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Shintani descent, simple groups and spread
Scott Harper

The spread of a group G, written s(G), is the largest k such that for any nontrivial
elements x1, . . . , xk ∈ G there exists y ∈ G such that G = 〈xi, y〉 for all i. Burness,
Guralnick and Harper recently classified the finite groups G such that s(G) > 0,
which involved a reduction to almost simple groups. In this paper, we prove
an asymptotic result that determines exactly when s(Gn) → ∞ for a sequence
of almost simple groups (Gn). We apply probabilistic and geometric ideas, but
the key tool is Shintani descent, a technique from the theory of algebraic groups
that provides a bijection, the Shintani map, between conjugacy classes of almost
simple groups. We provide a self-contained presentation of a general version
of Shintani descent, and we prove that the Shintani map preserves information
about maximal overgroups. This is suited to further applications. Indeed, we
also use it to study µ(G), the minimal number of maximal overgroups of an
element of G. We show that if G is almost simple, then µ(G) 6 3 when G has an
alternating or sporadic socle, but in general, unlike when G is simple, µ(G) can
be arbitrarily large.

1 Introduction
Generation questions about finite groups, especially finite simple groups, have attracted
much attention for many years, and asymptotic behaviour has been an important theme. For
example, a landmark result of Liebeck and Shalev [36] asserts that if (Gi) is a sequence of
finite simple groups satisfying |Gi| → ∞, then the probability that two randomly chosen
elements generate Gi tends to 1, which proves Dixon’s conjecture of 1969 [18].

A recent programme of research [3, 4, 9, 10, 24, 27, 28, 29] has focussed on spread, a notion
that captures how generating pairs are distributed across a 2-generated group (this notion is
related to the generating graph and the product replacement graph, both of which have been the
subject of recent research, see the discussion before [10, Corollaries 6 and 7].)

Definition. Let G be a finite noncyclic group.

(i) The spread of G, denoted s(G), is the largest integer k such that for any nontrivial
elements x1, . . . , xk in G, there exists y ∈ G with G = 〈xi, y〉 for all i.

(ii) The uniform spread of G, denoted u(G), is the largest integer k such that there is a
conjugacy class C of G with the property that for any nontrivial elements x1, . . . , xk,
there exists y ∈ C with G = 〈xi, y〉 for all i. Here we say that C witnesses u(G) > k.

Observe that s(G) > 0 if and only if every nontrivial element of G is contained in a
generating pair (a property known as 3

2 -generation). It is easy to see that if s(G) > 0 then
every proper quotient of G is cyclic. Recently, Burness, Guralnick and Harper [10] settled a
conjecture of Breuer, Guralnick and Kantor [4], by proving that the converse is true. In fact,
they proved that if every proper quotient of G is cyclic, then s(G) > 2. The proof involves
reducing to almost simple groups. If G is simple, then s(G) > 2 was proved in [4], but the
almost simple groups pose further challenges and the series of papers [9, 10, 28, 29] are
dedicated to proving s(G) > 2 in this case.
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In [27], Guralnick and Shalev determined exactly when a sequence of simple groups (Gi)

satisfies s(Gi) → ∞. However, the asymptotic behaviour of the spread of almost simple
groups is not yet known. By [10, Corollary 9], the unsettled case involves sequences of groups
of Lie type defined over a field of fixed size. We settle this in our first main theorem. Here,
and in Corollary 3, we use the term graph automorphism in the sense of [22, Definition 2.5.13].

Theorem 1. Fix a prime power q. Let (Gi) be a sequence of almost simple groups of Lie type defined
over Fq such that Gi/ soc(Gi) is cyclic and |Gi| → ∞. Write Gi = 〈soc(Gi), xi〉. Then the following
are equivalent

(i) s(Gi)→ ∞

(ii) u(Gi)→ ∞

(iii) (Gi) has no infinite subsequence where one of the following holds

(a) soc(Gi) ∈ {Sp2mi
(q) (q even), Ω2mi+1(q)}

(b) soc(Gi) ∈ {PSL±2mi+1(q), PΩ±2mi
(q)} and a power of xi is a graph automorphism.

Remark 2. There is a geometric characterisation of the exceptions in Theorem 1(iii). Roughly,
if G = 〈T, x〉 is an almost simple classical group, then the exceptions in Theorem 1 are the
groups where every element of Tx fixes a 1-dimensional subspace of the natural module for
T (or a closely related module), see Theorem 5.8 and Remark 5.12 for precise statements.

Combining Theorem 1 with [10, Corollary 9] gives a complete characterisation of when
the spread or uniform spread of a sequence of almost simple groups diverges to infinity.

Corollary 3. Let (Gi) be a sequence of almost simple groups such that G/soc(Gi) is cyclic and
|Gi| → ∞. Write Gi = 〈soc(Gi), xi〉. Then the following are equivalent

(i) s(Gi)→ ∞

(ii) u(Gi)→ ∞

(iii) (Gi) has no infinite subsequence where one of the following holds

(a) Gi = Ani where ni is divisible by a fixed prime
(b) Gi = Sni

(c) soc(Gi) ∈ {Sp2mi
(q) (q even), Ω2mi+1(q)} for fixed q

(d) soc(Gi) ∈ {PSL±2mi+1(q), PΩ±2mi
(q)} for fixed q, and xi powers to a graph automorphism.

The key tool in the proof of Theorem 1 is a general form of Shintani descent. This technique
from algebraic groups has played an important role in the character theory of almost simple
groups over several decades, beginning with the work of Shintani and Kawanaka (see
[13, 16, 17, 31, 37] for example). More recently, Shintani descent has been useful in studying
the almost simple groups themselves, especially in the context of spread [9, 10, 28, 29].

Let us introduce the key idea of Shintani descent. Let X be a connected algebraic group
and let σ1 and σ2 be commuting Steinberg endomorphisms of X. Then there exists a bijection
F, called the Shintani map of (X, σ1, σ2), between the conjugacy classes in the cosets Xσ1 σ2

and Xσ2 σ1, where Xσi is set of fixed points of X under σi.

Previous applications of Shintani descent to group theoretic problems have assumed that
σ1 = σe

2, and, as we explain in Remark 2.21, this makes some almost simple groups not
amenable to this technique. Therefore, we take the opportunity in Section 3 to demonstrate
how all almost simple groups can be studied in a uniform manner using this more general
version of Shintani descent.
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To use Shintani descent effectively, we must understand what is preserved by the Shintani
map F, and for our applications, we are particularly interested in how the maximal over-
groups of g in 〈Xσ1 , σ2〉 relate to the maximal overgroups of g0 in 〈Xσ2 , σ1〉 if F(gXσ1 ) = g

Xσ2
0 .

When σ1 = σe
2, partial information is given by [29, Lemma 3.3.2], namely if Y 6 X is a closed

connected 〈σ1, σ2〉-stable subgroup such that NXσi
(Yσi) = Yσi , then the 〈Xσ1 , σ2〉-conjugates

of 〈Yσ1 , σ2〉 that contain g correspond to the 〈Xσ2 , σ1〉-conjugates of 〈Yσ2 , σ1〉 that contain g0.

To prove Theorem 1, we need to be able to study maximal overgroups that arise from
disconnected subgroups Y 6 X. Our next main result allows us to do this. Here for a closed
σi-stable subgroup Y 6 X, we fix a set Ri(Y) ⊆ X such that for all x ∈ X the subgroup (Yx)σi

is Xσi -conjugate to (Yr)σi for exactly one r ∈ Ri(Y) (see Remark 2.7 for details).

Theorem 4. Let X be connected, let σ1 and σ2 be commuting Steinberg endomorphisms of X and
let F be the Shintani map of (X, σ1, σ2). Let Y 6 X be a closed 〈σ1, σ2〉-stable subgroup satisfying
NXsσi

(Y◦sσi
) = NX(Y◦)sσi for all s ∈ NX(Y◦). If F(gXσ1 ) = g

Xσ2
0 , then the overgroups of g in

{(〈Y, σ2〉r)x
σ1
| r ∈ R1(Y) and x ∈ 〈Xσ1 , σ2〉}

are in bijection with the overgroups of g0 in

{(〈Y, σ1〉r)x
σ2
| r ∈ R2(Y) and x ∈ 〈Xσ2 , σ1〉}.

To prove Theorem 4 we require the more general version of Shintani descent in Section 2,
which is based on Deshpande’s approach [16] that does not assume that X is connected. In
fact, our version is even more general since we do not assume that σ1 and σ2 commute.

Let us now highlight the important roles that Theorem 4 plays in our proof of Theorem 1.
Let G = 〈T, x〉 be an almost simple classical group with socle T.

As suggested by Remark 2, upper bounds on the spread of classical groups G featured in
part (iii) will arise from studying the subspaces of the natural module for T that are stabilised
by elements of G (see Corollary 5.5). To do this, we will apply Theorem 4 in the case where
X is a simple classical group and Y is a subspace stabiliser (which may be disconnected).

To obtain lower bounds on uniform spread, we apply the probabilistic method introduced
by Guralnick and Kantor [24]. Here, the idea is to identify an element s ∈ G such that the set
M(G, s) of maximal subgroups of G that contain s is small, because if

∑
H∈M(G,s)

|xG ∩ H|
|xG| <

1
k

then sG witnesses u(G) > k (see Lemma 5.11). Without loss of generality, if sG witnesses
u(G) > k > 0, then s ∈ Tx. Shintani descent is then the crucial tool for understanding the
conjugacy classes in Tx. Roughly, we find a Shintani map F that puts the classes in Tx in
bijection with the classes in another coset T0x0 that is easier to understand. We choose an
element s ∈ Tx by specifying its image s0 ∈ T0x0 under F, and we use Theorem 4 to deduce
M(G, s) from information about s0.

Shintani descent has had applications to other problems in group theory (for example, in
[21, 23]) and we anticipate the general version in this paper will be useful in future. Indeed,
in Section 4, we give some additional applications of Theorem 4, which we now discuss.

Motivated by the uniform domination number (an invariant related to uniform spread),
Burness and Harper [11], defined µ(G) as the minimal number of maximal overgroups
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of an element of G. They showed µ(G) 6 3 if G is simple, with four exceptions where
4 6 µ(G) 6 7, and they determined µ(G) exactly when G is alternating or sporadic.

The following theorem summarises our results on µ(G) for almost simple groups G.

Theorem 5. The following hold.

(i) If G is an almost simple group with alternating or sporadic socle, then µ(G) 6 3.
(ii) There is no constant c such that for all almost simple groups G we have µ(G) 6 c.

(iii) There are infinitely many nonsimple almost simple groups of Lie type G such that µ(G) = 1.

Remark 6. Let us comment on Theorem 5.

(i) Proposition 4.1 gives the value of µ(G) when soc(G) is alternating or sporadic, so we
determine when these groups contain an element with a unique maximal overgroup.

(ii) In Proposition 4.2, we fix k > 1 and give an almost simple group G with socle PSL2(2 f )

such that |M(G, g)| > k for each g ∈ G (we choose f so it has c distinct prime factors).
Therefore, µ(G) is even unbounded for almost simple groups G of bounded rank.

(iii) In Proposition 4.5, we will see that for all m > 8, there exists f > 1 such that Ω+
2m(2

f ). f
has an element with a unique maximal overgroup (of type O+

2k(2
f )×O+

2m−2k(2
f )).

Organisation. Section 2 introduces a general version of Shintani descent and features
a proof of Theorem 4. In Section 3, we apply Shintani descent systematically to all almost
simple groups of Lie type, and we use this to study their maximal subgroups in Section 4,
thus proving Theorem 5. Section 5 sees the proof of Theorem 1.

Notation. Our notation for algebraic groups and groups of Lie type follows [22, 32]. Let
us highlight that SL+

n (q) = SLn(q) and SL−n (q) = SUn(q), and that Ωn(Fp) is the connected
component On(Fp)◦. For a group G and a prime p, we write Op′(G) for the subgroup
generated by the p-elements of G. We write (a, b) for the greatest common divisor of a and b.

Acknowledgements. The author is grateful to the Isaac Newton Institute for Mathematical
Sciences for support and hospitality during the programme Groups, Representations and Appli-
cations: New perspectives, when some work on this paper was undertaken. The author thanks
Jean Michel for helpful comments he made on the author’s talk during that programme.
The author also thanks Tim Burness, Gunter Malle and an anonymous referee for useful
feedback on previous versions of this paper. This work was supported by EPSRC grant
number EP/R014604/1.

2 Shintani descent
2.1 Introduction

Let us introduce the general version of Shintani descent that is at the heart of the remainder
of the paper. Throughout Section 2, let p be prime and X be a linear algebraic group over Fp,
which from now on we simply refer to as an algebraic group.

We fix some notation. For a Steinberg endomorphism σ of X, write Xσ = {x ∈ X | xσ = x}.
For an automorphism α of a group G, we say that g, h ∈ G are α-conjugate if gα and hα are
conjugate in the semidirect product G:〈α〉, and we call the α-conjugacy classes α-classes.

In our first main theorem, we introduce a general version of Shintani descent. In the proof
we argue as Deshpande does in [16], but our setup is slightly more general since we define a
Shintani map for an arbitrary pair of Steinberg endomorphisms, which need not commute.
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Theorem 2.1. Let X be an algebraic group and let σ1 and σ2 be Steinberg endomorphisms of X. Let
Xi be a set of σi-class representatives of X. Then the Shintani map of (X, σ1, σ2)

F :
⋃

s∈X1

{gXsσ1 | g ∈ (Xσ2)sσ1} →
⋃

t∈X2

{hXtσ2 | h ∈ (Xσ1)tσ2}

defined as F(gXsσ1 ) = hXtσ2 if and only if (g, sσ1)
X = (tσ2, h)X is a well-defined bijection. Moreover,

if F(gXsσ1 ) = hXtσ2 , then CXsσ1
(g) ∼= CXtσ2

(h).

