of Operational Earthquake Forecasting (OEF)

was conceptualised for the first time, and defined as: ”the continual updating

of authoritative information about the future occurrence of potentially damaging

earthquakes, and the officially sanctioned dissemination of this information to en-

hance earthquake preparedness in threatened communities” (Jordan et al., 2011).

Instead of directly focusing on the definition of OEF protocols (that actually

involve critical research in other fields such as risk communication), this thesis

concerns the scientific advance that supports OEF improvements in the form of

testable aftershock forecast models.

These models can be divided into three categories:

1. Statistical models, that are based on purely empirical relationships provid-

ing a description of the probabilistic evolution of triggered seismicity. These

include the modified Omori-Utsu (OU) law for the aftershock time decay,

the Gutenberg-Richter (GR) law for the earthquake magnitude distribution,

and other relationships that scale the aftershock area and the number of

triggered events (i.e. the aftershock productivity) with the magnitude of the

mainshock.

2. Physics-based models that seek to forecast the space-time distribution

of future seismicity based on the physical mechanisms that are believed to

drive earthquake triggering. These models are commonly named ”stress-

based” forecasts as they couple the co-seismic and/or post-seismic stress

interactions between faults with constitutive laws that project earthquake

rates over different time horizons.

3. Hybrid models implement a combination of the two previously mentioned

categories. For example, successful hybrid models sample earthquake magni-

tudes and occurrence times from the GR and OU laws and then redistribute

events in space using the fault-to-fault stress interaction patterns (e.g. Steacy

et al., 2014; Cattania et al., 2018).
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Because of their recognised ease of implementation and robustness in describing

the short-term spatiotemporal patterns of triggered seismicity, statistical forecasts

are the most widespread models currently adopted in OEF systems. In particular,

the Epidemic-Type Aftershock Sequence (ETAS) forecasts (Ogata, 1988; 1998)

have shown considerable skills in capturing the clustering characteristics of trig-

gered seismicity and are an integral part of many OEF strategies worldwide, where

they are either used alone or in combination with other models (e.g. Gerstenberger

& Rhoades, 2010; Marzocchi et al., 2014; Field et al., 2017; Omi et al., 2019).

ETAS models are also commonly recognised as the most robust benchmark against

which modellers evaluate any performance improvement of competing forecasting

techniques. On the other hand, these models offer limited insight into the physics

of earthquake nucleation and short-term fault interaction in terms of continuum

mechanics.

Here, an indirect benefit of OEF emerges: while representing a practical aspect of

science to understand how well proposed models forecast seismicity, it also serves

as a community get-together to establish the veracity of the underlying scientific

hypotheses, such as those for the physical mechanisms governing earthquake trig-

gering and clustering.

1.2 The Challenge of Stress-based Forecasts

The idea of causal relationships between the occurrence of earthquakes dates back

to the second half of the twentieth century, when it was first postulated that earth-

quakes change the equilibrium of stresses on neighbouring faults (Richter, 1958).

Possible correlations between areas of increased shear stresses and aftershock lo-

cations were proposed by Das and Scholz (1981). However, it was not until the

seminal work of Harris and Simpson (1992) that the so-called static stress trans-

fer hypothesis was formally formulated. According to this hypothesis, which now

represents a commonly accepted physical interpretation for earthquake triggering,

a discrete dislocation in the Earth’s crust (i.e. an earthquake) statically (that is,

quasi-permanently) perturbs the state of stress in the surrounding crustal volume.

It follows that shear and normal stresses on fault surfaces are modified, inhibiting
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some ruptures and making others more likely.

The way static stress changes are implemented, that is, the vehicle to quantify

the actual amount of statically transferred stress is the Coulomb stress theory (see

Chapter 2): seismicity is promoted on neighbouring faults experiencing positive

static stress changes, while it is suppressed in those areas of negative stress change

commonly indicated as ’stress shadows’.

Despite promising applications in several regions of the world (e.g. Stein et al.,

1992; King et al., 1994), the stress transfer hypothesis has been challenged by

many authors pointing to the fact that a non-negligible portion of triggered seis-

micity (in extreme cases up to 30-40%) occurs in stress shadows (e.g. Hardebeck

et al., 1998; Mallmann & Parsons, 2008). These observations highlight the actual

complexity of earthquake triggering processes, that are likely to go beyond the

mere coseismic stress perturbations. Another recognised triggering mechanism,

especially at longer distances from the source fault, is represented by the tran-

sient perturbations due to the passage of seismic waves known as dynamic stress

changes (e.g. Gomberg et al., 1998; 2001; Brodsky & van der Elst, 2014). In ad-

dition, post-seismic processes are likely to contribute toward the observed longer

term aftershock patterns (e.g. Freed, 2005). These include afterslip (e.g. Perfet-

tini, 2004; Ross et al., 2017), poro-elastic effects (e.g. Cocco & Rice, 2002) and, at

decadal scale, viscoelastic relaxation of the lower crust (Wang et al., 2012, Diao

et al., 2014).

Although static stress changes alone do not always fully explain triggered earth-

quakes patterns, they represent the basis to produce physics-based short-term af-

tershock forecasts. In particular, stress changes are coupled to laboratory-derived

friction laws describing the seismicity response to an earthquake perturbation (Di-

eterich, 1994) to define a family of models known as Coulomb rate-and-state (CRS)

forecasts (Toda et al., 2005; Cocco et al., 2010; Toda & Enescu, 2011; Parsons et

al., 2012, 2014; Segou et al., 2016, Cattania et al., 2018, among others).

During the last ∼25 years, the development of CRS models has almost gone hand-

in-hand with the evolution in the production and quality of seismological data.

In the early to mid ’90s, earthquake catalogues were not large enough, and anal-

yses of spatial correlations between stress changes and occurrence of subsequent
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moderate-to-large magnitude events were mainly qualitative (e.g. Stein et al.,

1994; Toda et al., 1998; Stein, 1999). In this regard, the 1992 Landers sequence is

often reported to be the clearest example of how the static stress change signatures

can drive aftershock sequences (King et al., 1994).

To start supporting a more systematic testing of stress transfers within the spe-

cific CRS implementation, a critical period came in the early 2000s when the im-

provement of regional networks and the introduction of new algorithms to develop

enhanced seismic catalogues started to bear fruit (e.g. Waldhauser & Elssworth,

2000). It was indeed not before the work of Toda et al. (2005) that CRS models

could be more rigorously tested on southern California seismicity benefitting from

the first large-scale relocated catalogue by Richards-Dinger and Shearer (2000).

However, this first generation of CRS models was usually rooted on simple descrip-

tions of earthquake sources and hazardous faults leading to mixed successes, up to

the point that Woessner et al. (2011) argued that their performance was nowhere

near to that of competing empirical models such as ETAS and STEP (Short-Term

Earthquake Probabilities; Gerstenberger et al., 2005).

In the last ∼10 years, the level of science around CRS modelling has evolved.

More complete global seismicity catalogues and increasingly detailed fault charac-

terisations drove us into the development of a second generation of physics-based

models that in preliminary experiments perform sensibly better than before (e.g.

Segou et al., 2013; Cattania et al., 2018). These results motivate further testing

of these models (1) for comparing their predicting skills against competing fore-

cast techniques in transparent evaluation platforms such as the Collaboratory for

the Study of Earthquake Predictability (CSEP, Jordan, 2006; Michael & Werner,

2018), and (2) ultimately, for future consideration in OEF protocols.

In spite of the recent improvements in physics-based modelling, a major chal-

lenge regards quantifying their actual real-time performance. Indeed, most of the

past literature regarding CRS models assesses their ability to reproduce the spa-

tiotemporal evolution of aftershock sequences in retrospective mode, that is, taking

advantage of best-quality datasets (especially in terms of high-quality source mod-

els) that are extremely unlikely to be available in real-time conditions following a

major earthquake. The need for a model parameterisation that goes beyond an
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input earthquake catalogue (as opposed to ETAS models) and that brings together

geological, seismological and geophysical information about the Earth system is

still an obstacle to integrate all these data products into an operational protocol.

To evaluate and quantify the predictive power of CRS models in operational con-

texts, and more importantly to understand which are the most critical pathways

to improve their near real-time skills, an increasing number of pseudo-prospective

and purely prospective experiments are needed. Both these ’blind’ forecasting

modes allow a so-called ’out-of-sample’ validation, since they do not use any fea-

ture of the data sample that the model is intended to forecast and avoid possible

biases introduced by the incorporation of refined input data that would not be

achievable in near real time. In this way, essential questions may be pursued: how

do CRS forecasts perform when their parameterisation is driven by real-time data

availability and quality? Which model components and modelling choices are the

most critical and by how much?

1.3 Forecast Models of Induced Seismicity

The interest of the seismological community toward human-induced seismicity has

appeared and dramatically grown over the last few years. The main reason lies

in the increased development of subsurface geo-energy reservoirs, including uncon-

ventional shale gas development, enhanced geothermal energy systems, wastewater

injection, and underground storage of liquid carbon (Ellsworth, 2013).

In recent years, fluid-induced seismicity with moderate magnitudes (M5-5.7) in

regions such as the central United States and South Korea has led to significant

damages and losses (Keranen et al., 2013; Ellsworth et al., 2019; Lee et al., 2019).

In this kind of environment, injection operations entail pumping pressurised fluid

at depth that promotes seismicity in previously low seismic hazard regions or fur-

ther increases existing high seismic rates. As a consequence, these activities raised

severe concern from governments and harsh criticism from the general public.

For specific applications such as hydraulic fracturing (HF) and geothermal ex-

ploitation, several countries around the world adopt the so-called ’traffic light’

system (Bommer et al., 2006) as a mitigation strategy. According to these proto-

cols, operators are required to reduce or even stop injection if an earthquake with
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magnitude larger than a set threshold occurs. Variable magnitude limits are in

force in different countries, from the ML = 4.0 of Canada (Kao et al., 2018) down

to the ML = 0.5 of the UK (Clarke et al., 2019).

Given this emerging type of anthropogenic hazard, and notwithstanding the huge

economic interests behind the exploitation of geo-energy reservoirs, researchers are

more frequently asked to provide operators and regulators with forecast models

of induced seismicity. The most studied aspects regard the maximum expected

magnitudes (e.g. Clarke et al., 2019) and forecasts of earthquake rates in response

to injected fluid volumes, rates, and pressures.

While several hypotheses about the interplay of physical mechanisms controlling

the seismic response to subsurface fluid injection are under investigation, our cur-

rent approach in modelling such short-lived transient hazard mostly relies on prob-

abilistic methods providing a framework for epistemic and aleatory uncertainties.

Passing the natural earthquake forecast problem to the induced seismicity environ-

ment introduces new challenges. (1) Forecasting event with generally low to very

low magnitudes; (2) creating forecasts with shorter time horizons: the compara-

tive analysis of Omori’s p-values of tectonic and induced seismicity rates shows

that the latter often decay more quickly and can vary dramatically even within

minutes; (3) developing models that need to account for additional sources of seis-

micity forcing (e.g. external fluid pumping) and their complex relationships with

the induced event rates.

One consequence arising from the points illustrated above is the importance of

enhanced, dense monitoring systems in fluid-induced seismicity contexts allowing

for high-quality data products to be adequately developed and promptly processed

within extremely short time windows. The aim is to integrate such input data into

forecast models to provide operators with reliable and easily implementable tools

for real-time hazard estimates.

1.4 Objectives of the Thesis and Outline

This thesis explores the modelling elements that improve the performance of short-

term stress-based and statistical earthquake forecasts in operational contexts. Its

goal is to provide quantifiable evidence on the type and quality of datasets required
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for future model developments, as well as to assess guidelines for their near real-

time implementation in cases of both tectonic and induced seismicity. To that end,

we explore how individual modelling choices driven by the actual data availability

affect the predictive skills of the forecasts.

Additional motivations for this dissertation are provided by a unique chance of-

fered by stress-based modelling of aftershock sequences, that is, testing how the

increasingly improving real-time data products help us to validate the existing

physical hypotheses for earthquake triggering.

In Chapter 2 we present the theoretical framework and briefly discuss the state-of-

the-art of Coulomb rate-and-state and ETAS models, as well as their limitations

in terms of model uncertainties and parameterisation. We also introduce the sta-

tistical metrics used to evaluate model performance.

Chapters 3 is dedicated to assessing the pseudo-prospective performance of Coulomb

rate-and-state models benchmarked against a standard ETAS during the 2016-2017

Central Italy aftershock cascade. We test a wide range of CRS models with in-

creasing level of complexity tied to real-time conditions in terms of data quality

and availability. Guided by a rigorous comparative model evaluation, we quantify

how the out-of-sample forecasting skills are affected by the gradual incorpora-

tion of: spatially variable background seismicity rates, optimised model param-

eters, crustal structural heterogeneities describing hazardous faults informed by

past earthquakes, spatially variable source models, and the contribution of smaller

magnitude earthquakes in reshaping the co-seismic stress field (i.e. ’secondary

triggering’ effects).

We start Chapter 4 by applying a similar experimental framework to the 2019

Ridgecrest (California) earthquake sequence. While prior studies in literature tend

to apply different models to separate case studies, without much evidence of repli-

cable and robust inferences between different seismic sequences, here our aim is

to explore whether the same conclusions drawn from the Central Italy experiment

are also valid in a completely different tectonic setting.

Also, the data-wealthy environment of southern California allows us to expand

the analysis on some critical points, specifically the influence of (1) artefacts and
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errors in preliminary finite-fault slip models (2) the choice among different data

sources to characterise earthquake ruptures (i.e. uncertainty in focal mechanisms),

and (3) the incorporation of unfolding aftershock ruptures to better resolve the

evolving co-seismic stresses in the near source region.

In Chapter 5, we move the focus of our models to an induced seismicity envi-

ronment, specifically to the microseismicity recorded during and after hydraulic

fracturing operations at the Preston New Road site in UK. Here, we probe the fore-

casting skills of the standard (tectonic) ETAS model and compare them against

those of a modified ETAS that accounts for external forcing in the form of time-

dependent fluid injection rates. Given the rich datasets coming from operations

carried out at two different wells during two distinct time windows, we could also

evaluate the comparative performance of ETAS models parameterised using both

in-sample and out-of-sample data. The results of this study let us draw conclu-

sions on the operational applicability of ETAS in hydraulic fracturing contexts

and on which are the modelling strategies to be adopted for its successful future

implementations.

Finally, in Chapter 6 we examine the significance of our findings, their limitations

and discuss future directions.
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Chapter 2

Formulation and Evaluation of

Short-term Earthquake Forecast

Models

Part of the text included in this chapter appears in the following article:

• Mancini, S., Segou, M., Werner, M. J., and Cattania, C. (2019). Improv-

ing physics-based aftershock forecasts during the 2016-2017 Central Italy

Earthquake Cascade. J. of Geophys. Res. Solid Earth, 124, 8626-8643.

https://doi.org/10.1029/2019JB017874.

In this chapter, we introduce the mathematical framework that we use to pass from

the Coulomb theory to the creation of testable models of earthquake clustering.

We also present the main features of the ETAS model, as well as the formulation

of the most common statistical performance evaluation metrics implemented in

CSEP.

2.1 Coulomb Rate-and-state Modelling

2.1.1 Coulomb Stress Changes

Earthquake slip on faults is approximated by tensile and shear dislocations that

induce strain in the surrounding crustal volume, whose resulting deformation de-

11
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pends on the specific rheology assumed. For an elastic half-space, the perturbation

of the stress field (i.e. the change in the shear and normal components of the stress

tensor) imparted by discrete rectangular dislocations is calculated using the ana-

lytical coefficients derived by Okada (1992).

According to the Mohr-Coulomb failure criterion, brittle ruptures such as earth-

quakes are encouraged when either (i) the shear stress (τ) acting on a fault plane

increases, or (ii) a fault is unclamped following a normal stress (σn) reduction.

The stress tensor obtained by means of the Okada solutions is then resolved on

a given fault geometry (commonly known as ”receiver fault”) to compute τ and

σn. These values are used to calculate the change in the value of the Coulomb

Failure Function (CFF), which is a common physical quantity used to estimate

the variation of the state of stresses on neighbouring faults.

Rice (1992) formulates the ∆CFF as:

∆CFF = ∆τ + µ
′(∆σn), (2.1)

where ∆τ is the change in shear stress resolved on a receiver fault and set positive

in direction of fault slip, ∆σ is the change in normal stress (positive when the fault

is unclamped), µ′ = µ(1 − Bk) is the effective coefficient of friction, with Bk the

Skempton’s coefficient describing pore pressure changes in response to a change in

applied stress.

2.1.2 The Rate-and-state Framework

As the Coulomb stress hypothesis alone does not account for the time dependency

of seismicity, Coulomb rate-and-state (CRS) forecast models couple the coseismic

static stress change calculations with rate-and-state friction constitutive laws to

estimate the expected rates of earthquake occurrence. Although more recent re-

views of the rate-and-state model have been proposed (e.g. Heimisson & Segall,

2018), the approach presented in this study implements the standard formulation

by Dieterich (1994). According to the latter, the spatiotemporal seismicity rate

evolves as:
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R(t, x, y) =
r0(x, y)

γ(t)τ̇
, (2.2)

where r0 represents the background seismicity rate in space (x, y), τ̇ is the secular

shear stressing rate (that is, it is assumed to remain constant) and γ is a variable

that under stable conditions reaches the steady state with a value given by:

γ0 =
1

τ̇
. (2.3)

In the absence of stress perturbations, the seismicity rate R equals the background

rate r0. When a stress step is applied to the population of receiver faults, the state

variable instantaneously assumes a new value:

γn = γn−1 exp

!
−∆S

Aσ

"
, (2.4)

where Aσ expresses the effective normal stress acting on the receiver fault, ∆S

is the stress imparted by the earthquake, and γn−1 and γn represent the values

of the γ variable before and after the stress change, respectively. While in the

Dieterich (1994) formulation the applied stress change is the shear stress change,

CRS modelling usually assumes it to be a ”modified” Coulomb stress change (Di-

eterich et al., 2000) that also includes the contribution of the effective normal

stress changes. This is achieved by considering S = τ − (σ − α)(1 − Bk)σ, with

α a positive non-dimensional constitutive parameter controlling perturbations in

normal stress (Linker & Dieterich, 1992). To approximate S in equation (2.4) to

the Coulomb stress change as traditionally defined in equation (2.1), CRS models

assume that µ′ = (σ − α)(1− Bk).

Dieterich (1994) and Dieterich et al. (2000) show that the state variable evolves as:

dγ =
1

Aσ
[dt− γdS], (2.5)

Following equation (2.4), a positive stress change causes a drop of the γ value and

13



CHAPTER 2. FORMULATION AND EVALUATION OF SHORT-TERM
EARTHQUAKE FORECAST MODELS

consequently a higher earthquake rate according to equation (2.2). However, the

seismicity rate eventually recovers as the state variable evolves in time according

to Dieterich (1994):

γn+1 =

!
γn −

1

τ̇

"
exp

!
−∆tτ̇

Aσ

"
+

1

τ̇
, (2.6)

where ∆t is the time step.

In the Dieterich’s (1994) rate-and-state framework, the ratio between the normal

stress Aσ and the secular shear stressing rate τ̇ is the aftershock recovery time (ta)

required for the seismicity rate R to return to the background value r0 through an

Omori-like decay:

ta =
Aσ

τ̇
. (2.7)

Given this inverse correlation between the stressing rate and the aftershock dura-

tion, it is evident that the seismicity rate on the most slowly stressed faults takes

more time to decay towards background values (Stein & Liu, 2009).

2.1.3 Sources of Uncertainty in CRS Modelling

The propagation of epistemic and aleatory uncertainties in CRS models has been

investigated by several authors (Hainzl et al., 2009; Woessner et al., 2012; Catta-

nia et al., 2014 among others).

First, the static stress change calculations usually do not take into account any

spatial variability in the elastic properties of the crust. Given our current limita-

tions in treating rheological variations at a fault-specific level, elastic parameters

(i.e. Lamé parameter, shear modulus and Poisson’s ratio) are commonly assumed

to be homogeneous throughout the study region, with values representing the aver-

age elastic properties of the upper crustal seismogenic layer. Although this source

of aleatory uncertainty likely affects our capability to resolve the small-scale pat-

terns of coseismic stresses, it has been shown that it is not a primary factor of

uncertainty when compared to other elements, such as the existence of diverse
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receiver fault populations, even for high model resolutions (Cattania et al., 2014).

Therefor, in the absence of further constraints, using a simplified elastic medium

seems acceptable from a modelling perspective.

The spatial heterogeneity of the receiver planes has been indeed reported to be

the main source of epistemic uncertainty in CRS forecasts by many authors (e.g.

McCloskey et al., 2003; Steacy et al., 2005; Hainzl et al., 2010). In the literature,

the receiver fault formulation usually follows two approaches: the ”optimally ori-

ented planes” (OOP; King et al., 1994), that assumes that earthquakes nucleate

on hypothetical faults in favourable orientation with respect to the regional plus

coseismic stress field, and the geological receiver plane (GRP) approach, where

receivers are informed from mapped faults. Both approaches received extensive

criticism in recent years; the OOP for relying on the knowledge of the largely un-

known regional stress tensor to resolve stress changes on hypothetical planes that

might not even exist (Segou & Parsons, 2016), whereas GRP may miss unmapped

faults (Jackson, 2018), when even in well-studied regions such as California ap-

proximately 30% of seismicity occurs on previously unidentified structures (Field

et al., 2014).

Furthermore, the array of receiver faults in a region likely have different apparent

friction coefficients (µ’), with small, limited offset faults having higher values than

more evolved higher slip faults (e.g. Parsons et al., 1999). However, in an opera-

tional forecast setting where it is not possible to assess the frictional state of every

fault, an average intermediate value is a usually taken as a reasonable modelling

approach for a broad region.

