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ABSTRACT

National scale hydrological modelling frameworks are required to underpin effective water man-
agement in the face of large-scale pressures such as climate change. Many challenges remain for
the application of national-scale models including: 1) developing and selecting appropriate model
structure(s), 2) estimating model parameters for gauged and ungauged catchments, especially for
models which require spatially distributed parameter fields, and 3) incorporating and communi-
cating model uncertainties. This thesis addresses these challenges through a focus on modelling
median and higher flows for large samples (hundreds) of catchments across Great Britain (GB)
within a nationally consistent framework that includes predictive uncertainties.

The first research chapter evaluates the predictive capability of multiple lumped, conceptual
models for over 1000 catchments within an uncertainty framework, providing a performance
benchmark. Regions where models often failed were identified (mountainous catchments in north-
east Scotland, catchments overlaying aquifers in southeast England), and model performance was
related to catchment characteristics to better understand where/why models fail. Significantly, it
was found that despite substantial human modifications to catchments across GB, poor model
performance was often linked to more general hydrological processes, such as low annual total
rainfall, high baseflow contributions, and the water balance not closing. The second research
chapter develops a parameterisation scheme to estimate nationally consistent parameter fields
for a distributed hydrological model by relating model parameters to spatial geophysical data.
This is applied within a novel framework for the inclusion of uncertainties when constraining
spatial parameter fields. The resultant parameter fields performed well (non-parametric KGE
> 0.75) across the majority (60%) of catchments, enabling nationally consistent simulations
across gauged and ungauged catchments, and reflecting hydrologically meaningful variation
in catchment characteristics. The third research chapter applied this nationally parameterised
model, to provide the first evaluation of climate change impact on river flows across GB to include
both climate and hydrological model parameter uncertainties. This indicated an increase in the
magnitude and frequency of high flows for catchments along the west coast of GB and across
Scotland, albeit with large uncertainties especially across the southeast.

Overall, this thesis improves understanding of model performance variation across Great
Britain and where targeted model improvements are needed, contributes a national modelling
framework which enables spatially consistent predictions across gauged and ungauged areas, and
demonstrates how uncertainties can be included in larger-scale and large-sample hydrological
studies. Whilst this thesis is focused on modelling across GB, the methods and conclusions can be
transferred elsewhere to improve large-scale and large-sample model applications.
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INTRODUCTION

1.1 Background

Robust and reliable simulations of river flows are needed for water supply management, flood

and seasonal runoff forecasting, and planning for land-use and climate change impacts on both

daily flows and hydrological extremes (such as floods and droughts). Predictions of river flows

across large domains (i.e. national to continental scales) are increasingly needed to assess how

rivers will respond to these large-scale pressures and to inform national/international policies

and decision-making related to water management (Archfield et al., 2015; Wagener et al., 2010)

such as the EU Water Framework Directive (European Parliament, 2000; Lindenschmidt et al.,

2007), the National Flood Risk Assessment for England (Environment Agency, 2009), and the

UK National Adaptation Programme (DEFRA, 2018; Wade et al., 2013). For these large-scale

challenges, flow predictions at the national scale can be extremely useful for decision makers

(Watts et al., 2015). They provide a broad overview of future changes, enable identification of

regions which may be most impacted and support robust decision making on future multimillion

pound investments in water infrastructure such as reservoirs or flood defences (Environment

Agency, 2009; National Infrastructure Commission, 2018; Watts et al., 2015). There is therefore

a need to develop hydrological models which can be applied across national to continental scales,

yet still provide locally relevant simulations, to underpin environmental management and policy

decision making (Archfield et al., 2015; Beven and Cloke, 2012; Bierkens et al., 2015; McMillan

et al., 2016).

However, hydrological modelling is an uncertain science (Beven, 1993, 2009; Montanari et al.,

2009; Pechlivanidis et al., 2011). Models are limited by our knowledge of hydrological systems

(Beven and Alcock, 2012), the quality/quantity of observational data available to drive and setup
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a model (Baroni et al., 2017; Coxon et al., 2015; McMillan et al., 2010; Mcmillan et al., 2012; West-

erberg et al., 2016), and the decisions made in setting up and implementing a model (e.g. selection

of model structure, parameterisations, and metrics for model evaluation) (Beven and Cloke,

2012; Coxon et al., 2014; Krueger et al., 2010). Consequently, quantifying and communicating

the uncertainties surrounding river flow predictions is vital if results are used for water man-

agement/ policy decisions, to prevent over-confidence in simulation results (McMillan et al., 2017).

A key goal is therefore to create hydrological modelling frameworks which can produce robust

hydrological simulations across a diverse range of catchment characteristics and under changing

catchment conditions, whilst reflecting the underlying uncertainties. In recent years, there has

been substantial progress in the field of large-scale modelling, driven by increasing computational

capabilities and availability of large hydrological datasets (Addor et al., 2020; Archfield et al.,

2015; Bierkens et al., 2015). A variety of models have been applied across large-domains/ large

samples of catchments, including both large-scale gridded models (e.g. mHM - Samaniego et al.

2010, 2018 and G2G - Bell et al. 2007, 2009) able to produce spatially contiguous simulations

across a large domain, semi-distributed approaches (e.g. TopNet - McMillan et al. 2016 and

CLASSIC - Crooks and Naden 2007) and large-sample approaches which apply models across

large numbers of catchments (e.g. Nicolle et al. 2014; Perrin et al. 2001; Van Esse et al. 2013).

Despite this diversity in hydrological models for large-scale and large-sample applications, there

are still many ongoing challenges.

Firstly, a key challenge is how to model the heterogeneity of hydrological processes across

large regions and ensure that the dominant processes are included in national models (McDonnell

et al., 2007; Troch et al., 2009). Hydrological processes will differ across a region, for example due

to differences in land-use, slope, precipitation, human impacts, geology, and/or soil characteristics

(Gao et al., 2018; Teutschbein et al., 2018). Whether variations in hydrological processes over

the landscape can be included in the model will depend upon its spatial resolution and how the

landscape has been discretized. We need to move towards flexible hydrological modelling frame-

works, which are flexible in terms of how the landscape is discretized and the model structure/

parameter sets applied across the model domain, so that models can easily be adapted to best

reflect different environments and modelling objectives (Beven and Freer, 2001b; Clark et al.,

2011b; Coxon et al., 2019; Mendoza et al., 2016).

Secondly, model parameterisation across large domains is an ongoing challenge, especially

for models with distributed parameters (Archfield et al., 2015; Bierkens et al., 2015; Clark

et al., 2016b). Parameterisation schemes for large domain modelling must be efficient, able to

realistically reflect differences in parameter values across the landscape (whether this is be-

tween catchments, between gauged sub-catchments or for fully distributed parameter fields) and
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consistent across the landscape. Parameters are also often needed for ungauged areas (Blöschl

et al., 2013), estimated in a way that is consistent with gauged basins. To achieve this, many

large-domain models use spatially distributed geophysical information (e.g. soils or land-use data)

to help define model parameter fields (Mizukami et al., 2017). How to best extract parameter

information from this geophysical data is an area of ongoing research, with techniques such as

multiscale parameter regionalisation (MPR) emerging as effective strategies to produce seamless

parameter fields across large domains (Mizukami et al., 2017; Samaniego et al., 2010, 2017).

Thirdly, including model uncertainties in larger-scale and large-sample modelling studies

which are already computationally expensive is difficult. The importance of estimating and

communicating modelling uncertainties is increasingly recognised, with an extensive literature

on uncertainty analysis techniques (Beven, 1993; Freer et al., 1996; Montanari et al., 2009;

Vrugt et al., 2008; Yang et al., 2008), and numerous studies including uncertainty analysis for

catchment-scale studies (e.g. Bosshard et al. 2013; Kay et al. 2009; Smith et al. 2014b; Velázquez

et al. 2013) . However, uncertainty analysis is still lacking in many large-scale model applications,

for example few national climate-impact studies for the UK include hydrological modelling uncer-

tainties. Methods to characterise uncertainties often involve running large ensembles of model

simulations (e.g. the GLUE technique requires a large enough sample of Monte Carlo simulations

to effectively sample the parameter space (Beven and Freer, 2001a; Freer et al., 1996)), which

can be computationally demanding and so difficult to apply across large scales. A key goal is

therefore to develop techniques to facilitate the inclusion of model uncertainties in large-scale

studies, alongside models which are sufficiently computationally efficient to enable uncertainty

characterisation (Archfield et al., 2015).

Finally, the ongoing evaluation and communication of model performance is important to

ensure that we are developing hydrological models which are robust and reliable. If hydrolog-

ical model outputs are used to guide policy decisions, then it is vital that we understand the

model skill in simulating flows, ensure models are suited for their intended purpose, and are

aware of model weaknesses/limitations (Andréassian et al., 2009; Klemes, 1986; McMillan et al.,

2016). This is especially important for land-use/climate change impact assessments, where we

put additional demands on the model by extrapolating to conditions not seen in the observed

record, and so we need to be sure that the model is correctly representing processes (Coron

et al., 2012; Klemes, 1986). Therefore, it is important to comprehensively evaluate models across

large-samples of hydrologically varied catchments to understand how well different model struc-

tures/parameterisations can simulate flows across various hydroclimatic settings (Archfield et al.,

2015; Gupta et al., 2014).

As the demand for national-scale hydrological predictions increases, it is vital that we develop
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new tools and modelling systems to explore these large sample hydrology problems. This thesis

aims to contribute to this task through three research chapters, which all focus on modelling

median and higher flows across large samples (hundreds) of catchments in Great Britain with

quantification of hydrological model uncertainties.

The first research chapter evaluates the performance of lumped, conceptual hydrological

model structures across Great Britain, using a large-sample hydrology approach to derive gener-

alisable conclusions regarding factors influencing model performance, reasons for model failure

and the relative merits of different model structures. This also provides a model performance

benchmark across Great Britain, which improved models could be compared against to ensure

continuing progress in hydrological model development. The second chapter moves from lumped

to distributed modelling, as distributed models are required to address spatial hydrological

problems. It improves a flexible hydrological modelling framework to enable nationally consistent

river flow simulations for gauged and ungauged areas, with quantification of modelling uncer-

tainties. It does this by developing a parameterisation scheme which relates model parameters

to relevant national geophysical data-sets (including land-use, soil characteristics and geology).

This creates spatial fields of model parameters, capable of reflecting spatial differences across

the landscape. These are subsequently conditioned on streamflow data from over 400 catchments

resulting in a robust set of nationally-consistent behavioural parameter fields which reflect

underlying parameter uncertainties. The third chapter then applies this framework to explore

changing high flows in the future – providing the first national climate change simulations for

Great Britain to include climate and hydrological modelling uncertainties. Whilst these tools

and techniques are applied to catchments across Great Britain, the framework is general and

could be applied elsewhere and for other applications, such as land-use change. Ultimately, this

leads us to better national and local scale hydrological predictions which reflect important spatial

differences and underlying uncertainties.

1.2 Thesis aims

This thesis first explores issues relating to the development of national-scale hydrological mod-

els which characterise model uncertainties: evaluating the performance of multiple, lumped,

conceptual model structures for simulating high flows across Great Britain, and implementing

a parameterisation scheme to create ensembles of spatially consistent model parameter fields

from spatial datasets. The final chapter then builds upon this research, applying the nationally

parameterised hydrological model to explore climate change impact on median and higher flows

using the most recent UK Climate Projections. This work 1) implements the first multi-model

uncertainty framework across GB, 2) successfully develops a national parameterisation scheme,

presenting a framework for the inclusion of uncertainties in spatial parameter fields that cover
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gauged and ungauged areas, and 3) presents the first large sample uncertainty evaluation of

future flows across GB.

This thesis aims to answer the following research questions, which form the basis of the three

results chapters:

1. How well are simple, conceptual model structures able to simulate high flows across Great

Britain?

a) How well do simple, lumped hydrological model structures perform when assessed

over annual and seasonal timescales via standard performance metrics?

b) Are there advantages in using an ensemble of model structures over any single model,

and if so, are there any emergent patterns or characteristics in which a given structure

and/or behavioural parameter set outperforms others?

c) What is the predictive capability of behavioural models for then predicting annual

maximum flows when applied in a parameter uncertainty framework?

2. Can observed datasets be used to parameterise a spatially distributed model across Great

Britain, including parameter uncertainties?

a) How can the multiscale parameter regionalisation methodology be adapted to produce

uncertain national parameter fields for the DECIPHeR modelling framework?

b) What is the difference in performance between a model driven by regional parameter

fields and catchment constrained parameter fields?

c) Do the constrained parameter fields reflect hydrological features within catchments,

and do they therefore increase the realism of simulations?

3. What is the impact of climate change on river high flows across Great Britain?

a) Where are climate change impacts expected to be the most extreme?

b) What are the uncertainties surrounding these projections, due to climate model and

hydrological model parameterisation?

c) What is the relationship between climatic changes (i.e. change in precipitation and

potential evapotranspiration) and the change in high flows, and how does this vary

regionally?
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1.3 Thesis structure

Chapter 2: Literature Review. This chapter reviews relevant literature and sets out the

context and motivation for the following research. It introduces the fields of large-scale and

large-sample hydrology, and then discusses national-scale hydrological modelling with a focus on

model structures, model parameters, uncertainties and climate impact studies.

Chapter 3: Overarching methods. Individual methodologies are given within each research

chapter. This chapter highlights methodological similarities/differences between the research

chapters and expands on the shorter research chapter methodologies where necessary, without

repeating information. Datasets and methods that underpin multiple research chapters are also

discussed.

Chapter 4: Performance of conceptual model structures across Great Britain. This

chapter evaluates the performance of four lumped, conceptual model structures across over 1000

catchments in Great Britain, within an uncertainty framework. Catchment characteristics are

used to explain why models perform well/poorly for certain catchments, and to gain insight into

which model structural decisions are important across Great Britain. Supporting information for

this chapter is given in Appendix B.

Chapter 5: Parameterisation of a spatial model across Great Britain. This chapter devel-

ops and evaluates a parameterisation scheme to create national parameter fields from spatial

catchment data. The multiscale parameter regionalisation technique is tailored to the DECIPHeR

hydrological model, and applied within a parameter uncertainty framework, to create national

parameter fields. Model performance is then compared to simpler parameterisation schemes,

to evaluate the suitability of the method. Supporting information for this chapter is given in

Appendices C-E.

Chapter 6: Climate impacts on high flows. This chapter applies the model developed in

chapter 5 to explore climate change impact on high flows across Great Britain, using the latest

UK Climate Projections product. Supporting information is given in Appendices F and G.

Chapter 7: Conclusions and outlook. This chapter provides a summary and synthesis of

the main findings from the three research chapters and provides recommendations for future

research.

Appendix A: Author’s CV.
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1.4 Publications and conference presentations

Work carried out for this thesis has been presented in journals and at academic conferences. This

includes contributions to two co-authored papers which are not part of the main body of this

thesis. A list of research outputs are given below:

1.4.1 Publications prepared for this thesis

• Lane, R., Coxon, G., Freer, J., Wagener, T., Johnes, P., Bloomfield, J., Greene, S., Macleod,

C., and Reaney, S. (2019). Benchmarking the predictive capability of hydrological models

for river flow and flood peak predictions across over 1000 catchments in Great Britain.

Hydrology and Earth System Sciences. 23, 4011-4032. https://doi.org/10.5194/hess-23-4011-

2019.

The data is available at https://doi.org/10.5523/bris.3ma509dlakcf720aw8x82aq4tm.

This forms research chapter 1.

• Lane, R., Freer, J., Coxon, G., and Wagener, T. (2020) Incorporating uncertainty into

multiscale parameter regionalisation to parameterise a national-scale hydrological model.

[Submitted to Water Resources Research]

This forms research chapter 2.

• Lane, R., Freer, J., Seibert, J., Coxon, G., and Wagener, T. (2020) Evaluating climate change

impacts on flooding nationally across Great Britain, including climate and hydrological

modelling uncertainties. [In preparation]

This forms research chapter 3.

1.4.2 Co-authored publications

• Coxon, G., Freer, J., Lane, R., Dunne, T., Knoben, W., Howden, N., Quinn, N., Wagener, T.,

and Woods, R. (2019). DECIPHeR v1: Dynamic fluxEs and ConnectIvity for Predictions of

HydRology. Geoscientific Model Development. 12, 6. https://doi.org/10.5194/gmd-12-2285-

2019.

The model code is available on github at https://github.com/uob-hydrology/DECIPHeR.

This paper introduced and evaluated the DECIPHeR hydrological modelling framework.

My contribution included 1) developing the model parameter schema and writing the

model code to read in spatially variable parameter fields, 2) testing the model code and

playing a key role in the model development, 3) helping to write the user manual and 4)

providing comments and text for the paper. This work was completed as part of the model

development for research chapter 2.

• Coxon, G., Addor, N., Bloomfield, P., Freer, J., Fry, M., Hannaford, J., Howden, N., Lane, R.,

Robinson, E., Wagener, T., and Woods, R. (2020) CAMELS-GB: Hydrometeorological time
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series and landscape attributes for 671 catchments in Great Britain. Earth Syst. Sci. Data,

https://doi.org/10.5194/essd-2020-49.

The dataset is available on the Environmental Information Data Centre at

https://catalogue.ceh.ac.uk/documents/8344e4f3-d2ea-44f5-8afa-86d2987543a9.

This paper presented a large dataset of catchment attributes, boundaries and hydrometeo-

rological timeseries across Great Britain, to aid large-sample studies. My contribution was

to 1) calculate catchment summary soil properties and 2) provide draft text on this data for

the paper. This was closely related to the use and processing of soil datasets required for

research chapter 2.

1.4.3 Selected first-author conference presentations

• Estimating uncertain spatial parameter fields for the DECIPHeR hydrological model across

Great Britain. Oral presentation, European Geosciences Union (EGU) 2019.

• Parameterisation of the Dynamic TOPMODEL national-scale hydrological model using

uncertain Multiscale Parameter Regionalisation. Poster presentation, EGU 2018.

• Benchmarking hydrological model predictive capability for UK River flows and flood peaks.

Poster presentation, EGU 2017.
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LITERATURE REVIEW

Hydrological models are useful tools which can support decision making for hydrological problems

(Beven, 2012). Hydrological models, or more specifically rainfall-runoff models, are used to esti-

mate runoff from precipitation and other climate variables. This enables flow predictions where

measurements are otherwise unavailable, for example predictions of river flows in ungauged

basins, projections of future river flows, and improved understanding of how environmental

changes such as land-use or climate change may modify river flows (Beven, 2012). They have

been widely applied to explore how catchments may respond to future challenges, including the

impacts of land-use change on river flows (e.g. Choi and Deal 2008; Hundecha and Bárdossy 2004;

Mango et al. 2011) and climate change impact on low flows and droughts (e.g. Rudd et al. 2019;

Wilby and Harris 2006, floods (e.g. Booij 2005; Kay et al. 2014a; Prudhomme et al. 2013b) and

mean and seasonal river flows (e.g. Donnelly et al. 2016; Prudhomme et al. 2012; Steele-Dunne

et al. 2008).

There is an increasing need for consistent applications of hydrological models across large

areas and/or large catchment samples, to support decision making and water-related policy at

regional to continental scales. Modelling studies which cover large areas are able to provide

a broad overview, which is informative for national and continental scale policy and decision

making (DEFRA, 2018; Watts et al., 2015). They are therefore needed to support national/conti-

nental scale water management, in fields such as water resources planning, flood protection and

ensuring good ecological status of rivers (Lindenschmidt et al., 2007). For example, in the case of

climate change impacts on river flows in the UK, there are a large number of studies focused on

single catchments or regions (e.g. Cameron 2006; Cameron et al. 2000; Fowler and Kilsby 2007;

Jackson et al. 2011; Prudhomme et al. 2003; Reynard et al. 2001) but inconsistencies in methods

and uneven coverage makes it hard to compare different locations and identify appropriate
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adaption responses on a national scale (Prudhomme et al., 2003). It is therefore important to

develop methods of modelling across larger areas and across geoclimatic gradients, to provide

the national-continental overviews that are most useful to decision-makers (Andersson et al.,

2015; Archfield et al., 2015; Lindenschmidt et al., 2007; Watts et al., 2015). At the same time, it is

important that these large-scale studies are not over-simplified and provide relevant local-scale

predictions, so the results are still informative for policy decisions.

The fields of large-scale hydrology (applying models across large domains) and large-sample

hydrology (applying models across large numbers of catchments) have seen much progress in

recent years, but many challenges still remain (Addor et al., 2020; Archfield et al., 2015; Bierkens

et al., 2015; Gupta et al., 2014; Wood et al., 2011). These challenges include:

1. Developing model structures that can capture the wide heterogeneity of hydrological

processes across large scales.

2. Balancing model complexity and computational efficiency, to enable ensemble simulations

and characterisation of uncertainties across large scales.

3. Ensuring nationally consistent parameterisation approaches, which do not show inconsis-

tencies between catchments and adequately reflect underlying processes.

4. Comprehensively evaluating models across large samples of hydrologically diverse catch-

ments, to ensure that models are fit for certain purposes and help drive model improve-

ments.

5. Quantifying and communicating modelling uncertainties in large-scale studies.

To achieve these goals, we need advances in defining model structures, constraining model

parameters, and representing modelling uncertainties. This literature review assesses these

different aspects in detail, with sections on the following: 1) An introduction to the fields of

large-scale and large-sample hydrology; 2) the different model structures used for national-scale

modelling, highlighting the need for multi-model comparisons, flexible model frameworks, and

lumped to distributed models; 3) the approaches used to define model parameters across large

domains, with a focus on methods to constrain lumped and spatially distributed parameters

over gauged and ungauged areas; 4) the importance of recognising modelling uncertainties, and

uncertainty analysis techniques used to do this; 5) the use of hydrological models for impact

studies, further highlighting the need for flexible national models which are both able to represent

spatial differences across landscapes and characterise uncertainties; 6) a summary.

2.1 Large-scale and large-sample hydrology

In the context of national scale simulations, this thesis relates to both the fields of large-sample

hydrology and large-scale hydrology which are explained in more detail below.
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2.1.1 Large-sample hydrology

Large-sample modelling studies apply hydrological models across large numbers of hydrologi-

cally varied catchments to derive robust and generalisable conclusions regarding hydrological

processes and models (Gupta et al., 2014). The ethos behind large-sample hydrology is to go

beyond traditional studies focusing on a single or small sample of catchments in depth and

instead broaden our focus across large samples of catchments to establish general hydrologic

concepts applicable across regions (Gupta et al., 2014; Newman et al., 2015). This has roots in

comparative hydrology, which aims to understand and learn from the similarities and differences

in hydrological processes between places (Falkenmark and Chapman, 1989; Kovács, 1984).

Large-sample hydrology studies began emerging in the 1980s/90s, with early studies in

France, Belgium, and Australia (Makhlouf and Michel, 1994; Nathan and McMahon, 1990;

Vandewiele et al., 1991), later joined by an increasing number of studies in the UK, Austria,

and the USA (Fernandez et al., 2000; Kay et al., 2006; McIntyre et al., 2005; Merz and Blöschl,

2004; Parajka et al., 2005), see full reviews in Blöschl et al. (2013) and Gupta et al. (2014). In

recent decades, large sample hydrology studies have become more common (Kumar et al., 2013b;

Newman et al., 2017; Oudin et al., 2008; Perrin et al., 2001; Poncelet et al., 2017; Van Esse et al.,

2013; Velázquez et al., 2010), facilitated by the increasing availability of computational resources,

gridded meteorological data (e.g. Beck et al. 2017; Contractor et al. 2020; Perry and Hollis 2005;

Tanguy et al. 2014) and streamflow records (Dixon et al., 2013; Stahl et al., 2010). This has been

aided by a community effort to generate open-source, large-sample hydrology datasets, providing

exciting new opportunities for large-sample studies (Addor et al., 2017, 2020; Alvarez-Garreton

et al., 2018; Coxon et al., 2020; Newman et al., 2015).

There are many benefits to the large-sample hydrology approach. As summarised by Gupta

et al. (2014), use of a large catchment sample can 1) ensure conclusions of a modelling study

are generalisable and not catchment-specific, 2) aid the evaluation of methods/models by provid-

ing a range of applicability and ensuring they are appropriate across different environments,

and 3) provide enough information to enable statistically significant relationships to be estab-

lished. However, it also presents challenges; with the broad focus losing detail, local catchment

knowledge and recognition of uncertainties compared to smaller-scale catchment investigations.

Therefore, the large-sample hydrology approach is useful for a variety of hydrological applications,

in conjunction with more detailed site-studies. The concept of large-sample hydrology is funda-

mental for this thesis, and examples of large-sample hydrology studies are given throughout this

literature review.
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2.1.2 Large-scale hydrology

The field of large-scale hydrology focuses on applying models over large spatial domains, which

Cloke and Hannah (2011) define as scales greater than a single river basin up to the entire

planet. This is an established field (Bierkens et al., 2015; Cloke and Hannah, 2011; Wood et al.,

2011), which has many crossovers with the large sample hydrology approach. They both aim to

understand the key patterns and drivers of hydrological processes across regions, to improve our

ability to model these processes and face many of the same challenges.

The key difference between large-scale and large-sample hydrology is that the large-scale

approach produces model simulations which are spatially contiguous across large domains, whilst

the large-sample approach focuses on large numbers of catchments which are not necessarily

spatially connected (Addor et al., 2020). Whilst large-scale hydrology includes different types of

models, such as land-surface schemes and global hydrological models which focus on other fluxes

such as soil moisture or the monthly/seasonal water balance rather than streamflow, here we

focus on catchment hydrology models run at large scales (e.g. Pappenberger et al. 2011; Rakovec

et al. 2019).

The fields of large-scale and large-sample hydrology are therefore complementary. Studies

have used streamflow outputs from large-scale models for large sample investigations (e.g.

Rakovec et al. 2016a), and knowledge gained from large-sample studies can help us improve our

large-scale models. Whilst this thesis focuses on large-sample model applications, it also draws

from the field of large-scale hydrology in setting up a modelling framework which can run in a

consistent way across large domains, albeit from a catchment modelling perspective.

2.2 Model structures and evaluation

The model structure represents our perception of how a catchment is organised, the impor-

tant elements and stores, and how these are interconnected. A plethora of hydrological model

structures exist, with models developed to suit different modelling objectives and to represent

different perceptions of the governing hydrological processes across a catchment/area (Clark et al.,

2011a). Each model structure has its own strengths and weaknesses, for example the classic

TOPMODEL structure is related to catchment topography to define hydrological similarity and

therefore whilst it may be suited to steep humid catchments where topography broadly defines

runoff processes, it will not be able suitable to produce good simulations everywhere (Beven and

Kirkby, 1979; Perrin et al., 2001). When selecting a hydrological model structure, it is therefore

important to choose a structure that is appropriate for the study location and aims (Klemes, 1986).

Existing national-scale hydrological models vary widely, with grid-based, semi-distributed
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and lumped catchment models used for different countries and different model applications.

Distributed grid-based models have been developed for countries including Denmark, the USA,

and the UK. In Denmark, the importance of groundwater contributions to river flow led to

the development of an integrated groundwater/surface water hydrological model (Henriksen

et al., 2003; Højberg et al., 2013), which has been implemented nationally at 1 km resolution

and used for regional climate impact assessments (van Roosmalen et al., 2007). In the US, the

VIC macroscale hydrological model which solves the full water and energy balances has been

calibrated and implemented nationally for hydro-climate impact assessment (Liang et al., 1994;

Oubeidillah et al., 2014). For the UK, the Grid-to-Grid (G2G) hydrological model runs on a 1

km national grid and has been widely used for climate impact assessment at the UK Centre for

Ecology and Hydrology (Bell et al., 2007, 2009; Kay et al., 2018; Rudd et al., 2017).

Semi-distributed hydrological models, which split the landscape by sub-catchments and other

key features, have also been applied at the national scale. For example, the Topnet model has been

applied across New Zealand splitting the landscape by sub-catchment (McMillan et al., 2016); the

S-HYPE model has been applied across Sweden dividing the landscape by soil and land-use in

addition to sub-catchments (Bergstrand et al., 2014); and the DECIPHeR hydrological modelling

framework presents a flexible way of splitting the landscape across Great Britain, generally

using slope and accumulated area in addition to subcatchment boundaries and spatial rainfall

fields (Coxon et al., 2019). Additionally, lumped hydrological models can be applied across large

samples of catchments to gain a national picture (e.g large sample studies in France, Le Moine

et al. 2007; Perrin et al. 2001 and elsewhere (Parajka et al., 2009; Poncelet et al., 2017).

This diversity in existing national model setups emphasises that there is no agreed upon best

model structure, and there are many different approaches to developing a national modelling

framework. Given the wide variety of model structures available, it is important to comprehen-

sively evaluate models and ensure that the correct model is chosen for a given purpose. The

following sub-sections discuss the advantages/limitations of different ways models discretize the

landscape, the development of modelling frameworks which allow a flexible definition of model

structure, and how we can test the value of different model structures through large-sample

model intercomparisons and benchmarking studies.

2.2.1 Model resolution and approaches to discretising the landscape

Hydrological models differ in the way they distribute the landscape, with models of different

spatial resolutions developed to support a range of model applications with different objectives,

as highlighted by the variation in national models presented in the previous section. One of the

simplest approaches are lumped hydrological models, which treat the catchment as a single mod-

elling unit and aim to capture the emergent catchment behaviour. These models have been widely
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applied, for applications such as operational hydrological forecasting (Velázquez et al., 2011),

water resource planning (Christierson et al., 2012), and climate impact studies (Seiller and Anctil,

2014). The simplicity of these models is a major advantage – they have low data requirements,

are easy to set-up and apply to a range of catchments, and are computationally efficient enabling

ensemble simulations, large-sample applications, and uncertainty analysis. Many studies have

also demonstrated that they are able to simulate catchment-outlet river flows as well as or bet-

ter than spatially distributed models (Ghavidelfar et al., 2011; Reed et al., 2004; Tran et al., 2018).

However, to explore spatial differences across the landscape (such as spatially varied precipi-

tation/evapotranspiration inputs, variation in hydrological processes, and differences in model

stores across the catchment) we need spatially distributed hydrological models. Distributed

models discretize the catchment into large number of elements or grids, each of which can have

different state variables or stores which are computed separately (Beven, 2012). This can improve

model performance in catchments where spatially varied processes are important, for example

Lobligeois et al. (2014) demonstrated that using distributed rainfall inputs improved model per-

formance relative to homogeneous rainfall inputs in catchments where precipitation is spatially

variable. The distributed approach is also required for applications which need predictions to be

distributed in space, for example analysis of changing rainfall patterns or land-use on river flows,

and for predictions of state variables within a catchment.

The distributed modelling approach has drawbacks (Beven, 2001). Firstly, the model equations

must be solved for each model element increasing model run times relative to lumped approaches.

This increased run-time can hinder the running of ensemble simulations and uncertainty analysis.

Secondly, the approach is limited by data availability and quality. Thirdly, the need for parameters

at each model element greatly increases difficulties with model parameterisation, as described in

following sections. There is therefore a trade-off between the level of detail required to represent

the landscape, and the time it takes to run a model simulation. Many national and large- scale

models are grid-based (e.g. mHM, VIC, G2G), which can make them computationally costly to run

if applied at high resolution. The requirement for model simulations which are relevant at local to

continental scales has promoted the development of hyper-resolution (< 1 km) hydrological models

(Bierkens et al., 2015), further increasing model run times. These computational constraints

prevent multiple runs, limiting capabilities to evaluate model parameter values and characterise

core modelling uncertainties (Clark et al., 2017).

To reduce distributed model run times without compromising resolution, some hydrological

models discretize the landscape into hydrological response units (HRUs) rather than grids. These

are areas which are expected to behave hydrologically similarly, for example groups of cells which

may share the same steepness, soil properties or land-use (see Figure 2.1 for an example of
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FIGURE 2.1. Demonstration of gridded vs HRU-based catchment discretisation. These
show watershed delineations from SWATGP (grid-based) and SWAT (HRU based).
Reproduced with permission from Zhang et al. (2017).

gridded vs HRU-based catchment discretisation). This then reduces the number of calculations

required in the modelling process, as equations are evaluated over HRUs rather than individual

grid cells, whilst still ensuring that the key hydrological features are represented in the landscape.

For example, Chaney et al. (2016) demonstrate how splitting the landscape into hydrological

response units can generate similar fields of modelled variables to a fully distributed model,

but with run times over 2 orders of magnitude shorter. Therefore, this approach provides an

opportunity to create national models which characterise key differences across the landscape

whilst retaining model efficiency, enabling exploration of modelling uncertainties.

2.2.2 Flexible model structures

Developing model structures which can capture the wide heterogeneity of hydrological processes

across large scales is an ongoing challenge. Large-scale model structures must be able to simulate

catchments with different climates and catchment properties, including human impacted as

well as natural catchments (McMillan et al., 2016). Many national models apply a single model

structure everywhere. For example, McMillan et al. (2016) use the TOPNET structure across

New Zealand and Bell et al. (2009) use the Grid-to-Grid model structure across Great Britain.
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However, it may not be possible for a single model structure to simulate such hydrologic diversity.

Recent research has demonstrated the value of varying model structure according to dominant

processes (Coxon et al., 2014; Fenicia et al., 2014; Van Esse et al., 2013). There has therefore been

a drive towards developing modelling frameworks with a flexible definition of model structure

(Butts et al., 2004; Clark et al., 2008, 2015; Coxon et al., 2019; Knoben et al., 2019). These can

then allow a user to specify different model structures across the landscape, to take advantage

of the relative merits of different model structures and ensure appropriate model structures

are used in different environments (Coxon et al., 2019). To support applications of these flexible

model frameworks, comprehensive evaluations of the relative merits of different model structures

across diverse catchment characteristics are needed to guide model structure selection (Gupta

et al., 2014).

2.2.3 Multi-model comparisons

Given the large numbers of available model structures, it can often be difficult to distinguish

which structure is most appropriate for a given aim. Choosing an appropriate model structure

may be hampered by evaluations of individual model structures being based on different metrics

and different catchments, preventing direct comparison of model structures and assessments of

which are most appropriate for different modelling aims. This could contribute to the fact that

model structural choice is often guided by legacy (i.e. driven by experience with a particular

structure or institutional preference for a certain model structure) rather than adequacy (Addor

and Melsen, 2019). To guide model structure selection, it is therefore useful to carry out model

intercomparison studies, which evaluate multiple different model structures across a range of

catchments. Studies directly comparing model structures can also highlight model structural

components which lead to particularly good/poor model performance in different environments,

leading to focused model improvements.

Model intercomparison studies have long been recognised as important, with organised model

intercomparisons since the 1960s (WMO, 1975, 1986). For example, the WMO organised an inter-

comparison of conceptual hydrological models used in operational forecasting, inviting groups to

demonstrate their models on 6 river flow timeseries given calibration data, and comparing model

performance for a blind validation period (WMO, 1975). The Distributed Model Intercomparison

Project (DMIP) compared 12 distributed models with lumped model simulations across five parent

basins and three gauged sub-basins, to improve understanding of the applicability of distributed

models across various scales (Reed et al., 2004). However, as highlighted by Andréassian et al.

(2006), these model intercomparisons can only present useful results when they are carried out

across a large-sample of catchments, as any conclusions based on small catchment samples could

be a matter of luck (Andréassian et al., 2009).
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More recent studies have taken advantage of increases in computation power and demon-

strated the utility of large-sample model intercomparisons for improving our understanding of

the relative merits of different model structures/ model structural components. For example:

Perrin et al. (2001) studied the relationship between model complexity and model performance

across 429 catchments, finding that whilst more complex models outperform simpler ones in cali-

bration this performance gain does not continue beyond the calibration period; Perrin et al. (2003)

demonstrated that the GR4J model structure was an improvement on the previous 3-parameter

model version, whilst comparing it to a range of other model structures; and Mouelhi et al. (2006)

demonstrate the poor performance of the Manabe bucket model relative to other model structures

across 407 catchments, and subsequently improve the model.

The development of flexible modelling frameworks provides new opportunities for model

structural comparisons (Clark et al., 2008, 2015; Fenicia et al., 2014; Knoben et al., 2019; Leaves-

ley et al., 1996). Flexible modelling frameworks support different hydrological model structures

within the same overarching framework, for example the MaRRMoT framework contains model

code based on 46 conceptual model structures, FUSE combines the structural decisions of 4

commonly used models to create hundreds of possible structures, and SUPERFLEX provides

generic model components which can be combined in different ways to create unique model

structures (Clark et al., 2008; Fenicia et al., 2011; Knoben et al., 2019). This simplifies the

application of multiple hydrological model structures across large catchment samples, as model

setup and generation of input data only needs to be done once, and allows direct comparison of

different model structural components.

Flexible modelling frameworks have been applied in large-sample model comparison studies.

Coxon et al. (2014) evaluated 78 FUSE model structures across 24 British catchments within an

uncertainty analysis framework, finding large differences between model performance between

catchments and depending on the metric used for model evaluation. Van Esse et al. (2013) applied

the SUPERFLEX framework to 237 French catchments to demonstrate how the model structure

can be identified as part of the modelling process, resulting in better performance than a fixed

GR4J model structure. In this thesis, Lane et al. (2019) applied four FUSE models to over 1000

catchments, identifying how model performance was related to the catchment water balance,

baseflow index and total rainfall. Whilst these frameworks tend to be limited to lumped or

semi-lumped catchment models, they provide a valuable resource for testing and learning about

different model structures over large samples of catchments. This can help us to understand

which model structures are appropriate for different catchment types, and where model selection

may be most important.
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We therefore need to be evaluating model structures, to help guide model selection and im-

provement for national modelling approaches. Comparing multiple model structures across large

catchment samples is one way of doing this, which can help to highlight the advantages/pitfalls

of different model structures, improve our understanding of which model structural choices

are appropriate for different climate-hydrological conditions, and focus model improvements

by highlighting common model flaws (Andréassian et al., 2009). This improved knowledge and

understanding of model structures is needed to develop national modelling frameworks.

2.2.4 Model benchmarking

A related concept to model intercomparison is model benchmarking. Benchmarking studies

provide an evaluation of modelling skill, that can act as a baseline for any future advances or

more complex models to be compared against as well as identifying any weaknesses (Newman

et al., 2015; Seibert et al., 2018). Model modifications can then be evaluated in a consistent way to

ensure continuous improvement and identify the factors improving model performance. Archfield

et al. (2015) emphasise the importance of systematic assessments of model performance to assess

how performance varies depending on model structure, parameterisation and hydroclimatic

setting, and to ensure a model can adequately represent the properties of a hydrograph for a

given management priority (for example, high flow/low flow performance may be more important

for studies focused on floods/droughts respectively). Benchmarking of hydrological models is one

way this can be achieved (Archfield et al., 2015).

Two recent studies demonstrate how lumped, conceptual models can be used as benchmarks

when evaluating more complex hydrological models (Newman et al., 2017; Seibert et al., 2018).

Newman et al. (2017) demonstrate how the use of a bucket-style hydrological model provides a

useful benchmark in an evaluation of the physically-based VIC model across over 500 catchments

in the United States. Seibert et al. (2018) make a case for the use of upper and lower benchmarks

in hydrological modelling, demonstrating the use of a simple hydrological model to generate

upper and lower performance benchmarks in an evaluation of the SHETRAN model across Great

Britain. Figure 2.2 demonstrates this, showing how the SHETRAN model performs relative to the

upper and lower benchmarks. These studies argue that conceptual hydrological models provide a

good, practical benchmark for the evaluation of more physically based models, as they implicitly

take observation uncertainties and water balance constraints into account.

Benchmarking of hydrological models can therefore help to evaluate national models and

ultimately improve our national simulations. To facilitate the use of lumped hydrological models

as benchmarks, there is a need for model simulation results and performance metrics to be made

openly available across large-samples of catchments. Studies are therefore needed which provide

these benchmark simulations to aid the continuous improvement of national modelling efforts.
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FIGURE 2.2. Results of a large-sample study demonstrating the use of upper and lower
benchmarks when evaluating hydrological models. The upper benchmark is the
calibrated HBV model and the lower benchmark was generated using random HBV
parameters. These were then used to evaluate the uncalibrated SHETRAN model
performance. Reproduced from (Seibert et al., 2018).

2.3 Model parameterisation

All models contain parameters, which are values used to describe the characteristics of the

catchment area or modelling unit (Beven, 2012). Estimating model parameters is vital to ensure

the model is realistically reflecting hydrological processes and to produce credible hydrological

simulations (Archfield et al., 2015). Generally, it is difficult to estimate model parameters a priori,

as model parameters are often effective values which cannot be observed at the model spatial

scale such as the average depth of water storage capacity (Beven, 2012). Some more physically

based parameters, such as saturated hydraulic conductivity, are measurable in theory but the

scales at which they are measured are incommensurate with the modelling scale at which they

are needed (Blöschl et al., 2013; Pechlivanidis et al., 2011). Therefore parameters usually require

calibration to achieve the best match between model outputs and available observations of the

actual catchment response (Beven, 2012; Pechlivanidis et al., 2011).

There are many different approaches to model parameter calibration. The most basic ap-

proach is manual calibration of model parameters, where parameters are tuned by an expert

through a trial-and-error process (Boyle et al., 2000; Madsen, 2003). However, this is complicated,

highly labour-intensive and requires expertise which is not easily transferred (Boyle et al., 2000).

It is also a subjective process, and as it is difficult to determine an end point of the process

different results will be obtained by different modellers. Therefore, a large number of automatic

calibration methods were developed which find the best parameter set(s), as judged by one or
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more objective functions/ performance metrics (e.g. Duan et al. 1992; Jiang et al. 2013; Solomatine

et al. 1999). This includes local and global optimisation methods (Duan et al., 1992; Jiang et al.,

2013; Solomatine et al., 1999), as well as Monte Carlo parameter sampling which evaluates the

whole parameter space (Beven, 1993; Freer et al., 1996; Wagener and Kollat, 2007).

Early studies found that similar model performance was possible from many different param-

eter sets, sometimes from different parts of the model parameter space (Beven, 1993; Beven and

Freer, 2001a; Freer et al., 1996; Hornberger et al., 1985). This equifinality or non-uniqueness of

model parameters gave rise to the view that it is not possible to find an optimum parameter set,

and we should instead consider all parameter sets which are deemed to be an acceptable simulator

of the system (Beven and Binley, 1992). One way of approaching this is through the Generalised

Likelihood Uncertainty Estimation (GLUE) methodology, which samples the parameter space

through random sampling and then assigns a performance score to each parameter set based on

its ability to simulate the system (Beven, 1993; Beven and Freer, 2001a)). Simulation results from

all behavioural parameter sets (those with a performance score above a set threshold) are then

used to make hydrological predictions with uncertainty limits, with greater weight given to the

parameter sets with better performance scores. This approach of constraining model parameter

sets rather than optimising therefore enables evaluation of the impact of parameter uncertainties

on hydrological predictions. It is vital that these parameter uncertainties are considered in

modelling studies, to prevent overconfidence in model results, and to demonstrate the range in

flow estimates arising from parameter sets which are all equally plausible.

Additional model parameterisation difficulties and uncertainties are introduced when moving

from lumped to distributed models. Whilst lumped hydrological models apply a single parameter

value across the catchment, distributed hydrological models often require spatial fields of model

parameters (Mizukami et al., 2017). This allows distributed hydrological models to represent

spatial variation in hydrological response across the landscape. However, it complicates the issue

of model parameterisation by massively increasing the number of parameters to be calibrated

– instead of a single set of model parameters across the catchment, the parameters must be

estimated for each modelling unit. Different spatial configurations of model parameters may

produce equally valid simulations, introducing further difficulties with the non-identifiability

and equifinality of parameter sets (Beven, 1993). Also, the use of streamflow data for calibration

of large numbers of parameter sets results in an ill-posed problem, as there is not sufficient

information content in the streamflow data to support the robust calibration of parameter values

(Beven, 2012). Calibration for distributed models therefore typically uses some form of spatial

regularization (Pokhrel et al., 2008), to pre-define the spatial distribution of parameters across a

catchment and therefore reduce the degrees of freedom in the calibration.
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Constraining model parameters across large domains brings challenges including how to

constrain parameters in ungauged basins, how to estimate parameters for interacting nested

catchments and inclusion of parameter uncertainties alongside the computational challenges of

applying a model across a large-area/ large catchment sample. This section reviews approaches to

define model parameters across large domains. First, the challenges of a priori parameterisation

are described. Second, studies which focus on gauged catchments only are discussed, and issues

with using individual gauge calibrations to provide national simulations are highlighted. This

leads on to a review of parameter regionalisation techniques, which provide different ways to

estimate parameters for ungauged areas.

2.3.1 A priori parameter estimation

For more physically based hydrological models, parameters are sometimes estimated a priori

(i.e. before modelling has taken place) from field data or satellite measurements (Beven, 2012;

Blöschl et al., 2013). This can also be referred to as an uncalibrated model, as parameters are

linked to catchment properties without calibration (McMillan et al., 2016). There are many

difficulties with defining a priori parameter fields, including 1) it is inappropriate for conceptual

parameters which do not directly relate to measurable, physical properties, 2) the scale at which

measurements are available is incommensurate with the scale at which model parameters are

applied, 3) many physical parameters cannot be measured directly, and must be estimated using

transfer functions, which introduces uncertainties in the mathematical form and coefficient

values to be used in these functions Mizukami et al. (2017). Due to the difficulties of a priori

parameter estimation, parameter calibration is usually required to improve model performance

(Beven, 2012; Mizukami et al., 2017).

Nevertheless, a priori parameter estimation has been used for previous national scale models.

Koren et al. (2000) used transfer functions to develop parameter fields based on soil datasets, and

applied these across the US for the National Weather Service Sacramento Soil Moisture Account-

ing model (SAC-SMA). In a national model for New Zealand, McMillan et al. (2016) relate the 31

parameters of the TOPNET model to national datasets of topography, land cover, soil texture,

and other physical properties. They identified the most sensitive model parameters as the TOP-

MODEL f parameter (also referred to as the m or SZM parameter in the deficit model versions,

describing the form of the exponential decline in conductivity with depth) and the subsurface

saturated hydraulic conductivity, and focused their efforts on ensuring the a priori estimates

of these parameters were suitable. The Grid-to-grid model applied across the UK is also an un-

calibrated model, with parameter values set based on catchment characteristics (Bell et al., 2009).

The a priori parameter estimation technique has the advantage that relating model param-

eters to spatial geophysical data helps to define the spatial pattern of parameter values, in a
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way that has a physical basis (assuming realistic relationships between model parameters and

geophysical data have been identified). However, a priori parameter fields are difficult to generate.

There will always be limitations such as the applicability of data used for parameter estima-

tion and uncertainties in transfer function parameters, and therefore some form of parameter

calibration can help to improve upon a priori model parameterisations.

2.3.2 Parameter calibration for gauged catchments

Modelling across gauged catchments means that model parameters can be calibrated against

observed discharge at the catchment outlet. Many national modelling efforts have modelled a

large sample of catchments across a region to provide the nationwide picture. This means that

ungauged areas will remain unmodelled, but for countries with dense gauge networks, such as

the UK, this can still provide a good national coverage. For example, Prudhomme et al. (2013b)

present their national future flows dataset for 281 river catchments across GB, and Christierson

et al. (2012) present a national assessment of climate impacts for water resource planning based

on 70 UK catchments. For this thesis, modelling has been carried out across a large sample of

gauged catchments in Great Britain.

However, calibrating model parameters to individual catchments may not result in a coherent

national picture. By constraining parameters separately to each catchment, or sub-catchment,

fields of parameter values are not spatially coherent. Sharp discontinuities can arise between

catchment boundaries leading to a ‘patchwork quilt’ map of model parameters, even where

there are no distinct differences in the landscape that would justify differences in parameter

values. This is an issue if the modelling study is aiming to show a consistent national picture,

as inconsistencies in spatial parameter fields can lead to inconsistencies in simulations at the

national scale. Mizukami et al. (2017) demonstrated this, giving an example of a climate impact

study performed across the US (Reclamation, 2014, 2016). The study created national parameter

fields by collating sub-regional calibrated parameter values. The resultant parameter fields had

discontinuities across major catchment boundaries, which resulted in discontinuities in modelled

surface flow and baseflow, as shown in Figure 2.3. It is therefore important to ensure parameters

are consistent and realistic across the landscape for national studies.

Only calibrating to gauged catchments also raises questions for how to calibrate parameters

for gauged sub-catchments and spatial fields of parameters more generally. For models which use

distributed parameter fields, it is important to reflect realistic spatial differences in parameter

values, whether this is between gauged sub-catchments, hydrological response units or gridded

across the landscape. If the variation in internal model parameters is physically realistic, then

distributed parameters could improve the internal consistency of the model and enable runoff

predictions at ungauged points within the catchment. However, how to define these differences
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FIGURE 2.3. VIC infiltration and baseflow parameters (a) and resultant VIC mean
annual surface flow and baseflow simulations 1950-1999 (b), produced for a study
on climate changes impact on water resources across CONUS (Reclamation, 2014,
2016; Wood and Mizukami, 2014). The black boundaries show large river basin
boundaries, demonstrating how inconsistencies in parameterisation methods for
different large river basins result in inconsistencies in modelled hydrological
variables. Reproduced with permission from Mizukami et al. (2017).
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in parameter values across the landscape is challenging, as many different variations of spatial

parameter fields could produce the same simulated streamflow. There will also be interactions be-

tween parameter values across the catchment, for example altering parameters of the headwater

catchments will impact downstream flows.

One option to calibrate parameters for gauged sub-catchments would be to take a step-wise

approach to model calibration. This could involve first calibrating the parameters of headwater

catchments, and then moving downstream in a step-wise way until parameter values are cali-

brated for the whole catchment. The semi-distributed CLASSIC hydrological model follows this

type of nested calibration approach (Crooks and Naden, 2007). This approach could therefore

represent the spatial variation in parameter values for lumped sub-catchments. However, it

could result in a very complex series of calibrations in catchments with large numbers of nested

catchments and any unrealistic parameterisations of upstream catchments, for example due to

errors in discharge data, would be propagated downstream. It could easily become very computa-

tionally expensive if quantifying model prediction uncertainties. It also does not provide a means

of parameterisation for ungauged points within the catchment.

Another option for calibration of distributed parameters is to use some form of spatial

regularisation to pre-define parameter values across a catchment which can then be calibrated

(Pokhrel et al., 2008). The first way this can be done begins with the estimation of a priori

parameter fields, as described above. Spatially constant parameter multipliers can then be applied

to these fields, with the calibration subsequently focusing on the parameter multipliers rather

than the model parameters themselves (Pokhrel and Gupta, 2010; Pokhrel et al., 2008). However,

this method requires a priori parameter fields, which are difficult to generate. A second method

applies spatially constant transfer functions linking model parameters to geophysical data across

the modelling domain (Hundecha and Bárdossy, 2004; Hundecha et al., 2008; Mizukami et al.,

2017; Samaniego et al., 2010). The calibration then tunes the coefficients of the transfer functions

instead of the model parameters. This can result in parameter fields which are consistent across

the landscape with a physical reasoning for the variation in parameters within a catchment.

This is therefore a promising technique for calibrating distributed parameter fields, for local to

national scales, which reflects realistic variation in parameter values within a catchment and

between sub-catchments.

2.3.3 Predictions in ungauged catchments

When creating national models it is often desirable to model ungauged areas, which requires some

form of parameter regionalisation. There is now a large literature on parameter regionalisation

for predictions in ungauged basins, following the IAHS Prediction in Ungauged Basins (PUB)

initiative (Hrachowitz et al., 2013). These regionalisation studies can be broadly grouped into 1)
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regionalisation of flow and flow metrics, 2) post-regionalisation of model parameters from donor

to ungauged catchments, 3) simultaneous parameter regionalisation which are all summarised

with examples in Table 2.1. This section evaluates the latter two approaches, which regionalise

model parameters based on catchment characteristics.

TABLE 2.1. A summary of parameter regionalisation methods for predictions in un-
gauged catchments with example applications.

Regionalisation type Description Examples

Calibration based on
spatially interpolated
hydrologic indices

Model calibration at ungauged basins
based on regionalised hydrologic
signatures (e.g. annual average runoff,
high and low flow metrics)

Yadav et al. (2007)
Oubeidillah et al. (2014)

Post-regionalisation
(i.e. transfer of
parameters from gauged
to ungauged catchments)

Regression of individual calibrated
parameters to catchment characteristics
(e.g. soil, topography, climate)

Abdulla and Lettenmaier (1997)
Young (2006)
Carrillo et al. (2011)

Transfer of entire parameter sets based
on catchment spatial proximity

Nijssen et al. (2001)
Merz and Blöschl (2004)
Parajka et al. (2005)
Oudin et al. (2008)
Troy et al. (2008)

Transfer of entire parameter sets based
on catchment similarity

Parajka et al. (2005)
Oudin et al. (2008)
Beck et al. (2016)

Simultaneous
regionalisation
(i.e. estimation of
spatially constant
transfer function
coefficients
simultaneously across
all gauges)

Parameters are linked to catchment
attribute data via transfer functions.
The coefficients of the transfer
functions (aka global parameters/
transfer function parameters) are
calibrated simultaneously across all
gauged catchments. The calibrated
transfer function coefficients are then
applied across both gauged and
ungauged areas.

Seibert (1999)
Hundecha and Bárdossy (2004)
Hundecha et al. (2008)

Multiscale Parameter Regionalisation:
as above, but transfer functions are
applied to the catchment attribute data
at the highest possible resolution, and
then model parameter values are
upscaled (i.e. through some averaging
function) to the resolution of the model.

Samaniego et al. (2010)
Kumar et al. (2013a)
Mizukami et al. (2017)
Samaniego et al. (2017)
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2.3.3.1 Post-regionalisation techniques

Post-regionalisation techniques typically use catchment attribute data to transfer parameters

from gauged to ungauged catchments. The general approach is to constrain parameters on

gauged ‘donor’ catchments and then develop a method to transfer parameter values to ungauged

catchments based on hydrological similarity, climate or spatial proximity (Blöschl et al., 2013).

This is referred to as post-regionalisation, as the parameter regionalisation takes place after

model simulations have been run. There is a large body of literature on how parameters can

be transferred (Blöschl et al., 2013; Merz and Blöschl, 2004; Oudin et al., 2008; Parajka et al.,

2005; Razavi and Coulibaly, 2013), with key approaches including regression equations linking

individual parameters to catchment characteristics and transfer of entire parameter sets based

on catchment proximity or similarity.

The first approach transfers parameters individually by forming regression equations linking

model parameters to lumped catchment attributes (Sefton and Howarth, 1998; Wagener et al.,

2004). This relies on parameters having meaningful relationships with the chosen catchment

attributes, which can then be extrapolated to ungauged catchments. However, it is often the

case that no significant relationships can be found between model parameters and catchment

attributes, and therefore this approach cannot be applied (Blöschl et al., 2013). Another problem

with this approach is that it does not consider parameter interactions, which can play a large

role in determining appropriate parameter values.

The second approach implicitly includes parameter interactions, through selecting the most

similar donor catchment(s) and transferring the entire parameter set(s). This method assumes

that if two catchments are hydrologically similar, then their runoff response should also be alike

and therefore they may share model parameter values Blöschl et al. (2013). There are three

main ways to select similar donor catchments: based on spatial proximity; based on catchment

similarity; or through model averaging.

The spatial proximity method transfers the parameters of the closest gauged catchment.

This simple approach often works well, particularly in densely gauged areas, as if climate and

catchment characteristics vary smoothly across a region then it is often the case that catchments

behave the most hydrologically similarly to their neighbours (Oudin et al., 2008; Parajka et al.,

2005). The catchment similarity method transfers the parameters of the most hydrologically sim-

ilar catchment. Here, similarity is defined using climate and catchment characteristics that the

modeller considers an important in controlling catchment response to rainfall, such as catchment

area, standardised annual average precipitation and baseflow index (McIntyre et al., 2005). In

an evaluation of regionalisation methods over France, Oudin et al. (2008) found that whilst the

spatial proximity method resulted in the best model performance, both spatial proximity and
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catchment similarity far outperformed regression for networks with a streamgauge density over

30 stations per 100,000 km2.

The model averaging approach uses a weighted combination of the parameter sets from

multiple donor catchments (Blöschl et al., 2013). Here, donor catchments could be selected using

the spatial proximity or similarity methods described above, but a key difference is that param-

eter values from multiple donor catchments are used. This represents some of the modelling

uncertainties arising from the model parameterisation.

Parameter equifinality presents difficulties for these regionalisation methods (Wagener and

Wheater, 2006). The parameter regionalisation methods described above largely assume that an

optimal parameter set can be found for gauged catchments, as the basis for regression equations

or transfer of parameter sets to ungauged catchments. However, this is usually not the case.

To overcome this issue, options include (1) reducing the number of free parameters by fixing

some of them, (2) calibrating hydrological model parameters against additional information if

available (e.g. Koppa et al. (2019) calibrate the model using evapotranspiration and streamflow

simultaneously, and Rakovec et al. (2016b) calibrate a European model using water storage as well

as streamflow), or (3) calibrating model parameters simultaneously across multiple gauges (e.g.

Bárdossy et al. (2016) demonstrate that simultaneously calibrating dynamical parameters across

all catchments resulted in parameters which perform well across the region, whilst calibrating

catchments individually did not). Calibrating parameters simultaneously across multiple gauges

provides additional information (multiple flow timeseries rather than just one gauge) reducing

the equifinality problem and resulting in more robust parameter estimates. This method is often

referred to as simultaneous parameter regionalisation.

2.3.3.2 Simultaneous parameter regionalisation

Simultaneous parameter regionalisation, sometimes referred to as simultaneous calibration

or regional calibration, aims to establish relationships between parameters and catchment

characteristics, and then constrain the coefficients of these relationships across many gauges

simultaneously. This means that instead of the two-step procedure described in section (2.3.3.1),

of first calibrating model parameters and then transferring them based on catchment char-

acteristics, parameter regionalisation applies these steps simultaneously. There are generally

two approaches: (1) for lumped models, the coefficients linking model parameters and average

catchment characteristics are constrained, (2) for distributed or semi-distributed models the

coefficients linking model parameters to catchment properties at the grid or other scale are

constrained. Here we focus on the second approach.

To apply this method, model parameters are linked to relevant catchment attributes via
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transfer functions with spatially constant global parameters to be constrained. For example, a

saturated hydraulic conductivity parameter may be linked to spatial maps of soil properties, via a

transfer function of the form ksat = a(%sand) + b(%clay) + c (Cosby et al., 1984). The coefficients

of the transfer function (also commonly referred to as global parameters or transfer function

parameters), here a, b and c, then need to be constrained instead of the model parameters them-

selves. This is done by evaluating the performance of each set of coefficients across all modelled

gauges simultaneously. A spatially constant set of global parameters (i.e. a, b and c) will then be

applied across the whole domain to create a consistent model parameter field (Mizukami et al.,

2017).

Simultaneous parameter regionalisation has several advantages over the previously discussed

parameterisation methods. Firstly, by constraining parameters across many gauges simulta-

neously it results in more robust parameters which are less impacted by unique conditions in

specific gauges. Instead of constraining model parameters against a single flow timeseries, they

are constrained against multiple, reducing problems relating to over-parameterisation. Secondly,

it allows use of the spatial information given in the catchment data to distribute parameters

in space. As described above, this means that it is useful as a spatial parameter regularization

technique as well as for parameterisation of ungauged catchments. Thirdly, it provides consis-

tent parameter fields across large areas. Finally, whilst regional calibration may not always

improve predictions at ungauged sites relative to other methods, it has been shown to improve

the relationship between model parameters and catchment characteristics (Fernandez et al.,

2000; Parajka et al., 2007a; Szolgay et al., 2003)). This makes it a good regionalisation choice

for modelling environmental change, as having a physical basis for the parameter values and

more realistic parameter fields is advantageous when extrapolating to different environmental

conditions (Blöschl et al., 2013).

Multiscale parameter regionalisation (MPR) has emerged as a particularly effective simul-

taneous parameter regionalisation strategy because it takes sub-grid variation in catchment

attribute data into account (Samaniego et al., 2010). Usually, catchment attribute data is ag-

gregated to the modelling scale (e.g. grid cells, sub-catchments, or hydrological response units)

before transfer functions are applied. However, MPR applies transfer functions at the native

resolution of the catchment attribute data, and then averages parameter values to the modelling

scale. A schematic demonstrating these core differences is given in Figure 2.4. This means that

estimated transfer function coefficients are less sensitive to modelling scale, and can be more

effectively transferred to different model resolutions (Kumar et al., 2013a,b; Samaniego et al.,

2010, 2017). The method has shown to produce good results when transferring parameter fields

to ungauged basins (Kumar et al., 2010, 2013a,b), and has successfully been applied to produce

seamless, consistent parameter fields for large-scale hydrological model applications (Mizukami
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FIGURE 2.4. Schematic comparing multiscale parameter regionalisation (MPR) with
a standard simultaneous regionalisation approach. High spatial resolution refers
to the highest resolution of the geophysical data used for the regionalisation. The
key difference between MPR and standard regionalisation is shown to be the scale
at which the regionalisation takes place. Based on a figure from Samaniego et al.
(2010)

et al., 2017; Samaniego et al., 2017). This could make it a promising method for parameterisation

of a national model.

2.4 Uncertainty

Hydrological modelling is far from a precise science, and many uncertainties remain (Beven

and Freer, 2001a; Mcmillan et al., 2012; Westerberg and Birkel, 2015), with the importance of

characterising and communicating modelling uncertainties recognised since early studies (Beck,

1987; Cooke, 1906; Garen and Burges, 1981). Hydrological modelling uncertainties are largely

epistemic arising from incomplete understanding of the environmental system, including errors

in the data we use to develop, parameterise, and drive hydrological models, errors in the choice

of model structure, errors in identification of model parameter values, and the fact that models

are inherently imperfect representations of the real world. It is important to represent this

uncertainty in modelling results, to aid interpretation of model outputs and fairly demonstrate

the range of possible outcomes (Pappenberger and Beven, 2006). This is especially important for

simulations of change and hydrological extremes, where uncertainties may be particularly high.

When modelling across large scales, recognising and including modelling uncertainties can be

challenging for many reasons. Firstly, modelling across a large region means that local knowledge
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about the peculiarities of each gauging station/ catchment including data quality cannot be taken

into account in the same way as detailed catchment studies (McMillan et al., 2016). Secondly,

there may be limited availability and quality of data on a national scale, and so the modeller must

work within the limitations of the available data. Thirdly, computational challenges involved

with the setup and running of large-scale models often prohibits the application of computa-

tionally costly uncertainty analysis techniques. Whilst evaluating uncertainties arising from

model structure and parameterisations through an ensemble of simulations is common practice

in catchment hydrology, this is difficult to achieve at the nationwide scale. This section discusses

a few of the main sources of uncertainty for hydrological modelling studies, and uncertainty

estimation techniques.

2.4.1 Model structure and parameter uncertainty

The wide array of available model structures was highlighted in section 2.2. These model struc-

tures differ in many ways, including spatial and temporal resolution, which stores are represented,

which processes are included, the mathematical equations used to represent these processes and

stores, and how these equations have been converted into model code (Knoben et al., 2019). The

selection of model structure is not straightforward, as often many different model structures

can achieve similar performance, contributing to the overall uncertainty in a hydrological mod-

elling study. Similarly, there are uncertainties in the estimation of model parameter values, as

summarised in section 2.3, with many different parameter sets often found to result in similarly

plausible model simulations. Carrying forward all model structures/ parameter sets which can

produce plausible simulations can improve understanding of the impact of model structural

choice/ parameterisation on model output uncertainty.

2.4.2 Data uncertainty

Calibration of hydrological models often attempts to minimise the difference between observed

and simulated river flow, which assumes that observations reflect the truth. However, hydrological

data is highly uncertain (Coxon et al., 2015; Mcmillan et al., 2012). This includes uncertainties

in input data (e.g. rainfall and potential evapotranspiration), discharge data used for model

calibration/evaluation and other datasets used for model setup and parameterisation (e.g. digital

elevation models, land-use and soil maps). In a recent review McMillan et al. (2018) find that

the magnitude of hydrologic data uncertainty is generally within the range of 10-40%, although

deriving rainfall measurements have been shown to introduce uncertainties of up to 100%.

Understanding and accounting for the uncertainties in hydrological data is important to prevent

bias and incorrect conclusions (Mcmillan et al., 2012). However, this is especially challenging at
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the national scale, where modelling studies must rely on nationally available datasets and local

catchment knowledge on data quality may not be readily available.

2.4.3 Approaches to uncertainty estimation

There are many approaches to uncertainty estimation for hydrological modelling (Beven, 2009),

with the suitability of different uncertainty estimation methodologies a topic of much debate

within the literature (Beven, 2006; Beven et al., 2003; Clark et al., 2011a; Gupta et al., 2003;

Thiemann et al., 2001). These frameworks differ in the underlying philosophy of whether they

are based around finding a single optimum or the concept of equifinality, as well as the methods

used to sample the model space, and which uncertainties are included (Coxon, 2015). Two widely

applied yet contrasting approaches are formal Bayesian statistical methods and the informal

GLUE methodology.

Bayesian statistical approaches have been widely applied to quantify hydrological modelling

uncertainties (Kavetski et al., 2006; Thyer et al., 2009; Vrugt and Ter Braak, 2011; Yang et al.,

2007; Yen et al., 2014). The Bayesian approach attempts to represent all sources of uncertainty,

with the assumption that all uncertainties can be represented as if they are statistical in nature

(Beven, 2012). This requires an explicit formulation of the error process and definition of proba-

bility models for each uncertainty source. A key benefit of this approach is that it attempts to

disentangle the different uncertainty sources (input, output, parameter, and model structural

error) which is key to improving model simulations (Vrugt et al., 2009). However, these formal

approaches make strong assumptions about the statistical properties of the error residuals, which

may not be appropriate given that many sources of error in hydrology are epistemic (lack of

knowledge) rather than aleatory (random) in nature (Beven, 2012).

The Generalised Likelihood Uncertainty Estimation (GLUE) procedure, first introduced in

section 2.3, follows a nonstatistical approach to uncertainty estimation based on the concept

of equifinality (Beven, 1993; Beven and Freer, 2001a; Blazkova and Beven, 2009b; Freer et al.,

1996). The GLUE methodology recognises that hydrological modelling uncertainties tend to be

epistemic in nature, with correlated and non-stationary errors, that do not conform to formal

statistical assumptions. The premise behind the GLUE methodology is that all possible modelling

combinations (i.e. model structures/parameter sets) are evaluated, and any approaches that are

considered to be an acceptable predictor of the system are kept. These remaining behavioural

models are assigned a likelihood weighting, based on their likelihood of being a good predictor of

the system, which is usually evaluated using one or multiple performance metrics. These perfor-

mance metrics can include allowances for observation errors, through a limits of acceptability

approach (Blazkova and Beven, 2009a; Liu et al., 2009). River flow predictions are then generated

using a combination of all behavioural models, with the likelihood weighting of each model
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determining its contribution. This therefore facilitates inclusion of competing model structures

as well as model parameter sets, in a framework which can include data uncertainties.

2.5 Using hydrological models for impact studies

Climate change could increase flood risk across Great Britain; we need to understand the poten-

tial future change to ensure adaptation measures are put in place. Climate change is expected to

intensify the hydrological cycle, with the latest UK Climate projections indicating an increased

chance of wetter winters and an increase in the frequency and intensity of extremes (Met Office,

2019). This could lead to an increase in the frequency and magnitude of flood events in the

future. However, changes to flow will depend on catchment-specific hydrological processes as

well as changes in rainfall and evapotranspiration (Wheater, 2006). For example, in responsive

catchments peak river flows may increase in response to higher intensity precipitation. For

low-lying catchments with deep soils and/or permeable geology, the balance between increased

rainfall and increased evapotranspiration may be more important and future changes in flood

hazard are more uncertain (Bell et al., 2009; Prudhomme et al., 2013a; Reynard et al., 2004;

Wheater, 2006). Therefore, to quantify potential future changes to river flow, and identify areas

of the UK which may be worst hit by increased flood hazard in the future, we need a consistent

approach to national scale hydrological modelling studies.