Proof. Write R = {(g, h) ∈ Xσ2 × Xσ1 | [g, h] = 1} and let R/X be the set of orbits of the
conjugation action of X on R. If h ∈ Xσ1, then h is X-conjugate to xsσ1 for some x ∈ X◦ and
s ∈ X1, and by the Lang–Steinberg theorem, xsσ1 is X◦-conjugate to sσ1, so

R/X =
⋃

s∈X1

{(g, sσ1)
X | g ∈ (Xσ2)sσ1}.

Observe that the distinct elements of {(g, sσ1)
X | g ∈ (Xσ2)sσ1} correspond to the distinct

Xsσ1-class representatives g in (Xσ2)sσ1 . Similarly, we deduce that

R/X =
⋃

t∈X2

{(tσ2, h)X | h ∈ (Xσ1)tσ2},

with distinct elements of {(tσ2, h)X | h ∈ (Xσ1)tσ2} corresponding to distinct Xtσ2-class
representatives h in (Xσ1)tσ2 . Therefore,⋃

s∈X1

{(g, sσ1)
X | g ∈ (Xσ2)sσ1} = R/X =

⋃
t∈X2

{(tσ2, h)X | h ∈ (Xσ1)tσ2},

and we obtain the bijection F in the statement.

If we fix g ∈ (X◦tσ2)sσ1 and h ∈ (X◦sσ1)tσ2 such that F(gXsσ1 ) = hXtσ2 , then we may write
(g, sσ1) = (tσ2, h)a for some a ∈ X, whence

CXsσ1
(g) = {x ∈ X | (g, sσ1)

x = (g, sσ1)} = {x ∈ X | (tσ2, h)x = (tσ2, h)}a = CXtσ2
(h)a.

This completes the proof.

We can give an explicit definition of the Shintani map.

Lemma 2.2. Let F be the Shintani map of (X, σ1, σ2), and let s, t ∈ X with [sσ1, tσ2] = 1. If
F(gXsσ1 ) = hXtσ2 , then there exists a ∈ X◦ such that g = aa−(tσ2)

−1
tσ2 and h = a−1a(sσ1)

−1
sσ1.

Proof. If F(gXsσ1 ) = hXtσ2 , then (g, sσ1) = (tσ2, h)a for some a ∈ X◦, which implies that
g = aa−(tσ2)

−1
tσ2 and h = a−1a(sσ1)

−1
sσ1, as required.

Remark 2.3. For our applications to finite groups, we will be interested in not the infinite
order Steinberg endomorphisms σ1 and σ2, but their finite order restrictions to finite fixed
point subgroups; however, this makes no substantive change to the claims made in this
section. In particular, if X is connected and [σ1, σ2] = 1, then for the restrictions σ̃1 = σ1|Xσ2

and σ̃2 = σ2|Xσ1
, the Shintani map F of (X, σ1, σ2) gives a well-defined bijection

{(xσ̃2)
Xσ1 | x ∈ Xσ1} → {(yσ̃1)

Xσ2 | y ∈ Xσ2}

(xσ̃2)
Xσ1 7→ (yσ̃1)

Xσ2 ⇐⇒ (xσ2, σ1)
X = (σ2, yσ1)

X.

We will harmlessly identify this bijection with F, but we will adopt the notation σ̃1 = σ1|Xσ2

and σ̃2 = σ2|Xσ1
when convenient.

5



Remark 2.4. We often abuse notation and write the Shintani map of (X, σ1, σ2) as

F :
⋃

s∈X1

(Xσ2)sσ1 →
⋃

t∈X2

(Xσ1)tσ2 where (xσ2, sσ1)
X = (tσ2, F(xσ2))

X.

In particular, if X is connected and [σ1, σ2] = 1, we simply write F : Xσ2 σ1 → Xσ1 σ2.

Example 2.5. Let X = GLm o S2 6 GL2m. Let ϕ : X → X be the standard Frobenius endo-
morphism of X defined as (xij) 7→ (xp

ij), and let γ : X → X be the restriction of the graph
automorphism of GL2m defined as x 7→ x−T. Observe that ϕ and γ commute.

Write X = X◦:〈s〉, where s ∈ GL2m is an involution interchanging the two factors of
X◦ = GLm×GLm. We choose s such that it commutes with ϕ and γ. Here, X1 = X2 = {1, s}.

Write q = p f and let F be the Shintani map of (X, γϕ f , ϕ). In the notation of Remark 2.4,

F : (GUm(q) o S2)ϕ ∪ (GLm(q2):C2)ϕ→ (GLm(p) o S2)γϕ f ∪ (GLm(p2):C2)γϕ f ,

where, for example, GLm(q2):C2-classes in GLm(q2)ϕ = X◦sγϕ f ϕ correspond to GLm(p) o S2-

classes in GLm(p)2sγϕ f = X◦ϕsγϕ f via a centraliser order preserving bijection.

2.2 Shintani descent and subgroups

For the remainder of Section 2, let X be a connected algebraic group and let σ1 and σ2 be
commuting Steinberg endomorphisms of X. For {i, j} = {1, 2}, write σ̃i = σi|Xσj

and assume
that 〈σ̃i〉 ∩ Xσj = 1. Let F : Xσ1 σ̃2 → Xσ2 σ̃1 be the Shintani map of (X, σ1, σ2).

Let us fix some notation.

Notation 2.6. Let Y be a closed σi-stable subgroup of X.

(i) Fix Si = Si(Y) as a set of σi-class representatives of NX(Y◦).

(ii) For each s ∈ X, by the Lang–Steinberg theorem (see [22, Theorem 2.1.1] for example),
fix si ∈ X such that [s−1

i , σ−1
i ] = s.

Remark 2.7. Note that the set Ri(Y) defined before Theorem 4 is {si | s ∈ Si(Y)}.

We will now give a strong version of Theorem 4, which is our main result on Shintani
descent and it captures how overgroups are preserved under the Shintani map.

Theorem 2.8. Let Y 6 X be a closed 〈σ1, σ2〉-stable subgroup satisfying NXsσi
(Y◦sσi

) = NX(Y◦)sσi

for all s ∈ NX(Y◦). Let g ∈ Xσ1 σ̃2.

(i) The total number of 〈Xσ1 , σ̃2〉-conjugates of (〈Y, σ̃2〉s1)σ1 , as s ranges across S1(Y), that contain
g equals the total number of 〈Xσ2 , σ̃1〉-conjugates of (〈Y, σ̃1〉s2)σ2 , as s ranges across S2(Y), that
contain F(g).

(ii) For s, t ∈ NX(Y◦) satisfying [sσ1, tσ2]=1, the number of 〈Xσ1 , σ̃2〉-conjugates of ((Y◦tσ̃2)s1)σ1

that contain g equals the number of 〈Xσ2 , σ̃1〉-conjugates of ((Y◦sσ̃1)
t2)σ2 that contain F(g).

Proof. For s, t ∈ Y satisfying [sσ1, tσ2] = 1, let m(s,t) be the number of 〈Xσ1 , σ̃2〉-conjugates of
the coset ((Y◦tσ̃2)s1)σ1 = (Y◦sσ1

tσ̃2)s1 that contain g and let n(t,s) be the number of 〈Xσ2 , σ̃1〉-
conjugates of the coset ((Y◦sσ̃1)

t2)σ2 = (Y◦tσ2
sσ̃1)

t2 that contain F(g).

Let us show that (i) is a consequence of (ii). Observe that Y◦sσi for s ∈ Si are representa-
tives of the NX(Y◦)-classes in NX(Y◦)σi/Y◦. For t ∈ Y, fix Si,t such that Y◦sσi for s ∈ Si,t are
representatives of the CNX(Y◦)/Y◦(Y◦tσj)-classes in CNX(Y◦)σi/Y◦(Y◦tσj) where {i, j} = {1, 2}.
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For s ∈ NX(Y), let ms be the number of 〈Xσ1 , σ̃2〉-conjugates of (〈Y, σ̃2〉s1)σ1 = (〈Y, σ̃2〉sσ1)
s1

that contain g, and for t ∈ Y, let nt be the number of 〈Xσ2 , σ̃1〉-conjugates of (〈Y, σ̃1〉t2)σ2 =

(〈Y, σ̃2〉tσ2)
t2 that contain F(g). Then

ms = ∑
t∈S2,s

m(s,t) and nt = ∑
s∈S1,t

n(t,s). (2.1)

Notice that both
⋃

s∈S1
{(Y◦sσ1, Y◦tσ2) | t ∈ S2,s} and

⋃
t∈S2
{(Y◦sσ1, Y◦tσ2) | s ∈ S1,t} are

sets of orbit representatives for

{(Y◦sσ1, Y◦tσ2) ∈ NX(Y◦)σ1/Y◦ × NX(Y◦)σ2/Y◦ | [Y◦sσ1, Y◦tσ2] = Y◦}

under the conjugation action of NX(Y◦)/Y◦. For s, x ∈ X we can, and will, assume that
(sx)i = sx

i . Thus, for all x ∈ X, we have (Y◦(tσ2)x(sσ̃1)
x)(t

x)2 = (Y◦tσ2
sσ̃1)

t2x, so n(t′,s′) = n(t,s) if
(s′σ1, t′σ2) = (sσ1, tσ2)x. Therefore,

∑
s∈S1

∑
t∈S2,s

n(t,s) = ∑
t∈S2

∑
s∈S1,t

n(t,s) (2.2)

The conclusion of part (ii) is that m(s,t) = n(t,s) for all s, t ∈ Y such that [sσ1, tσ2], and, in
light of (2.1) and (2.2), this implies that

∑
s∈S1

ms = ∑
s∈S1

∑
t∈S2,s

m(s,t) = ∑
s∈S1

∑
t∈S2,s

n(t,s) = ∑
t∈S2

∑
s∈S1,t

n(t,s) = ∑
t∈S2

nt.

which is the conclusion of part (i).

It remains to prove part (ii). Let s, t ∈ NX(Y◦) such that [sσ1, tσ2] = 1. We have

m(s,t) =
|{x ∈ 〈Xσ1 , σ̃2〉 | g ∈ (Y◦sσ1

tσ̃2)s1x}|
|N〈Xσ1 ,σ̃1〉((Y

◦
sσ1

tσ̃2)s1)| =
|gXσ1 ∩ (Y◦sσ1

tσ̃2)s1 ||C〈Xσ1 ,σ̃2〉(g)|
|N〈Xσ1 ,σ̃2〉((Y

◦
sσ1

tσ̃2)s1)|

=
|(gs−1

1 )Xsσ1 ∩Y◦sσ1
tσ̃2||C〈Xσ1 ,σ̃2〉(g)|

|N〈Xsσ1 ,σ̃2〉(Y
◦
sσ1

tσ̃2)|
=
|(gs−1

1 )Xsσ1 ∩Y◦sσ1
tσ̃2||CXσ1

(g)|
|NXsσ1

(Y◦sσ1
tσ̃2)|

. (2.3)

Similarly,

n(t,s) =
|(F(g)t−1

2 )Xtσ2 ∩Y◦tσ2
sσ̃1||CXσ2

(F(g))|
|NXtσ2

(Y◦tσ2
sσ̃1)|

. (2.4)

Let y1, . . . , yk represent the Y◦sσ1
-classes in Y◦sσ1

tσ̃2, and let I = {i | yi ∈ (gs−1
1 )Xsσ1}. Then

|(gs−1
1 )Xsσ1 ∩Y◦sσ1

tσ̃2| = ∑
i∈I
|y

Y◦sσ1
i | = ∑

i∈I

|Y◦sσ1
|

|CY◦sσ1
(yi)|

. (2.5)

Observe that
I = {i | yi ∈ (gs−1

1 )Xsσ1} = {i | (yi, sσ1)
X = (gs−1

1, sσ1)
X}.

Applying the Shintani map F, we see

(gs−1
1, sσ1)

X = (g, σ1)
X = (σ2, F(g))X = (tσ2, F(g)t−1

2 )X.

Let E(s,t) be the Shintani map of (Y◦, sσ1, tσ2). Then E(s,t)(y1), . . . , E(s,t)(yk) represent the
Y◦tσ2

-classes in Y◦tσ2
sσ̃1, and (yi, sσ1)

Y◦ = (tσ2, E(s,t)(yi))
Y◦ , so (yi, sσ1)

X = (tσ2, E(s,t)(yi))
X.

Therefore,

I = {i | (tσ2, E(s,t)(yi))
X = (tσ2, F(g)t−1

2 )X} = {i | E(s,t)(yi) ∈ (F(g)t−1
2 )Xtσ2}.
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This implies that

|(F(g)t−1
2 )Xtσ2 ∩Y◦tσ2

sσ̃1| = ∑
i∈I
|y

Y◦tσ2
i | = ∑

i∈I

|Y◦tσ2
|

|CY◦tσ2
(E(s,t)(yi))|

. (2.6)

By Theorem 2.1, |CXσ1
(g)| = |CXσ2

(F(g))| and |CY◦sσ1
(yi)| = |CY◦tσ2

(E(s,t)(yi))|. Therefore,
by combining (2.3)–(2.6), we obtain

m(s,t)

n(t,s)
=
|NXtσ2

(Y◦tσ2
sσ̃1) : Y◦tσ2

|
|NXsσ1

(Y◦sσ1
tσ̃2) : Y◦sσ1

| =
|CNXtσ2

(Y◦tσ2
)/Y◦tσ2

(sσ1)|

|CNYsσ1
(Y◦sσ1

)/Y◦sσ1
(tσ2)|

=
|C(NX(Y◦)/Y◦)tσ2

(sσ1)|
|C(NX(Y◦)/Y◦)sσ1

(tσ2)|
.

We conclude that m(s,t) = n(t,s) since

|C(NX(Y◦)/Y◦)tσ2
(sσ1)| = |C(NX(Y◦)/Y◦)(sσ1) ∩ C(NX(Y◦)/Y◦)(tσ2)| = |C(NX(Y◦)/Y◦)sσ1

(tσ2)|.