Stress-based aftershock models are also critically affected by the epistemic uncer-

tainties behind complex source representations, that have more pronounced effects

in the near-source region of a forecast. It is in fact common that many, and po-

tentially conflicting, slip model versions for the same causative earthquake are

available to modellers. Such slip models can be obtained by inverting different

kind of datasets picking up the coseismic and/or post-seismic deformations. In

this regard, Cattania et al., 2014 show that ensemble forecasts based on sets of

alternative slip distributions potentially outperform individual models.
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Cocco et al. (2010) also show how these models are particularly sensitive to the

definition of the background rate (r0), specifically, to the use of a declustered

(i.e. purely background) or non-declustered (”reference rate”) precursory seis-

micity and to its spatial variability. Spatially variable background (or reference)

seismicity rates are clearly supported by observations (e.g. Toda & Enescu, 2011);

however, their application within CRS models is still debated, since the spatial

correlation between background rates and the pattern of calculated stress changes

can locally produce a forecasted seismicity rate (R) that strongly diverges from

the observations.

Furthermore, it is widely accepted that faults constitutive properties used in the

rate-and-state forecast implementation, namely Aσ and τ̇ , are poorly constrained

(Cocco et al., 2010). While assigning predetermined values to the rate-and-state

variables is one possible modelling choice (especially at local scales, where they are

hardly resolvable for each single fault), fitting the parameters to a learning phase

catalogue of past seismicity can represent a more reliable estimate and guarantees

a more objective model parameterisation. One approach to the latter method con-

sists in maximising a log-likelihood function (Zhuang et al., 2012) that measures

the goodness of fit between a model R(x, y, t) and a catalogue made of N earth-

quakes at xi, yi, zi, ti, with i = 1, ..., N . For a point process, it is defined as:

LL =
N#

i

log (R (xi, yi, zi, ti))−
$

t1

t0

$

V

R(x, y, z, t)dxdydzdt, (2.8)

where R(x, y, z, t) is the seismicity rate at the time and location of the observed

events in the catalogue, while t0 and t1 represent the learning phase start and end

time.

2.2 A Statistical Approach: the ETAS Model

The Epidemic-Type Aftershock Sequence (ETAS) model was first introduced by

Ogata (1988) to describe the occurrence times and magnitudes of clustered seis-

micity and it was successively extended into the spatial domain by Ogata (1998).
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Given their relatively simple formulations and considerable performance, different

versions of ETAS models are currently employed by government agencies in several

countries, including California (Field et al., 2017), Italy (Marzocchi et al., 2014),

New Zealand (Gerstenberger & Rhoades, 2010), and Japan (Omi et al., 2019).

Previous applications of ETAS show a good performance both in retrospective tests

(Helmstetter et al., 2006; Werner et al., 2011; Woessner et al., 2011; Marzocchi et

al., 2012; Cattania et al., 2018) and during unfolding sequences (e.g. Marzocchi

& Lombardi, 2009; Marzocchi et al., 2017). However, the model presents some

weaknesses in earthquake sequences affected by considerable early catalogue in-

completeness (Omi et al., 2016; Segou & Parsons, 2016) and due to its purely

statistical nature it does not include interaction effects between specific faults at

short, intermediate and long off-fault distances.

The ETAS seismicity corresponds to a point process with a stochastic spatiotem-

poral branching evolution, where each earthquake triggers its own offspring events,

whose number depends on the parent’s magnitude and follow an Omori law decay.

In the ETAS model, triggered earthquakes can have a larger magnitude than their

parent event. The total space-time seismicity rate λ (or ”conditional intensity”)

is defined as:

λ(x, y, t|Ht) = µ(x, y) +
#

i:ti<t

g(t− ti, x− xi, y − yi;Mi), (2.9)

where µ(x, y) is the background rate, a time-independent and spatially heteroge-

neous Poisson process, while the summation term represents the triggering history

(Ht) from all preceding earthquakes occurring at ti < t. The triggering function

is expressed by empirical relations, according to the form of Ogata (1998):

g(t, x, y;M) = K0e
α(M−Mcut) × c

p−1(t+ c)−p(p− 1)× f(x, y|M), (2.10)

with normalised temporal and spatial distributions as second and third terms

on the right-hand-side, respectively. The parameter K0 regulates the short-term

aftershock productivity by a parent event with magnitude M equal or above a
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minimum triggering magnitude (Mcut); α establishes the efficiency of earthquakes

in triggering aftershocks as a function of magnitude. The second term on the right-

hand side of equation (2.10) is the modified Omori law (Utsu, 1961) describing the

temporal distribution of triggered earthquakes. The term f(x, y|M) represents

the probability distribution function (pdf ) of the spatial decay of triggered seis-

micity near the parent event given the parent’s magnitude. Although spatially

anisotropic kernels have been proposed and tested in literature (e.g. Helmstetter

et al., 2006; Werner et al., 2011; Savran et al., 2020), here we adopt a spatially

isotropic power law (e.g. Ogata & Zhuang, 2006; Seif et al., 2017) as it is the

standard ETAS spatial distribution and still represents a very common modelling

approach in most of those OEF-implemented ETAS models that are the bench-

mark for our stress-based counterparts:

f(x, y|M) = (d eγ(M−Mcut))q−1
/π(x2 + y

2 + d e
γ(Mi−Mcut))−q(q − 1), (2.11)

where q describes how triggered events decay in space, and the term d e
γ(Mi−Mcut)

scales the size of the Mcut aftershock zone with the magnitude of the parent earth-

quake.

2.2.1 ETAS Parameterisation

The robust estimation of input parameters has been reported in many cases to be

one of the hardest challenges within the ETAS framework (e.g. Seif et al., 2017;

Zhang et al., 2020). The most used method to estimate the ETAS parameters is

the Maximum Likelihood Estimation (MLE) approach, following which the mod-

eller obtains the set of parameters that, given the observations (i.e. a seismicity

catalogue with N events, the ”learning catalogue”), maximise the following point

process log-likelihood function (Zhuang et al., 2012):

logL(K, c, p,α, d, q, γ) =

N#

i=1

log λ (ti, xi, yi|Ht)−
$

S

$
T1

T0

λ (t, x, y) dtdxdy, (2.12)

where T and S represent the selected time and space windows to fit the data,
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respectively. Within the MLE criterion, a number of possible ways to reach sta-

ble global optima of the function have been proposed in the literature, including

simulated annealing (Lombardi, 2015), expectation-maximisation (EM) algorithms

(Veen & Schoenberg , 2008), and algorithms based on grid search methods (Lippiello

et al., 2014). In this work we adopt the latter approach; in particular, we apply

the iterative algorithm by Zhuang et al. (2002) that simultaneously estimates the

background rate, as the knowledge of µ(x, y) is required for the inversion of ETAS

parameters.

A particular debate in the ETAS community regards whether the α value of the

productivity law should be fixed a-priori or let converge to the Maximum Likeli-

hood value. While both approaches can be found in the literature, several lines

of evidence suggest that α should be set equal to β (e.g. Helmstetter et al., 2005,

2006; Hainzl et al., 2008; Zhang et al., 2020). Among them: (1) it reproduces the

Bath’s law (e.g. Felzer, 2002); (2) when the spatial kernel is isotropic, the value of

α is generally underestimated and K0 is overestimated (Hainzl et al., 2008; Seif et

al., 2017) and to reduce the bias in the productivity parameters a common choice

is to re-estimate parameters fixing α=2.3 (assuming a b-value =1; Helmstetter et

al., 2006; Hainzl et al., 2013); (3) α is very close to β when considering incomplete

aftershock sequences in combination with a time variable background rate (Hainzl,

2013); (4) α ≈ β would be in agreement with static stress triggering models (Hainzl

et al., 2010). On the other hand, setting α=β often leads to the undesired effect

of obtaining a branching ratio, defined as the mean number of triggered events

per earthquake averaged over all magnitudes, larger than 1. In practical terms,

this means that the ETAS earthquake-generating process becomes supercritical

(or ’explosive’) and the triggered seismicity projected by the model never dies out.

To overcome this potential issue, a popular solution (also adopted in this work) is

to re-scale the estimates of the productivity parameters K0 and α such that they

return a stable process (e.g. Seif et al., 2017).

2.2.2 ETAS Simulations

Forecasts of the ETAS model require simulations because the rate is conditional

on the history. Here, we follow the simulation algorithm by Zhuang and Touati
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(2015): (i) the number of unknown events is a random variable drawn from a

Poisson probability mass function with parameter controlled by the productivity

law, (ii) the occurrence times are sampled from the modified Omori law, (iii) the

spatial locations follow the isotropic spatial kernel of equation (2.11), (iv) magni-

tudes are drawn from the Gutenberg-Richter distribution. For higher generations

of triggered events, the algorithm is repeated until the simulation process eventu-

ally runs out of potential parent shocks.

In addition to triggered seismicity, the forecast has to account for background (i.e.

spontaneous) events. One way to achieve this is by simulating those events as-

suming that (i) their number is Poisson distributed with mean equal to the rate

of background events identified after declustering of the learning catalogue, (ii)

their location is consistent with the smoothed spatial distribution of background

seismicity in the study area, (iii) their occurrence times are sampled from a uni-

form distribution rather than from the Omori law, and (iv) magnitudes are drawn

from the Gutenberg-Richter distribution. An alternative approach is to account

analytically for the background seismicity occurring inside the forecast window.

In this study we adopt the latter approach; we assign 2D Gaussian kernels with

variable bandwidth around each background event identified after the stochastic

declustering (Zhuang, 2002) of the ETAS learning catalogue. We set a minimum

bandwidth value consistent with a reliable estimate of the average location error

of the implemented ETAS learning phase catalogue. Finally, we integrate the con-

tribution of all kernels over each grid cell, obtaining a background spatial density.

The expected total mean rate (Rtot) due to the occurrence of potential background

events and their related generations of triggered earthquakes in each cell is given

by:

Rtot = µ

!
1

1− n

"
, (2.13)

where µ is the local value of background rate and n is the branching ratio.
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2.3 Performance Evaluation Metrics

2.3.1 CSEP tests based on likelihoods

A number of statistical tests (Schorlemmer et al., 2007; Zechar et al., 2010; Werner

et al., 2011; Rhoades et al., 2011; Marzocchi et al., 2012) are implemented within

the Collaboratory for the Study of Earthquake Predictability (CSEP) in order to

efficiently evaluate the spatiotemporal performance of short and long-term earth-

quake forecast models.

The most commonly used metrics are: (1) the modified N-test (Zechar et al., 2010)

to compare the total number of observed vs. forecasted earthquakes over a specific

time horizon; (2) The S-test log-likelihood scores of the forecasts (Schorlemmer et

al., 2007; Zechar et al., 2010) to measure the consistency between the observed and

expected spatial distribution of the events; (3) the T-test (Rhoades et al., 2011) to

compare the relative performance of the models in terms of information gain per

earthquake.

N-test

The N-test makes use of two metrics, under the assumption that the tested forecast

is correct: δ1 to assess the probability of observing at least Nobs earthquakes given

a forecast of Nfore, and δ2 to evaluate the probability of observing at most Nobs

earthquakes given Nfore. To compute these two quantiles, the test implements a

Poisson cumulative mass function F:

δ1 = 1− F ((Nobs − 1) |Nfore) , (2.14)

δ2 = F (Nobs|Nfore) . (2.15)

The N-test is then evaluated by applying a one-sided significance test and the

forecast is ”rejected” if either δ1(t) < α or δ2(t) < α, where α = 0.025 is the

effective significance value (Zechar et al., 2010).
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S-test

To determine the spatial consistency of the models, their log-likelihood scores are

used. Given a forecast and under the assumption that it is correct, we ask what

the likelihood of the observation is in each bin of the testing region. For a single

spatial cell, the log-likelihood (LL) of observing ω earthquakes given a forecast of

λ events is defined as (Zechar, 2010):

LL(ω|λ) = log(Pr(ω|λ)) = −λ+ ω log λ− log(ω!), (2.16)

where Pr(ω|λ) is the probability of observing ω assuming that λ is correct. The

log-likelihoods used in the S-test (LLS) make use of normalised λ rates in order to

isolate the spatial component of the forecasts, under the assumption that the total

number of expected events equals the total number of observed events. Because

of the bold Poissonian assumption on the independency of the number of events

in different spatial bins, the joint S-test log-likelihood scores (jLLS) are obtained

by summing the LLS of all the (i, j) cells:

jLLS(Ω|Λ) =
#

(i,j)∈R

(−λ(i, j) + ω(i, j) log(λ(i, j))− log(ω(i, j)!)), (2.17)

where Ω and Λ are the observed and forecasted catalogues.

Log-likelihoods are negative by definition, with higher values (that is, values closer

to zero) indicating better predictive skills.

T-test

The T-test (Rhoades et al., 2011) quantifies the relative performance of competing

models by ranking the forecasts according to their information gain per earthquake

(IG) over a selected benchmark model. The IG score can be simply defined as the

average log-likelihood difference, per earthquake, between a model A and a bench-

mark B:

IG(A,B) =
jLLA − jLLB

N
, (2.18)
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where N is the number of observed events. T-test’s likelihoods are calculated from

unnormalised rates so that both the spatial aftershock distribution and the fore-

casted seismicity rates influence the score. The 95% confidence interval over the

mean IG are calculated from a paired Student’s t-test (Rhoades et al., 2011). A

positive information gain per earthquake over the benchmark indicates a model

performance improvement, which we deem significant if the confidence interval

does not enclose zero (or if the confidence bounds of two competing forecast bench-

marked over the same model do not overlap).

2.3.2 Non-likelihood based alternatives

Because of their formulations, the current likelihood-based CSEP validation met-

rics penalise false negative forecasts (i.e. bins where no earthquake is predicted but

at least one occurs) much more than false positives (i.e. locations where seismicity

is expected to increase but no event is observed). While this characteristic does

not have a marked effect on ”all positive” models like ETAS, it can be detrimen-

tal for models that forecast local seismic rate suppressions, such as the Coulomb

stress shadows. To introduce fairer consistency and comparison tests among mod-

els rooted in different approaches, CSEP is now committed to reformulating some

of the existing evaluation techniques to establish new standard procedures for fu-

ture experiments. For example, Savran et al. (2020) proposed a strategy that

overcomes the usage of standard grid-based probability maps and compares spe-

cific characteristics of competing forecasts on the basis of the similarity between

synthetic catalogues simulated by the model and the observations. Importantly,

transitioning from a grid-based to a simulation-based model evaluation would al-

low exploring the true model variability by relaxing the simplifying assumption

that earthquakes are Poisson distributed in discrete space-time-magnitude bins.

A variety of other evaluation metrics have been applied to the validation of earth-

quake forecasts in recent years. Among these, it is worth mentioning the method

applied by Schneider et al. (2014), who evaluated a set of forecasts for the 2010 El

Mayor-Cucapah (Southern California) sequence using point process residual scores

(Clements et al., 2011). These residuals measure how much a model underpredicts
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(high positive residuals) or overpredicts (high negative residuals) the number of

target events in a bin. Marzocchi et al. (2012) introduced a Bayesian framework

to assess the relative performance of multiple models. Instead of being based on

a binary acceptance/rejection criterion, the Bayesian approach emphasises model

comparison by providing the posterior probability of each competing model, that

is, the probability for each forecast to be the data-generating model.

Regarding a slightly different family of earthquake models, the alarm-based fore-

casts, performance evaluation usually hinges on a binary framework, that is, it

depends on the number of models hits (’Yes’) and misses (’No’). In this context,

the most popular evaluation method is the Area Skill Score (Zechar & Jordan,

2008), which quantifies the performance of an ’alarm function’ relative to a ref-

erence model using the Molchan diagrams (Molchan, 1991; Molchan & Kagan,

1992), where the model’s miss rate is plotted against the fraction of space-time

occupied by an alarm. Zechar and Zhuang (2014) proposed a scoring metric that

can be applied also to cases where it is not possible to define a miss rate and that

does not require selecting a specific reference model (which can often represent a

controversial choice); such method, the Parimutuel Gambling Score, is also appli-

cable to both fully binary and probabilistic predictions.

For an overview of some of the tests listed above, including the CSEP-style scores

of grid-based forecasts, the reader is referred to Zechar (2010) and the material

available within the Community Online Resource for Statistical Seismicity Analy-

sis (CORSSA) project.
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Chapter 3

Improving Physics-based

Aftershock Forecasts during the

2016-2017 Central Italy

Earthquake Cascade

The material presented in this chapter appears in the following article:

• Mancini, S., Segou, M., Werner, M. J., and Cattania, C. (2019). Improv-

ing physics-based aftershock forecasts during the 2016-2017 Central Italy

Earthquake Cascade. J. of Geophys. Res. Solid Earth, 124, 8626-8643.

https://doi.org/10.1029/2019JB017874.

3.1 Introduction

The 2016-2017 Central Apennines earthquake sequence is one of the most recent

examples of how damages from subsequent aftershocks can exceed those caused

by the initial mainshock. Recent studies reveal that physics-based aftershock fore-

casts hold potential for reaching comparable skills to their statistical counterparts,

but their performance remains a controversial subject.

In this study, we employ physics-based models that combine the elasto-static stress

transfer with rate-and-state friction laws, and short-term statistical ETAS models
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to describe the spatiotemporal evolution of the Amatrice-Visso-Norcia (hereinafter,

AVN) earthquake cascade. We then track the absolute and relative model perfor-

mance using CSEP’s log-likelihood statistics over different time windows (and for

total forecast horizon of one year) after the 24th August 2016 Mw=6.0 Amatrice

earthquake. We propose a pseudo-prospective experimental framework with the

goal of (1) assessing how data quality and individual model choices driven by real-

time conditions affect the performance of physics-based forecasts benchmarked

against a standard statistical ETAS model and (2) evaluating the comparative

performance of the forecasts in critical time windows, such as the period following

the 26th October Visso earthquakes leading to the 30th October Mw=6.5 Norcia

mainshock.

In particular, we present 7 classes of physics-based models with gradual complexity

increase. The simplest forecasts include preliminary data available a few minutes

after each Mw ≥ 5.4 event, featuring synthetic source models with empirically de-

rived fault length and previously determined fault constitutive parameters. More

complex models incorporate: (i) optimised rate-state parameters, (ii) spatially het-

erogeneous receiver fault planes, (iii) best available slip models, and (iv) secondary

triggering effects.

Our results show that the preliminary assumptions made to fill the early post-

disaster knowledge gap severely hamper the absolute performance of CRS fore-

casts. When we incorporate revised data, optimise the rate-and-state parametrisa-

tion on previous regional seismicity and account for the multi-level heterogeneities

as (1) 3D spatial distribution of receivers, (2) spatially variable fault slip models,

and (3) smaller magnitude aftershocks that reshape the local stress field, we obtain

a dramatic performance improvement of physics-based models.

Results suggest that CRS performance is comparable to ETAS only when sec-

ondary triggering is taken into account.

3.1.1 The Central Apennines Earthquake Sequence

The Central Apennines are among the highest seismic hazard zones in Europe

(Woessner et al., 2015). Present day deformation is taken up by NW-SE trend-

ing normal fault systems, expressing the post-orogenic extension at a rate of ∼3
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mm/yr (Serpelloni et al., 2005). Historical and modern seismicity indicate moder-

ate (M5+) to large (M6+) magnitude earthquake cascades associated with heavy

damage patterns in the broader area (Rovida et al., 2016) such as the 1703 Norcia

cascade where three M6.2+ earthquakes occurred within less than 20 days (Boschi

et al., 2000), the six M5.2+ events that struck Colfiorito between September and

October 1997 (Amato et al., 1998; Chiaraluce et al., 2003; 2004), the 2009 Mw=6.3

L’Aquila sequence with an accelerating seismicity pattern observed few days be-

fore the mainshock (Chiarabba et al., 2009; Chiaraluce et al., 2011).

The 24th August 2016 Amatrice earthquake activated a 60-km long normal fault

system (Figure 3.1a) and was followed by an Mw=5.4 aftershock within less than

one hour at the northern up-dip part of the mainshock rupture (Chiaraluce et al.,

2017 and references therein). Two months later, on October 26th, two Mw=5.4

and Mw=5.9 earthquakes occurred further north near the village of Visso, closer

to the southernmost aftershock zone of the 1997 Colfiorito sequence. The October

30th Mw=6.5 Norcia event remains the largest event of the sequence to date and

the strongest in Italy since the 1980 Mw=6.9 Irpinia earthquake. Few months

later, on January 18th 2017, four M5+ earthquakes occurred within a 4-hour win-

dow to the south of the Norcia mainshock rupture, coinciding with the northern

aftershock zone of the 2009 L’Aquila sequence. The January 2017 seismicity raised

immediate concerns about the Campotosto artificial dam lake, the second largest

man-made lake in Europe.

In Table 3.1 we summarise the preliminary and revised source parameters of the

major earthquakes of the AVN sequence.
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Figure 3.1: The 2016-2017 AVN sequence (M3+). (a) Map view. Colours in-
dicate different seismicity phases: red August 24th 2016 - October 25th 2016,
green October 26th - October 29th 2016, blue October 30th 2016 - January 17th
2017, yellow January 18th - August 24th 2017. The focal mechanisms of the three
largest events are also displayed. Grey symbols indicate the 1997 Colfiorito and
2009 L’Aquila seismic sequences (M3+). We report the mapped active faults of
the region (EMERGEO Working Group, 2016); (b) Cumulative seismicity (M3+)
with time; (c) depth distribution of M3+ events in the first 24 hours following the
Mw=6.0 Amatrice (red bars) and Mw=6.5 Norcia (blue bars) mainshocks.
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Table 3.1: Source parameters for the M5+ events of the AVN sequence. Time-
stamps and magnitudes are available at http://cnt.rm.ingv.it, while the re-
vised hypocentral depths are taken from the corresponding slip models where avail-
able. The period between the moment an event is recorded and the time when
its rupture model is estimated varies from few days to several weeks. For the
AVN sequence, finite-fault slip models were computed for six out of the nine M5+
events, and for most of them a period of 2-3 weeks from their occurrence passed
before the release of a first robust version.