Studies modelling climate change impact on river flows generally use climate model data to

indicate future changes in hydrometeorological variables. Often a modelling chain is formed, with

climate model output (e.g. precipitation/ temperature/ potential evapotranspiration) being fed

into a hydrological model to produce change in river flows (Arnell and Reynard, 1996; Wilby et al.,

2008). Typically, regional climate models (RCMs) are used, which can provide climatic variables

at scales in the region of 12 - 50 km. RCMs are often lower resolution than hydrological models,

and can have substantial biases in hydrometeorological variables such as precipitation and

temperature. These include issues such as RCMs overestimating the number of wet days, general

over- or underestimation of climatic variables and incorrect seasonal variation (Teutschbein

and Seibert, 2012). Therefore, many studies include downscaling and/or bias correction steps

before using climate model data as input to the hydrological model (Cloke and Pappenberger,

2009; Smith et al., 2014a; Teutschbein and Seibert, 2012). These bias correction methods range

from relatively simple monthly-mean scaling factors to more sophisticated probability mapping

approaches. However, the choice of bias correction methodology can have a large impact on

the modelling results, in some cases even changing the sign of the projected changes in flood

frequency (Cloke et al., 2013; Smith et al., 2014a).
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The use of climate model data means additional uncertainties are added to the modelling

process. Climate uncertainty predominantly arises from three sources: the internal variability

of the climate system, climate model uncertainty and future scenario uncertainty (Hawkins

and Sutton, 2009). Additionally, uncertainties are added from the choice of downscaling/ bias

correction used to transform climate model data so that it is suitable for hydrological modelling

(Cloke et al., 2013; Muerth et al., 2013; Smith et al., 2014a). These are in addition from the

considerable uncertainties already involved in national scale hydrological modelling. Many

studies have attempted to quantify the impact of these various uncertainties on a selection of

catchments (e.g. Cameron et al. 2000; Cloke et al. 2013; De Niel et al. 2019; Engin et al. 2017; Kay

et al. 2009; Meresa and Romanowicz 2017; Smith et al. 2014a; Wilby and Harris 2006). These

generally conclude that climate models are one of the largest uncertainties in climate-impact

studies focused on peak flows, but other uncertainties are not negligible. Meresa and Romanowicz

(2017) and Engin et al. (2017) both find that hydrological model parameterisation is an important

contribution to total uncertainty, although it is most important when modelling low flows. Overall,

these studies highlight the importance of uncertainty assessment in climate impact studies.

2.5.1 Climate impact on flooding in Great Britain

There is a large body of literature on climate impacts in Great Britain (GB), but very few studies

have evaluated changes in high flows / flooding in a nationally consistent way whilst also re-

porting the hydrological modelling uncertainties. Many climate impact studies for GB are based

on the UKCP09 Climate Projections (e.g. Bell et al. 2012, 2016; Christierson et al. 2012; Kay

et al. 2014a; Prudhomme et al. 2012), which included probabilistic projections giving average

changes in meteorological variables, as well as an ensemble of 11 spatially consistent projections

(Murphy et al., 2010). This has facilitated incorporation of RCM uncertainties into hydrological

climate impact studies. For example, Prudhomme et al. (2012) produce national projections of the

change in seasonal mean flows, showing the variation between the 11 RCM scenarios. However,

incorporation of the hydrological modelling uncertainties at a national scale remains rare. A

notable exception is Christierson et al. (2012) who evaluated changes to monthly and seasonal

river flow projections nationally, using the UKCP09 probabilistic projections and multiple hydro-

logical models and parameterisations within an uncertainty framework. They used a monthly

change factor approach, where observed time-series were modified to create ‘future’ projections.

This provided an interesting analysis looking at the uncertainty in future changes, but it did not

provide spatially consistent projections due to the nature of the probabilistic projections. The use

of change factors also meant that future changes in the pattern of precipitation events could not

be studied.

A series of studies have used a response surface technique to identify changes in future

flooding across Great Britain due to climate change (Kay et al., 2014b,c; Prudhomme et al., 2010,
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2013a)). Response surfaces are generated for catchments by varying temperature, precipitation,

and potential evapotranspiration timeseries, and then assessing the change in peak flows. A

response surface plot can then be produced which relates change in meteorological variables to

changes in flow statistics, showing the catchment sensitivity to meterological changes. A key

advantage of this technique is that once response surfaces have been produced, it is easy to

evaluate new climate projections without re-running models and so this approach has been

described as scenario-neutral (Prudhomme et al., 2010). However, the technique assumes that

changes in flood generating flows can be assessed though a combination of summary changes

in meteorological inputs (e.g. Prudhomme et al. (2013a) generates flood response surfaces using

change in mean annual precipitation and an index reflecting the seasonality of precipitation

changes). This may not be as robust as a continuous simulation methodology, where all aspects of

meteorological changes are considered simultaneously.

There is therefore a need for studies evaluating climate change on flooding nationally across

Great Britain, with inclusion of modelling uncertainties. To do this, we need national modelling

frameworks which are computationally efficient, to characterise climate and hydrological mod-

elling uncertainties through ensemble simulations. We also need spatially distributed models to

evaluate changes in spatial patterns of precipitation across the landscape.

2.6 Summary

A wide variety of hydrological models exist, ranging from lumped conceptual models to physically-

based distributed models. These models each have their advantages and are useful for different

applications. To ensure models can produce robust and reliable simulations across diverse cli-

mate/catchment characteristics, it is important to thoroughly evaluate model structures across

large-samples of catchments. Multi-model intercomparisons and benchmarking studies are there-

fore needed to help identify aspects of model structures resulting in better/worse performance,

identify reasons for poor model performance, guide model selection and inform users of model

limitations. These studies can therefore guide the development of appropriate model structures

for national modelling frameworks.

A key challenge for national hydrological models is representing the heterogeneity of hy-

drological processes across the landscape. The skill of different model structures usually varies

depending on the dominant hydrological processes, and therefore it is difficult to find a single

model structure which is able to produce good simulations nationally. Whilst many national

modelling attempts do use a single model structure, there has been a drive towards the de-

velopment of flexible modelling frameworks which facilitate the application of different model

structures across a landscape. There has also been a move towards models which are flexible in
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terms of spatial resolution, to reflect the dominant processes in different landscapes and best suit

different modelling needs. There is therefore a need for further development of flexible modelling

frameworks to improve our national modelling efforts.

Lumped hydrological models have the advantage of simplicity and computational efficiency,

but many modelling applications require distributed models to represent spatial processes. These

distributed models often require spatial parameter fields to reflect differences in hydrological

processes across the landscape. The estimation of these distributed parameter fields is a major

challenge for large-scale modelling efforts. Another challenge is modelling ungauged catchments,

where runoff observations are not available for model calibration. Simultaneous parameter

regionalisation approaches, such as multiscale parameter regionalisation (MPR), can help to

address both issues by calibrating spatially constant coefficients of transfer functions relating

parameters to spatial geophysical data. This is therefore a promising parameterisation method

for national modelling. MPR has not previously been applied to Great Britain or for a flexible

hydrological framework, and questions remain including which geophysical datasets to use to

represent parameters of different hydrological models, which transfer functions and upscaling

operators to use and how to best constrain transfer function coefficients across large catchment

samples. Further development and applications of the MPR methodology are therefore needed to

improve distributed model applications.

Uncertainties are present in all modelling studies, and the importance of considering and

communicating these uncertainties has been widely recognised. Hydrological modelling uncer-

tainties include choice of model structure and parameter sets, as well as errors/uncertainties in

data used to drive, setup and evaluate hydrological models. Techniques to quantify modelling

uncertainties can be computationally costly, and are often not applied for national scale modelling

studies. We therefore need to develop tools to facilitate incorporation of modelling uncertainties

in large-scale modelling studies.

One application for which we need national models is climate change impact studies. Climate

change could increase flood and drought risk in the future, and we therefore need models to

quantify this changing risk and inform climate change adaptation plans. To inform decision

making, it is vital to include uncertainties in these projections – arising from both climate

modelling and hydrological modelling. Further studies are therefore needed which model climate

change impacts within an uncertainty framework.
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DATASETS, TOOLS AND METHODS

Chapter three presents the datasets, tools and methods that underpin this thesis. This supports

the more specific methodologies provided in each research chapter, providing information be-

yond the research chapter methodologies without repeating information. It brings together the

methods used in the three research chapters, highlights methodological differences (e.g. different

catchment selections and model structures) and explains why different decisions were made to

support the research aims of each chapter. Throughout this thesis, many different datasets were

used for model setup, parameterisation and evaluation, and further details on the selection and

preparation of these datasets is given here.

3.1 Catchment selection

Great Britain has a dense gauging station network, with over 1500 river gauges across the

country (CEH, 2015). The locations of these gauging stations, alongside the range in a selection

of catchment characteristics across Great Britain, is shown in Figure 3.1. These gauges cover

a wide range of hydrological and climate diversity; with generally wetter catchments along the

west of Great Britain, drier catchments in the east of England, major aquifers impacting flows

in the southeast, and a few snow impacted catchments in central Scotland. A discussion of the

hydrology of Great Britain is given in Research Chapter One (Section 4.3).

Different gauges were selected for the modelling studies in each research chapter. For the

first research chapter, the aim was to evaluate models over as many gauges as possible, to provide

a national picture of model performance. This led to the selection of 1013 gauges, which all had

discharge data covering the period January 1993 to December 2008. For Research Chapter Two,
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FIGURE 3.1. Comparison of gauge selection between the research chapters. Top: maps
showing gauge locations (points) and catchment boundaries (grey area) for all
gauges available on the NRFA, and the three research chapters. Bottom: Range in
catchment characteristics covered by gauge selection in the three research chapters,
compared to catchment characteristics across all British gauges.
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only quality-checked Service Level Agreement gauges were included in the analysis, to avoid the

chances of disinformative gauges being included in the national model calibration. In this chapter

the global parameters linking model parameters to catchment attributes were constrained across

all gauges simultaneously, and therefore if catchments had incorrect observed data then this

would skew the evaluation of national parameter fields. We also had to discount some gauges

(236), because of the computational time taken to produce a high number of simulations nation-

ally. As can be seen in Figure 3.1 these still cover a wide range of climatic diversity across Great

Britain. This reduced gauge selection to 437 gauging stations. For Research Chapter Three, the

model was driven with climate model data instead of observations. The climate model data was

available at 12 km resolution, compared to the 5 km resolution used in Research Chapter Two.

It was considered inappropriate to use the 12 km climate information for gauges smaller than

one 12 km x 12 km grid, so therefore only gauges larger than 144 km2 were included. Using only

service level agreement gauges larger than 144 km2 resulted in 346 gauges being selected for

Research Chapter Three. This was still considered a large number of gauges, sufficient to cover

the range of hydrological behaviour across Great Britain, as shown in Figure 3.1.

All research chapters included both natural and human-influenced catchments. It was con-

sidered important to include human-influenced catchments for multiple reasons; 1) this thesis

is focused on national-scale modelling and any national model will necessarily need to include

human-influenced catchments if they are to produce flow simulations everywhere (McMillan

et al., 2016), 2) there is a need for flow simulations in areas where people live and therefore

it is important to have models which run in human-modified catchments, 3) there is a need to

understand how models perform in both natural and human-influenced catchments to support

this modelling, and 4) very few flow regimes are fully natural in Great Britain. The first research

chapter evaluated model performance for as many gauges as possible across Great Britain, and

the inclusion of human-modified catchments was needed to help identify factors impacting model

performance. Research Chapter two aimed to constrain model parameters on a large sample of

catchments. It was therefore important to select catchments which were representative of GB as

a whole, which natural catchments alone would not be. Finally, research chapter three focused on

river flow changes. These changes may still be meaningful even if human modifications to river

flow regimes mean that simulated flows do not perfectly match observed flows.

3.2 Hydro-meteorological data and catchment attributes

The sources of hydro-meteorological data used to run and evaluate hydrological models are con-

sistent throughout the thesis. For observed precipitation and potential evapotranspiration (PET),

the CEH-GEAR and CHESS-PE datasets were used (Keller et al., 2015; Robinson et al., 2015a,b).
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These are both provided at 1 km resolution across GB, but have been averaged to different spatial

resolutions to support each research chapter. Research Chapter One used lumped hydrological

models, so precipitation and PET were averaged across each catchment. Research chapters two

and three used a model capable of using distributed inputs, and so input data was averaged over

5 km and 12 km grids respectively. The different grid sizes used was due to consistency with

other data used within each research chapter; Research Chapter Two compared results with a

previous study where the model had been run at 5 km, and Research Chapter Three also used

climate model data which was provided at 12 km resolution.

Research Chapter Three also used hydro-meteorological data produced by regional climate

models (Lowe et al., 2019). To ensure consistency, potential evapotranspiration was calculated

from the climate model output using the same code as the CHESS-PE product.

The time-periods over which the models were run differed between the research chapters.

For Research Chapter One the model simulations were run between Jan 1988 - Dec 2008, with

the first five years being used as a warm-up period and the remaining 16 years used for model

evaluation. For Research Chapter Two, a slightly longer period was selected, with model simula-

tions run from Jan 1985 - Dec 2010. The first six years were used as a warm-up period, leaving a

remaining 20 years to be divided equally into 10-year calibration/evaluation periods. For research

chapter 3 the simulation period was largely determined by the climate model data. Simulations

were carried out between Jan 1981 - Dec 2075 driven by climate data, and an additional set of

simulations driven by observed data were run between Jan 1981 - 2010 to provide a performance

baseline against which the climate-driven simulations could be compared.

All observed discharge data used within the thesis are from the National River Flow Archive

(Centre for Ecology and Hydrology, 2016). Catchment attribute data used is from the UK Hy-

drometric register (Marsh and Hannaford, 2008), CAMELS-GB catchment attribute dataset

(Coxon et al., 2020), as well as calculated from observed hydro-meteorological data and a range of

national spatial datasets which are described in section 3.5.

3.3 Models

Different hydrological models have been used throughout this thesis, to best answer the questions

posed by each research chapter. For research chapter 1, the focus was on exploring performance

differences between model structures. Therefore, the Framework for Understanding Structural

Errors (FUSE) was selected to provide four hydrological model structures that could be easily

run and directly compared within the same framework (Clark et al., 2008). For research chapter

2 and 3, we required a model that could be used to explore different parameter configurations,
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parameter uncertainties, and produce national simulations across Great Britain. The DECIPHeR

model was well suited to this, as it has a flexible model build allowing any configuration of

model parameters, it is relatively fast-running enabling the exploration of uncertainty, and it has

previously shown good performance across GB (Coxon et al., 2019). Here, the structure of these

models is briefly explained (full descriptions are available in each research chapter methodology),

and setup and testing of the model structures beyond what is presented in the research chapters

is discussed.

3.3.1 FUSE

The Framework for Understanding Structural Errors (FUSE) was used to provide four different

hydrological model structures for use in research chapter 1. FUSE is a modelling framework that

combines modelling decisions from four widely applied models to create hundreds of possible

model structure configurations (Clark et al., 2008). The user can easily select different model

structures, and run them with the same input data. All models within the framework share some

common modelling decisions; they are all lumped models, run on a daily timestep with daily

forcing data and they include the same process representations (e.g. none of the models represent

snow/groundwater). However, they differ in the configuration and number of model stores, and

equations governing the flow of water between stores and into the river. The framework is

therefore useful as a controlled way to explore differences between model structures. No changes

were made to the FUSE model code for this thesis. Model structure diagrams, modelling decisions,

and model parameters are all given in Chapter 4 (Figure 4.3, Table 4.2 and Table 4.3).

3.3.2 DECIPHeR

To investigate the application of a national parameterisation method, a semi-distributed hy-

drological model was selected. The FUSE models were all lumped catchment models, which

treated catchments as a single modelling unit with homogenous parameter values. They could

therefore not represent flows across regions, and could not simulate the interrelation between

sub-catchments within larger basins. A more complex model was therefore required, which could

simulate variations in hydrological processes across the landscape.

The DECIPHeR hydrological model is a semi-distributed hydrological model, which is flexible

in its model structure and parameter configuration (Coxon et al., 2019) (see Figure 3.2 for a

summary of the default model structure). The model distributes the catchment into hydrological

response units (HRUs), which are groups of points that share similar characteristics and are

therefore expected to behave in a hydrologically similar way. These HRUs are defined using any

spatial information the modeller thinks is important in defining hydrological variation across

the landscape. An example of how this is done using slope, accumulated area, and locations

of gridded rainfall inputs is given in Figure 3.3. Each HRU acts as a separate model store,
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FIGURE 3.2. DECIPHeR model structure diagram showing parameters, stores and
fluxes, adapted from Coxon et al. (2019).

which is hydrologically connected to spatially contiguous HRUs or river cells. The distribution

of the landscape into HRUs thus defines the model resolution, with each HRU able to have its

own defined model structure and parameter values. This has many advantages, including 1)

minimised run times as calculations are only required for each HRU rather than each modelled

grid point, 2) different model structures and parameterisations can be used to reflect landscape

features, and 3) retained information on spatial distribution of HRUs allows results to be mapped

back into space.

Previous applications of DECIPHeR had applied homogeneous parameter values across the

landscape (Coxon et al., 2019). Therefore, whilst the HRU-based structure of DECIPHeR was

ideal for exploring spatially distributed parameteters, modifications to the source code were

required to make this possible. The first step was writing and modifying code to enable DECI-

PHeR to assign different parameter sets to different parts of the landscape. This involved: 1)
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FIGURE 3.3. Graphic illustrating how hydrological response units are defined from
input spatial datasets in the DECIPHeR hydrological model framework. This is
for the catchment Llynfi at three cocks, which is a sub-catchment of the Severn at
Haw Bridge. Input datasets are 3 equal classes of slope and accumulated area, and
a 10 km rainfall input grid.

introducing a parameter field as part of the HRU classification, so that each HRU was associated

with a parameter ID (see 3.3 for examples of spatial inputs used to define HRUs). This allowed

the user to define areas of the catchment where different parameter sets were required, allowing

any possible spatial configuration of parameter values. 2) re-defining the parameter settings

file read in by the model. The previous settings file specified ranges for each parameter to be

applied across the catchment. The new file was formatted to define parameter values/ranges for

each of the parameter IDs defined by the user. This allowed different parameter values/ranges to

be input across the catchment. 3) Ensuring that the model used these distributed parameters

correctly, and applied the correct parameter values in each HRU.

A series of modelling experiments were carried out across the Severn at Haw Bridge catch-

ment, to improve understanding of the model prior to parameterising and implementing it

nationally. These focused on the model setup and input resolution (section 3.3.2.1), defining appro-

priate parameter ranges (section 3.3.2.2), and improving understanding of how each parameter

influenced simulated flows (section 3.3.2.3). The Severn catchment was selected as it is a very

large catchment (at 9895 km2 it is the second largest catchment in the UK) which contains many

sub-catchments with varying hydrological characteristics (as shown in figure 3.4).

43



CHAPTER 3. DATASETS, TOOLS AND METHODS

FIGURE 3.4. Spatial catchment attributes across the Severn at Haw Bridge catchment.
Mean annual Runoff, mean annual Rainfall and baseflow index (BFI) data are from
the UK Hydrometric Register (Marsh and Hannaford, 2008). Slope was calculated
from the NEXTMap digital elevation map. The location of the Severn catchment
within GB is also shown for scale.

3.3.2.1 Distributed vs homogenous rainfall inputs

The first experiment evaluated the benefit of distributing rainfall inputs. DECIPHeR was setup

over the Severn catchment for two different model configurations: 1) uniform rainfall input across

the catchment, 2) 10 km resolution rainfall inputs. For both of these configurations, HRUs were

defined using three classes of slope and accumulated area and sub-catchment boundary maps

(to prevent flow across catchment boundaries). The distributed rainfall setup also included a 10

km rainfall input grid in the HRU classifications. This resulted in 573 HRUs for the uniform

rainfall input simulation, increased to 3210 HRUs for the distributed rainfall simulation. The

parameters were sampled 100 times, to give an initial estimate of model performance.

The resultant model performance across the Severn catchment is given in Figure 3.5. This

shows that inclusion of distributed rainfall grids either increases or does not substantially impact

model performance across most of the Severn catchment. Increases in model performance are

generally seen in the west, where mean annual rainfall is highest and therefore homogenous

rainfall inputs would be substantially too low. The few catchments in the west which are not

represented well by the model were found to have reservoirs modifying observed flows. The

model structure does not currently include artificial influences, and so would not be expected to
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FIGURE 3.5. Initial analysis of DECIPHeR model performance across the Severn with
uniform vs 10 km distributed rainfall inputs. Top: maps of performance for all
sub-catchments. Sub-catchments coloured white are missing observed discharge
data. Bottom: selected hydrographs showing simulated flow timeseries driven by
uniform (blue) and distributed (red) rainfall inputs. These catchments were chosen
to show an area where distributed rainfall leads to a large model improvement
(54022), and an area where reservoirs heavily influence flows (54081) masking any
performance increase.
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reproduce flows for these catchments.

The model struggled to simulate catchments in the north east. These catchments have high

baseflow contributions to river flow (baseflow index > 0.6), relatively shallow slopes and relatively

low mean annual rainfall and runoff compared to the rest of the Severn sub-catchments, as shown

in figure 3.4. The DECIPHeR model structure may not be as appropriate for these catchments,

as topography is not as dominant for runoff generation. However, it may be the case that these

catchments are simply harder to model, and further sampling of the parameter space is required

to find behavioural model parameters. These baseflow-dominated catchments are also likely to

have a longer hydrological memory, and therefore a longer warm-up period would be required to

correctly simulate these catchments.

Overall, this simple experiment confirmed the importance of using distributed rainfall inputs

when modelling across a large region, despite the reduction in computational speed resulting

from additional HRUs.

3.3.2.2 Parameter identifiability and appropriate ranges

The second experiment explored the identifiability of model parameters, informing the selection of

upper and lower bounds for each parameter. The DECIPHeR parameters are shown and defined

in Figure 3.2.

DECIPHeR is designed to be run in an uncertainty framework, sampling parameters between

set upper and lower bounds. The values used for these upper and lower limits is very important.

Setting the bounds too wide will result in few simulations producing reasonable results, and so

requiring large numbers of model simulations to effectively sample the parameter space. Setting

the bounds too narrow will result in behavioural parts of the parameter space not being sampled,

and so good simulations may be missed. It was therefore considered important to experiment

with finding appropriate values for these upper and lower limits.

To evaluate suitable parameter bounds, DECIPHeR was run over the Severn catchment

sampling the parameters over 4000 times. Initial parameter limits for these simulations were

selected based on previous model applications carried out within the research group and are given

alongside parameter bounds used in published literature in Table 3.1 (Beven and Freer, 2001b).

Model performance was evaluated at each of the 64 gauged points within the Severn catchment

using the Nash-Sutcliffe Efficiency (NSE) criterion (Nash and Sutcliffe, 1970) and a range of

other performance metrics assessing performance for individual aspects of the hydrograph. Dotty

plots were then produced to show the relationship between each parameter value and model

performance.
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TABLE 3.1. Parameter bounds used in the DECIPHeR hydrological model. Shaded rows
show parameters where the bounds have been extended for this thesis. Original
model setup refers to previous unpublished applications of DECIPHeR, and new
model setup refers to extended bounds used throughout this thesis.

Beven and Freer (2001a) Original model setup New model setup
Parameter

Lower Upper Lower Upper Lower Upper
SZM 0.005 0.06 0.001 0.007 0.001 0.06
ln(T0) 0.1 8 -7 1 -7 1
CHV 1000 5000 1500 6000 1500 6000

SRmax 0.005 0.3 0.02 0.15 0.02 0.3
Td 0.1 120 0.1 40 0.1 40

Smax 0.1 0.8 0.2 1.4 0.2 1.4

FIGURE 3.6. Dotty plots (a) and parameter interaction plots (b) used to help identify
parameter limits for the Severn at Haw Bridge catchment.In the example given in
a), upper bounds for SZM and SRmax have been set too low resulting in possible
behavioural parts of the parameter space not being sampled.

Dotty plots map model parameter values and associated performance scores onto a one-

dimensional surface, enabling a visual assessment of the identifiability of model parameters

(Beven and Freer, 2001a; Pianosi et al., 2015; Wagener and Kollat, 2007). The dotty plots pro-

duced for the Severn at Haw Bridge are given in Figure 3.6, but plots for all sub-catchments

and other performance metrics are not given as they show the same picture. Analysis of dotty

plots identified SZM and SRmax as particularly sensitive parameters for catchments across the

Severn, when analysed using NSE. SRmax and SZM also emerge as influential parameters when

evaluating model performance using bias and total variance error respectively.

For many catchments, the best performing simulations were on the edge of the parameter

bounds for SRmax and SZM (i.e. at the edge of the dotty plot), indicating that better model
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simulations could be achieved by extending these limits. The upper and lower bounds used were

subsequently extended, with values give in Table 3.1, and the model was re-run for another 4000

simulations within the larger parameter bounds. This resulted in a general increase in model

performance across all sub-catchments, and therefore the new extended bounds were used for all

future simulations.

Dotty plots are a good method to quickly visually identify parameters with incorrect limits

and parameters which are exerting the strongest control on model performance. However, there

are limitations to their use. Firstly, they consider each parameter individually and do not consider

parameter interactions. It is the performance of a parameter set that is evaluated by NSE,

and not the performance of an individual parameter value, and therefore care should be taken

not to over-interpret these results. Secondly, they are conditional on the performance measure

selected (Freer et al., 1996), and some parameters may show a stronger response to different

performance metrics (e.g. a parameter controlling model timing may not show any sensitivity if

model performance is evaluated using a bias metric). We therefore continued this analysis with a

more in-depth look at how each parameter impacts various aspects of the hydrograph.

3.3.2.3 Parameter impact on simulated flows

To further understand the sensitivity of the DECIPHeR model parameters, and to understand the

effect of each parameter on simulated flows, a small experiment was carried out sampling each

model parameter whilst keeping the others constant. For each model parameter, 80 simulations

were carried out sampling between the set ranges for the selected parameter value whilst keeping

the others set at default values. This enabled a visual assessment of parameter sensitivity across

the Severn catchment.

The results are given in Figure 3.7. Hydrographs are given for the Severn at Haw Bridge

(54057, 9895 km2), and the Severn at Abermule which is a smaller sub-catchment at the western

edge of the Severn catchment (54014, 580 km2). Hydrographs are coloured by the relative pa-

rameter value, ranging from cyan at the lower parameter bound up to magenta at the higher

end of the parameter bound. Summary statistics are given next to the hydrographs, showing the

variance, total flow and peak flow relative to observations which are given as a dashed black line.

These results show that ln(T0), SZM, SRmax and Smax all have a large impact on simulated

flows, whilst CHV only has a small impact. SRmax and Smax, which control the root zone and

saturated zone store volumes, are important in controlling total flow volumes (i.e. bias). SZM

and ln(T0), which define the soil hydraulic conductivity, are important in defining the shape and

timing of peak flows, as well as the overall variance. SZM, which has previously been highlighted

as a very sensitive parameter (see Figure 3.6), is particularly important in defining the shape
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FIGURE 3.7. Demonstrating parameter influence on the hydrograph through one-at-
a-time parameter sampling for the Severn at Abermule (54014) and Severn at
Haw Bridge (54057). Each row shows the result of varying one model parameter
while holding all others constant. Hydrographs are coloured by the relative value
of the changing parameter, ranging from low (cyan) to high (purple). Additional
plots summarise the change in overall variance, total flow and peak flow as the
parameter values are increased.
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and timing of peak flows. CHV, the channel routing velocity, impacts flow timing, but it appears

to be relatively insensitive, especially for the smaller catchment.

A major limitation with this style of analysis is that it does not enable assessment of parameter

interactions. Interactions between the parameters will be important, and can result in changes

to the hydrographs not seen here. For example, the impact of the SZM parameter may vary

depending on the chosen default value for ln(T0). Therefore, this analysis is useful as a general

picture of how parameters values control model output, and the impact of each individual

parameter when considered in conjunction with other analysis, but these results should not be

over interpreted.

3.4 Model parameterisation

As discussed in Section 2.3 and Section 5, Multiscale Parameter Regionalisation (MPR) emerged

as the best parameterisation strategy for a flexible, large-scale hydrological model. Through link-

ing parameters to spatial geophysical datasets, this method had the potential to create seamless

spatial fields of model parameters, and produce consistent parameter fields across a domain

without the need to calibrate every catchment and consider interactions between interacting sub-

catchments. Furthermore, as MPR linked parameters to geophysical data at the highest possible

resolution before upscaling, previous studies indicated that it could produce global parameters

that were appropriate across different model resolutions (Kumar et al., 2013a; Samaniego et al.,

2017). This is particularly desirable for a flexible model such as DECIPHeR, which allows the

user to split the landscape in multiple different ways and test different configurations of HRUs.

It would mean that the same set of constrained global parameters could be applied to produce

simulations across any of these spatial configurations without the need to re-calibrate the model

each time.

In order to apply the MPR technique to DECIPHeR, a large amount of code development

was required. The DECIPHeR hydrological modelling framework was written in Fortran. It was

decided to create a DECIPHeR_MPR model version, including the parameter regionalisation

and DECIPHeR model together. This meant that large numbers of model parameter settings

files did not have to be created and saved. Instead, the MPR code could create thousands of

parameter fields and then directly run the DECIPHeR model with these parameter settings.

Fortran modules were subsequently written to carry out each step of the MPR process within the

DECIPHeR framework. A summary of the code flow is given in Figure 3.8, and code is provided

in Appendix C. The most important modules are described below.

Read_controls. This module read in all the settings files for MPR. All the key user decisions

50



3.4. MODEL PARAMETERISATION

FIGURE 3.8. Diagram showing the flow of the DECIPHeR_MPR code and key modules.
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for the MPR process were kept in readable settings files, so that it was easy to experiment with

and adapt the framework. The main settings file contained options including the number of

global parameters to sample, and the parameterisation technique desired for each parameter

(including options to apply homogeneous sampled parameter values across the catchment as well

as different possible pedotransfer functions to use for regionalisation). The second settings file

lists the filenames of all the catchment descriptor datasets to use in the regionalisation.

Read_HRU and Read_BasPred. These subroutines read in the spatial data required for

the parameter regionalisation. In the first step, read_HRU read in the map specifying where

different parameter values were required across the landscape. This was normally the HRU

map, but could also be a map of sub-catchments or any other spatial map that was used in the

creation of HRUs. In the second step, read_BasPred was called for each model parameter to read

in all the datasets required for parameterisation (basin predictor datasets). This referred to the

parameterisation options specified in the settings file, so that time and computer memory were

not wasted reading in datasets that would not be used. Once datasets had been read-in, they

were then clipped to the model domain size to prevent unnecessary processing of large datasets.

If required, these clipped datasets could then be saved as ascii files to speed-up future model runs.

init_gparams. This subroutine randomly initialises the global parameter values between set

bounds. Random numbers are created using a set starting seed, so that each call of the modelling

framework generates the same list of global parameter values (i.e. global parameter number 1

will always have the same value whenever the model is called). This is useful, as it means that

even if the model is run separately for different catchments, the global parameters creating the

parameter maps are consistent. An option is given in the user settings file to start on a specific

global parameter number so that large samples of global parameters can be carried out in parallel.

pedotransfer. This subroutine applies the selected pedotransfer function for each parameter,

to create high resolution parameter fields. An example of this process is shown in Figure 3.9. This

example shows how the high-resolution basin predictor datasets are input into the pedotransfer

function. Varying the global parameter values (a, b and c in the figure) results in different high

resolution parameter fields being produced on each iteration.

upscale. This suproutine applies upscaling operators to the high resolution parameter fields,

to create a list of parameter values which can be used by the model. A visual demonstration of

this is given in Figure 3.10. The resolution that parameters are upscaled to is defined by the

parameter id map provided in the read_hru module, and so is completely flexible. A variety of

different upscaling operators are available, including the harmonic mean, arithmetic mean and

majority. The most appropriate upscaling operator to use for each model parameter was found
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FIGURE 3.9. Graphic demonstrating how an ensemble of possible parameter fields
are created within the multiscale parameter regionalisation technique, using the
example of the ln(T0) parameter across the Severn at Haw Bridge catchment.
Catchment attribute datasets (here %sand and %clay) are linked to the model
parameter through a transfer function. Different global parameter values (here a,
b and c) result in many different possible high resolution parameter maps.

through investigation of upscaling operators used in previous studies and testing of resultant

parameter fields.

Run_model. This module calls a slightly modified version of the DECIPHeR model structure.

The original DECIPHeR model includes modules initialising reading in parameter files and

sampling parameter values which have been removed. The initialisation scheme was also modified

to remove bugs resulting from distributed parameter fields.

3.5 Datasets for model parameterisation

The need for high-resolution geophysical data linking to each model parameter makes MPR

a data-intensive parameterisation approach. Finding high-resolution data is challenging, and

there are many issues with available datasets even for a data-rich country such as the UK.

This includes data not being freely available, missing data and gaps in national products, and

the difficulty of mapping data that is derived from point-source measurements. The following

section details the selection and processing of geophysical datasets to enable a national-scale
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FIGURE 3.10. Graphic demonstrating parameter upscaling for an example ln(T0) pa-
rameter field across the Severn catchment. The high-resolution parameter field can
be upscaled to any desired model resolution, including lumped basin parameter
fields (catchment resolution), parameters for each sub-catchment (sub-catchment
resolution) or parameters for each HRU (HRU resolution).

application of MPR across Great Britain, to expand upon the brief description of the datasets

given in Research Chapter Two. A summary of all the datasets is given in Table 3.2, alongside a

link to the section where they are fully explained. These data underpin the modelling carried out

in research chapters two and three.

3.5.1 Land-use and rooting depth

A map of rooting depth was required for parameterisation of the SRmax parameter. This parame-

ter controls the maximum root zone storage in the model, which is the main store from which

evapotranspiration is taken, and therefore theoretically relates to rooting depth and porosity

(required to transform water depth to deficit). This section describes the selection of datasets for

rooting depth, whilst porosity is explained in section 3.5.4. There were no nationally available

root depth maps for the UK, so instead we decided to use land-use information combined with

research on the expected rooting depths associated with different land-uses. To include the

uncertainty in this link, we sampled between a range of possible rooting depths for each land-use

within the parameterisation framework.

A literature review was carried out to identify the range in rooting depths associated with

different land uses. Potential rooting depth data was available from studies based on observations

of rooting depth (Fan et al., 2017; Schenk and Jackson, 2002; Zeng, 2001), studies modelling

rooting depth (Kleidon, 2004; Wang-Erlandsson et al., 2016; Yang et al., 2016), and look-up tables

of rooting depths used by other hydrological models (Schmied et al., 2014; Wang-Erlandsson

et al., 2014). Global rooting depths datasets based on the observation approach used available

measurements of root depth profiles/ root depth distributions and extrapolated these to produce

global products based on the relationships between rooting depth and global biomes (Schenk

and Jackson, 2002; Zeng, 2001). Modelling approaches used satellite measurements such as
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TABLE 3.2. A summary of the spatial datasets collated for model parameterisation,
with links to the section where the generation of each dataset is fully explained.

Dataset Description Section

Land-use
A simplified land-use map was created by reclassifying
the UKCEH Land Cover Map.

3.5.1

Rooting depth
A table of plant rooting depths associated with different
land-uses was created by collating values from the
literature.

3.5.1

Sand, silt and
clay content

Maps of surface soil percentage sand, silt and clay,
alongside sand, silt and clay fractions at different soil
depths, were generated from national soil products
(LandIS nationalsoils map for England andWales and
James Hutton Institute soils map for Scotland).

3.5.2

Organic carbon
content

Maps of Organic Carbon content were extracted from
the national soil products.

3.5.2

Bulk density
Maps of bulk density were produced based on the
national soil products using pedotransfer functions.

3.5.3

Porosity
Maps of porosity were produced using the relationship
between porosity and bulk density.

3.5.4

Soil depth

A soil depth map was produced by combining a) high
spatial resolution soil depth information extracted from
the national soil products for soils shallower than 1m,
with b) modelled soil depth information from
Pelletier et al. (2016) extending to a much greater depth
of 50m.

3.5.5

Hydrogeology
A map identifying areas of high productivity
hydrogeology was created from the CAMELS-GB
dataset.

3.5.6

absorbed phosynthetically active radiation (APAR), precipitation or evaporation as inputs, which

were then transformed to rooting depth estimates given different assumptions (Kleidon, 2004;

Wang-Erlandsson et al., 2016; Yang et al., 2016). The modelling study of Yang et al. (2016) was

particularly relevant, as they focused on effective rooting depths for hydrological applications and

compared their results to other studies. The effective rooting depth accounted for both vertical

rooting depth and the spacing between plants, rather than the actual root depth of an individual

plant. This was estimated by applying an analytical rooting depth model which balances carbon

cost with benefits of deep roots, to get a global estimate of rooting depths. From this, they produced

plots of effective rooting depth for each global biome with error bars indicating their modelling

uncertainty, and presented this against results using other methods. Wang-Erlandsson et al.

(2016) also modelled global rooting depth for different biomes, reporting uncertainties in these

results within biomes and between different methods, and tested these in a global hydrological

model. We collated information from the above studies to produce a table of rooting depth ranges
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TABLE 3.3. Rooting depth values associated with each land-use; upper and lower
bounds. These were synthesised from a selection of studies (Kleidon, 2004; Wang-
Erlandsson et al., 2014, 2016; Yang et al., 2016)

.

Land-use
Lower rooting depth
(cm)

Upper rooting depth
(cm)

Broadleaved woodland 150 250
Coniferous woodland 150 250
Cropland 75 175
Mixed grassland 75 175
Fen/Marsh/Swamp/Bog 75 175
Heather 25 225
Rock 5 150
Water 0 300
Coastal sediment 5 150
Urbanised 5 100

for different land cover types.

Multiple land cover maps were available, each using different land-cover classes (see figure

3.11. The Land Cover Map 2015 (LCM2015) produced by the Centre for Ecology and Hydrology

was the highest resolution land-use map available (Rowland et al., 2017). This is a national

product, derived from satellite images and digital cartography, freely available for research at

25m resolution across the UK. The high resolution and coverage of this product made it the ideal

choice for our regionalisation method. However, the land cover classes available did not directly

relate to the land cover classes given in the rooting depth literature. The large number of land-use

classes (20 classes in total) was also a drawback, as each class introduced an additional global

parameter into the parameter regionalisation. Having too many global parameters would increase

the difficulty in constraining the global parameter values (as additional model runs would be

required) and could result in overparameterisation and the non-identifiability of parameter sets.

The land cover map which related most closely to the rooting depth literature was the MODIS

global land cover product (Friedl et al., 2010). This was available at a 5 arc minute resolution,

as shown in figure 3.11, with 17 land cover classes (although not all of these classes were used

within Great Britain, for example Savannas, Snow and ice). However, the low resolution of this

product was unsuitable for our use.

To resolve the issues of (1) disparities between land cover classes in the LCM2015 product

and research on rooting depth, (2) too many classes in the LCM2015 product, and (3) the MODIS

land cover map being too low resolution, a new land cover map was created. We re-classified the

LCM2015 map, reducing the 20 classes down to 10 that were considered most hydrologically

56



3.5. DATASETS FOR MODEL PARAMETERISATION

FIGURE 3.11. A comparison of land-use products available for Great Britain. a) the
2015 Land Cover Map produced by UKCEH, (Rowland et al., 2017), b) MODIS
global land cover product (Friedl et al., 2010).

relevant and closely related to the biomes reported in the rooting depth literature. The resultant

50m resolution raster map is shown in figure 3.12.

3.5.2 Soil texture and organic content

Soil texture and organic content data were required for parameters relating to saturated hy-

draulic conductivity. Surface soil properties were required for the ln(T0) parameter, while the

distribution of these properties with soil depth was required for SZM.

The LandIS National Soil Map of England and Wales (NATMAP) and the James Hutton

Institute Soils Map of Scotland were used as these provided the highest possible resolution soil

data for Great Britain. A key downside to using the LandIS soil map is that it is not freely

available, unlike other products covering larger scales such as the European Soil Database

Derived Data product (Hiederer, 2013a,b) which provides the same soil attributes on a 1 km

grid. As MPR relies on having good quality, high-resolution data, this was a necessary compromise.

The national soil data were not given as spatial products, and some simplifying assumptions

had to be made to produce spatial maps of soil attributes. The datasets provided soil information

for each land-use within a soil-series, whereas the vector maps provided with the datasets
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FIGURE 3.12. The modified land-use product used for model parameterisation. This
was based on the LCM2015, but with a reduced number of land-cover classes.

FIGURE 3.13. Illustration of the layout of the national soils data products. Shows the
complicated one-to-many relationship between mappable units (MUSIDs) and the
soil series data.
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consisted of map-units which often included many different soil series and no indication of

the distribution of land-uses within soil series’. A graphical representation of this relationship

is given in Figure 3.13. Therefore, to extract and plot only surface soil properties from these

datasets, using a methodology that was as parsimonious as possible and did not bring in other

datasets with their own uncertainties, the following analysis steps were taken:

1. For surface soil properties, all soil series observations with an upper depth of 0 (i.e. the soil

surface) were extracted from the database. For depth profiles of soil properties, observations

falling within the depth categories of 0-10cm, 11-25cm, 26-50cm, 51-100cm and 101-150cm

were extracted individually.

2. Series-average properties were calculated by taking a mean of values for all different

land-uses within that soil series. All land-uses were given equal weighting.

3. It was not possible to plot the soil series-average properties directly, as we did not have

any information about the location of these series within the map-unit, only the fraction of

the map-unit area covered by each soil series. Therefore, map-unit average values were

calculated by taking an area-weighted mean of all series-average values falling within each

map-unit.

Following these data analysis steps, we were able to produce maps of soil percentage sand,

percentage silt, percentage clay and organic content at the surface as shown in Figure 3.14.

The original vector datasets were converted to 50m raster, which were compatible with the

DECIPHeR input grids, as this was considered high enough resolution to capture the features of

interest. The two data products were then combined, to produce national maps for Great Britain.

Whilst the surface textural properties maps covered most of Great Britain, there were large

areas where no data was available. The categories assigned to these areas of missing data are

shown in 3.15. The main reason for missing data was the presence of peaty or highly organic soils,

for which soil textural properties are not routinely measured. This was particularly a problem

for the Scottish data, where large areas were missing. This missing information was important,

as peaty and organic soils were likely to have very different properties than their neighbouring

soils. Therefore, it was clear that the soil textural information could not be used as a catchment

predictor variable for peaty and organic soils, and the missing information could not be covered

up using a gap-filling approach. An alternative pedotransfer function would need to be derived

for these areas of missing data, using different catchment descriptor data. Most other missing

data was due to scattered cells of surface water and areas of bare rock, with a small area of china

clay spoil workings in Cornwall. These areas of missing data needed to be filled in, to make the

maps usable within the national scale methodology.

It was decided that the best approach for the missing data was a nearest-neighbour gap-filling

method, whilst keeping a record of the areas of peaty/organic soil to ensure that the soil textural

59



CHAPTER 3. DATASETS, TOOLS AND METHODS

FIGURE 3.14. The maps of surface soil percentage sand, silt and clay derived from the
LandIS National soil map of England and Wales combined with the James Hutton
Institute soil map of Scotland. These have been converted into a 50m raster format.
Top row shows the raw maps before gap-filling, bottom row shows the gap-filled
maps.
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FIGURE 3.15. Missing soil texture information in the LandIS and James Hutton Insti-
tute soil products, and possible causes. Maps show location of missing data in red
for cells identified as peat (organic soils with peat in the soil description), water
cells or organic soils (have an organic matter content above 30% and do not mention
peat in the soil description). The bar plot shows classifications for other areas of
missing data: China clay spoil workings and bare rock.
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information was not used across these areas. A gap-filling algorithm was written in MATLAB.

This algorithm iterated through the maps. On each iteration, it looped through the cells still

missing data, extracted the surrounding cells using a Moore neighbourhood (i.e. including diago-

nally touching cells as neighbours), and took a mean value of all neighbouring cells with data to

fill in the missing data cell. The iterative nature of the algorithm meant that the order in which

cells were evaluated was not important, as gap-filled values would not be included in the map

until the next iteration. When the algorithm had converged, and each successive iteration was

not able to fill any of the nodata cells, the extent of the neighbourhood could be increased. The

result of this gap-filling can be seen in Figure 3.14.

The organic matter map had fewer missing data cells than the textural properties map, but

it was still run through the gap-filling algorithm to prevent any missing-data problems when

running through the national model setup. The surface soil organic content is much higher for

Scottish soils than for England and Wales, but overall the merging of the two datasets appears

consistent.

3.5.3 Bulk density

Soil surface dry bulk density maps were required for the parameterisation of parameters relating

to ksat in areas of peaty soil. Bulk density data were not available within both the LandIS and

Hutton national soil maps, and there were no suitable observational datasets of bulk density

across Great Britain. Whilst a bulk density map was available from the Countryside Survey

(Countryside Survey, 2007), it was only available for topsoil and contained many areas of missing

data. It was therefore decided to use a pedotransfer function to generate bulk density maps, and

bulk density for various depths within the soil profile, from our available soil data.

Two different pedotransfer functions were found for generating bulk density from organic

content. Firstly, Lilly (2018) have previously applied the following equation to predict dry bulk

density (Db) based on Scottish soils:

Db = 0.6653−0.01C, (3.1)

where C is percentage organic carbon. Secondly, Hollis et al. (2012) developed a pedotransfer

function for UK and pan-European soils, with the form

Db = 1.4903−0.33293ln(C), (3.2)

where C is also percentage organic carbon content. Without any evidence to suggest one of these

equations was more suitable than the other, we decided to apply both to check if the choice of

equation led to substantial differences in the resultant bulk density maps.
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Figure 3.16 shows the bulk density maps produced by both pedotransfer functions, and how

the results compare. The choice of pedotransfer function was important for areas with high/low

bulk density, but did not have a large impact on areas where bulk density was estimated to be

between 0-0.5 g cm−3. Both pedotransfer functions resulted in maps showing the same patterns

of bulk density across GB, which matched the broad patterns seen in the Countryside Survey bulk

density product Countryside Survey (2007). We were most interested in the relative differences

in bulk density across GB, and capturing the areas where bulk density was expected to be

particularly low/high. We therefore decided to use the data derived using the Hollis et al. (2015)

pedotransfer function, which most clearly highlights these relative differences.

3.5.4 Porosity

Porosity maps were calculated using the inverse relationship between porosity and bulk density.

Porosity can be defined as

P = (1− Db

Dp
)×100, (3.3)

where P is total porosity, Db is bulk density, and Dp is particle density (Hollis et al., 2015). A

standard value of 2.65 g cm−3 was used for Dp, as spatial measurements were not available. This

is consistent with techniques used in previous UK soil data studies (Hollis et al., 2015).

3.5.5 Soil depth

The Smax parameter defines the maximum effective deficit of the saturated zone. This should

relate to the soil depth and porosity - with deeper and more porous soils theoretically being able

to store more water. Soil depth maps were therefore required. Several different datasets were

available for soil depth estimates across Great Britain, each with their own advantages and

problems.

Soils depths datasets covering Great Britain were available from the UK Soil Observatory

(UKSO) and European Soils Map. These products reported soils depth categories, rather than

measured soil depth values, so the information that could be gained was limited. The European

soils map was considered too coarse, as it only included two classes for deep or shallow soils.

The UKSO product was more promising, with a 1 km resolution map, splitting soil depth into 5

classes. However, even this was considered relatively coarse for MPR, which requires catchment

descriptor information at the highest resolution possible. Therefore, we continued looking for

products with a higher spatial resolution both at the surface and with depth.

The LandIS National soils map for England and Wales and James Hutton Institute soils map

for Scotland are the highest resolution soils maps available for Great Britain. These datasets do

not include a maximum soil depth or depth to bedrock variable. However, both included depth

ranges for their soil measurements, and recorded when rock layers were reached. From this,
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FIGURE 3.16. A comparison of pedotransfer functions to generate bulk density maps
across Great Britain. Top: Scatter plot directly comparing bulk density estimates
produced by the pedotransfer functions of Lilly (2018) and Hollis et al. (2012), at
all mapped points in Great Britain. Points should fall along the 1:1 line where
both pedotransfer functions produce the same bulk density estimates. Middle:
histograms showing the distribution of bulk density values across Great Britain
when using the pedotransfer function of Lilly (left) or Hollis (right). Bottom: surface
bulk density maps using the pedotransfer function of Lilly (left) vs Hollis (right).
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FIGURE 3.17. Generation of the soil depth dataset produced by combining high spatial
resolution national soils depth information with modelled soil depth data extending
to a greater depth.

maximum soil depths maps were produced for Great Britain at a very high spatial resolution, as

shown in Figure 3.17. However, the LandIS and James Hutton Institute products only sampled

to 150cm and 100cm respectively, and large areas of Great Britain have soil depths extending

much below this. Therefore, they did not adequately show variations in very deep soils.

As few measured soil depths datasets sampled deep enough to distinguish between the large

areas of ‘deep’ soils in Great Britain, and we felt this information was important for the catchment

hydrology, we looked at modelled estimates of soil thickness. Pelletier and Rasmussen (2009)

produced a global dataset estimating soil thickness using the best available data for topography,

climate and geology. This modelled dataset is at a global 30-arcsecond resolution, which is of

a comparable resolution to the UKSO soil depth information yet less high resolution than the

national soils maps, and extends to a soil depth of 50m. This is far deeper than any of the soil

depth measurement datasets, and can provide an indication of soil depth variation in the ‘deep’

soils where measurements are lacking.
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FIGURE 3.18. Simplification of the CAMELS-GB hydrogeology, to create a map iden-
tifying areas of high productivity hydrogeology. Darker areas show regions with
higher productivity hydrogeology, and the different colours indicate the flow paths.

Therefore, we created a new soil depth map for Great Britain that merged information from

the national soil maps and modelled soil depths, as shown in Figure 3.17. For all soils where

bedrock had been recorded in the national soils database, the depth at which bedrock was recorded

was used. For all soils where the national soils database had not found bedrock (i.e. these soils

are deeper than was sampled) modelled soil depth from Pelletier and Rasmussen (2009) was used.

This allowed us to create a product that combined the high spatial resolution of the national soils

products with the extra information for very deep soils brought in from the modelled data.

3.5.6 Hydrogeology

Storage and transmission of water within a catchment is related to catchment geology as well

as soil types (Pfister et al., 2017). Initial applications of MPR without considering hydrogeology

showed poor performance in areas with high productivity geology, due to underestimation of

saturated zone storage (Smax parameter) and lateral saturated transmissivity (ln(T0) and SZM

parameters). It was therefore considered important to add hydrogeology into the regionalisation.

A national hydrogeology map was generated from hydrogeology data provided within the

CAMELS-GB dataset (Coxon et al., 2020). This categorises the uppermost geological layer

(superficial deposits where present, or bedrock where not) into nine hydro- geological classes

based on aquifer potential. This information was re-categorised to produce a map showing only

the locations of areas with high productivity geology, as can be seen in figure 3.18.
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4
BENCHMARKING THE PREDICTIVE CAPABILITY OF LUMPED

MODELS ACROSS GREAT BRITAIN

This chapter has been published as a research article in Hydrology and Earth System Sciences.

Model simulations and figures were developed by Rosanna Lane, with guidance from Jim Freer,

Gemma Coxon and Thorsten Wagener. All co-authors provided comments on the final manuscript

draft, and we acknowledge review comments from Thibault Mathevet, Nans Addor and an

anonymous reviewer that helped to clarify and improve this chapter.

Citation: Lane, R.A., Coxon, G., Freer, J. E., Wagener, T., Johnes, P.J., Bloomfield, J. P., Greene, S.,

Macleod, J. A., Reaney, S. M (2019). Benchmarking the predictive capability of hydrological models

for river flow and flood peak predictions across over 1000 catchments in Great Britain. Hydrology

and Earth System Sciences, 23, pp. 4011-4032. https://doi.org/10.5194/hess-23-4011-2019

4.1 Context

Research question 1: How well are simple, conceptual model structures able to simu-
late high flows across Great Britain?

Evaluating model performance across large samples of catchments is useful to guide model

selection, understand reasons for variations in model performance, and to support model develop-

ment. Given the large uncertainties in hydrological data, model structures and model parameters,

it is essential that model evaluation is carried out within an uncertainty framework. This re-
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search chapter provides the first multi-model evaluation within an uncertainty framework for a

large sample of catchments across GB. This aims to evaluate the predictive capability of lumped

models across Great Britain, to improve understanding of how and why model performance varies

between catchments and to provide benchmark simulations which will be useful for future model

evaluations.

4.2 Introduction

Lumped and semi-distributed hydrological models, applied singularly or within nested sub-

catchment networks, are used for a wide range of applications. These include water resource

planning, flood and drought impact assessment, comparative analyses of catchment and model

behaviour, regionalisation studies, simulations at ungauged locations, process based analyses,

and climate or land-use change impact studies (see for example Coxon et al. 2014; Formetta et al.

2017; Melsen et al. 2018; Parajka et al. 2007a; Perrin et al. 2008; Poncelet et al. 2017; Rojas-Serna

et al. 2016; Salavati et al. 2015; van Werkhoven et al. 2008). However, model skill varies between

catchments due to differing catchment characteristics such as climate, land use and topography.

Evaluating where models perform well or poorly and the reasons for these variations in model

performance can provide a benchmark of model performance to help us better interpret modelling

results across large samples of catchments (Newman et al., 2017) and lead to more targeted

model improvements through synthesising those interpretations.

4.2.1 Large-sample hydrology

Large-sample hydrological studies, also known as comparative hydrology, test hydrological models

on many catchments of varying characteristics (Gupta et al., 2014; Sivapalan, 2009; Wagener

et al., 2010). Evaluating model performance across a large sample of catchments can lead to

improved understanding of hydrological processes and teach us a lot about hydrological models,

for example, the appropriateness of model structures for different types of catchment charac-

teristics (i.e. Kollat et al. 2012; Van Esse et al. 2013), emergent properties and spatial patterns,

key processes that we should be improving, and identification of areas where models are unable

to produce satisfactory results (e.g. Newman et al. 2015; Pechlivanidis and Arheimer 2015).

This can guide model selection and also teach us about appropriate model parameter values for

different catchment characteristics, with the production of parameter libraries which can be used

for parameter calibration in ungauged basins, and increase robustness of calibration in poorly

gauged basins (Perrin et al., 2008; Rojas-Serna et al., 2016)).

At the same time, regional-scale to continental-scale hydrological modelling studies are

increasingly needed to address large-scale challenges such as managing water supply, water

scarcity and flood risk under climate change and to inform large-scale policy decisions such as
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the European Union’s Water Framework Directive (European Parliament, 2000). National-scale

hydrological modelling studies using a consistent methodology across large areas are increasingly

applied (Coxon et al., 2019; Højberg et al., 2013; McMillan et al., 2016; Van Esse et al., 2013;

Veijalainen et al., 2010; Velázquez et al., 2010), facilitated by increasing computing power and the

availability of open-source large datasets such as the CAMELS or MOPEX hydrometeorological

and catchment attribute datasets in the USA (Addor et al., 2017; Duan et al., 2006). These have

great benefits, as applying a consistent methodology across a large area enables comparison

between places and identification of areas that may be at the highest risk of future hydrological

hazards. However, the range of catchment characteristics and hydrological processes across

national scales pose a great challenge to the implementation and evaluation of a national-scale

model (Lee et al., 2006), and we therefore need large-scale evaluations of model capability to

identify which processes are important and which model structure(s) are most appropriate.

4.2.2 Benchmarking hydrological models

Model skill varies between places, and it is therefore important for a modeller to understand

the relative model skill for their study region and how that relates to their core objectives. A

single model structure will vary in its ability to produce good flow time series across different

environments and time periods (McMillan et al., 2016), expressed sometimes as model agility

(Newman et al., 2017). One way to evaluate this relative model skill is by comparing the model

performance to a benchmark, which is an indicator of what can be achieved in a catchment

given the data available (Seibert, 2001). This helps a modeller make a more objective decision on

whether their model is performing well. Examples of benchmarks that models can be evaluated

against include climatology, mean observed discharge or the performance of a simple, lumped

hydrological model for the same conditions (Pappenberger et al., 2015; Schaefli and Gupta, 2007;

Seibert, 2001; Seibert et al., 2018).

The creation of a national benchmark series of performance of simple, lumped models can

therefore be useful for a variety of reasons. Firstly, a benchmark series of lumped model perfor-

mance is a useful baseline upon which more complex or highly distributed modelling attempts

can be evaluated (Newman et al., 2015). This would ensure that future model developments are

improving upon our current capability, therefore justifying additional model complexity. Secondly,

lumped hydrological models provide a good benchmark for evaluating more complex models, as

they give an indication of what is possible to achieve for a specific catchment and the available

data (Seibert et al., 2018). This can help us identify whether a model is performing well in a

catchment relative to how it should be expected to perform for the particulars of that catchment.

For example, if a modeller, using more complex modelling approaches, gains an efficiency score

of 0.7 for their model in a specific catchment, there is some subjectivity as to whether this is a

good or poor performance, depending on the modelling objective. However, if lumped, conceptual
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models already applied at the same catchment tend to have efficiency scores of around 0.9 for

that catchment, then the modeller knows that their model is performing poorly relative to what is

possible. Thirdly, national benchmarks are useful for users of models, as they can highlight areas

where models have more or less skill and where model results should be treated with caution.

4.2.3 Assessing uncertainty

Hydrological model output is always uncertain due to uncertainties in the observational data

used to drive and evaluate the models and boundary conditions, to uncertainties in selection of

model parameters, and to the choice of a model structure (Beven and Freer, 2001a). There is a

large and rapidly growing body of literature on uncertainty estimation in hydrological modelling,

with many techniques emerging to assess the impact of different sources of uncertainty on model

output, as summarised in Beven (2009). Despite this, uncertainty estimation is not yet routine

practice in comparative or large-sample hydrology, and few nationwide hydrological modelling

studies have included uncertainty estimation, tending to look more at regionalisation of parame-

ters, multi-objective calibration techniques or the use of flow signatures in model evaluation (i.e.

Donnelly et al. 2016; Kollat et al. 2012; Oudin et al. 2008; Parajka et al. 2007b).

Parameter uncertainty is often evaluated through calibrating models within an uncertainty

evaluation framework (e.g. Generalised Likelihood Uncertainty Estimation - GLUE - Beven and

Binley 1992 – or ParaSol – van Griensven and Meixner 2006). Whilst many studies have explored

parameter uncertainty, it is less common to evaluate the additional impact of model structural

uncertainty on hydrological model output (Butts et al., 2004). Model structures can differ in their

choice of processes to include, process parameterisations, model spatial and temporal resolution,

and model complexity. Studies attempting to address model structural uncertainty often apply

multiple hydrological model structures and compare the differences in output (Ambroise et al.,

1996; Perrin et al., 2001; Vansteenkiste et al., 2014; Velázquez et al., 2013) and in climate impact

studies (i.e. Bosshard et al. 2013; Karlsson et al. 2016; Samuel et al. 2012). These studies have

found that the choice of hydrological model structure can strongly affect the model output, and

therefore hydrological model structural uncertainty is an important component of the overall

uncertainty in hydrological modelling and cannot be ignored.

Flexible model frameworks are a useful tool for exploring the impact of model structural

uncertainty in a controlled way and for identifying the different aspects of a model structure which

are most influential to the model output. These flexible modelling frameworks allow a modeller to

build many different model structures using combinations of generic model components (Fenicia

et al., 2011). For example, the Modular Modeling System (MMS) of Leavesley et al. (1996) allows

the modeller to combine different sub-models, and the Framework for Understanding Structural

Errors (FUSE), developed by Clark et al. (2008), combines process representations from four
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commonly used hydrological models to create over 1000 unique model structures.

4.2.4 Study scope and objectives

The main objective of this study is to comprehensively benchmark performance of an ensemble

of lumped hydrological model structures across Great Britain, focusing on daily flow and peak

flow simulation. This is the first evaluation of hydrological model ability across a large sample

of British catchments whilst considering model structural and parameter uncertainty. This

will be useful both as a benchmark of model performance against which other models can be

evaluated and improved upon in Great Britain and as a large-sample study which can provide

general insights into the influence of catchment characteristics and selected model structure and

parameterisation on model performance.

The specific research questions we investigate are as follows:

1. How well do simple, lumped hydrological model structures perform across Great Britain

when assessed over annual and seasonal timescales via standard performance metrics?

2. Are there advantages in using an ensemble of model structures over any single model, and

if so, are there any emergent patterns or characteristics in which a given structure and/or

behavioural parameter set outperforms others?

3. What is the influence of certain catchment characteristics on model performance?

4. What is the predictive capability of those identified as behavioural models for then predict-

ing annual maximum flows when applied in a parameter uncertainty framework?

To address these questions, we have applied the four core conceptual hydrological models

from the FUSE hydrological framework to 1013 British catchments within an uncertainty

analysis framework. Model performance and predictive capability have been evaluated at each

catchment, providing a national overview of hydrological modelling capability for simpler lumped

conceptualisations over Great Britain.

4.3 Data and catchment selection

4.3.1 Catchment data

This study was national in scope, using a large data set of 1013 catchments distributed across

Great Britain (GB). The catchments cover all regions and include a wide variety of catchment

characteristics, including topography, geology and climate (see Table 4.1), and both natural and

human-impacted catchments (see Figure 4.1).

On average, rainfall is highest in the north and west of GB, and lowest in the south and east,

with GB totals varying from a minimum of 500 mm to a maximum of 4496 mm per year (see
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TABLE 4.1. Characteristics of the 1013 study catchments. Values for Mean annual
rainfall, runoff, loss, flood peaks and peak daily flows were calculated from the
model input timeseries. Other values were taken from the UK hydrometric register
(Marsh and Hannaford, 2008).

Variable 5th percentile Median 95th percentile
Catchment Area [km2] 17 135 1299
Baseflow Index [-] 0.30 0.47 0.86
Mean Annual Rainfall [mm] 618 975 2332
Mean Annual Runoff [mm] 146 525 1912
Mean Annual Loss [mm] 220 459 693
Median Annual Flood Peak [mm] 2 13 48
Peak Daily Flow [mm] 4 29 100
Gauge Elevation [m] 5 39 220
Urban Extent [%] 0 1 19

Figure 4.2). There is also seasonal variation, with the highest monthly rainfall totals generally

occurring during the winter months and the lowest totals occurring in the summer months. This

pattern is enhanced by seasonal variations in temperature, with evaporation losses concentrated

in the summer months from April–September. Besides climatic conditions, river flow patterns

are also heavily influenced by groundwater contributions. Figure 4.1 shows the major aquifers in

GB. In catchments overlying the Chalk outcrop in the south-east, flow is groundwater-dominated

with a predominantly seasonal hydrograph that responds less quickly to rainfall events. Land

use and human modifications to river flows also significantly impact river flows, with river flows

being heavily modified in the south-east and midland regions of England due to high population

densities (Figure 4.1). Most catchments have very little or no snowfall in an average year, but

there are some upland catchments in northern England and north-eastern Scotland where up to

15% of the annual precipitation falls as snow (Figure 4.2).

4.3.2 Observational data

Twenty-one years of daily rainfall and PET data covering the period 1 January 1988 to 31

December 2008 were used as hydrological model input. Rainfall time series were derived from

the Centre for Ecology and Hydrology Gridded Estimates of Areal Rainfall, CEH-GEAR (Tanguy

et al., 2014). This is a 1 km2 gridded product giving daily estimates of rainfall for Great Britain

(Keller et al., 2015). It is based on the national database of rain gauge observations collated by

the UK Met Office, with the natural neighbour interpolation methodology used to convert the

point data to a gridded product (Keller et al., 2015).

The Climate Hydrology and Ecology research Support System Potential Evapotranspiration

(CHESS-PE) dataset was used to estimate daily PET for each catchment. The CHESS-PE dataset

is a 1 km2 gridded product for Great Britain, providing daily PET time series (Robinson et al.,
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FIGURE 4.1. Factors affecting runoff in the study catchments, using information from
the UK hydrometric register. Natural catchments are defined as having limited
variation from abstractions and/or discharges so that the gauged flow is within 10%
of the natural flow at or above the Q95 flow. The groundwater category includes
both groundwater abstraction and recharge as well as the few catchments where
mine-water discharges influence flow. Full descriptions of all factors can be found
in the UK hydrometric register (Marsh and Hannaford, 2008)

2015a). PET estimates were produced using the Penman–Monteith equation, calculated using

meteorological variables from the CHESS-met dataset (Robinson et al., 2015b). Catchment areal

daily precipitation and PET time series were produced for each catchment by averaging values of

all grid squares that lay within the catchment boundaries for each of the 1013 catchments.

Observed discharge data were used to evaluate model performance. Gauged daily flow data

from the NRFA were used for all catchments where available (Centre for Ecology and Hydrology,

2016).
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FIGURE 4.2. Attributes impacting hydrology. (a) Major aquifers across Great Britain,
based on BSS Geology 625k, with the permission of the British Geological Survey.
(b) Mean annual rainfall for 10 km2 rainfall grid cells across Great Britain calcu-
lated using the CEH-GEAR rainfall product. (c) Fraction of rainfall falling as snow
for catchments across Great Britain, where a value of 0.15 indicates that 15% of
the catchment precipitation falls on days when the temperature is below zero, from
the CAMELS-GB dataset (Coxon et al., 2020).

4.4 Methodology

4.4.1 Hydrological modelling

The FUSE modelling framework was used to provide four alternative hydrological model struc-

tures. This framework was selected as it enables comparison between hydrological models with

varying structural components (Clark et al., 2008), and the computational efficiency of these

relatively simple hydrological models enabled modelling to be carried out across a large number

of catchments within an uncertainty analysis framework. The framework allows the user to select

different combinations of modelling decisions, starting with four parent models based on the

structures of widely used hydrological models and allowing the user to combine these decisions to
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create over 1000 different model structures.

For this study, only the four parent models from the FUSE framework were selected due to

the computational requirements of running the models across such a large number of catchments

and because the core models should provide the main differences of models compared to all the

possible variants. These models are based on four widely used hydrological models: TOPMODEL

(Beven and Kirkby, 1979), the Variable Infiltration Capacity (ARNO/VIC) model (Liang et al.,

1994; Todini, 1996), the Precipitation-Runoff Modelling System (PRMS; Leavesley et al. 1983) and

the SACRAMENTO model (Burnash et al., 1973). The models are all lumped, conceptual models

of similar complexity and all run at a daily time step within the FUSE framework. They all close

the water balance, have a gamma routing function and include the same processes; for example,

none of the models have a snow routine or vegetation module. However, the structures of these

models differ through the architecture of the upper and lower soil layers and parameterisations

for simulation of evaporation, surface runoff, percolation from the upper to lower layer, interflow

and baseflow (Clark et al., 2008), as shown in Figure 4.3 and Table 4.2. This leads us to believe

that the model structures are dynamically different, as they represent hydrological processes in

different ways, yet as all are based on widely used hydrological models, they are equally plausible.

Therefore we have no a priori expectations that one model should outperform the others (Clark

et al., 2008).

The models were run within a Monte Carlo simulation framework. There are 23 adjustable

parameters within the FUSE framework, as shown in Table 4.3. Each of these was assigned

upper and lower bounds based on feasible parameter ranges and behavioural ranges identified

in previous research (Clark et al., 2008; Coxon et al., 2014). Monte Carlo sampling was then

used to generate 10,000 parameter sets within these given bounds. Therefore, for each of the

1013 catchments, the four hydrological model structures were each run using the 10,000 possible

parameter sets over the 21-year period 1988–2008, resulting in >40 million simulations being

carried out.

4.4.2 Evaluation of model performance

The objective of this study was to evaluate the model’s ability to reproduce observed catchment

behaviour with a focus on assessing the strengths and weaknesses of each model in different

catchments. Given the large number of catchments evaluated, it was not possible to evaluate

model performance against a large range of objective functions with this chapter; here we aim

to benchmark behaviour to metrics that capture different aspects of model performance. Con-

sequently, we chose to evaluate the overall performance of the hydrological models through

the widely used Nash–Sutcliffe efficiency index (Nash and Sutcliffe, 1970), which is an easy-to-

interpret measure of model performance that is often used in studies interested in high flows, as
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FIGURE 4.3. FUSE wiring diagram, showing the model structure decisions. TOP-
MODEL and ARNO/VIC have 10 parameters, PRMS has 11 parameters, and
SACRAMENTO has 12 parameters. Adapted from Clark et al. (2008).

it emphasises the fit to peaks. To further diagnose the reasons for model good or poor performance,

the simulation with the highest efficiency value was then analysed further using the decomposed

metrics of bias, error in the standard deviation and correlation. All metrics were calculated for

the period 1993–2008, with the first 5 simulation years being used as a model warm-up period.