This completes the proof.

The following example not only highlights how we apply Theorem 2.8, but also introduces
an embedding that we will return to at the end of the paper.

Example 2.9. Let q = 2 f . Let T = Sp2m(q) and g = ϕi where i divides f . Let X be the simple
algebraic group Sp2m and let ϕ be the standard Frobenius endomorphism (xij) 7→ (x2

ij). Fix
σ = ϕi, and write σ1 = σe and σ2 = σ, where e = f /i. Then the Shintani map of (X, σ1, σ2) is
F : Sp2m(q)g→ Sp2m(q0), where q0 = 2i and q = qe

0 = 2 f .

Let Y = O2m, a maximal closed σ-stable subgroup of X. Now Y◦ = Ω2m and Y = Y◦:〈s〉
where s is a transvection. Then {1, s} is a transversal of Y◦ in Y = NX(Y◦). Fix s1, s2 ∈ X
such that [s−1

i , σ−1
i ] = s.

Both Yσe = O+
2m(q) and (Ys1)σe = Ys1

sσe = O−2m(q) are maximal subgroups of Xσe = Sp2m(q),
and Yσ = O+

2m(q0) and (Ys2)σ = Ys2
sσ = O−2m(q0) are maximal subgroups of Xσ = Sp2m(q0).

We now apply Theorem 2.8.

(i) For all x ∈ Sp2m(q), the total number of maximal subgroups of G = 〈Sp2m(q), ϕ̃i〉 of
type O+

2m(q) or O−2m(q) that contain xϕ̃i equals the total number of maximal subgroups
of G0 = Sp2m(q0) of type O+

2m(q0) or O−2m(q0) that contain F(xϕ̃i).

(ii) In fact, we have the following more detailed correspondences

{A ∈ (Ω+
2m(q)ϕi)G | x ∈ A} ←→ {B ∈ Ω+

2m(q0)
G0 | F(x) ∈ B}

{A ∈ (Ω−2m(q)ϕi)G | x ∈ A} ←→ {B ∈ (Ω+
2m(q0)s)G0 | F(x) ∈ B}

{A ∈ (Ω+
2m(q)sϕi)G | x ∈ A} ←→ {B ∈ (Ω−2m(q0)se)G0 | F(x) ∈ B}

{A ∈ (Ω−2m(q)sϕi)G | x ∈ A} ←→ {B ∈ (Ω−2m(q0)se+1)G0 | F(x) ∈ B}.

Remark 2.10. Example 2.9(i) was given by more indirect means in [28, Section 2.2.3] relying
on the isogeny SOn+1 → Spn in characteristic two and a bespoke geometric argument, but
the more detailed information given in Example 2.9(ii) was not available in that context.

By [19, Theorem 2], when p = 2, every element of Sp2m(q) is contained in a maximal
subgroup of type O+

2m(q) or O−2m(q). Therefore, Example 2.9 implies the following.

Proposition 2.11. Let p = 2 and let PSp2m(q) 6 G 6 PΓSp2m(q). Then every element of G is
contained in a maximal subgroup of the form NG(H) where H is a maximal subgroup of PSp2m(q)
isomorphic to O+

2m(q) or O−2m(q).
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2.3 Further properties

Continue to assume that X is a connected algebraic group, σ1 and σ2 are commuting Steinberg
endomorphisms of X and F is the Shintani map of (X, σ1, σ2).

We now present properties of Shintani descent, beginning with a general version of [29,
Lemma 3.2.2]. If an isogeny π : X → Y has a 〈σ1, σ2〉-stable kernel, then σi induces a Steinberg
endomorphism σi,Y on Y such that σi,Y ◦ π = π ◦ σi and, by mapping σi 7→ σi,Y, π extends to
an abstract group homomorphism π : 〈X, σ1, σ2〉 → 〈Y, σ1,Y, σ2,Y〉. We simply write σi for σi,Y.

Lemma 2.12. Let π : X → Y be an isogeny with a 〈σ1, σ2〉-stable kernel. Let E be the Shintani map
of (Y, σ1, σ2). Then E ◦ π = π ◦ F and E−1 ◦ π = π ◦ F−1

Proof. If (xσ2, σ1)
X = (σ2, yσ1)

X then (π(x)σ2, σ1)
Y = (σ2, π(y)σ1)

Y, so

E(π(xσ2)
Yσ1 ) = E((π(x)σ2)

Yσ1 ) = (π(y)σ1)
Yσ2 = π((yσ1)

Xσ2 ) = π(F(xσ2)),

E−1(π(yσ1)
Yσ2 ) = E−1((π(y)σ1)

Yσ2 ) = (π(x)σ2)
Yσ1 = π((xσ2)

Xσ1 ) = π(F−1(yσ1)),

which proves the result.

Corollary 2.13. Let π : X → Y be a bijective isogeny with a 〈σ1, σ2〉-stable kernel. Then π ◦ F ◦π−1.
is the Shintani map of (Y, σ1, σ2).

Corollary 2.14. Let π : X → Y be an isogeny with a 〈σ1, σ2〉-stable kernel. Let E be the Shintani
map of (Y, σ1, σ2). Then E restricts to a bijection

{(xσ̃2)
Yσ1 | x ∈ π(Xσ1)} → {(yσ̃1)

Yσ2 | y ∈ π(Xσ2)}.

Example 2.15. Let Y = PSLn, let ϕ : Y → Y be Frobenius endomorphism (yij) 7→ (yp
ij) and

let γ : Y → Y be the standard involutory graph automorphism y 7→ (y−T)J where J is the
antidiagonal matrix with antidiagonal entries 1,−1, 1,−1, . . . , (−1)n+1. Write q = p f and
let E : PGLn(q)γϕ̃ → PGUn(p)γ f be the Shintani map of (Y, ϕ f , γϕ), noting that ϕ̃ f |Yγϕ

=

γ f |Yγϕ
. For many applications, we will want to focus on the coset PSLn(q)γϕ̃. Does this

coset correspond to PSUn(p)γ f under F? Yes. To see this, let π : SLn → PSLn be isogeny
given by taking the quotient of SLn by its centre. As π(Yϕ f ) = π(SLn(q)) = PSLn(q) and
π(Yγϕ) = π(SUn(p)) = PSUn(p), Corollary 2.14 implies that E restricts to the bijection

{(xϕ̃)PGLn(q) | x ∈ PSLn(q)} → {(yγ f )PGUn(p) | y ∈ PSUn(p)}.

When f is even this can also be proved via determinants, as in [9, Lemma 5.3], but this more
concrete approach does not apply when f is odd.

The application of Corollary 2.14 in Example 2.15 will be vastly generalised by the concept
of outer Shintani descent, which we introduce in Section 3.5.

The next lemma captures how powers and element orders behave under Shintani descent.

Lemma 2.16. Assume that there exist d, e > 1 such that d divides |σ̃1|, de divides |σ̃2| and σ̃de
2 = σ̃d

1 .
For all x ∈ Xσ1 , the following hold

(i) F(xσ̃2)d = E((xσ̃2)d), where E is the Shintani map of (X, σde
2 , σd

2 )

(ii) |xσ̃2| = de|F(xσ̃2)|.

Proof. Let σ = σd
2 and let E be the Shintani map of (X, σe, σ). Fix a ∈ X such that x = aa−σ−1

2 .
Then F(xσ̃2) = a−1aσ−1

1 σ̃2. Now (xσ̃2)d = aa−σ−1
σ̃ and F(xσ̃2)d = a−1aσ−e

σ̃e, so F(xσ̃2)d =

E((xσ̃2)d). In particular, |(xσ̃2)d| = e|E((xσ̃2)d)| = |F(xσ̃)d|. Since d divides |σ̃2|, which
divides |xσ̃2|, we conclude that |xσ̃2| = d|(xσ̃2)d| = de|F(xσ̃)d|.
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The following observation [10, Lemma 3.20] is an immediate consequence of Lemma 2.16.

Corollary 2.17. Let σ be a Steinberg endomorphism of X, let e be a positive integer and let F be the
Shintani map of (X, σe, σ). Then |xσ̃| = e|F(xσ̃)| for all x ∈ Xσ.

We use Corollary 2.17 to obtain the following result, which is important to Section 4.

Lemma 2.18. Let X be connected, let σ be a Steinberg endomorphism of X and let e > 1. Let F be
the Shintani map of (X, σe, σ). Let x ∈ Xσe and y ∈ Xσ satisfy F(xσ̃) = y. Write G = 〈Xσe , σ̃〉.

(i) Assume that e is a prime divisor of |y| and |y| does not properly divide the order of any element
of Xσ. Then xσ̃ is not contained in any G-conjugate of 〈Xσ, σ̃〉.

(ii) Assume that e is coprime to |y| and yX ∩ Xσ = yXσ . Then xσ̃ is contained in a G-conjugate of
〈Xσe/k , σ̃〉 for every prime divisor k of e.

Proof. For part (i), suppose that xσ̃ ∈ 〈Xσ, σ̃〉g for some g ∈ Xσe . Then (xσ̃)g = hσ̃ ∈ 〈Xσ, σ̃〉,
that is, h ∈ Xσ. By Corollary 2.17, e|y| = |hσ̃| = e|h|/(e, |h|) = |h|, which is a contradiction
since we assumed that |y| does not properly divide the order of any element of Xσ.

For part (ii), fix d such that ed ≡ −1 (mod |y|). Then yd ∈ Xσ 6 Xσe and F((ydσ̃)Xσe ) =

(a−1(ydσ̃)−ea)Xσ = (a−1ya)Xσ for some a ∈ X. Since yX ∩ Xσ = yXσ , we know that a−1ya
is Xσ-conjugate to y, so F((ydσ̃)Xσe ) = yXσ and xσ̃ = (ydσ̃)g for some g ∈ Xσe . Now ydσ̃ ∈
〈Xσ, σ̃〉 6 〈Xσe/k , σ̃〉 for every prime divisor k of e, so xσ̃ ∈ 〈Xσe/k , σ̃〉g, as claimed.

Our next result is a direct generalisation of [29, Lemma 3.3.4].

Lemma 2.19. Let x ∈ Xσ1 and let H 6 G = 〈Xσ1 , σ̃2〉. Then x is contained in at most |CXσ2
(F(xσ̃2))|

distinct G-conjugates of H.

Proof. By [29, Lemma 2.1.2] for example, the number of G-conjugates of H that contain xσ̃2 is

|G|
|NG(H)| ·

|(xσ̃2)G ∩ H|
|(xσ̃2)G| =

|(xσ̃2)G ∩ H||CG(xσ̃2)|
|NG(H)| =

|(xσ̃2)G ∩ H||σ̃2||CXσ1
(xσ̃2)|

|NG(H)|

=
|(xσ̃2)G ∩ H||σ̃2||CXσ2

(F(xσ̃2))|
|NG(H)| 6

|H|
|NG(H)| · |CXσ2

(F(xσ̃2))| 6 |CXσ2
(F(xσ̃2))|,

where the penultimate inequality holds since |(xσ̃2)G ∩ H| 6 |H|/|σ̃2|.

Let us comment on the special case of Shintani descent that has previously been applied
to group theoretic problems (see [29, Chapter 3] for a general reference). The key is the
following immediate consequence of Lemma 2.2.

Lemma 2.20. Let X be connected, let σ be a Frobenius endomorphism of X and let e > 1. Let F be the
Shintani map of (X, σe, σ). Then F((xσ̃)Xσe ) = (a−1(xσ̃)−ea)Xσ for a ∈ X such that x = aa−σ−1

.

Hence, what is referred to in the literature as the Shintani map of (X, σ, e) is the map

F′ : {(xσ̃)Xσe | x ∈ Xσe} → {yXσ | y ∈ Xσ} F′((xσ̃)Xσe ) = (F(xσ̃)−1)Xσ ,

where F is the Shintani map of (X, σe, σ). Therefore, previous applications of Shintani descent
are essentially the special case where X is connected and σ1 = σe

2. Here, up to X-conjugacy,
the Shintani map F simply involves raising to the power −e, which is often useful.
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Remark 2.21. Our main application is to almost simple groups, where we have a finite
simple group of Lie type T and an automorphism g ∈ Aut(T), which we study by writing
T = Op′(Xσ1) and g ∈ Xσ1 σ̃2 for a simple algebraic group X and two commuting Steinberg
endomorphisms σ1 and σ2. However, we cannot always insist that σ1 = σe

2. For example, if
T = PSLn(p f ) for odd f and g = γϕ̃, then we choose (X, σ1, σ2) = (PSLn, ϕ f , γϕ), but σ1 is
not a power of σ2 (see Example 2.5 for the definitions of ϕ and γ). A partial solution was
found in [28, Lemma 3.4.1], which allows us to work with some elements of Tg but does not
allow us to prove results about all elements of Tg, which we need to be able to do in order to
prove Theorem 1. The unified approach of this paper allows us to do this.

3 Shintani descent and finite groups of Lie type
In this section, we systematically apply Shintani descent to almost simple groups of Lie type,
and we begin by recalling some information about these groups in Sections 3.1–3.3.

3.1 Finite groups of Lie type

Let L be the set of finite groups T such that T = Op′(Xσ) for a simple algebraic group X of
adjoint type and a Steinberg endomorphism σ of X. Every group in L other than

PSL2(2) ∼= 3:2, PSL2(3) ∼= 22:3, PSU3(2) ∼= 32:Q8, 2B2(2) ∼= 5:4

PSp4(2) ∼= S6, G2(2) ∼= PΓL3(3), 2G2(3) ∼= PΓL2(8), 2F4(2)

is a nonabelian simple group, and we will refer to these as the finite simple groups of Lie type.
(Note that by this definition, the Tits group 2F4(2)′ is not a finite simple group of Lie type.)