3.2 Data

We implement our models within a 3D grid (0-12 km of depth) with 2 km spacing

in a ∼150 x 150 km testing region (see Appendix A, Figures A1-A2). We use: (1)

the seismicity catalogue of the Italian Seismological Instrumental and Parametric

Data-Base (ISIDe) for the period between January 1st 1990 - August 23rd 2016

(learning phase, 1533 M3+ events), (2) the near-real time catalogue for the 1

year after the Mw=6.0 Amatrice earthquake (testing phase, 1160 M3+ events),

(3) Centroid Moment Tensors (CMT) catalogues for the learning phase (Figure

A1) and the Database of Individual Seismogenic Sources (Basili et al., 2008; DISS
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Working Group, 2018) for constraining the active seismogenic sources and regional

rupture styles of the Central Apennines.

For the primary events (Mw ≥ 5.4), we estimate the coseismic stress changes using

the finite-fault slip models of Tinti et al. (2016) and Scognamiglio et al. (2016)

for the Amatrice I-II events, respectively, and Chiaraluce et al. (2017) for the

Visso II and Norcia events. For the January 18th 2017 Mw=5.5 and Mw=5.4

Campotosto earthquakes, we use the only preliminary slip models available, as

no refined versions have been issued. For the sources that lack a rupture model,

we construct a synthetic slip distribution from their moment tensor solution, with

empirically-derived fault dimensions (Wells & Coppersmith, 1994) and uniform

slip (from the moment relation of Hanks & Kanamori, 1979) tapered at the edges.

3.3 Methods

In this section, we describe forecast characteristics and parameters. All models

share a 1-year forecast horizon, with model update frequency of 24-hour time

windows (dt) and M3+ target seismicity magnitude.

3.3.1 Development of CRS Forecast Models

All the Coulomb rate-and-state models presented below share some common char-

acteristics, such as the implementation of an elastic half-space with a shear mod-

ulus of 30 GPa and Poisson’s ratio ν=0.25, and the adoption of an average value

of the coefficient of effective friction (µ′ = 0.4). However, in Appendix A.1 we also

tested the effect of implementing a lower µ′ in the stress change calculations.

We first develop a reference model, CRS-1, based on: (1) real-time preliminary

catalogue data, including hypocentres and focal mechanisms available within few

minutes to 1 hour, (2) stress perturbations from Mw ≥ 5.4 events estimated us-

ing a uniform slip model with kinematic parameters from focal mechanisms with

nodal planes selection constrained by the predominant rupture geometries reported

in the DISS database, (3) a spatially homogeneous background rate obtained by

stochastic declustering (Zhuang et al., 2002) of the CRS learning phase catalogue
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and averaged over the testing region (r0=0.034 M3+ events/day), and (4) spa-

tially uniform receiver planes (SUP) for ∆CFF estimation expressing the NW-SE

striking, SW dipping main trend of the Central Apennines normal fault systems

(Basili et al., 2008). This latter assumption is valid when we do not know enough

about the complex structures of the neighbouring faults (McCloskey et al., 2003).

This preliminary forecast realisation features rate-and-state parameters Aσ = 0.04

MPa and τ̇ = 10−3 MPa/yr (ta = 40 years), previously used to characterise the

active faults of the 1997 Colfiorito sequence (Catalli et al., 2008).

The only difference between models CRS-1 and CRS-2 is that the latter implements

a heterogeneous background rate, smoothed in space according to the adaptive ker-

nel method proposed by Helmstetter et al. (2007).

From CRS-3 onwards we use: (1) revised hypocentral locations and moment ten-

sor solutions available within 1-3 hours after a large earthquake (Table 3.1), and

(2) fault constitutive parameters derived from a log-likelihood optimisation on the

learning phase catalogue (see Section 2.1.3). During the optimisation procedure,

the grid search for Aσ ranges between [0.01-0.1] MPa enveloping all estimated val-

ues in previous experiments (e.g. Toda et al., 1998; Console et al., 2006; Catalli

et al., 2008) with aftershock durations (ta) of [1-1000] years. The best-fit Aσ-τ̇

couples for each model are shown in Table 3.2. Otherwise, CRS-3 features the

same implementation parameters as model CRS-2.

In model CRS-4, we introduce spatially variable receiver planes (SVP) to achieve

a better representation of the structural heterogeneity of the fault system. In par-

ticular, we adopt the Segou et al. (2013) approach where geological receiver planes

(GRP) are informed by pre-sequence focal mechanisms and active fault maps. We

start by randomly selecting a nodal plane for each of the focal mechanisms in-

cluded in the learning phase catalogue (Figure A1) and then we assign a rupture

plane to each grid point through a 3D nearest neighbour spatial association. In

regions where no previous focal mechanism exists, the assignment of a receiver

fault is aided by the DISS database of active seismogenic structures. The resulting

discrete fault grid is shown in Figure A2.

In CRS-5, we include the finite-fault rupture models for events with Mw ≥ 5.4 to

implement a representation of spatial slip variability together with the structural
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heterogeneity expressed by the SVP receiver matrix in CRS-4.

The CRS-6 and CRS-7 models incorporate secondary triggering effects of smaller

magnitudes with different thresholds (CRS-6, 41 M4+ events; CRS-7, 1167 M3+

events). In CRS-6, we represent 35 M4+ events using uniform slip distributions

(similar to CRS-1 to CRS-4) with random selection of rupture planes from Time

Domain Moment Tensor (TDMT) solutions of the Italian CMT database and peer-

reviewed slip models for 6 events with Mw ≥ 5.4. In CRS-7, we have rupture

characterisations for only 4% of the M < 4.0 earthquakes. Therefore, for those

events we assign an isotropic distribution of coseismic stress changes (Helmstetter

et al., 2005; Marsan, 2005), following the formulation of Chen et al. (2013):

∆CFF =
M0

6πr3
, (3.1)

with M0 the seismic moment and r the hypocentral distance. While not physically

realistic, the assumption of an isotropic stress field for the smaller events is rea-

sonable in a modelling perspective; indeed, our lack of knowledge about the nodal

plane parameters for most of those events would likely introduce a major source

of uncertainty in the calculation of the full anisotropic stress field. Furthermore,

this method is similar to the approach adopted in ETAS or in smoothed seismicity

models (Helmstetter et al., 2007).

We also produce two additional models, CRS-6s and CRS-7s, that isolate the sole

contribution of secondary triggering (M4+ and M3+ stress sources, respectively)

on model performance, where we omit the rate-and-state optimisation by imple-

menting the same fault constitutive parameters previously derived for CRS-5. We

take these two additional models into consideration during the model validation

stage.

The implementation of CRS models is based on a parallel computer code for cal-

culating seismicity induced by time dependent stress changes (Cattania & Khalid,

2016).
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Table 3.2: Main features of CRS models. Mmin = minimum magnitude for stress
sources; USD = uniform slip distribution; FFM = finite-fault rupture model; I =
isotropic stress field; SUP = spatially uniform receiver planes; SVP = spatially
variable planes; Ho = homogeneous; He = heterogeneous.

3.3.2 The ETAS Reference Model

As a benchmark for the CRS forecasts, we use a standard version of the ETAS

model (Seif et al., 2017). Although the focus of this study is on the improvements

of CRS models, we acknowledge that other ETAS parameterisations may perform

differently.

To estimate the ETAS parameters we use the Maximum Likelihood Estimation

(MLE) method during the ETAS learning phase corresponding to the latter part

of the ISIDe catalogue (2005-2016) after the Italian permanent seismic network

was considerably improved (Schorlemmer et al., 2010).

In our benchmark ETAS we set α = β = b · log(10) with Gutenberg-Richter b-

value = 1, requiring larger magnitude earthquakes to have a higher triggering
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potential than the small ones. For the estimation of the ETAS parameters we

use the M3+ ETAS learning phase seismicity within a polygon covering the entire

Italian mainland (Figure A3a). To account for earthquake interactions outside

the spatiotemporal boundaries of the inversion, we also use events in auxiliary

spatial and temporal windows (Figure A3b). The inverted parameters (Table 3.3)

are in close agreement with those of Seif et al. (2017) for the same areal extent,

time window and Mcut. For the ETAS simulations we set a minimum triggering

magnitude (Mcut) of 3.0 and anMmax=7.5, consistent with historical seismicity and

modern regional strain rates (Rong et al., 2016). We fix the ETAS parameters for

the whole forecast horizon, and we use them to simulate 1,000 synthetic catalogues

within each forecast window (dt).

Table 3.3: ETAS parameters used for the simulations, with Mcut=3.0 and α =
β = b · log(10). We report parameter uncertainties as 1σ standard deviations.

3.4 Results

In this section, we present the forecast results in the form of (a) temporal evolution

of expected seismicity, (b) maps of predicted earthquake occurrence for period-

specific (between mainshocks) and long-term (1 year) time windows. We then

focus on the performance evaluation using the N-, S-, T-test metrics (Zechar et
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al., 2010; Rhoades et al., 2011) and comment on the absolute and relative predictive

power of the models.

3.4.1 Forecast Timeseries

Figure 3.2a compares the expected and observed daily rates for M3+ events. The

preliminary CRS-1 and CRS-2 models systematically underestimate the daily seis-

micity rates by an order of magnitude over the entire period, whereas the first

updated model CRS-3 presents a 10-fold increase of expected rates arising from

the optimised values of the fault constitutive variables.

Refined source parameters together with the optimised rate-and-state variables

(CRS-3), the systematic introduction of SVP receiver faults (CRS-4) and hetero-

geneity in slip models (CRS-5) bring stress-based models closer to the observed

rates, especially during the first day following each mainshock.

CRS-5 and CRS-6 share very similar expected rates in the 24 hours following

each large magnitude event, standing out among all physics-based models for fit-

ting more closely the short-term (1 day) seismicity after the Mw=6.0 Amatrice,

Mw=5.4 Visso and Campotosto earthquakes. These two model implementations

share the same behaviour as ETAS after the Amatrice and Norcia mainshocks.

CRS-7, with M3+ secondary triggering effects, overestimates the short-term (≤ 1

day) seismicity rates after the larger magnitude events (e.g. 376 M3+ expected

events against 237 observations in the 24 hours following the Mw=6.5 mainshock);

however, we note that this result is likely biased by early incompleteness of the

real-time catalogue, as the Mc was larger than 3.0 for at least 6 hours after the

Norcia event (Figure A5). For t > 10 days, CRS-6/7 and ETAS closely match the

observed rates whereas CRS-3/4/5 generally underestimate.

In Figure 3.2b we show the cumulative number of expected events vs. the cumu-

lative real-time observations. We see that (1) ETAS captures the seismicity decay

of the AVN sequence, while CRS models show a faster decay within the first few

months, (2) CRS-7 is the only model that adequately forecasts the total number

of observations within Poissonian error, (3) ETAS and the stress-based models

from CRS-5 onwards satisfactorily estimate the seismicity after the Campotosto

earthquakes.
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Figure 3.2: CRS and ETAS forecast time series. (a) Observed (triangles) and
forecasted (squares) incremental number of M3+ events for 200 days following the
Mw=6.0 Amatrice mainshock. For illustration purposes we plot values at 1-day
intervals for each week after the primary events (vertical dashed lines), otherwise at
2-day intervals. (b) Cumulative expected and observed (black solid line) seismicity
with shaded areas representing Poissonian uncertainties.
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3.4.2 Seismicity Rate Maps

Figure 3.3 presents the forecast maps illustrating the difference in spatial distri-

bution of expected rates between the preliminary (CRS-1) and the more elaborate

physics-based models (CRS-7) against the statistical ETAS forecast. The full set

of forecast maps, including first-day forecasts, is provided in Appendix A (Figures

A8-A15).

Amatrice to Visso

The preliminary CRS-1 forecast presents low rates in the near-source region at

the northern section of the Mt. Gorzano fault, as well as in the epicentral area

of the Mw=5.4 aftershock occurred 1 hour after the Mw=6.0 mainshock (Figure

3.3a). The most advanced CRS-7 model includes SVP receivers, a spatially vari-

able slip model for the Amatrice I/II events and secondary triggering effects from

M3+ earthquakes; we observe good visual correlation between the observed and

expected seismicity rates over the entire region with notable increased rates near

the two epicentres and close to Amatrice and Mt. Vettore (Figure 3.3b). The

ETAS model (Figure 3.3c) presents a smoother, more isotropic distribution of the

higher expected rates over the entire epicentral area in comparison with CRS-7,

including locations where no aftershock occurred in the first two months.

Comparing between CRS-1 and CRS-3 (Figures A8-A9, a-c), we find that opti-

mised rate-and-state parameters introduce 1-2 orders of magnitude rate increase

around the Mw=6.0 event. Comparing CRS-4 to CRS-5 (Figures A8-A9, d-e),

shows that heterogeneous slip representations for the Amatrice I/II mainshocks

lead to high expected rates in epicentral regions and towards Mt. Vettore. In

CRS-6 (Figures A8-A9, e-f), we observe that secondary triggering effects from the

17 M4+ aftershocks do not exert an obvious difference in the spatial forecast from

model CRS-5.
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Figure 3.3: Maps of expected seismicity rates (M3+) for CRS-1/7 and ETAS
at period-specific windows. We adopt a grid size of 2x2 km in all models. Black
circles indicate observed events (M3+) within each specified time period, while
stars indicate the primary earthquakes (not included among the target events of
the respective time window). Aσ values are in MPa, τ̇ values are in MPa/year.
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Visso to Norcia

Similarly to the previous time window, CRS-1 predicts particularly low rates im-

mediately after and in the region of the Mw=5.4 (Visso I) and Mw=5.9 (Visso II)

October events and fails to capture the aftershock activity north of Ussita (Figure

3.3d). In CRS-7 we observe a noteworthy increase of expected rates in near-source

up to 5 orders of magnitudes with respect to CRS-1, and aftershock production

is favoured on the northern tip of the Mt. Bove - Mt. Vettore (MtBV) fault

system thanks to the spatially variable rupture model for the Visso II event and

the inclusion of M3+ secondary triggering effects (Figure 3.3e). The ETAS model

presents a good fit with the observed seismicity; the area of higher expected rates

extends eastward to Mt. Bove, while the area of Norcia presents at least 10 times

lower predicted rates compared to the Visso I/II epicentral region (Figure 3.3f).

Norcia to Campotosto

The preliminary CRS-1, in which stress perturbations are based on simplified uni-

form rupture distributions, fails to forecast the dramatic seismicity increase follow-

ing the Mw=6.5 Norcia mainshock, presenting low rates in the near-source region

and seismicity suppression on the Mt. Bove fault (Figure 3.3g). The incorporation

of the complex Norcia mainshock rupture process, which involved a ∼30 km long

fault plane, produces (1) near-source co-seismic stress heterogeneities, and (2) a

halving of the stress shadows SW of Mt. Vettore and between Ussita and Mt.

Bove (see Figure A6); this results in a systematic increase of the expected seis-

micity in the respective areas from CRS-5 onwards. The strength of the complex

physics-based model CRS-7 is that it better captures the triggered seismicity south

of Amatrice due to the incorporation of M3+ secondary triggering effects (Figure

3.3h), while M4+ effects in CRS-6 (Figure A12f) present an expected seismicity

pattern similar to CRS-5 (Figure A12e). From visual comparison, we find the

main differences between ETAS and CRS-7 in the high clustering region around

Mt. Bove, where the former expects more than one order of magnitude higher

rates than its stress-based counterpart, and in the near epicentral area, where the

aftershock rates predicted by the ETAS model are approximately 2-3 times lower

than CRS-7 (Figure 3.3i). This latter observation is possibly due to the early
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catalogue incompleteness following the Norcia mainshock.

One-year forecast

The preliminary CRS-1 (Figure 3.3j) widely underestimates the observed after-

shock production; we see an acceptable spatial distribution of the expected seis-

micity, but the estimated rates are systematically < 1 event/cell over the entire

testing region. Model CRS-7 (Figure 3.3k) addresses this underestimation and is

characterised by higher rates, particularly at intermediate off-fault distances (5-10

km from the mainshock faults) where a significant amount of smaller magnitude

aftershocks occurred (∼45%), contrary to the M4+ events that were mostly lo-

cated at shorter ranges from the main ruptures (Figure A7). The 1-year ETAS

forecast (Figure 3.3l) captures the spatial distribution of the aftershock zone ac-

curately but due to its branching nature and the lack of a seismicity suppression

mechanism, it projects a larger aftershock zone.

3.4.3 Model Performance in the Testing Region

We evaluate the absolute and relative predictive skills of the forecasts for a 1-year

time period. We seek to test: (1) the forecasted vs. observed number of M3+

events using the modified N-test scores (Zechar et al., 2010) and rejection ratios

(RN), (2) the spatial consistency of the models through their S-test joint log-

likelihood scores (jLLS) at short and long-term (Schorlemmer et al., 2007; Zechar

et al., 2010), and (3) the information gain per earthquake (IG) with respect to the

preliminary CRS-1 model through the T-test (Rhoades, 2011).

In Table 3.4 we summarise model performance.

Figure 3.4 presents the 1-day incremental N-test scores for the most preliminary

(CRS-1) and updated (CRS-7) physics-based models and for the ETAS forecast,

where quantiles δ1 or δ2 lower than the 0.025 significance level indicate model

rejection due to rate under- or over-estimation, respectively. We define the N-test

rejection ratio (RN) for our models expressing the percentage of time that a given

model does not pass the N-test over the selected testing period.
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Table 3.4: Short-term (24 hours after the primary events) and long-term (1 year)
model performance. jLLS = S-test joint log-likelihood; NF/O = ratio between
forecasted (F) and observed (O) number of events; IGCRS−1 = information gain
from the preliminary CRS-1 model. Log-likelihood values are negative by defini-
tion, and smaller absolute values indicate a better model performance. We note
how CRS-3 performance is severely penalised in the 24 hours period after the Nor-
cia mainshock by its poor spatial consistency, leading to a deterioration of the
information gain on CRS-1 to a negative value.

The incremental N-test results for the full set of models are provided in Appendix

A (Figure A16). We observe that: (1) CRS-1 is rejected due to underestimation

of the observed number of events (δ1=0) at short-term (1 day) and at t > 1

week after each mainshock (Figure 3.4a), (2) CRS-7 and ETAS present ∼50%

overestimation of the number of events immediately after the Amatrice, Visso,

Norcia and Campotosto events (Figure 3.4, b-c), (3) the ETAS model features

the lowest RN (6%) and while it shows a good performance in the time period

following the Norcia mainshock, it suffers rejection for three days following the

Campotosto events. On the other hand, CRS-7 presents a mixed performance

after the Amatrice, Visso and Norcia events, with overestimation within the first

24 hours and underestimation for t ≤ 1 week, but it passes the test for t > 24h

after the Campotosto seismicity.

CRS-2 performance is similar to CRS-1, as these two preliminary models feature
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the highest N-test rejection ratios (RN ≈ 30%) during the 1-year testing period

(Figure A16, a-b). Models CRS-3/4 show better overall RN values (15% and 14%,

respectively) but underpredict (δ1 < 0.025) during the two weeks following the

two largest events of the sequence (Figure A16, c-d). We find that this is most

probably due to the implementation of simple uniform slip models that project

negative coseismic stress changes on the MtBV fault system after the Amatrice

earthquake (see Figure A8, c-d), and suppress the near-source expected rates after

the Norcia mainshock with a heavy stress shadow (Figures A11-A12, c-d).

Although over-forecasting in the first 24 hours following the Amatrice and Norcia

earthquakes, CRS-5 and CRS-6 are the only two models that pass the test after

the Mw=5.4 Visso event and further reduce the overall RN to 12% and 8.5%,

respectively (Figure A16, e-f).
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Figure 3.4: Incremental modified N-test scores. We show the δ1 (top) and δ2
(bottom) quantiles for CRS-1/7 and ETAS in the whole testing region, within
1-day intervals and for one year following the Mw=6.0 Amatrice mainshock. The
shaded areas under the red horizontal lines indicate the values for model rejection
(δ1,2 < 0.025); we apply a vertical exaggeration to these areas to better highlight
the rejection values. Vertical lines mark mainshock occurrence (A = Amatrice, V
= Visso, N = Norcia, C = Campotosto events). RN = modified N-test rejection
ratio.
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We use the S-test joint log-likelihood scores (jLLS) to evaluate the predictive

power of the forecasts in space. We present the earthquake forecasts expressed by

the joint log-likelihood over the entire testing region, where the expected rate

at each spatial cell is multiplied by Nobs/Nfore, the ratio of forecasted to ob-

served events in the entire region, so that the normalised forecast matches the

observed number of events. Higher jLLS values indicate a better model perfor-

mance (Zechar et al., 2010). Results from the short-term performance test (Table

3.4) show that: (1) the ETAS model outperforms all the stress-based counterparts

in the first 24 hours after the Amatrice, Norcia and Campotosto events, (2) the

elaborate physics-based model CRS-7 presents the best jLLS score following the

Visso earthquakes and it constantly achieves a better short-term performance than

all the other CRS models, (3) CRS-5 is the second best CRS model in short-term

windows, highlighting the importance of including spatially variable slip sources

for physics-based modelling; the only exception is represented by the first 24 hours

following the Campotosto seismicity where two out of the four M5+ earthquakes

(namely the Mw=5.1 and Mw=5.0) lack a spatially variable rupture model, while

for the Mw=5.4 and Mw=5.5 events only a preliminary slip model release is avail-

able.

