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Abstract: Melanins are skin-centered molecular structures that block harmful UV radiation from
the sun and help protect chromosomal DNA from UV damage. Understanding the photodynamics
of the chromophores that make up eumelanin is therefore paramount. This manuscript presents a
multi-reference computational study of the mechanisms responsible for the experimentally observed
photostability of a melanin-relevant model heterodimer comprising a catechol (C)–benzoquinone (Q)
pair. The present results validate a recently proposed photoinduced intermolecular transfer of an H
atom from an OH moiety of C to a carbonyl-oxygen atom of the Q. Photoexcitation of the ground
state C:Q heterodimer (which has a π-stacked “sandwich” structure) results in population of a locally
excited ππ* state (on Q), which develops increasing charge-transfer (biradical) character as it evolves
to a “hinged” minimum energy geometry and drives proton transfer (i.e., net H atom transfer) from
C to Q. The study provides further insights into excited state decay mechanisms that could contribute
to the photostability afforded by the bulk polymeric structure of eumelanin.

Keywords: photophysics; photoprotection; photostability; eumelanin; catechol; benzoquinone;
ultraviolet; conical intersection

1. Introduction

The fundamental photochemistry of prototypical organic and biological chromophores
is attracting ever more attention [1–3]—driven, in part, by ambitions to advance under-
standing (and prevention) of photoinduced damage in biomolecules [4–11] and to improve
the photoprotection offered by sunscreen molecules [12–15]. Ultraviolet (UV) excitation
of any given molecule increases its total energy, typically to values in excess of many of
the energy barriers associated with reaction on the ground state potential energy (PE)
surface. The excited state molecules formed upon UV absorption may decay in a number
of ways that have traditionally been illustrated using a Jablonski diagram. Extremes of
these behaviors include:

(i) Photoreaction, by photodissociation, which constitutes the dominant decay mech-
anism for many small heterocyclic molecules in the gas phase. Much studied examples
include phenol [2,4,16–25], pyrrole [26–34] and indole [35–38];

(ii) Photostability, wherein the photoexcited molecule decays back to the ground state,
rapidly and with high efficiency, without any permanent chemical transformation. Such
non-radiative decay (generically termed internal conversion) is the desired photophysical
response for the DNA/RNA nucleobases [4,39–65] and, for example, for derivatives of the
p-aminobenzoates, cinnamates, salicylates, anthranilates, camphor, dibenzoyl methanes
and/or benzophenones used in commercial sunscreens [13,14]. Internal conversion pro-
cesses are mediated by conical intersections (CIs)− regions of the PE surfaces where distinct
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electronic states become energetically degenerate [66,67]. These points of degeneracy de-
velop into CIs when orthogonal motions are considered, which facilitate non-adiabatic
coupling (i.e., the funneling of population) from the photoexcited state to a lower (e.g., the
ground) state.

Sunscreen molecules are chosen on the basis of good photostability. Those that
find use in commercial sunscreen products have been chosen/engineered to absorb in
the UV-A/B regions of the electromagnetic spectrum and, following photoexcitation, to
undergo efficient non-radiative decay back to the ground state—releasing the excess energy
as local heating in the formulation of which they are a part. In oxybenzone, for example,
π*←π excitation of the dominant (in the ground (S0) state) enol-conformer populates the
strongly absorbing 1ππ* state, which relaxes—either directly or via an (optically dark)
1nπ* state—toward its minimum energy keto-configuration (i.e., an intramolecular H
atom transfer (HAT) process) and onwards towards the CI with the S0 state at non-planar
geometries (one ring twists relative to the other about the central aliphatic C–C bond).
A reverse H atom transfer process on the S0 PES and vibrational energy transfer to the
surrounding solvent results in (efficient, but not complete) reformation of the original
enol-conformer with a (solvent-dependent) time constant [32,68–72].

