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A B S T R A C T   

The detection and interpretation of variability in archaeological data has been a long-standing effort in the field. 
This paper aims to introduce the application of Bayesian multilevel modelling as a tool for the detection of 
variability at levels within nested archaeological data. Model structure, ways of construction, and the potential of 
using variability information to enhance archaeological interpretations is presented. This is demonstrated 
through the analysis of two case study datasets: Neolithic pottery finds from Mala (Nova) Pećina cave excava
tions in Croatia and stone finds from the Bronze Age site of Akrotiri, Thera, Greece. This is followed by a dis
cussion of the multilevel model results and the possible interpretations that can be derived from them. Finally, 
propositions are made on how these and other models can be extended.   

1. Introduction 

The idea of using statistics and computational modelling for the 
analysis of archaeological datasets appeared with the emergence of New 
Archaeology in the late 1960s (Doran and Hodson 1975; Drennan 2009; 
Orton 1980; Sullivan and Olszewski 2016; White and Thomas 1972 and 
more). Since then researchers have used an array of methods to detect 
and interpret variability in archaeological datasets. To name a few, 
methods include the use of Coefficient of Variation (CV) on lithic arte
fact patterns (see a review on Garvey 2018), bivariate regression anal
ysis on ethnoarchaeological data to understand human mobility (Kent 
1992), Random-effects Logistic Regression Analysis to study agricultural 
practices (McCorriston 2002), and hierarchical classification systems 
and cluster analysis on archaeological ceramics (Plog 1980) (see more 
on variability in archaeological data in O’Shea 1984; Roberts and Van 
der Linden 2011; Sullivan and Olszewski 2016; Schiffer and Skibo 
1997). 

Gradually, from the late 1970s through the 1980s, the endeavour of 
New Archaeology to explain the past through purely quantitative, 
computerised, statistical, and analytical methods received scepticism by 
several authors (e.g. Earle and Preucel 1987; Hodder 1986; Hole 1980; 
Hurst Thomas 1978; Shanks and Tilley 1982). The consequent rise of 
interpretational approaches to archaeological data brought more 

methods of detecting variability and understanding its meaning in 
archaeological assemblages. These methods were distant from previous 
statistical and computational analyses of datasets; they were experi
mental, typological and cognitive (see Sullivan and Olszewski 2016). 
However, as suggested by Hurst Thomas, ‘trends in research swing back 
and forth like a pendulum’ (1978: 240), thus meticulous analysis of 
archaeological datasets through applications of statistical and compu
tational modelling are again the norm. In the last decade the interpre
tational ‘gap’ between the descriptive and testing statistical applications 
has been reconciled. This has, in part, been a consequence of the 
increasing application of Bayesian Statistics into archaeological prac
tice, which incorporates the researcher’s beliefs, and to an extent the 
researcher’s perspective, into the statistical analysis (for a review see 
Otarola-Castillo and Torquato 2018). 

Existing methods used to study variation within archaeological data, 
including those mentioned above, analyse variation at a single level at a 
time. This can be either geographical or temporal, such as regional or 
diachronic variation using CV and regressions (Garvey 2018; Liu et al., 
2020; Schmid 2019) or variation over time using time-series analysis 
(Gayo et al., 2015). However, archaeological data is inherently 
multi-layered and these methods fail to exploit this fully. Previously 
used methods are limited by the inability to concurrently analyse vari
ation in archaeological data at its different levels, such as site within a 
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region, without violating the assumptions that underly them. A method 
that overcomes this limitation is multilevel modelling. Recently, 
Bayesian mutlievel models have been applied to archaeological data. 
They have been used for regional chronological sequences (Banks et al., 
2019), to analyse variability in isotopic signatures (Perri et al., 2019) 
and to examine element- and assemblage-level variation in biometric 
measurements (Wolfhagen 2020). 

2. Aims, materials and methods 

This paper introduces multilevel modelling as a tool for the detection 
and interpretation of variability archaeological datasets, going beyond 
previous applications of Bayesian modelling in archaeology. Despite the 
nested nature of archaeological data (e.g. an artefact or individual, 
within a site, within a region) multilevel modelling it is yet to be fully 
exploited within archaeology. Multilevel models (MLMs) can be used to 
answer a variety of questions, regarding both the levels in the respective 
model and associated predictors. Problematic questions can be answered 
by increasing the models’ complexity. It is also easily accessible and can 
be carried out using specific computer software such as MLwiN (Charl
ton et al., 2020; Browne 2019) or using packages available in open 
source code statistical software environments such as R (R Core Team 
2018). These packages include R2MLwiN (Zang et al., 2016), which uses 
MLwiN, lme4 (Bates et al., 2015), which used traditional maximum 
likelihood estimation, and rjags (Plummer et al., 2019), rstan (Stan 
Development Team 2020b), brms (Bürkner 2017) and cmdstanR (Stan 
Development Team 2020a) that use Bayesian estimation methods. 

Multilevel modelling can be applied to an array of archaeological 
data to understand where variations occur (see Ferneé 2020). It can be 
applied to different types of excavation data – pottery, lithics, bones etc 
– to detect material variations between artefacts, contexts, trenches, 
sites, or regions, dependent on the number of levels constructed. Once 
variation has been partitioned archaeological interpretations can be 
drawn. Interpretations can vary in complexity depending on the model 
structure. 

The aim of this paper is to present the nature of MLMs and to 
introduce their use for the analysis of archaeological assemblages. In 
order to achieve this aim, a feasibility study on the usefulness of 
multilevel modelling in archaeological interpretation has been designed 
and showcased by the two separate datasets. The first dataset involves a 
Neolithic pottery assemblage from Eastern Adriatic and the second a 
Bronze Age worked stone assemblage from the Aegean. 