In Figure 3.5 we compare the evolving spatial performance of the forecasts for the

1-year testing period after the Mw=6.0 Amatrice occurrence, including the auxil-

iary models CRS-6s and CRS-7s that isolate the effect of secondary triggering from

M4+ and M3+ sources, respectively. Results show that: (1) CRS-7/7s, includ-

ing secondary triggering effects from M3+ aftershocks, are the best physics-based

models, particularly when rate-and-state parameters are optimised on the learn-

ing phase seismicity (CRS-7), (2) the ETAS model has the highest spatial joint

log-likelihood values over the entire testing period (jLLS = -4326), with a striking

similar performance with CRS-7 in the 4 days between the Visso-Norcia earth-

quakes. While models CRS-1/2/4 perform similarly throughout the evaluation

period, CRS-3 is characterised by the lowest scores because of the oversimplifica-

tion of coseismic slip for the Mw=6.5 Norcia mainshock. When we compare CRS-6

to CRS-6s, we note that the parameters optimisation degrades CRS-6 performance

after the Norcia mainshock. The long-term scores of CRS-6s are only slightly bet-
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ter than CRS-5, but a lower magnitude threshold for stress sources (CRS-7/7s)

remarkably increases the short and long-term spatial consistency of the models.

1 50 100 150 200 250 300 350

Time after Mw 6.0 Amatrice mainshock (days)

-9000

-8000

-7000

-6000

-5000

-4000

-3000

-2000

-1000

0

CRS-2
CRS-3
CRS-4
CRS-5
CRS-6

CRS-7

ETAS

CRS-1

CRS-7s

Mw 6.0
Mw 5.4

Amatrice
Mw 6.5
Norcia

Mw 5.5
Mw 5.4

Campotosto

Mw 5.4
Mw 5.9
Visso

C
um

ul
at

iv
e 

jo
in

t L
L S

CRS-6s

63 65 67

-2600

-2200

-1800

-1400

-1000

Figure 3.5: Cumulative spatial joint log-likelihood (jLLS) versus time. The
scores are obtained by summing the S-test log-likelihoods (LLS) of each spatial cell
and 1-day time step. Vertical lines mark the occurrence of the largest magnitude
events.

We estimate the information gains per earthquake using the preliminary CRS-1 as

benchmark model (IGCRS−1). A positive IG score indicates that a model is more

informative than the selected benchmark. In Figure 3.6, we present the results in

the form of average daily information gains per earthquake and their 95% confi-

dence bounds from a paired Student’s t-test (Rhoades et al., 2011) for CRS and

ETAS forecasts. From the analysis of the IG ranks, we note that CRS-7 is system-

atically the best performing among all CRS classes at all time periods (Figure 3.6
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and Table 3.4). The majority of CRS forecasts show positive information gains

(IGCRS−1 ≥ 2), indicating a significant improvement on the preliminary CRS-1

model. For the critical ∼ 4-day time window before the Norcia earthquake, CRS-

7 and ETAS models present a comparable information gain (∆IGCRS−1 < 0.3)

with respect to the reference CRS-1, and CRS classes 5/6/7 show a considerably

good performance (IGCRS−1 ≈ 6-7, Figure 3.6b). Especially in the first day after

the Visso events, we find that CRS-7 outperforms the ETAS forecast (Table 3.4);

the observed poorer performance of the statistical model is most likely caused by

the lack of M3+ precursory seismicity detected by the real-time catalogue in the

near-epicentral region of the first Mw=5.4 Visso event (Chiaraluce et al., 2017).
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The 1-year performance evaluation reveals that the most advanced physics-based

implementation, CRS-7, compares closely with the ETAS model (∆IGCRS−1 ≈ 0.5,

Figure 3.6d). The trend of improving information gain from CRS-5 to CRS-6s/7s

shows the importance behind considering stress changes from lower magnitude

aftershocks. These results suggest that including SVP receivers, finite-fault rup-

ture models and secondary triggering from M3+ sources in CRS models leads to

a gradual information gain increase.

We assess the spatial component behind the models’ performance by information

gain maps for a 1-year time horizon (Figure 3.7), while period-specific maps are

provided in Appendix A (Figures A17-A19). We calculate the cumulative log-

likelihood differences (∆LL) at each grid point using CRS-1 (Figure 3.7, a-f) and

ETAS (Figure 3.7, g-i) as reference models. In Figure 3.7, positive ∆LL val-

ues (green) highlight improved performance with respect to the reference model.

Results show that: (1) variable-slip source representations lead to a sensible infor-

mation gain increase in the Norcia-Visso near epicentral region (∆LL up to 100)

and on the Mt Bove-Vettore (MtBV) fault system (∆LL > 60; Figure 3.7d); (2)

CRS-7 better captures the unfolding sequence, as considering the contribution of

M3+ sources into the evolving stress field entails a net performance improvement

especially at the extreme edges of the fault system (∆LL > 250 north of Visso

and ∆LL > 50 in the Montereale-Pizzoli region; Figure 3.7f); (3) updated source

parameters description of mainshock faults through optimised rate-and-state pa-

rameters improve the forecast in many locations, but reduce the likelihood in a

broader aftershock region (Figure 3.7b), particularly at Mt. Bove location (∆LL

< -100); (4) model performance at the north-western MtBV fault termination

greatly benefits from the combined inclusion of SVP receiver planes (Figure 3.7c)

and, to a greater extent, from finite-fault slip models describing the Visso and

Norcia coseismic slip (Figure 3.7d).
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Figure 3.7: Spatially resolved cumulative log-likelihood differences (∆LL) be-
tween pairs of models for a 1-year evaluation period. Maps show a subset of the
testing region that includes the observed seismicity and the mainshock faults. As
we do not need to isolate the spatial component of the forecasts, here we calculate
the LL from unnormalised rates. LL values at each spatial bin are obtained sum-
ming over all time steps. Positive (green) values indicate improved performance
with respect to the reference model specified to the left. Black dots represent the
M3+ observations while the stars indicate the M5+ events. Values are saturated
at ±30 for visualisation purposes. 47
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When we compare physics-based forecasts to ETAS we observe that, although CRS

models generally present a slightly positive information gain in the off-fault areas

of the testing region (∆LL ≈ 0.3), the log-likelihood differences between pairs of

models are more marked where aftershocks were actually recorded. We find that

ETAS widely outperforms its physics-based counterparts in the near-source regions

(Figure 3.7, g-i), where slip models present large variability (Scognamiglio et al.,

2016; Chiaraluce et al., 2017). However, we find that secondary triggering effects

significantly increase the predictive power of CRS models that outperforms ETAS

in the high clustering zone north of Visso-Ussita and in the Montereale-Pizzoli

region (Figure 3.7i).

The model parameters that exert most influence on the predictive power of physics-

based models are the spatially variable slip distributions and the inclusion of the

secondary triggering effects from small magnitude earthquake (M3+). The most

evolved CRS model captures the triggered seismicity at the fault edges, therefore

improving the forecast in the case of the Campotosto cluster further south than

Amatrice.

In Figure 3.8 we isolate the∆LL in the critical period between the Visso and Norcia

events, and we compare CRS-7 performance to CRS-1 and ETAS. We notice that

CRS-7 is a significantly more informative model than CRS-1 in the time window

that precedes the Mw=6.5 mainshock (Figure 3.8a). Results also confirm the

comparable performance between ETAS and CRS-7; the former better captures

the near epicentral seismicity in the area of the Visso events, while the latter is

better performing in locations of high aftershock production at fault extremities.
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Figure 3.8: Maps of cumulative log-likelihood difference for the 4-day period
between the Visso events and the Norcia mainshock between: (a) CRS-7 and
CRS-1, (b) CRS-7 and ETAS. Positive values indicate a better performance of
CRS-7. Values are saturated at ±20 for clarity.

3.5 Conclusions

The complex 2016-2017 Amatrice-Visso-Norcia (AVN) earthquake sequence in the

Central Apennines represents a unique opportunity to test earthquake triggering

hypotheses that are the basis for physics-based forecast models. Here we focus

on how input data quality and model parameters influence the predictive power

of physics-based forecast models. We design a pseudo-prospective experiment for

the first year of the AVN sequence. We implement a benchmark statistical ETAS

model and 7 classes of physics-based forecasts with gradually increasing level of

input data quality and complexity. We then evaluate the absolute and relative

model performance by means of the N (number), S (space) and T-test metrics
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that are currently implemented within the CSEP initiative.

We find that the representation of the crustal and stress-field heterogeneity in-

creases the information gains of physics-based models. The CRS model that

predicts closely and in cases outperforms the statistical ETAS model combines

best-available source models, spatially-varying receivers informed by pre-existing

focal mechanisms and geological maps, and most importantly includes secondary

triggering effects from M3+ events that enable us to describe the evolving co-

seismic stress field in greater detail. After the Mw=5.4 Visso event, the elaborate

CRS-7 model outperforms ETAS, while in the critical 4-day time window before

the Mw=6.5 Norcia mainshock and within the first year of the sequence, CRS-7 is

as informative as ETAS.

The results support previous findings that in the near-source area, defined by the

surface fault projection, ETAS models present higher predictive power (e.g. Segou

et al., 2013), although the lack of precursory seismicity (e.g. before the Visso

events) locally hampers their short-term performance. On the other hand, trig-

gered seismicity at intermediate off-fault distances due to static stresses within an

evolving sequence is better described by physics-based approaches. The prelimi-

nary unrevised source parameters and empirical source models released within a

few minutes to hours following large events result in poor performance of stress-

based models that by definition require a more demanding physical parametrisa-

tion than their empirical counterparts. The comparative evaluation of the spatial

consistency of CRS models suggests that the over-simplified uniform slip models

implemented immediately after a large earthquake cannot adequately reproduce

the early aftershock spatial distribution (< 1 day).

The Italian experiment reveals that in order for stress-based forecasts to reach and

outperform ETAS models we need to use best-available data within heterogeneous

fault and source representations. Although high-quality relocated catalogues are

not yet readily available during the early stages of a seismic crisis, both CRS

and ETAS models in our study will improve their predictive skills with enhanced

detection and event characterisation techniques.
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Data Source

The earthquake catalogue for the AVN sequence with event locations and magni-

tude chronologies was acquired through access to http://cnt.rm.ingv.it, while

the moment tensor solutions from http://cnt.rm.ingv.it/tdmt. The Italian

CMT dataset is available at http://rcmt2.bo.ingv.it/Italydataset.html.

The Database of Individual Seismogenic Sources for Italy and surrounding areas

is accessible at http://diss.rm.ingv.it/diss.
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Chapter 4

The Predictive Skills of Elastic

Coulomb Rate-and-State

Aftershock Forecasts during the

2019 Ridgecrest, California,

Earthquake Sequence

The material presented in this chapter appears in the following article:

• Mancini, S., Segou, M., Werner, M. J., and Parsons, T. (2020). The Predic-

tive Skills of Elastic Coulomb Rate-and-State Aftershock Forecasts during

the 2019 Ridgecrest, California, Earthquake Sequence. Bull. Seismol. Soc.

Am., 110(4), 1736-1751. https://doi.org/10.1785/0120200028.

4.1 Introduction

On 4 July 2019, a Mw 4.0 earthquake occurred in the Searles Valley (Southern

California) and was followed within ∼30 minutes by a Mw 6.4 event. Just 34

hours later, on 6 July, a Mw 7.1 earthquake struck near the town of Ridgecrest

approximately 10 km NE of the Mw 6.4 epicentre.

The 2019 Ridgecrest earthquakes belong to the Eastern California Shear Zone

52

https://doi.org/10.1785/0120200028


4.1. INTRODUCTION

(ECSZ), where large magnitude seismicity had not been observed since the 1999

Mw 7.1 Hector Mine event. The two earthquakes nucleated on a system of or-

thogonal strike slip faults (Figure 4.1): northeast-trending left-lateral for the Mw

6.4 event and northwest-trending right-lateral for the Mw 7.1 mainshock. The

activated area is located in the vicinity of the Airport Lake and Little Lake fault

zones, characterised by distributed faulting with mainly right-lateral strike slip and

normal kinematics (Bryant, 2017). The resulting cascade of aftershocks involved

several subparallel faults that cumulatively exceeded 75 km in length (Barnhart

et al., 2019; Ross et al., 2019; Chen et al., 2020).

The Ridgecrest area has previously experienced moderate magnitude earthquakes,

including the 1982 Mw 5.2 Indian Wells Valley event and the 1995-1996 sequence

with three M5+ shocks, the first two of which occurred five weeks apart. The 1995

earthquakes exhibited similar complexity to the 2019 events, with triggered seis-

micity on normal and strike-slip northwest and northeast trending faults (Hauksson

et al., 1995).

The tectonic setting of the epicentral region, bounded by the Garlock system to

the south and extending towards the Owens Valley fault to the north (Figure 4.1),

where moderate to large magnitude earthquakes occurred in the last ∼150 years

(including the 1872 M≈7.5 Owens Valley earthquake), immediately raised severe

concerns on whether the occurrence of the July 2019 events could promote the

nucleation of large events on nearby faults, as previously observed in the ECSZ

(e.g. the 1992 Landers sequence).

This makes the 2019 Ridgecrest sequence a unique opportunity to further test the

performance of CRS forecasts and advance our understanding of model features

that improve short-term aftershock forecasts in high-hazard settings with complex

rupture patterns and diverse population of triggered seismicity.
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Figure 4.1: Testing region map. Earthquakes with M2.5+ are shown: pre-
Ridgecrest (1981-2019, grey circles), post Mw 6.4 Searles Valley event (orange),
post Mw 7.1 Ridgecrest mainshock (red). We report the focal mechanisms of the
two mainshocks. The 1 October 1982 Indian Wells event (M=5.2) is indicated
as a green triangle. Light blue squares represent the epicentres of the 1995-1996
Ridgecrest sequence mainshocks (M=5.4, 17 August 1995; M=5.8, 20 September
1995; M=5.2, 7 January 1996). The 1995 Ridgecrest sequence activated a number
of normal, left and right-lateral faults. Black solid lines indicate the UCERF3
(Dawson, 2013) fault traces.
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Here we perform a pseudo-prospective forecast experiment, where the issued mod-

els follow approximately the evolution of near real-time data availability and qual-

ity during the first month of the sequence.

We develop seven Coulomb rate-and-state models. Our model parametrisation

supports a gradually increasing complexity; we start from a preliminary model im-

plementation with simplified slip distributions and spatially homogeneous receiver

faults to reach an enhanced one featuring optimised fault constitutive parameters,

finite-fault slip models, secondary triggering effects, and spatially heterogenous

planes informed by pre-existing ruptures.

In the era of machine learning catalogues that promise future improvements in

real-time earthquake detection (e.g. Ross et al., 2018; Mousavi et al., 2019), the

data-rich environment of Southern California allows us to test whether incorpo-

rating data collected in near real-time during an unfolding earthquake sequence

boosts our predictive power. Hence, we extend the work presented in Chapter 3 by

testing if the predictive power of Coulomb rate-and-state forecasts increases when

we update fault models using evolving aftershock data.

Focusing on their overall predictive power and their spatial consistency, we present

the absolute and relative performance of the forecasts for the first month fol-

lowing the Mw 6.4 Searles Valley earthquake, making use of the well-established

evaluation metrics introduced by CSEP. To benchmark the CRS models, we pro-

duce a basic realisation of a statistical ETAS model and perform a comparative

model evaluation for the short (24 hours after the two Ridgecrest mainshocks) and

intermediate-term (one month).

Our stress-based forecasts expect heightened rates along the whole near-fault re-

gion and increased expected seismicity rates in Central Garlock Fault. The com-

parative model evaluation supports that faulting heterogeneities coupled with sec-

ondary triggering effects are the most critical success components behind physics-

based forecasts, but also underlines the importance of model updates incorporating

near real-time available aftershock data reaching better performance than standard

ETAS. We explore the physical basis behind our results by investigating the lo-

calised shut down of some pre-existing faulting styles in the Ridgecrest near-source

area.
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4.2 Data

We develop the earthquake forecasts on a testing region (Figure 4.1) centred on

the Mw 7.1 mainshock epicentre and extending equally E-W and N-S for ∼160 km

(three time its rupture length). We discretise the models using a three-dimensional

grid with 2 km spacing between 0-28 km of depth. Our target seismicity is the

real time catalogue of 1812 M2.5+ aftershocks reported in the USGS Advanced

National Seismic System Comprehensive Catalog (ComCat; Guy et al., 2015) for

the month following the Mw 6.4 Searles Valley event (testing phase, July 4th -

August 4th 2019). As a pre-Ridgecrest learning phase (to calibrate models) we

consider the seismicity between January 1st 1981 - July 3rd 2019 by merging the

1981-2018 relocated catalogue by Hauksson et al. (2012) with the ComCat events

covering the last six months before the Ridgecrest sequence (43,986 events in total

with M2.5+). While we adopt the catalogue of focal mechanisms by Yang et al.

(2012) as evidence of the past local rupture styles in the testing region, we use the

focal mechanism solutions from the Southern California Earthquake Data Center

(SCEDC) as a real-time database. To constrain the faulting style on the main

regional faults, we use the rupture parameters reported in the third version of the

Uniform California Earthquake Rupture Forecast (UCERF3; Dawson, 2013), and

we assign the larger scale off-fault rupture kinematics using the smoothed stress

inversion from focal mechanisms and topography by Luttrell and Smith-Konter

(2017), which is one of the available SCEC Community Stress Models (CSM).

To calculate the static coseismic stress changes after the Mw 7.1 mainshock we use

the preliminary finite-fault slip model version issued on the USGS event informa-

tion webpage, which provides near real-time automated source characterisation.

For the Mw 6.4 event and for all those earthquakes with a focal mechanism so-

lution, we create a synthetic uniform slip distribution within a planar surface

implementing the empirical equations of Wells and Coppersmith (1994) to calcu-

late the approximate fault dimensions and the relation by Hanks and Kanamori

(1979) to estimate the amount of slip given the event magnitude.

56



4.3. METHODS

4.3 Methods

4.3.1 Coulomb Rate-and-state Modelling

For the calculation of the Coulomb stress changes (∆CFF) we assume an average

an elastic half-space medium (Okada, 1992) with shear modulus of 30 GPa and

Poisson’s ratio =0.25 as representative values for the upper crust.

We issue successive CRS realisations by gradually introducing one or more levels

of complexity in terms of model parameterisations and fault and source hetero-

geneities (i.e. each model preserves all the characteristics of the previous one,

changing/introducing only those specified in its denomination). In other words,

we conduct a ’pseudo-prospective’ experiment where we test the effectiveness of

different Coulomb rate-and-state forecasts that evolve from preliminary to progres-

sively more elaborated parameterisations according to near-real time data avail-

ability. We update all the forecasts at time windows (dt) of 24 hours or when

a M6+ event occurs (whichever comes sooner), for a total forecast horizon of 1

month.

It is worth pointing out that we do not parameterise models using the same data

sample they are meant to forecast and that we estimate the next day seismicity

rates out of sample. This means that models neither know nor use any next-

day seismicity information to tune their components. Here, all CRS models are

developed simultaneously, so that our modelling choices for the more enhanced

realisations are not biased by the performance of the earlier versions. CRS model

characteristics are summarised in Table 4.1.

The first CRS model, CRS1-basic, is the most preliminary version featuring: (1)

stress changes imparted only by the Mw 6.4 and Mw 7.1 events, for which we

implement a uniform slip distribution tapered at the edges of the fault from the

real-time kinematic parameters provided by the SCEDC; (2) simplified receiver

plane geometry, spatially uniform (SUP) and parallel to the Mw 7.1 fault which

is consistent with the main regional regime; (3) spatially variable background rate

(r0) after stochastic declustering of the learning phase seismicity catalogue (1981-

2019), smoothed in space using the adaptive kernel method of Helmstetter et al.

(2007); (4) rate-and-state parameters averaged from the previous work of Toda et
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al. (2005), who investigated the fingerprint of stress transfer by tuning parameters

to Southern California seismicity during a subset (1986-2003) of our learning phase

window.

Table 4.1: Main features of CRS models. Mmin = minimum magnitude for stress
sources; FM = focal mechanism; USD = uniform slip distribution; FFM = finite-
fault slip model; eFFM = edited finite-fault slip model; I = isotropic stress field;
SUP = spatially uniform receiver planes; SV P = spatially variable planes; SSI
= smoothed stress inversion; He = heterogeneous.

In CRS2-optimised we optimise the constitutive parameters during the learning

phase catalogue by maximising the log-likelihood function of Zhuang et al. (2012).

The grid search spans [0.01-0.1] MPa for Aσ and [1-300] years for ta and includes
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the stress changes due to the past M4+ events within the testing region during

the 1981-2019 window. To account for early catalogue incompleteness, the fitting

routine ignores the first 20 minutes after each stress-perturbing earthquake, cor-

responding to the best fitting Omori c-value obtained for our ETAS model (see

Table 4.2).

CRS3-FFM/SSI introduces two features, namely the implementation of the near

real-time USGS finite-fault slip model (FFM) for the Mw 7.1 mainshock (while no

slip inversion was available for the Mw 6.4 event) and a first order structural het-

erogeneity of the receiver faults (spatially variable planes - SVP) in the form of: (1)

in off-fault regions, planes informed from the smoothed stress inversion (SSI) from

focal mechanisms and topography by Luttrell and Smith-Konter (2017), and (2) at

the fault-specific scale, mapped UCERF3 fault geometries with kinematic param-

eters assigned following the USGS Fault Database in polygons extending ±2.5 km

around the rupture traces, with the exception of the Garlock Fault System where

we consider a 5 km buffer. The inclusion of UCERF3 rupture parameters allows

accounting for well-known extensional normal faults, such as the Kern Canyon and

Tank Canyon, oblique-normal faults such as the Independence Fault, right-lateral

faults such as the Owens Valley, and left-lateral faults related with the Garlock

Fault System.