Let X be a simple algebraic group of adjoint type. Let us fix some notation:

ϕ is the Frobenius endomorphism of X fixing Fp

γ is the standard involutory graph automorphism of X ∈ {PSLn, PΩ2m, E6}
τ is the standard triality graph automorphism of X = PΩ8

ρ is the graph-field endomorphism of X fixing Fp if (X, p) ∈ {(PSp4, 2), (F4, 2), (G2, 3)}.
Write Σ(X) for the group generated by ϕ, γ, τ, ρ when they are defined. Note that

|γ| = 2, [γ, ϕ] = 1, |τ| = 3, τγ = τ−1, [τ, ϕ] = 1, ρ2 = ϕ.

For T = Op′(Xσ) ∈ L, note that Aut(T) ∼= Inndiag(T):Σ(T), where Inndiag(T) = Xσ

and Σ(T) = {g|Xσ | g ∈ Σ(X) and gσ = g} (see [22, Theorem 2.5.4]).

3.2 Classical groups

We say that a simple algebraic group is a classical group with natural module Fn
p if it is one of

PSLn (n > 2), PSpn (n > 4), PΩn (n > 7),

where we omit reference to the field. Similarly, T ∈ L is a classical group if it is one of

PSLn(q) (n > 2), PSUn(q) (n > 3), PSpn(q) (n > 4), PΩε
n(q) (n > 7),

and the natural module for T is Fn
qu where u = 2 if T = PSUn(q) and u = 1 otherwise.

If X is a simple classical algebraic group, then define Aut∗(X) = X:Σ∗(X) where

Σ∗(X) =

{
〈ϕ, γ〉 ∼= C2 × C∞ if X ∈ {PSLn (n > 3), PΩ2m}
〈ϕ〉 ∼= C∞ if X ∈ {PSL2, PSp2m, PΩ2m+1}.
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Similarly, for classical T = Op′(Xσ) ∈ L, define Σ∗(T) = {g|Xσ | g ∈ Σ∗(X) and gσ = g}
and Aut∗(T) = Inndiag(T):Σ∗(T), so Aut∗(T) = Aut(T) unless T is PSp4(2

f ) or PΩ+
8 (q).

For T ∈ L and g ∈ Σ(T), say that (T, g) is classical if T is a classical group and g ∈ Σ∗(T).

3.3 Automorphisms

Let us now give a concrete description of the automorphism group of T.

For x ∈ Aut(T), write ẍ = Tx, so

Out(T) = {ẍ | x ∈ Aut(T)} and Outdiag(T) = {ẍ | x ∈ Inndiag(T)}.

The group Out(T) is described in [22, Theorem 2.5.12]. If T 6= PΩε
2m(q), then Outdiag(T) is

cyclic and we write Inndiag(T) = 〈T, δ〉 if it is nontrivial. If T = PΩε
2m(q), then we adopt

the notation from [32, Chapter 2] (see also [29, Section 5.2]) but we write z for r�r�.

The following result gives a complete description of the conjugacy classes in Out(T).

Theorem 3.1. Let T = Op′(Xσ1) ∈ L defined over Fq where q = p f .

(i) Let x ∈ Aut(T). Then 〈ẍ〉 is Out(T)-conjugate to 〈ḧg̈〉 for a unique g = σ2|Inndiag(T) from
Table 1 and some h ∈ Inndiag(T).

(ii) Let g = σ2|Inndiag(T) for some σ2 in Table 1. Then Outdiag(T) is trivial or the Out(T)-classes
in Outdiag(T)g̈ are S̈g̈ where S is a set given in Table 2.

Proof. If T is classical, then this is a combination of [29, Proposition 5.2.15, Remark 5.2.17,
Proposition 6.2.6 and Remark 6.2.7]. If T is exceptional, then this is [10, Proposition 3.15].

3.4 Standard Shintani setups

We can now explain how to study the almost simple groups of Lie type via Shintani descent.

Let T ∈ L and g ∈ Σ(T). A Shintani setup for (T, g) is a triple (X, σ1, σ2), where X is
a simple algebraic group of adjoint type and where σ1 and σ2 are commuting Steinberg
endomorphisms of X such that T = Op′(Xσ1) and 〈g〉 = 〈σ2|Xσ1

〉.

If T = Op′(Xσ1) and g = σ2|Xσ1
for (X, σ1, σ2) in Table 1, then (T, g) is a standard pair,

(X, σ1, σ2) is the Shintani setup of (T, g) and the Shintani map F of (X, σ1, σ2) is the Shintani
map of (T, g). Note that F : Inndiag(T)g→ Inndiag(T0)g0 where T0 ∈ L and g0 ∈ Aut(T0)

are given in Table 1. In particular, (T, g) is classical if and only if Inndiag(T0) is classical.

3.5 Outer Shintani descent

In this section, we explain how to restrict a Shintani map F : Xσ1 σ̃2 → Xσ2 σ̃1 to particu-
lar cosets of Op′(Xσi). To do this we introduce an auxiliary bijection. This generalises the
observation in Example 2.15 to all almost simple groups of Lie type.

For a standard pair (T, g) with Shintani map F, define the outer Shintani map of (T, g) as

F̈ : {(Txg)Out(T) | x ∈ Inndiag(T)} → {(T0x0g0)
Out(T0) | x0 ∈ Inndiag(T0)}

F̈((Txg)Out(T)) = (T0x0g0)
Out(T0) ⇐⇒ F((xg)Inndiag(T)) = (x0g0)

Inndiag(T0).

Theorem 3.2. The outer Shintani map F̈ is a well-defined bijection, and if F̈((Txg)Outdiag(T)) =

(T0x0g0)Outdiag(T0), then COutdiag(T)(Txg) ∼= COutdiag(T0)(T0x0g0).
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Table 1: Standard Shintani setups (i divides f and q0 = pi)

X σ1 T σ2 f /i T0 g0 conditions

PSLn ϕ f PSLn(q) ϕi any PSLn(q0) 1
γϕi even PSUn(q0) 1
γϕi odd PSUn(q0) γ

γϕ f PSUn(q) γϕi odd PSUn(q0) 1
ϕi any PSLn(q0) γ

PΩ2m+1 ϕ f Ω2m+1(q) ϕi any Ω2m+1(q0) 1

PSp2m ϕ f PSp2m(q) ϕi any PSp2m(q0) 1
ρi any 2B2(q0) 1 m = p = 2 & i odd

ρ f 2B2(q) ρi any 2B2(q0) 1 m = p = 2 & f odd

PΩ2m ϕ f PΩ+
2m(q) ϕi any PΩ+

2m(q0) 1
γϕi even PΩ−2m(q0) 1
γϕi odd PΩ−2m(q0) γ

τϕi 3
∣∣ e 3D4(q0) 1 m = 4

τϕi 3
∣∣- e 3D4(q0) τ−1 m = 4

γϕ f PΩ−2m(q) γϕi odd PΩ−2m(q0) 1
ϕi any PΩ+

2m(q0) γ

τϕ f 3D4(q) τϕi 3
∣∣- e 3D4(q0) 1 m = 4

ϕi any PΩ+
8 (q0) τ−1 m = 4

E6 ϕ f E6(q) ϕi any E6(q0) 1
γϕi even 2E6(q0) 1
γϕi odd 2E6(q0) γ

γϕ f 2E6(q) γϕi odd 2E6(q0) 1
ϕi any E6(q0) γ

E7 ϕ f E7(q) ϕi any E7(q0) 1

E8 ϕ f E8(q) ϕi any E8(q0) 1

F4 ϕ f F4(q) ϕi any F4(q0) 1
ρi any 2F4(q0) 1 p = 2 & i odd

ρ f 2F4(q) ρi any 2F4(q0) 1 p = 2 & f odd

G2 ϕ f G2(q) ϕi any G2(q0) 1
ρi any 2G2(q0) 1 p = 3 & i odd

ρ f 2G2(q) ρi any 2G2(q0) 1 p = 3 & f odd
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Table 2: Out(T)-classes in Outdiag(T)g

T σ2 f /i the sets S conditions

PSLn(q) ϕi any {δj, δ−j, . . . , δjp f−1
, δ−jp f−1}〈δpi−1〉

γϕi even {δj, δ−j, . . . , δjp f−1
, δ−jp f−1}〈δpi+1〉

γϕi odd 〈δ〉 (n, q− 1) odd
〈δ2〉, δ〈δ2〉 (n, q− 1) even

PSUn(q) γϕi odd {δj, . . . , δjp f−1}〈δpi+1〉

ϕi any 〈δ〉 (n, q + 1) odd
〈δ2〉, δ〈δ2〉 (n, q + 1) even

Ω2m+1(q) ϕi any {1}, {δ} q odd

PSp2m(q) ϕi any {1}, {δ} q odd

PΩ+
2m(q) ϕi any {1}, {δ} qm ≡ 3 (mod 4)

{1}, {z}, {δ, zδ} pim ≡ 1 (mod 4)
{1, z}, {δ, zδ} pim ≡ 3 (mod 4) & f /i even

γϕi even {1}, {δ} qm ≡ 3 (mod 4)
{1}, {z}, {δ, zδ} pim ≡ 3 (mod 4)
{1, z}, {δ, zδ} pim ≡ 1 (mod 4)

γϕi odd {1}, {δ} qm ≡ 3 (mod 4)
{1, z}, {δ, zδ} qm ≡ 1 (mod 4)

τϕi 3
∣∣ e {1, δ, z, zδ} m = 4 & q odd

PΩ−2m(q) γϕi odd {1}, {δ} qm ≡ 1 (mod 4)
{1}, {z}, {δ, zδ} pm ≡ 3 (mod 4)

ϕi any {1}, {δ} qm ≡ 1 (mod 4)
{1, z}, {δ, zδ} qm ≡ 3 (mod 4)

E6(q) ϕi any {1}, {δ, δ2} pi ≡ 1 (mod 3)
{1, δ, δ2} pi ≡ 2 (mod 3) & f /i even

γϕi even {1}, {δ, δ2} pi ≡ 2 (mod 3)
{1, δ, δ2} pi ≡ 1 (mod 3)

γϕi odd {1, δ, δ2} q ≡ 1 (mod 3)

2E6(q) γϕi odd {1}, {δ, δ2} q ≡ 2 (mod 3)

ϕi any {1, δ, δ2} q ≡ 2 (mod 3)

E7(q) ϕi any {1}, {δ} q odd
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Before proving Theorem 3.2, let us recall some convenient notation for orthogonal groups
that was introduced in [29]. For a field K of characteristic p > 0, write

DOε
2m(K) =

{
Ωε

2m(K) if p = 2
{g ∈ GOε

2m(K) | det(g) = τ(g)m} otherwise.

Here τ : DOε
2m(K)→ K is the similarity map and det(g) = ±τ(g)m for all g ∈ GOε

2m(K) (see
[32, Lemmas 2.1.2 and 2.8.4]). As recorded in [29, (2.12)],

PDOε
2m(q) = DOε

2m(q)/Z(DOε
2m(q)) = Inndiag(PΩε

2m(q)).

Proof of Theorem 3.2. We assume that Inndiag(T) > T or Inndiag(T0) > T0 since otherwise
Outdiag(T) and Outdiag(T0) are trivial and F̈ : {{g̈}} → {{g̈}}. We consider each nontrivial
case in turn, explicitly describing F̈ and showing that it is a bijection, but leaving the reader
to verify the claim about centralisers, which is not difficult.

First assume that p 6= 2 and T ∈ {PSp2m(q), Ω2m+1(q), E7(q)}, so | Inndiag(T) : T| = 2.
Let X ∈ {PSp2m, PΩ2m+1, E7} be the corresponding simple algebraic group of adjoint type.
In this case, g = ϕ̃i for some i dividing f , g0 = 1 and | Inndiag(T0) : T0| = 2. Now the two
distinct Out(T)-classes in Outdiag(T)ϕ̈i are {ϕ̈i} and {δ̈ϕ̈i} and the two distinct Out(T0)-
classes in Outdiag(T0) are {1̈} and {δ̈0}. Let Xsc be the simply connected version of X and let
π : Xsc → X be the isogeny defined by taking the quotient of Xsc by Z(Xsc) ∼= C2. Applying
Corollary 2.14 to π establishes that

F : {(xϕ̃i)Inndiag(T) | x ∈ Inndiag(T)} → {xInndiag(T0)
0 | x0 ∈ Inndiag(T0)}

restricts to
{(xϕ̃i)Inndiag(T) | x ∈ T} → {xInndiag(T0)

0 | x0 ∈ T0}

This proves that F̈({ϕ̈i}) = {1̈} and F̈({δ̈ϕi}) = {δ̈0}. In particular, F̈ is a bijection.

Next assume that p 6= 3 and T = Eε
6(q). Write F : Inndiag(T)g → Inndiag(T0)g0 with

T0 = Eε0
6 (q0). Note that | Inndiag(T) : T| = (3, q− ε) and | Inndiag(T0) : T| = (3, q0 − ε0). If

Outdiag(T) and Outdiag(T0) both consist of a unique Out(T)-class, then there is nothing to
prove. From Table 2, we note that Outdiag(T) has multiple Out(T)-classes (necessarily {g̈}
and {δ̈g̈, δ̈2 g̈}) if and only if Outdiag(T0) has multiple Out(T0)-classes (necessarily {g̈0} and
{δ̈0 g̈0, δ̈2

0 g̈0}) if and only if g0 = 1 and q0 ≡ ε0 (mod 3) (which implies that q ≡ ε (mod 3)).
Therefore, assume that g0 = 1 and q0 ≡ ε0 (mod 3). Then applying Corollary 2.14 to the
isogeny Esc

6 → E6 with kernel Z(Esc
6 ) ∼= C3, shows that F restricts to

{(xg)Inndiag(E6(q)) | x ∈ E6(q)} → {(x0g0)
Inndiag(E6(q0)) | x0 ∈ E6(q0)},

establishing that F̈({g̈}) = {g̈0} and F̈({δ̈g̈, δ̈2 g̈}) = {δ̈0 g̈0, δ̈2
0 g̈0}, so F̈ is bijective.