The Nash–Sutcliffe efficiency index was calculated for each individual simulation using

E = 1−
∑

(Oi −Si)2∑
(Oi − Ō)2

, (4.1)

where Oi refers to the observed discharge at each time step, Si refers to the simulated

discharge at each time step and Ō is the mean of the observed discharge values. This results in

values of E between 1 (perfect fit) and -∞, where a value of zero means that the model simulation

has the same skill as using the mean of the observed discharge.
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TABLE 4.2. Modelling decisions in the four parent models of the FUSE framework. A
full description of the models can be found in Clark et al. (2008).

Upper
layer

Lower
layer

Surface
Runoff

Percolation Evaporation
Inter-
flow

Time delay
in runoff

TOPMODEL
Single
state
variable

Baseflow
reservoir
of
unlimited
size,
power
recession

TOPMODEL
parameterization

Water from
field
capacity to
sat available
for
percolation

Sequential
evaporation
model

No
Gamma
distribution
for routing

ARNO/VIC
Single
state
variable

Baseflow
reservoir
of fixed
size

ARNO/VIC
parameterization
(upper zone
control)

Water from
wilting point
to sat
available for
percolation

Root
weighting

No
Gamma
distribution
for routing

PRMS

Tension
storage
sub-divided
into
recharge
and
excess

Baseflow
reservoir
of
unlimited
size,
frac rate

PRMS variant
(fraction of
upper tension
storage)

Water from
field
capacity to
sat available
for
percolation

Sequential
evaporation
model

Yes
Gamma
distribution
for routing

SACRAMENTO

Broken up
into
tension
and free
storage

Tension
reservoir
plus two
parallel
tanks

PRMS variant
(fraction of
upper tension
storage)

Defined by
moisture
content
in the
lower layer

Sequential
evaporation
model

Yes
Gamma
distribution
for routing

To gain insights into model agility and time-varying model performance during different times

of the year, we also assessed differences in seasonal performance by splitting the observed and

simulated discharge into March–May (spring), June–August (summer), September–November

(autumn) and December–February (winter). Seasonal Nash–Sutcliffe efficiency values were then

re-calculated for all the catchments, using only data extracted for that season. This allowed us

to see if there were any seasonal patterns in model performance, for example during periods of

higher or lower general flow conditions.

The Nash–Sutcliffe efficiency can be decomposed into three distinct components: the cor-

relation, bias and a measure of the error in predicting the standard deviation of flows (Gupta

et al., 2009). Understanding how the models perform for these different components can help

us diagnose why models are producing good or poor simulations. We therefore calculated these

simpler metrics for the simulations of each model gaining the highest efficiency values. The

relative bias was calculated using

µ= µs −µo

µo
, (4.2)

where µs and µo refer to the mean of the simulated and observed annual cycle. Using this
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TABLE 4.3. FUSE parameters and defined upper and lower bounds.

Parameter Description Units Lower Bound Upper Bound
Model(s) using
parameter

MAXWATER
1

Depth of upper soil
layer

mm 25 500
TOPMODEL,
ARNO, PRMS, SAC

MAXWATER
2

Depth of lower soil layer mm 50 5000
TOPMODEL,
ARNO, PRMS, SAC

FRACTEN
Fraction total
storage in tension storage

- 0.05 0.95
TOPMODEL,
ARNO, PRMS, SAC

FRCHZNE
Fraction tension
storage in recharge zone

- 0.05 0.95 PRMS

FPRIMQB
Fraction storage
in 1st baseflow reservoir

- 0.05 0.95 SACRAMENTO

RTFRAC1
Fraction of roots in the upper
layer

- 0.05 0.95 ARNO

PERCRTE Percolation rate mm day−1 0.01 1000
TOPMODEL,
ARNO, PRMS

PERCEXP Percolation exponent - 1 20
TOPMODEL,
ARNO, PRMS

SACPMLT
SAC model
percolation multiplier for dry soil
layer

- 1 250 SACRAMENTO

SACPEXP
SAC model percolation exponent
for dry soil layer

- 1 5 SACRAMENTO

PERCFRAC
Fraction of percolation to tension
storage

- 0.5 0.95 SACRAMENTO

FRACLOWZ
Fraction of soil excess
to lower zone

- 0.5 0.95 PRMS

IFLWRTE Interflow rate mm day−1 0.1 1000
PRMS,
SACRAMENTO

BASERTE Baseflow rate mm day−1 0.001 1000
TOPMODEL,
ARNO

QB_POWR Baseflow exponent - 1 10
TOPMODEL,
ARNO

QB_PRMS Baseflow depletion rate day−1 0.001 0.25 PRMS

QBRATE_2A
Baseflow depletion rate
1st reservoir

day−1 0.001 0.25 SACRAMENTO

QBRATE_2B
Baseflow depletion rate
2nd reservoir

day−1 0.001 0.25 SACRAMENTO

SAREAMAX Maximum saturated area - 0.05 0.95
PRMS,
SACRAMENTO

AXV_BEXP ARNO/VIC b exponent - 0.001 3 ARNO

LOGLAMB
Mean value
of the topographic index

m 5 10 TOPMODEL

TISHAPE
Shape parameter for the topographic
index Gamma distribution

- 2 5 TOPMODEL

TIMEDELAY Time delay in runoff days 0.01 7
TOPMODEL,
ARNO, PRMS, SAC
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equation, an unbiased model would score 0 (a perfect score) and a model that underestimated

or overestimated the mean annual flow would score a negative or positive value respectively. A

value of ±1 would indicate an overestimation or underestimation of flow by 100%.

The relative difference in the standard deviation was calculated using

σ= σs −σo

σo
, (4.3)

where σs and σo represent the standard deviation of the simulated and observed mean annual

cycle. Again, a value of zero indicates a perfect score with no error, and positive or negative

values indicate an overestimation or underestimation of the amplitude of the mean annual cycle

respectively.

The correlation was calculated using Pearson’s correlation coefficient. A value of 1 indicates a

perfect correlation between the observed and simulated flows, whilst a value of 0 indicates no

correlation. This indicates model skill in capturing both timing and shape of the hydrograph.

4.4.3 Evaluation of model predictive capability

In order to evaluate model predictive capability, the widely applied GLUE framework was used

(Beven and Binley, 1992; Beven and Freer, 2001a; Romanowicz and Beven, 2006). The GLUE

framework is based on the equifinality concept that there are many different model structures

and parameter sets for a given model structure which result in acceptable model simulations

of observed river flow (Beven and Freer, 2001a). This methodology has been widely applied to

explore parameter uncertainty within hydrological modelling (Freer et al., 1996; Gao et al., 2015;

Jin et al., 2010; Shen et al., 2012) and includes approaches to directly deal with observational

uncertainties in the quantification of model performance (Coxon et al., 2014; Freer et al., 2004;

Krueger et al., 2010; Liu et al., 2009). For every catchment and model structure, an efficiency

score was calculated for each of the 10,000 Monte Carlo (MC) sampled parameter sets. Parameter

sets with an efficiency score exceeding 0.5 were regarded as behavioural; therefore all other

sampled parameter sets were rejected and so given a score of zero. Conditional probabilities

were assigned to each behavioural parameter set based on their behavioural efficiency score, and

these were normalised to sum to 1. This meant that the simulations which scored the highest

efficiency value had larger conditional probabilities, and simulations which had efficiency values

just above 0.5 would have lower conditional probabilities. For each daily time step, a 5th, 50th

and 95th simulated discharge bound was produced from these conditional probabilities, for each

catchment and model structure individually, as described in Beven and Freer (2001a). This meant

that simulations with a higher efficiency score were given a higher weighting when producing

the discharge bounds.
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Predictive capability for an additional performance metric regarding annual maximum flows

was then calculated from these behavioural simulations to test the model’s ability to predict peak

flood flows over the 21-year period. Annual maximum flows were extracted from both the observed

discharge time series and 5th-, 50th- and 95th-percentile simulated discharge uncertainty bounds.

Two metrics were then used to assess the predictive capability of the models. The first metric

aimed to assess the model’s ability to closely replicate the observed annual maximum flows whilst

considering the plausible range of observational uncertainties that may be associated with the

observed discharge value. Observed uncertainty bounds of ±13% were applied to all observed

annual maximum (AMAX) discharges. This observed error value was selected following previous

research on quantifying discharge uncertainty at 500 UK gauging stations for high flows and

represents the average 95th-percentile range of the discharge uncertainty bounds for high flows

(Coxon et al., 2015; Mcmillan et al., 2012). The equations used to calculate the model skill relative

to these observational uncertainty bounds are

E y =
|Oy −Sy|
Oy ×0.13

, (4.4)

Emean =
∑n

y=1 E y

n
, (4.5)

where E y refers to skill for a particular year, y, Emean refers to skill across all years, O

refers to observed AMAX discharge for a particular year and S refers to the simulated AMAX

discharge for the 50th percentile. This results in a score of 0 if the AMAX that is simulated for the

50th percentile is equal to observed AMAX discharge, a score of 1 if the simulated AMAX is at the

limit of the observed error bounds, and a score of 2 if it is twice the limit and so on in a similar

approach to Liu et al. (2009) as a limits of acceptability performance score. A score was calculated

for each of the 16 simulation years, excluding the first 5 years as a model warm-up period, as

shown in Eq. (4.4). A mean score was then calculated across all years for each catchment and

model, as shown in Eq. (4.5).

The second metric assessed how well the simulated AMAX uncertainty bounds (5th to 95th)

overlapped observed AMAX uncertainty bounds to assess model skill given the range of predictive

uncertainty. The range of overlap between the observed discharge uncertainty bounds and

simulated bounds was first calculated for each year. This was normalised by the maximum range

of the observed and simulated AMAX uncertainty bounds. The resulting value can be interpreted

as the fraction of overlap versus the total uncertainty, whereby a value of 0 means that the

simulated AMAX bounds for a particular year do not overlap the observations at all, and a

value of 1 means that the simulated bounds perfectly overlap the observational uncertainties.

Therefore, simulation bounds which overlap the observed AMAX uncertainty range due to having

a very large uncertainty spread are penalised for this additional uncertainty width compared to

the observed normalised uncertainty.
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4.5 Results

4.5.1 National-scale model performance

Our first objective was to assess how well simple, lumped hydrological model structures perform

across Great Britain, assessed over annual timescales via standard performance metrics. The

distributions of model performance across all catchments can be seen in Figure 4.4. This shows

that the ensemble of all four hydrological model structures outperformed each individual model

structure for all performance metrics. Using the ensemble, 93% of catchments studied produced

a simulation with a Nash–Sutcliffe efficiency (NSE) value exceeding 0.5, and 75% of catchments

exceeded an NSE value of 0.7. Maps showing the overall performance of each model structure,

chosen using the maximum modelled NSE from the MC parameter samples, for catchments

across Great Britain are given in Figure 4.5. Maps showing the performance of each model

structure for the other performance metrics are given in Figure 4.6.

Our NSE results (Figures 4.4 and 4.5) show that there is a large range in model performance

across Great Britain, with catchment maximum NSE scores ranging from 0.97 to <0. The overall

performance of the four model structures was similar, with TOPMODEL, ARNO, PRMS and

SACRAMENTO producing simulations exceeding a 0.5 NSE for 87%, 90%, 81% and 88% of

catchments respectively. A similar spatial pattern of performance was also seen across all four

model structures, with certain catchments resulting in poor or good simulations for all four model

structures. Generally, there is an east–west divide in model performance, with models typically

performing better in the wetter western catchments compared to drier catchments in the east.

Clusters of poorly performing catchments can be seen in the east of England around London and

in central Scotland, where all models fail to produce satisfactory simulations. There are also more

localised catchments where all models are failing, such as in north Wales and northern England.

Areas where all models are performing well include southern Wales, south-western England and

south-western Scotland.

However, looking at the decomposed performance metrics in Figures 4.4 and 4.6, differences

between the model structures emerge that cannot be seen from the overall NSE scores. Firstly,

the models show different biases (Figure 4.6a). The SACRAMENTO model is generally balanced,

whilst best-scoring simulations tend to underpredict flows for TOPMODEL and overpredict flows

for ARNO/VIC and PRMS. Secondly, all models tend to underpredict the standard deviation of

flows (Figure 4.6b), with TOPMODEL generally underpredicting the most, but PRMS stands out

as overpredicting the standard deviation for many catchments in the south-east. Thirdly, the

pattern of correlation is similar between the models and closely matches the patterns seen for

NSE. This is unsurprising, as the correlation term is given a high weighting when calculating

NSE (Gupta et al., 2009). It is particularly interesting that whilst the models are all calibrated
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FIGURE 4.4. Distribution of model performance across all catchments for all four in-
dividual model structures and the model structure ensemble. Each plot shows
model performance assessed using a different metric. (a) shows model performance
assessed using Nash–Sutcliffe efficiency, (b) shows model relative bias or relative
error in simulated mean runoff (%), (c) shows relative error in the standard de-
viation of runoff (%), and (d) gives correlation between observed and simulated
streamflow.

in the same way and are producing similar NSE scores, the decomposed metrics show clear

differences between the best simulations produced using each structure.

The decomposed metrics also help to identify which aspects of NSE are causing models to

fail. Models have problems simulating the bias, standard deviation and correlation for catch-

ments in south-eastern England (Figure 4.6). The localised poorly performing catchments in

north Wales are failing due to poor simulation of variance and correlation. Poor performance

in north-eastern Scotland is due to poor correlation and underestimation of variance for all

models. In central northern Scotland all models except TOPMODEL overpredict bias, leading

to TOPMODEL being the only model able to produce reasonable simulations for these catchments.
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FIGURE 4.5. GB maps of model performance for each structure. Each point is a gauge
location which is coloured based on the best Nash–Sutcliffe score attained by the
model for that catchment.
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FIGURE 4.6. GB maps of model performance for each structure for three different
metrics. (a) shows model relative bias or relative error in simulated mean runoff
(%), (b) shows relative error in the standard deviation of runoff (%), and (c) shows
correlation between observed and simulated streamflow. Each point is a gauge
location, and metrics have been calculated for the simulation gaining the highest
NSE for that gauge.
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Similarities in overall model performance could be partially due to the models all being run

at the same spatial and temporal resolution, having a similar model architecture splitting the

catchment into upper and lower stores and including the same process representations (such as a

lack of a snow module). However, there are important differences between the models which may

contribute to the differences seen in the decomposed metrics (Figure 4.6). The architecture of the

upper and lower model layers differs, as can be seen in Figure 4.3. TOPMODEL and ARNO/VIC

have more parsimonious structures with only one store in each layer, while PRMS has a more

complex upper layer which is split into multiple stores, and SACRAMENTO splits both upper and

lower layers into multiple stores. The modelling equations governing water movement between

stores also differ, as explained in Clark et al. (2008). The number of model parameters is also a

difference between the models, as shown in Table 4.3, with TOPMODEL and ARNO/VIC having

the fewest model parameters, with 10 model parameters each, and the SACRAMENTO model

having the most parameters, with 12.

4.5.2 Seasonal model performance

As part of our first objective, we also assessed how well models performed across GB when

evaluated over seasonal timescales, with results given in Figure 4.7. These maps show the best

sampled seasonal NSE score for each catchment taken from any of the FUSE model variants.

There is a clear seasonal pattern to model performance, with models generally producing better

simulations during wetter winter periods. The models cannot produce adequate simulations for

many catchments over the summer months of June to August, especially in the south-east of

England. However, for some catchments, especially catchments in the west, good simulations are

produced year-round.

There is a seasonal impact on model performance across the areas previously identified as

regions where models are failing. In north-eastern Scotland, model performance is generally

worst during the winter and spring months of December to May, with a few catchments also being

poorly simulated in summer. In south-eastern England, model performance is particularly poor

during the summer months of June–August. The reasons for this are discussed in later sections.

4.5.3 Model structure impact on performance

An interesting question is whether a certain model structure is favoured for certain types of

climatology or generalised catchment behaviour. Therefore, the relative performance of the four

model structures, ranked by both the baseflow index (BFI) and annual catchment rainfall totals,

is presented in Figure 4.8. The SACRAMENTO model tends to be the dominant model structure

across most catchments, producing the largest number of behavioural simulations. However,

catchment BFI and annual average rainfall both have an impact on which model structure

tends to produce the most behavioural simulations as well as the total number of behavioural
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FIGURE 4.7. GB maps of FUSE multi-model ensemble performance for each season (a)
and observed seasonal variations in catchment wetness index (b). Each point in
(a) is a gauge location which is coloured based on the best Nash–Sutcliffe score
attained by any of the four models sampled for that catchment and season. (b)
then shows how seasons vary hydrologically across GB, through the wetness index
(precipitation divided by PET) calculated from the observed data, split by month,
used to drive the hydrological models across all catchments shown in (a).
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simulations.

Catchments with an increasing BFI from 0 to 0.87 show an increasing trend of the SACRA-

MENTO model structure becoming dominant, albeit with considerable variability (see Figure

4.8a). TOPMODEL and PRMS performance relative to the other models decreased for catchments

with increasing BFI, and TOPMODEL especially is known to have a conceptual structure that

better relates to a variable source area concept that does not relate as well to more groundwater-

dominated catchments. However, for slower responding and more groundwater-dominated catch-

ments with a BFI of greater than 0.9, the ARNO/VIC model was the only structure able to

represent the hydrological dynamics well. ARNO/VIC is the only model that has a very strong

non-linear relationship in its upper storage zone that links the deficit ratio of this store to

saturated area extent and thus rainfall-driven surface runoff amounts. For very low values of the

ARNO/VIC “b” exponent (AXV BEXP), as seen for high BFI values in Figure 4.9 for behavioural

model distributions, means that only at very high, near-full upper storage levels is any larger

extent of saturated areas predicted. This formulation clearly helps these more groundwater-

dominated catchments where both higher infiltration and percolation dynamics may be expected

by constraining fast rainfall-driven runoff processes except to only more extreme storm event

behaviour. It is also the reason why the sensitivity to BFI of this parameter is stronger in Figure

4.9 than the other “surface runoff” formulations that link storages to saturated area extent.

For catchments with annual rainfall totals below 2000 mm (see Figure 4.8b), there is no clear

relationship between annual rainfall and relative performance of each model structure besides

the SACRAMENTO model tending to dominate. However, for catchments with average annual

rainfall totals of above 2000 mm, TOPMODEL and ARNO/VIC became more dominant whilst the

relative performance of the SACRAMENTO model decreased. In effect the final trend is that for

very wet catchment types (by rainfall totals), no model dominates, there is no “gain” in the nuances

of the non-linear model formulation and all structures can produce behavioural simulations from

some part of their parameter space through a variety of flow pathway mechanisms from different

storages. This again is clear in Figure 4.9, where at least three of the parameters shared between

structures and controlling different parts of the hydrograph show little sensitivity across the

parameter ranges sampled. The core exception to that is the TIMEDELAY parameter that controls

the gamma distribution routing formulation and shifts to less routing delay that is common to

all model structures and so no one structure has an advantage. Similarly, TIMEDELAY is also

sensitive to high-BFI catchments by increasing to longer routing times.
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FIGURE 4.8. Relative performance of the four FUSE model structures, depending on
catchment characteristics. Scatter plots show the total number of behavioural
simulations, from all model structures, forming each line on the stacked bar graph.
Each line on this stacked bar chart represents one catchment, and the colour
shows the proportion of the behavioural simulations from each model structure.
Catchments have been ordered by BFI (a) and annual rainfall (b).
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FIGURE 4.9. Cumulative distribution function (CDF) plots showing parameter val-
ues of the behavioural simulations for each catchment. Each line represents a
catchment and is coloured by that catchment’s BFI. The four rows show different
parameters controlling different parts of the hydrograph. Surface runoff is given
by the LOGLAMB (TOPMODEL), AXV BEXP (ARNO) and SAREAMAX (PRMS
and SACRAMENTO), as there was no common surface runoff parameter used for
all four models. Each column is a different hydrological model.
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4.5.4 Influence of hydrological regime and catchment attributes on
performance

The influence of the hydrological regime was then assessed to see if there were specific types

of catchments that the models were unable to represent given the spatial differences in model

performance already observed. The catchment hydrological regime was defined using two metrics,

the overall runoff coefficient (ratio of annual discharge to annual rainfall) and the catchment

wetness index (ratio of precipitation to potential evapotranspiration); results are provided in

Figure 4.10. The relationship between model performance and a wider range of catchment char-

acteristics is given in Appendix B.

Figure 4.10 shows that model performance relates to the catchment water balance. For

catchments where the water balance tends to close, indicated as the area between the dashed

lines, the models are generally able to produce reasonable simulations overall and with small

biases. For these catchments, precipitation, evaporation and discharge are balanced, and runoff

can be explained using the precipitation and evaporation data. When this relationship breaks

down, we have situations in which catchment runoff exceeds total rainfall, i.e. there is more

water than we would expect, or in which catchment runoff is low relative to precipitation, and

this deficit cannot be explained solely by evapotranspiration, i.e. the catchment is losing water.

These catchments fall above the top dashed line in Figure 4.10 or below the bottom dashed line

respectively. The models cannot simulate these catchments, as they cannot account for large

water additions or losses, and so become stressed, leading to large streamflow biases (as also

seen in Figure 4.6a). This problem is most extreme for the driest catchments, where models may

convert less potential evaporation to actual evaporation as the conditions are drier, and so we

have an even larger water deficit which the model structures cannot simulate. For the driest

catchments, models have higher error in predicting the standard deviation and correlation.

4.5.5 Benchmarking predictive capability for annual maximum peak flows

Model predictive capability for simulating AMAX flows from behavioural models defined from

the NSE measure is shown in Figures 4.11 and 4.12. Figure 4.11 assesses the ability of models to

produce AMAX discharge estimates which are as close as possible to observations. Here, a value

of 0 means that simulated AMAX discharge is equal to observed discharge, up to 1 means that

simulated AMAX discharge is within the bounds of the observational uncertainties applied and

larger values such as 2 indicate that simulated discharge is double the limit of observational

uncertainties away from the observed discharge (negative values mean that the model simula-

tions are lower than the observed). Median Eamax values from Eq. (4.2) are around −2.4 to −3.2

across all four models, with PRMS producing slightly better predictions in general than the other

models. This shows that the models underestimate peak annual discharges across the majority of

GB catchments even though behavioural models have been selected using NSE, which favours
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FIGURE 4.10. Scatter plots of the relationship between wetness index, runoff coefficient
and best sampled model performance. Each point represents a catchment, coloured
by the best Nash–Sutcliffe score for that catchment from the model structure
ensemble. The plotting order was modified to ensure that catchments with more ex-
treme (high and low) performance values would be plotted on top. Any points above
the horizontal dotted line are where runoff exceeds total rainfall in a catchment,
and any points below the curved line are where runoff deficits exceed total PET
in a catchment. (a) is coloured by Nash–Sutcliffe efficiency, and (b–d) are coloured
by relative bias, relative error in the standard deviation, and correlation between
simulated and observed streamflow.
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FIGURE 4.11. Predictive capability of four hydrological models for annual maxi-
mum (AMAX) flows across Great Britain. Shown is behavioural model ensemble
(NSE>0.5) median performance in replicating the observed AMAX flows, with a
value of 0 being a perfect score and a value of 1 meaning that the simulated AMAX
value was at the limits of the observational uncertainty. The spread covers all
catchments.

models that perform well for higher flows.

Figure 4.12 shows the percentage overlap between the simulated 5th and 95th AMAX bounds

and the observed AMAX uncertainty bounds. Here, the boxplot on the left shows the variation of

results across all catchments and models for each year, whilst the boxplot on the right summarises

results across all catchments and years for each model. The median value across all catchments

is 16, meaning that there is a 16% overlap between the observed and simulated AMAX bounds

averaged across all 20 years.

There are large variations in model ability to simulate observed annual maximum flows

between years when looking at median predictions. For example, 1990 and 2008, which were

wetter-than-average years across most of GB, model ability to represent annual maximum

discharge is poor. However, in 1996, which was a particularly dry year following the 1995 drought

(Marsh et al., 2007), the models do a much better job of representing the annual maximum

discharge. This may be in part due to the model tendency to underestimate discharge, as seen in

Figure 4.11. However, variations between years are less apparent when looking at 25th and th

percentiles in Figure 4.12. This could suggest that there are some catchments where predictions
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FIGURE 4.12. Predictive capability of four hydrological models for annual maximum
(AMAX) flows across Great Britain. Boxplots show the overlap of the simulated
and observed uncertainty bounds, as a percentage of the total uncertainty. This
metric ranges from 0 to 100, with 0 indicating no overlap between observed and
simulated AMAX discharge and 100 indicating a perfect overlap of observed and
simulated discharge bounds. The range in the (a) is over all catchments and all
models, whilst (b) shows the range across all catchments.

are more consistent between years or that the large climatic variation across GB may conceal

some of the effects of inter-year differences.

4.6 Discussion

This study provides a useful benchmark of the performance and associated uncertainties of four

commonly used lumped model structures across GB for future model developments and model

types to be compared against. The large number of catchments included makes this assessment a

fair benchmark for any future national modelling studies as well as for smaller-scale modelling

efforts. A full list of models scores can be found at

https://doi.org/10.5523/bris.3ma509dlakcf720aw8x82aq4tm.
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4.6.1 Identifying missing process parameterisations

There were some clusters of catchments, notably catchments in northern and north-eastern

Scotland and those on permeable bedrock in south-eastern England, where all models failed

to produce good simulations. The Scottish catchments are mountainous catchments, at a con-

siderably higher elevation than the rest of GB, and experience colder temperatures, with daily

maximum temperatures in January being consistently below zero (Met Office, 2014). Many

catchments in north-eastern Scotland are classed as natural, but there are a group of catchments

in central northern Scotland which are impacted by hydro-electric power (HEP) generation and

subsequent diversions out of the catchment as well as storage influences on the regime (Marsh

and Hannaford, 2008). As model failures in north-eastern Scotland were particularly pronounced

during winter and spring, this suggests that models were unable to capture the different seasonal

climatic conditions of these catchments, such as snow accumulation and melt or the impact of

frozen ground. This is supported by the low correlations between simulated and observed flows

in north-eastern Scotland, suggesting that the models are unable to represent the overall shape

and timing of flows. Many catchments in central and northern Scotland had particularly low

NSE values which were worst in summer and autumn. Modifications to the flow regime resulting

from HEP can explain poor model performance for these catchments, supported by the models

failing to reflect model bias and correlation. The FUSE models in this study do not incorporate

snow processes and indicate that future modelling efforts for GB may need to include a snowmelt

regime, and the anthropogenic impacts resulting from hydroelectric power generation, to produce

good simulations in these catchments.

The catchments in south-eastern England receive relatively little rainfall compared to the

rest of GB and are overlaying a chalk aquifer, as can be seen in Figure 4.2. Previous studies have

found that hydrological models tend to perform better in wetter catchments (Liden and Harlin,

2000; McMillan et al., 2016), which could be part of the reason that model performance is so poor

for these catchments. The presence of the chalk aquifer could also stress the models, as there is

nothing in the model structures to account for groundwater and particularly groundwater flows

between catchment boundaries. Equally, the south-east has some of the highest population densi-

ties in the UK, and human influences can significantly impact flows in this region, particularly

for lower-flow conditions in the drier seasonal periods.

For catchments where groundwater is the reason for model failure, a possible solution could

be to use a conceptual model that allows for groundwater exchange (as opposed to the models

used here, which all maintain the water balance). Hydrological models such as GR4J and the Soil

Moisture Accounting and Routing (SMAR) model have been developed with functions that allow

models to gain or lose water to represent inter-catchment groundwater flows (Le Moine et al.,

2007). The use of these models where there is evidence of groundwater flows can help to improve
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model performance and reduce discrepancies between observed and simulated flows, but they

must be used with caution to avoid overfitting of the water balance where there is no physical

reasoning for a catchment to gain or lose water. Whilst it has been noted that there is a general

pattern of poor performance for catchments in south-eastern England, it is hard to disentangle

the reasons why this may be the case. Both the underlying chalk geology causing water transfer

between catchments and heavily human-modified flow regimes could explain model failures

which are greatest during the summer. Interestingly, McMillan et al. (2016) found that whilst the

aquifer fraction was expected to have a strong link to model performance, no relationship was

found for the TOPNET model applied in New Zealand.

4.6.2 Influence of catchment characteristics and climate on model
performance

One of the key advantages of large-sample studies is that by applying models to many catchments,

we can see general trends and identify important catchment characteristics or climates that are

not represented well by our choice of model structures. We found that looking at the catchment

water balance, considering the relationship between catchment precipitation, evaporation and

observed flows, helped to identify common features of catchments where all models were failing

(Figures 4.5 and 4.10). All model structures produced poor simulations in catchments where

either total runoff exceeded total rainfall or where observed runoff was very low compared to

total rainfall, and this runoff deficit could not be accounted for by evapotranspiration losses alone.

These differences in water balance are likely due to human modifications to the natural flow

regime, such as dams, effluent returns, or inter-catchment water transfers or groundwater flow

between catchments, or it is also possible that there are systematic errors in the observational

data and that this information is dis-informative (Beven, 2012; Kauffeldt et al., 2013). Most of

these catchments were located within chalk aquifers in south-eastern England and therefore

are in a heavily urbanised area where groundwater abstractions and flows between catchments

could be expected. The simple, lumped models used here were only given inputs of observed

precipitation and PET; therefore they are unable to account for the additional observed runoff

and so are “stressed”, even in terms of simulating mean annual runoff, irrespective of more

detailed hydrograph behaviour.

We also found that catchment characteristics were important in determining which model

structure was most appropriate. For catchments with a high baseflow index, only the ARNO/VIC

model was able to produce behavioural simulations. This could be explained by the strong non-

linear relationship in the upper storage zone of the ARNO/VIC model, which separates it from the

other model structures. This enables the ARNO/VIC model to constrain the fast rainfall–runoff

processes, which would only occur for extreme events in these groundwater-dominated catch-

ments and so allow for a complex mixture of highly non-linear saturated fast responses coupled
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with more general baseflow dynamics to be captured effectively. The catchment annual rainfall

total also influenced which model structure was most appropriate. We found that for catchments

with average annual rainfall values of around 2000 mm yr−1 or lower, the SACRAMENTO model

structure is more dominant. As we move towards catchments with higher annual rainfall, the

relative importance of the different structures shift until all structures are approximately equal

for the catchments with the highest annual rainfalls. This shows that for very wet catchments,

the model structure is less important, as all models can produce behavioural simulations through

some part of the parameter space, as seen by the relatively high number of behavioural simula-

tions for wetter catchments (Figure 4.8b). This agrees with previous studies, where models have

been found to perform better for wetter catchments, which are likely to have more connected

saturated areas, as there is a more direct link between rainfall and runoff (McMillan et al., 2016).

Our results highlight the difficulty in national and large-scale modelling studies, which for

GB must incorporate human-modified hydrological regimes, complex groundwater processes, a

range of different climates and the potential of dis-informative data, or at least a lack of process

understanding to adjust model conceptualisations. Whilst simple, lumped hydrological models

can produce adequate simulations for most catchments, the model structures are put under too

much stress when trying to simulate catchments where the water balance does not close or is

increasingly departing from normal conditions. The models fail or produce poor simulations when

large volumes of water enter or leave the catchment due to human activities or groundwater

processes, indicating the importance of considering these influences in any national study. What is

striking here in these results is that general hydrological processes, defined by water availability

and BFI metrics to infer the extent of slower flow pathways, are important in defining the

quality of simulated output and differences in model structures and parameter ranges even

though nationally many catchments are impacted by additional anthropogenic activities such as

abstractions and multiple flow structures.

4.6.3 Predictive capability of models for annual maximum flows

Predictions of annual maximum discharge using behavioural models based on NSE posed a

larger challenge for the models, even when allowing for an estimate of observational uncer-

tainty from results generalised in Coxon et al. (2015). It was found that all model structures

systematically underpredicted annual maximum flows across most catchments, which could have

large implications if these structures were used for flood modelling or forecasting. These results

are in line with previous large-scale modelling efforts. McMillan et al. (2016) report that their

TOPNET model applied across New Zealand showed a smoothing of the modelled hydrograph

relative to the observations, which resulted in overestimation of low flows and underestimation

of annual maximum flows. Newman et al. (2015) found the same effect in their study covering

617 catchments across the US. This underestimation of peaks could be in part due to the use of
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NSE in selection of the behavioural models. NSE is often used in flood studies, as it emphasises

correct prediction of flood peaks relative to low flows (for example, Tian et al. 2013). However,

NSE tends to underestimate the overall variance in the time series, resulting in underprediction

of floods and overprediction of low flows (Gupta et al., 2009).

It was found that there were some variations in the ability of models to simulate AMAX

flows between years, and this often related to the wetness of a particular year. Models tended to

perform worse in wetter years and better in drier years. This could be linked to the fact that all

models tended to underestimate annual maximum flows and therefore are closer to observations

in years with lower annual maximum flows.

4.6.4 Uncertainty evaluation in hydrological modelling

This study evaluated both model parameter and model structural uncertainty. The results showed

that there is considerable value in using multiple model structures. No one model structure

was appropriate for all catchments or seasons and when evaluating different metrics from the

hydrographs. We found that generally the SACRAMENTO model resulted in the best NSE values

overall, TOPMODEL was able to produce the simulations with the least biases and the ARNO/VIC

model proved to be best for high baseflow catchments, though the PRMS model was the best at

capturing AMAX peak flows. Furthermore, it was found that for some catchments only a selection

of the model structures were able to produce good simulations, such as the baseflow-dominated

catchments which only ARNO/VIC could simulate well. For these catchments, selection of the

appropriate model structure is important for producing good simulations, and unsuitability of the

model structure cannot be corrected for through parameter calibration. This supports previous

research highlighting the importance of considering alternative model structures and using model

structure ensembles or flexible frameworks such as FUSE (Butts et al., 2004; Clark et al., 2008;

Perrin et al., 2001). Consequently, future hydrological modelling over a national scale and/or over

a large sample of catchments needs to ensure that appropriate model structures are selected for

these catchments and consider the possibility of using multiple model structures to represent

hydrological processes in varied catchments.

The results also highlighted the importance of considering parameter uncertainty. It was

shown that there were often many different parameter sets which could produce good simulation

results for the same model structure. For some catchments, particularly the wetter catchments

in the west, all model structures were able to produce good simulations through sampling

the parameter space. We also show how behavioural parameter distributions change with re-

gards to the BFI (Figure 4.9), which shows expected shifts in some of the common behavioural

parameters or concepts for different conditions, showing that the model behaviour and param-

eter formulations are in general making rational sense (i.e. higher BFI equals higher time delays).
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While this study incorporated uncertainties in model structures and parameters, future work

will also focus on incorporating uncertainties in the data used to drive hydrological models and

more sophisticated representation of discharge uncertainties. This is important because errors in

observational data will introduce errors to runoff predictions when fed through rainfall–runoff

models (Andréassian et al., 2001; Fekete et al., 2004; Yatheendradas et al., 2008), and in conjunc-

tion with uncertainties in the observational data used to evaluate hydrological models, they will

also affect our ability to calibrate and evaluate hydrological models (Blazkova and Beven, 2009a;

Coxon et al., 2014; McMillan et al., 2010; Westerberg and Birkel, 2015).

4.7 Summary and conclusions

In this study, we have benchmarked the performance of an ensemble of lumped, conceptual

models across over 1000 catchments in Great Britain. Overall, we found that the four models

performed well over most of Great Britain, with each model producing simulations exceeding a

0.5 Nash–Sutcliffe efficiency over at least 80% of catchments. The performance of the four models

was similar, with all models showing similar spatial patterns of performance and no single model

outperforming the others across all catchment characteristics for both daily flows and peak flows.

However, when decomposing NSE into model performance for bias, standard deviation error

and correlation, clear differences emerged between the best simulation produced by each of the

model structures. The ensemble did better than each individual model, demonstrating the value

of model structure ensembles when exploring national-scale hydrology.

We found that all models showed higher skill in simulating the wet catchments to the west,

and all models failed in areas of Scotland and south-eastern England. Seasonal performance

and analysis of the water balance suggested that these model failures could be at least in part

attributed to missing snowmelt or frozen ground processes in Scotland and chalk geology in

south-eastern England, where water was able to move between catchment boundaries. In general,

we found that models performed poorly for catchments with unaccounted losses or gains of

water, which could be due to measurement errors, water transfer between catchments due to

groundwater aquifers and human modifications to the water system. Therefore, these factors

would need to be considered in a national model of Great Britain.

We also evaluated model predictive capability for high flows, as good model performance in

replicating the hydrograph, assessed using Nash–Sutcliffe efficiency, does not necessarily mean

that models are performing well for other hydrological signatures. We found that the FUSE

models tended to underestimate peak flows, and there were variations in model ability between

years, with models performing particularly poorly for extremely wet years.
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This benchmark series provides a useful baseline for assessing more complex modelling

strategies. From this we can resolve how or where we can and need to improve models to

understand the value of different conceptualisations, linkages to human impacts and levels of

spatial complexity that our model frameworks could deploy in the future. Therefore, the results

of this study are made available at https://doi.org/10.5523/bris.3ma509dlakcf720aw8x82aq4tm.

99





C
H

A
P

T
E

R

5
DEVELOPING NATIONALLY CONSISTENT PARAMETER FIELDS WITH

UNCERTAINTY

This chapter has been submitted as a research article to Water Resources Research, with slight

modifications made to better fit the general layout of this thesis. Model developments, simulations

and figures were carried out by Rosanna Lane, with guidance from Gemma Coxon, Jim Freer

and Thorsten Wagener. The manuscript was written by Rosanna Lane, with comments from all

co-authors.

Citation: Lane, R.A., Freer, J. E., Coxon, G., & Wagener, T. (in review). Incorporating Uncertainty

into Multiscale Parameter Regionalisation to Evaluate the Performance of Nationally Consistent

Parameter Fields for a Hydrological Model. Submitted to Water Resources Research.

5.1 Context

Research question two: Can observed datasets be used to parameterise a spatially dis-
tributed model across Great Britain, including parameter uncertainties?

The estimation of spatial parameter fields remains a key challenge for the implementation of

spatially distributed models across large-domains (Archfield et al., 2015; Mizukami et al., 2017),

which can include ungauged areas and complex, nested catchments. A common regionalisation

approach uses transfer functions to relate model parameters to spatial geophysical data (e.g.

topography, land-use, soils), introducing large uncertainties. Here, we address this challenge by

presenting a framework to incorporate uncertainties into a parameter regionalisation technique
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(Samaniego et al., 2010), and we evaluate this method of constraining model parameters across

gauged and ungauged catchments for the DECIPHeR model across GB.

5.2 Introduction

Distributed and semi-distributed hydrological models are widely used for a variety of purposes

such as flood forecasting, drought monitoring and climate change impact analyses (Bell et al.,

2009; Cloke and Pappenberger, 2009; Luo and Wood, 2007; Velázquez et al., 2013). There is an in-

creasing drive towards large-scale models, which can be applied at high resolution (1 km or finer)

across national to continental domains (Bierkens et al., 2015; McMillan et al., 2016; Wood et al.,

2011). Such models are required to help understand large-scale pressures on water systems, such

as climate change impacts on river flow, because consistent modelling approaches applied across

large areas give the broad overview of future impacts needed to guide policy decisions (Watts

et al., 2015). By discretising the landscape, spatially explicit models can characterise spatial

processes or changes, such as land-use change impacts on river flow (e.g. Hundecha and Bárdossy

2004; Im et al. 2009; Niehoff et al. 2002). However, there are many uncertainties involved in the

modelling process, including selection of the model structure, model parameterisation and errors

in observational data (Butts et al., 2004; Clark et al., 2008; Mcmillan et al., 2012; Wagener and

Gupta, 2005; Wilby and Harris, 2006). If hydrological models are used to guide policy decisions,

it is vital that these modelling uncertainties are recognised and reported alongside model output.

A key challenge for the application of large-scale hydrological models is constraining model

parameters, particularly for spatially distributed models which require explicit representation of

the parameter fields (Archfield et al., 2015; Beven and Cloke, 2012; Clark et al., 2017; Gupta et al.,

2014). Model parameterisation is important to ensure that the model is best able to represent

the unique combination of climatic and physiographic factors that govern hydrological processes

within a given catchment or area (Wagener and Wheater, 2006). However, the choice of model

parameter values is uncertain as model parameters are effective values which cannot be directly

measured. Many different parameter sets can often produce equally reasonable simulations,

known as parameter equifinality, making it difficult to justify selecting a single parameter set

(Beven and Freer, 2001a). This is particularly the case for spatially distributed models, where

different spatial configurations of model parameters may produce similar outputs (Kelleher et al.,

2017).

A variety of techniques have emerged to parameterise hydrological models across large do-

mains. Firstly, many studies use a priori parameter values based on physical interpretation of

model parameters, i.e. an uncalibrated model (Bathurst, 1986; Beven and O’Connell, 1981; McMil-

lan et al., 2016) but have often had limited success in predictive skill compared to models with
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some calibration against runoff (Duan et al., 2006). This method is also more difficult for concep-

tual parameters which do not directly relate to measurable properties. Secondly, parameters can

be calibrated individually for each catchment across a region (Christierson et al., 2012), as done

in Research Chapter One. To include ungauged catchments, parameter sets can subsequently be

transferred based on catchment similarity or individual parameters can be transferred based on

regression with catchment characteristics (McIntyre et al., 2005; Merz and Blöschl, 2004; Oudin

et al., 2008; Parajka et al., 2005). Whilst this can result in good performance at catchment outlets,

at the national scale it can result in a patchwork quilt of parameter values with potentially

unrealistic discontinuities at catchment boundaries (Mizukami et al., 2017). Thirdly, regional

parameterisation methods (also referred to as simultaneous regionalisation) link parameters to

spatial catchment data through transfer functions, and calibrate the transfer function parameters

simultaneously across many gauges (Götzinger and Bárdossy, 2007; Hundecha and Bárdossy,

2004; Samaniego et al., 2010). This has many advantages over the previous approach including;

(a) the use of spatial catchment attribute data helps constrain the spatial pattern of parameter

values, (b) it creates seamless parameter fields with no artificial discontinuities between catch-

ments, (c) it uses a consistent methodology, with the same transformation of geophysical data

to model parameters, everywhere including ungauged areas, (d) by regionalising parameters

simultaneously across all catchments it can result in more robust parameter sets.

We have chosen to focus on multiscale parameter regionalisation (MPR), which has emerged

as a particularly promising simultaneous regionalisation strategy for large scale modelling

(Mizukami et al., 2017; Samaniego et al., 2017). MPR differs from other regionalisation methods

by first creating parameter fields at the high-resolution of the geophysical data before upscal-

ing to the model resolution. This improves the transferability of the method across modelling

resolutions, making it the ideal choice for a spatially flexible hydrological model, such as the

one we have used here. Since the methodology was first introduced (Samaniego et al., 2010),

MPR has been applied to multiple models and locations (Kumar et al., 2013a,b; Mizukami et al.,

2017; Samaniego et al., 2017; Wanders et al., 2017), but relatively little work has been carried

out exploring the uncertainties in the MPR process. Uncertainties within the MPR methodology

include (1) structure of the transfer functions, (2) choice of catchment attribute datasets, (3)

selection of upscaling operators, (4) errors in hydrological data used for model calibration and

evaluation, (5) errors in catchment attribute data used for parameter regionalisation, and (6)

transfer function parameter values (or global parameter values). Most previous studies have

applied MPR deterministically using a single optimum global parameter set (Kumar et al., 2013a;

Livneh et al., 2015; Mizukami et al., 2017). However, Livneh et al. (2015) have compared model

performance regionalised using two different soil datasets, and found that to be an appreciable

source of uncertainty.
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In this chapter, we apply MPR to the DECIPHeR hydrological modelling framework across

Great Britain for the first time, thereby uniquely demonstrating how the method can be applied

within an uncertainty framework. We focus on uncertainties in the transfer function parameters

(i.e. global parameters), which will also implicitly reflect some of the uncertainties in the under-

lying geophysical data. The goals of this work are to (1) demonstrate how MPR can be applied

within an uncertainty framework to investigate uncertainties in the global parameter values (2)

evaluate MPR as a technique to produce nationally consistent parameter fields for a hydrological

model across Great Britain, and (3) evaluate whether the increased resolution of parameter fields

enabled through MPR adds value to the simulations. To answer these questions, we have tailored

MPR to DECIPHeR, constraining the model within the GLUE uncertainty analysis framework to

produce an ensemble of nationally consistent parameter fields. This differs from previous work

exploring uncertainties in global parameter values, as we are exploring the full range of global

parameter values in a Monte Carlo framework, and not optimising (Rakovec et al., 2016a). To

explore the relative skill of the national MPR parameterisation, we compare it against two upper

benchmarks: (1) individual catchment calibration using MPR to demonstrate the best possible

performance of the DECIPHeR-MPR method for a particular catchment, and (2) constraining

parameters directly using Monte-Carlo parameter sampling to demonstrate the best performance

of DECIPHeR with homogeneous model parameters.

5.3 Data and methods

5.3.1 Applying MPR within an uncertainty framework

The multiscale parameter regionalisation (MPR) approach introduced by Samaniego et al. (2010)

links model parameters to catchment predictor variables (spatial catchment attributes/ geophysi-

cal data) through transfer functions. The transfer functions are applied at the highest possible

resolution and are then upscaled to the resolution of the model. The parameters of the transfer

functions, often called transfer function parameters or global parameters, are usually then cali-

brated or optimised by assessing how well model simulations with different global parameter

values perform relative to observations.

A key assumption of the MPR technique is that the links made to catchment predictor vari-

ables are informative and the spatial distribution of catchment predictor variables helps identify

the spatial distribution of parameter values. However, model parameters are often effective

values that cannot be measured and defining appropriate catchment predictors and transfer func-

tions is therefore a difficult and uncertain task. This is especially the case for conceptual models,

where model parameters may not directly link to a physical process. There are therefore many

modelling uncertainties introduced in the MPR process, few of which have been fully investigated.

104



5.3. DATA AND METHODS

Here, we apply MPR within the generalised likelihood uncertainty estimation (GLUE) frame-

work to explore the uncertainties relating to the global parameter values. The global parameters

control the link between geophysical data and the model parameters. Thus, varying these values

accounts for systematic errors in the geophysical data, which are represented by uncertainties

in the global parameter values. The GLUE framework follows the equifinality concept, that

there can be many different parameter sets or model setups that result in equally acceptable

simulations (Beven and Binley, 1992). This equifinality results from errors and uncertainties in

the modelling process, where we lack the information to justify choosing one model realisation

over all others. Using GLUE we therefore sample the global parameters and keep the multiple

sets which produce acceptable simulation results rather than calibrating the global parameters

to find a single optimum. When making predictions, all behavioural model realisations are

used, each weighted by their likelihood, to produce discharge bounds indicating the modelling

uncertainties. The ethos behind the GLUE methodology is that it is a continuous process, and we

can continually update our definition/selection of behavioural sets of model parameters if more

information becomes available.

We first setup the modelling framework, regionalising each model parameter using multiscale

parameter regionalisation (the model setup, model parameters, transfer functions and upscaling

operators are described in depth in section 5.3.2). This resulted in 22 global parameters being

defined, to produce spatial parameter fields for five model parameters. Upper and lower bounds

were set for the global parameters, with the aim of selecting bounds that were wide enough to

produce the full range of realistic parameter values yet small enough to avoid wasting computa-

tional effort running and evaluating simulations with unrealistic parameter values (see Table 5.1

and Table 5.2). A bootstrap test was then carried out on a selection of six hydrologically varied

catchments, to determine the number of model evaluations (n) required to effectively sample

the global parameter space (details given in Appendix D). Model simulations were carried out

for each catchment, sampling the global parameters n times between the given bounds using

uniform random sampling. It is important to note that global parameters were considered as sets,

and not as individual parameter values. This means that parameter interactions are implicitly

considered within the GLUE approach.

5.3.2 Linking parameter values to catchment descriptors in DECIPHeR

DECIPHeR, Dynamic fluxEs and ConnectIvity for Predictions of HydRology, is a flexible hydro-

logical modelling framework, capable of running hydrological simulations from catchment to

national or continental scales (see Coxon et al. 2019 for a full description of this model). The

flexible modelling framework allows the user to modify the representation of spatial variability,

hydrologic connectivity and hydrological processes (model structure and parameters) across

the catchment by defining individual hydrological response units (HRU). HRUs are defined
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TABLE 5.1. Transfer functions and required catchment attributed data for all DECI-
PHeR parameters. Global parameters are represented by gx. A full description of
the catchment attribute datasets is given in Table 5.2
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TABLE 5.2. Global parameters used to represent each model parameter. Upper and
Lower bounds give the ranges each global parameter was sampled between.

by grouping raster-based information into non-contiguous spatial elements that share similar

characteristics in, for example, landscape attributes (e.g. soil, topography or geology) and spatially

varying inputs (e.g. rainfall). Each HRU then acts as a separate model store capable of having

different spatial inputs, model parameter values and/or model structures to represent different

and localised processes.

The DECIPHeR hydrological model lends itself well to exploring uncertainties within the

MPR process. The separation of the catchment into HRUs enables the model to run quickly

relative to a fully gridded spatially distributed model. This is essential for the GLUE approach

for nationally applied domains, which requires large numbers of model simulations to explore

the behavioural parameter space. Furthermore, DECIPHeR’s distributed model parameters and

flexible nature mean that MPR is a logical parameterisation choice. The link made between model

parameters and catchment predictor variables enables spatially distributed parameters that in-

dicate the differences in hydrological process between places. The ethos of MPR applying transfer

functions at high resolution, and then upscaling to model resolution (i.e. averaging high resolution
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parameter fields to produce model parameter fields at lower resolution) means the method is suit-

able for modelling at any spatial scale and parameters can easily be upscaled to distributed HRUs.

For this study, we split catchments into HRUs based on 3 classes of slope, 3 classes for accumu-

lated area, 5 km rainfall grids and gauged sub-catchments. Whilst the choice of DECIPHeR model

structure is flexible, we have applied the single model structure described in Coxon et al. (2019),

which can be seen in Figure 5.1b, as the focus of this study is on model parameterisation . This

model structure has been shown to be appropriate across many British catchments (Coxon et al.,

2019). This structure has six main model parameters, which are also shown in Figure 5.1b, as

well as one initialisation parameter. Many of these parameters are common to other hydrological

models (for example, ln(T0) is related to saturated hydraulic conductivity). Parameter values

were spatially distributed across the HRUs.

To tailor MPR to DECIPHeR, we developed transfer functions and upscaling operators linking

each model parameter to appropriate geophysical attributes. We first considered the physical func-

tion of each parameter, and identified geophysical attributes influencing that process. Transfer

functions were then developed linking parameters to the selected attributes, based on pedotrans-

fer functions in the literature where these were available. These were then tested across a range

of catchments and modified to improve model performance. A summary of the model parameters

and catchment attributes used for regionalisation is given in Table 5.1. An extended description

of the catchment descriptor datasets is given in Table 5.2. The final transfer functions resulted in

the seven model parameters being represented by 24 global parameters.

An example of the iterative development of the transfer functions is our decision to include

hydrogeology as a catchment predictor variable. Initially, only soils information was used in

the transfer functions, with no consideration of the underlying geology. Results showed poor

performance using regionalised parameters for many groundwater dominated catchments, with

the regionalised parameters unable to capture the correct hydrograph slope, variance or peaks,

despite good model performance when the parameters were directly constrained using Monte

Carlo sampling. Investigation into possible causes for this disparity found that many of these

catchments shared a common characteristic – the presence of high productivity hydrogeology (see

Appendix E for more information). When parameters were directly constrained for catchments

with large areas of productive hydrogeology, the ln(T0) and Smax parameters tended to be very

high, representing large saturated zone stores with high saturated conductivity values. The

soils information being used to constrain regionalised ln(T0) and Smax did not contain any

information to differentiate the areas with productive hydrogeology, and therefore these very

different processes were not being reflected in the model parameters. To resolve this, we included

a hydrogeology map into the regionalisation, and included extra coefficients in the transfer
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functions to allow areas of high productivity geology to have increased ln(T0) and Smax values

(see Table 5.1). This led to improvements in model performance across many areas with high

productivity geology, whilst not impacting the regionalisation elsewhere.

Model input data for each catchment consisted of 26 years of daily rainfall and potential

evapotranspiration data covering the period Jan 1985 – Dec 2010. The CEH-GEAR (Tanguy

et al., 2014) rainfall product was used, which is based upon the national database of rain gauge

observations collected by the UK MetOffice, converted to a 1 km2 gridded product using the

natural neighbour interpolation methodology (Keller et al., 2015). We aggregated this product

to 5 km2 grids for input into DECIPHeR. The CHESS-PE dataset was used to produce PET

estimates for each catchment (Robinson et al., 2015a). These estimates were produced using the

Penman-Monteith equation, calculated using meteorological variables from the CHESS-MET

dataset (Robinson et al., 2015c) and are available as a 1 km2 gridded product which we aggregated

to 5 km2 grids to match the rainfall. Daily observed discharge data from the National River Flow

Archive (NRFA) was used to evaluate model performance where available (Centre for Ecology

and Hydrology, 2016). The first six simulation years (Jan 1985- Dec 1990) were used as a warmup

period, the following 20 years were split equally into the calibration (Jan 1991- Dec 2000) and

evaluation (Jan 2001 – Dec 2010) periods.

5.3.3 Evaluating the national parameter regionalisation method

A large sample of 437 catchments across Great Britain were used for model parameterisation and

evaluation. These catchments cover a range of catchment attributes and hydrological processes

and are distributed across Great Britain as can be seen in Figure 5.1a. Using a large sample of

catchments ensures results are robust and generalisable, and the dense coverage across Great

Britain means they can be considered as a representative set of catchments for a national model

calibration.

DECIPHeR was run and evaluated across all catchments using three different parameterisa-

tion approaches, (1) a national implementation of MPR (behavioural sets of global parameters

constrained across all gauges simultaneously producing nationally consistent simulations), (2) an

individual catchment implementation of MPR (behavioural sets of global parameters constrained

and applied per catchment), and (3) the model applied using homogeneous parameter values

calibrated through Monte-Carlo parameter sampling (see Coxon et al. 2019). This enables us

to evaluate the national parameter regionalisation approach against two upper benchmarks

for each catchment where model parameters are less constrained. It also allowed evaluation of

whether the distributed parameters produced using MPR resulted in better model output than

homogeneous parameter values across a catchment.
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FIGURE 5.1. a) Map showing the 437 catchments used in this study. Highlighted
catchments are the Severn at Haw Bridge, gauge 54057 (blue) and Medway at
Teston/ East Farleigh, gauge 40003 (red). b) Model structure diagram for the
DECIPHeR hydrological model which was applied across these catchments.

For each parameterisation approach, DECIPHeR parameters were constrained within the

GLUE framework to produce prediction uncertainty bounds reflecting uncertainties in the global

parameters (1&2) or the model parameters (3). In each case, 3750 model simulations were carried

out per catchment, sampling the model parameters/global parameters between set bounds (see

Appendix D for bootstrapping tests of the number of parameter samples). The model simulations

were evaluated using non-parametric KGE (referred to as KGE* throughout) for the catchment

parameterisation approaches, and an average of KGE* across all catchments for the national

parameterisation approach (Pool et al., 2018). The non-parametric KGE is a newly introduced

goodness-of-fit measure (Pool et al., 2018) which builds upon the widely applied Kling-Gupta

Efficiency (KGE) metric (Gupta et al., 2009). The KGE considers three types of model errors;

error in mean flow, error in flow variability and correlation between observed and simulated flow.

By combining multiple objectives KGE aims to improve calibration by preventing overfitting

to a particular hydrograph element. However, KGE is based on assumptions of data normality

and linearity, which is often not the case for model simulation errors. Pool et al. (2018) therefore
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proposed a move towards non-parametric components of KGE, and tested a modified KGE version

which reformulated the variability and correlation components of KGE using non-parametric al-

ternatives. This non-parametric KGE uses the Flow Duration Curve (FDC) to indicate variability,

as opposed to the standard deviation, and the Spearman rank correlation, as opposed to the Pear-

son correlation coefficient. Testing of models calibrated with the standard and non-parametric

KGE across the contiguous United States demonstrated similar performance for high flows, but a

general improvement in simulation of low flows using the non-parametric version (Pool et al.,

2018).

The non-parametric KGE (KGE*) was calculated separately for the calibration (Jan 1991- Dec

2000) and evaluation (Jan 2001 – Dec 2010) periods. To produce the average KGE*, catchments

producing maximum KGE values below 0.3 were excluded as it was likely that the model structure

was not suitable for these catchments and including them would be disinformative. The median

KGE* value from all remaining catchments was calculated, assigning equal weighting to all

gauging stations. The top 100 simulations were selected as the behavioural set of simulations

for each approach. The variability in these top 100 simulations was then used to demonstrate

the uncertainty surrounding the best simulation. Model skill was then evaluated using the

KGE*, and the three decomposed metrics of bias, error in the variability of flows (based on the

normalised flow duration curve), and spearman rank correlation (see Pool et al. 2018).

5.4 Results

5.4.1 Evaluating the model parameterisation across a large-sample of
catchments

Figure 5.2 compares DECIPHeR model performance with parameters constrained using the three

different methods: MPR parameter fields with nationally consistent global parameters (national

MPR); MPR parameter fields with global parameters constrained per catchment (catchment

MPR); and homogenous Monte-Carlo sampled parameters for each catchment (catchment MC).

The performance of the top 100 parameter fields is shown for all methods, to indicate the uncer-

tainty in model performance due to selection of the best parameter field. It is worth noting that

the catchment-based approaches are likely to produce better results, because the parameters

have been constrained against the same gauge data used for model evaluation. They are therefore

being used as a upper benchmark for the national approach, showing what the model can achieve

for each catchment given the model structure and data available. The national MPR approach

is the only method which produces consistent parameter fields across all catchments including

ungauged areas.

Figure 5.2a-c shows results for the KGE* metric, calculated for the model calibration and
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FIGURE 5.2. Empirical cumulative distributions (CDFs) of model performance across
all study catchments. The shaded regions shows the range in non-parametric
KGE (KGE*) scores over the best 100 global parameter sets. Plots a-c compare
KGE* scores between the calibration and evaluation periods, represented by darker
and lighter shaded areas respectively, for each parameterisation approach. Plots
d-g compare model performance scores over the evaluation period between the
parameterisation approaches. The four performance scores are KGE* and its three
components. Bias is transformed so that for all scores higher values indicate better
model performance.

evaluation periods. The cumulative distribution plots show the modelled KGE* across all catch-

ments, with the shaded area showing the range between the 100 best (global) parameter sets.

It can be seen that the national MPR results show much larger uncertainty bounds than the

catchment calibration methods. This is expected, as different global parameter combinations

perform well in different catchments and the national parameterisation needs to reflect all

catchments simultaneously. However, the performance and uncertainty bounds with the national

MPR approach are consistent across the calibration/evaluation period – indicating that they are

stable over time and that the global parameters have not been over-constrained on the data. By

contrast, both the catchment calibration approaches show a general widening of the uncertainty

bounds and decrease in performance when moving between the calibration/evaluation periods.

This is most likely due to the model overfitting to observed flows.

Figure 5.2d-g directly compares performance of the three parameterisation approaches,

evaluated using the KGE* and decomposed metrics over the model evaluation period. The

112



5.4. RESULTS

beta (bias) metric has been transformed, so for all metrics higher values refer to better model

performance, with a maximum score of 1. The national MPR approach results in decreases of

performance and larger uncertainty bounds for all metrics, apart from bias in the top 50% of

catchments. However, considering that this is producing consistent parameter fields across all

catchments, the decrease in performance is not as large as expected. There are large overlaps

between the national simulation performance bounds and those of the catchment constrained

parameters. Comparing the catchment approaches, it can be seen that the distributed regionalised

parameters (catchment MPR) outperform the homogenous parmeter fields (catchment MC) for

KGE*, and also have smaller uncertainty bounds across all metrics. This suggests that the

distributed parameters produced by the MPR approach are improving model simulations, and

the parameters are better constrained.

5.4.2 Performance variation between catchments

Figure 5.3 shows that the spatial pattern of performance is similar between the three parameter-

isation approaches (Figure 5.3a-c). Poor performance for catchments in Scotland, and Southeast

England could be due to missing processes within the model structure (e.g. snowmelt, inter-

catchment groundwater flows), or because catchments in the southeast are generally drier and

more difficult to model, as found in Research Chapter One. All approaches produce good simula-

tions for catchments to the west of Great Britain, and in northern England. These catchments

are wetter, and previous studies have shown that a range of hydrological models produce better

results in the west Coxon et al. (2019); Lane et al. (2019); Rudd et al. (2017); Seibert et al. (2018).

This indicates that parameterisation is likely to be less important for these catchments: as

the simple relationship between rainfall and runoff can be represented by a range of different

parameterisations.

Figure 5.3d and e show the differences in KGE* score between the regionalised (MPR) and

directly constrained (Monte Carlo) parameterisation approaches. The catchment MPR approach

shows large performance gains relative to the catchment Monte Carlo parameterisation in the

southeast, and similar model performance elsewhere. This shows that the MPR approach has

great potential, and the distributed parameters are better able to reproduce flows for many

catchments. A performance drop is expected for the national MPR, since the parameterisation is

not tailored to a single catchment, yet for most catchments this performance drop is small (82%

of catchments drop by less than 0.1 KGE*, and 20% show no reduction in performance). This

could be attributed to the national calibration producing parameter sets that are more robust

between the calibration/evaluation periods, and the added benefit of distributed parameter fields

when comparing to the lumped parameters used in the catchment MC approach.
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FIGURE 5.3. Spatial maps of model performance using three different parameterisation
approaches (a-c), and performance difference between regionalised and directly
constrained parameters (d-e). Each dot shows performance at a gauging station
within the evaluation period.
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5.4.3 Example catchment showing performance improvement using MPR

To further understand the differences between the regionalised and directly constrained parame-

ters, we investigate an example catchment in more depth (as highlighted in Figure 5.1a). The

Medway at Teston/ East Farleigh was selected (gauging station 40003), as it is a relatively large

and varied catchment in the southeast of England where differences between the parameteri-

sation approaches are pronounced. It has an interesting flow regime, with aquifer-fed springs

providing baseflow for the headwaters combined with a responsive overall regime. For this catch-

ment the regionalised parameters were able to better reproduce the observed flows, with KGE*

scores over the evaluation period in the range 0.54-0.58 , 0.63-0.67, and 0.46 – 0.64 for the Monte

Carlo, catchment MPR and national MPR parameterisation approaches respectively.

Figure 5.4 shows the best-performing parameter fields from the national-MPR and catchment

Monte-Carlo approach, alongside a selection of the catchment characteristics data used to produce

them. The parameter values from all 100 behavioural parameter fields are given in Figure 5.5.

Here, each line shows the distribution of parameter values across the catchment in one parameter

field, coloured by model performance when using that parameter field. The black dashed lines

show values of the best parameter field, linking to the spatial maps given in Figure 5.4. It is worth

noting that for the national MPR approach, the best parameter field refers to the parameter field

for all gauges nationally, and so does not fully align with the best parameter field for the Medway.

The Monte Carlo catchment parameter fields are all shown as vertical lines, as parameters are

distributed homogeneously across the catchment.

The MPR parameter fields result in large ranges in the SZM, ln(T0) and Smax parameter

values across the catchment. These ranges are linked to the underlying catchment properties,

for example storage in the saturated zone (controlled by Smax) is larger for areas with deep

soils, and saturated hydraulic conductivity (controlled by ln(T0)) is higher for areas with highly

productive geology. The SRmax (soil root zone storage) parameter is particularly important for

this catchment, and for the MPR approach increasing SRmax improves model performance. A

larger soil root zone store may result in increased evaporation losses, as evaporation can only be

taken from the root zone store and not the saturated or unsaturated zone stores. As it is situated

in the south-east, the Medway catchment has relatively high annual losses for a GB catchment

and this could be further exacerbated by abstractions and reservoir storage leading to additional

evaporation losses. These attributes may explain why higher SRmax values lead to improved

performance for the Medway catchment, in contrast to the national calibration where the best

SRmax value is much lower.

Flow timeseries over winter 1993/4 for all parameterisation approaches are given in Fig-

ure 5.6, with the shaded area showing the GLUE simulated discharge bounds from the 100
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FIGURE 5.4. Selected catchment attribute data (a) and resultant parameter fields
(b/c) for the Medway at Teston/ East Farleigh. Parameter maps show the best
performing parameter fields generated using spatially distributed national MPR
(b) and lumped catchment Monte-Carlo sampled parameter fields (c). The colour
scale indicates the relative value of each parameter, between the bounds defined in
Figure 5.5.

behavioural parameter fields. There are clear differences between the hydrographs resulting from

the distributed MPR parameters. For the homogeneous Monte Carlo parameterisation the model

is not able to represent either the baseflow or flow peaks. There are large uncertainty bounds

and the model is not able to capture observed flows. The regionalised parameters are better able

to capture the hydrograph, as the distributed parameters can capture both the general baseflow

and fast response. Focusing on the peak labelled 1, both MPR approaches capture this event,

albeit with large uncertainty bounds for the national parameterisation, whilst the Monte Carlo

parameters miss the peak entirely. It is possible that the following event, labelled 2, is strongly

controlled by the flood storage reservoir within the catchment, resulting in the rounding off of

the flood peak, which we would not expect to be replicated by the model as it does not include

human influences on the flow regime.
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FIGURE 5.5. Distribution of parameter values for all behavioural parameterisations
across the Medway at Teston/ East Farleigh. The three columns show results
from different model parameterisation approaches, and each row shows a differ-
ent model parameter. Each individual line gives the cumulative distribution of
parameter values across the catchment from one behavioural parameter field,
with the line colour showing model performance with that parameter field. All
Monte-Carlo (MC) parameter fields are given as vertical lines, as parameters are
applied homogenously across the catchment with no spatial variation.

5.4.4 Performance variation across sub-catchments

A key benefit of parameter regionalisation is the ability to create spatial parameter fields. This

assumes that the spatial distribution of our catchment attributes is informative in setting the

spatial distribution of our model parameters. If this assumption is correct, then we could expect

better simulations within a catchment when using the spatial parameter fields generated using

MPR, as sub-catchments would have relevant parameter values and important hydrological

differences across a catchment would be represented. We have tested this, by evaluating model

performance across four gauged sub-catchments within a large catchment, when the catchment

parameterisation approaches have been constrained only to flows at the principal outlet.

The Severn at Haw Bridge was selected because it is large (with a catchment area of 9895
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FIGURE 5.6. Example hydrographs for the Medway at Teston/ East Farleigh, produced
using the three different parameterisation techniques. The shaded area gives the
simulated hydrograph uncertainty bounds produced using the GLUE technique,
whilst the solid black line shows observed flows. Two events 1) and 2) have been
highlighted, as these are discussed in section 5.4.3.

km2 it is the second largest catchment in the UK), it includes over 60 gauged sub catchments,

and shows a diverse range of hydrological behaviour. This includes very wet, high elevation

catchments in the west, baseflow dominated catchments with highly productive geology in the

northeast, and drier, flatter catchments to the east (see Figure 5.7). Four sub-catchments were

chosen to represent contrasting areas within the Severn catchment. The location of the Severn

catchment within the UK is given in Figure 5.1a, and locations of the selected sub-catchments

are shown in Figure 5.8.