To resolve the evolving coseismic stress field in greater detail, CRS4-secondary

incorporates secondary triggering effects due to the stress changes following each

M2.5+ aftershock. Except for the Mw 7.1 mainshock, which has an associated

finite-fault model, we implement uniform slip distributions from the SCEDC real-

time catalogue of focal mechanisms with random selection of nodal planes, and

we adopt a magnitude-dependent isotropic stress field for all those events without

any available rupture characterisation.

In CRS5-past FMs we introduce the representation of the second order structural

complexities by resolving the stress changes on the diverse small-scale receiver fault

populations of the area informed from pre-sequence focal mechanisms (1981-2019).

We assign kinematic rupture parameters to each grid cell hosting at least one focal

mechanism following a 3D nearest neighbour association and using the focal plane

provided by the Yang et al. (2012) catalogue.

The preliminary slip model version available on the USGS event webpage reaches
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a depth of 28 km and is explicitly affected by (1) a deep (∼23 km) slip patch arte-

fact on the north-western fault edge, and (2) an excessive fault length of about

160 km, extending well beyond the Garlock Fault to the SE and the Independence

Fault to the NW. To overcome the limitations imposed by this near real-time data

product, in model CRS6-eFFM we edit the USGS model (eFFM) by setting the

rupture length according to the ShakeMap fault trace and extrapolating a vertical

extension of 17 km using the empirical relations of Wells and Coppersmith (1994).

We chose to include both results to highlight the importance of real-time data

quality control for automated operational forecasting.

CRS7-new FMs is the most complex among our physics-based forecasts. In this

model, we make use of those fault planes that are gradually revealed by aftershocks

to resolve the evolving near-source coseismic stress changes. Here, the available

real-time SCEDC focal mechanism of a given aftershock replaces the receiver plane

earlier assigned to the relative grid point following a criterion of proximity to the

centre of its cell. We update the 3D receivers’ matrix by performing such nearest

neighbour re-assignment of aftershock nodal planes every time the forecast is up-

dated.

We also present three additional sensitivity tests. First, to evaluate the effect

of real-time data selection, we produce an alternative model version, CRS7-usgs,

where we use the USGS catalogue of focal mechanisms for both the computation

of the synthetic slip models and the receiver faults update instead of the SCEDC

one. This choice is motivated by the discrepancies between the kinematic param-

eters of the mainshocks reported in real-time by the SCEDC and the USGS, with

special concern about the Mw 6.4 earthquake (∼20◦ difference in strike).

Moreover, we assess how the overall spatial performance of our more complex CRS

realisation changes when the rate-and-state r0 value is defined by means of an un-

declustered seismicity catalogue (known as ”reference rate”). We perform this

test in the wake of rederivations of the Dieterich’s model suggesting that initial

conditions for populations of seismic sources should also account for the long-term

seismicity interactions (Heimisson, 2019). Finally, we test the effect of implement-

ing a different coefficient of effective friction in model CRS7-new FMs.
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4.3.2 The ETAS Benchmark

Past and present initiatives, such as the Working Group of California Earthquake

Probabilities (WGCEP), the Uniform California Earthquake Rupture Forecast

(UCERF) and the Collaboratory for the Study of Earthquake Probability (CSEP)

tested the predictive skills of ETAS models applied to Southern California seismic-

ity under different implementations for short- and long-term time horizons. The

application of ETAS to Californian seismicity catalogues made it possible to con-

clude that moderate events in California occur near locations of small earthquakes

(e.g. Werner et al., 2011) and that the inclusion of the triggering potential of

small magnitude events improves forecast performance (Helmstetter et al., 2006).

Since our goal is to measure any improvement in the stress-based models, here we

implement a standard ETAS version (Seif et al., 2017) to be used as benchmark

and we acknowledge that a better performance may be reached by other ETAS

formulations.

We estimate the maximum likelihood ETAS parameters (Table 4.2) in the testing

region considering a subset of the learning phase catalogue from 1983 to 2019. We

use the first two years of the learning phase (1981-1982) as auxiliary seismicity to

account for event interactions outside the target time window. The fitting process

also considers earthquake triggering coming from outside the spatial boundaries of

the target region by including the contribution of the M2.5+ seismicity occurred

within the entire Southern California Seismic Network (SCSN) authoritative re-

gion. We set Mcut = 2.5 and α = β = b · log(10) (with Gutenberg-Richter b-

value=1) to improve ETAS’ productivity forecasts (Hainzl et al., 2008; Seif et al.,

2017; Zhang et al., 2020). We keep the ETAS parameters fixed during the whole

1-month horizon and simulate 1,000 catalogues in each forecast time window (dt).
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Table 4.2: ETAS parameters, with Mcut = 2.5 and α = β = b · log(10). Our
productivity parameter (K0 = 0.07) is comparable to the one used by Seif et al.
(2017) inverted on Southern California data between 1981-2014 (K0 = 0.08).

4.4 Results

Here, we present (1) the stress interaction results considering the UCERF3 faults

within a ∼120 km radius from the mainshocks and (2) the physics-based and

statistical forecasts expressed as expected number of events in the whole testing

region within 1-day time intervals for a 1-month time horizon.

4.4.1 Coulomb Stress Interactions

As a first order picture of coseismic stress perturbations, we estimate Coulomb

stress change values on (1) the surfaces of UCERF3 mapped faults and (2) on the

Mw 7.1 fault plane using the geometry reported in the USGS finite-fault model.

For these calculations, we implement a slightly coarser discretisation considering

5-km depth intervals between 0-25 km (Figure 4.2) and a wide range of friction

coefficients (0.2-0.8). The 4 July Mw 6.4 earthquake moment tensor calculation

has northwest trending right-lateral, and northeast trending left-lateral solutions.

We choose to simulate the left-lateral plane based on observed deformation from
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InSAR (Appendix B, Figure B1). We conclude that the 4 July Mw 6.4 shock

likely triggered the 6 July Mw 7.1 earthquake based on calculated 0.08 to 0.2 MPa

stress increases in the area of the Mw 7.1 hypocentre (Figure 4.2a), with the range

depending on assigned friction coefficients. While failure stress at the hypocentral

area of the Mw 7.1 shock was increased, the eventual rupture areas around that

region had calculated stress decreases between -0.09 to -0.25 MPa (Figure 4.2a).

The 4 July Mw 6.4 generally reduced stress or caused very small increases on

most nearby surrounding faults (as defined by UCERF3) with the exception of

the central Garlock fault, which had a more significant stress increase of 0.03 to

0.07 MPa (Figure 4.2a). It does not appear that the Mw 7.1 slip distribution was

affected by these stress decreases because it shows relatively uniform slip despite

the stress change variations (see Figure 4.3).

The combined stress change effects of the 4 July Mw 6.4 and 6 July Mw 7.1

earthquakes are calculated on surrounding UCERF3 faults (Figure 4.2b). The

Garlock fault is the longest fault in the region and is believed by some to have

the potential to host the largest earthquakes; the central segment of this fault

had a maximum 0.006 - 0.338 MPa stress increase caused by the combined Mw

6.4 and Mw 7.1 Ridgecrest earthquakes. Significant (∆CFF ≥ 0.01 MPa; Harris

& Simpson, 1992; Hardebeck et al., 1998) stress increases are also noted on the

Southern Sierra Nevada Fault (maximum ∆CFF = 0.258 MPa), Owens Valley

(0.116 MPa), Tank Canyon (0.090 MPa), Panamint Valley faults (0.048 MPa),

Lake Isabella (0.042 MPa) and Blackwater (0.036 MPa).
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Figure 4.2: Example of calculated combined coseismic stress changes on mapped
UCERF3 faults following (a) the 4 July 2019 Mw 6.4 event and (b) both the Mw
6.4 and 6 July Mw 7.1 earthquakes near Ridgecrest, CA. Hypocentres of the Mw
6.4 and Mw 7.1 earthquakes are shown by yellow stars. Displayed stress changes
were calculated using a friction coefficient of 0.4. Stress increases (∆CFF ≥ 0.01
MPa) are calculated on the Central Garlock, South Sierra Nevada, Owens Valley,
Tank Canyon, and Panamint Valley faults.

Figure 4.3: Modelled slip distribution for the 6 July Mw 7.1 earthquake. While
the Mw 7.1 hypocentre correlates spatially with a calculated stress increase from
the 4 July Mw 6.4 shock (Fig. 4.2a), much of the slip distribution occurred where
coseismic stress changes are calculated to have been reduced.
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4.4.2 Earthquake Forecasts

Here, we present the results in terms of (a) time evolution of expected seismic-

ity, (b) spatial maps of M2.5+ expected earthquakes within specific time periods

starting after the Mw 6.4 Searles Valley event, for the short (24 hours after the

mainshocks), and intermediate-term (1 month) time windows. We also present

the model validation for the first month of the Ridgecrest sequence using the S

and T-test metrics (Zechar et al., 2010; Rhoades et al., 2011) implemented in the

CSEP initiative, which perform a model-data consistency check and an inter-model

predictive skill comparison, respectively. All forecast model results are provided

in Appendix B (Figures B2-B5).

Earthquake Rate Forecasts

In Figure 4.4a we present the M2.5+ observed vs. expected daily occurrences.

The preliminary and oversimplified CRS1-basic underestimates the seismicity rates

by an order of magnitude, which is in agreement with the results of the Central

Apennines experiment (see Chapter 3). We observe that the introduction of opti-

mised fault constitutive parameters in CRS2-optimised reverses the severe under-

prediction of CRS1-basic, making all the successive realisations comparable to the

real-time catalogue. While we find that all the physics-based models match well

with the number of M2.5+ events in the 24 hours following the Mw 6.4 event, they

mostly overpredict in the short-term after the Mw 7.1 shock, for a maximum of

120% in CRS2 (1579 M2.5+ expected vs. 713 observed) and a minimum of 26% in

CRS7 (899 expected events), with a general good agreement over the entire first

month of the sequence.

The ETAS model, with rates expressed from the mean of the simulations, strongly

overpredicts after both mainshocks. However, we expect the early incomplete-

ness of the real-time catalogue following the Ridgecrest main events to affect the

apparent overprediction of most of the models.
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Figure 4.4: Forecast time series for physics-based and statistical models for the
first month of the Ridgecrest sequence. (a) Incremental time series: black trian-
gles indicate the observed number of M2.5+ events, while squares represent the
expected numbers. (b) Comparison between the cumulative expected vs. observed
(black line) rates. The shaded areas indicate Poissonian uncertainties.
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Figure 4.4b compares the cumulative number of expected vs. observed earth-

quakes. We find that (1) the inclusion of secondary triggering effects from CRS4-

secondary onwards leads to a 15% increase in the cumulative number of forecasted

aftershocks during the first month, almost entirely due to the short-term triggering

expected from the early Mw 7.1 aftershocks (days 2-3); (2) CRS6-eFFM, based on

the edited USGS finite-fault model (eFFM), reduces the 24 hours post-mainshock

over-prediction; (3) the update of the receivers using the unfolding aftershock rup-

ture parameters (CRS7-new FMs), although appearing not critical immediately

after the Ridgecrest mainshock (< 1 day) due to the limited number of available

early focal mechanisms, brings an important improvement between days 2 and

3 by reducing the overprediction seen in models CRS4/5/6; (4) although ETAS

fits the seismicity decay well in the 34-hour window between the main events, it

presents the poorest performance immediately after the Mw 7.1 shock; (5) stress-

based models fit adequately the seismicity decay from the third day onwards, with

model CRS7-new FMs better approximating the total number of events within

Poissonian uncertainty.

We finally test how the implementation of a different coefficient of friction in the

Coulomb calculations affects the output of the best performing model. When we

use µ
′ values of 0.2 and 0.6, we find a variability of the expected rates after the

mainshocks of about ±20% (Figure B2), which reflects the importance of coseismic

normal stress changes.

Forecast Maps

Figure 4.5 shows the seismicity rate maps of the most preliminary (CRS1-basic)

and the most enhanced (CRS7-new FMs) physics-based forecasts against the sta-

tistical ETAS realisation for the 24 hours following the Mw 6.4 Searles Valley and

the Mw 7.1 Ridgecrest events and for the whole 1-month horizon. Although we

formally assess the performance of the models for the entire testing area, in Figure

4.5 we show the sub-region characterised by the highest aftershock productivity.

Similar maps for the complete set of models, including the alternative CRS7-usgs,

are available in Appendix B (Figures B3-B5).

The expected CRS and ETAS seismicity patterns in the 24 hours following the
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Mw 6.4 Searles Valley event (Figure B3) mostly miss the observed L-shaped af-

tershock distribution. The visual comparison between the stress-based models

(Figures 4.5a,d and B3a-h) and ETAS (Figure 4.5g) shows how both forecasting

methods suffer from the lack of a finite-fault model that describes the complex

slip distribution along either the NE-SW left-lateral or NW-SE right-lateral fault

sections involved. The most striking feature of these maps is the misalignment

between the expected vs. observed seismicity along the left-lateral fault (Figure

4.5a), arising from the selection of the kinematic parameters assigned to the Mw

6.4 rupture. For the CRS models, including CRS6-eFFM, we initially use the

real-time catalogue of focal mechanisms by the SCEDC where a strike = 69◦ was

reported. However, the USGS strike of 48◦ better matches visually the distribution

of triggered aftershocks along the Mw 6.4 left-lateral and also part of the right-

lateral rupture before the Mw 7.1 event (CRS7-usgs, Figure B3h). This result

highlights the critical role of real-time rupture characterisation for operational

earthquake forecasting purposes, especially since the uncertainties behind fault

strike angles in modern networks reach 20◦ (Kagan, 2003). Figure B3 shows that

this misalignment only partially recovers when rates are enhanced by the imple-

mentation of optimised rate-and-state variables (CRS2; Figure B3b) and off-fault

receiver planes are based on regional faulting styles (CRS3; Figure B3c). The lack

of M2.5+ seismicity in the real-time ComCat catalogue in the 31 minutes between

the Mw 4.0 foreshock and the Mw 6.4 Searles Valley earthquake results in mini-

mal differences in the spatial distribution of expected rates between CRS3 and the

remaining stress-based models.

The forecast maps for the first 24 hours after the Mw 7.1 Ridgecrest mainshock

(Figure B4) show that: (1) the highly clustered seismicity at the northwestern fault

edge is captured even in the preliminary CRS1-basic model, although the uniform

slip model results in misaligned aftershock distributions (Figure 4.5b); (2) from

CRS2 onwards, seismicity rates increase across the Ridgecrest fault, marking the

importance of an optimised rate-and-state parameterisation; (3) the finite-fault

slip model incorporation leads to high near-source rates in agreement with the

distribution of early aftershocks (CRS3, Figure B4c) but also increased rates east

of the South Sierra Nevada Fault: the latter likely are an artefact due to the noisy
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preliminary USGS source model; (4) the early post-mainshock seismicity NW of

the Coso Volcanic Field (CVF) is partially underestimated initially (Figure B4, c-

d) but recovers when coseismic stresses are resolved on pre-existing ruptures taken

from past focal mechanisms (Fig B3e); (5) the edited USGS finite-fault slip model

improves the expected patterns east of the South Sierra Nevada Fault and reduces

the overestimation in the southern CVF region; (6) the isotropic ETAS model

adequately captures the triggered seismicity in the near source, but overpredicts

in the off-fault region and underestimates observed rates northwest of the CVF

(Figure 4.5h).

The 1-month cumulative maps (Figure B5) illustrate that: (1) the preliminary

model suffers from underestimation within stress shadows and the previously de-

scribed misalignment resulting from the use of the SCEDC preliminary focal mech-

anism (Figure 4.5c); (2) the near-source forecast improves when using the finite-

fault slip model though in its preliminary non-edited version (CRS3-FFM/SSI,

Figure B5c) while the visual comparison suggests further local improvements when

secondary triggering effects are considered (CRS4-secondary, Figure B5d); (3) the

small-scale rupture heterogeneity, represented by pre-existing ruptures taken from

past focal mechanisms, provides benefits to the off-fault representation (CRS3 vs.

CRS5, Figure B5c,e); (4) updating the receiver fault representation to include

evolving aftershock planes presents localised differences in expected rates that be-

come also notable on the SE fault termination near the central Garlock Fault

(Figure 4.5f); (5) the ETAS model (Figure 4.5i) accurately reproduces the high

observed rates in the near-source area and around the CVF but, given its basic

parameterisation that does not incorporate fault information, it projects too wide

an aftershock zone that leads to overprediction at intermediate distances.

The most advanced CRS7-new FMs model predicts heightened rates on the north-

ern section of South Sierra Nevada (SSN), and less heightened rates on southern

Garlock, around the southern Owens Valley, Lake Isabella and White Wolf faults

(Figure B6a). We do not predict important triggered seismicity on the Panamint

Valley Fault, Tank Canyon and on the southern SSN section. A common output

from all the physics-based forecast models is the increased expected rate along the

Central Garlock Fault which is yet to be observed as of the time of writing.
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Figure 4.5: Maps of expected seismicity rates for CRS1/7 and ETAS in the area
of main aftershock productivity for the first 24 hours following the two mainshocks
and for the first month of the Ridgecrest sequence. Observed events (M2.5+) in
each time window are represented as circles. The dashed-line square indicates
the area of the Coso volcanic field (CVF). Aσ values are in MPa, τ̇ values are in
MPa/year.

70



4.4. RESULTS

Statistical Evaluation of Model Performance

We first assess the absolute spatial performance of the forecasts by calculating the

S-test joint log-likelihood scores (jLLS; Zechar et al., 2010) for the 24 hours fol-

lowing the two mainshocks and for the 1-month cumulative forecast horizon. We

then carry out a comparative analysis of model performance through the T-test

metrics (Rhoades et al., 2011) describing the information gains per earthquake

(IG) with respect to the simple model CRS1-basic.

Table 4.3 summarises the statistical scores of the physics-based and ETAS models.

Table 4.3: Summary of short-term (24 hours) and intermediate-term (1 month)
model performance of CRS and ETAS models during the Ridgecrest sequence.

We compare the ability of models to reproduce the spatial aftershock patterns

by expressing the forecasts in term of cumulative joint log-likelihood (jLLS) vs.

time over the entire testing region. Figure 4.6 shows the cumulative temporal

evolution of jLLS. We find that: (1) ETAS and the most enhanced CRS7 achieve

the best overall spatial consistency; (2) CRS7-usgs presents similar spatial per-

formance to ETAS within the first week of the sequence, with the Mw 6.4 USGS

71



CHAPTER 4. THE PREDICTIVE SKILLS OF ELASTIC COULOMB
RATE-AND-STATE AFTERSHOCK FORECASTS DURING THE 2019
RIDGECREST, CALIFORNIA, EARTHQUAKE SEQUENCE

focal mechanism implementation increasing significantly its likelihood score (in

the first 24 hours of the experiment, CRS7-usgsjLLS
= -599 vs. ETASjLLS

= -361;

(3) stress based forecasts from CRS5-past FMs onwards outperform the isotropic

ETAS model after the Ridgecrest mainshock (Table 4.3), underscoring the impor-

tance of updating the receiver plane representation using past (CRS5) or both

past and aftershock focal mechanism planes (CRS7-new FMs); (4) the systematic

log-likelihood increase with the growing CRS model complexity illustrates how

different components (e.g. the Mw 7.1 slip model, secondary triggering effects,

receiver updates) improve the overall model performance.
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Figure 4.6: Cumulative S-test joint log-likelihood (jLLS) timeseries. The scores
are obtained by summing the S-test log-likelihoods (jLLS) of each spatial cell and
1-day time step. The vertical dashed line marks the occurrence of the Ridgecrest
mainshock.

72



4.4. RESULTS

We also find that the implementation of a reference seismicity rate in CRS7-

new FMs improves the joint log-likelihood in the 24 hours after the Mw 6.4 event

(Figure B6c). However, the score deteriorates following the Mw 7.1 mainshock

reaching a slightly worse performance in the intermediate term when compared

to the model version implementing a background rate. This result is due to the

higher rates projected by the model in zones of high clustering of past triggered

seismicity, such as the area of the 1995 Ridgecrest aftershock sequence and the

regions within and NE of the Coso field (Figure B6d); in the latter three regions,

no significant clustering of M2.5+ aftershocks was observed during the first month

of the 2019 sequence.

In Figure 4.7 we compare the average daily information gains when CRS1-basic

is taken as benchmark. The short-term results for the 24 hours after the Mw

6.4 suggest that although all physics-based models are genuinely more informative

than CRS1 (IGCRS1 ≥ 2.5) none of them except the most enhanced one (CRS7-

usgs, IGCRS1 = 5.65 ± 0.49; grey square in Figure 4.7a) perform as well as ETAS

(IGCRS1 = 6.40 ± 0.41).

Following the Mw 7.1 Ridgecrest mainshock (Figure 4.7b) ETAS is outperformed

by most of the stress-based forecasts as shown by the low IG values. Here, the

decisive factors behind the CRS performance improvement are the edited fault

slip model and the receiver updates. We also find a small overall performance

improvement (∆IG ≈ 0.15) when receiver planes are updated using the first 34

hours aftershocks (CRS7-new FMs); rupture parameters for this time window are

taken from the admittedly limited number of early aftershock focal mechanisms

but, as we show further on, this improvement presents a significant spatial com-

ponent. The cumulative 1-month evaluation window (Figure 4.7c) reveals similar

information gain patterns. Here, CRS7-new FMs outperforms CRS5-past FMs

highlighting the medium-term effect of receiver plane updates within the evolving

sequence. Finally, the enhanced physics-based model CRS7-usgs achieves a higher

mean average information gain per earthquake than ETAS.