2.1. Multilevel modelling 

Multilevel models, also known as random coefficient models and 
hierarchical models, are used on data that is nested/hierarchical in na
ture. They are used ever increasingly in social, biological and medical 
sciences (Kim et al., 2018; O’Malley et al., 2014; Brunton-Smith and 
Sturgis 2011). They have been used for a variety of goals including 
causal inference, prediction and descriptive modelling (Gelman and Hill 
2007). In archaeology, MLMs can be used wherever hierarchical data
sets appear, for example an artefact category, such as pottery sherds or 
lithics, in a context, in a trench, in an excavation site, in a region. They 
can overcome the limitations of methods currently used in archaeology, 
such as CV and regressions, that are unable to study variation at multiple 
levels concurrently. 

Multilevel models are extensions of regressions, in which data are 
structured into groups and coefficients can vary by group. However, 
rather than using a single large data matrix, a matrix is constructed for 
each level within the hierarchy (Gelman and Hill 2007). The recognition 
of a hierarchy in the data allows for the assessment of variation at each 
level. For example, a two-level model of pottery sherds within excava
tion contexts would allow the assessment of variation between contexts 
and between pottery sherds within contexts. This enables the researcher 
to understand where and how effects are occurring (Kharazifard et al., 

2017). 
Performing an analysis that does not recognise the presence of nested 

data, such as those that are traditionally used in archaeology, will create 
problems with intraclass correlations, chi-squared statistics, parameters 
and the underestimation of their standard errors. Type 1 errors become 
more frequent; predictors appearing to have a significant effect when 
they do not (Steenbergen and Jones 2002). The specific group config
urations alongside between-group and within-group structures com
pound problems (Julian 2001). The duplication of observations violates 
the independence assumptions of traditional analyses such as ANOVA 
and OLS regression (Steenbergen and Jones 2002; Gelman and Hill 
2007). This duplication of observations is not an issue in MLMs. 

A common exercise in archaeology is the analysis of differences in an 
artefact feature/variable across multiple archaeological sites. For 
example, analysing differences in pottery thickness or waretype across 
different types of archaeological sites (e.g. flat settlement, cave, tell, in a 
Near Eastern context). Differences are often analysed without 
acknowledging the nested nature of this data using, for example, an 
ANOVA for continuous data or a chi-squared test for categorical data. 
Failure to consider the levels in data, such as pottery sherds within a 
context within a trench within an archaeological site, mean that sig
nificant differences that are identified may not actually exist, which can 
in turn result in incorrect inferences and conclusions being drawn. 

MLMs are, however, based on three main assumptions: linear re
lationships, homoscedasticity and normal distribution of residuals 
(Maas and Hox 2004). However, heteroscedasticity can be modelled 
directly to account for violations of homoscedasticity (Goldstein 
1995:48–57). Likewise, multilevel estimation methods have been found 
to be robust against violations of normality of residuals at the second 
level (Maas and Hox, 2004). The limitations of MLMs are largely the 
same as other statistical methods, for example, if samples are too small 
they do not provide an adequate basis for statistical inferences and their 
results, such as estimations of predictor effects, do not necessarily show 
causality (Gelman 2006). They help describe, summarise and quantify 
patterns in the data, however they do not explain these patterns, they 
require careful interpretation by the researcher. Finally, it is an 
advanced statistical technique that requires are good grounding in sta
tistics, however resources are becoming increasingly available. 

2.1.1. Model structure 
Multilevel modelling explores hierarchical data structures. In these 

structures’ units are grouped at different levels, level 1 is the lowest level 
which is nested within level 2. For example, pottery sherds may be the 
level 1 unit nested within excavation, which are the level 2 unit (Fig. 1). 
This structure can also be used for repeated measures in longitudinal 
studies. For example, repeated measures over time would be the level 1 
unit nested within the specimen measured, which are the level 2 unit. 

Levels are ‘random’ as they have been sampled from a wider popu
lation (although when this is not possible a more general motivation is 
suitable, see Gelman et al., 2013). For example, in the model described 
above, pottery sherds would have been sampled from a wider-number of 
sherds within a context, and the contexts would have been sampled from 
a wider population in a site (Fig. 2). Like traditional regression analysis, 
explanatory units, known as predictors, can be input into an MLM. 
Predictors and levels are distinguished by their nature. Predictors are 
‘fixed’ variables or effects that have a small number of fixed categories. 
These fixed effects are parameters that do not vary, and their observa
tions are independent. For example, in the pottery model described 
above the type of decoration (decoration or no decoration) can be input 
as a predictor at level 1 and the context type (pit, trench, posthole) can 
be input as a predictor at level 2 (Fig. 2). 

Random effects are grouping variables that are clustered. Grouping 
variables, unlike fixed effects, are non-independent. Therefore, obser
vations that are non-independent should be specified as random effects, 
such as pottery sherds within contexts. In MLMs, random effects esti
mate the variance between groups rather than the mean of each group. 
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Statistical comparisons of means more commonly come from fitting 
variables as fixed effects (Theobald, 2018). 

Random effects can be specified in a multilevel model in three ways 
depending on the relationship between variables: 1) a random intercept, 
2) random slopes and 3) random slopes and intercept (Theobald, 2018). 
A random intercept model allows each grouping variable to have its own 
intercept but equivalent slopes; this can be interpreted as the average of 
each group is different but the relationship with the predictors is the 
same (Fig. 3a). In the pottery model example, this would allow the 
outcome variable, pottery thickness, of each group, excavation unit, to 
have its own mean whilst all units have the same relationship with 
predictor, decoration. A random slopes model allows the relationship 
between the predictors and the outcome variable to vary but the starting 
point, or the outcome mean, is the same (Fig. 3b). For the pottery model 
example, the mean pottery thickness of each excavation unit will be held 
at the same point whilst the relationship between pottery thickness and 
decoration will be allowed to vary. Finally, random slopes and intercept 

models each group is allowed a unique intercept and a unique rela
tionship with predictors (Fig. 3c). In the model example, both the mean 
pottery thickness of each excavation unit and it’s relationship with sherd 
decoration would be allowed to vary. 