Now assume that p 6= 2 and T = PΩε
2m(q). Write F : Inndiag(T)g → Inndiag(T0)g0

with T0 = PΩε0
2m(q0). Now | Inndiag(T) : T| = (4, qm − ε) and {δ̈g̈, z̈δ̈g̈} is an Out(T)-class

(possibly of size one) in Outdiag(T)g̈, and similarly, | Inndiag(T0) : T0| = (4, qm
0 − ε0) and

{δ̈0 g̈0, z̈0δ̈0 g̈0} is an Out(T0)-class in Outdiag(T0)g̈0. Applying Corollary 2.14 to the isogeny
SO2m → PSO2m with kernel Z(SO2m) shows that F restricts to

{(xg)PDOε
2m(q) | x ∈ PSOε

2m(q)} → {(x0g0)
PDOε0

2m(q0) | x0 ∈ PSOε0
2m(q0)}

and consequently that F̈({g̈, z̈g̈}) = {g̈0, z̈0 g̈0} and F̈({δ̈g̈, z̈δ̈g̈}) = {δ̈0 g̈0, z̈0δ̈0 g̈0}. Now if g̈
and z̈g̈ are Out(T)-conjugate (perhaps even equal) and g̈0 are z̈0 g̈0 are Out(T0)-conjugate,
then the proof that F̈ is bijective is complete. Table 2 allows us to deduce that g̈ and z̈g̈ are not
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Out(T)-conjugate if and only if g̈0 are z̈0 g̈0 are not Out(T0)-conjugate if and only if g0 = 1
and qm

0 ≡ ε0 (mod 4) (which implies that qm ≡ ε (mod 4)). Therefore, assume that g0 = 1
and qm

0 ≡ ε0 (mod 4). Applying Corollary 2.14 to the isogeny Spin2m → PSO2m with kernel
Z(Spin2m) shows that F restricts to the bijection

{(xg)PDOε
2m(q) | x ∈ PΩε

2m(q)} → {(x0g0)
PDOε0

2m(q0) | x0 ∈ PΩε0
2m(q0)},

which implies that F̈({g̈}) = {g̈0} and F̈({z̈g̈}) = {z̈0 g̈0}. Therefore, F̈ is a bijection.

Finally assume that T = PSLε
n(q). Write F : Inndiag(T)g → Inndiag(T0)g0 with T0 =

PSLε0
n (q0). Note that | Inndiag(T) : T| = |δ̈| = (n, q − ε) and | Inndiag(T0) : T| = |δ̈0| =

(n, q0 − ε0). For now assume that g0 = 1, so F̈ : 〈δ̈〉g̈→ 〈δ̈0〉. Let x ∈ PGLε
n(q). Then

det(F(xg)) = det((xg)−e) = det(x)−
q−ε

q0−ε0 ,

so F̈(δ̈j ϕ̈i) = δ̈
−j
0 and F̈ is bijective (this is an easy calculation, but see also [9, Lemmas 4.2

and 5.3] and [29, Lemma 6.4.2]). It remains to assume that g0 = γ. From Table 2, we note
that Outdiag(T) has multiple Out(T)-classes (necessarily 〈δ̈2〉g̈ and δ〈δ̈2〉g̈) if and only if
Outdiag(T0) has multiple Out(T0)-classes (necessarily 〈δ̈2

0〉g̈0 and δ0〈δ̈2
0〉g̈0) if and only if n

is even and q is odd. If n is even and q is odd, then applying Corollary 2.14 to the isogeny
2. PSLn → PSLn with kernel Z(2. PSLn) ∼= C2 shows that F restricts to

{(xg)PGLε
n(q) | x ∈ 1

2 PGLε
n(q)} → {(x0g0)

PGLε0
n (q0) | x0 ∈ 1

2 PGLε0
n (q0)},

so F̈(〈δ̈2〉g̈) = 〈δ̈2
0〉g̈0 and F̈(δ〈δ̈2〉g̈) = δ0〈δ̈2

0〉g̈0, as required.

We will apply the following corollary of Theorem 3.2 in Proposition 5.6.

Corollary 3.3. Let F : Inndiag(T)g → Inndiag(T0)g0 be the Shintani map of a standard pair
(T, g). Let P and P0 be properties of elements of Aut(T) and Aut(T0), respectively, that are preserved
by conjugation. Assume that h ∈ Inndiag(T)g has P if and only if F(h) ∈ Inndiag(T0)g0 has P0.
Then Tx contains an element with property P for all x ∈ Inndiag(T)g if and only if T0x0 contains
an element with property P0 for all x0 ∈ Inndiag(T0)g0.

Proof. We prove the forward implication; the reverse is very similar. Let x ∈ Inndiag(T0)g.
By hypothesis, T0F(xInndiag(T)) contains an element y0 with property P0. Let y ∈ Inndiag(T)g
such that F(yInndiag(T)) = yInndiag(T)

0 . By Theorem 3.2, F̈(ÿOut(T)) = ÿ0
Out(T0) = F̈(ẍOut(T)),

that is, y ∈ TxInndiag(T), so there exists an element in Tx with property P, as required.

3.6 Maximal subgroups

We conclude this section, with a fundamental theorem, combining [34, Theorem 2] and [35,
Theorem 2], that describes the maximal subgroups of the almost simple groups of Lie type.

Theorem 3.4. Let G be an almost simple group of Lie type with socle T. Write T = Op′(Xσ) for a
simple algebraic group X of adjoint type and a Steinberg endomorphism σ of X. Let H be a maximal
subgroup of G not containing T. Then H is one of

(I) NG(Yσ ∩ T) for a maximal closed σ-stable positive-dimensional subgroup Y of X
(II) NG(Xα ∩ T) for a Steinberg endomorphism α of X such that αk = σ for a prime k

(III) a local subgroup not in (I)
(IV) an almost simple group not in (I) or (II)
(V) the Borovik subgroup: H ∩ T = (A5 × A6).22 with T = E8(q) and p > 7.
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Table 3: Geometrically defined subgroups of classical algebraic groups

structure stabilised rough description in GLn

C1 subspace maximal parabolic
C ′1 pair of subspaces Pa,b or GLa×GLb with n = a + b
C2 V =

⊕k
i=1 Vi where dim Vi = a GLa o Sk with n = ak

C3 tensor product V = V1 ⊗V2 GLa ◦GLb with n = ab
C4 V =

⊗k
i=1 Vi where dim Vi = a (GLa ◦ · · · ◦GLa):Sk with n = ak

C6 nondegenerate classical form GSpn or GOn

Remark 3.5. Let us comment on the subgroups arising in Theorem 3.4.

(i) Assume that X is classical with natural module Fn
p, σ ∈ Aut∗(X) and G 6 Aut∗(T).

(I) The subgroups Y < X are those in the union C1 ∪ C ′1 ∪ C2 ∪ C3 ∪ C4 ∪ C6 of classes
from [35] defined as stabilisers of geometric structures on Fn

p, see Table 3. (Be
warned that Ci notation is inconsistent with the notation for classes of geometric
subgroups of finite classical groups in [32], which we will not use in this paper.)

(III) The local subgroups are the symplectic-type normalisers from [32, Section 4.6].
(IV) Since H is not in (I) or (II), H is a member of the class S defined in [32, p.3]. In

particular, the action of H on the natural module for T is absolutely irreducible, not
realisable over a proper subfield and preserves no nondefining classical forms. The
subgroups H ∈ S are not known in general, but they are given in [2] when n 6 12.

Thus, in this case, Theorem 3.4 returns Aschbacher’s subgroup structure theorem [1].
The structure, conjugacy and maximality of the subgroups in (I)–(III) is given in [32]
when n > 12 (complete information on all maximal subgroups is in [2] when n 6 12).

(ii) Assume that X is exceptional.

(I) Here either Y has maximal rank (see [33]) or Y is given in [34, Table II].
(III) The subgroups in this case are the exotic local subgroups [14].
(IV) To date, the almost simple subgroups that arise have been completely determined

when T ∈ {2F4(q), 2G2(q), G2(q)} (see [2] and the references therein).

(iii) Assume that X is PSp4(F2) or PΩ8(Fp) and either σ 6∈ Aut∗(X) or G 66 Aut∗(T). Here,
T is PSp4(2

f ) or PΩ+
8 (q) and G contains a graph-field or triality automorphism, or T is

2B2(2 f ) or 3D4(q). In each case, the maximal subgroups of G are in [2] (where original
references are given) and one sees that these subgroups fall into the classes (I)–(IV).

Theorem 3.4 gives the following for the groups that are the main focus of this paper (recall
the definition of Σ(X) from Section 3.1).

Theorem 3.6. Let (T, g) be a standard classical pair with Shintani setup (X, σ1, σ2). Write G =

〈Xσ1 , σ̃2〉. Let H be a maximal subgroup of G not containing T. Then H is G-conjugate to one of

(I) (〈Y, σ̃2〉x)σ1 for some 〈σ1, σ2〉-stable subgroup

Y ∈ C1 ∪ C ′1 ∪ C2 ∪ C3 ∪ C4 ∪ C6

and x ∈ X such that [x−1, σ−1
1 ] ∈ Y

(II) 〈Xα, σ̃2〉 for a Steinberg endomorphism α ∈ CΣ(X)(σ2) such that αk = σ1 for some prime k
(III) a symplectic-type normaliser
(IV) an almost simple group in S .
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4 Applications of Shintani descent to maximal subgroups
In this section, we apply Shintani descent to study the question of which almost simple
groups contain elements with few maximal overgroups, motivated by the work on simple
groups by Burness and Harper [11]. Our aim is not to comprehensively study this question
but to shed light on what Shintani descent does, and does not, allow us to quickly deduce
about almost simple groups from existing information on simple groups. In particular, we
will prove Theorem 5.

For almost simple groups G, there are two natural pursuits: seeking elements contained
in few maximal subgroups and elements contained in few maximal subgroups, all of which
are core-free. For s ∈ G, write

M(G, s) = {H < G | H is maximal in G and s ∈ H}.

Then we are interested in the following two invariants

µ(G) = min
s∈G
|M(G, s)| and µ∗(G) = min

s∈G∗
|M(G, s)|

where G∗ is the set of elements of G that are not contained in any proper normal subgroup.
A specific motivation for µ∗(G) is that applications to generation often require core-free
maximal overgroups (see [11, Corollary 2.2] on uniform domination, for example).

If G is a nonabelian simple group, then µ(G) = µ∗(G), and in [11, Theorem 5], Burness
and Harper proved that µ(G) 6 3, except for four groups of Lie type where 4 6 µ(G) 6 7.
Moreover, they determined µ(G) for alternating and sporadic G [11, Theorems 3.1 and 4.1].

Before we study the almost simple groups of Lie type via Shintani descent, let us first
observe that the methods in [11] are sufficient to completely determine µ(G) and µ∗(G)

for almost simple groups G with alternating and sporadic socles; this will be of a different
flavour to the rest of the paper. It will be convenient to write

H =

{
n ∈ N | n =

qd − 1
q− 1

for some prime power q and integer d > 2
}

.

Proposition 4.1. Let G be an almost simple group whose socle is alternating, sporadic or 2F4(2)′.
Then µ(G) 6 µ∗(G) 6 3. Moreover, if G is not simple, then the following hold.

(i) If G = S2m+1, then µ(G) = µ∗(G) = 1 witnessed by an element of shape [m, m + 1].

(ii) If G = Sn for n = 2m > 8, then µ(G) = 2 witnessed by an element of shape [m− k, m + k],
where k = (m− 1, 2). In addition, µ∗(G) = 3 witnessed by an element of shape

[l − 1, l, l + 1] if n = 3l
[l − 2, l + 1, l + 2] if n = 3l + 1
[l − 1, l + 1, l + 2] if n = 3l + 2

unless m is prime and n 6∈ H, in which case µ∗(G) = 2 witnessed by an n-cycle.

(iii) Otherwise, G appears in Table 4 and µ(G) = µ∗(G) = k witnessed by s.

Proof. Part (iii) can easily be obtained by employing the computational methods from [11]
that are documented in [12], where we describe s using ATLAS notation [15]. From now on
we will assume that G = Sn (with n 6= 6) and we argue as in the proof of [11, Theorem 3.1].

First assume that n = 2m + 1 is odd and s ∈ G has shape [m, m + 1]. Then s is contained
in a unique maximal intransitive subgroup H ∼= Sm × Sm+1 and no transitive imprimitive
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Table 4: The data for Proposition 4.1(iii), where µ(G) = µ∗(G) = |M(G, s)| = k

G S6 M10 PGL2(9) M12.2 M22.2 J2.2 J3.2 HS.2
k 3 1 1 3 2 1 1 2
s 6A 8A 10A 12B 14A 14A 34A 20D

Suz.2 McL.2 He.2 O′N.2 Fi22.2 Fi′24.2 HN.2 2F4(2)
1 1 2 1 2 2 1 2

28A 22A 24A 22A 42A 46A 42A 16E

subgroups (see [11, Lemma 3.4], for example). Moreover, since a power of s is an m-cycle, a
theorem of Marggraf (see [40, Theorem 13.5]) implies that no proper primitive subgroup of
Sn contains s, noting that s is odd. Therefore,M(G, s) = {H} and µ(G) = µ∗(G) = 1.

Now assume that n > 8 is even. We begin with upper bounds on µ(G) and µ∗(G). Arguing
as above, if s has shape [m− k, m+ k], thenM(G, s) = {An, Sm−k× Sm+k}, and if s has shape
[a, b, c] as displayed in the statement, then M(G, s) = {Sa × Sn−a, Sb × Sn−b, Sc × Sn−c},
except when n = 10 whereM(G, s) = {S9, S4 × S6, S5 o S2}, so µ(G) 6 2 and µ∗(G) 6 3.