By plotting the log-likelihood differences in the space domain (Figure B7), we ob-

serve that the fault-based CRS forecasts are more localised along the ruptures when

compared to the standard ETAS model and outperform the statistical counterpart
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Figure 4.7: Average daily information gain per earthquake from the preliminary
CRS1-basic model for: (a) 24 hour after the Mw 6.4 Searles Valley event, (b) 24
hour after the Mw 7.1 Ridgecrest mainshock and (c) for a cumulative 1-month
forecast horizon. The filled grey squares indicate the information gain score of the
alternative CRS7-usgs model. The horizontal lines mark the no-gain level.

in the broader region by predicting low off-fault rates (Figure B7b). However, if

we look at smaller distances, we notice that the ETAS model is more robust on

the strictly near-fault area (Figure B7c) in agreement with similar previous experi-

ments (e.g. Segou et al., 2013) and with our forecasting experiment in the Central

Apennines (Chapter 3), although the enhanced physics-based model CRS7-usgs

significantly outperforms ETAS in the region of high aftershock clustering around

the north-western edge of the Ridgecrest rupture.

To better evaluate the effect of updating the receiver planes during the unfolding

aftershock sequence, we show in Figure 4.8a the T-test’s log-likelihood differences

the for the 1-month forecast between CRS6, updated by past focal mechanisms,

and CRS7, updated by past and evolving focal mechanisms. We see two regions

characterised by a clear performance improvement (green cells) arising within an

otherwise noisy ∆LL signal. We exclude from this discussion the wider area of the

Coso field since triggering mechanisms within this active volcanic region may be

influenced by other phenomena (e.g. fluid flow; Martinez-Garzon et al., 2018). In

Figure 4.8b-d, we plot the distributions of pre- and post-Ridgecrest focal mecha-

nisms in the identified regions using the ternary diagrams of Frohlich and Apperson

(1992), with the addition of a third zone of interest close to the Garlock Fault char-

acterised by lower aftershock rates and mostly unvaried CRS model performance.
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To facilitate our interpretation, we present focal mechanisms of cells with notable

cumulative log-likelihood difference |∆LL| ≥ 6. In the southern-edge zone, the

significance behind the update using evolving focal mechanisms (Figure 4.8d) is

smaller since the pre- and post-Ridgecrest focal mechanism populations remains

similar. However, the results suggest a shift between pre- and post-Ridgecrest focal

mechanism distributions in the two areas (Zone 1 and 2; Figure 4.8b-c) where the

receivers update with evolving aftershocks leads to a robust improvement, with

promoted strike-slip ruptures (from 54% to 69% and from 53% to 67% in zones

1 and 2, respectively) and suppressed normal fault aftershocks (from 25% to 10%

and from 24% to 13%).

To determine whether the pre-existing normal faulting (pre-Ridgecrest) is in fact

discouraged within the evolving sequence, we resolve the Ridgecrest coseismic

stress changes on the average plane of the pre-Ridgecrest normal focal mecha-

nisms (Figure B8). Indeed, we find that the ∆CFF estimates support a near

source stress shadow on pre-existing normal faults that is more evident between

2-12 km depth in Zone 2 (Figure B8, b-f) and below 4 km in Zone 1 (Figure B8,

c-f).

The latter observation provides a physical basis for the shift in the focal mecha-

nism population during the unfolding Ridgecrest sequence but also points out the

importance of forecast updates using aftershock data.
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Figure 4.8: Influence of pre-existing and evolving rupture populations in stress-
based forecasts. (a) Cumulative ∆LL map for the 1-month forecast horizon be-
tween CRS6-eFFM and CRS7-new FMs. Positive (green) values indicate a better
performance of CRS7-new FMs. Black points indicate the locations of M2.5+
aftershocks between 4 July 2019 and 4 August 2019, white stars indicate the
two mainshocks. Values are saturated at ±30 to facilitate visualisation. (b-
d) Ternary diagrams showing the focal mechanisms distribution during the pre-
sequence (1981-2019, magenta circles) and post-Ridgecrest (blue crosses) time win-
dows.
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4.5 Discussion and Conclusions

We tested the predictive skills of seven Coulomb rate-and-state (CRS) forecasts

developed within a pseudo-prospective experiment covering the first month of the

2019 Ridgecrest sequence. Our models progressively evolve in their implementa-

tion: from an over-simplified parameterisation, based on uniform slip representa-

tion and parallel receiver faults, to the most complex physical model incorporat-

ing optimised rate-and-state fault constitutive parameters, secondary triggering

effects, the USGS Mw 7.1 finite-fault slip model and receivers that consider the

UCERF3 faults, off-fault rupture patterns based on pre-existing ruptures, and fi-

nally near-source rupture planes revealed by unfolding aftershocks. The forecast

results suggest high expected rates along the whole ∼75 km long near-fault region,

as confirmed by the observed events. All physics-based models expect increased

seismicity rates in Central Garlock Fault, though not significant reactivation has

occurred at the time of this writing other than the observed triggered creep (Barn-

hart et al., 2019). However, delayed aftershocks may be expected on low-stressing

rate faults, which highlights the challenges that short- and long-term forecasts

must address (Toda & Stein, 2018).

When we validate models by means of the formal statistical tests currently im-

plemented within the CSEP community, we see that our results agree with recent

works suggesting that advances in the implementation of short-term physics-based

earthquake forecasting (e.g. Segou and Parsons, 2016) show significant perfor-

mance increases and can approach, or at times outperform, simple benchmark

ETAS models. Specifically, the results confirm those discussed in Chapter 3 that

critical components such as finite-fault rupture models, secondary triggering ef-

fects, optimised rate-and-state parameters and spatially variable receiver faults

significantly enhance the predictive skills of Coulomb stress-based models (Cat-

tania et al., 2018). Our conclusions are further supported by recent modelling

developments that illustrate the importance of past focal mechanism data in the

estimation of aftershock rupture styles (Segou & Parsons, 2020).

Importantly, in this study we evaluated the significance of updating critical com-

ponents of physics-based models, such as the receiver planes, using aftershock data

from the unfolding Ridgecrest sequence. The observed evolving spatial and tem-
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poral diversity between the pre-Ridgecrest and within-sequence focal mechanism

populations offers a physical interpretation for the estimated local performance

improvement, reflected in higher information gains in different regions across the

fault. We document a shift in the faulting styles of local triggered seismicity

illustrated by a decrease in the percentage of normal fault earthquakes ( 25% pre-

Ridgecrest vs. 10% within the aftershock sequence). In that context, earthquakes

on specific pre-existing faulting styles at a local fine scale might be suppressed

while others may be enhanced. Therefore, updating the modelled source and re-

ceiver populations as aftershock data unfolds is an important step for improving

the performance of short-term stress-based earthquake forecasts.

On the other hand, our experimental design showcases one of the modelling caveats

that currently affect physics-based aftershock forecasts. We clearly see how, even in

a data-rich environment for real-time earthquake products such as California, un-

certainties of early focal mechanisms and slip models can be detrimental for oper-

ational stress-based forecast models. In particular, the variability of the kinematic

parameters associated to the Mw 6.4 Searles Valley event from different providers

reveals the influence of data choices among multiple authoritative sources. How-

ever, it is extremely encouraging that, although subject to assumptions regarding

epistemic and aleatory uncertainties, the most enhanced CRS models that make

use of aftershock data can generate informative forecasts that are beginning to

compare well to those of statistical models.

Data Source

Some data used in this study were collected by the California Institute of Tech-

nology (Caltech) and U.S. Geological Survey (USGS) Southern California Seismic

Network (https://doi:10.7914/SN/CI) and distributed by the Southern Califor-

nia Earthquake Data Center (SCEDC). The Hauksson et al. (2012) and Yang et

al. (2012) catalogues of seismicity and focal mechanisms can be acquired through

access to the SCEDC website (https://scedc.caltech.edu/research-tools/

altcatalogs.html), as well as the catalogue of focal mechanisms for the Ridge-

crest sequence (https://service.scedc.caltech.edu/eq-catalogs/FMsearch.

php). The ANSS Comprehensive Earthquake Catalog (ComCat) can be searched
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at https://earthquake.usgs.gov/earthquakes/search/. The stress inversion

by Luttrell and Smith-Konter (2017) is available on the SCEC Community Stress

Model webpage (https://www.scec.org/research/csm).

The preliminary slip model by G. P. Hayes (USGS) for the Mw 7.1 Ridgecrest

mainshock is available at the USGS event webpage: https://earthquake.usgs.

gov/earthquakes/eventpage/ci38457511/finite-fault. UCERF3 fault sec-

tion data is accessible through the open-file report at http://pubs.usgs.gov/

of/2013/1165/pdf/ofr2013-1165_appendixC.pdf.

The code ”CRS” (Cattania & Khalid, 2016) can be downloaded at https://

github.com/camcat/crs. Coseismic stress change on 3D individual UCERF3

faults are calculated using Coulomb 3.3 (Toda et al., 2011; https://earthquake.

usgs.gov/research/software/coulomb/) and the software ”DLC” by R. Simp-

son (USGS) based on the subroutines of Okada (1992).
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Chapter 5

Probabilistic Forecasting of

Hydraulic Fracturing Induced

Seismicity Using an

Injection-Rate Driven ETAS

Model

The material presented in this chapter appears in the following submitted article.

• Mancini, S., Werner, M. J., Segou, M., and Baptie, B. J. (2020). Probabilistic

Forecasting of Hydraulic Fracturing Induced Seismicity Using an Injection-

Rate-Driven ETAS model. Submitted to Seismol. Res. Lett..

5.1 Introduction

Reliable forecasts are desirable to mitigate disturbance or damage also from human-

induced seismicity. In particular, seismicity induced by fluid injections is a growing

concern (Schultz et al., 2020 and references therein).

Statistical models of injection-induced seismicity have shown some skill in captur-

ing the complex range of seismic responses to fluid injections (e.g. Shapiro et al.,

2010; Kiraly-Proag et al., 2016; Verdon & Budge, 2018). The Epidemic-Type Af-
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tershock Sequence (ETAS) model (Ogata, 1988), originally developed to reproduce

the short-term clustering of tectonic earthquakes, was tested under different fluid-

induced seismicity scenarios including natural circulation of fluids at depth (Hainzl

& Ogata, 2005) as well as human-related activities, such as natural gas extraction

(Bourne & Oates, 2017), Enhanced Geothermal Systems (EGS - e.g. Bachmann

et al., 2011; Mena et al., 2013; Asanuma et al., 2014), hydraulic fracturing for

unconventional shale gas development (HF - e.g. Lei et al., 2017; 2019; Jia et

al., 2020), and wastewater disposal (Llenos & Michael, 2013). These studies con-

cluded that fluid-driven seismicity has distinctive spatiotemporal characteristics,

some of which are different from the ”regular” tectonic seismicity dominated by

earthquake-to-earthquake triggering mechanisms. While the standard ETAS fea-

tures a stationary background rate due to slower tectonic loadings, Bachmann et

al. (2011) introduced an ETAS model with a background rate linearly proportional

to the injection rate and found that this model performed best in forecasting the

seismicity induced in Basel (Switzerland) due to the stimulation of a deep geother-

mal energy reservoir.

In its limited number of applications to HF environments, the ETAS model was

mostly used explore the behaviour of HF-induced seismicity and to show that

time-varying background rates positively correlate with injection operations (Lei

et al., 2019; Jia et al., 2020). Lei et al. (2017) showed that an ETAS model fea-

turing a non-stationary background rate better reproduces the observed features

of seismicity when an external forcing is applied (e.g. fluid flow or aseismic slip

in cases of induced and natural seismicity, respectively), but they did not assess

ETAS performance in a formal forecasting experiment.

In this study, we probe the suitability of the ETAS model as a statistical tool for

near real-time forecasts of the seismic rates during and after HF operations. We ex-

pand on previous applications of the ETAS model to HF by quantitatively assessing

the predictive skills of a suite of temporal ETAS models that (i) are calibrated and

tested on a much richer microseismicity dataset, (ii) seek to reproduce seismic rates

from a wider magnitude range (from M∼3 down to M=-1.5), (iii) explore how the

forecast performance changes under different modelling assumptions (standard vs.

modified model formulations) and parameterisations (in-sample vs. out-of-sample

forecasts), and (iv) test the influence of expressing the non-stationary background
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rates by using either averaged or sleeve-specific fluid pumping parameters.

We take advantage of a rich microseismicity dataset recorded at Preston New Road,

Lancashire (UK), during unconventional shale gas development by Cuadrilla Ltd

in two wells, PNR-1z in 2018 (Clarke et al., 2019) and PNR-2 in 2019. First, we

implement the ETAS model in its original tectonic formulation and assess whether

(1) it captures the temporal evolution of the microseismicity, and (2) parame-

ters optimised using the available data improve model performance. Second, we

implement a modified ETAS model featuring a background seismicity rate propor-

tional to the injection rate following Bachmann et al. (2011) but here applied in

the context of HF. This presents a particular challenge as HF operations feature

short injection episodes along different sleeves, while EGS injections are continuous

with gradually changing flow rates at a single injection point. Within the modified

ETAS class, we (1) assess model performance against the standard ETAS model,

and (2) quantify the influence of using an average (bulk) constant of proportion-

ality between seismicity and injection rates calculated over the entire period of

operations at each well versus constants specifically calibrated on individual injec-

tion periods. For both ETAS classes we also perform an out-of-sample experiment

where we calibrate the ETAS model on PNR-1z data and then use it to indepen-

dently forecast microseismicity during PNR-2. We rank the forecasts by means of

the well-established metric of the likelihood scores.

The comparative performance evaluation illustrates the predictive skills of injection-

rate driven ETAS models and how these may inform real-time decision-making by

operators and regulators during HF operations.

5.2 Operations and Seismicity at Preston New

Road, UK

Hydraulic fracturing operations at the PNR-1z well occurred between 15 October

and 17 December 2018. A total of 17 sleeves were hydraulically fractured (Fig-

ure 5.1a) with an additional 18 mini fracs, consisting of a few tens of m3 of fluid

pumped. Overall, a total of ∼4600 m
3 of slick water fluid was injected (Figure

5.2a) with an average volume per sleeve of 234 m
3 (and a maximum VMAX = 431
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m
3). Hydraulic fracturing was paused between 3 November and 4 December 2018

as flow-back from the well took place.

The microseismicity at PNR-1z was recorded by a downhole array in the adja-

cent PNR-2 well consisting of 12 three-component geophones that detected over

38,000 events. The largest event occurred on 11 December 2018 (ML = 1.5). Here,

we use the available earthquake catalogue that includes origin times and moment

magnitudes (Mw) as determined by Schlumberger Ltd., the geophysical process-

ing contractor. The limited dynamic range of the downhole geophones leads to

problems in magnitude estimation for Mw ≥ 0.0 events due to clipping. To avoid

a potential bias, we matched these with events in the catalogue obtained from

broadband surface stations operated by the British Geological Survey (BGS) that

reported 172 events with local magnitudes (ML). We replaced the moment mag-

nitudes for all Mw ≥ 0.0 events in the downhole catalogue with the corresponding

local magnitude estimate. We estimate a magnitude of completeness (Mc) between

-1.2 and -1.5 (see Appendix C, Figure C1). We chose Mc = -1.5 for our analyses

to increase the number of events to around 20% of the entire dataset.

Figure 5.2a shows a histogram of the hourly number of events during operations

along with the cumulative volume of injected fluid. The observed seismicity at

PNR-1z shows multiple peaks that visually correlate well with the pumping pe-

riods and then decay rapidly with time after injection stops. We find evidence

of considerable variations in seismic responses despite comparable injection rates

across sleeves (e.g. Figure 5.2 c-d). For instance, at sleeve #2 (injection stage

S02) event rates increase as soon as injection starts and remain relatively stable

(Figure 5.2c), while at sleeve #40 (injection stage S17) there is a delayed onset of

seismicity followed by substantially higher rates (Figure 5.2d).
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Figure 5.1: Map view of earthquakes recorded during hydraulic fracturing at
the Preston New Road unconventional shale gas site. Events are colour-coded by
the associated injection stage and their size scales with magnitude. (a) Seismicity
between 15 October and 17 December 2018 during and after injection at the PNR-
1z well. (b) Seismicity between 15 August and 2 October 2019 during and after
injection at the PNR-2 well; grey dots indicate the epicentres of events occurred
during operations at PNR-1z. The black lines represent the surface projection of
the two wellpaths. Diamonds illustrate the position of the sleeves worked during
the operations at the two wells and are coloured by the corresponding injection
stages.
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The horizontal PNR-2 well runs roughly parallel to PNR-1z offset by approximately

200 m. Operations started on 15 August 2019 but were suspended on 26 August

following a ML = 2.9 earthquake that was felt up to a few kilometres from the

epicentre (Cremen & Werner, 2020). Seismicity was recorded by a downhole array

of 12 geophones in the adjacent PNR-1z well, and the final catalogue, extending

up to 1 October 2019, consists of over 55,000 microseismic events (Figure 5.1b)

with magnitudes reported as Mw. We added a correction of 0.15 magnitude units

to the downhole moment magnitudes following Baptie et al. (2020). Furthermore,

the PNR-2 catalogue suffers from brief but critical data gaps that result in a loss

of otherwise recorded seismic events, including the largest event in the sequence

(ML = 2.9) and presumably its early aftershocks. We filled these gaps with events

recorded by the combined surface network of the BGS and the operator (Baptie

& Luckett, 2019). Although we estimate a magnitude of completeness below -

1.5 (Figure C1b), we use Mc = -1.5 for comparability with the PNR-1z catalogue.

The early earthquake productivity at PNR-2 appears an order of magnitude larger

than that observed during the initial injection stages at PNR-1z, even under similar

injected volumes (Figure 5.2b). The complexity of the seismic response to injection

is similar to PNR-1z (Figure 5.2e). As at PNR-1z, we observe a general positive

co-dependency between seismicity and fluid injection at PNR-2.
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Figure 5.2: Seismicity response to hydraulic fracturing at the Preston New Road
site. (a-b) Histograms of the number of M ≥ -1.5 events per hour (black bars) as
a function of time during operations along with the cumulative volume of injected
fluid (light blue line) at PNR-1z and PNR-2, respectively. For illustration pur-
poses, we inserted a time gap during the pause of operations at PNR-1z, which is
indicated by the grey area. (c-e) Examples of seismic productivity and earthquake
magnitudes vs. time (red circles) in response to the injection history (light blue
line) at selected sleeves.

5.3 Methods

5.3.1 The Standard ETAS Model

We create three versions of the standard ETAS model (the ”ETAS1” class). In

ETAS1-optimised we estimate ETAS parameters from the target catalogue (either

PNR-1z or PNR-2) and thus perform an in-sample (best-case) forecast evaluation.

In ETAS1-unoptimised we use the parameters estimated from PNR-1z data to

forecast the PNR-2 seismicity out-of-sample. ETAS1-global serves as an alterna-

tive benchmark model with ETAS parameters (except for the background rate)
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estimated from global subduction zones by Zhang et al. (2020).

5.3.2 The Modified ETASModel for Injection-induced Seis-

micity

In the second forecast class (”ETAS2”), we modify the ETAS model to account

for events forced by an external driver. We couple the background rate to the

time-dependent fluid injection rate Ir(t):

λm(t|Ht) = µ(Ir) +
#

i:ti<t

Ke
α(Mi−Mcut) × c

p−1(t− ti + c)−p(p− 1), (5.1)

with λm a ”modified” seismic rate and the background rate µ(Ir) now assumed

to be linearly related to the injection rate via a constant of proportionality cf

(Bachmann et al., 2011):

µ(Ir) = cf (Ir(t)). (5.2)

To estimate cf , we maximise:

logL(cf , K,α, c, p) =
N#

i=1

log λm (ti|Ht)−
$

T1

T0

λm (t) dt. (5.3)

Within the ETAS2 class, we develop three forecast versions. In ETAS2-bulk we

estimate and use only a single value of cf for each well, fit over the entire period

of operations.

ETAS2-specific implements specific values of cf for each sleeve, calibrated within

the individual injection periods; in this model, we fix the triggering parameters

(K, α, c, p) to the respective values previously obtained for ETAS2-bulk assuming

that the contribution of event-to-event interactions does not change in different

injection periods, when the external forcing is likely to be the dominant mecha-

nism of earthquake production.

Finally, ETAS2-unoptimised uses the ETAS parameters estimated on the PNR-1z
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catalogue (including its bulk proportionality constant) to forecast out-of-sample

the expected seismic response at PNR-2.

Simulating ETAS2 models requires a different method for background events dur-

ing injection periods. We apply the thinning algorithm (e.g. Zhuang & Touati,

2015): (i) estimate a mean expected number of forced events (Nf ) by multiplying

cf by the injection rate integrated over the duration of either the injection period

or the forecast window (whichever is shorter); (ii) draw a random variable (Nf )

from a Poisson distribution with mean equal to Nf ; (iii) distribute the Nf events

in time according to a piece-wise linear, non-homogeneous Poisson process with

rate µ(Ir) driven by the injection rate (smoothed using 1-minute moving windows);

(iv) simulate all aftershock generations triggered by the directly forced events by

means of the standard procedure.

For consistency, all six ETAS versions are: (1) updated hourly or when an injection

period starts (whichever comes sooner), (2) estimated by 1,000 stochastic ETAS

simulations with fixed Mmax= 6.5 (the most likely regional maximum expected

tectonic magnitude; Woessner et al., 2015), and (3) forecasting the number of M

≥ -1.5 events.

In Appendix C, we report a summary of the tested ETAS versions (Table C1)

and the values of the ETAS parameters (Table C2), including the bulk and sleeve-

specific values of cf (Tables C3 and C4 for PNR-1z and PNR-2, respectively).