2.1.2. Estimation methods in multilevel models 
The contribution of the ‘random’ and ‘fixed’ components of the 

model are commonly estimated using Maximum Likelihood (ML), 
Restricted Maximum Likelihood (REML) or Iterative Generalized Least 
Squares (IGLS) algorithms. ML and REML are commonly used, but issues 
arise when using them (see El-Hobarty et al., 2018) and IGLS can be 
biased with for smaller group sizes (Goldstein 2002). Bayesian Markov 
Chain Monte Carlo (MCMC) estimation procedures provide a more 
robust estimation than traditional IGLS methods (Browne and Jones, 
2006; Jones & Subrmanian 2013, 2017). 

The Bayesian fitting of an MLM requires, as usual in Bayesian sta
tistics, a prior distribution for the parameters. The most commonly used 

Fig. 1. Diagram of an example multilevel model structure. Pottery sherds (circles) are the level 1 units grouped into excavation units (squares) at level 2. The model 
also includes fixed explanatory predictor variables: sherd decoration at level 1 and context type at level 2. 

Fig. 2. Example of a multilevel model structure highlighting the random (red) and fixed (green) components. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the Web version of this article.) 

Fig. 3. Types of random effects in multilevel model: a) a random intercepts model, where intercepts the slopes are the same for each group but the intercepts vary, b) 
A random slope model, where the slopes vary for each group but the intercepts are the same and c) a random intercepts and random slopes model, where both the 
slopes and intercepts vary by group. 
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priors when fitting MLMs are either informative or uninformative. 
Informative priors are distributions express a strong belief about a 
parameter and will strongly influence the posterior distribution and 
conclusions. Consequently, many statisticians prefer uninformative or 
diffuse priors which have little influence on the conclusions (Hox 2010). 
More detailed and extensive overviews of Bayesian methods for the 
analysis of MLMs can be found elsewhere (Gelman et al., 2007; Gelman 
et al., 2013 Gelman et al., 2017; Browne 2019). 

MCMC methods are simulation-based procedures that make a high 
number of iterations or a chain. Chains are initiated at a particular 
starting value and can take a while to settle on a posterior distribution, 
known as converging. This period of time is known as the burn-in period 
which is omitted from the sample summaries (Browne 2019, 5). This is 
followed by the monitoring period which are the iterations that are 
saved and used for posterior inference. 

In Bayesian MLMs, a Deviance Information Criterion (DIC) can be 
used to identify the best fitting model whilst penalising increasing 
complexity (Spiegelhalter et al., 2002). A decrease in DIC indicates a 
‘better’ model (Browne 2019, 234). Models with a difference of 2 or less 
should be considered along with the best model, 4–7 difference have 
considerably less application and 10 or more the model can be omitted 
from consideration (Jones and Subrmanian 2017). The DIC should also 
be considered alongside changes in estimates of variance and the pos
terior mean and standard deviation of the regression (fixed) coefficients 
(Dias et al., 2011). 

The MCMC posterior means and 95% credible intervals can be pre
sented as summaries of the posterior distribution for each variable. The 
95% credible interval is a Bayesian analogue of traditional 95% confi
dence intervals. Yuan and Mackinnon (2009) suggest that Bayesian 
credible intervals are more meaningful and relevant to scientific prac
tice. This is because credible intervals have natural interpretation: the 
true value is contained within a 95% credible interval with 95% (pos
terior) probability. A 95% credible interval contains 95% of the poste
rior density. 

2.1.3. Variable analysis 
A Variance Partition Coefficient (VPC) can be calculated to deter

mine the proportion of random variance. When predictors are included, 
a model can be separated into fixed and random components; the levels 
are the random component and the predictors are the fixed component 

(Fig. 2). Residual variance occurs in the random part of the model, 
which can be proportioned for each level. For a two-level model this 
would be the proportion of residual variation occurring at level 2. The 
VPC reflects the proportion of the residual variance that is due to dif
ferences between groups (Goldstein 2010). According to the pottery 
example, the VPC would reflect the variance that is due to differences 
between contexts. The manner by which this is calculated is dependent 
on the nature of the variable under analysis. The random effects can be 
assessed visually through plotting the residuals. Residuals reflect the 
departures of groups at each level from the overall mean, the intercept, 
which allow comparisons to be made between groups. Therefore, re
siduals can be used to inspect group effects at each level (Fig. 4). 

Fixed variables can be analysed in various ways. Significance testing 
can be used to test the difference within each fixed parameter. Sensi
tivity analysis can also be used: this is the study of how variation in the 
output of the model can be apportioned to the different sources of 
variation (Saltelli 2008, 3). In an MLM, it can be used to understand how 
explanatory variables contribute to the model, particularly determining 
which parameter contributes most to the variability of the dependent 
variables. 

2.2. Continuous and categorical response models 

Continuous data can easily be fitted to traditional MLMs. For an MLM 
fitted to continuous data, the VPC is equal to the intra-unit correlation, 
which is the correlation between level 1 units in the same level 2 unit 
(Rasbash et al., 2017). For example, sherds within the same context. 
They can also be calculated in three- and higher-level models as well as 
in models with more complex random effect structures (e.g. 
cross-classified, multiple membership, spatial, and dyadic structures) 
(Leckie et al., 2019). They are calculated by dividing the level 2 residual 
variance by the combined level 2 and level 1 residual variance (Fig. 5). 