Many sunscreen molecules occur naturally on UV-exposed regions of biological sys-
tems. In mammals, for example, natural molecular sunscreens are localized in the skin
(eumelanin and pheomelanin), sweat glands (urocanic acid) and the cornea of the eye
(kynurenines). As with the DNA/RNA nucleobases, natural sunscreen molecules have
evolved to cope with exposure to UV radiation, which, in the case of the skin, means
protecting the lower epidermis from UV-induced DNA damage. Eumelanin, the most
abundant melanin found in humans, provides many beneficial functions including serving
as a naturally occurring sunscreen [73–75]. Eumelanin is produced via melanogenesis,
wherein tyrosine is oxidized and polymerized, resulting in a heterogeneous pigment com-
posed of cross-linked 5,6-dihydroxyindole (DHI) and 5,6-dihydroxyindole-2-carboxylic
acid (DHICA) based polymers. The mechanism(s) underpinning its photostability remain
active research topics, however [76–78].

Several studies have sought to address these issues by exploring aspects of the pho-
tophysics prevailing within individual molecular components of eumelanin—including
DHI [79–82] and DHICA [75,83–85], various monohydroxyindoles [86,87] and catechol [88–93]
in the gas and/or solution phase. Building on earlier work by Van Anh and Williams [94],
Kohler and co-workers [95] recently reported ultrafast transient absorption studies follow-
ing UV photoexcitation of non-covalently bonded heterodimers based on ortho-positioned
dihydroxyphenol (catechol) and 1,2-benzoquinone groups. For experimental reasons, it was
necessary to work with the chemically stable 3,5-di-tert-butyl substituted C and Q molecules.
The experimental data provided rather convincing evidence that intermolecular HAT from the
(acidic) O–H proton donor on catechol to a carbonyl oxygen (proton acceptor) group on the
quinone could constitute another decay pathway and thus another source of photostability
following UV photoexcitation. Here we report multi-reference computational studies designed
to explore the photophysics of this model catechol (C), 1,2-benzoquinone (Q) (henceforth C:Q)
heterodimer (without the tert-butyl substituents, for computational simplicity), which provide
mechanistic insight in support of these recent experiments [95].

2. Computational Methods

The ground state minimum energy geometry of the π-stacked configuration of the C:Q
heterodimer was optimized using theωB97XD functional of Density Functional Theory [96],
coupled to the 6-311+G(d, p) Pople basis set [97]. This functional was chosen since it
is capable of describing the long-range correlation effects inherent to charge-separated
configurations, as well as the dispersion interactions between the individual chromophores.
Optimizations of other plausible side-on, hydrogen-bonded and π-stacked configurations
were undertaken but, in all cases, these alternative starting structures converged to the
π-stacked configuration shown below.
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The present study focused on the net transfer of an H atom, so the tautomer formed
by HAT was next optimized. In the closed-shell singlet configuration, this tautomer should
represent an unstable high energy point on the diabatic ground state PE surface due to the
long-range attractive interaction that encourages reformation of the parent heterodimer.
Thus, the corresponding triplet-spin configuration of the C:Q biradical tautomer (which
can also be viewed as a semiquinone, or catechoxyl, radical pair) was optimized in order
to maintain a long-range minimum energy structure. A similar methodology was used
recently to follow the photoinduced evolution of a cyclopropenone-containing enediyne
system through to a biradical configuration [98].

Vertical excitation energies and transition dipole moments of the C:Q heterodimer were
calculated using complete active space self-consistent field (CASSCF) and complete active
space second-order perturbation theory (CASPT2) methods. The CASSCF calculation was
state-averaged with the lowest four singlet and the lowest four triplet states and employed
an active space of ten electrons in ten orbitals (10/10)—comprising the five highest valence
orbitals and five lowest unoccupied molecular orbitals (shown later).

PE profiles associated with the HAT coordinate were then constructed by interpolating
the geometries between the ground state minimum of the C:Q heterodimer and the biradical
tautomer, using a linear interpolation in internal coordinates (LIIC). Using the CASPT2
method [99] and a cc-pVDZ basis set, PE values at each point along the LIIC were calculated
for the lowest four singlet states using a state-averaged CASSCF reference wavefunction.
The same (10/10) active space was used, along with an imaginary level shift of 0.5 EH to
aid convergence and circumvent the involvement of intruder states.

All DFT calculations were calculated using the Gaussian 16 computational pack-
age [100], whilst all CASPT2 calculations used the MOLPRO computational package [101].