Figure 5.7 gives examples of the parameter fields produced for the Severn, and Figure 5.8

shows hydrographs at four gauged points within the larger Severn catchment. Compared to

Monte Carlo parameter sampling, the national MPR approach produces better hydrographs for

sub-gauges within the Severn. The regionalised hydrographs are both better able to reproduce

observed flows and importantly have smaller GLUE simulation bounds. Neither approach can

capture flows well at gauge 54052 for high flows. This is made evident by the wide uncertainty
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FIGURE 5.7. Selected catchment attribute data (a) and resultant parameter fields
(b/c) for the Severn at Haw Bridge catchment. Parameter maps show the best
performing parameter fields generated using spatially distributed national MPR
(b) and lumped catchment Monte-Carlo sampled parameter fields (c). The colour
scale indicates the relative value of each parameter.
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FIGURE 5.8. Example hydrographs for sub-catchments within the Severn at Haw Bridge
catchment. Hydrographs are given for the national MPR (orange) and Monte-
Carlo catchment (purple) parameterisation techniques, where the catchment-based
parameters have been constrained on the larger Severn at Haw Bridge catchment.
For both approaches, the shaded hydrograph area gives the simulated uncertainty
bounds at the sub-catchment gauge produced using the GLUE technique, whilst
the solid black line shows observed flows. A map has been provided to show the
location of each sub-catchment within the Severn catchment, and the gauging
station at Haw Bridge has been included as a white circle.
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bounds, but would have been missed if simulations were carried out deterministically. For the

other gauges, the MPR approach is both better at capturing peaks (e.g. the Dec/Jan event has very

wide uncertainty bounds underpredicting flow for the Monte Carlo simulations) and recessions

(e.g. May 1994 both parameterisation approaches encompass the observed recession, but the

MPR approach has smaller uncertainty bounds). This supports the idea that the distributed

parameter fields produced using MPR are improving simulations within a catchment relative to

the Monte Carlo homogeneous parameter fields. Further, this result strongly increases confidence

in the ability of nationally calibrated MPR to predict flow with realistic uncertainty estimations

in ungauged areas.

5.5 Discussion

5.5.1 Adding parameter uncertainties to multiscale parameter
regionalisation

Here, we have shown how MPR can be applied within an uncertainty framework to incorpo-

rate uncertainties in model output resulting from choice of global parameter values. The global

parameter values control the relationship between the underlying catchment geophysical data

and the model parameters. There are many reasons why there may be uncertainty surrounding

the global parameter values and a single set of global parameters is not able to define the link

between model parameters and geophysical data everywhere. These include: 1) errors in both the

geophysical data used to define model parameters, and the observed discharge used to evaluate

model parameters, varying in space and time; 2) a lack of knowledge about the nature of the link

between model parameters and the geophysical data, especially for conceptually based models

where parameters many not directly link to measurable physical processes; 3) missing process-

es/information required to model everywhere means that different global parameter values will

be more/less effective for different catchments; 4) uncertainties in model parameter values. While

we do not have the information required to further constrain the global parameter values, it

is important to understand the implications of this uncertainty on simulated discharge values.

For example, this is highlighted in Figure 5.8 where large uncertainty bounds for gauge 54052

demonstrate that the model is less able to capture events in this part of the catchment compared

to other nearby gauges 54025 and 54008.

We found that the overall range in model performance was largest for the national MPR

approach. This is because the national parameter fields need to satisfy data from all catchments

simultaneously, and the best sets of global parameter values varies between catchments. However,

despite the larger range in performance, the uncertainty bounds of the flow timeseries are of a

similar magnitude (e.g. Figure 5.6).
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There are many other uncertainties within the MPR process, that were beyond the scope of this

research. For example, decisions regarding the form of the transfer function linking parameters

to geophysical spatial data (Klotz et al., 2017), the upscaling function used to transform high

resolution parameter maps to parameter fields at the model resolution and which geophysical

datasets to include for each model parameter (Mizukami et al., 2017).

5.5.2 Evaluation of MPR as a parameterisation strategy for a national model

National parameter fields have many advantages over catchment-calibration using the Monte

Carlo or MPR approaches. First, they are spatially consistent within and between catchments,

meaning that national model runs are consistent across space without discontinuities between

catchment or sub-catchment boundaries (Mizukami et al., 2017; Samaniego et al., 2017). Secondly,

they can be used to run hydrological models for ungauged areas and provide better parameter-

isations for ungauged points within a catchment (Kumar et al., 2010). Here, we have shown

that for the case of the river Severn, the distributed parameters result in better reproduction

of hydrographs for sub-gauges. Thirdly, having an ensemble of behavioural national parameter

fields means that additional catchments could be modelled with no need to recalibrate the model.

Fourth, regionalising parameters simultaneously across many catchments is less likely to result

in model overfitting to observed flows. Here we found that the national parameter fields resulted

in more consistent model performance between the calibration and evaluation periods.

National parameter fields are expected to lead to reductions in performance relative to catch-

ment calibration, as they are solving the more difficult problem of constraining model parameters

everywhere rather than constraining model parameters to observed flows for a single catchment

(Mizukami et al., 2017). In some catchments flow observations may be biased, flows may be

heavily modified by artificial influences that are not included in the model or there may be errors

in observed precipitation/PET data used to drive the model (Mcmillan et al., 2012). In these

circumstances, the catchment constrained parameter values will always do better because the

parameters will be constrained based on that scenario (e.g. a model storage parameter may be

unrealistically high to account for the effects of a reservoir within a catchment). Whereas in the

national case, parameters are constrained to all catchments simultaneously so such tailoring to

individual catchments is not possible.

We found that overall the ensemble of national parameter fields created using MPR (national

MPR) were able to produce good results (KGE* > 0.75) across the majority (60%) of Great Britain.

Catchments in the southeast presented the largest challenge to the DECIPHeR hydrological

model, and it is here that the largest differences in performance (both positive and negative)

were seen between the national and catchment-constrained parameters. Whilst most catchments

showed small decreases in performance when using the national parameter fields relative to the
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catchment Monte Carlo approach as expected, there were 358 catchments where performance

was not substantially impacted (KGE* difference <0.1) and 88 catchments where performance

increased. This is a very promising result, indicating that there is not always a compromise

between model performance and the benefits of having nationally consistent parameter fields.

There are still many areas for improvement and further research within the multiscale

parameter regionalisation methodology. Firstly, the question of how best to select catchments

to include in the national regionalisation. Here, we excluded all catchments with low KGE*

values, as it was considered that these were not informative, but gave all remaining catchments

equal weighting. This is similar to the approach used in previous studies Mizukami et al. (2017).

Future work could explore the impact of catchment selection on model performance, and screen-

ing of catchments which are potentially disinformative for the national picture (e.g. those with

significant artificial influences). Secondly, a key issue in sampling national parameter fields is

that not all combinations of catchments attributes exist in all catchments. An example of this is

constraining the SRmax parameter using land-use – the complete range of land-uses will not

exist for every catchment and therefore global parameters linked to missing land-uses will not

be constrained. This is problematic for our national calibration, as it could lead to some global

parameters not being properly constrained. Future work could look at how to resolve this issue

when selecting catchments for MPR. Thirdly, the datasets used to regionalise model parameters

and the structure of transfer functions linking model parameters to data, often requires an

ad-hoc procedure and intensive testing. We have shown how this is an evolving process, with

the step-wise addition of datasets found to lead to increases in model performance. Therefore,

whilst we have identified catchment attributes that lead to reasonable national simulations, this

national parameterisation has much scope for improvement as further catchment attributes are

found to be important in constraining model parameter fields.

MPR was initially developed as a module for the mesoscale Hydrologic Model (mHM) (Kumar

et al., 2013b; Samaniego et al., 2010), and the regionalisation was tied into the mHM code. Recent

studies have focused on developing a model agnostic version of MPR, providing stand-alone

regionalisation code that can be retrofitted to any hydrological / land-surface model (Mizukami

et al., 2017; Samaniego et al., 2017). Our work feeds into this goal, as whilst we have focused

on applying MPR to DECIPHeR, the general methodology for incorporation of uncertainties is

applicable independent of hydrological model choice. Furthermore, there is crossover between

DECIPHeR parameters and parameters of many conceptual models, meaning the transfer

functions developed here are more generally applicable.

123



CHAPTER 5. DEVELOPING NATIONALLY CONSISTENT PARAMETER FIELDS WITH
UNCERTAINTY

5.5.3 Lessons learnt from applying MPR to Great Britain

MPR is a data intensive parameterisation strategy, requiring (multiple) high resolution datasets

to underpin each model parameter. Here, we have applied MPR to a new hydrological model and

a new region, and our experiences developing links between model parameters and catchment

attribute data will be useful for future studies. We have provided information on the datasets

and pedotransfer functions used (see Table 5.1 and Section 3.5), which will be informative for any

future study applying MPR for the UK and elsewhere.

We found that peaty soils, which are abundant in Scotland, required the development of

a different approach to regionalisation. Whilst the UK is a data-rich country, we found that

soil sand and clay content data were not available everywhere, and in particular are often not

measured for peaty soils. These data are required for most pedotransfer functions for saturated

hydraulic conductivity (Zhang and Schaap, 2019). While small areas of missing data could be

gap-filled this was not appropriate for peaty soils which covered very large areas and were

expected to have distinctly different hydrological characteristics. We therefore applied different

pedotransfer functions to estimate saturated hydraulic conductivity in peat soils, which were

based on bulk density and organic content rather than sand and clay (see Table 5.1).

During testing of which catchment characteristics were important to use in the pedotransfer

functions, it was found that hydrogeology played a key role in the values of behavioural global

parameters. Areas with highly productive geology were found to have behavioural global parame-

ter values in a very different range to areas with low/medium productivity geology. We therefore

introduced a hydrogeology dataset into the regionalisation strategy, and included additional

global parameters for areas of high/low productivity. This resulted in a large improvement in per-

formance in catchments containing high productivity geology, whilst not affecting the parameter

regionalisation elsewhere. The difference in constrained parameter values between areas with

high/low productivity geology can clearly be seen in our results (Figure 5.4, Figure 5.7).

5.6 Summary and conclusion

The field of hydrological modelling is moving towards large-scale models that can be applied

across national to continental scales. For these models to represent the diverse range in hydro-

logical behaviour across and within catchments, and across complex landscapes with multiple

nested sub-catchments, we need to be able to generate spatial fields of model parameters. These

model parameter fields will always be uncertain as they cannot be directly measured and must

be estimated using transfer functions and catchment attribute data, both of which are sources

of uncertainty. It is therefore important that these uncertainties are recognised and quantified

within modelling studies, so that we can understand the robustness of our model predictions.
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Here, we have shown how the multiscale parameter regionalisation (MPR) method can be

used to generate nationally consistent spatial parameter fields for the DECIPHeR hydrological

model across Great Britain. We have extended the method to consider uncertainties in the links

made between model parameters and underlying geophysical datasets, to produce ensembles of

equally plausible model parameter fields. This enables us to simulate river flows in a nationally

consistent way producing river flow estimates with uncertainty bounds.

The performance of the nationally constrained parameter fields were compared with two

catchment-based parameterisations: (i) individual catchment calibration using MPR to demon-

strate the best possible performance of the DECIPHeR-MPR method for a particular catchment,

and (ii) calibration using Monte-Carlo (MC) parameter sampling to demonstrate the best per-

formance of DECIPHeR with homogeneous model parameters. The national parameter fields

facilitate good model simulations (non-parametric KGE scores exceeding 0.75 for 60% of catch-

ments), despite a general decrease in performance compared to catchment constrained parameters

(median decrease of -0.06 KGE*). The national parameter fields were shown to have advantages

over the catchment-constrained Monte-Carlo parameters including; more realistic parameter

fields leading to better simulations at points within catchments, more robust performance be-

tween calibration and evaluation periods, and national consistency including parameter fields

for ungauged areas. We also show that the catchment-based MPR technique outperforms MC

sampled parameters across a range of metrics, demonstrating the potential to improve national

MPR approach further. Finally, by including uncertainties for the first time we show that the

parameters are better constrained using MPR: MPR-catchment results in more consistent perfor-

mance than the MC approach across multiple metrics and the hydrographs produced using both

catchment and national MPR have smaller uncertainty bounds.

Defining transfer functions to link parameters to suitable catchment attributes is chal-

lenging when regionalising a hydrological model. Crossover between the parameters of the

DECIPHeR model and many other hydrological models, means the transfer functions and catch-

ment attributes used here are more generally applicable. As the first application of MPR to the

DECIPHeR hydrological model, and the first application of MPR focused on Great Britain, the

methods used within this study will be informative for future regionalisation efforts in Great

Britain and elsewhere.
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6
CLIMATE CHANGE IMPACT ON HIGH FLOWS ACROSS GREAT

BRITAIN, INCLUDING MODELLING UNCERTAINTIES

This chapter is in preparation to be submitted to the Journal of Hydrology. Model simulations,

data processing and figure creation were carried out by Rosie Lane, with guidance and

suggestions from all co-authors. Jim Freer helped in downloading the UKCP18 climate data,

and Gemma Coxon created 12 km DECIPHeR input grids to help setup the model to run with

climate inputs. Emma Robinson provided the python code used to calculate CHESS-PET, and

provided suggestions for how it could be adapted to work with the available UKCP18 outputs.

The manuscript was written by Rosie Lane, with comments from all co-authors.

Citation: Lane, R. A., Coxon, G., Freer, J., Seibert, J., and Wagener, T. (in preparation). UK

Climate Projections on high flows across Great Britain, including hydrological modelling uncer-

tainties.

6.1 Context

Research question three: What is the impact of climate change on median and higher
flows across Great Britain?

Climate change could significantly impact river flows across Great Britain, but there are

large uncertainties in both future climate changes and how these propagate to changing flows.

This research chapter uses the model developed in Research Chapter Two in order to provide the
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first GB-wide spatially consistent projections to include both climate and hydrological modelling

uncertainties. The modelled range in regional and nationwide changes to high flows is provided,

alongside analysis of the relationship between changing precipitation, PET and high flows.

6.2 Introduction

Climate change will likely significantly alter hydrological regimes in many parts of the world, with

vast implications for water resource planning and policy (Brown et al., 2015; Intergovernmental

Panel on Climate Change, 2014; Wagener et al., 2010). Projections indicate an intensification of

the hydrological cycle, with a warmer climate overall leading to more rain falling in high-intensity

events (Huntington, 2006; Intergovernmental Panel on Climate Change, 2014; Trenberth, 2011).

This increase in the frequency and severity of extreme rainfall events is likely to increase flood

risk in many regions. However, the conversion of rainfall to runoff is not straightforward, as

changes in river flows are the result of complex and non-linear interactions between changing

rainfall and evapotranspiration, and the influence of basin properties (Arnell, 2011; Laizé and

Hannah, 2010; Sawicz et al., 2014). There are also many uncertainties surrounding future climate

projections; while climate models show general agreement on rising temperatures and increasing

extreme precipitation throughout the 21st century, they differ in the magnitude and spatial

patterns of change (Fowler and Ekström, 2009; Met Office, 2019; Nikulin et al., 2011). To guide

water-related policy and decision making and to ensure adequate adaptation to future changes

in flooding, we therefore need hydrological modelling studies to help understand and quantify

climate change impacts on the hydrological regime, and the uncertainties surrounding these

projections.

Recent literature has highlighted the need for more high-resolution modelling studies at

national to continental scales (Watts et al., 2015). Currently, many hydrological climate impact

studies focus on small numbers of catchments in great detail (e.g. Fowler and Kilsby 2007;

Prudhomme et al. 2003; Reynard et al. 2004) or produce the global picture of change at relatively

low resolution (e.g. Arnell and Gosling 2013). However, many policy decisions, such as flood

funding allocations or guidance on flood infrastructure allowances, are made at the regional to

national scale. Studies which apply a consistent methodology at high resolution across a large

area are most valuable to inform these regional and national policy decisions, as they (i) provide

a broad overview of future changes, (ii) provide locally relevant information, in contrast to global

impact studies, and (iii) enable direct comparison between catchments to identify regions that

will experience the most significant climate change impacts (Watts et al., 2015). Using a large

sample of catchments also ensures a more robust evaluation of the relationship between climate

change impacts and hydrological response.
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Hydrological climate change impact studies often use Global Climate Model (GCM) or Re-

gional Climate Model (RCM) information (e.g. rainfall and temperature projections) to drive

hydrological models. Throughout this modelling chain there are many uncertainties, which

cascade from one step through to another. These include uncertainties in GCM structure and

sub-grid parameterisations, uncertainties in RCM structure and parameterisations, uncertainties

in the chosen downscaling and bias correction techniques, and uncertainties in the selection of

hydrological model structures and their parameters. Many studies have attempted to quantify

these uncertainties (e.g. Bosshard et al. 2013; Kay et al. 2009; Smith et al. 2014b; Wilby and Har-

ris 2006), but these tend to focus on small samples of catchments. On a national scale inclusion of

modelling uncertainties is challenging, and while a few UK studies include RCM uncertainties

(e.g. Bell et al. 2016; Prudhomme et al. 2012) and recognise the importance of representing

uncertainties throughout the modelling chain, the inclusion of hydrological modelling uncer-

tainties is still rare. A notable exception is Christierson et al. (2012), who modelled the impact

of changing climate for 70 catchments across the UK using two different hydrological model

structures and ensembles of model parameters. However, this study was based on probabilistic

climate projections which were not spatially coherent, and therefore did not present possible

GB-wide changes but rather individual scenarios for each catchment. Incorporating hydrological

model parameter uncertainties is important, as it has been shown that very different projections

for future catchment behaviour can be provided by parameter sets with similar performance

over a baseline period (Mendoza et al., 2015; Singh et al., 2014). However, there are currently

no studies providing spatially consistent projections of future changes in flooding across entire

Great Britain, which include both RCM and hydrological model parameter uncertainties.

An updated set of national climate projections has recently been released for the UK, UKCP18

(Lowe et al., 2019). These have advanced upon previously available national projections (UKCP09)

through (1) increased resolution of global climate model from 300 km to 60 km providing better

representation of synoptic-scale weather systems, mountains and coastlines, (2) increased resolu-

tion of regional climate model from 25 km to 12 km, which may improve the representation of

extreme precipitation, (3) updated atmosphere model and improved parameterisations of many

sub-grid scale processes, and (4) improved representation of dynamical influences on regional

climate variability such as improvements in predictions of the winter North Atlantic Oscillation

(NAO) (Murphy et al., 2018). These include a perturbed physics ensemble of RCM projections at

12 km resolution, providing 12 possible climate futures varying due to RCM parameter uncer-

tainties. The implications of these new climate simulations for river flows are of great interest, as

the improved simulation of precipitation may improve projections of future flooding.

This chapter aims to explore the impact of the new UKCP18 climate projections for high

flows across Great Britain, whilst reflecting parameter uncertainties in climate and hydrological
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models at the national scale. A climate-hydrological model cascade was employed, with output

from an ensemble of 12 spatially consistent RCM projections used to drive a nationally applied

hydrological model with 30 spatially consistent parameter field samples. The resulting 360 future

flow scenarios covering a large sample of 346 catchments were analysed to answer the following

research questions:

1. What is the range in potential changes to higher flows (including median flows (Q50), high

flow quantiles (Q10 and Q1), annual maximum flows (AMAX) and the number of peaks over

threshold) across Great Britain, due to parameter uncertainties in climate and hydrological

modelling?

2. How will changes in the magnitude and frequency of high flows vary spatially and by

region?

3. What is the relationship between changing climate (precipitation and potential evapotran-

spiration) and high flow response, and how does this vary by region?

Our study presents the first consistent climate change projections for high flows across all

of Great Britain to include both climate model and hydrological model parameter uncertainties.

The incorporation of a large sample of catchments also enabled robust and generalisable analysis

on the relationship between climate forcing, catchment characteristics and hydrological response.

6.3 Methods and data

6.3.1 Overview

This chapter uses a climate-hydrological modelling chain to assess the implications of the UKCP18

climate projections for river high flows across 346 catchments covering Great Britain (see Section

6.3.2 for catchment selection). An ensemble of 12 spatially coherent regional climate model (RCM)

projections are first bias corrected (see Section 6.3.3), and then used directly as inputs to the

DECIPHeR hydrological modelling framework to produce flow projections (see Section 6.3.4).

For each RCM ensemble member, DECIPHeR simulations are carried out using 30 nationally

consistent hydrological model parameter fields. The use of 12 RCMs and 30 hydrological model

parameter sets results in 360 national simulations, representing uncertainty due to RCM and

hydrological model parameterisation. A flow diagram of this process showing the key underlying

datasets is given in Figure 6.1.

To explore climate change impacts on high flows, flow metrics were selected to assess median

flows (Q50), high flow quantiles (Q10 and Q1), the magnitude of peak flows (AMAX), and the

frequency of peak flows (see Section 6.3.5). The skill of the climate-hydrological modelling chain

was first evaluated relative to observed flow metrics, and then changes in flow metrics between

the baseline (1985 – 2010) and future (2050 – 2075) periods were evaluated.
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FIGURE 6.1. Flow diagram demonstrating climate-hydrological modelling chain.
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FIGURE 6.2. Locations of the catchments used in this study, grouped according to the
UKCP18 river basin districts.

6.3.2 Catchment selection

A large sample of 346 catchments covering Great Britain was selected for this study. This sample

provides a dense coverage across Great Britain, with catchments in all river basin districts, as

shown in Figure 6.2. Gauging stations were selected from the UK National River Flow Archive

(NRFA) Service Level Agreement (SLA) Network (Centre for Ecology and Hydrology, 2016; Dixon

et al., 2013). This network of 715 gauges form a subset of strategically valuable NRFA catchments,

where additional validation and quality testing procedures have been carried out (Dixon et al.,

2013). As hydrometeorological data were available on 12 km grids at daily resolution, we chose

to exclude catchments which were smaller than 144 km2 (i.e., one RCM grid), because for these

small catchments local variation in precipitation could be problematic for the RCM ensemble

scale, and for small flashy catchments sub-daily data would be required to capture high flow and

peak responses effectively.

6.3.3 Climate model data

Climate scenarios representing changes in precipitation and potential evapotranspiration (PET)

were derived from the UKCP18 regional climate projections (Murphy et al., 2018). These com-
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prised a perturbed-physics ensemble of 12 regional climate model simulations, run at 12km

resolution with daily output from 1981 to 2080 (Met Office Hadley Centre, 2019). The 12 RCM

projections were all driven by the same GCM (HadGEM3-GC3.05), and for the RCP8.5 emissions

scenario. This GCM has been shown to sample the warmer range of global outcomes (Lowe et al.,

2019), and so combined with a single emissions scenario, we only sample the warmer range of

possible climate outcomes. A key advantage of this data over other UKCP18 products is that it is

has full spatial and temporal coherence, and therefore allows for the assessment of interactions

between changes in precipitation and PET as well as providing a nationally consistent picture of

future changes (Met Office, 2020).

Whilst precipitation data were available as an RCM output variable, PET time series needed

to be derived from other relevant UKCP18 model outputs. There are many possible approaches

to calculating PET from climate model data, with the choice of PET equation shown to impact

the subsequent changes in PET over time (Kay and Davies, 2008; Prudhomme and Williamson,

2013). Here, PET was calculated to be consistent with the CHESS-PE dataset used for hy-

drological model parameterisation (Robinson et al., 2015a). The CHESS-PE dataset uses the

Penman-Monteith equation, calculating PET as a function of air temperature, specific humid-

ity, wind speed, shortwave radiation, longwave radiation, and air pressure. These variables

were all available as UKCP18 output apart from air pressure, which was calculated using the

integral of the hypsometric equation with modelled temperature as an input (Shuttleworth, 2012).

Bias correction of climate model output data is often required for hydrological impact studies

due to the occurrence of considerable biases in hydrologically relevant variables (Addor and

Seibert, 2014; Cloke et al., 2013; Ning et al., 2012; Teutschbein and Seibert, 2012). An analysis of

biases in the UKCP18 regional projections identified systematic biases in the model output pre-

cipitation and model-derived PET data (see Appendix F for more information). For precipitation,

RCM biases included overpredictions of mean annual precipitation across Great Britain by up to

50%, underpredictions of rainfall in wetter areas along the west coast, and an increased number

of wet days (an average of around 15% more rainy days per year than observations). RCMs

tend to overpredict the variance in PET, resulting in overestimations of PET in the southeast,

where observed PET is high, and underestimations in Scotland as well as an incorrect seasonal

variation with overestimations in summer (up to around +40%) and underestimations in winter

(up to -100%). A bias correction method was required to reduce these biases in RCM precipitation

and PET, so that they were suitable for hydrological modelling.

The choice of bias correction has been shown to impact the magnitude and spread of projected

changes in flood-producing flows (Cloke et al., 2013; Smith et al., 2014b), and should, therefore,

be carefully considered. Techniques to directly adjust RCM simulations range from relatively
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simple linear scaling through to more complex approaches such as quantile mapping (Teutschbein

and Seibert, 2012). The delta change method, which modifies historical time series based on

RCM-simulated changes, is commonly applied (e.g. Veijalainen et al. 2010. However, this method

cannot change the temporal sequencing of events, so it cannot be used to evaluate changes in

flood timing. The quantile mapping bias correction approach was selected for both precipitation

and PET (this method has also been referred to as distribution mapping, probability mapping,

model output statistics, or histogram equalisation). The quantile mapping approach accounts for

errors in the variability of PET, and ensures that heavy precipitation events important for high

flows were appropriately corrected as well as mean precipitation. It also corrected for biases in

the number of wet days in the RCM data.

Observed precipitation and PET data used for bias correction came from the CEH-GEAR

(Keller et al., 2015; Tanguy et al., 2014) and CHESS-PE (Robinson et al., 2015a) datasets

respectively. For each grid-cell and month for precipitation the following steps were performed:

1. Empirical Cumulative Distribution Functions (CDFs) were calculated for the observed

precipitation, and RCM simulated precipitation for the control/baseline period (all dates

where observed and simulated precipitation were available).

2. The fractional change in precipitation between the observed and control/baseline simulated

was calculated for each cumulative probability.

3. The whole simulated precipitation series was then bias-corrected. The cumulative probabil-

ity of each precipitation value was calculated, and the value was modified by the fractional

change for that cumulative probability.

The same method was carried out for PET, with a minor modification. It was found that

for some Scottish catchments, fractional changes could become very large when PET values

were low (<0.1 mm/day) as a result of dividing by values close to zero. To prevent unrealistic

spikes in future PET at low cumulative probabilities, a check was added to ensure that PET

values at a low cumulative probability were always smaller than values at a higher cumulative

probability. This bias correction methodology successfully reduced biases in RCM data over the

observational period (see Appendix G for more information). However, it is important to note that

bias correction assumes that despite showing large biases in hydrometeorological variables the

RCM output is still meaningful and changes in hydrometeorological variables are well simulated.

There is no ideal bias correction methodology, and there are several key limitations to both

bias-correction in general and the quantile mapping bias correction approach more specifically.

Firstly, bias correction assumes that biases in RCM output are stationary and so methods of

bias correcting baseline data also hold into the future. However, with a changed future climate

it may be expected that model biases may also change. Secondly, bias correction techniques are

limited by the quality of the observational data which model biases are corrected against. There
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are many uncertainties in observational rainfall measurements, with the main sources of error

for raingauges in the UK including adhesion of water to the gauge surface, water splashing

in and out of the gauge, undercatch due to wind and evaporation (Keller et al., 2015). Further

uncertainties are introduced when this gauge data is interpolated to create a national product,

especially in areas where raingauge measurements are sparse, which is the case for some areas

of Scotland (Keller et al., 2015). There are also large uncertainties in the observational PET

product, including choice of PET equation and measurement errors in the underlying data. These

errors in observational datasets are not considered in the bias correction methodology. Thirdly,

the quantile mapping approach corrects simulated data against the CDF of observed data. For

the extreme high end of these observations (e.g. exceptionally heavy rainfall events), there will

be few observations to constrain the CDF, and therefore bias correction is likely to be less robust

for the rarest events. However, quantile mapping bias correction was chosen above a more simple

monthly-mean approach to account for differing errors between heavy, median and light precipi-

tation events within the same month.

The bias-corrected RCM data was used directly as hydrological model input, with no further

downscaling. This was possible due to the size of the catchments we have chosen to analyse

coupled with the high resolution (12 km) of the RCM data, which is a key advantage of the

UKCP18 climate product over previous climate projections.

6.3.4 Hydrological modelling

The DECIPHeR hydrological modelling framework was selected to transform precipitation and

PET into river flows (Coxon et al., 2019). DECIPHeR is a semi-distributed hydrological modelling

framework which discretises the modelling domain into hydrological response units (HRUs).

Here, the model was configured to be consistent with the 12 km UKCP18 data, with HRUs

defined by splitting the landscape into 12 km input grids which were further sub-divided by

accumulated area classes, slope classes and sub-catchment boundaries to capture topographic

and catchment attribute controls in hydrological processes. This HRU-based approach enabled

representation of the spatial variation of input time series, whilst being computationally efficient

to facilitate the use of multiple hydrological and RCM parameter sets across the large sample of

catchments. Here, we have selected the default model structure, which is based on the widely

used TOPMODEL, and has previously been shown to perform well across Great Britain and

selected catchments (Coxon et al., 2019) and also Chapter 5.

National fields of model parameters have been generated using the multiscale parameter

regionalisation technique (Samaniego et al., 2010), as described in Chapter 5 . This method

relates model parameters to spatial catchment attribute data (including soil texture, land-use,
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and hydrogeology) via transfer functions. The coefficients of the transfer functions were then

constrained simultaneously on a large sample of 437 British catchments, instead of directly

constraining model parameters. Over 3500 possible parameter fields were produced, and of these,

the top 30 parameter fields were selected for this study. These were selected as they produced

non-parametric KGE scores (Pool et al., 2018) above 0.8, when taking the average value across

the large sample of catchments in Great Britain (see Chapter 5). Using catchment attribute data

to define the spatial distribution of model parameters means that parameter fields are spatially

coherent with no artificial discontinuities (Mizukami et al., 2017; Samaniego et al., 2017). This

is advantageous when modelling climate impacts for larger regions or entire countries, as it

has been shown that artificial discontinuities in parameter fields can lead to discontinuities in

modelled variables (Mizukami et al., 2017).

The DECIPHeR framework requires inputs of precipitation and PET, as well as spatial catch-

ment attribute data for parameterisation. The model was driven continuously with climate data

over the period 01/01/1981 – 30/12/2075, with 01/09/1985 – 30/8/2010 extracted as the baseline pe-

riod, and 01/09/2050 – 30/08/2075 being used as the future period in all further analysis. Starting

the baseline in 1985 gave over four years for a hydrological model warm-up period. Hydrological

simulations were also carried out using observed data over period 01/01/1981 – 30/08/2010, to

provide a benchmark of model performance which the RCM-driven simulations could be compared

against over the baseline. For these simulations, potential evapotranspiration data from the

CHESS-PE dataset (Robinson et al., 2015a,b) and precipitation data from CEH-GEAR (Keller

et al., 2015) were re-gridded to match the UKCP18 12 km data. All observed river flow data

were from the UK National River Flow Archive (NRFA) (Centre for Ecology and Hydrology, 2016;

Dixon et al., 2013).

6.3.5 Hydrological indicators

To explore changes in the magnitude of high flows, we calculated the percentage changes in four

different flow metrics between the baseline (1985 - 2010) and future (2050 - 2075) periods. Flow

metrics calculated were 1) the average annual maximum (AMAX) flow, 2) Q1, the flow value

exceeded 1% of the time, 3) Q10, the flow value exceeded 10% of the time, and 4) Q50, the median

flow or flow value exceeded 50% of the time. These were selected to give a broad overview of

future higher flow changes, ranging from flood flows (AMAX and Q1) to average flows (Q50).

To analyse changes in the frequency of high flows, a peaks-over-threshold (POT) analysis

was carried out. Thresholds were defined for each catchment to extract an average of three

peaks per year over the baseline period. To ensure flood events were independent, no peak was

selected within seven days of a larger peak. This selection was consistent with previous studies,
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for example, Svensson et al. (2005) used a five-day window for catchments smaller than 45,000

km2 (the largest catchments in the UK are 10,000 km2), whilst Petrow and Merz (2009) used ten

days for catchments across Germany. Having found a POT threshold for each catchment over

the baseline that resulted in an average of 3 peaks per year, the number of peaks exceeding this

threshold in the future period was counted. The percentage change between the count of 75 peaks

total gained in the baseline and peaks gained in the future was then calculated as an indication

of changes in the frequency of flood events.

6.4 Results

6.4.1 Evaluation of climate-hydrological modelling chain

Overall, the simulations of the climate-hydrological modelling chain across Great Britain bounded

the observations (Figure 6.3). Our evaluation focused on the performance for hydrological indica-

tors relevant for higher flows, namely flow quantiles Q50, Q10, and Q1. The maps (Figure 6.3a)

show biases in the highest (i.e. wettest) and lowest (i.e. driest) simulation for each individual

catchment from the ensemble of 12 RCMs and 30 hydrological model parameter sets compared

to observed flows. For catchments which are well represented by the modelling chain, we would

expect simulated flows to bound the observations. Therefore the highest simulation would show a

small positive bias, and the lowest simulation would show a small negative bias. For the majority

of catchments (75% for Q10, 59% for Q1), the model simulations follow this pattern and bound

observed discharge, with biases less than 50%. However, the modelling chain overestimated

flows in the south-east (by over 100% in some areas), and to a smaller extent underestimating

peak flows in the west. The difficulties of modelling catchments in southeast England has been

documented in Research Chapter One and previous studies (Coxon et al., 2019; Lane et al., 2019;

Seibert et al., 2018), and is likely due to complex aquifer systems facilitating inter-catchment

groundwater flow. These catchments should, therefore, be treated with caution when interpreting

the results.

Model performances are shown in more detail for a selection of catchments covering a variety

of error characteristics (Figure 6.3b). Here, error (i.e. bias) in modelled flow driven by RCM

output (green) is compared to modelled flows driven by observations (yellow) using the same 30

hydrological model parameter sets. For most gauges, simulated flows bound the observations,

even when driven by the RCM meteorological data. This result was expected as the RCM data

has been bias-corrected against observations, and therefore the RCM data will be similar to

observations in magnitude, albeit with different sequencing of events. There is no consistent

relationship between model biases and flow percentiles, with gauge 9002 showing an increased

tendency to overestimate higher flows, whilst gauge 83013 showed a decreased tendency to

overestimate higher flows.
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FIGURE 6.3. Evaluation of model performance, showing how well the modelled flow
statistics from the climate-hydrological cascade bound the observed flow statistics.
The maps (a) show error in RCM-driven simulations compared to the observed.
The top row shows the highest positive error from the 360 simulations, whilst the
bottom row shows the lowest negative error, calculated separately for each catch-
ment. When considered together, these show how well the RCM-driven simulations
bound the observed flows. Four gauges are shown in more detail (b), giving error
across median and higher flow percentiles.
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6.4.2 Meteorological changes

Median precipitation is projected to decrease almost everywhere with GB-average median pre-

cipitation projected to decrease by 31-61% between the different RCMs, with the only exception

being in west Scotland (Figure 6.4a). This decreasing median precipitation contrasts with very

high precipitation (99th percentile), which is expected to increase across most of Great Britain,

by an average of 5 - 20%. The 90th percentile precipitation shows a more mixed picture, with

GB-average changes of -9% to +6%. Generally, increases were simulated for areas along the west

coast and in western Scotland, whilst decreases can be seen across southern England and Wales.

All RCMs indicate increasing PET over the modelled period (Figure 6.4b-c). These broadly

align with observed PET across Great Britain between 1980 - 2010, although it is difficult to

distinguish an upward trend in the observed PET data over such a short period. GB-average PET

values show increases of 23 - 38% between the baseline and future period, with the largest PET

increases (33 - 50%) seen in the south, and the smallest PET increases (11 - 19%) simulated for

northwest Scotland.

6.4.3 Spatial changes in high flows across GB

Maps showing the spatial pattern of changes in high flow magnitude and frequency are presented

for three example simulations in Figure 6.5. As the spatial pattern was similar between the

ensemble members, we have focused on RCMs 13, 8 and 4 which represent low, average, and high

GB-average projections respectively in terms of Q10 changes, with plots for all RCMs given in

Appendix F. These projections were selected to indicate the range in flow changes across GB, but

it is important to note that they are spatially coherent futures from single RCM ensemble projec-

tions. Therefore they do not reflect the full range of flow changes for each individual catchment

that would be obtained by evaluating the entire RCM ensemble.

Despite differences between the example projections, there is a clear east/west divide for high

flow magnitude metrics (AMAX, Q1 and Q10) with increased flows for catchments in the west

and decreasing flows in the east. The largest decreases in high flows are in eastern England,

particularly in the Anglian river basin district, whilst the largest increases in flow are along the

west coast. Median flow (Q50) projections indicate reductions in flow almost everywhere, but

these reductions are generally lower for catchments in western Scotland. The frequency of high

flow events, represented by changes to the number of peaks over threshold events, also shows

general increases in the west and reductions in the southeast. The spatial pattern is very similar

to the changes to high flow magnitude, indicating that western catchments could experience

larger annual maximum floods combined with more frequent high flow events.
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FIGURE 6.4. Precipitation (a) and PET (b-c) change. GB-maps are presented for each
ensemble member in order. Top row: RCM01, RCM04, RCM05, RCM06, RCM07
and RCM08, bottom row: RCM09, RCM10, RCM11, RCM12, RCM13, RCM15.
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FIGURE 6.5. Maps showing changes in the magnitude and frequency of peak flows
between the baseline and future periods for example simulations. Each row shows
a nationally coherent projection, with plots of changes in five flow metrics (AMAX,
Q1, Q10, Q50 and the number of peak flows above a threshold). This combination
of RCMs and hydrological parameter sets were selected from the ensemble of 360
simulations to give an indication of the ensemble spread, as they provided the
highest, median, and lowest GB-average change in Q10, but they do not show the
full range of possible changes for individual catchments or all flow metrics.
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6.4.4 Uncertainties arising from RCM and hydrological model parameters

Changes for the hydrological indices for the different RCMs and across regions were visual-

ized by heatmaps to enable easy comparison (Figure 6.6). These heatmaps present the median

flow values from the sample of hydrological model parameters for each flow statistic, with the

full range of regional projections presented in Table 6.1. They highlight similarities between

RCM members: most RCM ensembles result in increasing AMAX flows in Scotland, northern

England, and west Wales, and decreasing AMAX flows in the Anglian river basin district. Most

RCM ensembles also result in decreasing Q50 flows everywhere except for the Argyll and West

Highland districts in west Scotland. However, there are also important differences between the

different RCM projections, including; i) differences in the spatial variation of changes across GB,

for example RCM 15 shows relatively little variation between regions (range of 28% between

AMAX projections) whilst RCM 11 shows a large variation (range of 104%), ii) differences in

the magnitude of projected changes for each region, for example NW England projections for

Q10 range from -16% to +20% between RCMs, and iii) the tendency for some RCMs to simulate

increases in flow (e.g. RCM 04) whilst others tend towards decreases (e.g. RCM 13) which relates

to relative change in 99th percentile precipitation (see Figure 6.4). These differences demonstrate

the importance of considering multiple RCMs, to show a more complete picture of potential future

changes.

RCM parameters were a larger source of uncertainty in flow changes than hydrological model

parameters (see Figure 6.7). This finding agrees with previous studies, which generally find

climate models to be the largest source of uncertainty in hydrological climate impact assessments

(Addor and Seibert, 2014; Bosshard et al., 2013; Kay et al., 2009). However, hydrological model

parameters selection is a large source of uncertainty in the south-east, especially in the Anglian

river basin region. This region receives relatively little precipitation compared to the rest of GB.

Previous studies have shown that drier catchments are more sensitive to parameter selection,

with fewer good parameter sets found for drier than for wet catchments found in Research

Chapter One.

6.4.5 Relationship between climate changes, flow changes and catchment
characteristics

The relationship between precipitation change and change in flood flows (Q1) across all catch-

ments, and RCMs is presented in Figure 6.8. This shows that there is a strong positive correlation

between precipitation change and flood response, albeit with a large variation between catch-

ments. The non-linearity between changing precipitation and changing Q1 flows can be seen,

with a 25% increase in precipitation leading to a 20 - 50% increase in Q1. Surprisingly, for some

catchments, heavy precipitation increases yet there is a reduction in Q1 flows (i.e. catchments

in the bottom right quadrant of Figure 6.8). This flow reduction could be due to the contrasting
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FIGURE 6.6. Heatmaps showing region-average changes in flow magnitude between
the baseline and future periods, for all 12 RCMs. Regions have been ordered
by location, with the relative position within GB given on the left. To focus on
differences between RCMs, the median flow value from the hydrological model
parameter sets is presented.

effect of increasing PET, resulting in generally drier anticedent conditions for catchments and

thus reduced flows due to the increases in soil moisture storage deficits.

The relationship between change in 95th percentile precipitation, total PET and Q1 is given in

Figure 6.9; other variations of precipitation, PET and flow changes produced similar results (but

are not shown). There is a clear relationship between climate forcing and hydrological response.

Increased heavy precipitation tends to lead to increased Q1, whilst decreased or unchanged

heavy precipitation, combined with increasing PET, leads to reduced Q1 flows. The range in

climatic changes is different for each region (see Figure 6.9b), which is a key reason for the

regional differences in Q1 changes. However, the hydrological response differed between regions

for the same climate forcing. For example, a 6% decrease in 95th percentile precipitation and over

45% increase in total PET leads to an average 53% reduction in Q1 in the Anglian river basin

district, but only an average 15% decrease in Q1 in the Thames region in the South-east. These

results highlight the importance of how multiple climatic factors impact regional flow responses

differently due to the non-linearity within the hydrological processes.

The runoff coefficient (runoff divided by precipitation) helped to explain these regional differ-
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FIGURE 6.7. Relative uncertainties from inclusion of different RCM and hydrological
model (HM) parameter sets. The RCM range was calculated as the full range
in regional-average changes between the RCMs, using the median of all HM
parameter sets. Similarly, the HM range was calculated using the median output
of all RCMs.

FIGURE 6.8. Relationship between precipitation change and Q1 change across all
catchments. Results are presented for all RCMs using the median of all hydrological
parameter sets.
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FIGURE 6.9. Relationship between changing climate and changing high flows (Q1),
shown for all catchments nationally (a) and by region (b). Plots show climatic
changes from all RCMs, coloured by the median change in Q1 flows from the
ensemble of hydrological model parameter sets. Regions which are shown together
exhibited similar patterns.
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TABLE 6.1. Ensemble range in projected changes for each flow metric. All changes are
given as percentage differences between the baseline and future periods. Low, Med
and High refer to the lowest, median, and highest region-average changes from
the ensemble of RCM and hydrological model parameters.

ences in catchment flow response to climatic change inputs. Figure 6.10 shows the relationship

between 95th precipitation, PET and Q1 changes, with catchments grouped by Runoff Coefficient

classes. Catchments with relatively low runoff coefficients tend to show a higher sensitivity to

the increasing PET. They are therefore more likely to see decreasing Q1 flows even with small

(<5%) increases in heavy precipitation. These catchments are often drier catchments, and so

heavy precipitation events may fill storage deficits rather than result in increased river flow.

Other catchment properties, such as deep soils or permeable geology may also contribute to water

being retained in the catchment. By contrast, catchments with high runoff coefficients show more

sensitivity to changes in heavy precipitation, and very small (5%) increases in precipitation can

lead to increases in Q1 of up to 25%. These are often wetter catchments, or catchments with

other properties such as steep slopes or impermeable soils, where increases in heavy rainfall will

directly result in increases in flood flows.

6.5 Discussion

6.5.1 Uncertainties in climate impacts on high flows

Our results highlight the importance of considering uncertainty in projections of climate change

on flood flows. The selection of RCM parameters impacted not only the range of future changes
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FIGURE 6.10. Runoff Coefficient (runoff divided by precipitation) vs flow sensitivity to
climatic changes.

for each region (often disagreeing on the direction of change), but also variation in changes

between regions, and to some extent the spatial pattern of changes across GB. This, combined

with hydrological modelling uncertainties, resulted in the large ranges in future changes given in

Table 6.1. The incorporation of multiple uncertainty sources, therefore, prevents an overconfident

portrayal of climate change impacts on high flows, which could be misleading if used to inform

future planning or policy decisions (Buurman and Babovic, 2016; Kundzewicz et al., 2018).

Previous studies found hydrological modelling uncertainties to be small relative to climate

modelling uncertainties, especially when considering high flows (Chen et al., 2011; Velázquez

et al., 2013). Our results generally support these findings, showing that the variation in future

changes between RCMs is much larger than the variation between behavioural hydrological

model parameter sets. However, we observed substantial hydrological modelling uncertainties

for catchments in England, particularly for the Anglian river basin and drier catchments in the

south-east. It is likely that interactions between the RCMs and hydrological model parameters

also contribute to the total uncertainty, as it has previously been shown that interactions be-

tween uncertainty sources can account for 5-40% of the total uncertainty in hydrological climate

change impacts studies (Bosshard et al., 2013). This emphasized that while uncertainties in fu-

ture climate may dominate, uncertainties due to hydrological model parameters are not negligible.

There are many uncertainty sources that we were not able to incorporate. In addition to

RCM and hydrological model parameters, sources of uncertainty in hydrological climate impact

studies include the structure and parameterisation of the global climate model (GCM), bias

correction methods, PE estimation equation, and hydrological model structure (Kay et al., 2009;

Prudhomme and Davies, 2009; Wilby and Harris, 2006). The 12 RCM projections used in this
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study were all driven by the same GCM (GC3.05), and for the RCP8.5 emissions scenario. This

GCM has been shown to sample the warmer range of global outcomes (Lowe et al., 2019), and so

combined with a single emissions scenario, we only sample the warmer range of possible climate

outcomes. Therefore, whilst our results provide a useful indication of the range in future changes

to high flow metrics across GB the true uncertainty ranges are likely to be much larger.

6.5.2 Future changes to high flows across Great Britain

Despite large uncertainties, some clear patterns of climate change impact on flooding across GB

emerged. Projections indicated decreasing median flows (Q50) across all regions except for the

Argyll and West Highland river basin regions. This decrease was likely due to reduced average

precipitation and nationwide increases in PET projected by all the RCMs.

Increased flood magnitudes and frequency were projected for all RCMs along the west coast

(excluding the southwest) and across most of Scotland, whilst decreasing flood flows were pro-

jected for the Anglian river basin region in east England using the median of all hydrological

model parameter sets. These results are consistent with Collet et al. (2018), who found that

hydro-hazard hotspots were likely to develop along the west coast and north-eastern Scotland.

However, our results contrast with the study of Bell et al. (2016), which found relatively large

increases in flood flows in the south and Anglian in particular. This contrast could be due to

the different metric studied (Bell et al. (2016) showed percentage changes in 20-year return

period floods, whilst we show changes in AMAX floods), or other methodological differences

such as hydrological model or climate projections. We found hydrological modelling studies to be

particularly large for the Anglian region and therefore increases in AMAX flows were within the

total uncertainty range.

A limitation of this study is that the hydrological modelling framework did not include snow

accumulation and melt processes. However, snow fractions are generally very low across Great

Britain, with a median snow fraction of 0.01, except for catchments in northeast Scotland where

it reaches a maximum of 0.17 (Coxon et al., 2020). The impact of including a snow module on

climate change projections for peak flows was investigated by Bell et al. (2016). They found that

across most of GB the inclusion of a snowmelt regime led to small percentage differences in

peak flow changes of less than 6%. However, snowmelt processes were shown to be important for

upland parts of GB, mainly in East Scotland, where the reduced presence of snow in the future

could have a large impact on river flows. Therefore, the results of our study need to be interpreted

with caution in these upland catchments.
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6.5.3 Relationship between climate changes and hydrological response

It is often assumed that increases in extreme precipitation will lead to increases in flood flows

(Sharma et al., 2018). However, whilst there is observational evidence of increasing precipitation

extremes, there is no compelling evidence for any systematic increases in flooding which can

be attributed to climate change (Hannaford, 2015; Watts et al., 2015). Understanding the link

between changing precipitation and changing floods has, therefore, been highlighted as an impor-

tant challenge for the hydrologic community (Sharma et al., 2018). Here we found that whilst

there was a strong positive relationship between changes in heavy precipitation (as characterised

by changes in the 95th percentile precipitation) and changes in high flows (Q1), there were

catchments where precipitation was increasing yet modelled flood flows were decreasing. These

catchments were found to have large increases in PET – and therefore the impact of drier soils

and increased storage deficits could have moderated the impact of increased heavy precipitation

on river flows.

We found that the relationship between changes in heavy precipitation, total PET and changes

to flood flows varied between river basin regions. The catchment runoff coefficient (average river

flow divided by average precipitation) helped to explain this variation; for catchments with high

runoff coefficients precipitation increases most directly related to increased flood flows, whilst

catchments with low runoff coefficients showed a greater response to increasing PET. This in part

relates to previous studies finding that there is a more direct link between heavy rainfall and

high flows in wetter catchments (Charlton and Arnell, 2014; Ivancic and Shaw, 2015), as there

is a general relationship between the runoff coefficient and catchment wetness. This highlights

that it is important to recognise the complexities of flow change resulting from multiple climatic

drivers and non-linear hydrological processes.

6.6 Conclusions

In this study we modelled climate change impact on the magnitude and frequency of high flows

across 346 catchments in Great Britain, including both RCM and hydrological model parameter

uncertainties for the first time at the national scale. The latest UK Climate Projections (UKCP18)

were used to generate 12 spatially coherent and equally plausible time-series of precipitation and

PET. These were then used to drive the DECIPHeR hydrological modelling framework, using 30

nationally consistent parameter fields. The resultant 360 future flow projections were used to

investigate the range of changes in high flow magnitude and frequency between baseline (1985 -

2010) and future (2050 - 2075) scenarios, as well as the relationship between climatic changes

and hydrological response.

Generally, results indicated increasing magnitude and frequency of flood flows for catchments
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along the west coast of GB, and across most of Scotland. For western Scotland, region-average

increases in annual maximum flows of up to 65% were projected. The Anglian and Thames river

basins in eastern England generally showed decreasing flood magnitude and frequency. However,

hydrological modelling uncertainty was high for these areas and therefore increases were also

within the ensemble range.

Regional differences in high flow changes were found to relate to i) differences in climatic

changes and ii) differences in catchment conditions during the baseline period as characterised

by the runoff coefficient (total discharge/precipitation). A strong relationship was found between

increasing heavy precipitation and increasing flood flows, alongside the moderating impact of

increased PET. This relationship differed between catchments; catchments with high runoff

coefficients were found to have a more direct response of flood flows to precipitation changes,

whilst catchments with low runoff coefficients were more responsive to increased PET often

resulting in very large reductions in Q1 flows (-50%) in areas with small (-5%) reductions in 95th

percentile precipitation.

Our results highlight the importance of considering uncertainties in climate impact studies.

The variation between RCMs was the largest source of uncertainty, with differences in both

the magnitude of projected changes for individual regions and the variability between regions.

Hydrological modelling uncertainties were smaller, but still considerable for catchments in east

and south-east England.

This chapter provides a national overview of projected future changes in median and higher

flows across Great Britain, with the full ensemble range in projected changes given for each

region. This information will be useful for decision-makers who have a role in managing and/or

planning water in GB, for example in water companies, regulators and government.
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CONCLUSIONS, SUMMARY AND OUTLOOK

Section 7.1 of this chapter is adapted from the abstracts of three papers that are published, in

review or in preparation:

1. Lane, R.A., Coxon, G., Freer, J. E., Wagener, T., Johnes, P.J., Bloomfield, J. P., Greene, S.,

Macleod, J. A., Reaney, S. M (2019). Benchmarking the predictive capability of hydrological

models for river flow and flood peak predictions across over 1000 catchments in Great

Britain. Hydrology and Earth System Sciences, 23, pp. 4011-4032.

2. Lane, R.A., Freer, J. E., Coxon, G., & Wagener, T. (in review). Incorporating Uncertainty

into Multiscale Parameter Regionalisation to Evaluate the Performance of Nationally

Consistent Parameter Fields for a Hydrological Model. Submitted to Water Resources

Research.

3. Lane, R. A., Coxon, G., Freer, J., Seibert, J., and Wagener, T. (in preparation). UK Cli-

mate Projections on high flows across Great Britain, including hydrological modelling

uncertainties.

This thesis aims to contribute to the grand challenge of developing model frameworks which

are able to produce national-scale, yet locally relevant, hydrological predictions whilst represent-

ing modelling uncertainties. This chapter summarises the main conclusions of each research

chapter, discusses the main contributions of the thesis as a whole and provides recommendations

for future research.
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7.1 Chapter Summaries

7.1.1 Research Chapter One: Benchmarking the predictive capability of
lumped models across Great Britain

Benchmarking model performance across large samples of catchments is useful to guide model

selection and future model development. Given uncertainties in the observational data we use

to drive and evaluate hydrological models, and uncertainties in the structure and parameter-

isation of models we use to produce hydrological simulations and predictions, it is essential

that model evaluation is undertaken within an uncertainty analysis framework. In this chapter,

we benchmarked the capability of several lumped hydrological models across GB, focusing on

daily flow and peak flow simulation. Four hydrological model structures from the Framework

for Understanding Structural Errors (FUSE) were applied to over 1000 catchments in England,

Wales and Scotland. Model performance was then evaluated using standard performance metrics

for daily flows, and novel performance metrics for peak flows considering parameter uncertainty.

The lumped hydrological models were able to produce adequate simulations across most of

GB, with each model producing simulations exceeding 0.5 Nash-Sutcliffe efficiency for at least

80% of catchments. All four models showed a similar spatial pattern of performance, producing

better simulations in the wetter catchments to the west, and poor model performance in Scotland

and southeast England. Poor model performance was often linked to the catchment water balance,

with models unable to capture the catchment hydrology where the water balance did not close.

Overall, performance was similar between model structures, but different models performed

better for different catchment characteristics and metrics, as well as for assessing daily or

peak flows, leading to the ensemble of model structures outperforming any single structure.

This demonstrates the value of using multi-model structures across a large sample of different

catchment behaviours. This research evaluates what conceptual lumped models can achieve as

a performance benchmark, as well as providing interesting insights into where and why these

simple models may fail. The large number of river catchments included in this study makes it an

appropriate benchmark for any future developments of a national model of Great Britain.

7.1.2 Research Chapter Two: Developing nationally consistent parameter
fields including uncertainty

Spatial parameter fields are required for hydrological models to represent the diverse range in

hydrological processes across landscapes. These are often regionalised using transfer functions

which relate parameters to spatial catchment attributes, leading to potentially large uncertainties

due to observational data errors and imperfect transfer functions. Representing these uncer-

tainties is important to understand the robustness of our model predictions, yet it remains a

key challenge for large scale modelling studies. This research chapter extends the multiscale
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parameter regionalisation (MPR) technique to consider parameter uncertainties. We then evalu-

ate this method of producing nationally consistent parameter fields, which maintain a constant

relationship between model parameters and catchment attributes, across 437 catchments in

Great Britain (GB). By sampling multiple transfer function parameters, we produce thousands of

possible model parameter fields which are constrained within an uncertainty framework. This is

compared to spatially homogeneous parameter sets constrained for individual catchments.

The nationally consistent MPR parameter fields performed well (KGE* > 0.75) across 60%

of catchments. Performance is similar or better than catchment-constrained parameters (KGE*

drop < 0.1) across 82% of catchments. Advantages of our national parameter fields included

(1) improved representation of flows within catchments, (2) more robust performance between

calibration and evaluation periods and (3) spatial parameter fields reflecting hydrologically

meaningful variation in catchment characteristics. By including uncertainties, we showed that

hydrographs produced using MPR have smaller uncertainty bounds which are better able to

encompass flows than homogeneous Monte-Carlo constrained parameters. As the first application

of MPR to both the DECIPHeR modelling framework and GB, we developed transfer functions

and identified key catchment attributes to constrain model parameters, which are transferable to

other models alongside the framework for addition of uncertainty. Methodologies presented here

are therefore informative for future regionalisation efforts in GB and elsewhere.

7.1.3 Research Chapter Three: Climate change impact on high flows across
Great Britain, including modelling uncertainties

Climate change may significantly increase flood risk across Great Britain, but there are large

uncertainties in both future climatic changes and how these propagate into changing river flows.

Modelling studies are therefore required to help understand climate change influence on high

flows, alongside the uncertainties in these projections. Here, the impact of climate change on the

magnitude and frequency of high flows is modelled for 346 larger (>144 km2) catchments across

GB using the new UK Climate Projections (UKCP18) and the DECIPHeR hydrological modelling

framework. This provides the first spatially consistent GB projections to include both climate

ensembles and hydrological model parameter uncertainties.

Results indicated an increase in the magnitude and frequency of high flows along the west

coast of GB in the future (2050 - 2075), with increases in annual maximum flows of up to 65%

for west Scotland. All flow projections had large uncertainties, and whilst the RCMs were the

largest source of uncertainty overall, hydrological modelling uncertainties were considerable

in east and south-east England. Regional variation in flow projections were found to relate to

i) differences in climatic change predictions and ii) catchment conditions during the baseline

period as characterised by the runoff coefficient (mean discharge divided by mean precipitation).
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Importantly, increased heavy-precipitation events (defined by an increase in 99th percentile

precipitation) did not always result in increasing flood flows for catchments with low runoff

coefficients, highlighting the varying factors leading to changes in high flows and the complex

interplay between catchment characteristics, PET and precipitation. These results provide a

national overview of climate change impacts on high flows across Great Britain, which will inform

climate change adaptation, whilst also highlighting the need to account for uncertainty sources

when modelling climate change impact on high flows.

7.2 Synthesis

National scale hydrological models are required to guide effective water management in the

face of large-scale pressures such as climate change. However, the development of national scale

modelling frameworks is a difficult task, requiring model structures and parameters that can

reflect the heterogeneity of hydrological processes across the landscape, robust model evaluations

and methods to characterise modelling uncertainties. This thesis has addressed these challenges

with a focus on national-scale hydrological modelling across GB, through benchmarking the

performance of lumped model structures, developing and evaluating a method of constraining

national model parameter fields over gauged and ungauged catchments, and using this national

model setup to provide an evaluation of climate change impacts on median and higher flows

including model uncertainties. The key scientific contributions of this thesis are:

1. improved understanding of how climate and catchment characteristics impact hydrological

model performance

2. the production of a benchmark set of model simulations, performance metrics, and cali-

brated parameter sets that are openly available and can be used to guide future modelling

efforts across GB

3. the development of a nationally parameterised, spatially oriented, flexible hydrological

model that enables predictions at high resolution for any gauged or ungauged catchment

with uncertainties

4. a new framework for incorporating uncertainty analysis into the estimation of spatial

parameter fields

5. identification of relevant catchment attribute datasets and synthesis of pedotransfer equa-

tions that are critical for model parameterisation

6. the first national climate change projections for high flows across GB to include both

hydrological and climate model parameter uncertainties.

These contributions directly align with many current research goals, each of which will be

discussed in more detail below, which include: pursuing the large-sample hydrology approach

to derive generalisable conclusions (Addor et al., 2020; Andréassian et al., 2006; Gupta et al.,

154



7.2. SYNTHESIS

2014); developing hydrological models which can provide locally relevant predictions across large

domains (Archfield et al., 2015; Bierkens et al., 2015; Wood et al., 2011); providing predictions in

ungauged basins (Blöschl et al., 2013; Hrachowitz et al., 2013; Sivapalan et al., 2003); effectively

benchmarking and evaluating hydrological models (Clark et al., 2016a; Klemes, 1986; Seibert,

2001; Seibert et al., 2018); and incorporating and communicating hydrological model uncertainties

(Beven and Binley, 1992; Freer et al., 1996; Mcmillan et al., 2012; Pappenberger and Beven, 2006).

Firstly, contributions from this thesis answer calls for the need to pursue a large-sample

hydrology approach, to derive generalisable relationships and complement the many in-depth

hydrological studies for a small number of catchments (Andréassian et al., 2006; Gupta et al.,

2014). The large-sample approach to hydrological modelling is a key theme throughout this

thesis, with all research chapters contributing to the large-sample hydrology literature. The

large-sample approach was used to characterise the relationship between climate/catchment char-

acteristics and model performance (Research Chapter one), to derive robust links between spatial

fields of model parameters and catchment attributes (Research Chapter two), to demonstrate

the relationship between changes in precipitation/PET and high flows (Research Chapter three),

and to ensure a thorough evaluation of model performance (all research chapters). This led to

general insights, such as models tend to perform better for wetter catchments and catchments

with low baseflow contributions, the catchment water balance not closing is a common reason for

model failure, lumped models calibrated using Nash-Sutcliffe efficiency generally underpredict

annual maximum flows, hydrogeology data is important alongside soils and land-use datasets in

constraining hydrological model parameters, and whilst there is a positive relationship between

heavy (95th percentile) precipitation change and the change in high flows (Q1) this is moderated

by catchment characteristics and potential evapotranspiration. These findings support existing

literature, for example Coxon et al. (2014) and McMillan et al. (2016) also report better model

performance in wetter catchments, with the large number of catchments used in all research

chapters and the multi-model approach in Research Chapter one adding weight to these conclu-

sions.

Secondly, this thesis contributes to the grand challenge of developing hydrological models

which are capable of providing locally relevant predictions across large domains (Archfield et al.,

2015; Beven et al., 2015; Bierkens et al., 2015; Wood et al., 2011). Archfield et al. (2015) sum-

marise some of the key challenges for the development of continental-scale models, including

developing model structures which adequately represent the dominant hydrological processes,

and ensuring a physical basis to parameter estimation. Research Chapter one contributes to the

first of these challenges, by evaluating to what extent simple, lumped models could represent

the dominant hydrological processes, and providing suggestions for additional processes to im-

prove model performance (e.g. need for a snow melt and accumulation module in mountainous
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Scottish catchments, representation of inter-catchment groundwater flows in the southeast GB

catchments overlaying aquifers, possible inclusion of reservoirs and other human influences).

In addition, it identified structural differences between the models which led to certain models

better representing processes, such as the strong non-linear upper storage zone in the ARNO-VIC

model which enabled it to simulate baseflow dominated catchments where other models failed.

Research Chapter two contributed to the second of these challenges, by developing parameter

fields based on the physical relationships between model parameters and spatial geophysical

data. This extended the multiscale parameter regionalisation literature (Kumar et al., 2013a;

Mizukami et al., 2017; Samaniego et al., 2010, 2017) by applying the method to a new model, new

location, new datasets, and developing new transfer functions to relate parameters to geophysical

data. These methodological choices (i.e. transfer functions and datasets used for each parameter)

will be helpful for future studies regionalising models with related parameters across GB and

elsewhere. The MPR approach was shown to be successful with realistic variation in parameter

fields and generally good performance (non-parametric KGE >0.75 across 60% of catchments),

hence ensuring the national model can provide robust and locally relevant predictions.

Contributions from this thesis will also help to improve national modelling for GB, through

identification of areas where model performance needs improvement and the development of a

flexible national modelling framework which can be used for national simulations. Identifying

and communicating model failures is an important step in understanding model limitations and

identifying targeted areas for model improvement, yet literature tends to focus on positive results

and failure stories are rarely communicated (Andréassian et al., 2010). Throughout this thesis

model failures have been identified. Clusters of catchments in northern/ north-eastern Scotland,

and catchments overlaying permeable bedrock in southeast England were identified in Research

Chapter one as areas where lumped hydrological models often failed to produce good simulations.

Alongside this, a general east/west divide in lumped model performance was observed, with

models tending to perform better in wetter catchments to the west. These patterns were also

observed in the evaluation of a spatially distributed model in Research Chapter two, and large

overpredictions of AMAX flows (in some cases over 100%) were observed in southeast England

from the climate-hydrological modelling change presented in Research Chapter three. These

clusters of catchments have therefore been identified as areas to focus on for improved overall

GB modelling. This thesis has also developed a national model for GB, which will complement

existing GB models. Current models for GB include uncalibrated, spatially distributed models

such as G2G (Bell et al., 2009) and the physically based SHETRAN model (Lewis et al., 2018),

which tend to be applied deterministically, and semi-distributed or lumped models which tend

to require catchment calibration and therefore do not have consistent parameter values across

catchments (e.g. CLASSIC (Crooks et al., 2014; Crooks and Naden, 2007) and PDM (Moore,

2007; Prudhomme et al., 2013b)). DECIPHeR-MPR, developed within this thesis, fills the need
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for a spatially distributed model which considers parameter uncertainties. It adds a flexible

model framework capable of spatially distributed simulations, which has nationally consistent

parameter fields that can be applied within a parameter uncertainty framework over gauged and

ungauged catchments. The flexible spatial discretisation of the model is a further advantage -

meaning that the model can be run at a high spatial resolution, capturing key landscape features,

and providing simulations that are relevant for local as well as national scales.

Thirdly, this thesis promotes a thorough evaluation of hydrological models and supports

efforts to benchmark hydrological model performance. Throughout the three research chapters

hydrological model performance has been critically evaluated, and all research chapters follow

good practice in openly discussing model flaws and highlighting areas where model results should

be treated with caution. Research chapter one further contributes to literature suggesting that

lumped, conceptual models can provide a good performance benchmark which improved models

can be evaluated against (Seibert, 2001; Seibert et al., 2018), by providing openly accessible

model time-series and performance scores across GB which can be used for this purpose.

Finally, the thesis contributes to the research goal of improving uncertainty characterisation

and communication in large-scale modelling studies (Archfield et al., 2015; Beven and Freer,

2001a; Pappenberger and Beven, 2006). The thesis includes the first multi-model uncertainty

framework across Great Britain (Research Chapter One), a framework to include parameter

uncertainties in the estimation of spatially distributed national parameter fields (Research Chap-

ter Two), and the first nationally consistent evaluation of future flows to include hydrological

model and regional climate model parameter uncertainties (Research Chapter Three). These

demonstrate how model uncertainties can be included in national-scale, large-sample studies, and

provide frameworks/modelling tools to include parameter uncertainties. The DECIPHeR-MPR

framework can produce spatially oriented, high resolution simulations anywhere within GB with

uncertainty estimates. It could therefore be used to explore modelling uncertainties for a range of

applications.

The results of this thesis will also be useful for practitioners who use hydrological models

or model output, particularly for flood management purposes due to the focus on higher flows.

Thesis outputs that will be helpful for practitioners implementing hydrological models at local to

national scales include a parameter library of behavioural parameters for the FUSE model across

GB catchments (Research Chapter One), and the DECIPHeR-MPR framework (Research Chapter

Two). Additionally, Research Chapter One demonstrates the value of applying an ensemble of

model structures, as it was found that each model structure had different advantages (for example,

of the FUSE models SACRAMENTO produced the highest overall NSE values, TOPMODEL had

the least bias, ARNO/VIC was the only model to capture baseflow dominated catchments, and
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PRMS showed the most skill in capturing peak flows), and the ensemble performed better than

any single model structure. For users of model outputs, the model evaluation carried out within

all research chapters emphasises where model results have poor skill and should be treated with

caution. Finally, Research Chapter Three provides regional projection ranges for climate change

impacts on median and higher flows, which will be useful for climate change adaptation plans.

7.3 Recommendations for future research

This thesis highlights various opportunities for future research. Model evaluations carried out as

part of this thesis have highlighted areas for focused model improvement. Research Chapter One

identified areas where all tested model structures failed to produce any acceptable simulations,

notably catchments in northern and north-eastern Scotland and those on permeable bedrock in

south-eastern England. Reasons suggested for these model failures included no representation of

snow accumulation and melt processes and hydro-electric power modifications to the flow regime

for Scotland, and lack of groundwater representation, inter-catchment groundwater flows, and

human influences in the south-east. Future studies could look further into identifying the reasons

for model failure in these catchments, taking an in-depth approach focused on the hydrology of

individual catchments which was not possible within our national overview. Additionally, future

studies could focus on improving modelling efforts for these catchments, using our results as a

benchmark of model ability to improve upon.

Incorporating human-water interactions within hydrological models has been identified as an

important research goal. In addition to the hydro-electric power modifications in Scotland and

human influences across the southeast discussed above, the widespread presence of reservoirs

was found to impact our ability to model flows (as discussed in Methods section 3.3.2.1 and

Research Chapter One). There is a recognised need for hydrological models which incorporate

human impacts on the hydrological cycle, although developing such models is challenging (Wada

et al., 2017). The DECIPHeR framework lends itself well to the addition of human influences

- as it is able to explicitly characterise connectivity and fluxes across landscapes, and has a

flexible definition of model structure enabling different model structures to be applied across the

catchment. The framework has previously been used to explore the impact of abstractions on

low simulated low flows across the Thames catchment (Coxon et al., 2017). Future work could

therefore develop and test alternative model structures for the DECIPHeR framework to better

represent processes in areas with known human-water interactions.