Unlike models for continuous response variables, multilevel models 
for binary or proportion responses largely use a logistic link function. It 
has been shown MCMC methods with diffuse priors are less biased than 
quasi-likelihood methods for binary response models (Browne et al., 
2005). When fitting models for categorical (binary, ordinal, or nominal) 
and count responses partitioning variance is more challenging to 
calculate than in models with a continuous response variable, where it is 
reasonably straightforward to calculate (Leckie et al., 2019). This is due 

Fig. 4. Example residual plots for a 2-level multilevel model: a) Level 1 and b) Level 2.  
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to a number of issues, this includes that individual and cluster compo
nents of variance are calculated on difference scales, the discrete 
response scale and linear predictor scale respectively. In addition to this 
the components of variance depend on the covariates, so there is typi
cally no unique VPC for models with discrete outcomes (Austin et al., 
2017). Goldstein (2002) considered four approaches for estimating the 
VPC in a binary response models, three of which were later used by 
Browne et al. (2005). The four approaches are: model linearization, 
simulation, a binary linear model and a latent variable approach 
(Goldstein et al., 2002). Leckie et al. (2019) found that although VPC 
estimates differ slightly when using the different methods the interpre
tation of them remains the same, overall they are indicative of whether 
contextual effects a large or small. 

The most commonly used method to report VPCs in categorical re
sponses is the latent variable approach. This approach views the 
observed categorical variable as arising from an underlying continuous 
variable e.g. a continuous exam score scale underlying the observed 
binary pass or fail status (Leckie et al., 2019; Goldstein et al., 2002). The 
true underlying variable is continuous but we can only observe a binary 
response that indicates whether the underlying variable is greater or less 
than a given threshold (Browne et al., 2005). This approach assumes 
that the level 1 variance is fixed and independent of the predictor var
iables (Browne et al., 2005). This often appealing as it allows VPCs to be 
calculated for categorical responses using essentially the same expres
sions as those derived for continuous responses (Leckie et al., 2019). 
However, it is assumed that in the logistic regression model the under
lying variables will come from a logistic distribution, with a variance of 
π2/3 (π2/3 ≈ 3.29) (Browne et al., 2005). This is substituted for the level 
1 variable, resulting in the formula in Fig. 6. 

However, unlike the other methods, the simulation-based method 
does not just give an approximation (Browne et al., 2005). 
Simulation-based methods do not rely on the same assumptions as the 
latent variable approach, rather they are dependent on specific covariate 
patterns (for details of method see Browne et al., 2005; Goldstein et al., 
2002; Rasbash et al., 2019). Therefore, it is possible that different VPC 
values could be obtained for each distinct covariate pattern (Leckie 
et al., 2019). The advantages of the simulation method it is more ac
curate as it does not rely on approximations and is simple and fast to 
compute (Goldstein 2002; Browne et al., 2005). However, it can become 
more time consuming and difficult to calculate when more complex 
models are studied with more than two levels (Browne et al., 2005). 

3. Applying multilevel modelling to archaeological data 

To showcase the feasibility of the application of MLMs to archaeo
logical data, variation is studied in two very different archaeological 
datasets. First, the stone ‘sphere’ assemblage found during excavations 
at the Bronze Age town of Akrotiri on Santorini, Greece (see Tzachili 
2007 and Valacy forthcoming). This is followed by the Neolithic pottery 

assemblage from the Mala (Nova) Pećina cave in Croatia, unearthed 
during the 2016 excavation season (see Drnić et al., 2018; Trimmis and 
Drnić 2018). 

For each dataset MLMs were constructed and analysed in MLwiN 
3.05 (Charlton et al., 2020; Browne 2019). A Bayesian MCMC estimation 
procedure, using Gibbs sampling, was used with the default MLwiN 
diffuse inverse-gamma (0.001, 0.001) prior distribution for the random 
effects and an inproper uniform prior of ∝ 1 for the fixed effects 
(Charlton et al., 2020; Browne 2019). Gibbs sampling is used to choose a 
starting value for each parameter, and in MLwiN 3.02 (Charlton et al., 
2020; Browne 2019) these are identified by running IGLS before running 
MCMC estimation. According to the recommendations of Draper (2008), 
a burn-in of 500 simulations was employed for each model, followed by 
50,000 monitoring simulations. The convergence of Markov chains was 
assessed by a visual inspection of the trace- and autocorrelation-plots 
alongside MCMC diagnostics. These diagnostics include: the 
Raftery-Lewis diagnostic (Raftery and Lewis 1992), the Brooks-Draper 
Diagnostic (Brooks and Draper 1999), the Monte-Carlo Standard Error 
(MCSE) and the effective sample size (ESS) (Kass et al., 1998). Each 
model was then built, gradually adding in the additional level and 
predictors one-by-one. The DIC, changes in the estimates of variance and 
the regression (fixed) coefficients were used to evaluate the 
goodness-of-fit of each model. The MCMC posterior means and 95% 
credible intervals are presented as summaries of the posterior distribu
tion of each variable. 

The model assumptions were checked using normal probability 
plots, where ranked residuals are plotted against corresponding points 
on a Normal distribution curve at each level of the model (Fig. 7). For 
these plots, if the normality assumption is valid the points should lie on 
approximately a straight line. These plots also allow the identification of 
any outliers. 