5.3.3 Evaluation of Model Performance

Because each forecast consists of a probability distribution of earthquake numbers

over the forecast period, we evaluate and rank forecast models using a probabilistic

score, namely the log-likelihood values. The score quantifies the likelihood of the

observed number if the models were the data-generator, specifically the logarithm

of the probability Pr(ω|model) of observing ω earthquakes given the ETAS fore-

casts (Zechar, 2010):

LL(ω|model) = log(Pr(ω|model)). (5.4)

To compensate for the limited number of simulations, which is likely to under-
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sample the range of possible simulated ETAS rates, we approximate the simulation

histogram of each forecast window with a Negative Binomial Distribution (NBD;

Harte, 2015) (Figures C2 and C3). We choose the two-parameter NBD because it

characterises earthquake clustering and process over-dispersion much better than

the Poisson distribution (Kagan, 2010). We calculate the likelihood scores from

the fitted NBD.

5.4 Results

5.4.1 Forecast Timeseries

In Figure 5.3, we present the incremental hourly timeseries of the three in-sample

ETAS forecasts for PNR-1z and PNR-2. We select illustrative sub-periods char-

acterised by (1) weak and strong seismic responses to injection, and (2) seismicity

without injection. The panels compare the observed number of M ≥ -1.5 events

per hour with the mean and 95% predictive interval of the ETAS model.

First, we find that the ETAS1 class projects the onset of increased rates with a

1-hour delay compared to observations. This is not an unexpected effect due to

the scarcity of M ≥ -1.5 parent earthquakes prior to each injection period and the

fact that ETAS1 does not account for external seismicity forcing. In post-injection

conditions, when any earthquake clustering is likely driven by event-to-event trig-

gering, ETAS1-optimised reproduces well the hourly seismicity within the model’s

95% ranges at PNR-1z (Figure 5.3a) and PNR-2 (Figure 5.3b). During periods

of no injection and low seismicity at PNR-1z, the 95% forecast range often en-

compasses the critical value of zero events, reflecting the intrinsic stochasticity of

the ETAS model. The standard ETAS1-optimised severely underestimates the ob-

served rates by an order of magnitude during the high seismicity periods, whether

the seismic response is weak or strong.

The ETAS2 class, featuring an injection-rate-driven background rate, substantially

reduces the discrepancies with the observed rates. ETAS2-bulk, which captures the

average seismic response to injection, both under- and over-predicts during injec-

tion periods. This mixed performance is a result of the single proportionality

constant for each dataset that does not sufficiently capture the complex relation-
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ships between injection rate and seismicity. ETAS2-specific, which describes the

seismicity response with sleeve-specific injection data, presents the best match

during the periods of high seismicity rate due to pressurised fluid forcing. Here,

the visual comparison is very encouraging, but hinges on in-sample, sleeve-specific

proportionality constants between seismic rates and injection rates.
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Figure 5.3: Incremental 1-hour timeseries of expected vs. observed number of
M ≥ -1.5 events at PNR-1z (a) and PNR-2 (b). We report selected examples
from injection sleeves characterised by weak and strong seismicity response as
well as during the pause of operations. ETAS2-bulk model predictions are shown
only during injection periods indicated by the ”Inj.” label (otherwise its forecasts
are identical to ETAS1-optimised and ETAS2-specific). Black circles indicate the
number of observed events in each forecast window. Other symbols represent the
mean (expected) number from the simulations. Bars denote 95% ETAS model
simulation ranges. For illustration purposes during periods of suspended/paused
injection, data are plotted at 12-hour intervals for PNR-1z and 2-hour intervals
for PNR-2.
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We next analyse the performance of all ETAS models, including the out-of-sample

versions, over the entire testing periods at PNR-1z (Figure 5.4 a-c) and at PNR-2

(Figure 5.4 d-f). Using a simple acceptance/rejection criterion, we consider a fore-

cast accepted (green symbols) if the observations fall within the 95% model range,

otherwise we mark it as rejected (red symbols). An ideal forecast, which predicts

the observations perfectly, aligns along the diagonal lines of Figure 5.4. While the

observations fall into the 95% forecast range of the ETAS1 models about 80% of

the time, these matches correspond to periods of low seismicity: accepted fore-

casts occur only when less than 40 events are observed at PNR-1z (Figure 5.4 a,b)

and less than 150 events are observed at PNR-2 (Figure 5.4 d,e). We also note

that (1) at both PNR-1z and PNR-2 ETAS1-global overpredicts less frequently

than models parameterised on well-specific seismicity when the seismicity rate is

extremely low (Figure 5.4 a,b and Figure 5.4 d,e) but underpredicts more during

high-rate windows, and (2) in PNR-2 the differences between ETAS1-optimised

and ETAS1-unoptimised are negligible (Figure 5.4d), a result of the similar pa-

rameters estimated from the two wells (Table C2).

The performance of the ETAS2 class (Figure 5.4 c,f) differs from ETAS1 mostly

during injection periods, and the improvement is appreciable. ETAS2-specific per-

forms strikingly well, as the only model to forecast very productive periods with

more than 300 events at PNR-1z (Figure 5.4c) and more than 1,000 events at PNR-

2 (Figure 5.4f). Finally, the out-of-sample ETAS2-unoptimised model, which uses

the bulk seismic response to injection at PNR-1z to forecast seismicity at PNR-

2, persistently underpredicts injection-induced high rates (Figure 5.4f), but its

underprediction is less severe than that of the ETAS1 class.
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Figure 5.4: Observed vs. expected number of events per forecast period over
all injection stages. Red symbols denote rejected forecasts (data outside model
range); green symbols denote accepted forecasts. Bars denote 95% ETAS model
simulation ranges.

5.4.2 Likelihood Scores

The cumulative log-likelihood scores of the models over the entire duration of the

PNR catalogues show that the injection-rate driven ETAS2 realisations consider-

ably outperform models belonging to the standard ETAS1 class (Figure 5.5).

In particular, ETAS2-specific has the highest likelihood scores at both wells and
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thus ranks as the best performing model, followed by ETAS2-bulk as second-best.

The latter performs unevenly in the two wells, with better predictive skill in PNR-

1z (Figure 5.5a) than in PNR-2 (Figure 5.5b) during the first few days of opera-

tions. Encouragingly, the out-of-sample ETAS2-unoptimised model scores better

than all ETAS1 models and performs similarly to ETAS2-bulk during the first

week of treatment of PNR-2. In other words, a model calibrated on PNR-1z data

could have provided informative forecasts for PNR-2.

ETAS1-global performs worse than the injection-rate driven ETAS2 class but com-

pares well with the other ETAS1 models and even with the ETAS2-unoptimised

and ETAS2-bulk models in the early stages of PNR-2 (inset of Figure 5.5b); this

is a priori surprising for a model calibrated on moderate to large subduction zone

earthquakes.
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Figure 5.5: Cumulative log-likelihood timeseries. ETAS models tested on (a)
PNR-1z and (b) PNR-2.

5.5 Discussion and Conclusions

The PNR microseismic datasets present a unique opportunity to develop and

evaluate statistical forecasting models of hydraulic fracturing induced seismicity.
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Notwithstanding the variability and uncertainties linking pumping data to the

induced seismicity response at both PNR wells, we observe a generally positive

co-dependency between seismicity and injection rates that supports the incorpo-

ration of operational parameters into the standard tectonic ETAS model.

In comparing the performance of the standard and injection-rate driven ETAS fore-

casts, we find that the seismicity decay after the operations, or between stages, is

satisfactorily captured by the standard ETAS. We interpret this result as follows.

During operations we witness the complex interplay of rapid pore pressure ef-

fects and earthquake clustering, expressing a variety of possible mechanisms (e.g.

elasto-static stress transfer, poro-elastic effects, aseismic creep) (Schultz et al.,

2020), while external forcing ceases in inter- and post-injection periods and seis-

micity shows a more typical tectonic behaviour.

However, the log-likelihood scores of the ETAS models demonstrate that a non-

stationary background rate tied to the injection rate is necessary to avoid severe

underpredictions during injection periods, when the seismic productivity is high.

Thus, even a simplistic linear relationship between injection rate and induced seis-

micity leads to informative ETAS forecasts in HF environments.

From the model comparison, we conclude that (1) bulk constants of proportional-

ity do not accurately describe the variable seismic response to fluid injection, and

(2) a sleeve-specific modulation of the seismic response to injection is the most

critical element for producing reliable forecasts.

In our study, the best-performing ETAS model is an in-sample forecast that rep-

resents a best-case scenario. This performance may be difficult to attain out-of-

sample. However, the sleeve-specific constants of proportionality could be esti-

mated and fine-tuned in near real-time conditions from the initial seismic response

at the sleeve, following the approach presented in published experiments to esti-

mate other real-time model parameters at the two PNR wells, such as the seismic

efficiency (SEFF ) and the seismogenic index (SI) (Clarke et al., 2019; Kettlety et

al., 2020). In this regard, we acknowledge that a direct comparison between our

sleeve-wise cf values and the SI and SEFF constants for PNR-1z and PNR-2 would

be a valuable contribution to further explore whether there is one or more pre-

dominant geological or physical mechanism to explain the variable injection rate

scaling between different sleeves (e.g. pre-stress heterogeneity, injection into dif-
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ferent rock formations, crossing pre-existing critically stressed fracture zones or

faults, etc.). Unfortunately, this comparison is currently hampered, as we evalu-

ate incremental cf constants for each single injection period, while Clarke et al.

(2019) and Kettlety et al. (2020) use SI and SEFF values obtained considering the

cumulative PNR microseismicity. A further study with more focus on this point

is therefore suggested.

Given the temporal variability of the seismic response to constant injection, the

parameters will doubtlessly be more uncertain, and this additional uncertainty

should be propagated into the forecasts. In this regard, the operator would have

to assume that (1) the injection rate at each sleeve is known in advance and (2) the

evolving sleeve-specific seismic response is continuously acquired and adequately

detected to support frequent model calibrations.

To mimic real-time conditions (i.e. before data are available for parameter esti-

mation), we also evaluate forecasts from three out-of-sample models. Although

their performance is worse than the in-sample models, we also see encouraging

results. The models present low log-likelihood scores in the longer term (i.e. more

than 3-5 days after the start of operations), but they perform comparably to some

in-sample models during the first few days of operations. This is true even for the

ETAS model calibrated on data from global subduction zones. This is promis-

ing for operational conditions: operators could provide forecasts during the very

early stages of operations using parameters that are either generic or previously

calibrated on adjacent wells. As well-specific and stage-specific data become avail-

able, forecasts can be improved with re-estimated parameters and the operational

injection data.

In light of the outcomes of the PNR experiments, we conclude that injection-rate

driven ETAS models produce informative time-dependent probabilistic seismic rate

forecasts. This result is likely significant also for more informed decision-making

within the traffic light schemes. It is indeed worth remembering that not only does

ETAS provide a model of the full distribution of seismicity as a function time, but

it also simulates the associated magnitude distribution. As the model performs

well in capturing the M ≥ -1.5 seismicity at PNR, the evolving Gutenberg-Richter

b-values could be used to extrapolate the expected induced rates (along with their

associated probability of occurrence) at larger (i.e. potentially damaging) magni-
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tude thresholds. Although it was beyond the scope of this study, this approach

would complement other magnitude forecasting strategies that Clarke et al. (2019)

and Kettlety et al. (2020) have already tested on the PNR datasets.

Given the reasons above, injection-rate driven ETAS models represent a useful

mitigation tool that, convolved with models of ground motion, exposure and vul-

nerability, can support time-dependent probabilistic seismic hazard and risk as-

sessment. These forecast models may therefore provide useful information for

operators, regulators, residents and other stakeholders in HF environments.

Data Source

The PNR-1z and PNR-2 microseismicity catalogues as well as the fluid injection

rate data used in this study can be acquired through access to the UK Oil and Gas

Authority website at https://www.ogauthority.co.uk/exploration-production/

onshore/onshore-reports-and-data/.
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Chapter 6

Discussion and Conclusions

In this dissertation we presented the results of three short-term earthquake forecast

experiments, carried out in environments of tectonic as well as induced seismicity

both in pseudo-prospective (out-of-sample) and retrospective (in-sample) modes.

While summarising the key findings, in this chapter we evaluate their limitations

and practical implications within the current research framework, and discuss their

importance in motivating the development of future modelling strategies.

6.1 Findings and Future Directions for CRS Fore-

casts

In Chapters 3 and 4, we explored which are the most critical elements for im-

proving the operational performance of short-term Coulomb rate-and-state (CRS)

aftershock forecasts compared to a standard ETAS benchmark.

By testing models developed under a common physical assumption (i.e. stresses

are statically transferred between faults) but validated considering different mod-

elling choices, we found that their predictive skills considerably improve when

incorporating increasingly high quality data products. We therefore could not

reject the static stress transfer hypothesis, but rather highlight how its specific

implementations in continuum mechanics affect the performance of CRS forecasts.

In particular, we concluded that elaborate CRS forecasts reach in performance

(and sometimes outperform) the standard ETAS models only when they include
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(1) spatial and temporal crustal heterogeneities to characterise earthquake sources

and hazardous faults, and (2) an evolving stress field.

The Representation of Faults

The Central Apennines and Ridgecrest experiments highlight how remarkable is

the effect of the representation of fault fabrics on the predictive skills of stress-

based forecasts. This is a consequence of the uncertain constraints usually avail-

able to represent faults in the broader sense, be it by means of geological evidence,

geophysical profiling, or taking advantage of other observations from diverse data

sources (seismological, interferometric, GPS, etc.).

First, this work shows that when CRS models feature over-simplified source fault

representations, with empirically derived fault dimensions and uniform slip distri-

bution, they fail to capture even the first order spatial features of near-source trig-

gered seismicity. The results highlight that the incorporation of spatially variable

finite-fault slip models is of dramatic importance to better resolve the near-fault

coseismic stress patterns.

One drawback is that depending on the inversion algorithm and the type of inverted

data, alternative kinematic models are often published for the same event. Unfor-

tunately, there is no robust evaluation method to establish which one is the ”true”

slip distribution as these models represent a compromise between non-unique solu-

tions and are affected by epistemic uncertainties that are unlikely to be resolved in

the near future. Furthermore, propagating such uncertainties into CRS models is

hard as it is not common practice to express them explicitly in standard slip model

formats; this point is critically important to guide future interactions between data

providers and modellers, as well as to agree on what should be the mutually ac-

cepted data formats. A possible way to tackle the non-uniqueness of slip models

is to implement a Bayesian framework where slip distributions are used as pri-

ors, and higher resolution displacement models are progressively inverted using

the observed aftershock patterns; however, tests published so far have not shown

significant model improvements (Strader, 2014), not to mention the difficulties in

finding a physical justification for such approach. Other studies in literature show

how the ensemble averaging of forecasts based on different rupture models can
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address the issue of multiple available slip distributions in a more promising way

(e.g. Marzocchi et al., 2012; Cattania et al., 2014). However, we note that select-

ing among different slip models generally only affects the performance of purely

retrospective forecasts. The most detailed descriptions of source faults are indeed

often achieved after several weeks or months, once the processing of large amounts

of data makes it possible to reconstruct complicated fault geometries (often made

of a mesh of distributed sub-faults rather than one continuous linear rupture) and

to image the small-scale features of slip distributions. In this regard, our pseudo-

prospective test on the Ridgecrest sequence shows extremely encouraging results,

as the incorporation of even the most preliminary near real-time finite-fault slip

model for the Mw 7.1 mainshock contributes to a remarkable improvement of fore-

cast performance (by 2 information gain units) with respect to the CRS versions

featuring a simplified synthetic source.

On the other hand, the same case study also suggests how artefacts present in early

inversions may affect the spatial consistency of the stress-based models. While this

result may seem discouraging for those hoping to use near real-time slip models

as a mere drop-in input data, minor amendments to declared model errors are

possible in an operational context (e.g. constraining fault dimensions from alter-

native sources such as ShakeMaps or editing the actual amount of slip by means

of empirical magnitude-dependent relations).

We find therefore critical that authoritative data providers put their efforts in au-

tomated or semi-automated inversion of real-time data to deliver finite-fault slip

distributions (and the related uncertainties) fast enough to be incorporated in near

real-time CRS models.

An even more challenging aspect concerns the representation of receiver faults at

different spatial scales. While the optimally oriented planes assumption is be-

coming less popular for not being supported by observations (e.g. McCloskey et

al., 2003; Ishibe et al., 2011; Segou & Parsons, 2020), CRS model performance im-

proves when introducing the large-scale geological representation of receiver planes.

Here, the critical question is: how much do we actually know about regional fault-

ing?

Although lines of evidence suggest that the majority of large-magnitude after-
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shocks are most likely to occur on well-expressed faults (e.g. Parsons & Segou,

2014), because of our lack of knowledge we continue to witness high magnitude

earthquakes occurring on unknown faults. One of the clearest examples is provided

by the 2019 Ridgecrest sequence, where a Mw 6.4 foreshock triggered a Mw 7.1

event on a 55-km long unmapped strike-slip rupture. This underpins the argument

that even in the best studied regions on Earth fault inventories (e.g. UCERF3,

DISS, etc.) are incomplete, and stress perturbations can activate or connect (e.g.

the 1992 Landers sequence) large previously unidentified faults.

The modelling strategy that we implemented in Chapters 3 and 4 reveals that a

blend of large-scale seismological data such as smoothed stress inversions and more

localised information from past focal mechanisms can be successfully adopted as

proxy of earthquake rupture styles where no direct geological information is avail-

able.

Another important finding emerges that faulting styles vary not only in space, but

also in time following the unfolding coseismic stress conditions. In Chapter 4 we

illustrated how some small-scale aftershock populations with certain orientations

and rakes can be activated only in response to specific ruptures. In particular,

during the Ridgecrest sequence static stress changes locally drove away normal

faults from rupture and further promoted strike-slip faulting aftershocks. By us-

ing the incoming focal mechanisms to detect such shift in the relative abundances

of ruptures styles, we find that updating receiver planes using evolving aftershock

data improves model performance in the near-source region.

The above results should foster discussion within the physics-based earthquake

forecasting community around the treatment of receiver faults. In particular, one

matter of debate should regard focal mechanisms, as they certainly represent a

data product CRS modelling heavily relies on to characterise faults. The quality

and completeness of the currently available focal mechanism catalogues can po-

tentially be enhanced by applications of deep learning techniques that increase the

number of phase detections (e.g. Ross et al., 2018; Hara et al., 2019). Such im-

provement in data quality might make it easier to reduce their inherent epistemic

uncertainties and propagate them into the model.

Furthermore, in Chapter 4 we used aftershock focal mechanisms to include evolv-

ing planes into stress calculations. Here, we note that interesting pathways can
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be opened by the machine learning (ML) algorithms that have been developed in

the last few years to support a range of issues from better real-time detection of

early aftershocks (Ross et al., 2018) to improved event characterisation. Coupled

with existing real-time high-resolution earthquake location methods (e.g. RT-DD;

Waldhauser, 2009), ML techniques hold the potential to greatly help defining fault

structures as they are revealed by aftershocks with an unprecedented level of detail.

Although fitting fault planes by only using events’ hypocentres likely represents

a hard challenge (especially in the presence of distributed and complex fault pat-

terns), this auxiliary data product can potentially be useful in combination with

early focal mechanism solutions to better constrain the geometry of activated rup-

tures and to help resolving the nodal plane ambiguity.

In summary, considering that (i) we have a solid enough theoretical understanding

of which is the range of mechanically possible ruptures under the effect of the

regional and coseismic stress fields, (ii) at a fine scale aftershocks can occur on a

wider spectrum of possible ruptures than it was previously thought (Segou & Par-

sons, 2020), and (iii) fault populations also change in time, the idea of resolving

coseismic stress changes using only large scale known faults with prescribed kine-

matic parameters should be relaxed. A desirable approach to make all the above

elements coexist with our knowledge limitations (e.g. the currently large uncer-

tainties in focal mechanisms) would be treating receiver planes in a probabilistic

rather than deterministic way, so as to define an array of candidate receivers at

each grid point onto which to resolve the coseismic stress changes. This paves the

way to fascinating avenues of research and represents a challenge for modellers

that will have to produce unified and globally consistent CRS protocols.

The Importance of Smaller Events

Not only are enhanced earthquake detection and high-quality locations needed for

imaging aftershock ruptures, but also to better unravel the spatiotemporal features

of the evolving stress field.

Secondary triggering effects have been disregarded by many of the previous fore-

casting tests in literature (e.g. Toda et al., 2005; Toda & Enescu, 2011; Woessner

et al., 2011; Segou et al., 2013 among others), but our experiments highlight how
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they actually matter and improve model performance. Although smaller magni-

tude earthquakes are capable to generate only minor and localised stress pertur-

bations, their cumulative fine-scale effect over the wider aftershock area controls

earthquake sequences.

This means that in order to improve model performance in those intermediate

off-fault regions currently characterised by low information gain, stress-based fore-

casts should behave more ETAS-like. It is indeed recognised that also in the ETAS

model a critical role in controlling the overall aftershock patterns is played by the

cascade of triggered events (Helmstetter & Sornette, 2003) and that considering

the triggering contribution of smaller magnitude events increases the forecast skills

(Werner et al., 2011).

On the other hand, the most recent advances in ETAS modelling (Field et al.,

2017) suggest a more fault-informed approach, in a way rendering ETAS more

CRS-like and opening the way for further testing of hybrid models.

Additional Modelling Elements

Further work is required to test the inclusion of additional model characteristics

or the revision of current ones in future implementations.

For instance, we show the critical role played by the optimisation of the rate-and-

state parameters to better match the observed seismicity response. In Chapters 3

and 4, we used rich learning phase catalogues with multiple large stress steps to

calibrate the constitutive fault parameters through likelihood maximisation (Cat-

tania & Khalid, 2016); this approach has potential limitations in regions with

poorer seismic monitoring systems or very slow deformation rates (i.e. scarce seis-

micity), although modern reprocessing of global catalogues may partially close this

gap. In similar cases, it may be worth exploring further how fault constitutive pa-

rameters can be estimated in near real time using the observed seismicity response

to the evolving stress field (e.g. Maeda, 2006) and how this may influence the

expected seismic productivity of CRS models (i.e. the N-test scores).