Research Chapter Two demonstrated how the MPR technique could be used to develop spatial

parameter fields for the DECIPHeR model. These parameter fields are strongly dependent on

the spatial catchment attribute data used to create them, with previous applications of MPR
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stressing the importance of good quality, high-resolution catchment attribute data (Livneh et al.,

2015; Samaniego et al., 2017). For this initial evaluation of the suitability of the method, we

therefore aimed to use the best possible national products, which included data that was not

openly accessible such as the LandIS national soils map. This limits the uptake and use of the

parameterised model and model outputs and it would therefore be desirable to use open-access

data. The value of using open access data products has been highlighted in recent publications

(Addor et al., 2020; Archfield et al., 2015; Gupta et al., 2014), and there are open-access datasets

available at national to global scales (Archfield et al., 2015). An interesting follow-up study could

therefore evaluate the suitability of these open-access datasets for parameter regionalisation

compared to the high-resolution national datasets used in this thesis.

Future research could also focus on expanding and improving upon the uncertain multiscale

parameter regionalisation of DECIPHeR presented in Research Chapter Two. Firstly, whilst we

focused on the uncertainties relating to the global parameters, there are many other uncertainties

such as the form of the pedotransfer equations, upscaling operators and underlying catchment

attribute data used for regionalisation which could be incorporated. In Section 3.5.3 (Figure 3.16)

we demonstrated that the choice of pedotransfer function resulted in differences in porosity maps

- it would be interesting to understand how these uncertainties in underlying data propagate into

modelled discharge uncertainties and to understand the relative importance of different decisions.

This would complement current research activities, such as work investigating techniques to

generate multiple possible transfer functions for parameter regionalisation (Klotz et al., 2017),

and evaluation of the influence of two different soil datasets on model performance (Livneh

et al., 2015). Secondly, we demonstrated that the regionalisation of DECIPHeR is an improv-

ing process, through the addition of hydrogeology data to improve the regionalisation method

(Research Chapter Two and Appendix E). There is therefore scope for improving the method

further, and adding additional data to the regionalisation approach where it is found to be needed.

In addition to considering uncertainties within the MPR methodology, future work could

explore how to incorporate uncertainties in the observational data into the DECIPHeR-MPR

framework. This could include using uncertain rainfall/PET fields to drive the model, and evalu-

ating the model against uncertain river flows. This could build on research quantifying discharge

uncertainties across British gauging stations (Coxon et al., 2015), or apply more simple metrics

for considering discharge uncertainties such as those applied in Research Chapter One which

used the average error in annual maximum flows. Including these additional uncertainties

would better reflect the challenges of modelling real world systems, and further improve our

understanding of model skill over observational errors. The DECIPHeR-MPR framework makes

this type of analysis possible, by presenting a computationally efficient national model framework.
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Finally, DECIPHeR-MPR provides a flexible framework which could be used to explore a wide

range of hydrological problems. In Research Chapter Three we demonstrated how this framework

could be used to explore climate change impact on high flows. This framework could be applied to

explore other spatial hydrology applications such as land use change, or to model low flows and

droughts.
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SUPPLEMENT TO RESEARCH CHAPTER ONE: THE RELATIONSHIP

BETWEEN CATCHMENT CHARACTERISTICS AND MODEL

PERFORMANCE

This section has been published as supplementary material to a research article in Hydrology and

Earth System Sciences. This analysis was carried out by Rosanna Lane in response to reviewer

comments.

Citation: Lane, R.A., Coxon, G., Freer, J. E., Wagener, T., Johnes, P.J., Bloomfield, J. P., Greene, S.,

Macleod, J. A., Reaney, S. M (2019). Benchmarking the predictive capability of hydrological models

for river flow and flood peak predictions across over 1000 catchments in Great Britain. Hydrology

and Earth System Sciences, 23, pp. 4011-4032. https://doi.org/10.5194/hess-23-4011-2019

Research chapter one looked at the relationship between the catchment wetness index, runoff

coefficient and model performance. These attributes were selected as they strongly related to

model performance and explained differences between catchments. Here, we provide additional

plots looking at the relationship between model performance and many different catchment

characteristics to demonstrate how other catchment attributes impact model performance. These

characteristics were either taken from the hydrometric register or calculated from the model

input data timeseries (Centre for Ecology and Hydrology, 2016; Marsh and Hannaford, 2008;

Robinson et al., 2015a).

Figures B.1 – B.4 are scatter plots looking at the relationship between model performance

(assessed using NSE, bias, error in standard deviation and correlation respectively) and different

163

https://doi.org/10.5194/hess-23-4011-2019


APPENDIX B. SUPPLEMENT TO RESEARCH CHAPTER ONE: THE RELATIONSHIP
BETWEEN CATCHMENT CHARACTERISTICS AND MODEL PERFORMANCE

catchment attributes. Figures S5 onwards are plots looking at interactions between different

catchment attributes and model performance.

Some links between catchment attributes and model performance can be seen from Figures

B.1 – B.4. Firstly, small catchments (< 200 km2) tend to have more variable NSE scores (both

high and low), whilst large catchments (> 3000 km2) are easier to model. This is seen with all the

decomposed metrics potentially indicating that daily data is not able to capture flow variation in

small catchments. Secondly, baseflow dominated catchments (BFI > 0.7) are more likely to gain

very low NSE values (although some high BFI catchments can be simulated well). Interestingly,

BFI seems to have a relationship with error in the standard deviation, with baseflow dominated

catchments the only catchments where the best simulations tend to overpredict variation. This

could be due to groundwater dampening variation in flows. Thirdly, gauge elevation seems to cap

overall model performance, with higher elevation gauges unable to achieve performance scores as

high as low elevation gauges. Finally, it is surprising that urbanisation does not seem to decrease

model performance.

From figures B.5 onwards we can see that the worst performing catchments in terms of

Nash-Sutcliffe efficiency are grouped being small catchments less than 120 km2, with elevations

below 125m, mid to high BFIs (> 0.5), low annual rain less than 1000 mm and annual runoff

values which differ from other catchments with similar annual rainfall totals. Poor NSE 0.5

is achieved for wetter catchments (annual rain > 1200 mm), which have relatively low annual

runoff generally less than 900mm. Many have flow attenuation from reservoirs and lakes, and

for these catchments correlation is poor.
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FIGURE B.1. Relationship between NSE and a selection of 15 catchment descriptor vari-
ables. Column 1 gives general catchment attributes from the hydrometric register
(Marsh and Hannaford, 2008). These are catchment area (km2), Baseflow index
(BFI), Gauge elevation (m above sea level), mean drainage path slope (DPSBAR)
which indicates overall catchment steepness in metres per kilometre, and flood
attenuation by reservoirs and lakes (FARL) where values close to 1 indicate the
absence of flow attenuation and values below 0.8 indicate a substantial influence.
Column 2 gives hydroclimatic attributes calculated from our data, and propor-
tion catchment is wet (PROPWET) from the hydrometric register. Annual Loss is
Rainfall-Runoff, whilst Annual flood is the Median Annual maximum flood peak,
and all are reported in mm. Column 3 gives land-use and bedrock permeability
descriptors (%), also from the UK hydrometric register.
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FIGURE B.2. Relationship between bias and a selection of 15 catchment descriptor
variables, as in Figure B.1.
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FIGURE B.3. Relationship between error in standard deviation and a selection of 15
catchment descriptor variables, as in Figure B.1.
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FIGURE B.4. Relationship between correlation and a selection of 15 catchment descrip-
tor variables, as in Figure B.1.

168



FIGURE B.5. Relationship between general catchment characteristics, coloured by
model ensemble NSE score for that catchment. Column 1 gives general catchment
attributes from the hydrometric register (Marsh and Hannaford, 2008). These
are catchment area (km2), Baseflow index (BFI), Gauge elevation (m above sea
level), mean drainage path slope (DPSBAR) which indicates overall catchment
steepness in metres per kilometre, and flood attenuation by reservoirs and lakes
(FARL) where values close to 1 indicate the absence of flow attenuation and values
below 0.8 indicate a substantial influence. Column 2 gives hydroclimatic attributes
calculated from our data, and proportion catchment is wet (PROPWET) from the
hydrometric register. Annual Loss is Rainfall-Runoff, whilst Annual flood is the
Median Annual maximum flood peak, and all are reported in mm. Column 3 gives
land-use and bedrock permeability descriptors (%), also from the UK hydrometric
register.
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FIGURE B.6. Same as figure B.5, but this time looking at hydroclimatic catchment
descriptors. Annual rainfall (mm), annual runoff (mm), annual loss (mm) and mean
annual maximum flood (mm), were all calculated from the model input data used
in this study. PROPWET is a measure of the percentage of time soils are wet, as
calculated by the UK hydrometric register (Marsh and Hannaford, 2008).
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SUPPLEMENT TO RESEARCH CHAPTER TWO: DECIPHER_MPR

CODE

C.1 Code description

This appendix includes Fortran code developed to integrate the MPR parameterisation scheme

within the DECIPHeR model framework. The DECIPHeR model code is open-source and freely

available, with the latest version available at https://github.com/uob-hydrology/DECIPHeR,

and a full model description given in Coxon et al. (2019).

The data used for model parameterisation within this thesis is not open access, and there-

fore a working DECIPHeR-MPR version cannot be made available. However, the code used is

presented here, in the hope that it is informative for future regionalisation efforts. This was all

written in Fortran so that it could be integrated with DECIPHeR. The heirarchy of modules

is shown in Figure C.1. The dyna_main module is part of the original DECIPHeR code (Coxon

et al., 2019), but this version has been heavily modified to call the MPR modules and is therefore

presented here.
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FIGURE C.1. Diagram showing the level of different DECIPHeR-MPR modules. The
dyna_main module is the highest level module, which runs DECIPHeR calling
all relevant sub-routines. The mpr_main module contains the key sub-routines
for MPR in the order that they are applied. This calls upon sub-routines in the
modules listed on the far right.

C.2 dyna_main.f90

1 !
2 ! =================================================================
3 ! DECIPHeR VERSION 1
4 !
5 ! Br i s to l University 2018 (Gemma Coxon , Jim Freer , Rosie Lane and Toby Dunne)
6 ! Based on fortran 77 version of dynamic TOPMODEL produced in
7 ! Lancaster University 12/01/00 ( Keith Beven & Jim Freer )
8 ! Migrated to std=F2003 Toby Dunne 25/01/2015
9 ! Modified extensively by Gemma Coxon 2016−2018

10 ! Integrated with multiscale parameter reg ional i zat ion − Rosie Lane 2017−2019
11 !
12 ! =================================================================
13 !
14 program main
15

16 use dyna_common_types
17 use dyna_project
18 use dyna_random
19 use dyna_tread_dyna
20 use dyna_inputs
21 use dyna_mc_setup
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22 use dyna_modelstruct_setup
23 use dyna_genpar
24 use dyna_main_loop
25 use dyna_file_open
26 use dyna_read_routingdata
27

28 ! use d t a _ u t i l i t y
29 use dta_route_processing
30 use dta_riv_tree_node
31

32 use mpr_main
33 use mpr_extract_BasPred
34 use mpr_control
35 use mpr_errors
36 use mpr_upscaling
37 use mpr_uti l i ty
38 use mpr_random
39

40 !MPR sett ings and functions for each DynaTOP parameter
41 use mpr_SZM
42 use mpr_LnTo
43 use mpr_SRmax
44 use mpr_SRinit
45 use mpr_CHV
46 use mpr_Td
47 use mpr_Smax
48

49 imp l i c i t none
50

51 ! Local variable declares
52 integer : : seed_1 , seed_2
53 integer : : i
54 integer : : nac
55 integer : : nstep
56 integer : : num_rivers
57

58 ! a l located from ’ Input ’
59 double precis ion , dimension ( : , : ) , a l l o ca tab le : : pe_step
60 double precis ion , dimension ( : ) , a l l o ca tab le : : qobs_r iv_step_start
61 double precis ion , dimension ( : , : ) , a l l o ca tab le : : r_gau_step
62

63 ! a l located af ter ’ Input ’
64 type ( dyna_hru_type ) , dimension ( : ) , a l l o ca tab le : : dyna_hru
65 type ( dyna_riv_type ) , dimension ( : ) , a l l o ca tab le : : dyna_riv
66

67 ! MULTI POINT RIVER ROUTING
68 ! Toby Dunne April 2016 + GC June 2016
69 ! these type are defined in modules as part o f the dta f i l e s
70 type ( route_r iver_ info_type ) : : route_riv
71 type ( route_time_delay_hist_type ) : : route_tdh
72 integer : : cat_route_vmode
73 integer : : routing_mode
74 integer , dimension ( : ) , a l l o ca tab le : : node_to_flow_mapping
75 character (900) : : out_dir_path
76
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77 ! Kinematic so lut ion parameters and time step
78 doubleprecis ion : : dt
79 doubleprecis ion : : acc
80 doubleprecis ion : : wt
81 integer : : ntt
82 doubleprecis ion : : dtt
83 double precis ion , dimension ( : , : ) , a l l o ca tab le : : r ivers ! ( nac , n_riv )
84 double precis ion , dimension ( : ) , a l l o ca tab le : : sum_ac_riv !
85 l o g i c a l : : new_init , print_output , new_kine
86 character ( 1 0 2 4 ) : : arg
87 character ( 1 0 2 4 ) : : a u t o _ s t a r t _ f i l e
88

89 ! ! ADDED VARIABLES FOR MPR
90 ! key f i l epaths and fo lder locat ions
91 character ( len =1024) : : MPRfolder
92 character ( len =1024) : : fpath_HRUmap
93 character ( len =1024) : : fo lder_input
94 character ( len =1024) : : fo lder_output
95 character ( len =900) : : f o l d e r _ o u t f u l l
96 character ( len =1024) : : fname_control
97 character ( len =1024) : : fname_filemgr
98 character ( len =1024) : : fpath_gp_f i le
99 character ( len =1024) , dimension (18) : : fnames_baspred

100

101

102 ! variables in the contro l f i l e
103 ! number of parameter f i l e s to create (n_pm_maps)
104 ! s tart ing seed for generation of global params
105 ! save_pm_map : set to 1 i f user wants to save parameter maps
106 ! save_bp_maps : set to 1 i f user wants to save basin predictor maps
107 integer : : n_pm_maps
108 integer : : start_seed
109 integer : : save_pm_maps
110 integer : : save_bp_maps
111

112 ! pedo−transfer eq . nums for SZM, LnTo , SRmax, SRinit , CHV, Td , Smax
113 integer , dimension ( 7 ) : : pedo_t f_a l l
114

115 ! parameter min , default and max values from parameter f i l e
116 double precis ion , dimension ( 7 , 3 ) : : Params_range
117

118 ! variables def ining HRU map and parameter maps
119 ! stats_HRU : variable comprising HRU map xl l , y l l , c e l l s i z e & nodata value
120 double precis ion , a l locatable , dimension ( : , : ) : : HRU_map
121 integer : : nHRUS ! number of HRUs
122 double precis ion , dimension ( 4 ) : : stats_HRU
123

124 ! basin predictor maps needed − l o g i c a l arrays with true values i f maps required
125 l og i ca l , dimension (18) : : req_bp ! Sand , s i l t , c lay and OM rows , s p l i t by depth columns
126

127 ! basin predictor maps
128 ! soilmusiddata i s tables containing depth decl ine data for each s o i l ser ies and musid .
129 ! bp_root_depths i s landcover c lass rooting depth table
130 real , a l locatable , dimension ( : , : , : ) : : bp_maps
131 real , a l locatable , dimension ( : , : ) : : sand_0_10
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132 real , a l locatable , dimension ( : , : ) : : s i l t_0_10
133 real , a l locatable , dimension ( : , : ) : : clay_0_10
134 real , a l locatable , dimension ( : , : ) : : orgm_0_10
135 double precis ion , a l locatable , dimension ( : , : , : ) : : soilmusiddata
136 real , a l locatable , dimension ( : , : ) : : bp_root_depths
137

138 ! g lobal parameters
139 ! n_gp_all i s a vector o f number of global params for a l l params
140 ! glob_pms_* has dimensions of ( glob pm number , 1 :n_pm_maps)
141 ! up_pms i s a vector o f upscaled params
142 integer , dimension ( 7 ) : : n_gp_all
143 double precis ion , a l locatable , dimension ( : , : ) : : glob_pms_SZM
144 double precis ion , a l locatable , dimension ( : , : ) : : glob_pms_LnTo
145 double precis ion , a l locatable , dimension ( : , : ) : : glob_pms_SRmax
146 double precis ion , a l locatable , dimension ( : , : ) : : glob_pms_SRinit
147 double precis ion , a l locatable , dimension ( : , : ) : : glob_pms_CHV
148 double precis ion , a l locatable , dimension ( : , : ) : : glob_pms_Td
149 double precis ion , a l locatable , dimension ( : , : ) : : glob_pms_Smax
150 double precis ion , a l locatable , dimension ( : , : , : ) : : pm_map_all
151 double precis ion , a l locatable , dimension ( : , : ) : : up_pms
152

153 ! s tar t
154 a u t o _ s t a r t _ f i l e = ’ ’
155 i = 0
156 new_init = .TRUE.
157 print_output = .FALSE.
158 new_kine = .TRUE.
159

160 print * , ’−−− Starting DECIPHeR ra in fa l l −runoff modelling −−− ’
161

162 ! Read in command−l ine arguments
163 do
164 CALL get_command_argument ( i , arg )
165 i f ( len_trim ( arg ) == 0) ex i t
166 i f ( are_equal ( arg , ’−auto ’ ) ) then
167 CALL get_command_argument ( i +1 , a u t o _ s t a r t _ f i l e )
168 e lse i f ( are_equal ( arg , ’−new_init ’ ) ) then
169 new_init = .TRUE.
170 e lse i f ( are_equal ( arg , ’−print_output ’ ) ) then
171 print_output = .TRUE.
172 e lse i f ( are_equal ( arg , ’−new_kine ’ ) ) then
173 new_kine = .TRUE.
174 endif
175 i = i + 1
176 end do
177

178 ! Call pro jec t to read in pro jec t f i l e s
179 c a l l pro jec t ( auto_s tar t_ f i l e , &
180 out_dir_path , &
181 fname_control , &
182 fname_filemgr )
183

184 ! Call tread_dyna to read in the HRU f i l e
185 write (999 ,* ) ’ ’
186 write (999 ,* ) ’ Reading in HRU f i l e s ’
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187 c a l l Tread_dyna ( nac , &
188 num_rivers , &
189 dyna_hru , &
190 dyna_riv , &
191 rivers , &
192 sum_ac_riv )
193

194 ! Call inputs to read in the input data
195 write (999 ,* ) ’ ’
196 write (999 ,* ) ’ Reading in Input f i l e s ’
197 c a l l Inputs ( nstep , &
198 num_rivers , &
199 dt , &
200 pe_step , &
201 qobs_riv_step_start , &
202 r_gau_step )
203

204 ! Read in model structure in fo
205 write (999 ,* ) ’ ’
206 write (999 ,* ) ’ Reading in Model Structure f i l e s ’
207 c a l l modelstruct_setup ( dyna_hru , &
208 nac )
209

210 ! c a l l read_routingdata to read in the routing data
211 write (999 ,* ) ’ ’
212 write (999 ,* ) ’ Reading in Routing Data ’
213 c a l l read_routingdata ( cat_route_vmode , &
214 dyna_hru , &
215 nac , &
216 node_to_flow_mapping , &
217 num_rivers , &
218 route_riv , &
219 route_tdh , &
220 routing_mode )
221

222 ! c a l l mpr_read_controls to read key variables from the MPR contro l f i l e
223 write (999 ,* ) ’ ’
224 write (999 ,* ) ’ Reading in MPR f i l e s ’
225 c a l l mpr_read_controls ( MPRfolder , & ! key f i l epaths and fo lder locat ions
226 fpath_HRUmap , &
227 folder_input , &
228 folder_output , &
229 fname_control , &
230 fname_filemgr , &
231 fnames_baspred , &
232 Params_range , & ! parameter min , default and max values
233 n_pm_maps , & ! variables in the contro l f i l e
234 start_seed , &
235 save_pm_maps , &
236 save_bp_maps , &
237 pedo_t f_al l , &
238 param_repeatruns ,&
239 parammap_pert_ranges , &
240 fpath_gp_f i le )
241
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242 ! c a l l mpr_read_hru to read in the . asc f i l e def ining HRU map
243 ! ( or zones requiring d i f f e r e n t parameters )
244 c a l l mpr_read_hru ( fpath_HRUmap , &
245 HRU_map, &
246 nHRUs, &
247 stats_HRU )
248

249 ! c a l l mpr_read_BasPred to read a l l required basin predictors ,
250 ! and c l i p to HRU map size
251 c a l l mpr_read_BasPred ( folder_input , &
252 MPRfolder , &
253 fnames_baspred , &
254 req_bp , &
255 pedo_t f_al l , &
256 bp_maps , &
257 sand_0_10 , &
258 si l t_0_10 , &
259 clay_0_10 , &
260 orgm_0_10 , &
261 soilmusiddata , &
262 stats_hru , &
263 hru_map , &
264 save_bp_maps , &
265 bp_root_depths )
266

267 ! c a l l mpr_init_gparams to generate n global parameter sets
268 write (999 ,* ) ’ ’
269 write (999 ,* ) ’ Generating MPR global parameters ’
270 c a l l mpr_init_gparams (n_pm_maps , &
271 start_seed , &
272 pedo_t f_al l , &
273 Params_range , &
274 n_gp_all , &
275 glob_pms_SZM , &
276 glob_pms_LnTo , &
277 glob_pms_SRmax , &
278 glob_pms_SRinit , &
279 glob_pms_CHV , &
280 glob_pms_Td , &
281 glob_pms_Smax , &
282 bp_root_depths )
283

284 ! write global parameters in output fo lder
285 f o l d e r _ o u t f u l l = ( trim ( MPRfolder ) / / trim ( folder_output ) )
286 c a l l mpr_write_gparams (n_pm_maps , &
287 pedo_t f_al l , &
288 folder_output , &
289 n_gp_all , &
290 glob_pms_SZM , &
291 glob_pms_LnTo , &
292 glob_pms_SRmax , &
293 glob_pms_SRinit , &
294 glob_pms_CHV , &
295 glob_pms_Td , &
296 glob_pms_Smax , &
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297 param_repeatruns , &
298 parammap_add_mult , &
299 fpath_gp_f i le )
300

301 ! Loop through for each simulation
302 write (999 ,* ) ’ ’
303 write (999 ,* ) ’ Looping through simulations . . . ’
304 do i_mc = 1 , n_pm_maps ! previously numsim
305

306 print * ,
307 print * , ’************************************************************************** ’
308 print * , ’ Running sim ’ , i_mc , ’ out o f ’ ,n_pm_maps
309 print * , ’************************************************************************** ’
310

311 ! Apply pedotransfer functions
312 ! to get parameter values at 50m reso lut ion
313 c a l l mpr_pedotransfer ( i_mc , &
314 n_pm_maps , &
315 pedo_t f_al l , &
316 save_pm_maps , &
317 start_seed , &
318 folder_output , &
319 glob_pms_SZM , &
320 glob_pms_LnTo , &
321 glob_pms_SRmax , &
322 glob_pms_SRinit , &
323 glob_pms_CHV , &
324 glob_pms_Td , &
325 glob_pms_Smax,&
326 soilmusiddata , &
327 bp_maps , &
328 pm_map_all , &
329 stats_HRU , &
330 HRU_map)
331

332 ! upscale parameters
333 ! to get parameter sets per parameter map (HRU map)
334 c a l l mpr_upscale (HRU_map, &
335 nHRUs, &
336 pm_map_all , &
337 up_pms , &
338 pedo_t f_al l , &
339 save_pm_maps , &
340 stats_HRU , &
341 i_mc , &
342 start_seed , &
343 fo lder_output )
344

345

346 ! write upscaled parameters into DECIPHeR expected format − mcpar
347 a l l o ca te ( mcpar (nHRUs, 7 ) )
348 mcpar ( 1 :nHRUs, 1 : 7 ) = up_pms ( 1 :nHRUs, 2 : 8 )
349 NTT=1
350 WT=0.8 ! kinematic so lut ion parameters
351 ACC=0.000000001
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352

353 ! ! ==================== MODEL RUNS HERE =========================
354

355 ! Open up output f i l e s
356 c a l l f i l e_open ( i_mc+start_seed −1, &
357 print_output , &
358 out_dir_path )
359

360 ! Run model
361 c a l l mainloop ( all_pm_names , &
362 nac , &
363 nstep , &
364 num_rivers , &
365 acc , &
366 dt , &
367 dtt , &
368 dyna_hru , &
369 mcpar , &
370 new_init , &
371 new_kine , &
372 ntt , &
373 node_to_flow_mapping , &
374 nHRUs, & !ACTUALLY NUMBER OF PARAMETER GRIDS
375 pe_step , &
376 print_output , &
377 qobs_riv_step_start , &
378 r_gau_step , &
379 rivers , &
380 route_riv , &
381 route_tdh , &
382 sum_ac_riv , &
383 wt )
384

385 c lose (40)
386 c lose (41)
387

388 end do
389

390 c lose (999)
391 !
392 ! ============================================================
393 ! END MAIN MC LOOP
394 ! ============================================================
395 !
396 stop
397

398 end program main
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C.3 mpr_main.f90

1 ! ! Module containing main subroutine for MPR
2 ! ! Rosie Lane − 3rd November 2017
3

4 module mpr_main
5 contains
6

7 ! **********************************************************************************************
8 ! subroutine : 1 . mpr_read_controls : reads contro l f i l e and param f i l e
9 ! **********************************************************************************************

10 ! This function checks that a l l required MPR f i l e s are in correc t paths , &
11 ! pr ints error messages otherwise .
12 ! Then i t reads the parameter and contro l f i l e − reading each variable in from the
13 ! contro l f i l e seperately so that the order they are entered i s i rre levant .
14 ! Returns values of user_inputted requirements .
15 ! 01/06/2018 − also reads in f i l epath from MPR_filenames . dat
16 subroutine mpr_read_controls ( MPRfolder , & ! key f i l epaths and fo lder locat ions
17 fpath_HRUmap , &
18 folder_input , &
19 folder_output , &
20 fname_control , &
21 fname_filemgr , &
22 fnames_baspred , &
23 Params_range , & ! parameter min , default and max values from parameter f i l e
24 n_pm_maps , & ! variables in the contro l f i l e
25 start_seed , &
26 save_pm_maps , &
27 save_bp_maps , &
28 pedo_t f_al l , & ! l i s t o f pedo−transfer functions se lected for each parameter
29 param_repeatruns , &
30 parammap_pert_ranges , &
31 fpath_gp_f i le )
32

33 use mpr_control
34 use mpr_errors
35

36 imp l i c i t none
37

38 !DECLARE DUMMY VARIABLES
39 ! key f i l epaths and fo lder locat ions
40 character ( len =1024) , intent ( out ) : : MPRfolder
41 character ( len =1024) , intent ( out ) : : fpath_HRUmap
42 character ( len =1024) , intent ( out ) : : fo lder_input
43 character ( len =1024) , intent ( out ) : : fo lder_output
44 character ( len =1024) , intent ( in ) : : fname_control
45 character ( len =1024) , intent ( in ) : : fname_filemgr
46 character ( len =1024) , dimension (18 ) , intent ( out ) : : fnames_baspred
47

48 ! parameter min , default and max values from parameter f i l e
49 double precis ion , dimension ( 7 , 3 ) , intent ( out ) : : Params_range
50

51 ! variables in the contro l f i l e
52 integer , intent ( out ) : : n_pm_maps
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53 integer , intent ( out ) : : start_seed
54 integer , intent ( out ) : : save_pm_maps
55 integer , intent ( out ) : : save_bp_maps
56

57 ! variables combining resul ts from the contro l f i l e
58 ! pedo_t f_a l l : pedo−transfer eq . nums for SZM, LnTo , SRmax, SRinit , CHV, Td , Smax
59 integer , dimension ( 7 ) , intent ( out ) : : pedo_t f_a l l
60

61 !DECLARE LOCAL VARIABLES
62 character ( len =1024) : : fpath_PmSettings
63 character ( len =1024) : : fpath_gp_f i le
64 character ( len =1024) : : temp_name
65 character ( len =13) : : comment
66 character ( len =1024) : : f o lder_se t t ings
67 character ( len =1024) : : def_msg = " "
68 integer : : pedo_tf_SZM
69 integer : : pedo_tf_LnTo
70 integer : : pedo_tf_SRmax ! pedo−transfer equation numbers for a l l params
71 integer : : pedo_tf_SRinit
72 integer : : pedo_tf_CHV
73 integer : : pedo_tf_Td
74 integer : : pedo_tf_Smax
75 integer : : i
76

77 print * ,
78 print * , ’************************************************************************** ’
79 print * , ’ 0 . Get f i l epaths from filemanager ’
80 print * , ’************************************************************************** ’
81

82 print * ,
83 print * , ’ ! Read filenames from the filemanager contro l f i l e : ’
84 CALL read_contro l_ f i l e_char ( fname_filemgr , " d ir_root . . . . " , MPRfolder , def_msg )
85 CALL read_contro l_ f i l e_char ( fname_filemgr , " dir_input . . . " , fo lder_input , def_msg )
86 CALL read_contro l_ f i l e_char ( fname_filemgr , " dir_output . . " , folder_output , def_msg )
87 CALL read_contro l_ f i l e_char ( fname_filemgr , " d i r_set t ings " , f o lder_set t ings , def_msg )
88 CALL read_contro l_ f i l e_char ( fname_filemgr , "name_hru_map" , temp_name , def_msg )
89 fpath_HRUmap = trim ( fo lder_input ) / / trim ( temp_name)
90 CALL read_contro l_ f i l e_char ( fname_filemgr , "name_pm_stng" , temp_name , def_msg )
91 fpath_PmSettings = trim ( fo lder_se t t ings ) / / trim ( temp_name)
92 CALL read_contro l_ f i l e_char ( fname_filemgr , "name_pm_pert " , temp_name , def_msg )
93 fpath_PmPertSettings = trim ( fo lder_se t t ings ) / / trim ( temp_name)
94 CALL read_contro l_ f i l e_char ( fname_filemgr , " name_gp_file " , temp_name , def_msg )
95 fpath_gp_f i le = trim ( folder_output ) / / trim ( temp_name)
96

97 print * ,
98 print * , ’ ! Read basin predictor filenames from filemanager contro l f i l e : ’
99 CALL read_contro l_ f i l e_char ( fname_filemgr , " lnto_sand_d1 " , fnames_baspred ( 1 ) , def_msg )

100 CALL read_contro l_ f i l e_char ( fname_filemgr , " ln to_s i l t _d1 " , fnames_baspred ( 2 ) , def_msg )
101 CALL read_contro l_ f i l e_char ( fname_filemgr , " lnto_clay_d1 " , fnames_baspred ( 3 ) , def_msg )
102 CALL read_contro l_ f i l e_char ( fname_filemgr , " lnto_orgm_d1 " , fnames_baspred ( 4 ) , def_msg )
103 CALL read_contro l_ f i l e_char ( fname_filemgr , " szm_musids . . " , fnames_baspred ( 5 ) , def_msg )
104 CALL read_contro l_ f i l e_char ( fname_filemgr , " szm_mid_nde . " , fnames_baspred ( 6 ) , def_msg )
105 CALL read_contro l_ f i l e_char ( fname_filemgr , " szm_table_d1 " , fnames_baspred ( 7 ) , def_msg )
106 CALL read_contro l_ f i l e_char ( fname_filemgr , " szm_table_d2 " , fnames_baspred ( 8 ) , def_msg )
107 CALL read_contro l_ f i l e_char ( fname_filemgr , " szm_table_d3 " , fnames_baspred ( 9 ) , def_msg )
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108 CALL read_contro l_ f i l e_char ( fname_filemgr , " szm_table_d4 " , fnames_baspred (10 ) , def_msg )
109 CALL read_contro l_ f i l e_char ( fname_filemgr , " szm_table_d5 " , fnames_baspred (11 ) , def_msg )
110 CALL read_contro l_ f i l e_char ( fname_filemgr , " srmax_lcm . . . " , fnames_baspred (12 ) , def_msg )
111 CALL read_contro l_ f i l e_char ( fname_filemgr , " srmax_table . " , fnames_baspred (13 ) , def_msg )
112 CALL read_contro l_ f i l e_char ( fname_filemgr , "smax_d2b_map" , fnames_baspred (14 ) , def_msg )
113 CALL read_contro l_ f i l e_char ( fname_filemgr , " lnto_bulk_d1 " , fnames_baspred (15 ) , def_msg )
114 CALL read_contro l_ f i l e_char ( fname_filemgr , " lnto_ isorg . . " , fnames_baspred (16 ) , def_msg )
115 CALL read_contro l_ f i l e_char ( fname_filemgr , " sr_smax_poro " , fnames_baspred (17 ) , def_msg )
116 CALL read_contro l_ f i l e_char ( fname_filemgr , " hydrogeology " , fnames_baspred (18 ) , def_msg )
117

118 ! check a l l f i l e s ex i s t and print useful in fo to screen
119 ! print * ,
120 ! print * , ’ Double check these locat ions : ’
121 ! print * , ’Param map : ’ , trim ( fpath_HRUmap)
122 ! print * , ’Param sett ings : ’ , trim ( fpath_PmSettings )
123 ! print * , ’ fname_control = ’ , trim ( fname_control )
124 ! print * , ’Param map sett ings = ’ , trim ( fpath_PmPertSettings )
125 CALL check_ f i l e s_ex i s t ( MPRfolder , fpath_HRUmap , folder_input , folder_output , &
126 fname_control , fpath_PmSettings )
127

128 print * ,
129 print * , ’************************************************************************** ’
130 print * , ’ 1 . read parameter and contro l f i l e ’
131 print * , ’************************************************************************** ’
132

133 ! parameter f i l e
134 CALL read_param_file ( fpath_PmSettings , Params_range ( 1 , : ) , Params_range (2 , : ) ,&
135 Params_range ( 3 , : ) , Params_range ( 4 , : ) , Params_range ( 5 , : ) , Params_range (6 , : ) ,&
136 Params_range ( 7 , : ) )
137

138 !mpr contro l f i l e .
139 CALL read_cont ro l _ f i l e _ in t ( fname_control , "n_pm_maps" , n_pm_maps , 1 )
140 CALL read_cont ro l _ f i l e _ in t ( fname_control , " start_seed " , start_seed , 1 )
141 CALL read_cont ro l _ f i l e _ in t ( fname_control , "save_pm_maps" , save_pm_maps , 0 )
142 CALL read_cont ro l _ f i l e _ in t ( fname_control , " save_bp_maps " , save_bp_maps , 0 )
143 CALL read_cont ro l _ f i l e _ in t ( fname_control , " pedo_tf_SZM " , pedo_tf_SZM , 0 )
144 CALL read_cont ro l _ f i l e _ in t ( fname_control , " pedo_tf_LnTo " , pedo_tf_LnTo , 0 )
145 CALL read_cont ro l _ f i l e _ in t ( fname_control , " pedo_tf_SRmax " , pedo_tf_SRmax , 0 )
146 CALL read_cont ro l _ f i l e _ in t ( fname_control , " pedo_tf_SRinit " , pedo_tf_SRinit , 0 )
147 CALL read_cont ro l _ f i l e _ in t ( fname_control , " pedo_tf_CHV " , pedo_tf_CHV , 0 )
148 CALL read_cont ro l _ f i l e _ in t ( fname_control , " pedo_tf_Td " , pedo_tf_Td , 0 )
149 CALL read_cont ro l _ f i l e _ in t ( fname_control , " pedo_tf_Smax " , pedo_tf_Smax , 0 )
150 CALL read_cont ro l _ f i l e _ in t ( fname_control , "n_runs_SZM" , param_repeatruns ( 1 ) , 0 )
151 CALL read_cont ro l _ f i l e _ in t ( fname_control , " n_runs_LnTo " , param_repeatruns ( 2 ) , 0 )
152 CALL read_cont ro l _ f i l e _ in t ( fname_control , "n_runs_SRmax" , param_repeatruns ( 3 ) , 0 )
153 CALL read_cont ro l _ f i l e _ in t ( fname_control , " n_runs_SRinit " , param_repeatruns ( 4 ) , 0 )
154 CALL read_cont ro l _ f i l e _ in t ( fname_control , "n_runs_CHV" , param_repeatruns ( 5 ) , 0 )
155 CALL read_cont ro l _ f i l e _ in t ( fname_control , " n_runs_Td " , param_repeatruns ( 6 ) , 0 )
156 CALL read_cont ro l _ f i l e _ in t ( fname_control , "n_runs_Smax" , param_repeatruns ( 7 ) , 0 )
157

158 pedo_t f_a l l ( 1 : 4 ) = ( / pedo_tf_SZM , pedo_tf_LnTo , pedo_tf_SRmax , pedo_tf_SRinit / )
159 pedo_t f_a l l ( 5 : 7 ) = ( / pedo_tf_CHV , pedo_tf_Td , pedo_tf_Smax / )
160

161

162 525 format ( a13 ,1X, a700 )
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163

164 end subroutine mpr_read_controls
165

166

167 ! **********************************************************************************************
168 ! subroutine : 2 . mpr_read_hru : Reads the HRU/ spat ia l parameter map
169 ! **********************************************************************************************
170 ! This function reads the HRU a s c i i grid and header , from f i l e spec i f i ed in fpath_HRUmap
171 ! I t saves key information from the header into stats_HRU
172 ! I t makes sure a l l nodata values are set to −9999 for consistency .
173 subroutine mpr_read_hru ( fpath_HRUmap , &
174 HRU_map, &
175 nHRUs, &
176 stats_HRU )
177

178 use mpr_uti l i ty
179

180 imp l i c i t none
181

182 !DECLARE DUMMY VARIABLES
183 ! f i l epath pointing to HRU . asc f i l e created in DTA
184 character ( len =1024) , intent ( in ) : : fpath_HRUmap
185

186 ! variables def ining HRU map and parameter maps
187 double precis ion , a l locatable , dimension ( : , : ) , intent ( out ) : : HRU_map
188 integer , intent ( out ) : : nHRUs ! number of HRUs
189 double precis ion , dimension ( 4 ) , intent ( out ) : : stats_HRU
190

191 !DECLARE LOCAL VARIABLES
192 ! a l l variables re lat ing to s ize and locat ion :
193 ! o f HRU map created during DTA
194 ! o f param maps − assumed same as HRU map
195 integer : : ncols_HRU
196 integer : : nrows_HRU
197 double prec is ion : : xllcorner_HRU
198 double prec is ion : : yllcorner_HRU
199 double prec is ion : : cellsize_HRU
200 double prec is ion : : nodata_HRU
201 integer : : ncol
202 integer : : nrow
203 double prec is ion : : x l l
204 double prec is ion : : y l l
205 double prec is ion : : c e l l s i z e
206

207 print * ,
208 print * , ’************************************************************************** ’
209 print * , ’ 2 . Read HRU map ’
210 print * , ’************************************************************************** ’
211

212 print * , ’ Reading map from : ’ , trim ( fpath_HRUmap)
213

214 c a l l read_asc i i_gr id ( fpath_HRUmap , HRU_map, ncols_HRU , nrows_HRU, xllcorner_HRU , &
215 yllcorner_HRU , cellsize_HRU , nodata_HRU)
216

217 nHRUs = maxval ( int (HRU_map) )

183



APPENDIX C. SUPPLEMENT TO RESEARCH CHAPTER TWO: DECIPHER_MPR CODE

218 stats_HRU ( 1 : 4 ) = ( / xllcorner_HRU , yllcorner_HRU , cellsize_HRU , nodata_HRU / )
219

220 ! s tats values of hru map − a l l other maps wi l l be converted to these
221 nrow = nrows_HRU
222 ncol = ncols_HRU
223 x l l = xllcorner_HRU
224 y l l = yllcorner_HRU
225 c e l l s i z e = cellsize_HRU
226

227 print * , ’Number of HRUs found : ’ ,nHRUs
228 print * , ’Rows in HRU f i l e : ’ ,nrows_HRU
229 print * , ’ Cols in HRU f i l e : ’ ,ncols_HRU
230

231 ! convert nodata value to −9999 to avoid confusion
232 IF ( stats_HRU ( 4 ) /= −9999) THEN
233 stats_HRU ( 4 ) = −9999
234 print * , ’ o ld nodata value : ’ , int (nodata_HRU ) , ’ being converted to ’ , int ( stats_HRU ( 4 ) )
235 c a l l set_nodata_value ( HRU_map, nodata_HRU , stats_HRU ( 4 ) )
236 nodata_HRU = −9999
237 ELSE
238 print * , ’ nodata value : ’ , nodata_HRU
239 END IF
240

241 end subroutine mpr_read_hru
242

243

244 ! ********************************************************************************************
245 ! subroutine : 3 . mpr_read_BasPred : Reads required Basin Predictor maps and trims to HRU
246 ! ********************************************************************************************
247 ! a . checks which basin predictors are needed for se lected pedo−transfer functions
248 ! b . reads in only those maps
249 ! − maps are cl ipped to same extent as HRU map when being read−in
250 ! − maps can be saved i f spec i f i ed in MPR_control f i l e
251 subroutine mpr_read_BasPred ( folder_input , &
252 MPRfolder , &
253 fnames_baspred , &
254 req_bp , &
255 pedo_t f_al l , &
256 bp_maps , &
257 sand_0_10 , &
258 si l t_0_10 , &
259 clay_0_10 , &
260 orgm_0_10 , &
261 soilmusiddata , &
262 stats_hru , &
263 hru_map , &
264 save_bp_maps , &
265 bp_root_depths )
266

267 use mpr_uti l i ty
268 use mpr_extract_BasPred
269 use mpr_SZM
270 use mpr_LnTo
271 use mpr_SRmax
272 use mpr_SRinit
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273 use mpr_CHV
274 use mpr_Td
275 use mpr_Smax
276

277 imp l i c i t none
278

279 !DECLARE DUMMY VARIABLES
280 ! key f i l epaths
281 character ( len =1024) , intent ( in ) : : MPRfolder
282 character ( len =1024) , intent ( in ) : : fo lder_input
283 character ( len =1024) , dimension (18 ) , intent ( in ) : : fnames_baspred
284

285 ! s p e c i f i c requirements based on user input to contro l f i l e
286 ! req_bp : basin predictor maps needed − l o g i c a l arrays with true values i f maps required
287 ! pedo_t f_a l l : pedo−transfer eq . nums for SZM, LnTo , SRmax, SRinit , CHV, Td , Smax
288 integer , intent ( in ) : : save_bp_maps
289 l og i ca l , dimension (18 ) , intent ( out ) : : req_bp
290 integer , dimension ( 7 ) , intent ( inout ) : : pedo_t f_a l l
291

292 ! basin predictor maps
293 ! bp_maps i s an array of a l l basin predictor maps
294 real , a l locatable , dimension ( : , : , : ) , intent ( out ) : : bp_maps
295 real , a l locatable , dimension ( : , : ) , intent ( out ) : : sand_0_10
296 real , a l locatable , dimension ( : , : ) , intent ( out ) : : s i l t_0_10
297 real , a l locatable , dimension ( : , : ) , intent ( out ) : : clay_0_10
298 real , a l locatable , dimension ( : , : ) , intent ( out ) : : orgm_0_10
299 double precis ion , a l locatable , dimension ( : , : , : ) , intent ( out ) : : soilmusiddata
300 real , a l locatable , dimension ( : , : ) , intent ( out ) : : bp_root_depths
301

302 !HRU map and propert ies
303 double precis ion , a l locatable , dimension ( : , : ) , intent ( in ) : : HRU_map
304 double precis ion , dimension ( 4 ) , intent ( in ) : : stats_HRU
305

306 !DECLARE LOCAL VARIABLES
307 integer : : i
308

309 print * ,
310 print * , ’************************************************************************** ’
311 print * , ’ 3 . Read required basin predictor maps ’
312 print * , ’************************************************************************** ’
313 print * , ’ Reading maps from : ’ , trim ( fo lder_input )
314 print * ,
315

316 DO i = 1 ,14
317 req_bp ( i ) = . f a l s e .
318 END DO
319

320 ! Check which basin predictors are required
321 ! get_BasPred_req returns a l o g i c a l l i s t o f the required s o i l s maps req_so i l s ( type , depth ) ,
322 ! which contains . true . where s o i l s maps are required
323 CALL get_BasPred_SZM ( pedo_t f_a l l ( 1 ) , req_bp )
324 CALL get_BasPred_LnTo ( pedo_t f_a l l ( 2 ) , req_bp )
325 CALL get_BasPred_SRmax ( pedo_t f_a l l ( 3 ) , req_bp )
326 CALL get_BasPred_SRinit ( pedo_t f_a l l ( 4 ) , req_bp )
327 CALL get_BasPred_CHV ( pedo_t f_a l l ( 5 ) , req_bp )
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328 CALL get_BasPred_Td ( pedo_t f_a l l ( 6 ) , req_bp )
329 CALL get_BasPred_Smax ( pedo_t f_a l l ( 7 ) , req_bp )
330

331 ! read_req_soi ls reads in any basin predictor maps required
332 ! f o r user−se lected pedo transfer functions
333 CALL read_req_soi ls ( folder_input ,&
334 MPRfolder,&
335 fnames_baspred ,&
336 req_bp ,&
337 stats_HRU,&
338 HRU_map,&
339 save_bp_maps,&
340 bp_maps , &
341 soilmusiddata , &
342 bp_root_depths )
343

344 sand_0_10 = bp_maps ( : , : , 1 )
345 s i l t_0_10 = bp_maps ( : , : , 2 )
346 clay_0_10 = bp_maps ( : , : , 3 )
347 orgm_0_10 = bp_maps ( : , : , 4 )
348

349 end subroutine mpr_read_BasPred
350

351

352 ! **********************************************************************************************
353 ! subroutine : 4 . mpr_init_gparams : i n i t i a l i s e s global parameters using random num generator
354 ! **********************************************************************************************
355 ! a . checks how many global params are needed , given pedo−transfer functions se lected
356 ! b . i n i t i a l i s e s global parameters within given bounds
357 ! c . generates n sets o f parameters , s tart ing at given start seed
358 subroutine mpr_init_gparams (n_pm_maps , &
359 start_seed , &
360 pedo_t f_al l , &
361 Params_range , &
362 n_gp_all , &
363 glob_pms_SZM , &
364 glob_pms_LnTo , &
365 glob_pms_SRmax , &
366 glob_pms_SRinit , &
367 glob_pms_CHV , &
368 glob_pms_Td , &
369 glob_pms_Smax , &
370 rd )
371

372 use mpr_uti l i ty
373 use mpr_extract_BasPred
374 use mpr_SZM
375 use mpr_LnTo
376 use mpr_SRmax
377 use mpr_SRinit
378 use mpr_CHV
379 use mpr_Td
380 use mpr_Smax
381

382 imp l i c i t none
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383

384 !DECLARE DUMMY VARIABLES
385 ! variables from the contro l f i l e
386 !n_pm_maps : number of parameter f i l e s to create
387 ! start_seed : start ing seed for generation of global params
388 ! pedo_t f_a l l : pedo−transfer eq . nums for SZM, LnTo , SRmax, SRinit , CHV, Td , Smax
389 integer , intent ( in ) : : n_pm_maps
390 integer , intent ( in ) : : start_seed
391 integer , dimension ( 7 ) , intent ( in ) : : pedo_t f_a l l
392

393 ! parameter min , default and max values from parameter f i l e
394 double precis ion , dimension ( 7 , 3 ) , intent ( in ) : : Params_range
395

396 ! g lobal parameter information
397 integer , dimension ( 7 ) , intent ( out ) : : n_gp_all
398 double precis ion , a l locatable , dimension ( : , : ) , intent ( out ) : : glob_pms_SZM
399 double precis ion , a l locatable , dimension ( : , : ) , intent ( out ) : : glob_pms_LnTo
400 double precis ion , a l locatable , dimension ( : , : ) , intent ( out ) : : glob_pms_SRmax
401 double precis ion , a l locatable , dimension ( : , : ) , intent ( out ) : : glob_pms_SRinit
402 double precis ion , a l locatable , dimension ( : , : ) , intent ( out ) : : glob_pms_CHV
403 double precis ion , a l locatable , dimension ( : , : ) , intent ( out ) : : glob_pms_Td
404 double precis ion , a l locatable , dimension ( : , : ) , intent ( out ) : : glob_pms_Smax
405

406 ! spec ia l parameter information f i l e s
407 real , a l locatable , dimension ( : , : ) , intent ( in ) : : rd ! root ing depth table bp_root_depths
408

409 print * ,
410 print * , ’************************************************************************** ’
411 print * , ’ 4 . I n i t i a l i s e global parameters within given bounds ’
412 print * , ’************************************************************************** ’
413

414 ! i n i t i a l i s e vector stor ing the number of global parameters needed for each parameter .
415 n_gp_all = ( / 0 ,0 ,0 ,0 ,0 ,0 ,0 / )
416

417 i f ( pedo_t f_a l l (1)==4) THEN !SZM can share global param values with LnT0
418 CALL init_gp_SZM (2 , glob_pms_SZM , n_pm_maps , start_seed , n_gp_all , Params_range ( 1 , : ) )
419 ELSE
420 CALL init_gp_SZM ( pedo_t f_a l l ( 1 ) , glob_pms_SZM , n_pm_maps , start_seed , n_gp_all , &
421 Params_range ( 1 , : ) )
422 END IF
423 CALL init_gp_LnTo ( pedo_t f_a l l ( 2 ) , glob_pms_LnTo , n_pm_maps , start_seed , n_gp_all , &
424 Params_range ( 2 , : ) )
425 CALL init_gp_SRmax ( pedo_t f_a l l ( 3 ) , glob_pms_SRmax , n_pm_maps , start_seed , n_gp_all , &
426 Params_range ( 3 , : ) , rd )
427 CALL init_gp_SRinit ( pedo_t f_a l l ( 4 ) , glob_pms_SRinit , n_pm_maps , start_seed , n_gp_all , &
428 Params_range ( 4 , : ) )
429 CALL init_gp_CHV ( pedo_t f_a l l ( 5 ) , glob_pms_CHV , n_pm_maps , start_seed , n_gp_all , &
430 Params_range ( 5 , : ) )
431 CALL init_gp_Td ( pedo_t f_a l l ( 6 ) , glob_pms_Td , n_pm_maps , start_seed , n_gp_all , &
432 Params_range ( 6 , : ) )
433 CALL init_gp_Smax ( pedo_t f_a l l ( 7 ) , glob_pms_Smax , n_pm_maps , start_seed , n_gp_all , &
434 Params_range ( 7 , : ) )
435

436

437 end subroutine mpr_init_gparams
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438

439

440 ! **********************************************************************************************
441 ! subroutine : 4b . mpr_write_gparams : writes i n i t i a l i s e d global parameters in output f i l e
442 ! **********************************************************************************************
443 subroutine mpr_write_gparams (n_pm_maps , &
444 pedo_t f_al l , &
445 out_dir_path , &
446 n_gp_all , &
447 glob_pms_SZM , &
448 glob_pms_LnTo , &
449 glob_pms_SRmax , &
450 glob_pms_SRinit , &
451 glob_pms_CHV , &
452 glob_pms_Td , &
453 glob_pms_Smax , &
454 param_repeatruns , &
455 parammap_add_mult , &
456 fpath_gp_f i le )
457

458 use mpr_uti l i ty
459

460 imp l i c i t none
461

462 !DECLARE DUMMY VARIABLES
463 ! variables from the contro l f i l e
464 integer , intent ( in ) : : n_pm_maps
465 integer , dimension ( 7 ) , intent ( in ) : : pedo_t f_a l l
466 character (900) , intent ( in ) : : out_dir_path
467 character ( len =1024) , intent ( in ) : : fpath_gp_f i le
468

469 ! g lobal parameters
470 integer , dimension ( 7 ) , intent ( in ) : : n_gp_all
471 double precis ion , a l locatable , dimension ( : , : ) , intent ( in ) : : glob_pms_SZM
472 double precis ion , a l locatable , dimension ( : , : ) , intent ( in ) : : glob_pms_LnTo
473 double precis ion , a l locatable , dimension ( : , : ) , intent ( in ) : : glob_pms_SRmax
474 double precis ion , a l locatable , dimension ( : , : ) , intent ( in ) : : glob_pms_SRinit
475 double precis ion , a l locatable , dimension ( : , : ) , intent ( in ) : : glob_pms_CHV
476 double precis ion , a l locatable , dimension ( : , : ) , intent ( in ) : : glob_pms_Td
477 double precis ion , a l locatable , dimension ( : , : ) , intent ( in ) : : glob_pms_Smax
478

479 ! l o c a l parameters
480 character (900) : : filename
481 character (1000000) : : numformat
482 double precis ion , a l locatable , dimension ( : , : , : ) : : glob_pms_all
483 integer : : i , j
484 integer : : max_ngp
485 character ( 1 ) : : c
486

487 max_ngp = maxval ( n_gp_all ( : ) )
488

489 ! put a l l g lobal parameters into one large array
490 a l l o ca te ( glob_pms_all (max_ngp , n_pm_maps , 7 ) )
491

492 glob_pms_all ( 1 : n_gp_all ( 1 ) , : , 1 ) = glob_pms_SZM
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493 glob_pms_all ( 1 : n_gp_all ( 2 ) , : , 2 ) = glob_pms_LnTo
494 glob_pms_all ( 1 : n_gp_all ( 3 ) , : , 3 ) = glob_pms_SRmax
495 glob_pms_all ( 1 : n_gp_all ( 4 ) , : , 4 ) = glob_pms_SRinit
496 glob_pms_all ( 1 : n_gp_all ( 5 ) , : , 5 ) = glob_pms_CHV
497 glob_pms_all ( 1 : n_gp_all ( 6 ) , : , 6 ) = glob_pms_Td
498 glob_pms_all ( 1 : n_gp_all ( 7 ) , : , 7 ) = glob_pms_Smax
499

500 ! Then open the output f i l e
501 open ( unit =24 , f i l e =fpath_gp_f i le , status= ’unknown ’ )
502

503 ! write t i t l e fol lowed by formatted output for each parameter
504 write (24 ,* ) ’Param (szm , lnto , srmax , sr in i t , chv , td , smax ) , GP_num, values ’
505 ! numformat = " ( I5 , I5 , F15.10 " / / repeat ( " F15.10 " ,n_pm_maps) / / " ) "
506 ! numformat = " ( I5 , I5 , " / / repeat ( " F15.10 " ,n_pm_maps) / / " ) "
507 numformat = " ( I2 , ’ , ’ , I2 " / / repeat ( " ’ , ’ , F15 .5 " ,n_pm_maps) / / " ) "
508 do i = 1 ,7
509 do j = 1 , n_gp_all ( i )
510 write (24 ,numformat ) i , j , glob_pms_all ( j , : , i )
511 end do
512 end do
513 c lose ( unit =24)
514

515 ! numformat
516

517 end subroutine mpr_write_gparams
518

519

520 ! **********************************************************************************************
521 ! subroutine : 5 . mpr_pedotransfer : appl ies t f functions to create parameter maps
522 ! **********************************************************************************************
523 ! For run n in N parameter maps
524 ! a . Apply pedotransfer functions to map n to get parameter maps
525 ! b . Save these parameter maps i f save_pm_maps spec i f i ed in the mpr contro l f i l e
526 ! c . output parameter maps
527 subroutine mpr_pedotransfer ( i_n , &
528 n_pm_maps , &
529 pedo_t f_al l , &
530 save_pm_maps , &
531 start_seed , &
532 folder_output , &
533 glob_pms_SZM , &
534 glob_pms_LnTo , &
535 glob_pms_SRmax , &
536 glob_pms_SRinit , &
537 glob_pms_CHV , &
538 glob_pms_Td , &
539 glob_pms_Smax,&
540 soilmusiddata , &
541 bp_maps , &
542 pm_map_all , &
543 stats_HRU , &
544 HRU_map)
545

546 use mpr_uti l i ty
547 use mpr_SZM
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548 use mpr_LnTo
549 use mpr_SRmax
550 use mpr_SRinit
551 use mpr_CHV
552 use mpr_Td
553 use mpr_Smax
554

555 imp l i c i t none
556

557 ! !DECLARE DUMMY VARIABLES
558 integer : : i_n
559 integer : : n_pm_maps
560 integer , dimension ( 7 ) : : pedo_t f_a l l
561 integer : : save_pm_maps
562 integer : : start_seed
563 character ( len =1024) : : fo lder_output
564

565 ! g lobal parameters
566 ! dim ( glob pm number , 1 :n_pm_maps)
567 double precis ion , a l locatable , dimension ( : , : ) : : glob_pms_SZM
568 double precis ion , a l locatable , dimension ( : , : ) : : glob_pms_LnTo
569 double precis ion , a l locatable , dimension ( : , : ) : : glob_pms_SRmax
570 double precis ion , a l locatable , dimension ( : , : ) : : glob_pms_SRinit
571 double precis ion , a l locatable , dimension ( : , : ) : : glob_pms_CHV
572 double precis ion , a l locatable , dimension ( : , : ) : : glob_pms_Td
573 double precis ion , a l locatable , dimension ( : , : ) : : glob_pms_Smax
574

575 ! basin predictor maps
576 ! bp maps ( x , y , sand / s i l t / c lay / orgm / ksat decline , depth_class )
577 real , a l locatable , dimension ( : , : , : ) : : bp_maps
578 double precis ion , a l locatable , dimension ( : , : , : ) , intent ( in ) : : soilmusiddata
579

580 ! parameter maps at the f i n e s t scale , created using transfer functions
581 ! pm_map_all ( x , y , [SZM, LnTo , SRmax, SRinit , CHV, Td , Smax] )
582 double precis ion , a l locatable , dimension ( : , : , : ) : : pm_map_all
583

584 ! variables def ining HRU map and parameter maps
585 double precis ion , a l locatable , dimension ( : , : ) : : HRU_map
586 double precis ion , dimension ( 4 ) : : stats_HRU !
587

588 !DECLARE LOCAL VARIABLES
589 ! s tats o f HRU map
590 integer : : ncols_HRU
591 integer : : nrows_HRU
592

593 ! parameter maps at the f i n e s t scale , created using transfer functions
594 double precis ion , a l locatable , dimension ( : , : ) : : pm_map_SZM
595 double precis ion , a l locatable , dimension ( : , : ) : : pm_map_LnTo
596 double precis ion , a l locatable , dimension ( : , : ) : : pm_map_SRmax
597 double precis ion , a l locatable , dimension ( : , : ) : : pm_map_SRinit
598 double precis ion , a l locatable , dimension ( : , : ) : : pm_map_CHV
599 double precis ion , a l locatable , dimension ( : , : ) : : pm_map_Td
600 double precis ion , a l locatable , dimension ( : , : ) : : pm_map_Smax
601 double precis ion , a l locatable , dimension ( : , : , : ) : : pm_map_all_temp
602
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603 ! basin predictors
604 real , a l locatable , dimension ( : , : ) : : sand_0_10
605 real , a l locatable , dimension ( : , : ) : : s i l t_0_10
606 real , a l locatable , dimension ( : , : ) : : clay_0_10
607 real , a l locatable , dimension ( : , : ) : : orgm_0_10
608 double precis ion , a l locatable , dimension ( : , : ) : : ksat_decl ine
609 real , a l locatable , dimension ( : , : ) : : srmax_lcm
610 real , a l locatable , dimension ( : , : ) : : smax_d2r
611

612 ! variables used when writing out a f i l e
613 character ( len =1024) : : temp_fn ! stores dynamic filename
614 character ( len = 5) : : i_n_str ! str ing stor ing current number of pm f i l e s made
615 character ( len = 6) : : fmt = ’ ( I5 . 5 ) ’ ! format descr iptor
616 integer : : x , y , i
617

618 print * ,
619 print * , ’ **************************************************************** ’
620 print * , ’ Apply pedo−transfer functions to create parameter map ’
621 print * , ’ **************************************************************** ’
622

623 print * ,
624 print * , ’n = ’ , i_n , ’ out o f ’ ,n_pm_maps
625

626 ! f i l l in l o c a l variables
627 ncols_HRU = size (HRU_map( 1 , : ) )
628 nrows_HRU = size (HRU_map( : , 1 ) )
629 sand_0_10 = bp_maps ( : , : , 1 )
630 s i l t_0_10 = bp_maps ( : , : , 2 )
631 clay_0_10 = bp_maps ( : , : , 3 )
632 orgm_0_10 = bp_maps ( : , : , 4 )
633 srmax_lcm=bp_maps ( : , : , 1 2 )
634 smax_d2r=bp_maps ( : , : , 1 4 )
635

636 i f ( i_n == 1) then
637 a l l o ca te ( pm_map_all (nrows_HRU, ncols_HRU , 7 ) )
638 a l l o ca te ( pm_map_all_temp (nrows_HRU, ncols_HRU , 7 ) )
639 end i f
640

641 ! apply pedotransfer functions to map n to get parameter maps
642 CALL pedotf_LnTo ( i_n , pedo_t f_a l l ( 2 ) , glob_pms_LnTo , sand_0_10 , clay_0_10 , &
643 pm_map_LnTo, bp_maps )
644

645 IF ( pedo_t f_a l l (1)==3) THEN ! apply SZM with lnT0 parameters
646 CALL pedotf_SZM ( i_n , 2 , glob_pms_LnTo , bp_maps , pm_map_SZM, soilmusiddata ,&
647 folder_output ,pm_map_LnTo)
648 ELSE ! apply SZM ptf with SZM global parameters
649 CALL pedotf_SZM ( i_n , pedo_t f_a l l ( 1 ) , glob_pms_SZM , bp_maps , pm_map_SZM, &
650 soilmusiddata , folder_output ,pm_map_LnTo)
651 END IF
652

653 CALL pedotf_SRmax ( i_n , pedo_t f_a l l ( 3 ) , glob_pms_SRmax , srmax_lcm , bp_maps ( : , : , 1 7 ) , &
654 pm_map_SRmax)
655 CALL pedotf_SRinit ( i_n , pedo_t f_a l l ( 4 ) , glob_pms_SRinit , sand_0_10 , pm_map_SRinit )
656 CALL pedotf_CHV ( i_n , pedo_t f_a l l ( 5 ) , glob_pms_CHV , sand_0_10 ,pm_map_CHV)
657 CALL pedotf_Td ( i_n , pedo_t f_a l l ( 6 ) , glob_pms_Td , sand_0_10 , pm_map_Td,pm_map_LnTo)
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658 CALL pedotf_Smax ( i_n , pedo_t f_a l l ( 7 ) , glob_pms_Smax , smax_d2r , bp_maps ( : , : , 1 7 ) , &
659 bp_maps ( : , : , 1 8 ) ,pm_map_Smax)
660

661 pm_map_all ( : , : , 1 ) = pm_map_SZM
662 pm_map_all ( : , : , 2 ) = pm_map_LnTo
663 pm_map_all ( : , : , 3 ) = pm_map_SRmax
664 pm_map_all ( : , : , 4 ) = pm_map_SRinit
665 pm_map_all ( : , : , 5 ) = pm_map_CHV
666 pm_map_all ( : , : , 6 ) = pm_map_Td
667 pm_map_all ( : , : , 7 ) = pm_map_Smax
668 pm_map_all_temp=pm_map_all
669

670 ! save parameter maps i f required
671 IF ( save_pm_maps >= 1) THEN
672 print * ,
673 print * , ’ Saving the fo l lowing parameter maps : ’
674 write ( i_n_str , fmt ) ( i_n+start_seed −1)
675

676 ! write nodata values so that maps match HRU maps
677 DO x = 1 ,ncols_HRU
678 DO y = 1 ,nrows_HRU
679 IF (HRU_map( y , x ) == stats_HRU ( 4 ) ) THEN ! i f nodata in HRU map
680 pm_map_all_temp ( y , x , : ) = stats_HRU ( 4 )
681 END IF
682 DO i = 1 ,7
683 IF ( pm_map_all_temp ( y , x , i )>=100000) THEN
684 pm_map_all_temp ( y , x , i ) = 100000
685 END IF
686 END DO
687 END DO
688 END DO
689

690 DO i = 1 ,7
691

692 ! get filename for each d i f f e r e n t parameter
693 IF ( i ==1) THEN
694 temp_fn = trim ( folder_output ) / / "param_map_szm" / / trim ( i_n_str ) / / " . asc "
695 ELSE IF ( i ==2) THEN
696 temp_fn = trim ( folder_output ) / / " param_map_lnto " / / trim ( i_n_str ) / / " . asc "
697 ELSE IF ( i ==3) THEN
698 temp_fn = trim ( folder_output ) / / "param_map_srmax" / / trim ( i_n_str ) / / " . asc "
699 ELSE IF ( i ==4) THEN
700 temp_fn = trim ( folder_output ) / / " param_map_srinit " / / trim ( i_n_str ) / / " . asc "
701 ELSE IF ( i ==5) THEN
702 temp_fn = trim ( folder_output ) / / "param_map_chv" / / trim ( i_n_str ) / / " . asc "
703 ELSE IF ( i ==6) THEN
704 temp_fn = trim ( folder_output ) / / "param_map_td" / / trim ( i_n_str ) / / " . asc "
705 ELSE IF ( i ==7) THEN
706 temp_fn = trim ( folder_output ) / / "param_map_smax" / / trim ( i_n_str ) / / " . asc "
707 END IF
708

709 ! only save parameter map i f th is parameter has had MPR applied
710 IF ( pedo_t f_a l l ( i ) >1) THEN
711 c a l l wr i te_asc i i _gr id ( temp_fn , pm_map_all_temp ( : , : , i ) , ncols_HRU ,nrows_HRU,&
712 stats_HRU ( 1 ) , stats_HRU ( 2 ) , stats_HRU ( 3 ) , stats_HRU ( 4 ) , 6 )
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713 print * , ’ Saving parameter map: ’ , trim ( temp_fn )
714 END IF
715 END DO
716 END IF
717

718

719 end subroutine mpr_pedotransfer
720

721

722

723

724 ! **********************************************************************************************
725 ! subroutine : 6 . mpr_upscale : Upscale param map to get param value for each HRU
726 ! **********************************************************************************************
727 ! For run n in N parameter maps
728 ! a . Loop through a l l HRUs ( or zones with d i f f e r e n t parameter values )
729 ! b . Extract a l l parameter values from parameter map covering se lected HRU
730 ! c . Upscale parameters by taking an average
731 subroutine mpr_upscale (HRU_map, &
732 nHRUs, &
733 pm_map_all , &
734 up_pms , &
735 pedo_t f_al l , &
736 save_pm_maps , &
737 stats_HRU , &
738 i_n , &
739 start_seed , &
740 fo lder_output )
741

742 use mpr_uti l i ty
743 use mpr_SZM
744 use mpr_LnTo
745 use mpr_SRmax
746 use mpr_SRinit
747 use mpr_CHV
748 use mpr_Td
749 use mpr_Smax
750 use mpr_upscaling
751

752 imp l i c i t none
753

754 ! !DECLARE DUMMY VARIABLES
755 ! up_pms : vector o f upscaled params (nHRUs, 8 )
756 integer , intent ( in ) : : i_n
757 double precis ion , a l locatable , dimension ( : , : ) , intent ( in ) : : HRU_map
758 integer , intent ( in ) : : nHRUS
759 double precis ion , a l locatable , dimension ( : , : , : ) , intent ( in ) : : pm_map_all
760 double precis ion , a l locatable , dimension ( : , : ) , intent ( out ) : : up_pms
761 integer , dimension ( 7 ) , intent ( in ) : : pedo_t f_a l l
762 integer : : save_pm_maps
763 double precis ion , dimension ( 4 ) : : stats_HRU
764 integer : : start_seed
765 character ( len =1024) : : fo lder_output
766

767 ! !DECLARE LOCAL VARIABLES
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768 integer : : i_HRU
769

770 ! variables required for parameter upscaling
771 ! vector o f a l l param values in a HRU
772 double precis ion , a l locatable , dimension ( : ) : : pms_SZM
773 double precis ion , a l locatable , dimension ( : ) : : pms_LnTo
774 double precis ion , a l locatable , dimension ( : ) : : pms_SRmax
775 double precis ion , a l locatable , dimension ( : ) : : pms_SRinit
776 double precis ion , a l locatable , dimension ( : ) : : pms_CHV
777 double precis ion , a l locatable , dimension ( : ) : : pms_Td
778 double precis ion , a l locatable , dimension ( : ) : : pms_Smax
779

780 ! a l l o ca te p lo t t ing variables
781 double precis ion , a l locatable , dimension ( : , : , : ) : : pm_map_all_temp
782 character ( len =1024) : : temp_fn
783 character ( len = 5) : : i_n_str
784 character ( len = 6) : : fmt = ’ ( I5 . 5 ) ’ ! format descr iptor
785 integer : : x , y , i , nrows , ncols
786