We now obtain lower bounds. Let s ∈ G. If s has at least three cycles, then |M(G, s)| > 3,
and if s has shape [a, b], then s ∈ An and s is contained in at least one maximal core-free
subgroup of G (of type Sa × Sb if a 6= b and Sa o S2 if a = b) so |M(G, s)| > 2. Now assume
that s is an n-cycle. In this case, s is contained in S2 o Sm and Sm o S2. If m is composite, say
m = ab, then s is also contained in Sa o S2b, and if n ∈ H, say n = (qd − 1)/(q− 1), then s
is contained in PΓLd(q). Therefore, |M(G, s)| > 3, unless m is prime and n 6∈ H, in which
case, [30, Theorem 3] implies that |M(G, s)| = 2. We may now conclude that µ(G) > 2 and
µ∗(G) > 3 unless m is prime and n 6∈ H, in which case µ∗(G) = 2, witnessed by an n-cycle.
This completes the proof.

We now turn to almost simple groups of Lie type. We begin with a proposition highlight-
ing that, unlike for simple groups, there is no constant upper bound on µ(G).

Proposition 4.2. There is no constant c such that for all almost simple groups G we have µ(G) 6 c.

Before proving Proposition 4.2, let us record the following number theoretic result (the
author thanks Dan Fretwell for this).

Lemma 4.3. Let p be prime and let k, m > 1. Then there exist distinct primes r1, . . . , rk > pm such
that for 1 6 i 6 k the prime ri does not divide pmr1···ri−1ri+1···rk − 1.

Proof. For coprime a and b, let ordb(a) be the multiplicative order of a modulo b, and note
that b divides ac − 1 if and only if ordb(a) divides c. Therefore, we seek distinct primes
r1, . . . , rk > pm such that ordri(p) does not divide mr1 · · · ri−1ri+1 · · · rk for all i.

We proceed by induction on k. For k = 1, simply fix a prime r1 > pm. Now assume
that k > 2 and that there exist primes pm 6 r1 < · · · < rk−1 where ordri(p) does not
divide the product mr1 · · · ri−1ri+1 · · · rk−1. We claim that we may fix a prime rk > rk−1 such
that rk − 1 is coprime to r1 · · · rk−1. Indeed, for a positive integer x, we know that x− 1 is
coprime to r1 . . . rk−1 if the congruence x ≡ 2 (mod ri) is satisfied for all i, but by the Chinese
Remainder Theorem, these congruences are equivalent to x ≡ a (mod r1 · · · rk) for some a
coprime to r1 · · · rk and by Dirichlet’s theorem on arithmetic progression, there are infinitely
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many prime solutions to this latter congruence, so we may choose rk as a prime solution
greater than rk−1. Now ordrk(p) is coprime to r1 · · · rk−1 since ordrk(p) divides rk − 1, and
ordrk(p) does not divide m since rk > pm − 1, so we deduce that ordrk(p) does not divide
mr1 · · · rk−1. In addition, for 1 6 i 6 k− 1, ordri(p) is coprime to rk since ordri(p) < ri < rk,
and ordri(p) does not divide mr1 · · · ri−1ri+1 · · · rk−1 by hypothesis, so ordri(p) does not
divide mr1 · · · ri−1ri+1 · · · rk. Therefore, ordri(p) does not divide mr1 · · · ri−1ri+1 · · · rk for all
1 6 i 6 k, as required. The proof is complete by induction.

Proof of Proposition 4.2. Fix a positive integer k. We will exhibit an almost simple group G
such that µ(G) > k. By Lemma 4.3, we may fix k distinct primes r1, . . . , rk > 22 such that
each ri does not divide 22r1···ri−1ri+1···rk − 1. Write f = r1 · · · rk. Let G = 〈PSL2(q), ϕ̃〉 where
q = 2 f . Note that ri does not divide |PGL2(q1/ri)| = q1/ri(q2/ri − 1).

Let s ∈ G. We claim that |M(G, s)| > k. Replacing s by another generator of 〈s〉 if
necessary, we can write s = xϕ̃i where i divides f . Write e = f /i and q0 = 2i. Let
X = PSL2 and σ = ϕi, and let F : PGL2(q)ϕ̃i → PGL2(q0) be the Shintani map of (X, σe, σ).
Write F(s) = y. Note that yPGL2 ∩ PGL2(q0) = yPGL2(q0). Since each ri does not divide
|PGL2(q1/ri)|, we deduce that (e, |PGL2(q0)|) = 1 and consequently that (e, |y|) = 1. There-
fore, by Lemma 2.18(ii), s is contained in a maximal subgroup of type PGL2(q1/r) for every
prime divisor r of e. Moreover, s ∈ 〈PSL2(q), ϕ̃r〉 for every prime divisor r of i. Therefore, s is
contained in at least k maximal subgroups, as claimed.

Remark 4.4. The proof of Proposition 4.2 shows that there does not even exist a constant c
such that µ(G) 6 c for all almost simple groups with socle in {PSL2(2 f ) | f > 1}.

Despite the negative result in Proposition 4.2, there do exist nonsimple almost simple
groups of Lie type containing an element with a unique maximal overgroup.

Proposition 4.5. Let G = 〈Ω+
2m(2

f ), ϕ̃i〉 for m > 8 and a proper divisor i of f . Then there exists
s ∈ G such thatM(G, s) = {H} ∪M(II) where H is the stabiliser of a plus-type subspace and
M(II) consists of subfield subgroups. Moreover, if f is a prime dividing 2k + 1 or 2m−k + 1 for some
1 6 k 6

√
2m/4 coprime to m, thenM(II) is empty and µ(G) = µ∗(G) = 1.

Proof. Fix an integer 1 6 k 6
√

2m/4 coprime to m. Write g = ϕ̃i and (q0, q) = (2i, 2 f ). Let
(X, σe, σ) be the Shintani setup for (T, g) and let F : Ω+

2m(q)g→ Ω+
2m(q0) be the Shintani map

of (T, g). Write V = F2m
q and V0 = F2m

q0
. In addition, write V0 = U1 ⊥ U2, where U1 and

U2 are nondegenerate minus-type subspaces of dimensions 2k and 2m− 2k, respectively.
With respect to this decomposition, let y = y1 ⊥ y2 ∈ Ω+

2m(q0) where |y1| = qk
0 + 1 and

|y2| = qm−k
0 + 1. Let s ∈ Tg satisfy F(s) = y.

Let H ∈ M(G, s). Observe T 66 H since G/T = 〈Ts〉. By Theorem 3.6, H has type (I)–(IV).
Since (|y1|, |y2|) = 1, a power of s has a 1-eigenspace of codimension 2k < max{2,

√
2m/2},

so [26, Theorem 7.1] implies that H ∈ M(I) ∪M(II), whereM(I) andM(II) are the sets of
type (I) geometric subgroups and type (II) subfield subgroups inM(G, s).

For now assume that H ∈ M(I). That is, H is G-conjugate to (〈Y, σ̃〉s1)σe for a maximal
closed σ-stable subgroup Y ∈ C1 ∪ C2 ∪ C3 ∪ C4 and s1 ∈ X such that [s−1

1 , σ− f ] ∈ Y (note
that C ′1 and C6 are empty for X = Ω2m). To determine the possibilities for H we will consider
the maximal type (I) subgroups of Xσ that contain y and then apply Shintani descent.
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Let H0 be a type (I) subgroup of T0 that contains y. The order of y is divisible by a primitive
prime divisor r of q2m−2k

0 − 1, so by the main theorem of [25], H0 6= Yσ for Y ∈ C2 ∪ C3 ∪ C4. In
addition, by Goursat’s lemma (see [29, Lemma 2.3.1] for example), y is contained in a unique
reducible subgroup of Xσ, which has type O−2k(q0) ×O−2m−2k(q0). Therefore, H0 = (Yt2)σ

for a closed σ-stable subgroup Y of X of type O2k ×O2m−2k and an element t2 ∈ X such
that [t−1

2 , σ−1] ∈ Y \ Y◦. Moreover, since y has odd order, y ∈ ((Y◦)s2)σ. Therefore, by
Theorem 2.8,M(G, s) = {H} ∪M(II) where H = 〈Yσe , σ̃〉 of type O+

2k(q)×O+
2m−2k(q) (and s

is contained in the coset (Yσe \Y◦σe)σ̃).

To complete the proof, assume that f is a prime dividing 2k + 1 or 2m−k + 1, so i = 1. If
H ∈ M(II), then H is G-conjugate to 〈Xϕ, ϕ̃〉 = 〈Ω+

2m(2), ϕ̃〉, so Lemma 2.18(i) implies that
s 6∈ H, noting that f divides |y| and |y| does not properly divide the order of any element of
Ω+

2m(2). Therefore,M(II) is empty, and µ∗(G) = µ(G) = 1, as required.

Observe that Theorem 5 is a combination of Propositions 4.1, 4.2 and 4.5.

We conclude by discussing exceptional groups. If T is a finite simple exceptional group
of Lie type, then apart from a few small exceptions, Weigel [39, Section 3] identifies an
element s ∈ T contained in a unique maximal subgroup, unless T is F4(2 f ) or G2(3 f ), when
s has exactly two (isomorphic) maximal overgroups (see [11, Theorem 5.1] for a precise
statement). The following example indicates what we can and cannot conclude for almost
simple exceptional groups, highlighting that subfield subgroups are the principle obstacle.

Example 4.6. Let G be an almost simple group with socle T = E8(q). Then G = 〈T, g〉where
g = ϕ̃i where i divides f . Let (X, σe, σ) be a Shintani setup for (T, g) with Shintani map
F : E8(q)g → E8(q0). Let y ∈ T0 = E8(q0) generate a maximal torus of order q8

0 + q7
0 − q5

0 −
q4

0− q3
0 + q0 + 1. Then Weigel proves in [39, Section 3(j)] that NT0(〈y〉) = 〈y〉.C30 is the unique

maximal overgroup of y in T0.

Let t ∈ T satisfy F(tg) = y and let H ∈ M(G, tg). According to Theorem 3.4, H has
type (I)–(V). By [10, Proposition 5.1], H does not have type (IV), and since |y| does not divide
the order of the three possible subgroups of types (III) or (V), so H ∈ M(I) ∪M(II), where
the subgroups inM(I) andM(II) have type (I) and (II), respectively.

First assume that H ∈ M(I). Then H is G-conjugate to (〈Y, σ̃〉s1)σe for a maximal closed
σ-stable positive-dimensional subgroup Y of X and s1 ∈ X such that [s−1

1 , σ−e] ∈ Y. Since
〈y〉:C30 is the unique maximal overgroup of y, by Theorem 4, |M(I)| = 1.

Therefore, tσ̃ is contained in a unique maximal subgroup if and only if it is contained in
no type (II) subgroups, that is, G-conjugates of NG(E8(q1/k)) for some prime divisor k of f .
Let us simply demonstrate that this may or may not be the case, by considering two different
possibilities for e. On the one hand, if e is coprime to |y|, then since yE8 ∩ E8(q0) = yE8(q0), by
Lemma 2.18(ii), tσ̃ is contained in a subgroup of type E8(q1/k) for every prime divisor k of e,
so tσ̃ is not contained in a unique maximal subgroup. On the other hand, if e = f is a prime
divisor of |y|, then the only possibilities for H are subgroups of type Xσ = E8(p), and since
|y| does not properly divide the order of any element of E8(p), by Lemma 2.18(i), tσ̃ is not
contained in any such subgroup, so |M(G, tσ̃)| = 1 and µ(G) = µ∗(G) = 1.
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5 Asymptotics of spread and uniform spread
In this final section, we prove Theorem 1 on the asymptotic behaviour of the spread and
uniform spread of almost simple groups (recall the definition of these invariants from the
introduction).

5.1 Spread and subspace stabilisers

Let T be a finite simple classical group with natural module V = Fn
qu where q = p f and where

u = 2 if T = PSUn(q) and u = 1 otherwise. Recall the definition of Aut∗(T) 6 Aut(T) from
Section 3.2, noting that Aut∗(T) = Aut(T) unless T is PSp4(2

f ) or PΩ+
8 (q). In this section,

we highlight a connection between the spread of T 6 G 6 Aut∗(T) and the subspaces of V
stabilised by elements of G. This is captured by Corollary 5.5.

It is clear what we mean by an element of Inndiag(T) 6 PGL(V) stabilising a subspace
of V, but we will require a more general definition for arbitrary elements of Aut∗(T).

Definition 5.1. Let x ∈ Aut∗(T).

(i) If x ∈ PΓL(V), then x stabilises a k-space if it normalises the stabiliser of a k-space in T.

(ii) If T = PSLn(q) and x ∈ Aut(T) \ PΓL(V), then x stabilises a k-space if it normalises a
subgroup of T of type Pk,n−k or GLk(q)×GLn−k(q).

(iii) We say that x is irreducible on V if it stabilises no proper nonzero subspaces of V.

The following geometric observation will be useful.

Lemma 5.2. Let U and V be two symplectic, orthogonal or unitary spaces. Assume that V is
nondegenerate and write U = U1 ⊕U2 where U1 is nondegenerate and U2 = U ∩U⊥. Then U is
isometric to a subspace of V if and only if U1 is isometric to a subspace V, say W1, and dim U2 is at
most the Witt index of W⊥1 .

Proof. If U1 is isometric to a subspace V, say W1, and dim U2 is at most the Witt index of W⊥1 ,
then W1 ⊕W2 is isometric to U for any totally singular subspace W2 of W⊥1 of dimension
dim U2. Conversely, if U = U1 ⊕U2 is isometric to a subspace W = W1 ⊕W2 6 V, where Wi

is isometric to Ui, then V = W1⊕W⊥1 , since W1 is nondegenerate, and W2 is a totally singular
subspace of W⊥1 , since W2 = W ∩W⊥, so the Witt index of W⊥1 is at least dim W2.