Moreover, spatially homogeneous rate-and-state parameters still represent an over-

simplification of reality; however, Cattania et al. (2014) found that the spatial

variability of rate-and-state parameters has only a moderate impact on model per-
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formance, as they do not modify the spatial features of the stress field.

Other points remain open as one may argue that the current physics-based models

do not actually carry enough physics in them.

Although we find that static stress changes coupled to rate-and-state frictional

laws offer a valid description of the underlying physical processes of earthquake

triggering, further formal testing is needed to assess whether increasingly complex

models can benefit from the incorporation of additional deformation sources play-

ing out at different time scales.

Questions that should be pursued in future research include: does post-seismic de-

formation have an important role in keeping the probabilities of strong aftershocks

high even after several years from the first large magnitude event? Can we model

in near real-time the control of high pore pressure on the spatiotemporal seismicity

patterns during aftershock sequences? Are there more triggering mechanisms that

we are not aware of and that should be accounted for?

6.2 Lessons Learnt from the HF-induced Seis-

micity Environment

The first two pseudo-prospective experiments of this thesis explored CRS and

ETAS performance in regions characterised by medium shear stressing rates and

were developed to forecast daily aftershock rates for total horizons of one month

(Ridgecrest) or one year (the AVN sequence). In the framework of tectonic seismic-

ity, interplate environments such as large subduction zones represent instead faster

deforming regions with comparatively short-lived aftershock sequences (Toda &

Stein, 2018). Within different boundary conditions, fluid-induced seismicity envi-

ronments represent great opportunities to study earthquake triggering under very

high shear stressing rates (although originating from human-controlled external

forcing rather than tectonic loading), with the advantage of being localised within

much more limited areal extents that facilitate enhanced catalogue development

and model testing.

However, testing forecasts at a smaller spatial and temporal scale requires ex-

tremely good data. This was the case at the Preston New Road hydraulic frac-
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turing site in UK, where we used an extraordinarily rich microseismicity dataset

to test several versions of the ETAS model as a probabilistic tool to reproduce

the temporal (hourly) evolution of hydraulic fracturing induced seismicity (Chap-

ter 5). We found that (1) the standard tectonic ETAS failed to reproduce the

high seismicity rates observed during fluid injection as it did not account for the

additional forcing of pressurised fluids, (2) the best-performing model was a modi-

fied ETAS parameterised on well-specific seismicity and featuring a non-stationary

background rate driven by sleeve-specific injection rates, and (3) a modified out-

of-sample ETAS outperformed all the in-sample standard ETAS versions.

Not only are these findings encouraging as they show that injection-rate driven

ETAS models provide informative time-dependent forecasts for operators and

decision-makers during HF operations, but also let us draw a parallel with some

results from the CRS experiments on tectonic seismicity.

First, they raise the question of whether Coulomb models of purely tectonic seis-

micity should also account for triggering sources that are usually overlooked (e.g.

aseismic slip, high pore pressure effects), with the clear disadvantage that in nat-

ural seismicity we do not have any direct control over such forcing. For instance,

future work is required to establish the viability of improving model performance

by using detailed diffusivity models to inform CRS and ETAS aftershock fore-

casts with non-stationary background rates in regions where natural circulation of

deep fluids is recognised to play a key role, such as the Central Apennines (e.g.

Lombardi et al., 2010; Malagnini et al., 2012) or the central US (e.g. Norbeck &

Rubinstein, 2018).

Second, the findings from the HF environment reinforce the concept that better-

performing forecasts rely on high-quality data products allowing for a time de-

pendent model parameterisation: as the next-hour ETAS forecast at PNR needs

to be calibrated in real time using the evolving seismicity response to the time-

dependent injection rates, the Coulomb-based models should consider updating

receiver populations and secondary triggering using unfolding aftershocks.

This poses a grand challenge for future fully prospective model testing: do we

have the capability to calibrate our real-time models fast enough on such a large

quantity of high-quality data?
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6.3 Final Remarks

In conclusion, although much work is needed to understand the physical mecha-

nisms governing aftershock sequences and how to implement them in earthquake

forecast models, the development of OEF has reached a critical turning point.

The development of artificial intelligence techniques such as machine learning al-

gorithms promises to deliver an unprecedented availability of data to clarify the

many aspects of model performance that are still unresolved and to reduce those

crucial data gaps that are currently documented in earthquake physics (Ben-Zion,

2019). Our ability to produce increasingly informative short-term earthquake fore-

casts will then likely improve with the continuous testing of both physics-based

and statistical models on a growing number of case studies around the world.

However, in this fast-evolving research discipline, seeking the sole availability of

large quantities of input data to improve their predictive skills may result in a

vain effort if we do not have a clear understanding of what kind of information is

needed for this to happen and to be delivered in near real time. In this context,

the path of this thesis can be used to determine the required type of data products

that can critically enhance the predictive power of operational earthquake forecast

models.
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Appendix A

Supplemental Material to Chapter 3

In Text A.1 we explain the reasons for testing of an alternative coefficient of friction

and comment on the results.

Figure A1 presents the focal mechanisms of the CRS learning phase overlaid by the

DISS database, used for the development of the spatially variable distribution of

receiver faults, shown in Figure A2. In Figure A3 we show the ETAS learning phase

seismicity used for the MLE inversion procedure. Figure A4 displays the frequency-

magnitude distribution for the CRS learning phase catalogue (1990-2016) as well

as the Gutenberg-Richter (GR) fit and its magnitude of completeness (Mc). Figure

A5 presents the Mc vs. time during the AVN sequence (testing phase).

In Figure A6 we display the stress change maps following the Mw=6.5 Norcia

mainshock for preliminary and more complex fault representations as causative and

receiver planes. In Figure A7 we report the location of the M ≥ 4.0 events within

the pattern of calculated Coulomb stress changes after the Mw=6.0 Amatrice and

Mw=6.5 Norcia mainshocks. From Figure A8 to Figure A15 we show the complete

set of first-day, period-specific and 1-year forecast maps for the 8 forecast models.

Figure A16 to A19 provide the full extent of performance evaluation metrics for

the whole set of forecast models illustrating the incremental N-test for a 1-year

evaluation phase (A16) and period-specific maps of spatially resolved ∆LL (A17-

A19). In Figure A20 we show how the implementation of a lower coefficient of

effective friction affects the performance of CRS-7.
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A.1 Testing a Lower Effective Coefficient of Friction

For all the CRS forecast models presented in this work we set a constant average

value of the effective coefficient of friction (µ’ = 0.4). However, high pore pressure

due to fluid migration is known to play a primary role on the spatiotemporal

seismicity patterns of Central Apennines (e.g. Malagnini et al., 2012; Chiarabba

et al., 2018). Circulation of fluids at depth causes a reduction of the effective

coefficient of friction and an overall effect of strength reduction on faults patches.

To account for this fault behaviour, we produce an additional model (CRS-7b)

to test whether or not the best performing CRS version further benefits from the

implementation of a lower coefficient of friction (µ’ = 0.2). Results from the S-

test joint log-likelihood scores (Figure A20a) show how the inclusion of a lower

µ’ exerts a marginal influence on the spatial consistency of the model, with a

slight performance degradation (∆jLLS < 130). Similarly to the jLLS scores, the

information gains of CRS-7b on CRS-7 (IGCRS−7) present slightly negative values

for all the testing periods (IGCRS−7 ≈ -0.1; Figure A20, b-e). These results are in

agreement with those by Cattania et al. (2014), who showed how CRS forecasts

performance is only modestly influenced by the variation of the effective coefficient

of friction.
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Figure A1: Focal mechanisms (M3+) for the learning phase catalogue (January
1990 - August 2016) within the testing region (longitude 12.5◦-14◦, latitude 41.95◦-
43.45◦, depth 0-12 km). The colours indicate the prevalent rupture style: red for
normal faults, blue for reverse and green for strike-slip ruptures. Black lines show
the mapped active faults in the region (EMERGEO Working Group, 2016).
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Figure A2: Map of discrete receiver planes in the testing region. Each line
represents a hypothetical fault trace, with colours highlighting the faulting style:
red for normal sense of slip, blue for thrusts, and green for strike-slip faults. Black
lines show the mapped active faults in the region (EMERGEO Working Group,
2016). Geometries have been assigned according to prevailing deformation styles
of regional faults and focal mechanism catalogues (Figure A1) available during
the learning phase following the approach of Segou et al. (2013). We note that
we implement a 3D grid, which is here collapsed in 2D for representation reasons.
The spatial association reveals predominantly normal, SW dipping faults, with
antithetic normal structures in the south-western sector and strike-slip faults south
and east of Campotosto, while the north-eastern part features reverse faulting
of the outer compression front of the Apennines (DISS Working Group, 2018).
The role of inherited compressional cross-structures contributing to the complex
segmentation patterns and controlling fault reactivation is critical (Buttinelli et
al., 2018, Chiarabba et al., 2018).
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Figure A3: Seismicity (M3+) from April 2005 to August 2016 used for the
MLE estimation of the ETAS parameters. (a) Seismicity map and target region
polygon; in order to avoid temporal and spatial boundary effects, we consider a
wider auxiliary region (red events) to include triggering effects from outside the
target polygon. (b) Time-magnitude plot; we take the first year of seismicity as
auxiliary time window for parameters inversion.
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Figure A4: Frequency-magnitude distribution for the CRS learning phase cata-
logue (January 1st 1990 - August 23rd 2016) within the testing region. We estimate
b-value and Mc, using (a) b-value stability (MBS; Cao & Gao, 2002; Woessner &
Wiemer, 2005) and (b) goodness of fit (GFT; Wiemer & Wyss, 2000) method. We
use a conservative Mc=3.0 to account for early aftershock incompleteness within
the AVN sequence immediately after the primary mainshocks (See Figure A5).
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Figure A5: Magnitude of completeness over time for the AVN sequence. We
present the temporal variation Mc(t) of the completeness magnitude of the real-
time catalogue for approximately 7 months of the Amatrice-Visso-Norcia sequence.
We use the Maximum Curvature technique (Wyss et al. 1999; Wiemer & Wyss,
2000), with a sampling window of 200 earthquakes (minimum number of events
= 50) and 200 bootstrap samples. The vertical dashed lines mark the occurrence
of the primary events within the sequence. Mc(t) calculation routines are imple-
mented within the open source software ZMAP (Wiemer, 2001).
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Figure A6: The effect of receiver planes and variable slip distribution on Coulomb
stress change calculations. We show the coseismic Coulomb stress changes follow-
ing the Mw=6.5 Norcia event at a reference depth of 9 km. The coefficient of
effective friction (µ’) is set to 0.4. USD = uniform slip distribution; SUP = spa-
tially uniform receiver planes; FFM = finite-fault slip model; SVP = spatially
variable planes.
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Figure A7: Coulomb stress changes used in CRS models. We calculate the co-
seismic stress changes for a depth between 0-12 km, which represents the average
seismogenic thickness for moderate-magnitude earthquakes in the Central Apen-
nines (Chiarabba et al., 2005; Chiarabba & De Gori, 2016). Here, the Coulomb
stress changes at selected depths (7, 9, 11 km) are overlaid by the epicentral lo-
cations of the M4+ triggered events (black circles) occurred between the Mw=6.0
Amatrice and Mw=5.4 Visso I earthquakes (a-c) and between the Mw=6.5 Nor-
cia mainshock and the first of the Campotosto events (d-f). Black solid lines
enclose the surface projections of the mainshock faults. We note that ∼70% of
the M4+ aftershocks after the Amatrice and Norcia events occur in the already
stress-increased near fault zones.
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Figure A8: 24-hour forecast maps following the Mw=6.0 Amatrice earthquake
(24 August 2016, 01:36:32 UTC). Black circles indicate the observed events, while
white stars indicate the M5+ sources within the same time window. S = sources;
Prel = preliminary; Rev = revised; USD = uniform slip distribution; FFM =
finite-fault rupture model; I = isotropic stress field; SUP = spatially uniform
receiver planes; SVP = spatially variable planes; HoBR = spatially homogeneous
background rate; HeBR = spatially heterogeneous background rate; Opt RS =
optimised rate-state parameters. σ values are in MPa, τ̇ values are in MPa/year.
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Figure A9: Same as Fig. A8, for the cumulative time window between the
Mw=6.0 Amatrice earthquake (24 August 2016, 01:36:32 UTC) and the Mw=5.4
Visso I event (26 October 2016, 17:10:36 UTC).
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Figure A10: Same as Fig. A8, for the time period between the Mw=5.9 Visso II
earthquake (26 October 2016, 19:18:06 UTC) and the Mw=6.5 Norcia mainshock
(30 October 2016, 06:40:17 UTC).
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Figure A11: Same as Fig. A8, for the first 24 hours following the Mw=6.5 Norcia
earthquake (30 October 2016, 06:40:17 UTC).

119



APPENDIX A

Figure A12: Same as Fig. A8, for the time period between the Mw=6.5 Norcia
mainshock (30 October 2016, 06:40:17 UTC) and the first Campotosto event (18
January 2017, 09:25:40 UTC).
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Figure A13: Same as Fig. A8, for the first 24 hours following the Mw=5.1
Campotosto I earthquake (18 January 2017, 09:25:40 UTC).
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Figure A14: Same as Fig. A8, for the time period between the Mw=5.1 Cam-
potosto I event and the end of the one year testing period (24 August 2017).
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Figure A15: Same as Fig. A8, for the 1-year testing period.

123



APPENDIX A

Figure A16: Incremental modified N-test over time. We show the δ1 (top) and δ2
(bottom) quantiles for CRS and ETAS models in the whole testing region, within 1-
day intervals and for one year following the Mw=6.0 Amatrice mainshock. The red
horizontal lines indicate the threshold for model rejection (δ1,2 < 0.025). Vertical
dashed lines mark the occurrence of the major events (A = Amatrice, V = Visso,
N = Norcia, C = Campotosto events). RN = modified N-test rejection ratio.
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Figure A17: Spatial performance of forecast models between the Mw=6.0 Am-
atrice mainshock and the Visso events. We portray in each spatial bin the cu-
mulative log-likelihood differences (∆LL) between pairs of models for the selected
evaluation period overlaid by the observed seismicity (circles) and the mainshocks
(stars). Log-likelihood values at each spatial bin are obtained summing over all
time steps. Positive values in green indicate an improved performance with respect
to the reference model. For illustration purposes the ∆LL values are saturated at
±30.
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Figure A18: Same as Fig. A17, for the period between the Mw=5.4 Visso I event
and the Mw=6.5 Norcia mainshock. Values are saturated at ±2 for visualisation
purposes.
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Figure A19: Same as Fig. A17, for the period between the Mw=6.5 Norcia
mainshock and the Campotosto events.
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Figure A20: Cumulative joint log-likelihood (jLLS) versus time (a) and T-test
(b-e) including the additional CRS-7b model.
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Appendix B

Supplemental Material to Chapter 4

In this appendix we first show details on the surface deformations as represented

by InSAR data following the Mw 6.4 Searles Valley and Mw 7.1 Ridgecrest earth-

quakes (Figure B1). We then provide additional figures for (1) the effect of im-

plementing different values of the coefficient of effective friction on the time per-

formance of the most enhanced CRS model (Figure B2), (2) the complete set of

short-term (24 hours following mainshocks) and medium-term (1 month) physics-

based and statistical forecasts (Figure B3-B5); (3) the effect of expressing r0 as

either background rate or reference rate on the 1-month forecast of the most en-

hanced CRS7-new FMs for the whole testing region (Figure B6); (4) spatially

resolved ∆LL maps between the two most evolved CRS models and ETAS (Figure

B7), and (5) maps of coseismic stress changes when stresses imparted by the com-

bined Mw 6.4 and Mw 7.1 mainshocks are resolved on the average pre-Ridgecrest

normal focal mechanism (Figure B8).
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Figure B1: Interferometric Synthetic Aperture Radar (InSAR) map showing sur-
face deformation resulting from the 4 July 2019 Mw 6.4 left-lateral, and 6 July
2019 Mw 7.1 right-lateral earthquakes near Ridgecrest, CA. Source: the Advanced
Rapid Imaging and Analysis (ARIA) team at NASA’s Jet Propulsion Labora-
tory and Caltech (https://www.jpl.nasa.gov/spaceimages/details.php?id=
PIA23150).
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Figure B2: Temporal evolution of the CRS7-new FMs predicted seismicity using
different friction coefficients. The black solid line represents the M2.5+ observa-
tions, and the shaded areas indicate Poissonian uncertainties.
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Figure B3: Maps of expected seismicity rates for CRS and ETAS models for the
first 24 hours following the Mw 6.4 Searles Valley earthquake in the area of main
aftershock productivity. Observed events (M2.5+) are represented as circles. The
dashed-line square indicates the area of the Coso volcanic field (CVF). Aσ values
are in MPa, τ̇ values are in MPa/year.
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Figure B4: Same as Fig. B3, for the 24-hour time window following the Mw 7.1
Ridgecrest mainshock.
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Figure B5: Same as Fig. B3, for the cumulative 1-month time window following
the Mw 6.4 Searles Valley earthquake
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Figure B6: 1-month cumulative forecast map of model CRS7-new FMs for the
entire testing region when (a) r0 is defined as a declustered background rat, or (b)
r0 is defined as a undeclustered reference rate. White lines indicate the individual
UCERF3 fault traces. (c) Cumulative S-test joint log-likelihood for the two pre-
sented versions of CRS7-new FMs and for the ETAS model. (d) map of M2.5+
reference seismicity for the period 1981-2019 (grey circles) and the first month of
M2.5+ seismicity following the Mw 6.4 Searles Valley event; red circles highlight
areas of past high clustering that were not interested by triggered seismicity above
M2.5 during the first month of the 2019 sequence. CVF = Coso Volcanic Field.
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Figure B7: Maps of cumulative log-likelihood differences between pairs of models
for the 1-month evaluation period. (a) Log-likelihood differences between CRS7-
new FMs and the benchmark CRS6-eFFM ; (b) log-likelihood differences between
ETAS and the benchmark CRS6-eFFM ; (c) log-likelihood differences between
CRS7-new FMs and the benchmark ETAS. Positive (green) values indicate a bet-
ter performance than the benchmark model indicated above the corresponding
horizontal square bracket. Black points indicate the locations of M2.5+ after-
shocks between 4 July 2019 and 4 August 2019 and white stars represent the two
mainshocks. The ∆LL values are saturated at ±30 for illustration purposes.
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Figure B8: Maps of coseismic stress changes from the combined effect of the
Mw 6.4 and Mw 7.1 mainshocks, resolved on the average pre-Ridgecrest normal
fault mechanism. We show stress change values calculated at depths of: (a) 0-2
km; (b) 2-4 km; (c) 4-6 km; (d) 6-8 km; (e) 8-10 km; (f) 10-12 km; White dots
indicate the M2.5+ aftershocks observed at each depth layer during the first month
of the Ridgecrest sequence. Black circles define the regions of interest (Zone 1-2-3)
as described in Figure 4.8a. Despite a shallow positive stress change (0-2 km),
the vast majority of Zone 2 aftershocks and the z ≥ 4 km seismicity of Zone 1
occur within the stress shadow of the average pre-Ridgecrest normal fault. Zone
3 presents a more mixed ∆CFF pattern.
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Supplemental Material to Chapter 5

In this appendix we first show the frequency-magnitude distributions of the cat-

alogue used in this study to calibrate the ETAS models at PNR-1z (Figure C1a)

and PNR-2 (Figure C1b). We then present examples of histograms from the

ETAS simulations at PNR-1z and PNR-2 (Figures C2 and C3). Finally, we report

a summary of the tested ETAS versions (Table C1), and the values of the ETAS

parameters (Table C2), including the bulk and sleeve-specific values of cf (Tables

C3 and C4 for PNR-1z and PNR-2, respectively).
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Figure C1: Frequency-magnitude distributions (FMD). (a) FMD for the PNR-1z
catalogue used in this work; (b) FMD for the full PNR-2 catalogue used in this
work. The red dashed line represents the Gutenberg-Richter fit to the distribution.
We use the FMD to estimate the magnitude of completeness (Mc) of the catalogue
using the b-value stability method (Cao & Gao, 2002).
The surface network detected only larger events using local magnitudes (ML). At
PNR-2, we convert these to Mw using the conversion relationship developed by
QCon for Cuadrilla’s hydraulic fracturing plan (Cuadrilla Resources Inc., 2019).
However, the same relationship does not hold for PNR-1z (Baptie et al., 2020); in
that case, we replace the downhole Mw ≥ 0.0 values with the corresponding ML

from the surface catalogue.
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Figure C2: Simulation histograms at PNR-1z. Panels (a-i) show histograms from
9 randomly selected forecast windows, each consisting of 1000 simulations of the
number of simulated events over the forecast period. The red lines represent the
fits of the negative binomial distributions to the histograms.
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Figure C3: Simulation histograms at PNR-2. Panels (a-i) show histograms from
9 randomly selected forecast windows, each consisting of 1000 simulations of the
number of simulated events over the forecast period. The red lines represent the
fits of the negative binomial distributions to the empirical histograms.
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Table C1: Summary of the developed ETAS models for PNR-1z and PNR-2.
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Table C2: ETAS parameters. When estimating the ETAS parameters, we con-
strain the branching ratio (i.e. the fraction of triggered events) to be less than
1.
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Table C3: Constants of proportionality (cf ) between injection rate and seismicity
rate at PNR-1z sleeves.

Table C4: Constants of proportionality (cf ) between injection rate and seismicity
rate at PNR-2 sleeves.
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