787 ! a l l o ca te variable to store upscaled parameters
788 a l l o ca te (up_pms(nHRUs, 8 ) )
789

790 print * ,
791 print * , ’ **************************************************************** ’
792 print * , ’ Upscale parameters ’
793 print * , ’ **************************************************************** ’
794

795

796 DO i_HRU = 1 ,nHRUs ! loop through for each HRU
797

798 IF (mod(i_HRU,250)==0) THEN
799 print * , ’ upscaling i_HRU = ’ ,i_HRU, ’ out o f ’ ,nHRUs
800 END IF
801 ! c a l l cpu_time ( start )
802

803 ! ! −−−−− E) FIND AND EXTRACT PARAMETER VALUES FOR EACH HRU −−−−−−−−−−−−−−−−−−−−−−−−−
804 ! pms_LnTo i s a vector o f a l l LnTo parameter values in the HRU number i_HRU
805 ! ! −−−−− F) UPSCALE PARAMETERS BY TAKING AVERAGE FOR EACH HRU −−−−−−−−−−−−−−−−−−−−−
806 ! up_pms wi l l determine the formatting of the parameter f i l e
807 up_pms(i_HRU, 1 ) = i_HRU ! keep log of HRU numbers
808

809 i f ( pedo_t f_a l l ( 1 ) > 1) then ! skip this i f set as f ixed or global parameter
810 CALL extract_pm_HRU (i_HRU,HRU_map, pm_map_all ( : , : , 1 ) , pms_SZM)
811 CALL upscale_harmonic (pms_SZM, up_pms(i_HRU, 2 ) ) !HRU upscaled parameter value
812 e lse
813 up_pms(i_HRU, 2 ) = pm_map_all (1 ,1 ,1 )
814 end i f
815

816 i f ( pedo_t f_a l l ( 2 ) > 1) then
817 CALL extract_pm_HRU (i_HRU,HRU_map, pm_map_all ( : , : , 2 ) , pms_LnTo)
818 !CALL upscale_harmonic (pms_LnTo , up_pms(i_HRU, 3 ) )
819 CALL upscale_arithmetic (pms_LnTo , up_pms(i_HRU, 3 ) )
820 e lse
821 up_pms(i_HRU, 3 ) = pm_map_all (1 ,1 ,2 )
822 end i f

194



C.3. MPR_MAIN.F90

823

824 i f ( pedo_t f_a l l ( 3 ) > 1) then
825 CALL extract_pm_HRU (i_HRU,HRU_map, pm_map_all ( : , : , 3 ) , pms_SRmax)
826 CALL upscale_arithmetic (pms_SRmax, up_pms(i_HRU, 4 ) )
827 e lse
828 up_pms(i_HRU, 4 ) = pm_map_all (1 ,1 ,3 )
829 end i f
830

831 i f ( pedo_t f_a l l ( 4 ) > 1) then
832 CALL extract_pm_HRU (i_HRU,HRU_map, pm_map_all ( : , : , 4 ) , pms_SRinit )
833 CALL upscale_arithmetic ( pms_SRinit , up_pms(i_HRU, 5 ) )
834 e lse
835 up_pms(i_HRU, 5 ) = pm_map_all (1 ,1 ,4 )
836 end i f
837

838 i f ( pedo_t f_a l l ( 5 ) > 1) then
839 CALL extract_pm_HRU (i_HRU,HRU_map, pm_map_all ( : , : , 5 ) , pms_CHV)
840 CALL upscale_geometric (pms_CHV, up_pms(i_HRU, 6 ) )
841 e lse
842 up_pms(i_HRU, 6 ) = pm_map_all (1 ,1 ,5 )
843 end i f
844

845 i f ( pedo_t f_a l l ( 6 ) > 1) then
846 CALL extract_pm_HRU (i_HRU,HRU_map, pm_map_all ( : , : , 6 ) , pms_Td)
847 CALL upscale_harmonic (pms_Td , up_pms(i_HRU, 7 ) )
848 e lse
849 up_pms(i_HRU, 7 ) = pm_map_all (1 ,1 ,6 )
850 end i f
851

852 i f ( pedo_t f_a l l ( 7 ) > 1) then
853 CALL extract_pm_HRU (i_HRU,HRU_map, pm_map_all ( : , : , 7 ) , pms_Smax)
854 CALL upscale_arithmetic (pms_Smax, up_pms(i_HRU, 8 ) )
855 e lse
856 up_pms(i_HRU, 8 ) = pm_map_all (1 ,1 ,7 )
857 end i f
858

859

860 ! c a l l cpu_time ( f in i sh )
861 ! print ’ ( " Time = " , f6 . 3 , " seconds . " ) ’ , f in ish−start
862 END DO
863

864

865 ! save parameter maps i f required
866 IF ( save_pm_maps > 1) THEN
867 print * ,
868 print * , ’ Saving the fo l lowing parameter maps : ’
869 write ( i_n_str , fmt ) ( i_n+start_seed −1)
870

871 ! match maps to HRU map
872 nrows=s ize (HRU_map( : , 1 ) )
873 ncols=s ize (HRU_map( 1 , : ) )
874

875 a l l o ca te ( pm_map_all_temp ( nrows , ncols , 8 ) )
876

877 DO i = 1 ,7
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878 DO x = 1 , ncols
879 DO y = 1 ,nrows
880 IF (HRU_map( y , x ) == −9999) THEN ! i f nodata in HRU map
881 pm_map_all_temp ( y , x , : ) = −9999
882 ELSEIF (HRU_map( y , x ) == 0) THEN ! nodata in HRU map
883 pm_map_all_temp ( y , x , : ) = 0
884 ELSE
885 pm_map_all_temp ( y , x , i ) = up_pms( int (HRU_map( y , x ) ) , i +1)
886 END IF
887 IF ( pm_map_all_temp ( y , x , i )>=100000) THEN
888 pm_map_all_temp ( y , x , i ) = 100000
889 END IF
890 END DO
891 END DO
892

893 ! get filename for each d i f f e r e n t parameter
894 IF ( i ==1) THEN
895 temp_fn = trim ( folder_output ) / / " upscaled_param_map_szm " / / &
896 trim ( i_n_str ) / / " . asc "
897 ELSE IF ( i ==2) THEN
898 temp_fn = trim ( folder_output ) / / " upscaled_param_map_lnto " / / &
899 trim ( i_n_str ) / / " . asc "
900 ELSE IF ( i ==3) THEN
901 temp_fn = trim ( folder_output ) / / " upscaled_param_map_srmax " / / &
902 trim ( i_n_str ) / / " . asc "
903 ELSE IF ( i ==4) THEN
904 temp_fn = trim ( folder_output ) / / " upscaled_param_map_srinit " / / &
905 trim ( i_n_str ) / / " . asc "
906 ELSE IF ( i ==5) THEN
907 temp_fn = trim ( folder_output ) / / " upscaled_param_map_chv " / / &
908 trim ( i_n_str ) / / " . asc "
909 ELSE IF ( i ==6) THEN
910 temp_fn = trim ( folder_output ) / / " upscaled_param_map_td " / / &
911 trim ( i_n_str ) / / " . asc "
912 ELSE IF ( i ==7) THEN
913 temp_fn = trim ( folder_output ) / / "upscaled_param_map_smax" / / &
914 trim ( i_n_str ) / / " . asc "
915 END IF
916

917 ! only save parameter map i f th is parameter has had MPR applied
918 IF ( pedo_t f_a l l ( i ) >1) THEN
919 c a l l wr i te_asc i i _gr id ( temp_fn , pm_map_all_temp ( : , : , i ) ,&
920 s ize (HRU_map( 1 , : ) ) , s i ze (HRU_map( : , 1 ) ) , &
921 stats_HRU ( 1 ) , stats_HRU ( 2 ) , stats_HRU ( 3 ) , stats_HRU ( 4 ) , 6 )
922 print * , ’ Saving parameter map: ’ , trim ( temp_fn )
923 END IF
924 END DO
925 END IF
926

927

928 print * , " upscaling done . "
929 end subroutine mpr_upscale
930

931

932 ! **********************************************************************************************
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933 ! subroutine : 6 . mpr_write_paramfile
934 ! **********************************************************************************************
935 ! Writes a DYMOND parameter f i l e − using parameters created within MPR.
936 subroutine mpr_write_paramfile ( i_n , &
937 start_seed , &
938 folder_output , &
939 nHRUs, &
940 up_pms)
941

942 use mpr_uti l i ty
943

944 imp l i c i t none
945

946 !DECLARE DUMMY VARIABLES
947 integer , intent ( in ) : : i_n
948 integer , intent ( in ) : : start_seed
949 character ( len =1024) , intent ( in ) : : fo lder_output
950 integer , intent ( in ) : : nHRUS
951 double precis ion , a l locatable , dimension ( : , : ) , intent ( in ) : : up_pms
952

953 !DECLARE LOCAL VARIABLES
954

955 ! variables for saving Dynamic TOPMODEL parameter f i l e
956 ! s tores dynamic filename
957 character ( len =1024) : : temp_fn
958 ! s tr ing stor ing current number of pm f i l e s made
959 character ( len = 5) : : i _n_str
960 ! parameter f i l e headers
961 character ( len =64) , dimension ( 8 ) : : headers
962 ! format descr iptor − integer o f width 5 with zeros on l e f t
963 character ( len = 6) : : fmt = ’ ( I5 . 5 ) ’
964

965 write ( i_n_str , fmt ) ( i_n+start_seed −1)
966

967 headers ( 1 ) = ’ param_layer ’
968 headers ( 2 ) = ’ szm_def ’
969 headers ( 3 ) = ’ lnto_def ’
970 headers ( 4 ) = ’ srmax_def ’
971 headers ( 5 ) = ’ s r i n i t _ d e f ’
972 headers ( 6 ) = ’ chv_def ’
973 headers ( 7 ) = ’ td_def ’
974 headers ( 8 ) = ’ smax_def ’
975

976 temp_fn = trim ( folder_output ) / / ’ / param_file_ ’ / / trim ( i_n_str ) / / ’ . txt ’
977 print * , ’ Writing param f i l e : ’ , trim ( temp_fn )
978 open ( unit =24 , f i l e =temp_fn , status= ’REPLACE ’ , act ion = ’WRITE ’ )
979 ! write (24 , FMT=*) ’ hel lo ’
980 write (24 , FMT=*) nHRUs, s ize (up_pms ( 1 , : ) ) , &
981 ’ ! number of parameter layers ( rows / hrus ) , number of param names ( columns−1) ’
982

983 CALL write_numeric_list_append ( headers , up_pms , 6 ,24)
984 write (24 , FMT=*) ’ 1 0.8 0.000000001 KINEMATIC SOLUTION PARS ’
985 c lose ( unit =24)
986

987 end subroutine mpr_write_paramfile

197



APPENDIX C. SUPPLEMENT TO RESEARCH CHAPTER TWO: DECIPHER_MPR CODE

988

989

990 end module mpr_main
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C.4 mpr_control.f90

1 ! ! Module containing subroutines for MPR. f90
2 ! ! This module contains subroutines to interact with the contro l f i l e
3 !
4 ! r ead_cont ro l _ f i l e _ in t Read integer variables from the contro l f i l e
5 ! read_param_file reads parameter min /max values from f i l e
6 ! f i l e_open_err Open f i l e with error checking
7 ! read_mpr_commands Reads the MPR fo lder and fpath_HRUmap from the command l ine
8

9 ! ! Rosie Lane − 31 st August 2017
10

11 module mpr_control
12 contains
13

14 ! **********************************************************************************************
15 ! subroutine : read_mpr_commands : Reads the MPR fo lder and fpath_HRUmap from the command l ine
16 ! **********************************************************************************************
17 ! This function reads the MPR fo lder and f i l epath to the HRU map from the command l ine
18 ! I t then makes the str ings folder_input , fo lder_output and fname_control based on
19 ! the locat ion of the MPR main fo lder .
20

21 subroutine read_mpr_commands ( MPRfolder , fpath_HRUmap , folder_input , folder_output , fname_control )
22

23 use d t a _ u t i l i t y
24

25 imp l i c i t none
26

27 ! declare dummy variables
28 character ( len =1024) , intent ( out ) : : MPRfolder
29 character ( len =1024) , intent ( out ) : : fpath_HRUmap
30 character ( len =1024) , intent ( out ) : : fo lder_input
31 character ( len =1024) , intent ( out ) : : fo lder_output
32 character ( len =1024) , intent ( in ) : : fname_control
33

34 ! declare l o c a l variables
35 character ( len =1024) : : arg
36 l o g i c a l : : input_ is_val id
37 integer : : i
38

39 ! i n i t i a l i s e
40 i = 0
41 fpath_HRUmap = " "
42

43 ! search for command l ine input :
44 do
45 CALL get_command_argument ( i , arg )
46 i f ( len_trim ( arg ) == 0) ex i t
47 i f ( are_equal ( arg , ’−MPRfolder ’ ) ) then
48 CALL get_command_argument ( i +1 , MPRfolder )
49 input_ is_val id = . true .
50 e l s e i f ( are_equal ( arg , ’−fpath_HRUmap ’ ) ) then
51 CALL get_command_argument ( i +1 , fpath_HRUmap)
52 endif
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53 i = i + 1
54 enddo
55

56 i f ( len_trim ( MPRfolder ) == 0) then
57 print * , ’−MPRfolder not spec i f i ed ’
58 input_ is_val id = . f a l s e .
59 e l s e i f ( len_trim (fpath_HRUmap) == 0) then
60 print * , ’−fpath_HRUmap not spec i f i ed ’
61 input_ is_val id = . f a l s e .
62 endif
63

64 i f ( input_ is_val id . eqv . . f a l se . ) then
65 print * , ’ERROR: MPR requires the fo l lowing command options : ’
66 print * , "−MPRfolder <Full path to MPR folder > e . g . ’ / home / rl1023 /2017_07_20_MPR_setup / ’ "
67 print * , "−fpath_HRUmap <Full path to HRU map f i l e > "
68 print * , " e . g . ’ / home / rl1023 /2017_07_20_MPR_setup /INPUT/54057 _classarray . asc ’ "
69 stop
70 endif
71

72 fo lder_input = trim ( MPRfolder ) / / "INPUT"
73 fo lder_output = trim ( MPRfolder ) / / "OUTPUT"
74

75 print * , ’MPR fo lder given : ’ , trim ( MPRfolder )
76 ! print * , ’MPR contro l f i l e given : ’ , trim ( fname_control )
77 print * , ’HRU map locat ion given : ’ , trim ( fpath_HRUmap)
78 ! print * , ’ Basin predictor f i l e s should be stored in : ’ , trim ( fo lder_input )
79 ! print * , ’ Parameter f i l e s wi l l be stored in : ’ , trim ( folder_output )
80

81 end subroutine read_mpr_commands
82

83

84 ! **********************************************************************************************
85 ! subroutine : read_param_file : reads parameter min /max values from f i l e
86 ! **********************************************************************************************
87 ! This function reads the parameter f i l e .
88

89 subroutine read_param_file ( fpath , SZM_range , LnTo_range , SRmax_range , SRinit_range , CHV_range , &
90 Td_range , Smax_range )
91

92 imp l i c i t none
93

94 ! declare dummy variables
95 character ( len =1024) , intent ( in ) : : fpath ! Full filename
96 double precis ion , dimension ( 3 ) , intent ( out ) : : SZM_range
97 double precis ion , dimension ( 3 ) , intent ( out ) : : LnTo_range ! min , best and max values
98 double precis ion , dimension ( 3 ) , intent ( out ) : : SRmax_range
99 double precis ion , dimension ( 3 ) , intent ( out ) : : SRinit_range

100 double precis ion , dimension ( 3 ) , intent ( out ) : : CHV_range
101 double precis ion , dimension ( 3 ) , intent ( out ) : : Td_range
102 double precis ion , dimension ( 3 ) , intent ( out ) : : Smax_range
103

104 ! declare l o c a l variables
105 character ( len =1024) : : temp_fn ! filename of parameter f i l e
106 character ( len =64) : : name !name of parameter in the parameter f i l e
107 double precis ion , dimension ( 3 ) : : dth1_range
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108 double precis ion , dimension ( 3 ) : : fracdir_range
109

110

111 ! open the f i l e
112 temp_fn = fpath
113 CALL f i le_open_err ( temp_fn , 2 )
114

115 ! skip header l ines
116 Read(2 ,* )
117 Read(2 ,* )
118

119 ! read parameters from each l ine
120 Read(2 ,* ) SZM_range ( 1 ) , SZM_range ( 2 ) , SZM_range ( 3 ) , name
121 IF ( trim (name) /= "SZM" ) THEN
122 print * , "ERROR IN PARAMETER RANGE FILE : SZM expected on l ine 2"
123 stop
124 END IF
125

126 Read(2 ,* ) LnTo_range ( 1 ) , LnTo_range ( 2 ) , LnTo_range ( 3 ) , name
127 IF ( trim (name) /= "LnTo" ) THEN
128 print * , "ERROR IN PARAMETER RANGE FILE : LnTo expected on l ine 3"
129 stop
130 END IF
131

132 Read(2 ,* ) SRmax_range ( 1 ) , SRmax_range ( 2 ) , SRmax_range ( 3 ) , name
133 IF ( trim (name) /= "SRmax" ) THEN
134 print * , "ERROR IN PARAMETER RANGE FILE : SRmax expected on l ine 4"
135 stop
136 END IF
137

138 Read(2 ,* ) SRinit_range ( 1 ) , SRinit_range ( 2 ) , SRinit_range ( 3 ) , name
139 IF ( trim (name) /= " SRinit " ) THEN
140 print * , "ERROR IN PARAMETER RANGE FILE : SRinit expected on l ine 5"
141 stop
142 END IF
143

144 Read(2 ,* ) CHV_range ( 1 ) , CHV_range ( 2 ) , CHV_range ( 3 ) , name
145 IF ( trim (name) /= "CHV" ) THEN
146 print * , "ERROR IN PARAMETER RANGE FILE : CHV expected on l ine 6"
147 stop
148 END IF
149

150 Read(2 ,* ) Td_range ( 1 ) , Td_range ( 2 ) , Td_range ( 3 ) , name
151 IF ( trim (name) /= "Td" ) THEN
152 print * , "ERROR IN PARAMETER RANGE FILE : Td expected on l ine 7"
153 stop
154 END IF
155

156 Read(2 ,* ) dth1_range ( 1 ) , dth1_range ( 2 ) , dth1_range ( 3 ) , name
157 IF ( trim (name) /= " dth1 " ) THEN
158 print * , "ERROR IN PARAMETER RANGE FILE : dth1 expected on l ine 8"
159 stop
160 END IF
161

162 Read(2 ,* ) Smax_range ( 1 ) , Smax_range ( 2 ) , Smax_range ( 3 ) , name
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163 IF ( trim (name) /= "Smax" ) THEN
164 print * , "ERROR IN PARAMETER RANGE FILE : Smax expected on l ine 9"
165 stop
166 END IF
167

168 Read(2 ,* ) fracdir_range ( 1 ) , fracdir_range ( 2 ) , fracdir_range ( 3 ) , name
169 IF ( trim (name) /= " f racd i r " ) THEN
170 print * , "ERROR IN PARAMETER RANGE FILE : f racd i r expected on l ine 10"
171 stop
172 END IF
173

174

175 print * , " Parameter f i l e success fu l ly read−in . "
176 ! print * , "SZM min : " , SZM_range ( 1 ) , " SZM max: " , SZM_range ( 3 )
177 print * ,
178

179

180 end subroutine
181

182

183

184

185

186 ! **********************************************************************************************
187 ! subroutine : read_parammap_perturbations f i l e
188 ! **********************************************************************************************
189 ! This function reads values from the parammap_perturbations f i l e .
190 ! These are the perturbations to the parameter maps i f re−running a map for a set parameter .
191

192 subroutine read_parammap_pert_file ( fpath , parammap_pert )
193

194 imp l i c i t none
195

196 ! declare dummy variables
197 character ( len =1024) , intent ( in ) : : fpath ! Full filename
198 ! returned ranges for addit ions and mult ip l i cat ions to parameter map.
199 double precis ion , dimension ( 7 , 4 ) , intent ( out ) : : parammap_pert
200

201 ! declare l o c a l variables
202 character ( len =64) : : name !name of parameter in the parameter f i l e
203 integer : : i
204

205 ! open the f i l e
206 CALL f i le_open_err ( fpath , 2 )
207

208 ! skip header l ines
209 Read(2 ,* )
210 Read(2 ,* )
211

212 ! read parameters from each l ine
213 DO i = 1 ,7
214 READ(2 ,* ) parammap_pert ( i , 1 ) , parammap_pert ( i , 2 ) , parammap_pert ( i , 3 ) , &
215 parammap_pert ( i , 4 ) , name
216 write (* , " (A28 , A6, A3, F5 .2 ,F5 .2 ,F5 .2 ,F5 . 2 ) " ) ’ Set perturbation ranges for ’ ,&
217 trim (name) , ’ = ’ , parammap_pert ( i , : )
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218 END DO
219

220

221 end subroutine
222

223

224

225 ! **********************************************************************************************
226 ! subroutine : r ead_cont ro l _ f i l e _ in t : Read integer variables from the contro l f i l e
227 ! **********************************************************************************************
228 ! Given a variable name, this function checks the contro l f i l e for that variable , and returns i t s
229 ! associated integer vale .
230

231 subroutine read_cont ro l _ f i l e _ in t ( fname_control , varname , value , default_value )
232

233 use d t a _ u t i l i t y
234

235 imp l i c i t none
236

237 ! declare dummy variables
238 character ( len =1024) , intent ( in ) : : fname_control ! f i l epath to contro l f i l e
239 character ( len =*) , intent ( in ) : : varname !name of variable
240 integer , intent ( out ) : : value ! variable values
241 ! default value to set i f variable missing from contro l f i l e
242 integer , intent ( in ) : : default_value
243

244 ! declare l o c a l variables
245 ! variable name read from contro l f i l e
246 character ( len =1024) : : varname_read
247 integer : : value_read
248 l o g i c a l : : var_unfound
249 l o g i c a l : : var_missing
250

251 ! i n i t i a l i s e l o c a l variables
252 var_unfound = . true .
253 var_missing = . true .
254

255 CALL f i le_open_err ( fname_control , 2 )
256

257 READ(2 ,* ) ! read 1 header l ines and ignore content
258

259 DO WHILE ( var_unfound ) ! read a l l l ines unt i l f inding the variable name of interes t
260 READ(2 ,* ) varname_read , value_read
261 i f ( are_equal ( trim ( varname ) , trim ( varname_read ) ) ) then
262 value = value_read
263 print * , ’ User defined ’ , trim ( varname ) , ’ = ’ , value
264 ! print * , value , ’ has been se lected for ’ , trim ( varname )
265 var_unfound = . fa l se .
266 var_missing = . fa l se .
267 e l s e i f ( are_equal ( trim ( varname_read ) , ’ end ’ ) ) then
268

269 var_unfound = . fa l se .
270 endif
271

272
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273 END DO
274

275 c lose ( 2 )
276

277 ! I f variable not declared in contro l f i l e , then set to default value .
278 IF ( var_missing ) THEN
279 value = default_value
280 ! print * , ’IMPORTANT: variable ’ , trim ( varname ) , ’ not spec i f i ed in contro l f i l e ’
281 print * , ’ Default defn ’ , trim ( varname ) , ’ = ’ , value
282 ENDIF
283

284

285 end subroutine read_cont ro l _ f i l e _ in t
286

287

288

289 ! **********************************************************************************************
290 ! subroutine : r ead_cont ro l _ f i l e _ in t : Read integer variables from a f i l e
291 ! **********************************************************************************************
292 ! Given a variable name, th is function checks the contro l f i l e for that variable , and returns i t s
293 ! associated integer vale .
294

295 subroutine read_contro l_ f i l e_char ( fname_control , varname , value , default_value )
296

297 use d t a _ u t i l i t y
298

299 imp l i c i t none
300

301 ! declare dummy variables
302 character ( len =1024) , intent ( in ) : : fname_control ! f i l epath to contro l f i l e
303 character ( len =*) , intent ( in ) : : varname !name of variable
304 character ( len =1024) , intent ( out ) : : value ! variable values
305 ! default value to set i f variable missing from contro l f i l e
306 character ( len =1024) , intent ( in ) : : default_value
307

308 ! declare l o c a l variables
309 ! variable name read from contro l f i l e
310 character ( len =1024) : : varname_read
311 character ( len =1024) : : value_read
312 l o g i c a l : : var_unfound
313 l o g i c a l : : var_missing
314

315 ! i n i t i a l i s e l o c a l variables
316 var_unfound = . true .
317 var_missing = . true .
318

319 CALL f i le_open_err ( fname_control , 2 )
320

321 READ(2 ,* ) ! read 1 header l ines and ignore content
322

323 DO WHILE ( var_unfound ) ! read a l l l ines unt i l f inding the variable name of interes t
324 READ(2 ,* ) varname_read , value_read
325 i f ( are_equal ( trim ( varname ) , trim ( varname_read ) ) ) then
326 value = value_read
327 print * , ’ User defined ’ , trim ( varname ) , ’ = ’ , trim ( value )
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328 ! print * , value , ’ has been se lected for ’ , trim ( varname )
329 var_unfound = . fa l se .
330 var_missing = . fa l se .
331 e l s e i f ( are_equal ( trim ( varname_read ) , ’ end ’ ) ) then
332

333 var_unfound = . fa l se .
334 endif
335 ! print * , ’ Read varname : ’ , trim ( varname_read )
336 ! print * , ’ Read value : ’ , trim ( value_read )
337 ! print * ,
338

339 END DO
340

341 c lose ( 2 )
342

343 ! I f variable not declared in contro l f i l e , then set to default value .
344 IF ( var_missing ) THEN
345 value = default_value
346 ! print * , ’IMPORTANT: variable ’ , trim ( varname ) , ’ not spec i f i ed in contro l f i l e ’
347 print * , ’ Default defn ’ , trim ( varname ) , ’ = ’ , trim ( value )
348 ENDIF
349

350

351 end subroutine read_contro l_ f i l e_char
352

353

354

355

356

357

358 ! **********************************************************************************************
359 ! subroutine : f i l e_open_err : Open f i l e with error checking
360 ! **********************************************************************************************
361 ! Checks that the f i l e to be opened exists , and i s not already in use .
362

363 subroutine f i le_open_err ( i n f i l e , unt )
364

365 imp l i c i t none
366

367 ! declare dummy variables
368 character (* ) , intent ( in ) : : i n f i l e ! filename
369 integer , intent ( in ) : : unt ! f i l e unit
370 character ( len =1024) : : message ! error message
371

372 ! declare l o c a l variables
373 integer : : err
374 l o g i c a l : : x i s t ! .TRUE. i f the f i l e ex i s t s
375 l o g i c a l : : xopn ! .TRUE. i f the f i l e i s already open
376

377 ! i n i t i a l i z e errors
378 err =0; message=" f−f i l e_open / "
379

380 ! check i f the f i l e ex i s t s
381 inquire ( f i l e =trim ( i n f i l e ) , ex i s t=x i s t )
382 i f ( . not . x i s t ) then
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383 message=trim ( message ) / / " FileNotFound [ f i l e = ’ " / / trim ( i n f i l e ) / / " ’ ] "
384 err = 1
385 print * , message
386 return
387 endif
388

389 ! check i f the f i l e i s already open
390 inquire ( f i l e =trim ( i n f i l e ) , opened=xopn )
391 i f ( xopn ) then
392 message=trim ( message ) / / " FileIsAlreadyOpen [ f i l e = ’ " / / trim ( i n f i l e ) / / " ’ ] "
393 print * , message
394 err = 1
395 return
396 endif
397

398 ! open f i l e
399 open ( unt , f i l e =trim ( i n f i l e ) , status=" old " , act ion=" read " , i o s t a t=err )
400 i f ( err /=0) then
401 message=trim ( message ) / / " OpenError [ ’ " / / trim ( i n f i l e ) / / " ’ ] "
402 print * , message
403 return
404 endif
405

406 end subroutine f i le_open_err
407

408

409

410 end module mpr_control
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C.5 mpr_SZM.f90

1 ! ! Module containing subroutines for MPR. f90
2 ! ! This module contains a l l subroutines involving MPR for the SZM parameter :
3 !
4 ! get_BasPred_SZM Complete l o g i c a l l i s t o f basin predictors required for SZM
5 ! init_gp_SZM I n i t i a l i s e global parameters for SZM
6 ! pedotf_SZM Pedo−transfer function for SZM
7

8 ! ! Rosie Lane − 31 st August 2017
9

10 module mpr_SZM
11 contains
12

13

14 ! **********************************************************************************************
15 ! subroutine : get_BasPred_SZM : Complete l o g i c a l l i s t o f basin predictors required
16 ! **********************************************************************************************
17 ! Given the user−spec i f i ed pedo transfer function se lected for SZM, this subroutine adds to a
18 ! l o g i c a l l i s t o f required basin predictors , by spec i fy ing which predictors i t requires .
19

20 subroutine get_BasPred_SZM ( pedo_tf_SZM , req_so i l s )
21

22 imp l i c i t none
23

24 ! declare dummy arguments
25 integer , intent ( inout ) : : pedo_tf_SZM ! pedo_tf_equation to be used
26 l og i ca l , dimension (* ) , intent ( inout ) : : r eq_so i l s ! s o i l s data required l o g i c a l
27

28 ! def ine required BasinPredictors for SZM
29 s e l e c t case ( pedo_tf_SZM )
30

31 case ( 0 ) ! f ixed parameter − no basin predictors required
32

33 case ( 1 ) ! g lobal parameter − no basin predictors required
34

35 case ( 2 ) ! Use a pedo−transfer equation
36

37 req_so i l s ( 5 ) = . true . ! musid map
38 ! Using tables o f exponential dec l ine p r o f i l e s from s o i l s data .
39 req_so i l s ( 7 : 1 1 ) = ( / . true . , . true . , . true . , . true . , . true . / )
40

41 ! using form of exponential dec l ine in ksat from s o i l s data
42 ! r eq_so i l s (5 ,1 ) = ( . true . )
43 ! print * , "ERROR: A transfer function has not yet been programmed for SZM"
44 ! print * , " Select pedo_tf = 0 to treat i t as a f ixed parameter "
45 ! print * , " Select pedo_tf = 1 to treat i t as a global parameter "
46 ! stop
47 case ( 3 ) !Same pt f equation as case 2 , but using same global parameters as lnto
48

49 req_so i l s ( 5 ) = . true . ! musid map
50 ! Using tables o f exponential dec l ine p r o f i l e s from s o i l s data .
51 req_so i l s ( 7 : 1 1 ) = ( / . true . , . true . , . true . , . true . , . true . / )
52
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53 case ( 4 )
54

55 req_so i l s ( 5 ) = . true . ! musid map
56 ! Using tables of exponential dec l ine p r o f i l e s from s o i l s data .
57 req_so i l s ( 7 : 1 1 ) = ( / . true . , . true . , . true . , . true . , . true . / )
58 case ( 5 )
59

60 req_so i l s ( 5 ) = . true . ! musid map
61 ! Using tables of exponential dec l ine p r o f i l e s from s o i l s data .
62 req_so i l s ( 7 : 1 1 ) = ( / . true . , . true . , . true . , . true . , . true . / )
63

64

65 case default
66 print * , "WARNING: a val id pedo−t f equation for SZM must be spec i f i ed in the " , &
67 " contro l f i l e "
68 print * , "SZM wi l l be set to the default o f f ixed parameter "
69 print * , "The fo l lowing options can be se lected in the contro l f i l e : "
70 print * , " pedo_tf_SZM = 0 , sets i t as a f ixed parameter "
71 print * , " pedo_tf_SZM = 1 , sets i t as a global parameter "
72 print * ,
73

74 pedo_tf_SZM = 0
75

76 end s e l e c t
77

78 end subroutine get_BasPred_SZM
79

80

81

82

83

84 ! **********************************************************************************************
85 ! subroutine : init_gp_SZM : I n i t i a l i s e global parameters for SZM
86 ! **********************************************************************************************
87 ! This subroutine does the fo l lowing :
88 ! 1 . Defines how many global parameters ( n_glob_pms ) are needed for the user−spec i f i ed
89 ! t ransfer function
90 ! TF 0 : 1 global parameter
91 ! TF 1 : 3 global parameters
92 ! 2 . Defines min /max ranges for global parameters
93 ! 3 . Generates l i s t o f g lobal parameters using the rand function
94 ! − user spec i f i ed start_seed can be used to skip to any point in this l i s t
95 ! − global parameter l i s t i s o f dimensions number of global params by number of param
96 ! f i l e s needed
97 ! 4 . Transforms global parameters to be within set min /max ranges
98

99 subroutine init_gp_SZM ( pedo_tf_SZM , glob_pms_SZM , n_pm_maps , start_seed , n_gp_all , pm_range )
100

101 use d t a _ u t i l i t y
102 use mpr_LnTo
103

104 imp l i c i t none
105

106 ! declare dummy variables
107 integer , intent ( in ) : : pedo_tf_SZM
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108 ! g lobal param l i s t
109 double precis ion , a l locatable , dimension ( : , : ) , intent ( inout ) : : glob_pms_SZM
110 integer , intent ( in ) : : n_pm_maps
111 ! to s tart rand num generator
112 integer , intent ( in ) : : start_seed
113 ! vector o f number of global params for a l l params
114 integer , dimension ( 7 ) , intent ( inout ) : : n_gp_all
115 ! min , f ixed , max values for th is parameter
116 double precis ion , dimension ( 3 ) , intent ( in ) : : pm_range
117

118 ! declare l o c a l variables
119 integer : : n_glob_pms ! number of global parameters
120 double precis ion , a l locatable , dimension ( : ) : : min_gp ! min values for global parameters
121 double precis ion , a l locatable , dimension ( : ) : : max_gp
122 real , dimension ( : , : ) , a l l o ca tab le : : rand_nums
123 double prec is ion : : num
124 integer , dimension (12) : : seed
125 integer : : i , j , rn_i
126

127

128 ! 1 . Define how many global parameters should ex i s t and min /max ranges , based on selected
129 ! t ransfer function
130 s e l e c t case ( pedo_tf_SZM )
131

132 case ( 0 ) ! Treat as f ixed parameter ( for ease this i s a global parameter with a 0 range )
133

134 print * , "SZM i s a f ixed parameter , o f value " ,pm_range ( 2 )
135 n_glob_pms = 1
136 a l l o ca te ( min_gp ( 1 ) ) ! min and max values have length 1 , as we have 1 global parameter
137 a l l o ca te (max_gp ( 1 ) )
138 min_gp ( 1 ) = pm_range ( 2 ) ! min and max values set to same f ixed parameter value .
139 max_gp ( 1 ) = pm_range ( 2 )
140

141 case ( 1 ) ! Treat as global parameter
142

143 print * , "SZM i s a global parameter , in the range " ,pm_range ( 1 ) , " " ,pm_range ( 3 )
144 n_glob_pms = 1
145 a l l o ca te ( min_gp ( 1 ) ) ! min and max values have length 1 , as we have 1 global parameter
146 a l l o ca te (max_gp ( 1 ) )
147 min_gp ( 1 ) = pm_range ( 1 ) ! min and max values set from parameter f i l e
148 max_gp ( 1 ) = pm_range ( 3 )
149

150 case ( 2 ) ! pedo−transfer function based on s o i l ksat dec l ines
151

152 print * , "SZM wi l l be parameterised using ksat dec l ines from s o i l s data "
153 ! n_glob_pms = 2
154 ! a l l o ca te ( min_gp ( 2 ) )
155 ! a l l o ca te (max_gp ( 2 ) )
156 ! min_gp(1)=−0.01
157 ! max_gp(1)=0.05
158 ! min_gp (2)=0 .5
159 ! max_gp(2)=1 .5
160

161 ! pedotransfer function used wi l l be the same as lnto transfer function 2
162 n_glob_pms = 7 ! a_const , a_sand , a_clay ,
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163 a l l o ca te ( min_gp ( 7 ) )
164 a l l o ca te (max_gp ( 7 ) )
165 min_gp ( 1 ) = −4.5 ! was −3.5 − changed fo l lowing dotty plots o f performance
166 ! showing lower values do better
167 min_gp (2)= 0.006
168 min_gp ( 3 ) = −0.02
169 max_gp ( 1 ) = −1 ! was 0.3 − changed fo l lowing dotty plots o f performance
170 ! showing lower values do better
171 max_gp(2)= 0.03
172 max_gp ( 3 ) = −0.0032
173

174 !HYPRES l imi ts Ks = a + b ( BulkDensity )^2 + c ( OrganicMatter)^−1 +
175 ! d ( BulkDensity * OrganicMatter )
176 min_gp ( 4 ) = 3
177 max_gp ( 4 ) = 11
178

179 min_gp ( 5 ) = −0.5
180 max_gp ( 5 ) = −1.3
181

182 min_gp ( 6 ) = −0.03
183 max_gp ( 6 ) = −0.1
184

185 min_gp ( 7 ) = −0.8
186 max_gp ( 7 ) = −0.24
187

188 case ( 3 ) ! pedo−transfer function based on s o i l s ksat dec l ines
189 ! using same global parameters as SZM
190

191 n_glob_pms = 1
192 a l l o ca te ( min_gp ( 1 ) )
193 a l l o ca te (max_gp ( 1 ) )
194 max_gp ( 1 ) = 1
195 min_gp ( 1 ) = 1
196

197 print * , "SZM wi l l be parameterised using ksat dec l ines from s o i l s data and the " , &
198 " same parameters as lnT0 "
199

200 ! case ( 4 ) red i rec ts to case ( 2 )
201

202 case ( 5 ) ! pedo−transfer function based on s o i l ksat dec l ines
203

204 print * , "SZM wi l l be parameterised using ksat dec l ines from s o i l s data "
205 ! n_glob_pms = 2
206 ! a l l o ca te ( min_gp ( 2 ) )
207 ! a l l o ca te (max_gp ( 2 ) )
208 ! min_gp(1)=−0.01
209 ! max_gp(1)=0.05
210 ! min_gp (2)=0 .5
211 ! max_gp(2)=1 .5
212

213 ! pedotransfer function used wi l l be the same as lnto transfer function 2
214 n_glob_pms = 8 ! a_const , a_sand , a_clay ,
215 a l l o ca te ( min_gp ( 8 ) )
216 a l l o ca te (max_gp ( 8 ) )
217 min_gp ( 1 ) = −4.5 ! was −3.5 − changed fo l lowing dotty plots o f performance showing
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218 ! lower values do better
219 min_gp (2)= 0.006
220 min_gp ( 3 ) = −0.02
221 max_gp ( 1 ) = −1 ! was 0.3 − changed fo l lowing dotty plots o f performance showing lower
222 ! values do better
223 max_gp(2)= 0.03
224 max_gp ( 3 ) = −0.0032
225

226 !HYPRES l imi ts Ks = a + b ( BulkDensity )^2 + c ( OrganicMatter)^−1 +
227 ! d ( BulkDensity * OrganicMatter )
228 ! changed to match ln (T0) values from test ing theore t i ca l min and max ranges .
229 min_gp ( 4 ) = 1 ! 3
230 max_gp ( 4 ) = 6 ! 11
231

232 min_gp ( 5 ) = −1.3 ! −0.5
233 max_gp ( 5 ) = −0.5 ! −1.3
234

235 min_gp ( 6 ) = −0.1
236 max_gp ( 6 ) = −0.003
237

238 min_gp ( 7 ) = −0.4 ! −0.8
239 max_gp ( 7 ) = 0 ! −0.24
240

241 min_gp ( 8 ) = 1
242 max_gp ( 8 ) = 4
243

244

245

246 end s e l e c t
247

248 ! 2 . From above , set s izes of the global parameter array and number of random numbers
249 ! to produce .
250 n_gp_all ( 1 ) = n_glob_pms
251 ! print * , ’ n_gp_all ( 1 ) = ’ , n_gp_all
252

253 a l l o ca te ( glob_pms_SZM ( n_glob_pms , n_pm_maps ) )
254 a l l o ca te ( rand_nums (sum( n_gp_all ) , n_pm_maps+start_seed −1))
255

256 ! generate l i s t s o f g lobal parameters between min and max ranges , o f length n
257 ! need to have l i s t such that start ing seed = 50 would give same resul t as 50th number
258 ! from seed=1
259 Call RANDOM_SEED( GET = seed )
260 seed ( 1 : 1 2 ) = ( / 3 ,3 ,3 ,3 ,3 ,3 ,3 ,3 ,3 ,3 ,3 ,3 / )
261 Call RANDOM_SEED( PUT = seed )
262 c a l l RANDOM_NUMBER ( rand_nums )
263 ! print * , rand_nums
264

265 print * , ’SZM pedo−transfer has ’ , n_glob_pms , ’ g lobal parameters ’
266 ! print * , ’max values for SZM global param( s ) : ’ , max_gp
267 ! print * , ’min values for SZM global param( s ) : ’ , min_gp
268 ! print * , ’sum n_gp_all SZM = ’ ,sum( n_gp_all )
269

270

271 !now normalise random numbers to within bounds
272 DO i = 1 , n_glob_pms
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273 DO j = start_seed , start_seed+n_pm_maps−1
274 ! rn_i i s index for the random number
275 rn_i = (sum( n_gp_all ) − n_glob_pms )+ i
276 ! the appropriate random number , in range 0−1
277 num = rand_nums ( rn_i , j )
278 ! normalise the random number to given min /max
279 num = (num * (max_gp ( i )−min_gp ( i ) ) ) + min_gp ( i )
280 glob_pms_SZM ( i , j−start_seed +1) = num
281

282 END DO
283 IF (n_pm_maps >= 2) THEN
284 print * , ’ F irst 2 values for parameter ’ , i , ’ : ’ , glob_pms_SZM ( i , 1 : 2 )
285 ELSE
286 print * , ’ Value for parameter ’ , i , ’ : ’ , glob_pms_SZM ( i , 1 )
287 END IF
288 END DO
289

290

291 print * ,
292

293

294 end subroutine init_gp_SZM
295

296

297

298

299

300 ! **********************************************************************************************
301 ! subroutine : pedotf_SZM : Pedo−transfer function for SZM
302 ! **********************************************************************************************
303 ! This routine takes n_i , s igna l l ing that we are now calcu lat ing parameter map n_i out o f n ,
304 ! I t takes the l i s t o f g lobal parameters and required basin predictors , and from that
305 ! appl ies the pedo−transfer functions to produce a parameter map.
306

307 subroutine pedotf_SZM ( n_i , pedo_tf , glob_pms , bp , pm_map, soilmusiddata , folder_output , lnto_map )
308

309 use mpr_uti l i ty
310

311 imp l i c i t none
312

313 ! declare dummy variables
314 ! param map number to do
315 integer , intent ( in ) : : n_i
316 ! equation se l e c t i on
317 integer , intent ( in ) : : pedo_tf
318 ! l i s t o f g lobal params for SZM
319 double precis ion , dimension ( : , : ) , a l locatable , intent ( in ) : : glob_pms
320 real , dimension ( : , : , : ) , a l locatable , intent ( in ) : : bp ! basin predictor maps
321 ! output parameter map
322 double precis ion , dimension ( : , : ) , a l locatable , intent ( out ) : : pm_map
323 ! musiddatatables
324 double precis ion , a l locatable , dimension ( : , : , : ) , intent ( in ) : : soilmusiddata
325 !MPR output fo lder
326 character ( len =1024) , intent ( in ) : : fo lder_output
327 double precis ion , dimension ( : , : ) , a l locatable , intent ( in ) : : lnto_map
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328

329 ! declare l o c a l variables
330 integer : : n_glob_pms ! number of global parameters
331 integer : : n_pm_maps ! number of parameter maps ,
332 ! defined by ncols in glob_pms_LnTo
333 integer : : i , j , d , e ! incrementers .
334 integer : : nrows_bp ! number of rows in basin predictor map
335 integer : : ncols_bp
336 integer : : nmusids ! number of musids in table .
337 integer : : nentries ! number of entr ies ( series ’ / landuses ) f or this musid
338 integer : : mid_i
339 integer : : row_start
340 integer : : row_end
341 integer : : nrows
342 integer : : len_include_data
343 integer , dimension ( 5 ) : : d_s ! s tart and end depths of depth c lasses
344 integer , dimension ( 5 ) : : d_e
345 ! keep track of where nodata values are .
346 integer , a l locatable , dimension ( : , : ) : : nodata_found
347 integer : : id_s , id_e
348 character ( len =1024) : : temp_filename
349 character ( len =2) : : depth_string
350 character ( len =5) : : n i_str ing
351 double prec is ion : : a , b ! exponential f i t constants
352 double precis ion , a l locatable , dimension ( : ) : : a_all , b_a l l
353 ! depth decl ine data
354 double precis ion , a l locatable , dimension ( : , : , : ) : : dep_data
355 ! depth decl ine data − ksat values
356 double precis ion , a l locatable , dimension ( : , : , : ) : : ptf_data
357 ! depth decl ine data − ready for f i t t i n g
358 double precis ion , a l locatable , dimension ( : , : ) : : f i t _data
359 ! weights for each ser ies /LU within a musid
360 double precis ion , a l locatable , dimension ( : ) : : weights
361 double precis ion , a l locatable , dimension ( : ) : : musid_szm
362 double precis ion , a l locatable , dimension ( : ) : : musid_area
363 ! areas under ksat curve ( integreated )
364 double prec is ion : : area_data
365

366 ! f ind number of rows and columns in basin predictor f i l e s − pm map should be same s ize
367 nrows_bp = s ize ( bp ( : , 1 , 1 ) )
368 ncols_bp = s ize ( bp ( 1 , : , 1 ) )
369 n_pm_maps = s ize ( glob_pms ( 1 , : ) )
370 ! f ind number of rows and columns in basin predictor f i l e s − pm map should be same s ize
371 n_pm_maps = s ize ( glob_pms ( 1 , : ) )
372 a l l o ca te (pm_map( nrows_bp , ncols_bp ) )
373

374 ! vary transfer function , depending on user−inputted equation se l e c t i on .
375 s e l e c t case ( pedo_tf )
376

377 case ( 0 ) ! Fixed parameter
378

379 n_glob_pms = 1
380 DO i = 1 , nrows_bp
381 DO j = 1 , ncols_bp
382
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383 pm_map( i , j ) = glob_pms (1 , n_i )
384

385 END DO
386 END DO
387

388 case ( 1 ) ! Global parameter
389

390 n_glob_pms = 1
391 DO i = 1 , nrows_bp
392 DO j = 1 , ncols_bp
393

394 pm_map( i , j ) = glob_pms (1 , n_i )
395

396 END DO
397 END DO
398

399 case ( 2 ) ! Pedotransfer function using sand and clay .
400 n_glob_pms = 2
401

402 ! i n i t i a l i s e log f i l e s
403

404 write ( ni_string , " ( I5 . 5 ) " ) n_i
405 temp_filename = trim ( folder_output ) / / " SZM_pedotransfer_ " / / n i_str ing / / " . log "
406 ! write ( temp_filename , " ( A16 , I2 ,A4 ) " ) ’ SZM_pedotransfer ’ , n_i , ’ . log ’
407 OPEN( unit =99 , f i l e =trim ( temp_filename ) , status= ’unknown ’ )
408 write (99 ,* ) ’ F i le contains SZM ksat values , calculated using pedotransfer case 2 . ’
409 write (99 ,* ) ’DEPTH, MUSID, ENTRY, WEIGHT, KSAT ’
410 CLOSE(99)
411

412 write ( ni_string , " ( I5 . 5 ) " ) n_i
413 temp_filename = trim ( folder_output ) / / " SZM_fits_ " / / n i_str ing / / " . log "
414 ! write ( temp_filename , " ( A9, I2 ,A4 ) " ) " SZM_fits_ " , n_i , " . log "
415 OPEN( unit = 99 , f i l e =trim ( temp_filename ) , status= ’unknown ’ )
416 WRITE(99 ,* ) ’MUSID_NUM,SERIES,ENTRY_NUM, a ( 1 ) / b ( 2 ) , FIT VALUES ’
417 CLOSE(99)
418

419 ! loop through every MUSID
420 nmusids = maxval ( soilmusiddata ( : , 1 , 1 ) )
421 a l l o ca te ( musid_szm ( nmusids ) )
422 print * ,maxval ( soilmusiddata ( : , 1 , 1 ) )
423 row_start = 1
424

425 DO i = 1 ,nmusids
426

427 ! a l l o ca te arrays for number of entr ies in this musid
428 row_end = row_start + soilmusiddata ( row_start ,17 ,1 ) −1
429 nrows = ( row_end − row_start ) +1
430 ! dep_data ( n_entries , n_info_columns , n_depth_prof i les )
431 a l l o ca te ( dep_data ( nrows , 1 7 , 5 ) )
432 ! ptf_data ( n_entries , MUSID/ENTRY_NUM/WEIGHTING/KSAT, n_depths )
433 a l l o ca te ( ptf_data ( nrows , 4 , 5 ) )
434 a l l o ca te ( a_a l l ( nrows ) )
435 a l l o ca te ( b_a l l ( nrows ) )
436 a l l o ca te ( weights ( nrows ) )
437 a l l o ca te ( nodata_found ( nrows , 5 ) )
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438

439 ! ! Extract a l l depth decl ines for th is musid − looping through depths
440 DO d = 1 ,5
441 dep_data ( 1 : nrows ,1 :17 , d ) = soilmusiddata ( row_start : row_end ,1 :17 , d )
442 END DO
443

444 ! apply pedotransfer function to get ksat values
445 ptf_data ( 1 : nrows , 1 : 3 , 1 : 5 ) = dep_data ( 1 : nrows , 1 : 3 , 1 : 5 )
446 DO e = 1 ,nrows
447 DO d = 1 ,5
448 ! apply Cosby et al . (1984) for mineral s o i l s
449 ! IF ( dep_data ( e ,16 ,d)==0) THEN
450 ! apply Cosby et al . (1984) for minearal s o i l s − organic
451 ! content less than 35%
452 IF ( dep_data ( e ,11 ,d) <35) THEN
453 ! ln_ksat = a + b(%sand ) + c(%clay )
454 ptf_data ( e ,4 , d)=glob_pms (1 , n_i )+ ( glob_pms (2 , n_i )*dep_data ( e ,8 , d ) )
455 ptf_data ( e ,4 , d)= ptf_data ( e ,4 , d )+ ( glob_pms (3 , n_i )*dep_data ( e ,10 ,d ) )
456 ! ksat = exp ( ln_ksat )
457 ptf_data ( e ,4 , d)= 2.54*(10**( ptf_data ( e ,4 , d ) ) )
458

459 ! keep record of nodata values
460 IF ( int ( dep_data ( e ,8 , d))==−9999) THEN
461 nodata_found ( e , d ) = 1
462 ELSE
463 nodata_found ( e , d ) = 0
464 END IF
465

466 ELSE
467 ! apply HYPRES for peaty so i l s , Ks = a + b ( BulkDensity )^2 +
468 ! c ( OrganicMatter)^−1 + d ( BulkDensity * OrganicMatter )
469 ptf_data ( e ,4 , d)=glob_pms (4 , n_i )+ ( glob_pms (5 , n_i )* &
470 dep_data ( e ,12 ,d)**2)
471 ptf_data ( e ,4 , d)= ptf_data ( e ,4 , d )+ ( glob_pms (6 , n_i )* &
472 dep_data ( e ,11 ,d)**(−1))
473 ptf_data ( e ,4 , d)= ptf_data ( e ,4 , d )+ ( glob_pms (7 , n_i )* &
474 dep_data ( e ,12 ,d)*dep_data ( e ,11 ,d ) )
475 ptf_data ( e ,4 , d ) = EXP( ptf_data ( e ,4 , d ) )
476

477 ! keep record of nodata values
478 IF ( int ( dep_data ( e ,11 ,d))==−9999) THEN
479 nodata_found ( e , d ) = 1
480 ELSE
481 nodata_found ( e , d ) = 0
482 END IF
483 END IF
484

485

486 END DO
487 END DO
488

489 ! write ksat dec l ines to a log f i l e
490 write ( ni_string , " ( I5 . 5 ) " ) n_i
491 temp_filename = trim ( folder_output ) / / " SZM_pedotransfer_ " / / n i_str ing / / " . log "
492 ! write ( temp_filename , " ( A16 , I2 ,A4 ) " ) ’ SZM_pedotransfer_ ’ , n_i , ’ . log ’
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493 OPEN( unit =99 , f i l e =trim ( temp_filename ) , pos i t ion= ’ append ’ , status= ’ old ’ )
494 DO d = 1 ,5
495 DO e = 1 , nrows
496 write (99 ,* ) d , ptf_data ( e , 1 : 4 , d )
497 END DO
498

499 END DO
500 CLOSE( unit =99)
501

502

503 ! f i t exponential to each ksat recession − to get m values .
504 DO e = 1 ,nrows
505 d_s = ( /1 ,11 ,26 ,51 ,101 / )
506 d_e = ( /10 ,25 ,50 ,100 ,150/ )
507 len_include_data = 0
508

509 !Work out which data to include , and how to a l l o ca te f i t _data .
510 DO d = 1 ,5
511 IF ( nodata_found ( e , d)== 0) THEN
512 ! i f f i t t i n g depths 1 to 150
513 ! len_include_data = len_include_data + ( d_e ( d)−d_s ( d ) )+1
514 len_include_data = len_include_data + 1
515 END IF
516 END DO
517

518 ! a l l o ca te f i t data .
519 a l l o ca te ( f i t _data ( len_include_data , 3 ) )
520

521 ! extract f i t data for each depth , and get integers of a l l the depths
522 ! to include in f i t ca l cu lat ion .
523 id_s = 1
524 DO d = 1 ,5
525 IF ( nodata_found ( e , d)== 0) THEN
526 f i t _data ( id_s , 1 ) = ptf_data ( e ,4 , d ) ! y = ksat values
527 f i t _data ( id_s , 2 ) = −(d_e ( id_s ) + d_s ( id_s ) ) / 2 ! x = −depth
528 id_s = id_s + 1
529 ! id_e = id_s + ( d_e ( d ) − d_s ( d ) )
530 ! f i t _data ( id_s : id_e , 1 ) = ( / ( j , j =d_s ( d ) , d_e ( d ) , 1 ) / )
531 ! f i t _data ( id_s : id_e , 2 ) = ptf_data ( e ,4 , d )
532 ! id_s = id_e + 1
533 END IF
534 END DO
535

536 ! ca l cu late the exponential f i t ! To the f i t _data which excludes a l l
537 ! nodata values .
538 CALL ca l c_exp_ f i t ( f i t_data , a , b )
539 a_al l ( e ) = a
540 b_al l ( e ) = b
541 deal locate ( f i t _data )
542

543 END DO
544

545 ! save f i t information in a log f i l e − to check f i t s look reasonable in matlab
546 write ( ni_string , " ( I5 . 5 ) " ) n_i
547 temp_filename = trim ( folder_output ) / / " SZM_fits_ " / / n i_str ing / / " . log "
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548 ! write ( temp_filename , " ( A9, I2 ,A4 ) " ) " SZM_fits_ " , n_i , " . log "
549 OPEN( unit = 99 , f i l e =trim ( temp_filename ) , pos i t ion= ’ append ’ , status= ’ old ’ )
550 DO e = 1 ,nrows
551 WRITE(99 ,* ) i , soilmusiddata ( row_start+e−1 ,4 ,1) , e , 1 , a_a l l ( e )
552 WRITE(99 ,* ) i , soilmusiddata ( row_start+e−1 ,4 ,1) , e , 2 , b_a l l ( e )
553 END DO
554 CLOSE( unit =99)
555

556

557 ! take a weighted average of a l l m values , to get a musid parameter value .
558 weights = soilmusiddata ( row_start : row_end , 3 , 1 ) ! weight i s column 3.
559 IF (sum( weights ) > 1.001) THEN
560 print * , ’ error − weights within musids exceed 1 ’
561 END IF
562 IF (sum( weights ) < 0.999) THEN
563 print * , ’ error − weights within musids dont add up to 1 ’
564 END IF
565 musid_szm ( i ) = sum( weights * b_al l )
566

567 ! deal locate / set variables for reading in next musid
568 deal locate ( ptf_data )
569 deal locate ( dep_data )
570 deal locate ( a_a l l )
571 deal locate ( b_a l l )
572 deal locate ( weights )
573 deal locate ( nodata_found )
574

575 row_start = row_end+1
576

577 END DO
578

579 ! p lo t parameter values back in space − using musid a s c i i grid .
580 ! where nodata , use average szm value across modelled region .
581 DO i = 1 , nrows_bp
582 DO j = 1 , ncols_bp
583 e = INT( bp ( i , j , 6 ) )
584 IF ( e<−9000) THEN
585 pm_map( i , j ) = (sum( musid_szm ) ) / nmusids
586 ELSE
587 pm_map( i , j ) = musid_szm ( e )
588 END IF
589 END DO
590 END DO
591

592 case ( 4 ) ! Pedotransfer function using sand and clay −
593 ! n_glob_pms = 2
594

595 ! loop through every MUSID
596 nmusids = maxval ( soilmusiddata ( : , 1 , 1 ) )
597 a l l o ca te ( musid_szm ( nmusids ) )
598 a l l o ca te ( musid_area ( nmusids ) )
599 print * ,maxval ( soilmusiddata ( : , 1 , 1 ) )
600 row_start = 1
601

602 DO i = 1 ,nmusids

217



APPENDIX C. SUPPLEMENT TO RESEARCH CHAPTER TWO: DECIPHER_MPR CODE

603

604 ! a l l o ca te arrays for number of entr ies in this musid
605 row_end = row_start + soilmusiddata ( row_start ,17 ,1 ) −1
606 nrows = ( row_end − row_start ) +1
607 ! dep_data ( n_entries , n_info_columns , n_depth_prof i les )
608 a l l o ca te ( dep_data ( nrows , 1 7 , 5 ) )
609 ! ptf_data ( n_entries , MUSID/ENTRY_NUM/WEIGHTING/KSAT, n_depths )
610 a l l o ca te ( ptf_data ( nrows , 4 , 5 ) )
611 a l l o ca te ( a_a l l ( nrows ) )
612 a l l o ca te ( b_a l l ( nrows ) )
613 a l l o ca te ( weights ( nrows ) )
614 a l l o ca te ( nodata_found ( nrows , 5 ) )
615

616 ! ! Extract a l l depth decl ines for this musid − looping through depths
617 DO d = 1 ,5
618 dep_data ( 1 : nrows ,1 :17 , d ) = soilmusiddata ( row_start : row_end ,1 :17 , d )
619 END DO
620

621 ! apply pedotransfer function to get ksat values
622 ptf_data ( 1 : nrows , 1 : 3 , 1 : 5 ) = dep_data ( 1 : nrows , 1 : 3 , 1 : 5 )
623 DO e = 1 ,nrows
624 DO d = 1 ,5
625 ! apply Cosby et al . (1984) for mineral s o i l s
626 ! IF ( dep_data ( e ,16 ,d)==0) THEN
627 ! apply Cosby et al . (1984) for minearal s o i l s − organic
628 ! content less than 35%
629 IF ( dep_data ( e ,11 ,d) <35) THEN
630 ! ln_ksat = a + b(%sand ) + c(%clay )
631 ptf_data ( e ,4 , d)=glob_pms (1 , n_i )+ ( glob_pms (2 , n_i )*dep_data ( e ,8 , d ) )
632 ptf_data ( e ,4 , d)= ptf_data ( e ,4 , d )+ ( glob_pms (3 , n_i )*dep_data ( e ,10 ,d ) )
633 ! ksat = exp ( ln_ksat )
634 ptf_data ( e ,4 , d)= EXP( ptf_data ( e ,4 , d ) )
635

636 ! keep record of nodata values
637 IF ( int ( dep_data ( e ,8 , d))==−9999) THEN
638 nodata_found ( e , d ) = 1
639 ELSE
640 nodata_found ( e , d ) = 0
641 END IF
642

643 ELSE ! apply HYPRES for peaty so i l s , Ks = a + b ( BulkDensity )^2 +
644 ! c ( OrganicMatter)^−1 + d ( BulkDensity * OrganicMatter )
645 ptf_data ( e ,4 , d)=glob_pms (4 , n_i )+ ( glob_pms (5 , n_i )* &
646 dep_data ( e ,12 ,d)**2)
647 ptf_data ( e ,4 , d)= ptf_data ( e ,4 , d )+ ( glob_pms (6 , n_i )* &
648 dep_data ( e ,11 ,d)**(−1))
649 ptf_data ( e ,4 , d)= ptf_data ( e ,4 , d )+ ( glob_pms (7 , n_i )* &
650 dep_data ( e ,12 ,d)*dep_data ( e ,11 ,d ) )
651 ptf_data ( e ,4 , d ) = EXP( ptf_data ( e ,4 , d ) )
652

653 ! keep record of nodata values
654 IF ( int ( dep_data ( e ,11 ,d))==−9999) THEN
655 nodata_found ( e , d ) = 1
656 ELSE
657 nodata_found ( e , d ) = 0
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658 END IF
659 END IF
660

661

662 END DO
663 END DO
664

665 ! f i t exponential to each ksat recession − to get m values .
666 area_data=0
667 weights = soilmusiddata ( row_start : row_end , 3 , 1 )
668 DO e = 1 ,nrows
669 d_s = ( /1 ,11 ,26 ,51 ,101 / )
670 d_e = ( /10 ,25 ,50 ,100 ,150/ )
671 len_include_data = 0
672

673 ! extract f i t data for each depth , and get integers of a l l the depths to
674 ! include in f i t ca l cu lat ion .
675 id_s = 1
676

677 DO d = 1 ,5
678 IF ( nodata_found ( e , d)== 0) THEN
679 area_data = area_data + weights ( e )* ( ptf_data ( e ,4 , d)* &
680 ( d_e ( id_s )−d_s ( id_s ) ) )
681 id_s = id_s + 1
682 END IF
683 END DO
684

685 END DO
686

687 ! take a weighted average of a l l m values , to get a musid parameter value .
688 ! weights = soilmusiddata ( row_start : row_end , 3 , 1 ) ! weight i s column 3.
689 IF (sum( weights ) > 1.001) THEN
690 print * , ’ error − weights within musids exceed 1 ’
691 END IF
692 IF (sum( weights ) < 0.999) THEN
693 print * , ’ error − weights within musids dont add up to 1 ’
694 END IF
695 musid_area ( i ) = area_data
696

697 ! deal locate / set variables for reading in next musid
698 deal locate ( ptf_data )
699 deal locate ( dep_data )
700 deal locate ( a_a l l )
701 deal locate ( b_a l l )
702 deal locate ( weights )
703 deal locate ( nodata_found )
704

705 row_start = row_end+1
706

707 END DO
708

709 ! p lo t parameter values back in space − using musid a s c i i grid .
710 ! where nodata , use average szm value across modelled region .
711 DO i = 1 , nrows_bp
712 DO j = 1 , ncols_bp
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713 e = INT( bp ( i , j , 6 ) )
714 IF ( e<−9000) THEN
715 pm_map( i , j ) = exp ( lnto_map ( i , j ) ) / ( ( sum( musid_area ) ) / nmusids )
716 ELSE
717 pm_map( i , j ) = exp ( lnto_map ( i , j ) ) / musid_area ( e )
718 END IF
719 END DO
720 END DO
721

722

723

724 case ( 5 ) ! Pedotransfer function using sand and clay −
725 ! n_glob_pms = 2
726

727 ! loop through every MUSID
728 nmusids = maxval ( soilmusiddata ( : , 1 , 1 ) )
729 a l l o ca te ( musid_szm ( nmusids ) )
730 a l l o ca te ( musid_area ( nmusids ) )
731 print * ,maxval ( soilmusiddata ( : , 1 , 1 ) )
732 row_start = 1
733

734 DO i = 1 ,nmusids
735

736 ! a l l o ca te arrays for number of entr ies in this musid
737 row_end = row_start + soilmusiddata ( row_start ,17 ,1 ) −1
738 nrows = ( row_end − row_start ) +1
739 ! dep_data ( n_entries , n_info_columns , n_depth_prof i les )
740 a l l o ca te ( dep_data ( nrows , 1 7 , 5 ) )
741 ! ptf_data ( n_entries , MUSID/ENTRY_NUM/WEIGHTING/KSAT, n_depths )
742 a l l o ca te ( ptf_data ( nrows , 4 , 5 ) )
743 a l l o ca te ( a_a l l ( nrows ) )
744 a l l o ca te ( b_a l l ( nrows ) )
745 a l l o ca te ( weights ( nrows ) )
746 a l l o ca te ( nodata_found ( nrows , 5 ) )
747

748 ! ! Extract a l l depth decl ines for this musid − looping through depths
749 DO d = 1 ,5
750 dep_data ( 1 : nrows ,1 :17 , d ) = soilmusiddata ( row_start : row_end ,1 :17 , d )
751 END DO
752

753 ! apply pedotransfer function to get ksat values
754 ptf_data ( 1 : nrows , 1 : 3 , 1 : 5 ) = dep_data ( 1 : nrows , 1 : 3 , 1 : 5 )
755 DO e = 1 ,nrows
756 DO d = 1 ,5
757 ! apply Cosby et al . (1984) for mineral s o i l s
758 ! IF ( dep_data ( e ,16 ,d)==0) THEN
759 ! apply Cosby et al . (1984) for minearal s o i l s − organic
760 ! content less than 35%
761 IF ( dep_data ( e ,11 ,d) <35) THEN
762 ! ln_ksat = a + b(%sand ) + c(%clay )
763 ptf_data ( e ,4 , d)=glob_pms (1 , n_i )+ ( glob_pms (2 , n_i )*dep_data ( e ,8 , d ) )
764 ptf_data ( e ,4 , d)= ptf_data ( e ,4 , d )+ ( glob_pms (3 , n_i )*dep_data ( e ,10 ,d ) )
765 ! ksat = exp ( ln_ksat )
766 ptf_data ( e ,4 , d)= EXP( ptf_data ( e ,4 , d ) )
767
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768 ! keep record of nodata values
769 IF ( int ( dep_data ( e ,8 , d))==−9999) THEN
770 nodata_found ( e , d ) = 1
771 ELSE
772 nodata_found ( e , d ) = 0
773 END IF
774

775 ELSE ! apply HYPRES for peaty so i l s , Ks = a + b ( BulkDensity )^2 +
776 ! c ( OrganicMatter)^−1 + d ( BulkDensity * OrganicMatter )
777 ptf_data ( e ,4 , d)=glob_pms (4 , n_i )+ ( glob_pms (5 , n_i )* &
778 dep_data ( e ,12 ,d)**2)
779 ptf_data ( e ,4 , d)= ptf_data ( e ,4 , d )+ ( glob_pms (6 , n_i )* &
780 dep_data ( e ,11 ,d)**(−1))
781 ptf_data ( e ,4 , d)= ptf_data ( e ,4 , d )+ ( glob_pms (7 , n_i )* &
782 dep_data ( e ,12 ,d)*dep_data ( e ,11 ,d ) )
783 ptf_data ( e ,4 , d ) = EXP( ptf_data ( e ,4 , d ) )
784

785 ! keep record of nodata values
786 IF ( int ( dep_data ( e ,11 ,d))==−9999) THEN
787 nodata_found ( e , d ) = 1
788 ELSE
789 nodata_found ( e , d ) = 0
790 END IF
791 END IF
792

793

794 END DO
795 END DO
796

797 ! f i t exponential to each ksat recession − to get m values .
798 area_data=0
799 weights = soilmusiddata ( row_start : row_end , 3 , 1 )
800 DO e = 1 ,nrows
801 d_s = ( /1 ,11 ,26 ,51 ,101 / )
802 d_e = ( /10 ,25 ,50 ,100 ,150/ )
803 len_include_data = 0
804

805 ! extract f i t data for each depth , and get integers of a l l the depths to
806 ! include in f i t ca l cu lat ion .
807 id_s = 1
808

809 DO d = 1 ,5
810 IF ( nodata_found ( e , d)== 0) THEN
811 area_data = area_data + weights ( e )* ( ptf_data ( e ,4 , d)* &
812 ( d_e ( id_s )−d_s ( id_s ) ) )
813 id_s = id_s + 1
814 END IF
815 END DO
816