A straightforward application of Lemma 5.2 gives this corollary.

Corollary 5.3. Let U and V be two symplectic, orthogonal or unitary spaces. If V is a nondegenerate
2m-space, of plus-type if orthogonal, and dim U 6 m, then U is isometric to a subspace of V.

Proposition 5.4. Let T 6= PSLn(q) be a simple classical group with natural module V = Fn
qu and

let T 6 G 6 Aut∗(T). Let 1 < d < n/2. Then there exists a subset S ⊆ T of size |S| < q4ud such
that for all elements y ∈ G that stabilise a k-space of V for some 1 6 k < d, there exists x ∈ S such
that 〈x, y〉 6= G.

Proof. Write V = U ⊥ U⊥ where U = U1 ⊥ U2 for a nondegenerate 2-space U1 and a
nondegenerate (2d− 2)-space U2. If T is orthogonal, then assume that U1 is minus-type and
U2 is plus-type. Let V1, . . . , Vs be the subspaces of U isometric to U1, noting that s < q4ud. For
each 1 6 i 6 s, let xi be a nontrivial element of T that centralises Vi ⊥ V⊥i , acting trivially on
V⊥i (for example, let xi = [λ, λ−1] ⊥ In−2 for λ ∈ F×q2 of order (q + 1)/(2, q + 1)).
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Let y ∈ G be an element stabilising a k-space W of V for some 1 6 k < d. Write
W = 〈w1, . . . , wk〉 and WU = 〈u1, . . . , uk〉 where wi = ui + vi with ui ∈ U and vi ∈ U⊥. Now
WU is a subspace of U of dimension l 6 k < d. By Corollary 5.3, U2 contains l-spaces of
each isometry type. Therefore, U1 is orthogonal to an l-space of U of each isometry type, so
every l-space of U is orthogonal to a subspace of U isometric to U1. In particular, we can
fix 1 6 i 6 s such that WU ⊆ V⊥i . This implies that W ⊆WU ⊕U⊥ ⊆ V⊥i . Therefore, 〈xi, y〉
stabilises W, so 〈xi, y〉 6= G, as required.

Corollary 5.5. Let T be a finite simple classical group with natural module V = Kn and let
g ∈ Aut∗(T). Assume that T 6= PSLn(q). If every element of the coset Tg stabilises a k-space for
some 1 6 k < d < n/2, then s(〈T, g〉) 6 |K|4d.

5.2 Elements stabilising subspaces

In light of Corollary 5.5, in order to prove Theorem 1, we should study how classical
groups act on their natural modules. Here our main result is Theorem 5.8, which may be of
independent interest.

We begin with the following crucial observation.

Proposition 5.6. Let X be a simple classical algebraic group, let σ1, σ2 ∈ Aut∗(X) be commuting
Steinberg endomorphisms of X and let F be the Shintani map of (X, σ1, σ2). Then xσ̃2 ∈ 〈Xσ1 , σ̃2〉
stabilises a k-space if and only if F(xσ̃1) ∈ 〈Xσ2 , σ̃1〉 stabilises a k-space.

Proof. This is an immediate consequence of Theorem 4 when Y is a 〈σ1, σ2〉-stable stabiliser
in X of a k-space (or if X = PSLn, perhaps a subgroup of type Pk,n−k or GLk×GLn−k).

Corollary 5.7. Let F : Inndiag(T)g→ Inndiag(T0)g0 be the Shintani map of a standard classical
pair (T, g). There exists y ∈ Tx stabilising a k-space for all x ∈ Inndiag(T)g if and only if there
exists y0 ∈ T0x0 stabilising a k-space for all x0 ∈ Inndiag(T0)g0.

Proof. This is a combination of Corollary 3.3 and Proposition 5.6.

We can now state our main result on irreducible elements of almost simple groups.

Theorem 5.8. Let T be a finite simple classical group and let x ∈ Aut∗(T).

(i) Every element of Tx is reducible on V if and only if x ∈ Inndiag(T)g for (T, g) in Table 5 or 6.

(ii) Assume that x ∈ POε
2m(q) if T = PΩε

2m(q). Then every element of Tx stabilises a 1-space of V
if and only if x ∈ Inndiag(T)g for (T, g) in Table 5.

(iii) If T = PΩε
2m(q) and x ∈ PGOε

2m(q) \ POε
2m(q), then every element of Tx stabilises a 1-space

or 2-space of V if and only if x ∈ Inndiag(T)g for (T, g) in Table 5.

Before proving Theorem 5.8, we record a consequence of [29, Lemmas 5.3.2–5.3.4 & 6.3.2].

Lemma 5.9. There exist irreducible elements in

(i) every coset of SLn(q) in GLn(q)

(ii) every coset of SU2m+1(q) in GU2m+1(q)

(iii) every coset of Sp2m(q) in GSp2m(q)

(iv) every coset of Ω−2m(q) in DO−2m(q).
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Table 5: The cosets in Theorem 5.8

T g f /i
PSL2m+1(q) or PΩ+

2m(q) γϕ̃i odd
PSU2m+1(q) or PΩ−2m(q) ϕ̃i any

Ω2m+1(q) ϕ̃i any

Table 6: The cosets in Theorem 5.8(i)

T g f /i
PSL2m+1(q) γϕ̃i even
PSU2m+1(q) γϕ̃i odd

PΩ+
2m(q) ϕ̃i any

Proof of Theorem 5.8. Let x ∈ Aut∗(T). By Theorem 3.1, we may assume that x = hg where
(T, g) is standard and h ∈ Inndiag(T). Let (X, σ1, σ2) be the Shintani setup for (T, g) with
Shintani map F : Inndiag(T)g→ T0g0. We consider several cases, where we always assume
that i divides f and q0 = pi.

Case 1. (T, g) is one of the following:

T PSLn(q) PSL2m+1(q) PSU2m+1(q) PSp2m(q) PΩ+
2m(q) PΩ−2m(q)

g ϕ̃i γϕi γϕ̃i ϕ̃i γϕ̃i γϕ̃i

f /i any even odd any even odd

Consulting Table 1, we see that T0 ∈ {PSLn(q0), PSU2m+1(q0), PSp2m(q0), PΩ−2m(q0)} and
g0 = 1. Lemma 5.9 implies that every coset of T0 in Inndiag(T0) contains an irreducible
element, so by Corollary 5.7, Tx contains an irreducible element for every x ∈ Inndiag(T)g.

Case 2. (T, g) is either (PSL2m(q), γϕ̃i) for odd f /i or (PSU2m(q), ϕ̃i).

For T = PSLε
2m(q), we have Inndiag(T0)g0 = PGLε0

2m(q0)γ with ε0 = −ε. By Theorem 3.1,
every element of PGLε0

2m(q0)γ is conjugate to an element of PSLε0
2m(q0)x0 where x0 is γ or

δ`0γ for ` = (n, q0 − ε0)/(n, q0 − ε0)2, where p is odd in the latter case. (Note that δ`0γ is an
involution.) Therefore, by Corollary 5.7, it suffices to prove that T0x0 contains an irreducible
element for these two choices of x0.

Case 2a. x0 = γ or m is even or q0 6≡ 3 (mod 4).

We consider only the case ε0 = +, since the result for ε0 = − follows immediately from
the result for ε0 = + and Proposition 5.6 via the Shintani map PGL2m(q0)γ→ PGU2m(q0)γ

of (PSL2m(q0), γ). If x0 = γ, then CPGL2m(q0)(γ)
∼= PGSp2m(q0), so we may fix an irreducible

element y ∈ CPGL2m(q0)(γ) of odd order, but this implies that (yγ)2 = y2 is also irreducible,
so yγ ∈ T0γ is irreducible. If p is odd and x0 = δ`0γ, then CPGL2m(q0)(δ

`
0γ) ∼= PGO−2m(q0) (the

assumptions on m and q0 give the sign), so again there exists y ∈ CPGL2m(q0)(δ
`
0γ) such that

yδ`0γ ∈ T0x0 is irreducible.

Case 2b. x0 = δ`0γ and m is odd and q0 ≡ 3 (mod 4).

Here we consider only ε0 = −, since the result for ε0 = + will follow by Proposition 5.6.
Now CPGU2m(q0)(δ

`
0γ) ∼= PGO−2m(q0) and we fix an element y ∈ CPGU2m(q0)(δ

`
0γ) of odd order

that acts irreducibly on F2m
q0

. Although y2 = (yδ`0γ)2 acts irreducibly on F2m
q0

, we need to
show that it acts irreducibly on Fq2

0

2m, the natural module for PGU2m(q0). Observe that yδ`0γ ∈
PGU2m(q0)γ = PGU2m(q0)ϕ̃i ⊆ PGL2m(q2

0)ϕ̃i. Let E : PGL2m(q2
0)ϕ̃i → PGL2m(q0) be the

Shintani map of (PGL2m, ϕ2i, ϕi). Then E(yδ2γ) is PGL2m-conjugate to y−2 (see Lemma 2.20),
which is irreducible on F2m

q0
, so by Proposition 5.6, yδ2γ ∈ T0x is irreducible on Fq2

0

2m.
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Case 3. (T, g) is in Table 6.

From Table 1, we see that g0 = 1 and Inndiag(T0) ∈ {PSU2m(q), PΩ+
2m(q)}. It is well

known that in this case, Inndiag(T0) does not contain any irreducible elements but every
coset of T0 in Inndiag(T0) does contain an element that does not stabilise any 1-spaces (nor
any 2-spaces if T = PΩε

2m(q), noting that 2m > 8 in this case). Therefore, as in Case 1,
applying Corollary 5.7, gives the same conclusion for Tx for every x ∈ Inndiag(T).

Case 4. (T, g) is in Table 5.

By Corollary 5.7, we need to prove that every element of Inndiag(T0)g0 stabilises a 1-space,
or if T = PΩε

2m(q) and x ∈ PGOε
2m(q) \ POε

2m(q), possibly a 2-space.

Case 4a. (T, g) = (Ω2m+1(q), ϕ̃i).

In this case, Inndiag(T0)g0 = SO2m+1(q). Since y is conjugate to y−T, the eigenvalue
multiset of y is closed under inversion and therefore must include an odd (and hence
positive) number of roots of unity, which implies that y stabilises a 1-space.

Case 4b. (T, g) is either (PSL2m+1(q), γϕ̃i) for odd f /i or (PSU2m+1(q), ϕi).

Writing T = PSLε
2m+1(q), we have Inndiag(T0)g0 = PGLε0

2m+1(q0)γ where ε0 = −ε. Let
y ∈ PGLε0

2m+1(q0)γ. We claim that y fixes a 1-space. The Shintani map of (PSL2m+1(q0), γ)

is E : PGL2m+1(q0)γ → PGU2m+1(q0)γ, so by Proposition 5.6, it suffices to assume that
ε = +. We can now apply the argument from the proofs of [9, Propositions 5.8 and 6.4].
By [20, Theorem 4.2], the eigenvalue multiset of y is closed under inversion, so, as in the
previous case, y2 stabilises a 1-space U of V. Let H be the stabiliser in PGL2m+1(q0) of U.
Then y normalises H ∩ Hy. Now Hy is the stabiliser W of a (n− 1)-space of V. If U ⊆ W,
then H ∩ Hy is a subgroup of type P1,n−1; otherwise, V = U ⊕W, so H ∩ Hy has type
GL1(q0)×GLn−1(q0). In either case, by definition, y stabilises a 1-space.

Case 4c. (T, g) is either (PΩ+
2m(q), γϕ̃i) for odd f /i or (PΩ−2m(q), γϕi).

Writing T = PΩε
2m(q), we have Inndiag(T0)g0 = PDOε0

2m(q0)γ. Let y ∈ PDOε0
2m(q0)γ. We

claim that y fixes a 1-space. If p = 2, then

PDOε0
2m(q0)γ = Ωε0

2m(q0)γ = Oε0
2m(q0) \Ωε0

2m(q0),

and [38, Theorem 11.43] implies that y has an odd-dimensional 1-eigenspace, so it certainly
stabilises a 1-space. Now assume that p is odd. Recall that

PDOε0
2m(q0)γ = PGOε0

2m(q0) \ PDOε0
2m(q0) = {g ∈ PGOε0

2m(q0) | τ(g)m = −det(g)}.

Write α = τ(y). Since y is conjugate to αy−T, the eigenvalue multiset Λ of y is closed
under the map λ 7→ αλ−1. Therefore, Λ = Λ1 ∪ Λ2 where Λ1 = {λ ∈ Λ | λ2 = α} and
Λ2 = {λ1, αλ−1

1 , . . . , λk, αλ−1
k }. Now det(y) = ∏λ∈Λ λ = αk ∏λ∈Λ1

λ, which implies that
Λ1 is nonempty. If y ∈ POε0

2m(q0), then α = 1 and every eigenvalue in Λ1 is 1 or −1, so y
stabilises a 1-space. Now we may assume that y ∈ PGOε0

2m(q0) \ POε0
2m(q0). Since Λ1 consists

of square roots of α, y has an eigenvalue in F×q2
0
\ F×q0

, so y stabilises a 2-space.

The proof is complete.

Remark 5.10. Theorem 5.8 implies that there are finite simple classical groups T such that
Inndiag(T) contains no irreducible elements but Aut∗(T) does. For example, every element
of PGO+

2m(q) acts on V = F2m
q reducibly, but, by Theorem 5.8, there exist irreducible elements

in the coset PΩ+
2m(q)γϕ̃i if f /i is even.
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Table 7: The exceptions in Theorem 1(iii)

T g
PSL2m+1(q) or PΩ+

2m(q) γϕ̃i ( f /i odd)
PSU2m+1(q) or PΩ−2m(q) ϕ̃i

PSp2m(q) (q even) or Ω2m+1(q) ϕ̃i

5.3 Asymptotics of spread and uniform spread

We now turn to the proof of Theorem 1. To this end, let us outline the probabilistic method for
obtaining lower bounds on uniform spread, which was introduced by Guralnick and Kantor
in [24] and has been a key tool in the subsequent work of many authors [4, 9, 10, 28, 29].