3.1. Detecting variability in continuous data: the small stone spheres 
assemblage from Akrotiri, Santorini (Thera), Greece 

The site of Akrotiri on the modern-day island of Santorini (Thera) is a 
well-known Bronze Age town that was destroyed by the eruption of the 
island’s volcano during the Middle Bronze Age (possibly the early 16th 
century BCE) (about Akrotiri see Doumas 1983) (Fig. 8). In Akrotiri, 
among a wealth of finds, 746 stone spheres have been catalogued, of 
which 65% were brought to light in the recent excavations (Valassi 
forthcoming) (Fig. 9). To date, no similar material has been published 
from any other Aegean Bronze Age site, which has resulted in different 
interpretations by different researchers. Marinatos (1971: 28) inter
preted the spheres as either sling stones or as tossing balls. Later, this 
interpretation was rejected by Valassi (forthcoming) and Tzachili 
(2007). They suggest that the spheres are unlikely to have been sling 
stones as all other examples from this period, and from later periods, are 
generally heavier than the majority of the spheres from Akrotiri and are 

Fig. 5. Calculation of VPC for continuous response models: formula (left) and general explanation (right).  

Fig. 6. Latent variable approach for the calculation of the VPC for binary logistic response models: formula (left) and general explanation (right) (substituted level 1 
variance = 3.29). 
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more ovoid in shape. Valassi and Tzachili suggest they are unlikely to 
have been used as tossing balls as they could easily harm the players if 
not caught. However, they agree that the spheres may have been used as 
a counting/record-keeping system or as “pawns” for a type of board 
game. 

The spheres come in different sizes, colours and stone materials, and 
have been found throughout the settlement, in both open and closed 
spaces. MLMs were applied to spheres from the last (Late Cycladic) 
phase of the settlement to investigate their variability within and be
tween different areas of the settlement. The data has 3 levels - spheres 

(L1), the excavation entity (buildings’ interiors and open spaces with 
specific boundaries) (L2) and the different building complexes in the 
town (L3) (Fig. 9). Specifically, this includes 140 spheres, within 19 
excavation entities, within 3 zones (Fig. 10). The response variable was 
sphere diameter, recorded manually using a digital calliper, which 
ranged between 16 and 57 mm. Sphere diameter was included to test the 
hypothesis that sphere size was key to its function, being used as a metric 
tool or as pawns in board games. Two additional sphere level categorical 
predictor variables were recorded (preservation and worked/natural 
form). Preservation was included because of its impact on sphere 

Fig. 7. Example normal Plots for a 2-level multilevel model: a) Level 1 and b) Level 2. Ranked residuals are plotted against corresponding points on a Normal 
distribution curve. These plots can be used to check the assumption that residuals are normally distributed. 

Fig. 8. A map of the excavated areas of Akrotiri town. The major excavation entities, buildings and open spaces are annotated. The largest groups of worked stone 
spheres have been unearthed in the entities of Western House, Xeste 3, Sector D, and the Kenotaph square. Map based on (Doumas, 2017). 
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diameter. Stone form (worked or natural pebble) was added to investi
gate the research hypothesis that stones were used for their sphericity 
and size rather than because they were worked (Fig. 9). 

A normal likelihood was fitted to the continuous response data 
(sphere diameter) with an identity link function. Normal distributions 
were used for each of the random effects (levels) with an inverse-gamma 
(0.001, 0.001) prior distribution, and an improper uniform prior of ∝ 1 
was used for the fixed effects (for mathematical structure see supporting 
information). The sphere data was fitted into 5 models: 1) a null one- 
level model (C Mn), 2) a two-level random-intercept model (spheres 
and entity) (C M2), 3) a 3-level random-intercept model (sphere, entity, 
zone) (C M3), 4) a three-level random-intercept model with one L1 
predictor (preservation) (C M4), and 5) a three-level random-intercept 
model with two L1 predictors (preservation and worked) (C M5). The 
visual inspection of the trace- and autocorrelation-plots as well as the 
MCMC diagnostics indicated Markov Chain convergence and the 
normality plots indicated that the residuals at each level were roughly 
normally distributed (see supporting info for diagnostic statistics and 
plots and normality plots). 

The model summaries are included in Table 1, indicating the pos
terior distributions and deviance statistics of each model. The change in 
the DIC across all models is negligible (<2), suggesting that all the 
models fit the data. When the variance parameters and regression co
efficients are interrogated the inclusion of sphere form (“worked”) ap
pears to explain substantial variability within zones and the estimated 
coefficient is large (Table 1). This indicates a model including sphere 
form but not preservation should be used, the values for this model are 
provided in Table 3. This also indicates that there is considerable vari
ability in sphere size according to sphere form, with naturally formed 
stones larger than worked. This is appears to be consistent across context 
and zones (Fig. 11). The VPC estimates in Table 3 indicate that by far the 
greatest degree of variation in sphere diameter occurs at the sphere level 
(L1). This is also evident in the residual plots (Fig. 12). This is followed 
by, although low, site zone and then entity. For the fixed part of the 
model, the intercept or sphere mean diameter ranged between 31 and 
32 mm depending on the model used. 

3.2. Detecting variability in binary data: the pottery assemblage of Mala 
(nova) Pećina cave, Croatia 

Mala (Nova) Pećina cave is located in the hinterland Dalmatia, 
Croatia. The cave is deep in the hills overlooking the valley passages that 
lead from the Herzegovina uplands to the Adriatic coast. Excavations in 
2016 discovered evidence of Early and Late Neolithic occupation in the 
cave (see Trimmis and Drnić 2018; Drnić et al., 2018). Early Neolithic 
(EN) pottery was mainly concentrated in trench B, which was situated 
deep in the cave at the end of a long and low passage leading to the third 
chamber. Late and Early Neolithic pottery were unearthed in trenches A 
and C, along postholes and hearths in trench A (Trimmis and Drnić 
2018:3–4) (Fig. 13). 