817 END DO
818

819 ! take a weighted average of a l l m values , to get a musid parameter value .
820 ! weights = soilmusiddata ( row_start : row_end , 3 , 1 ) ! weight i s column 3.
821 IF (sum( weights ) > 1.001) THEN
822 print * , ’ error − weights within musids exceed 1 ’
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823 END IF
824 IF (sum( weights ) < 0.999) THEN
825 print * , ’ error − weights within musids dont add up to 1 ’
826 END IF
827 musid_area ( i ) = area_data
828

829 ! deal locate / set variables for reading in next musid
830 deal locate ( ptf_data )
831 deal locate ( dep_data )
832 deal locate ( a_a l l )
833 deal locate ( b_a l l )
834 deal locate ( weights )
835 deal locate ( nodata_found )
836

837 row_start = row_end+1
838

839 END DO
840

841 ! p lo t parameter values back in space − using musid a s c i i grid .
842 ! where nodata , use average szm value across modelled region .
843 DO i = 1 , nrows_bp
844 DO j = 1 , ncols_bp
845 e = INT( bp ( i , j , 6 ) )
846 IF ( e<−9000) THEN
847 pm_map( i , j ) = exp ( lnto_map ( i , j ) ) / ( ( sum( musid_area ) ) / nmusids )
848 pm_map( i , j ) = pm_map( i , j ) * glob_pms (8 , n_i )
849 ELSE
850 pm_map( i , j ) = exp ( lnto_map ( i , j ) ) / musid_area ( e )
851 pm_map( i , j ) = pm_map( i , j ) * glob_pms (8 , n_i )
852 END IF
853 END DO
854 END DO
855

856

857 case default
858 print * , "ERROR: inval id pedo−transfer set t ing . "
859 stop
860

861 end s e l e c t
862

863 DO i = 1 ,nrows_bp
864 DO j = 1 , ncols_bp
865 ! add in upper and lower caps
866 IF (pm_map( i , j ) <0.0001) THEN
867 pm_map( i , j )=0.0001
868 ELSEIF (pm_map( i , j ) >15) THEN
869 pm_map( i , j )=15
870 END IF
871 END DO
872 END DO
873

874 end subroutine pedotf_SZM
875

876

877
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878

879 end module mpr_SZM
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C.6 mpr_LnTo.f90

1 ! ! Module containing subroutines for MPR. f90
2 ! ! This module contains a l l subroutines involving MPR for the LnTo parameter :
3 !
4 ! get_BasPred_LnTo Complete l o g i c a l l i s t o f basin predictors required for LnTo
5 ! init_gp_LnTo I n i t i a l i s e global parameters for LnTo
6 ! pedotf_LnTo Pedo−transfer function for LnTo
7

8 ! ! Rosie Lane − 31 st August 2017
9

10 module mpr_LnTo
11 contains
12

13

14 ! **********************************************************************************************
15 ! subroutine : get_BasPred_LnTo : Complete l o g i c a l l i s t o f basin predictors required for LnTo
16 ! **********************************************************************************************
17 ! Given the user−spec i f i ed pedo transfer function se lected for LnTo , th is subroutine adds to a
18 ! l o g i c a l l i s t o f required basin predictors , by spec i fy ing which predictors i t requires .
19

20 subroutine get_BasPred_LnTo ( pedo_tf_LnTo , req_so i l s )
21

22 imp l i c i t none
23

24 ! declare dummy arguments
25 integer , intent ( inout ) : : pedo_tf_LnTo ! pedo_tf_equation to be used
26 l og i ca l , dimension (* ) , intent ( inout ) : : r eq_so i l s ! s o i l s data required l o g i c a l
27

28 ! def ine required BasinPredictors for LnTo
29 s e l e c t case ( pedo_tf_LnTo )
30

31 case ( 0 ) ! f ixed parameter − no basin predictors required
32

33 case ( 1 ) ! g lobal parameter − no basin predictors required
34

35 case ( 2 ) ! Use pedo−transfer as Cosby et al . (1984)
36 ! print * , "LnTo transfer function se lected i s Cosby et al . (1984)"
37 req_so i l s ( 1 ) = . true . ! sand
38 req_so i l s ( 3 ) = . true . ! c lay
39 req_so i l s ( 4 ) = . true . ! organic content
40 req_so i l s (15) = . true . ! bulk density
41 req_so i l s (16) = . true . ! i s organic ? Logical
42

43 case ( 3 ) ! Use pedo−transfer as Cosby et al . (1984) , but separate areas
44 ! with productive geology
45 ! print * , "LnTo transfer function se lected i s Cosby et al . (1984)"
46 req_so i l s ( 1 ) = . true . ! sand
47 req_so i l s ( 3 ) = . true . ! c lay
48 req_so i l s ( 4 ) = . true . ! organic content
49 req_so i l s (15) = . true . ! bulk density
50 req_so i l s (16) = . true . ! i s organic ? Logical
51 req_so i l s (18) = . true . ! i s highly productive geology ?
52
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53

54 case ( 4 ) ! Third transfer function has not yet been defined
55 print * , "LnTo pedo−transfer 2 has not yet been defined ! "
56 print * , " Select pedo_tf = 0 to treat i t as a f ixed parameter "
57 print * , " Select pedo_tf = 1 to treat i t as a global parameter "
58 print * , " Select pedo_tf = 2 to use the pedo−transfer function of Cosby " , &
59 " et al . (1984) "
60 stop
61

62 case default
63 print * , "WARNING: a val id pedo−t f equation for LnTo must be spec i f i ed in the " , &
64 " contro l f i l e "
65 print * , "LnTo wi l l be set to the default o f f ixed parameter "
66 print * , " pedo_tf_LnTo = 0 , sets LnTo as a f ixed parameter "
67 print * , " pedo_tf_LnTo = 1 , sets LnTo as a global parameter "
68 print * , " pedo_tf_LnTo = 2 , sets the LnTo pedo−transfer eq . to Cosby et al . "
69

70 pedo_tf_LnTo = 0
71

72 end s e l e c t
73

74 end subroutine get_BasPred_LnTo
75

76

77

78

79

80 ! **********************************************************************************************
81 ! subroutine : init_gp_LnTo : I n i t i a l i s e global parameters for LnTo
82 ! **********************************************************************************************
83 ! This subroutine does the fo l lowing :
84 ! 1 . Defines how many global parameters ( n_glob_pms ) are needed for the user−spec i f i ed
85 ! t ransfer function
86 ! TF 0 : 1 global parameter
87 ! TF 1 : 3 global parameters
88 ! 2 . Defines min /max ranges for global parameters
89 ! 3 . Generates l i s t o f g lobal parameters using the rand function
90 ! − user spec i f i ed start_seed can be used to skip to any point in this l i s t
91 ! − global parameter l i s t i s o f dimensions number of global params by number of param
92 ! f i l e s needed
93 ! 4 . Transforms global parameters to be within set min /max ranges
94

95 subroutine init_gp_LnTo ( pedo_tf_LnTo , glob_pms_LnTo , n_pm_maps , start_seed , n_gp_all , pm_range )
96

97 use d t a _ u t i l i t y
98

99 imp l i c i t none
100

101 ! declare dummy variables
102 integer , intent ( in ) : : pedo_tf_LnTo
103 ! g lobal param l i s t
104 double precis ion , a l locatable , dimension ( : , : ) , intent ( inout ) : : glob_pms_LnTo
105 integer , intent ( in ) : : n_pm_maps
106 ! to s tart rand num generator
107 integer , intent ( in ) : : start_seed
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108 ! vector o f number of global params for a l l params
109 integer , dimension ( 7 ) , intent ( inout ) : : n_gp_all
110 ! min , f ixed , max values for this parameter
111 double precis ion , dimension ( 3 ) , intent ( in ) : : pm_range
112

113 ! declare l o c a l variables
114 integer : : n_glob_pms ! number of global parameters
115 double precis ion , a l locatable , dimension ( : ) : : min_gp ! min values for global parameters
116 double precis ion , a l locatable , dimension ( : ) : : max_gp
117 real , dimension ( : , : ) , a l l o ca tab le : : rand_nums
118 double prec is ion : : num
119 integer , dimension (12) : : seed
120 integer : : i , j , rn_i
121

122

123 ! 1 . Define how many global parameters should ex i s t and min /max ranges ,
124 ! based on se lected transfer function
125 s e l e c t case ( pedo_tf_LnTo )
126

127 case ( 0 ) ! Treat as f ixed parameter ( for ease this i s a global parameter with a 0 range )
128

129 print * , "LnTo i s a f ixed parameter , o f value " ,pm_range ( 2 )
130 n_glob_pms = 1
131 a l l o ca te ( min_gp ( 1 ) ) ! min and max values have length 1 , as we have 1 global parameter
132 a l l o ca te (max_gp ( 1 ) )
133 min_gp ( 1 ) = pm_range ( 2 ) ! min and max values set to same f ixed parameter value .
134 max_gp ( 1 ) = pm_range ( 2 )
135

136 case ( 1 ) ! Treat as global parameter
137

138 print * , "LnTo i s a global parameter , in the range " ,pm_range ( 1 ) , " " ,pm_range ( 3 )
139 n_glob_pms = 1
140 a l l o ca te ( min_gp ( 1 ) ) ! min and max values have length 1 , as we have 1 global parameter
141 a l l o ca te (max_gp ( 1 ) )
142 min_gp ( 1 ) = pm_range ( 1 ) ! min and max values set from parameter f i l e
143 max_gp ( 1 ) = pm_range ( 3 )
144

145 case ( 2 ) ! Use pedo−transfer as Cosby et al . (1984) and HYPRES
146

147 print * , "LnTo wi l l be applied using the pedo−transfer function of Cosby et " , &
148 " al . (1984) for non−organic s o i l s . "
149 print * , " and HYPRES for organic "
150 n_glob_pms = 7 ! a_const , a_sand , a_clay ,
151 a l l o ca te ( min_gp ( 7 ) )
152 a l l o ca te (max_gp ( 7 ) )
153

154 ! cosby et al . l imi ts
155 min_gp ( 1 ) = −3.5 ! −2.5!−3.5 increased to −2.5 fo l lowing dotty plots
156 min_gp (2)= 0.006 ! −0.07
157 min_gp ( 3 ) = −0.02 ! −0.07
158

159 max_gp ( 1 ) = 0.3 ! 0.5
160 max_gp(2)= 0.03 ! 0.01
161 max_gp ( 3 ) = −0.0032 ! 0.01
162
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163 !HYPRES l imi ts Ks = a + b ( BulkDensity )^2 + c ( OrganicMatter)^−1 +
164 ! d ( BulkDensity * OrganicMatter )
165 ! bounds changed fo l lowing experiments in excel and matlab
166 min_gp ( 4 ) = 1 ! 3
167 max_gp ( 4 ) = 6 ! 11
168

169 min_gp ( 5 ) = −1.3 ! −0.5
170 max_gp ( 5 ) = −0.5 ! −1.3
171

172 min_gp ( 6 ) = −0.1
173 max_gp ( 6 ) = −0.003
174

175 min_gp ( 7 ) = −0.4 ! −0.8
176 max_gp ( 7 ) = 0 ! −0.24
177

178 case ( 3 ) !Same as case 2 for areas covering low / moderately productive geology ,
179 ! higher values for areas covering high product iv i ty geology .
180

181 print * , "LnTo wi l l be applied using the pedo−transfer function of Cosby et " , &
182 " al . (1984) for non−organic s o i l s . "
183 print * , " and HYPRES for organic , with a mult ip l ier for highly productive geology "
184 n_glob_pms = 8 ! a_const , a_sand , a_clay ,
185 a l l o ca te ( min_gp ( 8 ) )
186 a l l o ca te (max_gp ( 8 ) )
187

188 ! cosby et al . l imi ts
189 min_gp ( 1 ) = −3.5
190 min_gp (2)= 0.006
191 min_gp ( 3 ) = −0.02
192

193 max_gp ( 1 ) = 0.3
194 max_gp(2)= 0.03
195 max_gp ( 3 ) = −0.0032
196

197 !HYPRES l imi ts Ks = a + b ( BulkDensity )^2 + c ( OrganicMatter)^−1 +
198 ! d ( BulkDensity * OrganicMatter )
199 ! bounds changed fo l lowing experiments in excel and matlab
200 min_gp ( 4 ) = 1 ! 3
201 max_gp ( 4 ) = 6 ! 11
202 min_gp ( 5 ) = −1.3 ! −0.5
203 max_gp ( 5 ) = −0.5 ! −1.3
204 min_gp ( 6 ) = −0.1
205 max_gp ( 6 ) = −0.003
206 min_gp ( 7 ) = −0.4 ! −0.8
207 max_gp ( 7 ) = 0 ! −0.24
208

209 ! Addition for productive geology l imi ts
210 min_gp ( 8 ) = 0 ! i . e . no e f f e c t .
211 max_gp ( 8 ) = 10 ! Value chosen looking at optimal parameters MC vs MPR for southeast .
212

213 case default
214 print * , "ERROR: pedo_tf_LnTo incor rec t l y defined . "
215

216 end s e l e c t
217
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218 ! 2 . From above , set s i zes of the global parameter array and number of random numbers
219 ! to produce .
220 n_gp_all ( 2 ) = n_glob_pms
221 a l l o ca te ( glob_pms_LnTo ( n_glob_pms , n_pm_maps ) )
222 a l l o ca te ( rand_nums (sum( n_gp_all ) , n_pm_maps+start_seed −1))
223

224 ! 3 . Generate l i s t s o f g lobal parameters between min and max ranges , o f length n
225 ! need to have l i s t such that start ing seed = 50 would give same resul t as 50th number
226 ! from seed=1
227 Call RANDOM_SEED( GET = seed )
228 seed ( 1 : 1 2 ) = ( / 3 ,3 ,3 ,3 ,3 ,3 ,3 ,3 ,3 ,3 ,3 ,3 / )
229 Call RANDOM_SEED( PUT = seed )
230 c a l l RANDOM_NUMBER ( rand_nums )
231

232 !now normalise random numbers to within bounds
233 DO i = 1 , n_glob_pms
234 DO j = start_seed , start_seed+n_pm_maps−1
235 ! rn_i i s index for the random number
236 rn_i = (sum( n_gp_all ) − n_glob_pms ) + i
237 ! the appropriate random number , in range 0−1
238 num = rand_nums ( rn_i , j )
239 ! normalise the random number to given min /max
240 num = (num * (max_gp ( i )−min_gp ( i ) ) ) + min_gp ( i )
241 glob_pms_LnTo ( i , j−start_seed +1) = num
242

243 END DO
244 IF (n_pm_maps >= 2) THEN
245 print * , ’ F irst 2 values for parameter ’ , i , ’ : ’ , glob_pms_LnTo ( i , 1 : 2 )
246 END IF
247 END DO
248

249

250 print * ,
251

252

253

254 end subroutine init_gp_LnTo
255

256

257

258

259

260 ! **********************************************************************************************
261 ! subroutine : pedotf_LnTo : Pedo−transfer function for LnTo
262 ! **********************************************************************************************
263 ! This routine takes n_i , s igna l l ing that we are now calcu lat ing parameter map n_i out o f n ,
264 ! I t takes the l i s t o f g lobal parameters and required basin predictors , and from that
265 ! appl ies the pedo−transfer functions to produce a parameter map.
266

267 subroutine pedotf_LnTo ( n_i , pedo_tf , glob_pms , sand_0_10 , clay_0_10 , pm_map, bp_maps )
268

269 imp l i c i t none
270

271 ! declare dummy variables
272 ! param map number to do
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273 integer , intent ( in ) : : n_i
274 ! equation se l e c t i on
275 integer , intent ( in ) : : pedo_tf
276 ! l i s t o f g lobal params
277 double precis ion , dimension ( : , : ) , a l locatable , intent ( in ) : : glob_pms
278 real , dimension ( : , : ) , a l locatable , intent ( in ) : : sand_0_10 ! input basin predictor maps
279 real , dimension ( : , : ) , a l locatable , intent ( in ) : : clay_0_10
280 ! output parameter map
281 double precis ion , dimension ( : , : ) , a l locatable , intent ( out ) : : pm_map
282 ! basin predictor maps . ( x , y , bp )
283 real , a l locatable , dimension ( : , : , : ) , intent ( in ) : : bp_maps
284

285 ! declare l o c a l variables
286 integer : : n_glob_pms ! number of global parameters
287 integer : : nrows_bp ! number of rows in basin predictor map
288 integer : : ncols_bp
289 integer : : n_pm_maps ! number of parameter maps
290 ! defined by ncols in glob_pms_LnTo
291 integer : : i
292 integer : : j
293

294 ! f ind number of rows and columns in basin predictor f i l e s − pm map should be same s ize
295 nrows_bp = s ize ( sand_0_10 ( : , 1 ) )
296 ncols_bp = s ize ( sand_0_10 ( 1 , : ) )
297 n_pm_maps = s ize ( glob_pms ( 1 , : ) )
298 a l l o ca te (pm_map( nrows_bp , ncols_bp ) )
299

300 ! vary transfer function , depending on user−inputted equation se l e c t i on .
301 s e l e c t case ( pedo_tf )
302

303 case ( 0 ) ! Fixed parameter
304

305 n_glob_pms = 1
306 DO i = 1 , nrows_bp
307 DO j = 1 , ncols_bp
308

309 pm_map( i , j ) = glob_pms (1 , n_i )
310

311 END DO
312 END DO
313

314 case ( 1 ) ! Global parameter
315

316 n_glob_pms = 1
317 DO i = 1 , nrows_bp
318 DO j = 1 , ncols_bp
319

320 pm_map( i , j ) = glob_pms (1 , n_i )
321

322 END DO
323 END DO
324

325

326 case ( 2 )
327 ! i f non−organic s o i l s ! Use pedo−transfer as Cosby et al . (1984) ,
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328 ! LnTo = a1 + a2 * %sand + a3 * %clay
329 ! i f organic s o i l s ! use HYPRES pt f excluding s i l t and clay ,
330 ! lnto = a + b ( BulkDensity )^2 + c ( OrganicMatter)^−1 +
331 ! d ( BulkDensity * OrganicMatter )
332

333 n_glob_pms = 7
334 DO i = 1 , nrows_bp
335 DO j = 1 , ncols_bp
336

337 ! check i f organic
338 ! IF ( bp_maps ( i , j , 16 ) == 1) THEN
339 IF ( bp_maps ( i , j ,4) >=35) THEN !now using organic threshold of more than 35%
340 !HYPRES function for organic s o i l s
341 pm_map( i , j ) = glob_pms (4 , n_i )+ ( glob_pms (5 , n_i )*bp_maps ( i , j ,15)* &
342 bp_maps ( i , j , 1 5 ) )
343 pm_map( i , j ) = pm_map( i , j ) + ( glob_pms (6 , n_i )* ( 1 / ( bp_maps ( i , j , 4 ) ) ) )
344 pm_map( i , j ) = pm_map( i , j ) + ( glob_pms (7 , n_i )*bp_maps ( i , j ,15)* &
345 bp_maps ( i , j , 4 ) )
346 ELSE
347 ! cosby et al . function for mineral s o i l s
348 pm_map( i , j ) = glob_pms (1 , n_i ) + ( glob_pms (2 , n_i )*sand_0_10 ( i , j ) )
349 pm_map( i , j ) = pm_map( i , j ) + ( glob_pms (3 , n_i )* clay_0_10 ( i , j ) )
350 END IF
351

352 END DO
353 END DO
354

355 case ( 3 )
356 ! i f non−organic s o i l s ! Use pedo−transfer as Cosby et al . (1984) ,
357 ! LnTo = a1 + a2 * %sand + a3 * %clay
358 ! i f organic s o i l s ! use HYPRES pt f excluding s i l t and clay ,
359 ! lnto = a + b ( BulkDensity )^2 + c ( OrganicMatter)^−1 + d ( BulkDensity * OrganicMatter )
360 ! i f highly productive hydrogeology ! add an extra global parameter .
361 n_glob_pms = 8
362 DO i = 1 , nrows_bp
363 DO j = 1 , ncols_bp
364

365 ! check i f organic
366 IF ( bp_maps ( i , j ,4) >=35) THEN !now using organic threshold of more than 35%
367 !HYPRES function for organic s o i l s
368 pm_map( i , j ) = glob_pms (4 , n_i )+ ( glob_pms (5 , n_i )*bp_maps ( i , j ,15)* &
369 bp_maps ( i , j , 1 5 ) )
370 pm_map( i , j ) = pm_map( i , j ) + ( glob_pms (6 , n_i )* ( 1 / ( bp_maps ( i , j , 4 ) ) ) )
371 pm_map( i , j ) = pm_map( i , j ) + ( glob_pms (7 , n_i )*bp_maps ( i , j ,15)* &
372 bp_maps ( i , j , 4 ) )
373 ELSE
374 ! cosby et al . function for mineral s o i l s
375 pm_map( i , j ) = glob_pms (1 , n_i ) + ( glob_pms (2 , n_i )*sand_0_10 ( i , j ) )
376 pm_map( i , j ) = pm_map( i , j ) + ( glob_pms (3 , n_i )* clay_0_10 ( i , j ) )
377 END IF
378

379 ! add extra global parameter i f high product iv i ty hydrogeology
380 IF ( bp_maps ( i , j , 18 ) == 1) THEN
381 pm_map( i , j ) = pm_map( i , j ) + glob_pms (8 , n_i )
382 END IF
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383 END DO
384 END DO
385

386 case default
387

388 print * , "ERROR: inval id pedo−transfer set t ing . "
389 stop
390

391

392 end s e l e c t
393

394 DO i = 1 ,nrows_bp
395 DO j = 1 , ncols_bp
396 ! add in upper and lower caps
397 IF (pm_map( i , j )<−15) THEN
398 pm_map( i , j )=−15
399 ELSEIF (pm_map( i , j ) >10) THEN
400 pm_map( i , j )=10
401 END IF
402 END DO
403 END DO
404

405 end subroutine pedotf_LnTo
406

407

408

409

410 end module mpr_LnTo
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C.7 mpr_SRinit.f90

1 ! ! Module containing subroutines for MPR. f90
2 ! ! This module contains a l l subroutines involving MPR for the SRinit parameter :
3 !
4 ! get_BasPred_SRinit Complete l o g i c a l l i s t o f basin predictors required for SRinit
5 ! init_gp_SRinit I n i t i a l i s e global parameters for SRinit
6 ! pedotf_SRinit Pedo−transfer function for SRinit
7

8 ! ! Rosie Lane − 31 st August 2017
9

10 module mpr_SRinit
11 contains
12

13

14 ! **********************************************************************************************
15 ! subroutine : get_BasPred_SRinit : Complete l o g i c a l l i s t o f basin predictors required for SRinit
16 ! **********************************************************************************************
17 ! Given the user−spec i f i ed pedo transfer function se lected for SRinit , th is subroutine adds to a
18 ! l o g i c a l l i s t o f required basin predictors , by spec i fy ing which predictors i t requires .
19

20 subroutine get_BasPred_SRinit ( pedo_tf_SRinit , req_so i l s )
21

22 imp l i c i t none
23

24 ! declare dummy arguments
25 integer , intent ( inout ) : : pedo_tf_SRinit ! pedo_tf_equation to be used
26 l og i ca l , dimension (* ) , intent ( inout ) : : r eq_so i l s ! s o i l s data required l o g i c a l
27

28 ! def ine required BasinPredictors for SRinit
29 s e l e c t case ( pedo_tf_SRinit )
30

31 case ( 0 ) ! f ixed parameter − no basin predictors required
32

33 case ( 1 ) ! g lobal parameter − no basin predictors required
34

35 case ( 2 ) ! Use a pedo−transfer equation
36 print * , "ERROR: A transfer function has not yet been programmed for SRinit "
37 print * , " Select pedo_tf = 0 to treat i t as a f ixed parameter "
38 print * , " Select pedo_tf = 1 to treat i t as a global parameter "
39 stop
40

41 case default
42 print * , "WARNING: a val id pedo−t f equation for SRinit must be spec i f i ed in " , &
43 " the contro l f i l e "
44 print * , " SRinit wi l l be set to the default o f f ixed parameter "
45 print * , "The fo l lowing options can be se lected in the contro l f i l e : "
46 print * , " pedo_tf_SRinit = 0 , sets i t as a f ixed parameter "
47 print * , " pedo_tf_SRinit = 1 , sets i t as a global parameter "
48 print * ,
49

50 pedo_tf_SRinit = 0
51

52 end s e l e c t
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53

54 end subroutine get_BasPred_SRinit
55

56

57

58

59

60 ! **********************************************************************************************
61 ! subroutine : init_gp_SRinit : I n i t i a l i s e global parameters for SRinit
62 ! **********************************************************************************************
63 ! This subroutine does the fo l lowing :
64 ! 1 . Defines how many global parameters ( n_glob_pms ) are needed for the user−spec i f i ed
65 ! t ransfer function
66 ! TF 0 : 1 global parameter
67 ! TF 1 : 3 global parameters
68 ! 2 . Defines min /max ranges for global parameters
69 ! 3 . Generates l i s t o f g lobal parameters using the rand function
70 ! − user spec i f i ed start_seed can be used to skip to any point in this l i s t
71 ! − global parameter l i s t i s o f dimensions number of global params by number of param
72 ! f i l e s needed
73 ! 4 . Transforms global parameters to be within set min /max ranges
74

75 subroutine init_gp_SRinit ( pedo_tf_SRinit , glob_pms_SRinit , n_pm_maps , start_seed , &
76 n_gp_all , pm_range )
77

78 use d t a _ u t i l i t y
79

80 imp l i c i t none
81

82 ! declare dummy variables
83 integer , intent ( in ) : : pedo_tf_SRinit
84 ! g lobal param l i s t
85 double precis ion , a l locatable , dimension ( : , : ) , intent ( inout ) : : glob_pms_SRinit
86 integer , intent ( in ) : : n_pm_maps
87 ! to s tart rand num generator
88 integer , intent ( in ) : : start_seed
89 ! vector o f number of global params for a l l params
90 integer , dimension ( 7 ) , intent ( inout ) : : n_gp_all
91 ! min , f ixed , max values for this parameter
92 double precis ion , dimension ( 3 ) , intent ( in ) : : pm_range
93

94 ! declare l o c a l variables
95 integer : : n_glob_pms ! number of global parameters
96 double precis ion , a l locatable , dimension ( : ) : : min_gp ! min values for global parameters
97 double precis ion , a l locatable , dimension ( : ) : : max_gp
98 real , dimension ( : , : ) , a l l o ca tab le : : rand_nums
99 double prec is ion : : num

100 integer , dimension (12) : : seed
101 integer : : i , j , rn_i
102

103

104 ! 1 . Define how many global parameters should ex i s t and min /max ranges , based on
105 ! se lected transfer function
106 s e l e c t case ( pedo_tf_SRinit )
107
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108 case ( 0 ) ! Treat as f ixed parameter ( for ease this i s a global parameter with a 0 range )
109

110 print * , " SRinit i s a f ixed parameter , o f value " ,pm_range ( 2 )
111 n_glob_pms = 1
112 a l l o ca te ( min_gp ( 1 ) ) ! min and max values have length 1 , as we have 1 global parameter
113 a l l o ca te (max_gp ( 1 ) )
114 min_gp ( 1 ) = pm_range ( 2 ) ! min and max values set to same f ixed parameter value .
115 max_gp ( 1 ) = pm_range ( 2 )
116

117 case ( 1 ) ! Treat as global parameter
118

119 print * , " SRinit i s a global parameter , in the range " ,pm_range ( 1 ) , " " ,pm_range ( 3 )
120 n_glob_pms = 1
121 a l l o ca te ( min_gp ( 1 ) ) ! min and max values have length 1 , as we have 1 global parameter
122 a l l o ca te (max_gp ( 1 ) )
123 min_gp ( 1 ) = pm_range ( 1 ) ! min and max values set from parameter f i l e
124 max_gp ( 1 ) = pm_range ( 3 )
125

126 case default
127 print * , "ERROR: pedo_tf_SRinit incor rec t l y defined . "
128

129 end s e l e c t
130

131 ! 2 . From above , set s i zes of the global parameter array and number of random numbers
132 ! to produce .
133 n_gp_all ( 4 ) = n_glob_pms
134

135 a l l o ca te ( glob_pms_SRinit ( n_glob_pms , n_pm_maps ) )
136 a l l o ca te ( rand_nums (sum( n_gp_all ) , n_pm_maps+start_seed −1))
137

138 ! generate l i s t s o f g lobal parameters between min and max ranges , o f length n
139 ! need to have l i s t such that start ing seed = 50 would give same resul t as 50th number
140 ! from seed=1
141 Call RANDOM_SEED( GET = seed )
142 seed ( 1 : 1 2 ) = ( / 3 ,3 ,3 ,3 ,3 ,3 ,3 ,3 ,3 ,3 ,3 ,3 / )
143 Call RANDOM_SEED( PUT = seed )
144 c a l l RANDOM_NUMBER ( rand_nums )
145

146

147 !now normalise random numbers to within bounds
148

149 DO i = 1 , n_glob_pms
150 DO j = start_seed , start_seed+n_pm_maps−1
151 ! rn_i i s index for the random number
152 rn_i = (sum( n_gp_all ) − n_glob_pms ) + i
153 ! the appropriate random number , in range 0−1
154 num = rand_nums ( rn_i , j )
155 ! normalise the random number to given min /max
156 num = (num * (max_gp ( i )−min_gp ( i ) ) ) + min_gp ( i )
157 glob_pms_SRinit ( i , j−start_seed +1) = num
158

159 END DO
160 IF (n_pm_maps >= 2) THEN
161 print * , ’ F irst 2 values for parameter ’ , i , ’ : ’ , glob_pms_SRinit ( : , 1 : 2 )
162 END IF
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163 END DO
164

165

166 print * ,
167

168 end subroutine init_gp_SRinit
169

170

171

172

173

174 ! **********************************************************************************************
175 ! subroutine : pedotf_SRinit : Pedo−transfer function for SRinit
176 ! **********************************************************************************************
177 ! This routine takes n_i , s igna l l ing that we are now calcu lat ing parameter map n_i out of n ,
178 ! I t takes the l i s t o f g lobal parameters and required basin predictors , and from that
179 ! appl ies the pedo−transfer functions to produce a parameter map.
180

181 subroutine pedotf_SRinit ( n_i , pedo_tf , glob_pms , bp , pm_map)
182

183 imp l i c i t none
184

185 ! declare dummy variables
186 ! param map number to do
187 integer , intent ( in ) : : n_i
188 ! equation se l e c t i on
189 integer , intent ( in ) : : pedo_tf
190 ! l i s t o f g lobal params
191 double precis ion , dimension ( : , : ) , a l locatable , intent ( in ) : : glob_pms
192 ! basin predictor map ( for s iz ing )
193 real , dimension ( : , : ) , a l locatable , intent ( in ) : : bp
194 ! output parameter map
195 double precis ion , dimension ( : , : ) , a l locatable , intent ( out ) : : pm_map
196

197 ! declare l o c a l variables
198 integer : : n_glob_pms ! number of global parameters
199 integer : : n_pm_maps ! number of parameter maps
200 ! defined by ncols in glob_pms_SRinit
201 integer : : i
202 integer : : j
203 integer : : nrows_bp ! number of rows in basin predictor map
204 integer : : ncols_bp
205

206

207 ! f ind number of rows and columns in basin predictor f i l e s − pm map should be same s ize
208 nrows_bp = s ize ( bp ( : , 1 ) )
209 ncols_bp = s ize ( bp ( 1 , : ) )
210 n_pm_maps = s ize ( glob_pms ( 1 , : ) )
211 ! f ind number of rows and columns in basin predictor f i l e s − pm map should be same s ize
212 n_pm_maps = s ize ( glob_pms ( 1 , : ) )
213 a l l o ca te (pm_map( nrows_bp , ncols_bp ) )
214

215 ! vary transfer function , depending on user−inputted equation se l e c t i on .
216 s e l e c t case ( pedo_tf )
217
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218 case ( 0 ) ! Fixed parameter
219

220 n_glob_pms = 1
221 DO i = 1 , nrows_bp
222 DO j = 1 , ncols_bp
223

224 pm_map( i , j ) = glob_pms (1 , n_i )
225

226 END DO
227 END DO
228

229 case ( 1 ) ! Global parameter
230

231 n_glob_pms = 1
232 DO i = 1 , nrows_bp
233 DO j = 1 , ncols_bp
234

235 pm_map( i , j ) = glob_pms (1 , n_i )
236

237 END DO
238 END DO
239

240 case default
241 print * , "ERROR: inval id pedo−transfer set t ing . "
242 stop
243

244 end s e l e c t
245

246 end subroutine pedotf_SRinit
247

248

249

250

251 end module mpr_SRinit
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C.8 mpr_Td.f90

1 ! ! Module containing subroutines for MPR. f90
2 ! ! This module contains a l l subroutines involving MPR for the Td parameter :
3 !
4 ! get_BasPred_Td Complete l o g i c a l l i s t o f basin predictors required for Td
5 ! init_gp_Td I n i t i a l i s e global parameters for Td
6 ! pedotf_Td Pedo−transfer function for Td
7

8 ! ! Rosie Lane − 31 st August 2017
9

10 module mpr_Td
11 contains
12

13

14 ! **********************************************************************************************
15 ! subroutine : get_BasPred_Td : Complete l o g i c a l l i s t o f basin predictors required for Td
16 ! **********************************************************************************************
17 ! Given the user−spec i f i ed pedo transfer function se lected for Td , th is subroutine adds to a
18 ! l o g i c a l l i s t o f required basin predictors , by spec i fy ing which predictors i t requires .
19

20 subroutine get_BasPred_Td ( pedo_tf_Td , req_so i l s )
21

22 imp l i c i t none
23

24 ! declare dummy arguments
25 integer , intent ( inout ) : : pedo_tf_Td ! pedo_tf_equation to be used
26 l og i ca l , dimension (* ) , intent ( inout ) : : r eq_so i l s ! s o i l s data required l o g i c a l
27

28 ! def ine required BasinPredictors for Td
29 s e l e c t case ( pedo_tf_Td )
30

31 case ( 0 ) ! f ixed parameter − no basin predictors required
32

33 case ( 1 ) ! g lobal parameter − no basin predictors required
34

35 case ( 2 ) ! mult ip l ier on ln (T0)
36 ! print * , "Td transfer function se lected i s Cosby et al . (1984)"
37 ! r eq_so i l s ( 1 ) = . true . ! sand
38 ! r eq_so i l s ( 3 ) = . true . ! c lay
39 ! r eq_so i l s ( 4 ) = . true . ! organic content
40 ! r eq_so i l s (15) = . true . ! bulk density
41 ! r eq_so i l s (16) = . true . ! i s organic ? Logical
42

43 case default
44 print * , "WARNING: a val id pedo−t f equation for Td must be spec i f i ed in the " " , &
45 contro l f i l e "
46 print * , "Td wi l l be set to the default o f f ixed parameter "
47 print * , "The fo l lowing options can be se lected in the contro l f i l e : "
48 print * , " pedo_tf_Td = 0 , sets i t as a f ixed parameter "
49 print * , " pedo_tf_Td = 1 , sets i t as a global parameter "
50 print * ,
51

52 pedo_tf_Td = 0
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53

54 end s e l e c t
55

56 end subroutine get_BasPred_Td
57

58

59

60

61

62 ! **********************************************************************************************
63 ! subroutine : init_gp_Td : I n i t i a l i s e global parameters for Td
64 ! **********************************************************************************************
65 ! This subroutine does the fo l lowing :
66 ! 1 . Defines how many global parameters ( n_glob_pms ) are needed for the user−spec i f i ed
67 ! t ransfer function
68 ! TF 0 : 1 global parameter
69 ! TF 1 : 3 global parameters
70 ! 2 . Defines min /max ranges for global parameters
71 ! 3 . Generates l i s t o f g lobal parameters using the rand function
72 ! − user spec i f i ed start_seed can be used to skip to any point in this l i s t
73 ! − global parameter l i s t i s o f dimensions number of global params by number of param
74 ! f i l e s needed
75 ! 4 . Transforms global parameters to be within set min /max ranges
76

77 subroutine init_gp_Td ( pedo_tf_Td , glob_pms_Td , n_pm_maps , start_seed , n_gp_all , pm_range )
78

79 use d t a _ u t i l i t y
80

81 imp l i c i t none
82

83 ! declare dummy variables
84 integer , intent ( in ) : : pedo_tf_Td
85 ! g lobal param l i s t
86 double precis ion , a l locatable , dimension ( : , : ) , intent ( inout ) : : glob_pms_Td
87 integer , intent ( in ) : : n_pm_maps
88 ! to s tart rand num generator
89 integer , intent ( in ) : : start_seed
90 ! vector o f number of global params for a l l params
91 integer , dimension ( 7 ) , intent ( inout ) : : n_gp_all
92 ! min , f ixed , max values for this parameter
93 double precis ion , dimension ( 3 ) , intent ( in ) : : pm_range
94

95 ! declare l o c a l variables
96 integer : : n_glob_pms ! number of global parameters
97 double precis ion , a l locatable , dimension ( : ) : : min_gp ! min values for global parameters
98 double precis ion , a l locatable , dimension ( : ) : : max_gp
99 real , dimension ( : , : ) , a l l o ca tab le : : rand_nums

100 double prec is ion : : num
101 integer , dimension (12) : : seed
102 integer : : i , j , rn_i
103

104

105 ! 1 . Define how many global parameters should ex i s t and min /max ranges , based on se lected
106 ! t ransfer function
107 s e l e c t case ( pedo_tf_Td )
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108

109 case ( 0 ) ! Treat as f ixed parameter ( for ease this i s a global parameter with a 0 range )
110

111 print * , "Td i s a f ixed parameter , o f value " ,pm_range ( 2 )
112 n_glob_pms = 1
113 a l l o ca te ( min_gp ( 1 ) ) ! min and max values have length 1 , as we have 1 global parameter
114 a l l o ca te (max_gp ( 1 ) )
115 min_gp ( 1 ) = pm_range ( 2 ) ! min and max values set to same f ixed parameter value .
116 max_gp ( 1 ) = pm_range ( 2 )
117

118 case ( 1 ) ! Treat as global parameter
119

120 print * , "Td i s a global parameter , in the range " ,pm_range ( 1 ) , " " ,pm_range ( 3 )
121 n_glob_pms = 1
122 a l l o ca te ( min_gp ( 1 ) ) ! min and max values have length 1 , as we have 1 global parameter
123 a l l o ca te (max_gp ( 1 ) )
124 min_gp ( 1 ) = pm_range ( 1 ) ! min and max values set from parameter f i l e
125 max_gp ( 1 ) = pm_range ( 3 )
126

127 case ( 2 ) ! mult ip l ier on ln (T0)
128

129

130 n_glob_pms = 1
131 a l l o ca te ( min_gp ( 1 ) ) ! min and max values have length 1 , as we have 1 global parameter
132 a l l o ca te (max_gp ( 1 ) )
133 min_gp ( 1 ) = 1 ! min and max values set from parameter f i l e
134 max_gp ( 1 ) = 10
135 print * , "Td i s a mult ip l ier on ln (T0 ) . "
136

137

138 case default
139 print * , "ERROR: pedo_tf_Td incor rec t l y defined . "
140

141 end s e l e c t
142

143 ! 2 . From above , set s izes of the global parameter array and number of random numbers
144 ! to produce .
145 n_gp_all ( 6 ) = n_glob_pms
146

147 a l l o ca te ( glob_pms_Td ( n_glob_pms , n_pm_maps ) )
148 a l l o ca te ( rand_nums (sum( n_gp_all ) , n_pm_maps+start_seed −1))
149

150 ! generate l i s t s o f g lobal parameters between min and max ranges , o f length n
151 ! need to have l i s t such that start ing seed = 50 would give same resul t as 50th number
152 ! from seed=1
153 Call RANDOM_SEED( GET = seed )
154 seed ( 1 : 1 2 ) = ( / 3 ,3 ,3 ,3 ,3 ,3 ,3 ,3 ,3 ,3 ,3 ,3 / )
155 Call RANDOM_SEED( PUT = seed )
156 c a l l RANDOM_NUMBER ( rand_nums )
157

158

159

160 !now normalise random numbers to within bounds
161

162 DO i = 1 , n_glob_pms
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163 DO j = start_seed , start_seed+n_pm_maps−1
164

165 ! rn_i i s index for the random number
166 rn_i = (sum( n_gp_all ) − n_glob_pms ) + i
167 ! the appropriate random number , in range 0−1
168 num = rand_nums ( rn_i , j )
169 ! normalise the random number to given min /max
170 num = (num * (max_gp ( i )−min_gp ( i ) ) ) + min_gp ( i )
171 glob_pms_Td ( i , j−start_seed +1) = num
172

173 END DO
174 IF (n_pm_maps >= 2) THEN
175 print * , ’ F irst 2 values for parameter ’ , i , ’ : ’ , glob_pms_Td ( : , 1 : 2 )
176 END IF
177 END DO
178

179

180 print * ,
181

182 end subroutine init_gp_Td
183

184

185

186

187

188 ! **********************************************************************************************
189 ! subroutine : pedotf_LnTo : Pedo−transfer function for LnTo
190 ! **********************************************************************************************
191 ! This routine takes n_i , s igna l l ing that we are now calcu lat ing parameter map n_i out o f n ,
192 ! I t takes the l i s t o f g lobal parameters and required basin predictors , and from that
193 ! appl ies the pedo−transfer functions to produce a parameter map.
194

195 subroutine pedotf_Td ( n_i , pedo_tf , glob_pms , bp , pm_map, lnto_map )
196

197 imp l i c i t none
198

199 ! declare dummy variables
200 ! param map number to do
201 integer , intent ( in ) : : n_i
202 ! equation se l e c t i on
203 integer , intent ( in ) : : pedo_tf
204 ! l i s t o f g lobal params
205 double precis ion , dimension ( : , : ) , a l locatable , intent ( in ) : : glob_pms
206 ! basin predictor map ( for s iz ing )
207 real , dimension ( : , : ) , a l locatable , intent ( in ) : : bp
208 ! output parameter map
209 double precis ion , dimension ( : , : ) , a l locatable , intent ( out ) : : pm_map
210 !map for lnto parameter
211 double precis ion , dimension ( : , : ) , a l locatable , intent ( in ) : : lnto_map
212

213 ! declare l o c a l variables
214 integer : : n_glob_pms ! number of global parameters
215 integer : : n_pm_maps ! number of parameter maps
216 ! defined by ncols in glob_pms_Td
217 integer : : i
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218 integer : : j
219 integer : : nrows_bp ! number of rows in basin predictor map
220 integer : : ncols_bp
221

222

223 ! f ind number of rows and columns in basin predictor f i l e s − pm map should be same s ize
224 nrows_bp = s ize ( bp ( : , 1 ) )
225 ncols_bp = s ize ( bp ( 1 , : ) )
226 n_pm_maps = s ize ( glob_pms ( 1 , : ) )
227 ! f ind number of rows and columns in basin predictor f i l e s − pm map should be same s ize
228 n_pm_maps = s ize ( glob_pms ( 1 , : ) )
229 a l l o ca te (pm_map( nrows_bp , ncols_bp ) )
230

231 ! vary transfer function , depending on user−inputted equation se l e c t i on .
232 s e l e c t case ( pedo_tf )
233

234 case ( 0 ) ! Fixed parameter
235

236 n_glob_pms = 1
237 DO i = 1 , nrows_bp
238 DO j = 1 , ncols_bp
239

240 pm_map( i , j ) = glob_pms (1 , n_i )
241

242 END DO
243 END DO
244

245 case ( 1 ) ! Global parameter
246

247 n_glob_pms = 1
248 DO i = 1 , nrows_bp
249 DO j = 1 , ncols_bp
250

251 pm_map( i , j ) = glob_pms (1 , n_i )
252

253 END DO
254 END DO
255

256 case ( 2 ) ! mult ip l ier on ln (T0 ) : Td = a*exp ( lnto )
257

258 n_glob_pms = 1
259 DO i = 1 , nrows_bp
260 DO j = 1 , ncols_bp
261

262 !pm_map( i , j ) = glob_pms (1 , n_i )* ( lnto_map ( i , j )+20)
263 pm_map( i , j ) = glob_pms (1 , n_i )*EXP( lnto_map ( i , j ) )
264

265 END DO
266 END DO
267

268

269

270 case default
271 print * , "ERROR: inval id pedo−transfer set t ing . "
272 stop
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273

274 end s e l e c t
275

276 ! set a l imi t − to stop crazy values of 6x10^25 causing crashes !
277 DO i = 1 ,nrows_bp
278 DO j = 1 , ncols_bp
279 ! add in upper and lower caps
280 IF (pm_map( i , j ) <0.01) THEN
281 pm_map( i , j )=0.01
282 ELSEIF (pm_map( i , j ) >200) THEN
283 pm_map( i , j )=200
284 END IF
285 END DO
286 END DO
287

288

289 end subroutine pedotf_Td
290

291

292

293

294 end module mpr_Td
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C.9 mpr_CHV.f90

1 ! ! Module containing subroutines for MPR. f90
2 ! ! This module contains a l l subroutines involving MPR for the CHV parameter :
3 !
4 ! get_BasPred_CHV Complete l o g i c a l l i s t o f basin predictors required for CHV
5 ! init_gp_CHV I n i t i a l i s e global parameters for CHV
6 ! pedotf_CHV Pedo−transfer function for CHV
7

8 ! ! Rosie Lane − 31 st August 2017
9

10 module mpr_CHV
11 contains
12

13

14 ! **********************************************************************************************
15 ! subroutine : get_BasPred_CHV : Complete l o g i c a l l i s t o f basin predictors required for CHV
16 ! **********************************************************************************************
17 ! Given the user−spec i f i ed pedo transfer function se lected for CHV, this subroutine adds to a
18 ! l o g i c a l l i s t o f required basin predictors , by spec i fy ing which predictors i t requires .
19 subroutine get_BasPred_CHV ( pedo_tf_CHV , req_so i l s )
20

21 imp l i c i t none
22

23 ! declare dummy arguments
24 integer , intent ( inout ) : : pedo_tf_CHV ! pedo_tf_equation to be used
25 l og i ca l , dimension (* ) , intent ( inout ) : : r eq_so i l s ! s o i l s data required l o g i c a l
26

27 ! def ine required BasinPredictors for CHV
28 s e l e c t case ( pedo_tf_CHV )
29

30 case ( 0 ) ! f ixed parameter − no basin predictors required
31

32 case ( 1 ) ! g lobal parameter − no basin predictors required
33

34 case ( 2 ) ! Use a pedo−transfer equation
35 print * , "ERROR: A transfer function has not yet been programmed for CHV"
36 print * , " Select pedo_tf = 0 to treat i t as a f ixed parameter "
37 print * , " Select pedo_tf = 1 to treat i t as a global parameter "
38

39 case default
40 print * , "WARNING: a val id pedo−t f equation for CHV must be spec i f i ed in the " , &
41 " contro l f i l e "
42 print * , "CHV wi l l be set to the default o f f ixed parameter "
43 print * , "The fo l lowing options can be se lected in the contro l f i l e : "
44 print * , " pedo_tf_CHV = 0 , sets i t as a f ixed parameter "
45 print * , " pedo_tf_CHV = 1 , sets i t as a global parameter "
46 print * ,
47

48 pedo_tf_CHV = 0
49

50 end s e l e c t
51

52 end subroutine get_BasPred_CHV
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53

54 ! **********************************************************************************************
55 ! subroutine : init_gp_CHV : I n i t i a l i s e global parameters for CHV
56 ! **********************************************************************************************
57 ! This subroutine does the fo l lowing :
58 ! 1 . Defines how many global parameters ( n_glob_pms ) are needed
59 ! TF 0 : 0 global parameter
60 ! TF 1 : 1 global parameters
61 ! 2 . Defines min /max ranges for global parameters
62 ! 3 . Generates l i s t o f g lobal parameters using the rand function
63 ! − user spec i f i ed start_seed can be used to skip to any point in this l i s t
64 ! 4 . Transforms global parameters to be within set min /max ranges
65 subroutine init_gp_CHV ( pedo_tf_CHV , glob_pms_CHV , n_pm_maps , start_seed , n_gp_all , pm_range )
66

67 use d t a _ u t i l i t y
68

69 imp l i c i t none
70

71 ! declare dummy variables
72 ! ( start_seed i s given to start rand num generator )
73 ! ( n_gp_all i s the vector o f number of global params for a l l params )
74 ! ( pm_range i s the min , f ixed , max values for th is parameter )
75 integer , intent ( in ) : : pedo_tf_CHV
76 double precis ion , a l locatable , dimension ( : , : ) , intent ( inout ) : : glob_pms_CHV
77 integer , intent ( in ) : : n_pm_maps
78 integer , intent ( in ) : : start_seed
79 integer , dimension ( 7 ) , intent ( inout ) : : n_gp_all
80 double precis ion , dimension ( 3 ) , intent ( in ) : : pm_range
81

82 ! declare l o c a l variables
83 ! ( n_glob_pms i s the number of global parameters )
84 ! ( min_gp / max_gp are the min /max values for the global parameters )
85 integer : : n_glob_pms
86 double precis ion , a l locatable , dimension ( : ) : : min_gp
87 double precis ion , a l locatable , dimension ( : ) : : max_gp
88 real , dimension ( : , : ) , a l l o ca tab le : : rand_nums
89 double prec is ion : : num
90 integer , dimension (12) : : seed
91 integer : : i , j , rn_i
92

93

94 ! 1 . Define how many global parameters should ex i s t and min /max ranges ,
95 ! based on se lected transfer function
96 s e l e c t case ( pedo_tf_CHV )
97

98 case ( 0 ) ! Treat as f ixed parameter
99

100 print * , "CHV i s a f ixed parameter , o f value " ,pm_range ( 2 )
101 n_glob_pms = 1
102 a l l o ca te ( min_gp ( 1 ) )
103 a l l o ca te (max_gp ( 1 ) )
104 min_gp ( 1 ) = pm_range ( 2 ) ! min and max values set to same f ixed parameter value .
105 max_gp ( 1 ) = pm_range ( 2 )
106

107 case ( 1 ) ! Treat as global parameter
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108

109 print * , "CHV i s a global parameter , in the range " ,pm_range ( 1 ) , " " ,pm_range ( 3 )
110 n_glob_pms = 1
111 a l l o ca te ( min_gp ( 1 ) )
112 a l l o ca te (max_gp ( 1 ) )
113 min_gp ( 1 ) = pm_range ( 1 )
114 max_gp ( 1 ) = pm_range ( 3 )
115

116 case default
117 print * , "ERROR: pedo_tf_CHV incor rec t l y defined . "
118

119 end s e l e c t
120

121 ! 2 . From above , set s izes of the global parameter array
122 ! and number of random numbers to produce .
123 n_gp_all ( 5 ) = n_glob_pms
124

125 a l l o ca te ( glob_pms_CHV ( n_glob_pms , n_pm_maps ) )
126 a l l o ca te ( rand_nums (sum( n_gp_all ) , n_pm_maps+start_seed −1))
127

128 ! generate l i s t s o f g lobal parameters between min and max ranges , o f length n
129 ! need to have l i s t such that start ing seed = 50 would give same resul t as
130 ! 50th number from seed=1
131 Call RANDOM_SEED( GET = seed )
132 seed ( 1 : 1 2 ) = ( / 3 ,3 ,3 ,3 ,3 ,3 ,3 ,3 ,3 ,3 ,3 ,3 / )
133 Call RANDOM_SEED( PUT = seed )
134 c a l l RANDOM_NUMBER ( rand_nums )
135

136

137 !now normalise random numbers to within bounds
138 ! rn_i i s index for the random number
139 DO i = 1 , n_glob_pms
140 DO j = start_seed , start_seed+n_pm_maps−1
141

142 rn_i = (sum( n_gp_all ) − n_glob_pms )+ i
143 num = rand_nums ( rn_i , j )
144 num = (num * (max_gp ( i )−min_gp ( i ) ) ) + min_gp ( i )
145 glob_pms_CHV ( i , j−start_seed +1) = num
146

147 END DO
148 IF (n_pm_maps >= 2) THEN
149 print * , ’ F irst 2 values for parameter ’ , i , ’ : ’ ,glob_pms_CHV ( i , 1 : 2 )
150 END IF
151 END DO
152

153 print * ,
154

155 end subroutine init_gp_CHV
156

157

158 ! **********************************************************************************************
159 ! subroutine : pedotf_CHV : Pedo−transfer function for CHV
160 ! **********************************************************************************************
161 ! This routine takes n_i , s igna l l ing that we are now calcu lat ing parameter map n_i out of n ,
162 ! I t takes the l i s t o f g lobal parameters and required basin predictors , and from that
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163 ! appl ies the pedo−transfer functions to produce a parameter map.
164 subroutine pedotf_CHV ( n_i , pedo_tf , glob_pms , bp , pm_map)
165

166 imp l i c i t none
167

168 ! declare dummy variables
169 ! n_i i s the param map number to do
170 ! pedo_tf i s the equation number se lected
171 ! glob_pms i s the l i s t o f g lobal params , bp i s the basin predictor map
172 integer , intent ( in ) : : n_i
173 integer , intent ( in ) : : pedo_tf
174 double precis ion , dimension ( : , : ) , a l locatable , intent ( in ) : : glob_pms
175 real , dimension ( : , : ) , a l locatable , intent ( in ) : : bp
176 double precis ion , dimension ( : , : ) , a l locatable , intent ( out ) : : pm_map
177

178 ! declare l o c a l variables
179 integer : : n_glob_pms ! number of global parameters
180 integer : : n_pm_maps ! number of parameter maps
181 integer : : i
182 integer : : j
183 integer : : nrows_bp ! number of rows in basin predictor map
184 integer : : ncols_bp
185

186 ! f ind number of rows and columns in basin predictor f i l e s
187 nrows_bp = s ize ( bp ( : , 1 ) )
188 ncols_bp = s ize ( bp ( 1 , : ) )
189 n_pm_maps = s ize ( glob_pms ( 1 , : ) )
190

191 ! f ind number of rows and columns in basin predictor f i l e s − pm map should be same s ize
192 n_pm_maps = s ize ( glob_pms ( 1 , : ) )
193 a l l o ca te (pm_map( nrows_bp , ncols_bp ) )
194

195 ! vary transfer function , depending on user−inputted equation se l e c t i on .
196 s e l e c t case ( pedo_tf )
197

198 case ( 0 ) ! Fixed parameter
199 n_glob_pms = 1
200 DO i = 1 , nrows_bp
201 DO j = 1 , ncols_bp
202

203 pm_map( i , j ) = glob_pms (1 , n_i )
204

205 END DO
206 END DO
207

208 case ( 1 ) ! Global parameter
209 n_glob_pms = 1
210 DO i = 1 , nrows_bp
211 DO j = 1 , ncols_bp
212

213 pm_map( i , j ) = glob_pms (1 , n_i )
214

215 END DO
216 END DO
217
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218 case default
219 print * , "ERROR: inval id pedo−transfer set t ing . "
220

221 end s e l e c t
222

223 end subroutine pedotf_CHV
224

225

226 end module mpr_CHV
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C.10 mpr_SRmax.f90

1 ! ! Module containing subroutines for MPR. f90
2 ! ! This module contains a l l subroutines involving MPR for the SRmax parameter :
3 !
4 ! get_BasPred_SRmax Complete l o g i c a l l i s t o f basin predictors required for SRmax
5 ! init_gp_SRmax I n i t i a l i s e global parameters for SRmax
6 ! pedotf_SRmax Pedo−transfer function for SRmax
7

8 ! ! Rosie Lane − 31 st August 2017
9

10 module mpr_SRmax
11 contains
12

13

14 ! **********************************************************************************************
15 ! subroutine : get_BasPred_SRmax : Complete l o g i c a l l i s t o f basin predictors required for SRmax
16 ! **********************************************************************************************
17 ! Given the user−spec i f i ed pedo transfer function se lected for SRmax , this subroutine adds to a
18 ! l o g i c a l l i s t o f required basin predictors , by spec i fy ing which predictors i t requires .
19

20 subroutine get_BasPred_SRmax ( pedo_tf_SRmax , req_so i l s )
21

22 imp l i c i t none
23

24 ! declare dummy arguments
25 integer , intent ( inout ) : : pedo_tf_SRmax ! pedo_tf_equation to be used
26 l og i ca l , dimension (* ) , intent ( inout ) : : r eq_so i l s ! s o i l s data required l o g i c a l
27

28 ! def ine required BasinPredictors for SRmax
29 s e l e c t case ( pedo_tf_SRmax )
30

31 case ( 0 ) ! f ixed parameter − no basin predictors required
32

33 case ( 1 ) ! g lobal parameter − no basin predictors required
34

35 case ( 2 ) ! pt f based on landcover map and rooting depth conversion table
36

37 req_so i l s (12 :13 ) = ( / . true . , . true . / ) ! landcover map and landcover ranges table
38 req_so i l s (17) = . true . ! poros i ty
39

40 case ( 3 )
41 print * , "ERROR: A transfer function has not yet been programmed for SRmax"
42 print * , " Select pedo_tf = 0 to treat i t as a f ixed parameter "
43 print * , " Select pedo_tf = 1 to treat i t as a global parameter "
44 print * , " Select pedo_tf = 2 for pt f based on landcover and rooting depth "
45 stop
46

47 case default
48 print * , "WARNING: a val id pedo−t f equation for SRmax must be spec i f i ed in the " , &
49 " contro l f i l e "
50 print * , "SRmax wi l l be set to the default o f f ixed parameter "
51 print * , "The fo l lowing options can be se lected in the contro l f i l e : "
52 print * , " pedo_tf_SRmax = 0 , sets i t as a f ixed parameter "
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53 print * , " pedo_tf_SRmax = 1 , sets i t as a global parameter "
54 print * , " pedo_tf_SRmax = 2 , pt f based on landcover and rooting depth "
55 print * ,
56

57 pedo_tf_SRmax = 0
58

59 end s e l e c t
60

61 end subroutine get_BasPred_SRmax
62

63

64

65

66

67 ! **********************************************************************************************
68 ! subroutine : init_gp_SRmax : I n i t i a l i s e global parameters for SRmax
69 ! **********************************************************************************************
70 ! This subroutine does the fo l lowing :
71 ! 1 . Defines how many global parameters ( n_glob_pms ) are needed for the user−spec i f i ed
72 ! t ransfer function
73 ! TF 0 : 1 global parameter
74 ! TF 1 : 3 global parameters
75 ! 2 . Defines min /max ranges for global parameters
76 ! 3 . Generates l i s t o f g lobal parameters using the rand function
77 ! − user spec i f i ed start_seed can be used to skip to any point in this l i s t
78 ! − global parameter l i s t i s o f dimensions number of global params by number of param
79 ! f i l e s needed
80 ! 4 . Transforms global parameters to be within set min /max ranges
81

82 subroutine init_gp_SRmax ( pedo_tf_SRmax , glob_pms_SRmax , n_pm_maps , start_seed , n_gp_all , pm_range , &
83 bp_root_depths )
84

85 use d t a _ u t i l i t y
86

87 imp l i c i t none
88

89 ! declare dummy variables
90 integer , intent ( in ) : : pedo_tf_SRmax
91 ! g lobal param l i s t
92 double precis ion , a l locatable , dimension ( : , : ) , intent ( inout ) : : glob_pms_SRmax
93 integer , intent ( in ) : : n_pm_maps
94 ! to s tart rand num generator
95 integer , intent ( in ) : : start_seed
96 ! vector o f number of global params for a l l params
97 integer , dimension ( 7 ) , intent ( inout ) : : n_gp_all
98 ! min , f ixed , max values for this parameter
99 double precis ion , dimension ( 3 ) , intent ( in ) : : pm_range

100 real , a l locatable , dimension ( : , : ) , intent ( in ) : : bp_root_depths
101

102 ! declare l o c a l variables
103 integer : : n_glob_pms ! number of global parameters
104 double precis ion , a l locatable , dimension ( : ) : : min_gp ! min values for global parameters
105 double precis ion , a l locatable , dimension ( : ) : : max_gp
106 real , dimension ( : , : ) , a l l o ca tab le : : rand_nums
107 double prec is ion : : num
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108 integer , dimension (12) : : seed
109 integer : : i , j , rn_i
110

111

112 ! 1 . Define how many global parameters should ex i s t and min /max ranges , based on se lected
113 ! t ransfer function
114 s e l e c t case ( pedo_tf_SRmax )
115

116 case ( 0 ) ! Treat as f ixed parameter ( for ease this i s a global parameter with a 0 range )
117

118 print * , "SRmax i s a f ixed parameter , o f value " ,pm_range ( 2 )
119 n_glob_pms = 1
120 a l l o ca te ( min_gp ( 1 ) ) ! min and max values have length 1 , as we have 1 global parameter
121 a l l o ca te (max_gp ( 1 ) )
122 min_gp ( 1 ) = pm_range ( 2 ) ! min and max values set to same f ixed parameter value .
123 max_gp ( 1 ) = pm_range ( 2 )
124

125 case ( 1 ) ! Treat as global parameter
126

127 print * , "SRmax i s a global parameter , in the range " ,pm_range ( 1 ) , " " ,pm_range ( 3 )
128 n_glob_pms = 1
129 a l l o ca te ( min_gp ( 1 ) ) ! min and max values have length 1 , as we have 1 global parameter
130 a l l o ca te (max_gp ( 1 ) )
131 min_gp ( 1 ) = pm_range ( 1 ) ! min and max values set from parameter f i l e
132 max_gp ( 1 ) = pm_range ( 3 )
133

134 case ( 2 ) ! Pedotransfer function ! ! !
135

136 print * , "SRmax wi l l use a pedotransfer function based on rooting depths and landuse "
137 print * , "SRmax i s a i f LU=1 , b i f LU=2 , c i f LU=3 etc , *d "
138

139 ! a l l o ca te number of global parameters
140

141 n_glob_pms = s ize ( bp_root_depths ( : , 1 ) ) + 1
142 a l l o ca te ( min_gp ( n_glob_pms ) )
143 a l l o ca te (max_gp ( n_glob_pms ) )
144

145 ! set global parameter ranges − from s o i l root ing zone table
146 DO i = 1 ,n_glob_pms−1
147 min_gp ( i ) = bp_root_depths ( i , 2 )
148 max_gp ( i ) = bp_root_depths ( i , 4 )
149 END DO
150

151 ! set global parameter scal ing ranges
152 min_gp ( n_glob_pms ) = 0.000005
153 max_gp ( n_glob_pms ) = 0.00005
154

155 case default
156 print * , "ERROR: pedo_tf_SRmax incor rec t l y defined . "
157

158 end s e l e c t
159

160 ! 2 . From above , set s i zes of the global parameter array and number of random numbers
161 ! to produce .
162 n_gp_all ( 3 ) = n_glob_pms
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163

164 a l l o ca te ( glob_pms_SRmax ( n_glob_pms , n_pm_maps ) )
165 a l l o ca te ( rand_nums (sum( n_gp_all ) , n_pm_maps+start_seed −1))
166

167 ! generate l i s t s o f g lobal parameters between min and max ranges , o f length n
168 ! need to have l i s t such that start ing seed = 50 would give same resul t as 50th number
169 ! from seed=1
170 Call RANDOM_SEED( GET = seed )
171 seed ( 1 : 1 2 ) = ( / 3 ,3 ,3 ,3 ,3 ,3 ,3 ,3 ,3 ,3 ,3 ,3 / )
172 Call RANDOM_SEED( PUT = seed )
173 c a l l RANDOM_NUMBER ( rand_nums )
174

175

176 !now normalise random numbers to within bounds
177

178 DO i = 1 , n_glob_pms
179 DO j = start_seed , start_seed+n_pm_maps−1
180 ! rn_i i s index for the random number
181 rn_i = (sum( n_gp_all ) − n_glob_pms )+ i
182 ! the appropriate random number , in range 0−1
183 num = rand_nums ( rn_i , j )
184 ! normalise the random number to given min /max
185 num = (num * (max_gp ( i )−min_gp ( i ) ) ) + min_gp ( i )
186 glob_pms_SRmax ( i , j−start_seed +1) = num
187

188 END DO
189 IF (n_pm_maps >= 2) THEN
190 print * , ’ F irst 2 values for parameter ’ , i , ’ : ’ , glob_pms_SRmax ( i , 1 : 2 )
191 END IF
192 END DO
193

194

195 print * ,
196

197 end subroutine init_gp_SRmax
198

199

200

201

202

203 ! **********************************************************************************************
204 ! subroutine : pedotf_SRmax : Pedo−transfer function for SRmax
205 ! **********************************************************************************************
206 ! This routine takes n_i , s igna l l ing that we are now calcu lat ing parameter map n_i out of n ,
207 ! I t takes the l i s t o f g lobal parameters and required basin predictors , and from that
208 ! appl ies the pedo−transfer functions to produce a parameter map.
209

210 subroutine pedotf_SRmax ( n_i , pedo_tf , glob_pms , bp , porosity , pm_map)
211

212 imp l i c i t none
213

214 ! declare dummy variables
215 ! param map number to do
216 integer , intent ( in ) : : n_i
217 ! equation se l e c t i on
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218 integer , intent ( in ) : : pedo_tf
219 ! l i s t o f g lobal params
220 double precis ion , dimension ( : , : ) , a l locatable , intent ( in ) : : glob_pms
221 ! basin predictor − land cover map
222 real , dimension ( : , : ) , a l locatable , intent ( in ) : : bp
223 ! basin predictor − poros i ty map
224 real , dimension ( : , : ) , intent ( in ) : : poros i ty
225 ! output parameter map
226 double precis ion , dimension ( : , : ) , a l locatable , intent ( out ) : : pm_map
227

228 ! declare l o c a l variables
229 integer : : n_glob_pms ! number of global parameters
230 integer : : n_pm_maps ! number of parameter maps
231 ! defined by ncols in glob_pms_SRmax
232 integer : : i
233 integer : : j
234 integer : : nrows_bp ! number of rows in basin predictor map
235 integer : : ncols_bp
236 integer : : lu_c lass
237 l o g i c a l : : warning_sent
238

239

240 ! f ind number of rows and columns in basin predictor f i l e s − pm map should be same s ize
241 nrows_bp = s ize ( bp ( : , 1 ) )
242 ncols_bp = s ize ( bp ( 1 , : ) )
243 n_pm_maps = s ize ( glob_pms ( 1 , : ) )
244 ! f ind number of rows and columns in basin predictor f i l e s − pm map should be same s ize
245 n_pm_maps = s ize ( glob_pms ( 1 , : ) )
246 a l l o ca te (pm_map( nrows_bp , ncols_bp ) )
247

248 ! vary transfer function , depending on user−inputted equation se l e c t i on .
249 s e l e c t case ( pedo_tf )
250

251 case ( 0 ) ! Fixed parameter
252

253 n_glob_pms = 1
254 DO i = 1 , nrows_bp
255 DO j = 1 , ncols_bp
256

257 pm_map( i , j ) = glob_pms (1 , n_i )
258

259 END DO
260 END DO
261

262 case ( 1 ) ! Global parameter
263

264 n_glob_pms = 1
265 DO i = 1 , nrows_bp
266 DO j = 1 , ncols_bp
267

268 pm_map( i , j ) = glob_pms (1 , n_i )
269

270 END DO
271 END DO
272
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273 case ( 2 ) ! pedotransfer ! SRmax i s a * poros i ty * b i f LU=1 , c i f LU=2 , d i f LU=3 etc
274

275 n_glob_pms = 11
276 warning_sent = . f a l s e .
277 DO i = 1 , nrows_bp
278 DO j = 1 , ncols_bp
279

280 lu_c lass = int ( bp ( i , j ) )
281

282 ! deal with any −9999 values without breaking code
283 IF ( lu_c lass == −9999) THEN
284 IF ( warning_sent . eqv . . f a l se . ) THEN
285 print * , ’WARNING: some landuse c lasses are −9999 ," , &
286 " set t ing SRmax to 0.02 here ’
287 warning_sent = . true .
288 END IF
289 pm_map( i , j ) = 0.02
290

291 ELSEIF ( lu_c lass == 0) THEN
292 IF ( warning_sent . eqv . . f a l se . ) THEN
293 print * , ’WARNING: some landuse c lasses are 0 , " , &
294 " set t ing SRmax to 0.02 here ’
295 warning_sent = . true .
296 END IF
297 pm_map( i , j ) = 0.02
298 ELSEIF ( poros i ty ( i , j )==−9999) THEN
299 IF ( warning_sent . eqv . . f a l se . ) THEN
300 print * , ’WARNING: some poros i ty values are −9999 ," , &
301 " set t ing SRmax to 0.02 here ’
302 warning_sent = . true .
303 END IF
304 pm_map( i , j ) = 0.02
305 ELSE
306