Let G be a finite group. We fix some notation. For x, s ∈ G, let P(x, s) be the probability
that x and a random conjugate of s do not generate G, that is,

P(x, s) =
|{t ∈ sG | 〈x, t〉 6= G}|

|sG| .

For a subgroup H 6 G, the fixed point ratio of x ∈ G in the action of G on G/H is

fpr(x, G/H) =
|{ω ∈ G/H | ωx = ω}|

|G/H| =
|xG ∩ H|
|xG| .

Recall thatM(G, s) is the set of maximal subgroups of G that contain s. The following key
lemma combines [9, Lemmas 2.1 and 2.2].

Lemma 5.11. Let G be a finite group and let s ∈ G.

(i) If P(z, s) < 1/k for all prime order elements z ∈ G, then u(G) > k, witnessed by sG.

(ii) For all z ∈ G,
P(z, s) 6 ∑

H∈M(G,s)
fpr(z, G/H).

To apply Lemma 5.11 we need upper bounds on fixed point ratios for primitive actions of
almost simple groups. There is an extensive literature on these, motivated in part by their
use in probabilistic methods across group theory, and we will apply the main theorem of
[5, 6, 7, 8] together with bounds in [24]. We are now ready to prove Theorem 1.

Proof of Theorem 1. Observe that for a prime power q, an almost simple group G appears in
part (iii) if and only if G = 〈T, x〉 where x ∈ Inndiag(T)g for (T, g) in Table 7 (we ignore
T = PSp4(q) with a graph-field automorphism g as there are finitely many such groups).

Clearly (ii) implies (i). We now show that (i) implies (iii). Let G be a group appearing in
part (iii), so we can write G = 〈T, x〉 with x ∈ Inndiag(T) and (T, g) in Table 7. Let V = Fn

qu

be the natural module for T. We claim that s(G) is bounded above by a function of q. If n 6 7,
then s(G) 6 |G| 6 q150, so we will assume that n > 8. For now assume that T 6= PSp2m(q). By
Theorem 5.8, every element of Tx stabilises a 1-space or a 2-space (the latter only occurring
if T = PΩε

2m(q)). Therefore, Corollary 5.5 implies that s(G) 6 q16, unless T = PSL2m+1(q), in
which case the argument of Guralnick in the proofs of [9, Propositions 5.8 and 6.4] uses the
fact that every element of Tx fixes a 1-space to show that s(G) < (q + 1)2. If T = PSp2m(q),
then s(G) 6 q, by [28, Theorem 4] (the proof of which also relies on every element of G
stabilising a 1-space of a particular module, see Remark 5.12 below). Therefore, if (Gi) has
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Table 8: Decomposition for Case 1 in the proof of Theorem 1

T0 decomposition of V0

PSLn(q0) k⊕ (n− k)
PSUn(q0) k− ⊥ (n− k)−(−)

n

PSpn(q0) k ⊥ (n− k)
PΩε0

n (q0) k− ⊥ (n− k)−ε0

an infinite subsequence of groups in (iii), then s(Gi) does not diverge to infinity, which gives
our desired implication.

It remains to show that (iii) implies (ii). Since |Gi| → ∞, we know that nik → ∞, where
Fni

qu is the natural module for Ti. Fix i and write G = Gi and n = ni. It suffices to show that
u(G) > f (n) for some function f that satisfies f (n)→ ∞ as n→ ∞.

We may assume that n > 20. In particular, by Theorem 3.1, G = 〈T, x〉 with x = hg
where (T, g) is a standard classical pair not in Table 7 and h ∈ Inndiag(T). If g = 1, then
G 6 Inndiag(T) and the result follows as in [24, Proposition 4.1] (compare with the proof of
[9, Theorem 3.1]), so we assume that g 6= 1. In particular, g is ϕ̃i or γϕ̃i for a proper divisor i
of f , unless T = PSLε

2m(q) and g = γ.

Case 1. (T, g) is neither (PSL2m(q), γϕ̃i) for odd f /i nor (PSU2m(q), ϕ̃i)

Let (X, σ1, σ2) be the Shintani setup for (T, g) and let F be the Shintani map of (T, g),
so we have F : Inndiag(T)g → Inndiag(T0)g0. Consulting Table 1, we see that g0 = 1 and
T0 6∈ {Ω2m+1(q0), PSp2m(q0) (q0 even)} is a classical group with natural module V0 = Fn

qu0
0

,

where u0 = 2 if T0 = PSUn(q0) and u0 = 1 otherwise.

Fix 1 6
√

n/4 < k <
√

n/2. Moreover, assume that k is odd if T0 = PSLε0
n (q0) and that k is

even and (n− k)/2 is odd otherwise. By combining [29, Lemmas 5.3.2–5.36, 6.3.2 and 6.3.4],
every coset of T0 in Inndiag(T0) contains an element y whose action on V0 decomposes
according to Table 8. (Here d (or d−) refers to a nondegenerate (minus-type) d-subspace of V0

on which y acts irreducibly, and d+ refers to the direct sum of a dual pair of totally singular
d
2 -spaces which y stabilises, acting irreducibly and nonisomorphically on both d

2 -spaces.) By
Corollary 3.3, there is t ∈ T such that the action of F(tx) = y decomposes as in Table 8.

WriteM(G, tg) as the disjoint unionM1 ∪M2 whereM1 is the set of reducible sub-
groups inM(G, tg), and write

a =

{
n if T0 ∈ {PSLn(q0), PSUn(q0)}
m if T0 ∈ {PSp2m(q0), PΩε0

2m(q0)}.

By Goursat’s lemma (see [29, Lemma 2.3.1] for example), the proper nonzero subspaces
of V0 stabilised by y are a k-space, an (n− k)-space and if T0 ∈ {PSU2m+1(q0), PΩ−2m(q0)},
also two (n− k)/2-spaces. Proposition 5.6 gives the analogous statement for tx on V. In
particular, |M1| 6 4 and tx stabilises no nonzero subspace of dimension less than

√
n/4.

Now let H ∈ M2. According to Theorem 3.6, H is of type (I)–(IV). Observe that the
Shintani setup (X, σ1, σ2) for (T, g) satisfies σ1 = σe

2 for some e > 1, so in light of Lemma 2.20,
(tx)−e is X-conjugate to y. A power of y (and therefore also tx) has 1-eigenspace of codimen-
sion k <

√
n/2. Therefore, by [26, Theorem 7.1], H has type (I) with Y ∈ C2 ∪ C3 ∪ C6 (see

Remark 3.5(i) and Table 3) or type (II). It is easy to check that this gives 10a + 7 possible
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Table 9: Subcases for Case 2 in the proof of Theorem 1

T σ1 x σ2 e ρ conditions
PSL2m(q) ϕ f γϕ̃i γϕi odd γ

δ2γϕ̃i δ2γϕi odd δ2γ p odd
PSU2m(q) γϕ f ϕ̃i ϕi any γ

δ2 ϕ̃i δ2ϕi even γ p odd
odd δ2γ p odd

G-classes of type (I) subgroups and at most 2+ ω( f ) 6 3+ log2 f 6 3+ log2 log2 q G-classes
of subfield subgroup, where ω( f ) is the number of distinct prime divisors of f (consult the ta-
bles in [32, Chapter 3] for example). Therefore, there are at most 10a+ 10+ log2 log2 q choices
for H up to G-conjugacy. Moreover, by Lemma 2.19,M2 contains at most |CInndiag(T0)(y)|
conjugates of any given H ∈ M2. Note that |CInndiag(T0)(y)| 6 4qa

0.

Let z ∈ G have prime order. From the bounds in [24, Section 3], if H 6 G is the stabiliser
of a d-space of V, with d < n/3, then fpr(z, G/H) < 5q−d. By combining [9, Corollary 2.9],
[28, Proposition 3.2] and [29, Propositions 4.2.2 and 4.2.3], which apply the main result of [5],
if H 6 G is irreducible, then fpr(z, G/H) < 2q−(a−3). Therefore, by Lemma 5.11(ii), noting
that q0 6 q1/2, we obtain

P(z, tx) < ∑
H∈M1

fpr(z, G/H) + ∑
H∈M2

fpr(z, G/H)

< 4 · 5q−
√

n/4 + (10a + 10 + log2 log2 q) · 4qa
0 · 2q−(a−3)

< 100n · q−(n/4−5).

Lemma 5.11(i) gives u(G) > 1
100n · qn/4−5, and 1

100n · qn/4−5 → ∞ as n→ ∞, as required.

Case 2. (T, g) is either (PSL2m(q), γϕ̃i) for odd f /i or (PSU2m(q), ϕ̃i)

Let X = PSL2m. By Theorem 3.1, it is sufficient to consider the five cases we define in
Table 9 (here δ2 = δ` where ` = (n, q− ε)/(n, q− ε)2). In each case, fix the Steinberg endo-
morphisms σ1 and σ2 and the graph automorphism ρ. Notice that (Xσ1 , σ̃2) = (Inndiag(T), x)
and σe

2 = ρσ1, so σ̃e
2 = σ̃1 = ρ. Let F : Inndiag(T)x → Xσ2 ρ be the Shintani map of (X, σ1, σ2).

Let Y = CX(ρ)
◦. By [29, Propositions 6.4.7 and 6.6.2], ρ is an involution and commutes

with σ2. Moreover, if ρ = γ, then Yσ2
∼= PGSp2m(q0), and if ρ = δ2γ, then Yσ1

∼= PDOη
2m(q0)

where η = (−) 1
2 m(q−1)+1.

Fix an even integer 1 6
√

n/4 < k <
√

n/2 such that (n− k)/2 is odd. Using the notation
for decompositions from Case 1, if ρ = γ, then fix an odd order element y ∈ PSp2m(q0) 6 Yσ2

such that the action of y on F2m
q0

decomposes as k ⊥ (n− k), and if ρ = δ2γ, then fix an odd
order element y ∈ PSOη

2m(q0) 6 Yσ2 acting on F2m
q0

as k− ⊥ (n− k)−η .

Let E be the Shintani map of (Y, σ1, σ2). Fix t ∈ Yσ1 6 Inndiag(T) such that E(tσ2) = yσ1,
so F(tx) = yρ. Since (σ2|Y)e = (ρσ1)|Y = σ1|Y, by Lemma 2.20, E(tσ2|Yσ1

) is Y-conjugate to
(tσ2|Yσ1

)−e, which implies that F(tx) is Y-conjugate to (tx)−e. By applying Theorem 3.2 to
E, if ρ = γ, then t ∈ PSp2m(q) since y ∈ PSp2m(q0), and if ρ = δ2γ, then t ∈ PSO±2m(q) since
y ∈ PSOη

2m(q0). In particular, in both cases, tx ∈ Tx.

We now proceed as in Case 1 and writeM(G, tg) as the disjoint unionM1 ∪M2 where
M1 is the set of reducible subgroups inM(G, tg).
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We claim that the only possible proper nonzero subspaces of the natural module V0 of Xσ2

stabilised by yρ are a k-space, an (n− k)-space and two (n− k)/2-spaces. First assume that
T = PSU2m(q). Then y ∈ Xργϕi ∼= PGL2m(q0) and (yρ)2 = y2 decomposes F2m

q0
as k ⊥ (n− k)

or k− ⊥ (n − k)−η , so the claim is clear in this case. Now assume that T = PSL2m(q).
Here y ∈ Xρϕi ∼= PGU2m(q0) 6 PGL2m(q2

0) and we need to consider the action on the
natural module Fq2

0

2m for PGU2m(q0). We proceed as in Case 2b of the proof of Theorem 5.8.
Note that yρ ∈ Xρϕi γ = Xρϕi ϕ̃i ⊆ Xϕ2i ϕ̃i and let D : Xϕ̃2i ϕ̃i → Xϕ̃i be the Shintani map of
(X, ϕi, ϕ2i). Then D(yρ) is X-conjugate to y−2, so the claim follows from the previous case
by Proposition 5.6 applied to D.

Therefore, by Proposition 5.6, |M1| 6 4 and every nonzero subspace of V stabilised
by tx has dimension at least

√
n/4. Since (tx)−2e is similar to y2, a power of tx has a 1-

eigenspace of dimension n− k >
√

n/2, so [26, Theorem 7.1] implies that there are at most
10n + 10 + log2 log2 q choices for H ∈ M2 up to G-conjugacy, and by Lemma 2.19, M2

contains at most |CXσ2
(yρ)| conjugates of any given H ∈ M2. Since y has odd order, ρ is an

involution and y ∈ CX(ρ), we deduce that |CXσ2
(yρ)| 6 |CYσ2

(y)| 6 4qn/2
0 . Therefore, as in

Case 1, if z ∈ G has prime order, then P(z, tx) < 100n · q−(n/4−5) and u(G) > 1
100n · qn/4−5.

This completes the proof.

Remark 5.12. Let q be even. As Lemma 5.9 records, Sp2m(q) has elements that act irreducibly
on F2m

q . However, identifying Sp2m(q) with O2m+1(q) gives a natural action of Sp2m(q) on
F2m+1

q and from this perspective the subgroups of Sp2m(q) of type O+
2m(q) and O−2m(q) are the

stabilisers of particular types of 1-spaces. Therefore, Proposition 2.11 establishes that every
element of PΓSp2m(q) stabilises a 1-space of F2m+1

q . In this light, by Theorem 5.8, we see that
all of the exceptions in Theorem 1 arise from the fact that every element of Tg stabilises a
1-space (or, in one special case, a 2-space).
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