MLMs were applied to the pottery assemblage from Mala Pećina to 
identify the potential presence of different activity areas per period in 

the cave. This data set has three levels: sherd (L1), context (L2) and 
Trench (L3), with 165 sherds within 25 contexts, within 3 trenches 
(Fig. 14). The binary response variable in this model was waretype (fine 
or coarse). A sherd level binary predictor was included, indicating 
decoration (absence/presence of impressed decoration). These response 
and predictor variables were included as different ware types are asso
ciated with use and, in the case of the impressed ware, are an indication 
of period. Coarse wear with impressed decoration is an indication of an 
EN phase (late 7th millennium – middle 6th millennium) Adriatic 
Neolithic contexts (see Forenbaher et al., 2013: 597). 

A binomial likelihood was fitted to the binary response data (ware
type) with a logistic link function. Normal distributions were used for 
each of the random effects (levels) with an inverse-gamma (0.001, 
0.001) prior distribution, and an improper uniform prior of ∝ 1 was used 
for the fixed effects (for mathematical structure see supporting infor
mation). The binary pottery data was fitted to four logistic models: 1) a 
null one-level model (B Mn), 2) a two-level random-intercept model 
(sherd and context) (B M2), 3) a three-level random-intercept model 
(sherd, context and trench) (B M3), and 4) a three-level random-inter
cept model with one level 1 predictor (decoration: impressed or no 
impressed decoration) (B M4). An inspection of the trace- and 
autocorrelation-plots indicated chain convergence. However, the MCMC 
diagnostics (particularly the Raftery-Lewis, Brooks-Draper and ESS) that 
the chain may not have been run for long enough (see supporting info for 
diagnostic statistics). 

The model summaries are included in Table 4, including the poste
rior mean, 95% credible interval and the DIC. There is a considerable 
reduction in the DIC from the BMn to B M3. This reduces fractionally 
with the addition of the predictor variable, decoration, however it has a 
substantial regression coefficient (Table 4). 

The VPC estimates presented in Table 5 and the residuals in Fig. 15a 
and b indicate that sherd waretype varies more between trenches than 
between contexts. The specific variation in waretype can be attributed 
from Fig. 15b, trench 1 (A) has a greater log-odds of fine ware compared 
to trench 2 which has a greater log-odds of coarseware. 

For the fixed part of the model, the intercept of the logistic regression 
reflects the log-odds of waretype. According to the B M2 intercept in 
Table 4, the log-odds of a sherd being fine ware is less likely. However, in 
B M4 the log-odds is more likely for a sherd to be fine ware with no 
decoration (Table 4). The decoration regression coefficient also in
dicates a considerable amount of variability in waretype according to 
decoration (Table 4). This variation can be seen between both contexts 
and trenches in Fig. 15c and d, with fine ware having a greater odds of 
being non-impressed and coarse ware a greater odds of being impressed. 
At the trench level, in trench 2 (B) there is greater odds of sherds being 
coarse with impresso decoration (Fig. 15d). 

4. Discussion 

MLMs allow the inclusion of explanatory variables and different 
levels to explain variation in the dependent variable. The variability in 
the random effects can be determined and proportioned using the VPC 

Fig. 9. A group of stone spheres from Xeste 3.  
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(given in the random part of Tables 1, 3 and 4). Although this paper 
largely focuses on the random effects, the contribution and the vari
ability of the explanatory variables, or fixed effects, can also be inter
preted through changes in the fixed regression coefficients and the 
variance parameters. The fixed regression coefficients (given in the fixed 
part of Tables 1, 3 and 4) are indicative of variability in the data. A 
higher coefficient mean value indicates a greater degree of variation. 
Finally, the intercept can be used to indicate the overall mean of the 
dependent variable, sphere diameter in the Akrotiri model and waretype 

in the Mala Pećina model. 
The application of MLMs to both assemblage’s aid in their inter

pretation. The Akrotiri stone sphere MLMs indicate greater variability at 
the sphere level compared to excavation entity. This can be interpreted 
as spheres clustering in groups of different sizes within the different 
excavation entities and zones of the excavated town. This accords with 
previously published research on the Aktoriri sphere assemblage. For 
example, a group of spheres excavated from the Western House are a 
variety of sizes, from very small (16 mm) to large (45 mm). It was from 

Fig. 10. Diagram of Akrotiri sphere multilevel model structure. Speres (circles) are the level 1 units grouped into excavation entity (squares) at level 2, within zones 
(triangles) level 3. The model also includes fixed explanatory predictor variables: sphere preservation and form at level 1. 
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this context that the hypothesis of the spheres being used as a counting 
system or game board ‘pawns’ were born (Tzachili 2007). The use of 
MLMs has elevated a theory based on small excavated groups of spheres 

into an indication of patterns, or lack thereof, occurring across the 
excavated town. In addition to this, interpretations can be made 
regarding spheres preservation and form. The higher regression coeffi
cient of sphere form in comparison to preservation, in Tables 2 and 3, 
suggests that worked spheres were on an average, larger than natural 
spheres. However, the diminutive impact of the sphere level predictor 
on the VPC estimates, in Table 3, supports the hypothesis that stone 
form, natural or worked, was chosen indiscriminately. Spheres appear to 
have been worked or selected to fit certain dimensions. 