307 ! i f no problems with missing data then apply pedotransfer function !
308 pm_map( i , j ) = glob_pms ( lu_class , n_i ) * glob_pms ( n_glob_pms , n_i ) * &
309 poros i ty ( i , j )
310 END IF
311

312 END DO
313 END DO
314

315 case default
316 print * , "ERROR: inval id pedo−transfer set t ing . "
317 stop
318

319 end s e l e c t
320

321 DO i = 1 ,nrows_bp
322 DO j = 1 , ncols_bp
323 ! add in upper and lower caps
324 IF (pm_map( i , j ) <0.00001) THEN
325 pm_map( i , j )=0.00001
326 ELSEIF (pm_map( i , j ) >2) THEN
327 pm_map( i , j )=2
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328 END IF
329 END DO
330 END DO
331

332 end subroutine pedotf_SRmax
333

334

335

336

337 end module mpr_SRmax
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C.11 mpr_Smax.f90

1 ! ! Module containing subroutines for MPR. f90
2 ! ! This module contains a l l subroutines involving MPR for the Smax parameter :
3 !
4 ! get_BasPred_Smax Complete l o g i c a l l i s t o f basin predictors required
5 ! init_gp_Smax I n i t i a l i s e global parameters
6 ! pedotf_Smax Pedo−transfer function
7

8 ! ! Rosie Lane − 31 st August 2017
9

10 module mpr_Smax
11 contains
12

13

14 ! **********************************************************************************************
15 ! subroutine : get_BasPred_Smax : Complete l o g i c a l l i s t o f basin predictors required for Smax
16 ! **********************************************************************************************
17 ! Given the user−spec i f i ed pedo transfer function se lected for Smax, th is subroutine adds to a
18 ! l o g i c a l l i s t o f required basin predictors , by spec i fy ing which predictors i t requires .
19

20 subroutine get_BasPred_Smax ( pedo_tf_Smax , req_so i l s )
21

22 imp l i c i t none
23

24 ! declare dummy arguments
25 integer , intent ( inout ) : : pedo_tf_Smax ! pedo_tf_equation to be used
26 l og i ca l , dimension (* ) , intent ( inout ) : : r eq_so i l s ! s o i l s data required l o g i c a l
27

28 ! def ine required BasinPredictors for Smax
29 s e l e c t case ( pedo_tf_Smax )
30

31

32 case ( 0 ) ! f ixed parameter − no basin predictors required
33

34 case ( 1 ) ! g lobal parameter − no basin predictors required
35

36 case ( 2 ) ! pt f based on s o i l depth
37

38 req_so i l s (14) = . true . ! s o i l depth to rock map
39 req_so i l s (17) = . true . ! poros i ty map
40

41 case ( 3 ) ! pt f based on s o i l depth − with addition for productive hydrogeology
42

43 req_so i l s (14) = . true . ! s o i l depth to rock map
44 req_so i l s (17) = . true . ! poros i ty map
45 ! productive hydrogeology map (1= high productive , 0=low /mod productive )
46 req_so i l s (18) = . true .
47

48 case ( 4 )
49 print * , "ERROR: A second transfer function has not yet been programmed for Smax"
50 print * , " Select pedo_tf = 0 to treat i t as a f ixed parameter "
51 print * , " Select pedo_tf = 1 to treat i t as a global parameter "
52 print * , " pedo_tf_Smax = 2 , sets a pt f based on a s o i l depth map"
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53 stop
54

55 case default
56 print * , "WARNING: a val id pedo−t f equation for Smax must be spec i f i ed in the " , &
57 " contro l f i l e "
58 print * , "Smax wi l l be set to the default o f f ixed parameter "
59 print * , "The fo l lowing options can be se lected in the contro l f i l e : "
60 print * , " pedo_tf_Smax = 0 , sets i t as a f ixed parameter "
61 print * , " pedo_tf_Smax = 1 , sets i t as a global parameter "
62 print * , " pedo_tf_Smax = 2 , sets a pt f based on a s o i l depth map"
63 print * ,
64

65 pedo_tf_Smax = 0
66

67

68 end s e l e c t
69

70 end subroutine get_BasPred_Smax
71

72

73

74

75

76 ! **********************************************************************************************
77 ! subroutine : init_gp_Smax : I n i t i a l i s e global parameters for Smax
78 ! **********************************************************************************************
79 ! This subroutine does the fo l lowing :
80 ! 1 . Defines how many global parameters ( n_glob_pms ) are needed for the user−spec i f i ed
81 ! t ransfer function
82 ! TF 0 : 1 global parameter
83 ! TF 1 : 3 global parameters
84 ! 2 . Defines min /max ranges for global parameters
85 ! 3 . Generates l i s t o f g lobal parameters using the rand function
86 ! − user spec i f i ed start_seed can be used to skip to any point in this l i s t
87 ! − global parameter l i s t i s o f dimensions number of global params by number of param
88 ! f i l e s needed
89 ! 4 . Transforms global parameters to be within set min /max ranges
90

91 subroutine init_gp_Smax ( pedo_tf_Smax , glob_pms_Smax , n_pm_maps , start_seed , n_gp_all , pm_range )
92

93 use d t a _ u t i l i t y
94

95 imp l i c i t none
96

97 ! declare dummy variables
98 integer , intent ( in ) : : pedo_tf_Smax
99 ! g lobal param l i s t

100 double precis ion , a l locatable , dimension ( : , : ) , intent ( inout ) : : glob_pms_Smax
101 integer , intent ( in ) : : n_pm_maps
102 ! to s tart rand num generator
103 integer , intent ( in ) : : start_seed
104 ! vector o f number of global params for a l l params
105 integer , dimension ( 7 ) , intent ( inout ) : : n_gp_all
106 ! min , f ixed , max values for this parameter
107 double precis ion , dimension ( 3 ) , intent ( in ) : : pm_range

256



C.11. MPR_SMAX.F90

108

109 ! declare l o c a l variables
110 integer : : n_glob_pms ! number of global parameters
111 double precis ion , a l locatable , dimension ( : ) : : min_gp ! min values for global parameters
112 double precis ion , a l locatable , dimension ( : ) : : max_gp
113 real , dimension ( : , : ) , a l l o ca tab le : : rand_nums
114 double prec is ion : : num
115 integer , dimension (12) : : seed
116 integer : : i , j , rn_i
117

118

119 ! 1 . Define how many global parameters should ex i s t and min /max ranges , based on selected
120 ! t ransfer function
121 s e l e c t case ( pedo_tf_Smax )
122

123 case ( 0 ) ! Treat as f ixed parameter ( for ease this i s a global parameter with a 0 range )
124

125 print * , "Smax i s a f ixed parameter , o f value " ,pm_range ( 2 )
126 n_glob_pms = 1
127 a l l o ca te ( min_gp ( 1 ) ) ! min and max values have length 1 , as we have 1 global parameter
128 a l l o ca te (max_gp ( 1 ) )
129 min_gp ( 1 ) = pm_range ( 2 ) ! min and max values set to same f ixed parameter value .
130 max_gp ( 1 ) = pm_range ( 2 )
131

132 case ( 1 ) ! Treat as global parameter
133

134 print * , "Smax i s a global parameter , in the range " ,pm_range ( 1 ) , " " ,pm_range ( 3 )
135 n_glob_pms = 1
136 a l l o ca te ( min_gp ( 1 ) ) ! min and max values have length 1 , as we have 1 global parameter
137 a l l o ca te (max_gp ( 1 ) )
138 min_gp ( 1 ) = pm_range ( 1 ) ! min and max values set from parameter f i l e
139 max_gp ( 1 ) = pm_range ( 3 )
140

141 case ( 2 ) ! Pedotransfer function ! ! !
142

143 print * , "Smax wi l l use a pedotransfer function based on s o i l depth "
144 print * , "Smax = ( a * soi l_depth ) "
145

146 ! a l l o ca te number of global parameters
147 n_glob_pms = 1
148 a l l o ca te ( min_gp ( n_glob_pms ) )
149 a l l o ca te (max_gp ( n_glob_pms ) )
150

151 ! set global parameter ranges
152 min_gp ( 1 ) = 0.000002
153 max_gp ( 1 ) = 0.0001
154

155 ! min_gp ( 2 ) = 0
156 ! max_gp ( 2 ) = 1
157

158 case ( 3 ) ! Pedotransfer function , with addition for high product iv i ty geology
159

160 print * , "Smax wi l l use a pedotransfer function based on s o i l depth and hydrogeology "
161 print * , "Smax = ( a * soi l_depth ) + ( b * high_prod_geology ? ) "
162
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163 ! a l l o ca te number of global parameters
164 n_glob_pms = 2
165 a l l o ca te ( min_gp ( n_glob_pms ) )
166 a l l o ca te (max_gp ( n_glob_pms ) )
167

168 ! set global parameter ranges
169 min_gp ( 1 ) = 0.000002
170 max_gp ( 1 ) = 0.0001
171

172 min_gp ( 2 ) = 0
173 max_gp ( 2 ) = 4
174

175 case default
176 print * , "ERROR: pedo_tf_Smax incor rec t l y defined . "
177

178 end s e l e c t
179

180 ! 2 . From above , set s i zes of the global parameter array and number of random numbers
181 ! to produce .
182 n_gp_all ( 7 ) = n_glob_pms
183

184 a l l o ca te ( glob_pms_Smax ( n_glob_pms , n_pm_maps ) )
185 a l l o ca te ( rand_nums (sum( n_gp_all ) , n_pm_maps+start_seed −1))
186

187 ! generate l i s t s o f g lobal parameters between min and max ranges , o f length n
188 ! need to have l i s t such that start ing seed = 50 would give same resul t as 50th number
189 ! from seed=1
190 Call RANDOM_SEED( GET = seed )
191 seed ( 1 : 1 2 ) = ( / 3 ,3 ,3 ,3 ,3 ,3 ,3 ,3 ,3 ,3 ,3 ,3 / )
192 Call RANDOM_SEED( PUT = seed )
193 c a l l RANDOM_NUMBER ( rand_nums )
194

195

196

197 !now normalise random numbers to within bounds
198

199 DO i = 1 , n_glob_pms
200 DO j = start_seed , start_seed+n_pm_maps−1
201 ! rn_i i s index for the random number
202 rn_i =( sum( n_gp_all ) − n_glob_pms )+ i
203 ! the appropriate random number , in range 0−1
204 num = rand_nums ( rn_i , j )
205 ! normalise the random number to given min /max
206 num = (num * (max_gp ( i )−min_gp ( i ) ) ) + min_gp ( i )
207 glob_pms_Smax ( i , j−start_seed +1) = num
208

209 END DO
210 IF (n_pm_maps >= 2) THEN
211 print * , ’ F irst 2 values for parameter ’ , i , ’ : ’ , glob_pms_Smax ( i , 1 : 2 )
212 END IF
213 END DO
214

215

216 print * ,
217
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218 end subroutine init_gp_Smax
219

220

221

222

223

224 ! **********************************************************************************************
225 ! subroutine : pedotf Smax: Pedo−transfer function for Smax
226 ! **********************************************************************************************
227 ! This routine takes n_i , s igna l l ing that we are now calcu lat ing parameter map n_i out of n ,
228 ! I t takes the l i s t o f g lobal parameters and required basin predictors , and from that
229 ! appl ies the pedo−transfer functions to produce a parameter map.
230

231 subroutine pedotf_Smax ( n_i , pedo_tf , glob_pms , bp , porosity , hydrogeo ,pm_map)
232

233 imp l i c i t none
234

235 ! declare dummy variables
236 ! param map number to do
237 integer , intent ( in ) : : n_i
238 ! equation se l e c t i on
239 integer , intent ( in ) : : pedo_tf
240 ! l i s t o f g lobal params
241 double precis ion , dimension ( : , : ) , a l locatable , intent ( in ) : : glob_pms
242 ! basin predictor − s o i l depth map
243 real , dimension ( : , : ) , a l locatable , intent ( in ) : : bp
244 ! basin predictor − poros i ty map
245 real , dimension ( : , : ) , intent ( in ) : : poros i ty
246 ! basin predictor − i s high productive hydrogeology ?
247 real , dimension ( : , : ) , intent ( in ) : : hydrogeo
248 ! output parameter map
249 double precis ion , dimension ( : , : ) , a l locatable , intent ( out ) : : pm_map
250

251 ! declare l o c a l variables
252 integer : : n_glob_pms ! number of global parameters
253 integer : : n_pm_maps ! number of parameter maps
254 ! defined by ncols in glob_pms_Smax
255 integer : : i
256 integer : : j
257 integer : : nrows_bp ! number of rows in basin predictor map
258 integer : : ncols_bp
259

260

261 ! f ind number of rows and columns in basin predictor f i l e s − pm map should be same s ize
262 nrows_bp = s ize ( bp ( : , 1 ) )
263 ncols_bp = s ize ( bp ( 1 , : ) )
264 n_pm_maps = s ize ( glob_pms ( 1 , : ) )
265 ! f ind number of rows and columns in basin predictor f i l e s − pm map should be same s ize
266 n_pm_maps = s ize ( glob_pms ( 1 , : ) )
267 a l l o ca te (pm_map( nrows_bp , ncols_bp ) )
268

269 ! vary transfer function , depending on user−inputted equation se l e c t i on .
270 s e l e c t case ( pedo_tf )
271

272 case ( 0 ) ! Fixed parameter
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273

274 n_glob_pms = 1
275 DO i = 1 , nrows_bp
276 DO j = 1 , ncols_bp
277

278 pm_map( i , j ) = glob_pms (1 , n_i )
279

280 END DO
281 END DO
282

283 case ( 1 ) ! Global parameter
284

285 n_glob_pms = 1
286 DO i = 1 , nrows_bp
287 DO j = 1 , ncols_bp
288

289 pm_map( i , j ) = glob_pms (1 , n_i )
290

291 END DO
292 END DO
293

294 case ( 2 ) ! Pedotransfer function ! ! ! − Smax = ( a * soi l_depth * poros i ty )
295

296 n_glob_pms = 1
297 DO i = 1 , nrows_bp
298 DO j = 1 , ncols_bp
299

300 pm_map( i , j ) = glob_pms (1 , n_i ) * bp ( i , j ) * poros i ty ( i , j )
301 !pm_map( i , j ) = pm_map( i , j ) + glob_pms (2 , n_i )
302

303 ! deal with −9999 values
304 IF ( ( bp ( i , j )==−9999).OR. ( poros i ty ( i , j )==−9999)) THEN
305 pm_map( i , j ) = 0.5 ! old default value
306 ENDIF
307

308 END DO
309 END DO
310

311 case ( 3 )
312 ! Pedotransfer function Smax = ( a * soi l_depth * poros i ty ) + ( b * high_prod_geology ? )
313

314 n_glob_pms = 2
315 DO i = 1 , nrows_bp
316 DO j = 1 , ncols_bp
317

318 pm_map( i , j ) = glob_pms (1 , n_i ) * bp ( i , j ) * poros i ty ( i , j )
319

320 IF ( hydrogeo ( i , j ) == 1) THEN ! areas overlaying high product iv i ty geology .
321 pm_map( i , j ) = pm_map( i , j ) + glob_pms (2 , n_i )
322 END IF
323

324 ! deal with −9999 values
325 IF ( ( bp ( i , j )==−9999).OR. ( poros i ty ( i , j )==−9999)) THEN
326 pm_map( i , j ) = 0.5 ! old default value
327 ENDIF
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328

329 END DO
330 END DO
331

332

333 case default
334 print * , "ERROR: inval id pedo−transfer set t ing . "
335 stop
336

337 end s e l e c t
338

339 ! set a l imi t − to stop crazy values causing crashes !
340 DO i = 1 ,nrows_bp
341 DO j = 1 , ncols_bp
342 ! add in upper and lower caps
343 IF (pm_map( i , j ) <0.001) THEN
344 pm_map( i , j )=0.001
345 ELSEIF (pm_map( i , j ) >15) THEN
346 pm_map( i , j )=15
347 END IF
348 END DO
349 END DO
350

351 end subroutine pedotf_Smax
352

353

354

355

356 end module mpr_Smax
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sectionmpr_extract_BasPred.f90

1 ! ! Module containing subroutines for MPR. f90
2 ! ! This module contains a l l subroutines for reading , c l ipping and writing Basin predictors
3

4 ! ! Rosie Lane − 31 st August 2017
5 !
6 ! Subroutines :
7 ! Read_clip_bp Read basin predictor f i l e , and c l i p to the same area as HRU f i l e
8 ! Read_req_soils Reads in a l l required so i l s , writes cl ipped grid i f required
9

10

11 module mpr_extract_BasPred
12 contains
13

14

15 ! **********************************************************************************************
16 ! subroutine : Read_clip_bp : Read basin predictor f i l e , and c l i p to the same area as HRU f i l e
17 ! **********************************************************************************************
18 ! This subroutine reads in a basin predictor grid , spec i f i ed by filename , and c l i p s i t to the
19 ! required area covered by the HRU f i l e given in stats_HRU , returning grid_c l ipped .
20 subroutine Read_clip_bp ( filename , grid_cl ipped , stats_HRU , HRU_map)
21

22 use d t a _ u t i l i t y
23

24 imp l i c i t none
25

26 ! declare dummy variables
27 ! filename i s f u l l f i l epath to stored . asc f i l e o f basin predictor
28 ! stats_HRU contains x l l , y l l , c e l l s i z e and nodata value
29 character ( len =*) , intent ( in ) : : filename
30 double precis ion , dimension ( : , : ) , a l locatable , intent ( out ) : : gr id_c l ipped
31 double precis ion , dimension ( 4 ) , intent ( in ) : : stats_HRU
32 double precis ion , dimension ( : , : ) , intent ( in ) : : HRU_map
33

34 ! declare l o c a l variables
35

36 ! f o r reading an a s c i i grid
37 double precis ion , dimension ( : , : ) , a l l o ca tab le : : grid
38 double prec is ion : : x l l
39 double prec is ion : : y l l
40 double prec is ion : : c e l l s i z e
41 double prec is ion : : nodata
42 integer : : ncol
43 integer : : nrow
44

45 !HRU map stats
46 integer : : nrows_HRU
47 integer : : ncols_HRU
48

49 ! ca l cu lat ion of row / co l equivalents for national grid locat ions
50 integer : : i _ x l l
51 integer : : i _ y l l
52 integer : : i_yul
53 integer : : i _ x l r
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54 integer : : x , y
55

56 ! get HRU map stats
57 nrows_HRU = size (HRU_map( : , 1 ) )
58 ncols_HRU = size (HRU_map( 1 , : ) )
59

60 ! read basin predictor f i l e
61 c a l l read_asc i i_gr id ( trim ( filename ) , grid , ncol , nrow , x l l , y l l , c e l l s i z e , nodata )
62

63 ! make a check to see i f c e l l s i z e s d i f f e r − problems i f so ! !
64 IF ( c e l l s i z e /= stats_HRU ( 3 ) ) THEN
65 print * , "ERROR: Ce l l s i ze d i f f e r s between HRU and basin predictor maps"
66 stop
67 END IF
68

69 ! get row / co l numbers of corners where HRU map and basin predictor map overlap
70 i _ x l l = ( ( stats_HRU ( 1 ) − x l l ) / c e l l s i z e ) + 1
71 i _ y l l = nrow − ( ( stats_HRU ( 2 ) − y l l ) / c e l l s i z e )
72 i_yul = i _ y l l − (nrows_HRU − 1)
73 i _ x l r = i _ x l l + ncols_HRU − 1
74

75 ! a l l o ca te output a s c i i grid to be same s ize as HRU grid
76 a l l o ca te ( gr id_c l ipped (nrows_HRU, ncols_HRU ) )
77

78 ! loop through area where HRU map overlays basin predictor map, and extract basin pred
79 ! map values
80 DO x = 1 , ncols_HRU−1
81 DO y = 1 , nrows_HRU−1
82 grid_c l ipped ( y , x ) = grid ( i_yul+y−1, i _ x l l +x−1)
83 END DO
84 END DO
85

86 ! make sure nodata value i s set to the same as HRU nodata value
87 IF ( nodata /= stats_HRU ( 4 ) ) THEN
88 print * , " Converting basin predictor nodata value to that of HRU map: " ,&
89 int ( stats_HRU ( 4 ) )
90 DO x = 1 , ncols_HRU−1
91 DO y = 1 , nrows_HRU−1
92 IF ( gr id_c l ipped ( y , x ) == nodata ) THEN
93 grid_c l ipped ( y , x ) = stats_HRU ( 4 )
94 END IF
95 END DO
96 END DO
97 END IF
98

99 ! set a l l areas which are nodata in HRU f i l e to nodata in basin predictor f i l e
100 ! − th is can crop the map to the correc t extent i f la ter importing into arcmap etc .
101 DO x = 1 ,ncols_HRU
102 DO y = 1 ,nrows_HRU
103 IF (HRU_map( y , x ) == stats_HRU ( 4 ) ) THEN ! i f nodata in HRU map
104 grid_c l ipped ( y , x ) = stats_HRU ( 4 )
105 END IF
106 END DO
107 END DO
108
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109 ! print * , " Successful ly read basin predictor : " , filename
110

111

112 end subroutine Read_clip_bp
113

114

115 ! **********************************************************************************************
116 ! subroutine : Read_req_soils
117 ! **********************************************************************************************
118 ! This routine reads in a l l the required basin predictors ( as spec i f i ed in req_bp )
119 ! Al l basin predictors are returned in the variable bp_maps
120 ! I f the user has spec i f i ed writing of basin predictors ,
121 ! then a l l basin predictors required wi l l also be written as an a s c i i f i l e .
122 subroutine read_req_soi ls ( input_folder , &
123 out_folder , &
124 fnames_baspred ,&
125 req_bp ,&
126 stats_HRU,&
127 HRU_map,&
128 save_bp_maps,&
129 bp_maps , &
130 soilmusiddata , &
131 bp_root_depths )
132

133 ! use dta_MPR
134 use d t a _ u t i l i t y
135

136 imp l i c i t none
137

138 ! declare dummy variables
139 ! req_bp : l o g i c a l declaring whether each basin predictor i s required
140 ! bp_maps : array of a l l basin predictor a s c i i maps
141 ! soilmusiddata : array of a l l s o i l s depth data tables .
142 ! bp_root_depths : landcover c lass rooting depth table
143 character ( len =1024) , intent ( in ) : : input_fo lder !MPR input fo lder
144 character ( len =1024) , intent ( in ) : : out_ fo lder ! Folder to store output
145 character ( len =1024) , dimension (18 ) , intent ( in ) : : fnames_baspred
146 l og i ca l , dimension (* ) , intent ( in ) : : req_bp
147 double precis ion , dimension ( 4 ) , intent ( in ) : : stats_HRU
148 double precis ion , dimension ( : , : ) , intent ( in ) : : HRU_map
149 integer , intent ( in ) : : save_bp_maps
150 real , a l locatable , dimension ( : , : , : ) , intent ( out ) : : bp_maps
151 double precis ion , a l locatable , dimension ( : , : , : ) , intent ( out ) : : soilmusiddata
152 real , a l locatable , dimension ( : , : ) , intent ( out ) : : bp_root_depths
153

154 ! declare l o c a l variables
155 double precis ion , a l locatable , dimension ( : , : ) : : sand_0_10
156 double precis ion , a l locatable , dimension ( : , : ) : : s i l t_0_10
157 double precis ion , a l locatable , dimension ( : , : ) : : clay_0_10
158 double precis ion , a l locatable , dimension ( : , : ) : : orgm_0_10
159 real , a l locatable , dimension ( : , : ) : : ksat_decl ine
160 double precis ion , a l locatable , dimension ( : , : ) : : MUSIDs
161 double precis ion , a l locatable , dimension ( : , : ) : : n_entries
162 double precis ion , a l locatable , dimension ( : , : ) : : tempdata
163 double precis ion , a l locatable , dimension ( : , : ) : : map
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164 character ( len =1024) : : temp_fn
165 double prec is ion : : xllcorner_HRU
166 double prec is ion : : yllcorner_HRU
167 double prec is ion : : cellsize_HRU
168 double prec is ion : : nodata_HRU
169 integer : : ncols_HRU
170 integer : : nrows_HRU
171 integer : : i
172 integer : : nrows
173 integer : : ncols
174 integer : : nmusids
175

176 ! extract propert ies o f stats_HRU
177 xllcorner_HRU = stats_HRU ( 1 )
178 yllcorner_HRU = stats_HRU ( 2 )
179 cellsize_HRU = stats_HRU ( 3 )
180 nodata_HRU = stats_HRU ( 4 )
181 ncols_HRU = size (HRU_map( 1 , : ) )
182 nrows_HRU = size (HRU_map( : , 1 ) )
183

184 ! bp maps dimensions re fer to ( x , y , req_bp )
185 a l l o ca te ( bp_maps (nrows_HRU, ncols_HRU , 1 8 ) )
186

187 ! Read in required basin predictor maps − and c l i p to s ize of HRU map
188 ! bp 1 surface % sand
189 ! bp 2 surface % s i l t
190 ! bp 3 surface % clay
191 ! bp 4 surface % organic
192 ! bp 5 map of s o i l depth p r o f i l e s
193 ! bp 7−11 tables of s o i l depth p r o f i l e s
194 ! bp 12 Land cover map
195 ! bp 13 Root depth table
196 ! bp 14 Depth to bedrock map
197 ! bp 15 surface bulk density
198 ! bp 16 locat ions of organic ( binary with 1=organic s o i l )
199 ! bp 16 now NOT USED as threshold of 35% OM for organic s o i l s
200 ! bp 17 poros i ty map
201 ! bp 18 locat ions of high productive hydrogeology ( binary , 1=highly productive )
202

203 ! Read in surface percentage sand − basin predictor 1
204 IF ( req_bp ( 1 ) ) THEN
205 print * , " Reading f i l e " , trim ( fnames_baspred ( 1 ) ) / / " . asc "
206 c a l l Read_clip_bp ( trim ( input_fo lder ) / / trim ( fnames_baspred ( 1 ) ) / / " . asc " ,&
207 sand_0_10 , stats_HRU , HRU_map)
208 IF ( save_bp_maps == 1) THEN
209 temp_fn = trim ( input_fo lder ) / / trim ( fnames_baspred ( 1 ) ) / / " _cl ipped . asc "
210 print * , ’ Writing cl ipped sand basin predictor f i l e in input fo lder ’
211 print * ,
212 c a l l wr i te_asc i i _gr id ( temp_fn , sand_0_10 , ncols_HRU ,nrows_HRU, xllcorner_HRU ,&
213 yllcorner_HRU , cellsize_HRU , nodata_HRU , 6 )
214 END IF
215 ! s tore a l l s o i l s data in bp_maps for easy passing between functions
216 bp_maps ( : , : , 1 ) = sand_0_10
217 END IF
218
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219 ! Read in surface percentage s i l t − basin predictor 2
220 IF ( req_bp ( 2 ) ) THEN
221 print * , " Reading f i l e " , trim ( fnames_baspred ( 2 ) ) / / " . asc "
222 c a l l Read_clip_bp ( trim ( input_fo lder ) / / trim ( fnames_baspred ( 2 ) ) / / " . asc " ,&
223 si l t_0_10 , stats_HRU , HRU_map)
224 IF ( save_bp_maps == 1) THEN
225 temp_fn = trim ( input_fo lder ) / / trim ( fnames_baspred ( 2 ) ) / / " _cl ipped . asc "
226 print * , ’ Writing cl ipped s i l t basin predictor f i l e in input fo lder ’
227 print * ,
228 c a l l wr i te_asc i i _gr id ( temp_fn , s i l t_0_10 , ncols_HRU ,nrows_HRU, xllcorner_HRU ,&
229 yllcorner_HRU , cellsize_HRU , nodata_HRU , 6 )
230 END IF
231 bp_maps ( : , : , 2 ) = s i l t_0_10
232 END IF
233

234 ! Read in surface percentage clay − basin predictor 3
235 IF ( req_bp ( 3 ) ) THEN
236 print * , " Reading f i l e " , trim ( fnames_baspred ( 3 ) ) / / " . asc "
237 c a l l Read_clip_bp ( trim ( input_fo lder ) / / trim ( fnames_baspred ( 3 ) ) / / " . asc " , clay_0_10 ,&
238 stats_HRU , HRU_map)
239 IF ( save_bp_maps == 1) THEN
240 temp_fn = trim ( input_fo lder ) / / trim ( fnames_baspred ( 3 ) ) / / " _cl ipped . asc "
241 print * , ’ Writing cl ipped clay basin predictor f i l e in input fo lder ’
242 print * ,
243 c a l l wr i te_asc i i _gr id ( temp_fn , clay_0_10 , ncols_HRU ,nrows_HRU, xllcorner_HRU ,&
244 yllcorner_HRU , cellsize_HRU , nodata_HRU , 6 )
245 END IF
246 bp_maps ( : , : , 3 ) = clay_0_10
247 END IF
248

249 ! Read in surface percentage organic matter − basin predictor 4
250 IF ( req_bp ( 4 ) ) THEN
251 print * , " Reading f i l e " , trim ( fnames_baspred ( 4 ) ) / / " . asc "
252 c a l l Read_clip_bp ( trim ( input_fo lder ) / / trim ( fnames_baspred ( 4 ) ) / / " . asc " , orgM_0_10,&
253 stats_HRU , HRU_map)
254 IF ( save_bp_maps == 1) THEN
255 temp_fn = trim ( input_fo lder ) / / trim ( fnames_baspred ( 4 ) ) / / " _cl ipped . asc "
256 print * , ’ Writing cl ipped organic matter basin predictor f i l e in input fo lder ’
257 print * ,
258 c a l l wr i te_asc i i _gr id ( temp_fn , orgm_0_10 , ncols_HRU ,nrows_HRU, xllcorner_HRU ,&
259 yllcorner_HRU , cellsize_HRU , nodata_HRU , 6 )
260 END IF
261 bp_maps ( : , : , 4 ) = orgm_0_10
262 END IF
263

264 ! Read in a s c i i information describing SZM s o i l s depth p r o f i l e s − basin predictor 5
265 IF ( req_bp ( 5 ) ) THEN
266 print * , " Reading f i l e " , trim ( fnames_baspred ( 5 ) ) / / " . asc "
267 temp_fn =( trim ( input_fo lder ) / / trim ( fnames_baspred ( 5 ) ) / / " . asc " )
268 c a l l Read_clip_bp ( trim ( temp_fn ) ,MUSIDs, stats_HRU , HRU_map)
269 bp_maps ( : , : , 6 ) = MUSIDs
270 bp_maps ( : , : , 5 ) = MUSIDs
271

272 IF ( save_bp_maps == 1) THEN
273 print * , ’ Writing cl ipped MUSIDs in input fo lder ’
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274 print * ,
275 temp_fn = trim ( input_fo lder ) / / trim ( fnames_baspred ( 5 ) ) / / " _cl ipped . asc "
276 c a l l wr i te_asc i i _gr id ( temp_fn ,MUSIDs, ncols_HRU ,nrows_HRU, xllcorner_HRU ,&
277 yllcorner_HRU , cellsize_HRU , nodata_HRU , 6 )
278 END IF
279 END IF
280

281 ! Read in tables o f s o i l s depth p r o f i l e s − basin predictor 7−11
282 IF ( req_bp ( 7 ) ) THEN
283 i = 7
284 temp_fn = trim ( input_fo lder ) / / trim ( fnames_baspred ( i ) ) / / " . txt "
285 open (99 , f i l e = temp_fn , status = ’ old ’ )
286 read (99 ,* ) nrows , ncols , nmusids
287 c lose (99)
288 ! print * , ’ nrows = ’ , nrows , ’ ncols = ’ , ncols , ’ nmusids = ’ , nmusids
289 a l l o ca te ( soilmusiddata ( nrows , ncols , 5 ) )
290

291 DO i = 7 ,11
292 print * , " Reading f i l e " , trim ( fnames_baspred ( i ) )
293 temp_fn = trim ( input_fo lder ) / / trim ( fnames_baspred ( i ) ) / / " . txt "
294 c a l l read_numeric_list ( temp_fn , ncols , 2 , tempdata )
295 soilmusiddata ( : , : , i −6) = tempdata
296 deal locate ( tempdata ) ! because this i s a l located within read_numeric_list
297 END DO
298 i f ( save_bp_maps == 1) THEN
299 print * ,
300 end i f
301 END IF
302

303 ! Read in SRmax land cover map − basin predictor 12
304 IF ( req_bp ( 1 2 ) ) THEN
305

306 print * , " Reading f i l e " , trim ( fnames_baspred ( 1 2 ) ) / / " . asc "
307 temp_fn = trim ( input_fo lder ) / / trim ( fnames_baspred ( 1 2 ) ) / / " . asc "
308 c a l l Read_clip_bp ( trim ( temp_fn ) ,map, stats_HRU , HRU_map)
309 bp_maps ( : , : , 1 2 ) = map
310

311 IF ( save_bp_maps == 1) THEN
312 print * , ’ Writing cl ipped Land Cover Map in input fo lder ’
313 print * ,
314 temp_fn = trim ( input_fo lder ) / / trim ( fnames_baspred ( 1 2 ) ) / / " _cl ipped . asc "
315 c a l l wr i te_asc i i _gr id ( temp_fn ,map, ncols_HRU ,nrows_HRU, xllcorner_HRU ,&
316 yllcorner_HRU , cellsize_HRU , nodata_HRU , 6 )
317 END IF
318 END IF
319

320 ! Read in SRmax rooting depth table − basin predictor 13
321 IF ( req_bp ( 1 3 ) ) THEN
322 print * , " Reading f i l e " , trim ( fnames_baspred ( 1 3 ) ) , " . txt "
323 temp_fn = trim ( input_fo lder ) / / trim ( fnames_baspred ( 1 3 ) ) / / " . txt "
324 open (99 , f i l e = temp_fn , status = ’ old ’ )
325 read (99 ,* ) nrows , ncols
326 c lose (99)
327 c a l l read_numeric_list ( temp_fn , 4 , 3 , tempdata )
328 a l l o ca te ( bp_root_depths ( nrows , 4 ) )
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329 bp_root_depths= tempdata
330 i f ( save_bp_maps == 1) THEN
331 print * ,
332 end i f
333

334 END IF
335

336

337 ! Read in Smax depth to bedrock map − basin predictor 14
338 IF ( req_bp ( 1 4 ) ) THEN
339 print * , " Reading f i l e " , trim ( fnames_baspred ( 1 4 ) ) / / " . asc "
340 temp_fn = trim ( input_fo lder ) / / trim ( fnames_baspred ( 1 4 ) ) / / " . asc "
341 c a l l Read_clip_bp ( trim ( temp_fn ) ,map, stats_HRU , HRU_map)
342 bp_maps ( : , : , 1 4 ) = map
343

344 IF ( save_bp_maps == 1) THEN
345

346 print * , ’ Writing cl ipped s o i l depth map in input fo lder ’
347 print * ,
348 temp_fn = trim ( input_fo lder ) / / trim ( fnames_baspred ( 1 4 ) ) / / " _cl ipped . asc "
349 c a l l wr i te_asc i i _gr id ( temp_fn ,map, ncols_HRU ,nrows_HRU, xllcorner_HRU ,&
350 yllcorner_HRU , cellsize_HRU , nodata_HRU , 6 )
351 END IF
352 END IF
353

354 ! Read in lnTo bulk density − basin predictor 15
355 IF ( req_bp ( 1 5 ) ) THEN
356 print * , " Reading f i l e " , trim ( fnames_baspred ( 1 5 ) ) / / " . asc "
357 temp_fn = trim ( input_fo lder ) / / trim ( fnames_baspred ( 1 5 ) ) / / " . asc "
358 c a l l Read_clip_bp ( trim ( temp_fn ) ,map, stats_HRU , HRU_map)
359 bp_maps ( : , : , 1 5 ) = map
360 IF ( save_bp_maps == 1) THEN
361 print * , ’ Writing cl ipped bulk density map in input fo lder ’
362 print * ,
363 temp_fn = trim ( input_fo lder ) / / trim ( fnames_baspred ( 1 5 ) ) / / " _cl ipped . asc "
364 c a l l wr i te_asc i i _gr id ( temp_fn ,map, ncols_HRU ,nrows_HRU, xllcorner_HRU ,&
365 yllcorner_HRU , cellsize_HRU , nodata_HRU , 6 )
366 END IF
367 END IF
368

369

370 ! Read in ISorganic ? map − basin predictor 16
371 IF ( req_bp ( 1 6 ) ) THEN
372 print * , " Reading f i l e " , trim ( fnames_baspred ( 1 6 ) ) / / " . asc "
373 temp_fn = trim ( input_fo lder ) / / trim ( fnames_baspred ( 1 6 ) ) / / " . asc "
374 c a l l Read_clip_bp ( trim ( temp_fn ) ,map, stats_HRU , HRU_map)
375 bp_maps ( : , : , 1 6 ) = map
376 IF ( save_bp_maps == 1) THEN
377 print * , ’ Writing cl ipped ident i f y organic s o i l s map in input fo lder ’
378 print * ,
379 temp_fn = trim ( input_fo lder ) / / trim ( fnames_baspred ( 1 6 ) ) / / " _cl ipped . asc "
380 c a l l wr i te_asc i i _gr id ( temp_fn ,map, ncols_HRU ,nrows_HRU, xllcorner_HRU ,&
381 yllcorner_HRU , cellsize_HRU , nodata_HRU , 6 )
382 END IF
383 END IF
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384

385 ! Read in poros i ty map − basin predictor 17
386 IF ( req_bp ( 1 7 ) ) THEN
387 print * , " Reading f i l e " , trim ( fnames_baspred ( 1 7 ) ) / / " . asc "
388 temp_fn = trim ( input_fo lder ) / / trim ( fnames_baspred ( 1 7 ) ) / / " . asc "
389 c a l l Read_clip_bp ( trim ( temp_fn ) ,map, stats_HRU , HRU_map)
390 bp_maps ( : , : , 1 7 ) = map
391 IF ( save_bp_maps == 1) THEN
392 print * , ’ Writing cl ipped poros i ty map in input fo lder ’
393 print * ,
394 temp_fn = trim ( input_fo lder ) / / trim ( fnames_baspred ( 1 7 ) ) / / " _cl ipped . asc "
395 c a l l wr i te_asc i i _gr id ( temp_fn ,map, ncols_HRU ,nrows_HRU, xllcorner_HRU ,&
396 yllcorner_HRU , cellsize_HRU , nodata_HRU , 6 )
397 END IF
398 END IF
399

400 ! Read in hydrogeology map − basin predictor 18
401 IF ( req_bp ( 1 8 ) ) THEN
402 print * , " Reading f i l e " , trim ( fnames_baspred ( 1 8 ) ) / / " . asc "
403 temp_fn = trim ( input_fo lder ) / / trim ( fnames_baspred ( 1 8 ) ) / / " . asc "
404 c a l l Read_clip_bp ( trim ( temp_fn ) ,map, stats_HRU , HRU_map)
405 bp_maps ( : , : , 1 8 ) = map
406 IF ( save_bp_maps == 1) THEN
407 print * , ’ Writing cl ipped hydrogeology map in input fo lder ’
408 print * ,
409 temp_fn = trim ( input_fo lder ) / / trim ( fnames_baspred ( 1 8 ) ) / / " _cl ipped . asc "
410 c a l l wr i te_asc i i _gr id ( temp_fn ,map, ncols_HRU ,nrows_HRU, xllcorner_HRU ,&
411 yllcorner_HRU , cellsize_HRU , nodata_HRU , 6 )
412 END IF
413 END IF
414

415 end subroutine read_req_soi ls
416

417 end module mpr_extract_BasPred
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C.12 mpr_upscaling.f90

1 ! ! Module containing subroutines for MPR. f90
2 ! ! This module contains a l l subroutines involving in parameter upscaling
3 !
4 ! extract_pm_HRU : extracts l i s t o f params from a l l c e l l s o f se lected HRU
5 ! upscale_harmonic : upscales a l i s t o f parameters using the harmonic mean
6 ! upscale_arithmetic : upscales a l i s t o f parameters using the arithmetic mean
7

8 ! ! Rosie Lane − 31 st August 2017
9

10 module mpr_upscaling
11 contains
12

13

14

15 ! **********************************************************************************************
16 ! subroutine : extract_pm_HRU : extracts l i s t o f params from a l l c e l l s o f se lected HRU
17 ! **********************************************************************************************
18 ! extract_pm_HRU aims to :
19 ! 1 . Loop through a l l values in a HRU and parameter value f i l e
20 ! 2 . For a spec i f i ed HRU number , extract a vector o f a l l parameter values within that HRU
21 ! 3 . Output vector o f parameter values
22

23 subroutine extract_pm_HRU (HRU, HRU_map, pm_map, pms_HRU)
24

25 imp l i c i t none
26

27 ! declare dummy variables
28 integer , intent ( in ) : : HRU ! id of current HRU
29 double precis ion , dimension ( : , : ) , intent ( in ) : : HRU_map !map of HRUs
30 double precis ion , dimension ( : , : ) , intent ( in ) : : pm_map !map of MPR parameters
31 ! output l i s t o f params in HRU
32 double precis ion , a l locatable , dimension ( : ) , intent ( out ) : : pms_HRU
33

34 ! declare l o c a l variables
35 integer : : nrows_HRU ! dimensions of HRU & ASSUMED dimensions of pm maps
36 integer : : ncols_HRU
37 integer : : i
38 integer : : j
39 integer : : n_pms_HRU ! number of c e l l s in current HRU
40

41

42 ! def ine l o c a l variables from HRU map
43 nrows_HRU = size (HRU_map( : , 1 ) )
44 ncols_HRU = size (HRU_map( 1 , : ) )
45

46 ! i n i t i a l i s e
47 n_pms_HRU = 0
48

49 ! Gemma − n_pms_HRU2 = sum(HRU_map[ , HRU_map. eq .HRU] )
50 ! Find the number of HRU squares matching the given HRU value .
51 ! DO i = 1 , nrows_HRU
52 ! DO j = 1 , ncols_HRU
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53 ! IF (HRU_map( i , j )==HRU) THEN !When you index a variable o f the correc t HRU. . .
54 ! n_pms_HRU = n_pms_HRU + 1
55 ! END IF
56 ! END DO
57 ! END DO
58

59 ! Find the number of HRU squares matching the given HRU value
60 n_pms_HRU = int (SUM(HRU_map,MASK=HRU_map==HRU) ) /HRU
61

62 ! Al locate s ize o f pms_HRU to prevent segmentation fau l t
63 a l l o ca te (pms_HRU(n_pms_HRU) )
64

65 ! ! Loop through HRU_map again , extract ing a l l pm_map values in the correc t HRU
66 ! DO i = nrows_HRU,1 ,−1
67 ! DO j = ncols_HRU,1 ,−1
68 ! IF (HRU_map( i , j )==HRU) THEN !When you index a variable o f the correc t HRU. . .
69 ! pms_HRU(n_pms_HRU) = pm_map( i , j ) ! . . . add the parameter value into pms_HRU.
70 ! n_pms_HRU = n_pms_HRU −1
71 ! END IF
72 ! END DO
73 ! END DO
74

75 ! Extract a l l pm values within the correc t HRU
76 pms_HRU = PACK(pm_map, HRU_map==HRU)
77

78

79 end subroutine extract_pm_HRU
80

81

82

83

84

85 ! **********************************************************************************************
86 ! subroutine : upscale_harmonic : upscales a l i s t o f parameters using the harmonic mean
87 ! **********************************************************************************************
88 ! upscale_harmonic aims to :
89 ! take input of a vector o f parameter values
90 ! output the harmonic mean of those values
91

92 subroutine upscale_harmonic (pms_HRU, upscaled_pm )
93

94 imp l i c i t none
95

96 double precis ion , dimension ( : ) , intent ( in ) : : pms_HRU ! List o f params from extract_pm_HRU
97 double precis ion , intent ( out ) : : upscaled_pm ! output upscaled param
98 double precis ion , dimension ( : ) , a l l o ca tab le : : recip_pms
99 double prec is ion : : sum_pms

100

101 recip_pms = 1 / pms_HRU ! take rec iproca l o f a l l params
102 sum_pms = SUM( recip_pms ) ! take sum of rec ipoca l params
103 upscaled_pm = SIZE (pms_HRU) / sum_pms !H = n params / sum rec ip params
104

105 end subroutine upscale_harmonic
106

107
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108 ! **********************************************************************************************
109 ! subroutine : upscale_arithmetic : upscales a l i s t o f parameters using the arithmetic mean
110 ! **********************************************************************************************
111

112 subroutine upscale_arithmetic (pms_HRU, upscaled_pm )
113

114 imp l i c i t none
115

116 double precis ion , dimension ( : ) , intent ( in ) : : pms_HRU ! List o f params from extract_pm_HRU
117 double precis ion , intent ( out ) : : upscaled_pm ! output upscaled param
118 double prec is ion : : sum_pms
119 integer : : npoints , i
120

121 npoints = SIZE(pms_HRU)
122 ! do i = 1 ,SIZE (pms_HRU)
123 ! i f (pms_HRU( i )==−9999)then
124 ! pms_HRU( i )=0
125 ! npoints = npoints−1
126 ! end i f
127 ! end
128

129 sum_pms = SUM(pms_HRU) ! take sum of params
130

131 ! i f ( npoints >0) then
132 upscaled_pm = sum_pms / npoints !A = sum params / n params
133 ! e l se
134 ! print * , ’ Error in upscale arithmetic − a l l points were NaN ! ! ! ! ! ! ! pm set to 1 ’
135 ! upscaled_pm = 1
136 ! end
137

138 end subroutine upscale_arithmetic
139

140 ! **********************************************************************************************
141 ! subroutine : upscale_geometric : upscales a l i s t o f parameters using the geometric mean
142 ! **********************************************************************************************
143

144 subroutine upscale_geometric (pms_HRU, upscaled_pm )
145

146 imp l i c i t none
147

148 double precis ion , dimension ( : ) , intent ( in ) : : pms_HRU ! List o f params from extract_pm_HRU
149 double precis ion , intent ( out ) : : upscaled_pm ! output upscaled param
150 double prec is ion : : prod_pms
151

152 prod_pms = PRODUCT(pms_HRU) ! take product o f params
153 upscaled_pm = prod_pms**(1/SIZE (pms_HRU) ) !G = ( product ( params ) ) ^ ( 1 / n )
154

155 end subroutine upscale_geometric
156

157 ! **********************************************************************************************
158 ! subroutine : upscale_majority : upscales se lec t ing the most frequently occuring value
159 ! **********************************************************************************************
160

161 subroutine upscale_majority (pms_HRU, upscaled_pm )
162
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163 imp l i c i t none
164

165 double precis ion , dimension ( : ) , intent ( in ) : : pms_HRU ! List o f params from extract_pm_HRU
166 double precis ion , intent ( out ) : : upscaled_pm ! output upscaled param
167

168 ! l o c a l variables
169 double prec is ion : : prod_pms
170 ! frequency of occurance of each parameter value
171 integer , dimension ( : ) , a l l o ca tab le : : f req_occ
172 integer : : i , j
173

174 a l l o ca te ( freq_occ ( s i ze (pms_HRU) ) )
175

176 ! f ind the frequency of occurance of a l l parameter values
177 DO i = 1 , s ize (pms_HRU)
178 f req_occ ( i ) = 0
179 DO j = 1 , s ize (pms_HRU)
180 IF (pms_HRU( i )==pms_HRU( j ) ) THEN
181 f req_occ ( i ) = freq_occ ( i )+1
182 END IF
183 END DO
184 END DO
185

186 ! return parameter value that occurs most frequently
187 DO i = 1 , s ize (pms_HRU)
188 IF ( freq_occ ( i ) == MAXVAL( freq_occ ) ) THEN
189 upscaled_pm = pms_HRU( i )
190 END IF
191 END DO
192

193 end subroutine upscale_majority
194

195

196

197

198

199

200 end module mpr_upscaling
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SUPPLEMENT TO RESEARCH CHAPTER TWO: METHOD USED TO

DETERMINE NUMBER OF PARAMETER SAMPLES REQUIRED.

This appendix has been submitted to Water Resources Research as supplementary information

to a research article. Simulations and analysis were carried out by Rosanna Lane, with guidance

from all co-authors.

Citation: Lane, R.A., Freer, J. E., Coxon, G., & Wagener, T. (in review). Incorporating Uncertainty

into Multiscale Parameter Regionalisation to Evaluate the Performance of Nationally Consistent

Parameter Fields for a Hydrological Model. Submitted to Water Resources Research.

When calibrating DECIPHeR using MPR, there are 24 global parameters which need to

be calibrated but many of these may not be sensitive for all catchments. To explore parameter

uncertainties, we decided to calibrate the global parameters using a Monte-Carlo calibration

strategy. Upper and lower bounds were first defined for each global parameter, with values

selected to prevent parameter values from becoming unrealistic, whilst being as wide as possible

to enable the feasible parameter space to be fully sampled. N simulations could then be carried

out to randomly sample the global parameters between these upper and lower bounds. However,

the number of samples to evaluate (N) is a trade-off between the computational time it takes to

run additional samples and the added value of having extra simulations and thus more densely

sampling the parameter space. We therefore carried out a bootstrapping test, to determine the

number of model evaluations needed to converge on stable model performance scores.

The objective of the bootstrapping test was to explore:
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FIGURE D.1. Location and selected characteristics of the 6 study catchments. Dots
show the location of the gauging station with the size indicating the relative area
of each catchment. Catchments are coloured by their BFI, and other catchment
information is given in the corresponding table (catchments are organised from
north to south within the table).

1. How many model evaluations (i.e. number of samples of the global parameters) do we need

before we converge on a stable model performance score?

2. When we have converged on a stable KGE score, are the components of the KGE score also

stable?

D.1 Bootstrapping procedure and convergence criteria

Six catchments were selected for the bootstrapping test, to explore intra-catchment differences.

They were selected to be geographically spread across Great Britain and have a range of baseflow

index values and catchment sizes. Catchment locations and characteristics are given in Figure

D.1. For each catchment the bootstrapping procedure was as follows:

1. 10,000 model evaluations were carried out for the catchment, sampling the global parame-

ters.

2. The non-parametric KGE (Pool et al., 2018) was calculated for each of these evaluations,

following a 365 day warmup.

3. Smaller random samples of n simulations were taken from the initial 10,000 model evalua-

tions, and the maximum KGE from the n simulations was calculated. This was repeated for

values of n from 1 to 3000.

4. Step 3 was repeated 30 times, to show the range in maximum KGE between samples of the
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same size.

The aim was to find the sample size at which the model performance converged, where

convergence was defined as the model performance remaining the same (or changing to a very

small degree) when using a different sample of model evaluations of equal or larger size. To assess

convergence, we calculated the 5th to the 95th percentile confidence bounds of the distribution

obtained by bootstrapping at each sample size. When this width is small, it indicates that repeat

samples of the same sample size resulted in the same model performance, and so we had reached

convergence. This was evaluated both visually and by setting a convergence criteria of 0.015 (i.e.

when the differences in the sample best KGE value are less than 0.015 between repeats of the

same sample size, it is assumed that we have converged).

D.2 Outcome

Figure D.2 shows how the maximum modelled KGE changed for each catchment in relation to the

number of model evaluations. For each sample size (n), 30 repeats were carried out. Light grey

markers show the results for each of these repeats, whilst the black line shows the median value

from all repeats. Across all 6 catchments, sample size has the most impact on model performance

score up to a sample size of around 1000. Above 2000 samples, the model performance scores

appear stable for most catchments.

Gauge 26008 stands out as taking the longest to converge, and even when the maximum KGE

stabilises at a sample size of around 2000, there is still a wide variation between repeat samples.

This is a small catchment, with relatively low mean annual rainfall and a high BFI. Over 50%

of the catchment is overlaying high permeability bedrock. This could result in different global

parameters becoming sensitive for this catchment, as MPR is setup to add additional transfer

equation coefficients for areas overlaying highly productive bedrock.

Figure D.3 and Figure D.4 show how the range between repeat samples changed in relation to

the number of model evaluations for each catchment. This is looking at the similarities between

the repeats of a given sample size, with a value of 0 indicating that all random samples of a

given size gained the same KGE value and therefore we have fully sampled the parameter space.

Values below 0.015 have been shaded in a darker colour in Figure D.4, to indicate where the

convergence criterion has been met. These plots support the visual interpretation of Figure D.2,

demonstrating that for samples of 1500 or more simulations there is very little difference between

repeats for 5 out of the 6 test catchments.

Figure D.5 onwards show the model performance for the 3 components of KGE, when selecting

the parameter set based on the combined KGE value. These show that whilst the KGE value may
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FIGURE D.2. Best modelled KGE gained from different sized samples of simulations. X
axis shows the number of simulations in the sample, with these being randomly
taken from a total sample of 10,000 simulations. The y axis shows the maximum
KGE value obtained by any simulation in the sample. There are 30 repeats for
each sample size – each individual repeat is marked in grey, and the median of all
repeats for a given sample size is plotted in black. The grey lines show the 5th and
95th percentile across all repeats for each sample size, whilst the black line shows
the median. Each plot shows results for a different gauge.
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FIGURE D.3. Variability between KGE values obtained by repeat simulations of the
same sample size. X axis shows the number of simulations in the sample, with
these being randomly taken from a total sample of 10,000 simulations. For each
sample size, 30 random samples were taken from the original 10,000 simulations
and the maximum modelled KGE value was recorded. The variation between these
KGE values, calculated as the 5th-95th percentile range, is given on the y axis.
Each plot shows results for a different gauge. Note, the scale of the y axis differs
for each catchment, so that the general shape of the graph can be seen.
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FIGURE D.4. As Figure D.3, except values with a range below the convergence criteria
of 0.015 have been highlighted in a darker colour.
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FIGURE D.5. Best modelled KGE gained from different sized samples of simulations,
and the values of the decomposed metrics forming that KGE, for gauge 12005.The
x axis shows the number of simulations in the sample, with these being randomly
taken from a total sample of 10,000 simulations. The y axes show the best value of
KGE gained within that sample (bottom plot), and the decomposed metrics that
make up that KGE value (top 3 plots). A = error in the slope of the flow duration
curve. B = model bias. C = spearman correlation coefficient.

increase with the number of samples, there are larger ranges in the scores of the decomposed

metrics. Different trade-offs between these three decomposed metrics may be contributing to the

highest KGE scores.
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FIGURE D.7. As for Figure D.5, but for gauge 25012.
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FIGURE D.8. As for Figure D.5, but for gauge 26008.
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FIGURE D.9. As for Figure D.5, but for gauge 64006.
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FIGURE D.10. As for Figure D.5, but for gauge 42004.
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SUPPLEMENT TO RESEARCH CHAPTER TWO: EXTENDED

DESCRIPTION OF ADDING HYDROGEOLOGY DATA TO THE MPR
APPROACH

This appendix describes initial testing which led to the decision to incorporate hydrogeology

data into MPR for the DECIPHeR model across Great Britain (GB). This expands upon the brief

description given in research chapter two.

Initially, MPR was applied across 221 principal basins without any incorporation of hydroge-

ology data. Model performance with MPR parameter fields was compared to model performance

with Monte-Carlo (MC) constrained parameter values. As shown in Figure E.1, catchments

with a large fraction of highly productive hydrogeology often performed very poorly. The MPR

parameter fields could not produce any parameter sets which could simulate peak flows or the

slope of the hydrograph falling and rising limbs correctly. For some catchments neither the MPR

nor the Monte-Carlo constrained parameters could produce reasonable simulations, suggesting

that the model structure was not suitable for these catchments. As we were focused on model

parameterisation, and not model structural improvements, we did not further investigate these

catchments. However, there were also areas with high productivity geology where MC parameters

produced good simulations whilst MPR (national and catchment) could not – these were our

focus as the good performance of the MC parameters demonstrated that good model performance

should be possible with the given model structure.

We focused on a medium sized (1040 km2) example catchment, the Test at Broadlands (42004),

which had a large fraction (66%) of high productivity geology (see Figure E.2a-b). This included

4 sub-catchments, with varying fractions of high productivity geology (16% – 96%). We first
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APPENDIX E. SUPPLEMENT TO RESEARCH CHAPTER TWO: EXTENDED DESCRIPTION
OF ADDING HYDROGEOLOGY DATA TO THE MPR APPROACH

FIGURE E.1. Performance of MPR (with parameters constrained for individual catch-
ments) and Monte-Carlo sampled model parameters before geology was included in
the MPR approach. A) Comparison of peak flow errors between the MPR approach
and Monte-Carlo approach, from the best model simulation. Graphs are given in
linear (left) and log (right) scales, with points coloured to highlight the fraction
of highly productive hydrogeology in each catchment. B) as for A but showing
percentage error in the slope of the falling limb. C) Boxplots show range in the
percentage error in the rising limb, for catchments grouped by fraction of high
productivity geology.
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FIGURE E.2. DECIPHeR performance for the Test at Broadlands, when run using MPR
with and without hydrogeology data. a) catchment location. b) Catchment map
showing areas covered by highly productive geology. c) Model performance metrics
evaluated from 500 runs with and without the hydrogeology data.

analysed the catchment-average parameter ranges which were being sampled using the MPR

method, and compared this to i) the normal model parameter bounds used for GB modelling, and

ii) the behavioural parameter bounds found for the catchment by Monte-Carlo sampling (see

Figure E.3). This highlighted that the current implementation of the MPR approach was not

able to produce sufficiently high ln(T0) and Smax parameter values to produce good simulations

in this catchment. The increasing of ln(T0) and Smax for areas overlaying highly productive

geology made conceptual sense: it allows for larger groundwater stores with faster transport of

groundwater. We therefore added modifications to the MPR transfer function equations for areas

with highly productive geology.

To test the addition of hydrogeology data in the MPR process, we ran simulations with and

without hydrogeology for the Test at Broadlands. For each case, 500 simulations were carried

out, sampling between the global parameter bounds. As shown in Figure E.2c, before adding

the hydrogeology data, none of the simulations could reach a Nash-Sutcliffe Efficiency (NSE) of
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APPENDIX E. SUPPLEMENT TO RESEARCH CHAPTER TWO: EXTENDED DESCRIPTION
OF ADDING HYDROGEOLOGY DATA TO THE MPR APPROACH

FIGURE E.3. DECIPHeR parameter bounds for the Test at Broadlands (42004). His-
togram shows distribution of mean parameter value over whole catchment from
1000 MPR runs. Dots show parameter values from the top 100/10,000 Monte
Carlo runs (i.e. behavioural parameter ranges). The shaded area gives the normal
Monte Carlo parameter range (i.e. the parameter range used when constraining
the behavioural parameter ranges).

0.2. After adding the hydrogeology data, simulations up to NSE 0.6 were achieved. The addition

of modified transfer functions resulted in reduced simulation errors, and better representation

of the hydrograph slope and variance. As shown in Figure E.4, these improvements were seen

in all sub-catchments, especially 42005 which had the largest fraction of high productivity geology.

Further testing showed that addition of hydrogeology into the MPR process improved perfor-

mance in many areas overlying high permeability geology, whilst not resulting in large changes in

model performance elsewhere. We therefore included this into the methodology for Great Britain.
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FIGURE E.4. Performance of DECIPHeR-MPR with and without hydrogeology for sub-
catchments within The test at Broadlands (42004). Each row gives a different
sub-catchment, with columns showing i) sub-catchment location within 42004, ii)
the sub-catchment area overlying high productivity geology, iii) performance with
and without the addition of hydrogeology to the MPR process.

291





A
P

P
E

N
D

I
X

F
SUPPLEMENT TO RESEARCH CHAPTER THREE: BIASES IN

UKCP18 RCM PROJECTIONS

An evaluation of the biases in the UKCP18 RCM projections relative to observed data was carried

out, to inform selection of an appropriate bias correction technique. This focused on biases in

daily and seasonal precipitation/ PET, heavy precipitation, and PET quantiles, as these were

considered most important for the median and higher flow statistics used in Research Chapter

Three.

F.1 Mean daily rainfall bias

Figure F.1 gives the observed mean daily precipitation across Great Britain, as a reference. There

is a west-east gradient in mean daily rainfall, with generally reduced rainfall as you move east

across the country. The highest daily rainfall can be seen in western Scotland.

Figure F.2 and Figure F.3 show the biases in UKCP18 projections for mean daily precipitation

over the baseline period. It can be seen that there is a general trend to smooth the pattern

of precipitation – with RCMs underpredicting mean precipitation in the wettest areas (west

Scotland, and in some cases south-west England and Wales) and overpredicting in the driest

areas (along the east coast and south-east England). Most RCMs show a similar spatial pattern of

bias, although there are clear differences between RCM runs. There is a general trend towards all

RCMs overpredicting mean annual rainfall by around 3 - 35% (the median across all catchments

in Figure F.3).
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PROJECTIONS

FIGURE F.1. Observed mean daily precipitation across the UK.

FIGURE F.2. Percentage difference in mean daily rainfall between observations and
each ensemble member of UKCP18.
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F.2. SEASONAL RAINFALL BIAS

FIGURE F.3. Percentage difference in mean daily rainfall between observations and
each ensemble member of UKCP18. Boxplots show the distribution of results across
all land grid cells.

F.2 Seasonal rainfall bias

Figure F.4 shows the percentage changes in seasonal rainfall. Figure F.5 highlights the month

of the year with the largest biases from each of the UKCP18 ensemble members. The figures

show that RCMs tend to overpredict rainfall in winter and spring across most of Great Britain,

except for west Scotland where rainfall is generally underpredicted. A more complex pattern of

bias is seen for summer and autumn rainfall. In the summer there is an overall trend towards

overprediction in Scotland, with a more mixed picture for England and Wales. Autumn rainfall

biases tend to be smaller, and spatial patterns of bias differ between the RCMs.

F.3 Heavy rainfall bias

Biases in RCM projections of heavy rainfall percentiles (80th percentile rainfall – 99th percentile

rainfall) are given in Figure F.6 and Figure F.7. The RCMs tend to overestimate rainfall generally,

with the tendency to underpredict in areas of high rainfall (east Scotland and east Wales). Across

Great Britain biases in projections of the 80th percentile rainfall are around -40 to 75%, whilst

biases in projections of the 99th percentile rainfall tend to be smaller at around -40 to 40%.
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PROJECTIONS

FIGURE F.4. Seasonal rainfall biases. Each plot shows the percentage difference in
seasonal average rainfall between a UKCP18 ensemble member and observations
over the baseline period.

296



F.3. HEAVY RAINFALL BIAS

FIGURE F.5. Month with the largest rainfall biases. Each plot shows the month with
the largest percentage difference in rainfall between a UKCP18 ensemble member
and observations over the baseline period.

FIGURE F.6. Boxplots showing rainfall biases for 80th percentile rainfall (top left),
90th percentile rainfall (top right), 95th percentile rainfall (bottom left) and 99th
percentile rainfall (bottom right).
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FIGURE F.7. Rainfall biases for the 90th percentile rainfall value. Each plot shows
the percentage difference in 90th percentile rainfall between a UKCP18 ensemble
member and observations over the baseline period.

F.4 Number of rainy days bias

On average the RCMS overpredict the number of wet days in a year (Figure F.8), with the

majority of grid cells receiving an extra 0 - 55 (0 - 30%) wet days per year. RCM number 10 stands

out as showing less bias than the other ensemble members.

F.5 Mean daily PET bias

Figure F.9 shows the distribution of PET over GB for each RCM, compared to observed. Figure

F.10 shows maps of the percentage bias in PET for each RCM. The RCMs produce a much larger

spread in PET than is seen for the observed data. The RCMs tend to overestimate PET in the

southeast, where observed PET is high, and underestimate PET in Scotland, where observed

PET is lower. Biases in mean daily PET are in the region of -20% to +40%.

F.6 Seasonal PET bias

Plots showing PET biases split by season are given in Figure F.11. These continue the pattern

of the RCMs overestimating PET variability. summer PET is generally overestimated (up to

+40%), winter PET is generally underestimated (in some areas by up to 100%). The same spatial
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F.6. SEASONAL PET BIAS

FIGURE F.8. Bias in number of rainy days (defined as a day with at least 0.5mm of
rainfall). Left: distribution in number of rain days across Great Britain, from
the observed rainfall data and 12 UKCP18 ensemble members. Right: percentage
difference in number of rain days between each ensemble member and the observed
data over the baseline period.

FIGURE F.9. Boxplots show distribution of observed and simulated mean daily PET
across Great Britain. Top: mean daily PET distributions from the observed data
and 12 RCMs. Middle: distributions of difference between observed and each RCM.
Bottom: distribution of difference between observed and simulated PET, as a
percentage of the observed value.
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FIGURE F.10. Percentage bias in mean daily PET from each ensemble member.

pattern of RCMs underestimating PET in the north and underestimating in the southeast persists

through all seasons.

F.7 Quantiles

Figure F.12 shows bias in RCM PET quantiles. Low quantiles are underpredicted, higher PET

quantiles are more likely to be overpredicted.
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F.7. QUANTILES

FIGURE F.11. Percentage biases in RCM PET data compared to an observed PET
product. Results are split by seasons, from top row to bottom spring (March-May),
summer (June-August), autumn (September-November) and winter (December-
February). Left column gives boxplots showing the distribution across GB, right
column shows maps of % bias for each RCM and each season.

301



APPENDIX F. SUPPLEMENT TO RESEARCH CHAPTER THREE: BIASES IN UKCP18 RCM
PROJECTIONS

FIGURE F.12. Percentage bias in PET quantiles from each RCM.
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SUPPLEMENT TO RESEARCH CHAPTER THREE: BIAS CORRECTION

METHODOLOGY

G.1 Precipitation: quantile mapping

RCMs show biases in precipitation and PET (see Appendix F). The seasonal pattern of precipi-

tation is also not simulated correctly, with RCMs overpredicting rainfall in Spring and Winter.

RCMs also simulate many extra days of light rainfall compared to observations, in many cases

over a month of additional wet days per year. A quantile-quantile mapping / distribution mapping

bias correction method was chosen to correct for these biases (Teutschbein and Seibert, 2012).

The following steps were taken for each grid-cell and month:

1. Empirical Cumulative Distribution Functions (CDFs) were calculated for the observed

precipitation, and RCM simulated precipitation for the control/baseline period (all dates

where observed and simulated precipitation were available).

2. The fractional change in precipitation between the observed and control/baseline simulated

was calculated for each cumulative probability.

3. The whole simulated precipitation series was then bias corrected. The cumulative probabil-

ity of each precipitation value was calculated, and the value was modified by the fractional

change for that cumulative probability.

Teutschbein and Seibert (2012) fit Gamma distributions to observed and simulated precipita-

tion over the control period, and corrections use the difference between the distributions. This

method was not justifiable here since the gamma function was not a good fit to the observed data.

Instead, the method was modified to use the empirical cumulative distribution functions, omitting

the need for a fit entirely and resulting in a more robust method suitable for all distribution

shapes.
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FIGURE G.1. Bias correction of July precipitation for two grid cells. CDFs are given
for the observed precipitation, sim base (simulated precipitation over the baseline
only), sim base trans (bias corrected simulated precipitation over the baseline), sim
all (simulated precipitation over the whole timeseries) and sim all trans (corrected
precipitation over the whole timeseries.

Figure G.1 shows the outcome for 2 grid cells. This shows that following bias correction the

simulated precipitation CDF resembles the observed.

G.2 PET: quantile mapping

The RCMs overpredict the variance in PET. The quantile-quantile mapping bias correction

technique was used to help correct for these biases. The technique used to correct precipitation

in the previous section was re-applied with example results shown in Figure G.2. There were

some issues when correcting very low cumulative probabilities for PET values that were close to

zero (<0.1mm/day). Large fractional changes could result from dividing by values close to zero,

and this resulted in unrealistically large spikes in future PET at low cumulative probabilities.

To prevent this, a check was added to ensure that values at a low cumulative probability were

always smaller than values at a higher cumulative probability.
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G.3. BIASES POST-CORRECTION

FIGURE G.2. Bias correction of July PET for two grid cells, as in Figure G.1.

G.3 Biases post-correction

Figure G.3 and Figure G.4 demonstrate how biases in precipitation and PET are reduced for the

baseline period following bias correction.
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FIGURE G.3. Precipitation biases over the baseline period, before and after bias correc-
tion. All biases are given as a percentage of observed.
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G.3. BIASES POST-CORRECTION

FIGURE G.4. PET biases over the baseline period, before and after bias correction.
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