The MLM results for the pottery assemblage from Mala Pećina 
confirmed the hypothesis that pottery varies, in both waretype and 
decoration, between trenches. The variability in decoration waretype 
regression coefficients is consistent with characteristic patterns of 
decoration and ware observed in EN contexts. Trench B (1) showed a 
unified group of EN impressed pottery, compared to trench A and C (2 
and 3) where pottery evidence was mixed with EN pottery in the lower 
strata and LN pottery in the upper layers (see also Drnić et al., 2018). 
Testing this outcome against the excavation evidence, occupation in 
Trench B during EN seems more intense, with high quantities of pottery 
in a thin stratigraphic palimpsest (Trimmis and Drnić 2018). Greater 
variability when impressed decoration is included as a predictor, sup
ports the excavator hypothesis that not all areas of the cave were used 
simultaneously, as the Trench A shows mainly LN pottery. The increase 
in waretype variation showcases the phenomenon that EN impressed 
pottery is generally represented on coarse rather than fine waretypes 
(see Table 4). The variability of pottery waretype remains high in the 
model with no decoration predictor (B M3), this indicates that particular 

Table 1 
Akrotiri Sphere MLM MCMC posterior means (mm) with the 95% central in
terval (Bayesian credible interval) for each parameter in the model. Variance 
estimates (σ2) are given for each of the random variables (sphere, entity and 
zone). This is accompanied by the DIC, the effective number of parameters (pD) 
and a deviance statistic evaluating the posterior mean of the model parameters 
(Dthebar) for each model.  

Parameter C Mn C M2 C M3 C M4 C M5 

Random 
Sphere 50.821 

(40.138, 
64.423) 

50.321 
(39.502, 
63.646) 

50.328 
(39.590, 
63.362) 

50.626 
(50.155, 
64.438) 

49.930 
(39.174, 
63.401) 

Entity  1.00 
(0.001, 
7.536) 

1.279 
(0.001, 
8.798) 

1.373 
(0.001, 
9.414) 

1.250 
(0.001, 
8.755) 

Zone   5.622 
(0.001, 
16.013) 

6.306 
(0.001, 
17.252) 

2.048 
(0.001, 
9.909) 

Fixed 
Intercept 32.178 

(30.995, 
33.361) 

32.178 
(30.855, 
33.505) 

32.282 
(30.434, 
34.207) 

32.233 
(32.145, 
34.192) 

31.516 
(29.621, 
33.419) 

Preservation    0.688 
(− 3.568, 
4.967) 

1.257 
(− 3.044, 
5.497) 

Worked     2.652 
(− 0.333, 
5.627) 

DIC 948.20 948.41 948.97 950.87 949.73 
pD 1.985 3.513 4.222 5.312 6.130 
D (thebar) 944.23 941.39 940.52 945.56 937.45 
Dbar 946.213 944.899 944.744 942.984 943.62  

Table 2 
VPC estimate (%) for levels (sphere (L1), entity (L2), and zone (L3)) in each 
model.  

Parameter C Mn C M2 C M3 C M4 C M5 

Sphere – 98.05 87.94 86.84 93.80 
Entity – 1.95 2.24 2.35 2.35 
Zone – – 9.82 10.81 3.85  

Table 3 
Model estimates for Akrotiri Sphere three-level model with one Level 1 predictor 
(worked). MCMC posterior means (mm) with the 95% central interval (Bayesian 
credible interval) for each parameter in the model. Variance estimates (σ2) are 
given for each of the random variables (sphere, entity and zone). This is 
accompanied by the DIC and the effective number of parameters (pD) and a 
deviance statistic evaluating the posterior mean of the model parameters 
(Dthebar) for each model.  

Random Model Estimates VPC 

Parameter 
Sphere 49.700 (39.083, 

63.193) 
89.01 

Entity 1.184 (0.001, 
8.262) 

2.12 

Zone 4.951 (0.001, 
13.797) 

8.87 

Fixed 
Intercept 31.722 (29.783, 

33.663)  
Worked 2.505 (− 0.429, 

5.433)  
DIC 948.07  
pD 5.08  
D (thebar) 937.90  
Dbar 942.984   

Fig. 11. Akrotiri model group predictions of sphere diameter against sphere 
form (worked or natural). Group intercepts allowed to vary by excavation unit 
(a) and zone (b). 
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areas of the cave are concentrated with certain waretypes, something 
that corresponds well with the excavation observations. 

The models that are presented in this paper were both single site pilot 
studies of the applicability and functionality of multilevel modelling for 
the analysis of archaeological data. In both cases, the datasets were 
small and model outcomes could be easily evaluated based on assump
tions from previous excavators at each site. The MLM results, in both 
cases, support the initial hypotheses. In Akrotiri, the results suggest that 
the use of these spheres may not have differed between the site zones 
and entities, which opens up a new avenue of research on their potential 
function. 

With the incorporation of additional data, there is potential for the 
addition of further levels to both sets of models. A fourth level, ‘cave’, 
and a fifth level, ‘region’ could be added to the Mala Pećina pottery 
models. This would facilitate the investigation of regional variations in 

Neolithic pottery, for example variations between caves from the coast, 
hinterland and uplands. Site and Island (Cycladic) levels could also be 
added to the Akrotiri model. This would enable the analysis of vari
ability in lithic spheres across the Cyclades and contribute to the dis
cussion about the spheres’ function in the Bronze age Aegean. 

The Akrotiri sphere MLM was modelled using a Normal likelihood 
and identity link function which is commonly used for continuous data. 
However, using this link function allows diameter to take negative 
values. As diameter cannot be negative an alternative link function, such 
as a log link function, could be used to account for this. This link can be 
used when a value is constrained to be positive. However, if this function 
is used the VPC must be estimated using the methods for binary response 
models such as those used here for the Mala Pećina pottery data. 

The MCMC diagnostics and plots for the Mala Pećina indicate issues 
with convergence of and autocorrelation in the MCMC chain (supporting 

Fig. 12. Residual plots for Akrotiri multilevel model: a) Level 1 (Spheres), b) Level 2 (Excavation units) and c) Level 3 (Zones). Residuals are plotted for each ‘group’ 
(Level 1: Sphere, Level 2: Excavation unit and Level 3: Trench) accompanied by their confidence intervals. The overall average (the fixed parameter β0) is represented 
by the dashed line. 
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information). This suggests that the chain was not run for long enough. 
This may result in issues with the posterior distributions, specifically the 
mean and 95% credible intervals, estimated for the model parameters. 
To overcome this issue the chain length can be increased to more than 
50,000 iterations. Thinning the MCMC chain is another possibility, this 
results in the discarding of all but every kth sampled value in the chain. 
However, the use of thinning to overcome autocorrelation has been 
debated (Link and Eaton 2012). 

This paper has focused largely on the variability occurring in the 
random part of the respective models, across the levels. Further analysis 

can be carried out on the fixed predictive variables (see Fernée 2020), 
which can identify differences between the predictive variables and 
their specific contribution to the model. For the binary model, it is also 
possible to calculate probabilities of the outcome variable based on the 
fixed parameters (see Austin and Merlo, 2017). 

Further studies are needed to confirm further possible applications of 
MLMs in archaeology. The two pilot case studies confirmed that MLMs 
can both detect variability and highlight specific patterns occurring 
within and between levels. Multilevel models may withstand the criti
cism of the positivism of archaeological statistics due to the elasticity in 

Fig. 13. A ground plan of Mala (Nova) Pećina. The three excavations trenches are annotated. Map adapted from Drnić et al. (2018).  

Fig. 14. Diagram of Mala Pećina multilevel model structure. Pottery sherds (circles) are the level 1 units grouped into contexts (squares) at level 2, within trench 
(triangles) level 3. The model also includes a fixed explanatory predictor variables: sherd decoration at level 1. 
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their application, structured nature, and the incorporation of both 
interpretational predictors and Bayesian statistics. Initial model con
struction is hypothesis driven. The levels and their number as well as the 

predictors selected are interpretational, and they can incorporate the 
archaeologist’s perspective into the analysis. In the Akrotiri case study, 
the model structure was guided by the hypothesis of sphere function by 
Valassy and Tzachili, with the selection of excavation entity rather than 
excavation context. 

Unlike existing methods used in archaeology, MLMs allow the con
current analysis of multi-layered archaeological data whilst incorpo
rating the researchers’ theoretical ideas into empirical testing. MLMs are 
a potential tool to bridge the gap between current archaeological theory 
and statistical analysis, particularly if we understand the identification 
and interpretation of the relationship between different archaeological 

Table 4 
Mala Pećina sherd MLM MCMC posterior means (log odds ratios) with the 95% central interval (Bayesian credible interval) for each parameter in the model. Variance 
estimates (σ2) are given for each of the random variables (sherd, context and trench). This is accompanied by the DIC and the effective number of parameters (pD) and a 
deviance statistic evaluating the posterior mean of the model parameters (Dthebar) for each model.  

Parameter B Mn B M2 B M3 B M4 

Random 
Sherd – – – – 
Context  1.138 (0.210, 

3.599) 
0.956 (0.004, 
3.581) 

1.073 (0.008, 
3.851) 

Trench   1.161 (0.001, 
6.777) 

2.001 (0.001, 
12.969) 

Fixed 
Intercept − 0.234 (− 0.548, 

0.072) 
− 0.071 (− 0.744, 
0.566) 

− 0.181 (− 1.618, 
0.815) 

0.208 (− 1.961, 
1.461) 

Decoration    − 0.848 (− 1.630, 
− 0.102) 

DIC 228.56 206.47 208.08 204.77 
pD 1.01 10.84 10.71 12.15 
D (thetabar) 226.55 184.80 186.66 180.48 
Dbar 227.55 195.63 197.37 192.62  

Table 5 
VPC estimate (%) for levels (Context (L2), and Trench (L3)) in each model.  

Parameter B Mn B M2 B M3 B M4 

Sherd – – – – 
Context – 25.70 17.68 16.86 
Trench – – 21.47 31.44  

Fig. 15. Plots illustrating the random and fixed effects in the Mala Pecina Model. Left: the residual log-odds of the sherds being fine ware are plotted by context (a) 
and trench (b) accompanied by their confidence intervals. The overall average (the fixed parameter β0) is represented by the dashed line Right: the log-odds of sherd 
ware type against decoration with random intercepts by context (c) and trench (d). Decoration: not impressed (NI) and impressed (I). 

C.L. Fernée and K.P. Trimmis                                                                                                                                                                                                                



Journal of Archaeological Science 128 (2021) 105346

13

evidence and the researcher as the new frontier for the archaeological 
thought (see Harris and Cipola 2017: 195). 

5. Conclusion 

It is evident from this pilot application that multilevel modelling can 
be applied to an array of archaeological materials and contexts, from 
artefact analysis to site pattern interpretation. MLMs can be simple to 
employ and can be carried out in specific software such as MLwiN 3.05 
(Charlton et al., 2020; Browne 2019), and software environments, such 
as R (R Core Team 2018). In each case study, the MLMs provide in
dications of the level at which variation occurs, the ‘trench’ level for the 
Mala Pećina pottery model, or at the excavation entity/zone level for 
Akrotiri spheres. They also indicate how the predictor variables 
contribute to this variation. The main strengths of MLMs, compared to 
other methods for detecting variability in archaeological data, are the 
ability to concurrenty study data at multiple levels, the incorporation of 
predictors as a further interpretational tool and the inclusion of Bayesian 
statistics. 
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