3. Results and Discussion

An isolated gas-phase multi-reference computational study of the UV photoinduced
chemistry of C:Q heterodimers is presented, the results of which support and extend
conclusions reached in recent transient absorption studies of this system in a weakly
interacting solvent (cyclohexane) [95]. This section is sub-divided into sections addressing
the minimum energy structures of the heterodimer and its biradical tautomer, the electronic
spectroscopy of the former and then the topography of the PE surfaces sampled following
photoexcitation of the heterodimer.

3.1. Minimum Energy Geometries of the Ground State Heterodimer and Its Biradical Tautomer

As a reminder, theωB97XD functional was used in order to achieve an appropriately
balanced description of the dominant π-π interactions between the C and Q chromophores
and the long-range correlation effects. As Figure 1a,b show, the ground state minimum
energy geometry of the C:Q heterodimer exhibits a π-stacked configuration. (The Cartesian
coordinates of all atoms in this minimum energy structure are provided as Supplemen-
tary Materials, as are (harmonic) normal mode wavenumbers for the ground state C:Q
heterodimer and the bare C monomer.) Alternative side-on hydrogen bonding could also
be expected to provide a strong intermolecular interaction, but the π-stacked ground state
configuration shown in Figure 1 offers both π-π and hydrogen-bonding, and the stability
of this π-stacked structure can be understood by recognizing two stabilizing interactions.
One is a π–π interaction between bonding π electrons on the catechol moiety and the
antibonding π* orbital localized on the benzoquinone. These orbitals are reasonably well-
matched in energy. The second is the inter-chromophore hydrogen-bonding between an
O–H donor, local to catechol, and a carbonyl oxygen acceptor, localized on the benzo-
quinone chromophore. This deduced C:Q heterodimer structure, involving one intra- and
one intermolecular H-bond, is fully consistent with that derived by analysis of the Fourier
transform infrared spectrum of mixed solutions of (the di-tert-butyl substituted forms of) C
and Q in cyclohexane [95].
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Figure 1. (a) Side and (b) top view of the optimized structure of the catechol (C), 1,2-benzoquinone
(Q) (C:Q) heterodimer in its ground electronic state. (c) Optimized geometry of the biradical tautomer
formed by H atom transfer. Intramolecular and intermolecular H-bonds are indicated by, respectively,
dashed purple and green lines.

Figure 1c shows the minimum energy geometry of the biradical formed upon HAT.
(The Cartesian coordinates of all atoms in this minimum energy structure are also provided
in the Supplementary Materials). The “hinged” structural arrangement of the C and
Q chromophores is very different from the π-stacked configuration of the ground state
heterodimer, though it again displays one intermolecular and one intramolecular hydrogen
bond. The breakdown of the π-stacking upon biradical formation can be understood by
recognizing that the lowest energy biradical configuration has ππ* character, wherein the
π- and π*-orbitals are localized on, respectively, the C and Q moieties (vide infra). The
ensuing electron–electron repulsion destroys the π–π interaction inherent to the ground
state parent structure, leaving inter-chromophore H-bonding as the dominant non-covalent
interaction in the biradical tautomer.

We note that the experimentally studied C:Q heterodimer contains bulky tert-butyl
substituents which may affect the π-stacking. That said, we do not expect this to have a
serious impact on the excited state photophysics deduced here, as the tert-butyl group is a
σ-perturbing substituent, while the dominant effects observed in the photophysics of C:Q
are π-centered.

3.2. The Electronic Spectrum of the C:Q Heterodimer

Table 1 lists the vertical excitation energies (VEEs) to the first few singlet and triplet
excited states of the C:Q heterodimer from the π-stacked minimum energy configuration.
The active space orbitals used in the CASPT2 computations, shown in Figure 2, may be
used along with Table 1 to identify the dominant orbital promotions involved in preparing
these various excited states.
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Figure 2. Active space orbitals used in the CASSCF/CASPT2 calculations of the C:Q heterodimer. Q
sits above C in all depictions, but the orientation of the heterodimer structure is varied to allow better
visualization of the various occupied (1–5) and virtual (6–10) orbitals. The orbital numbering aligns
with that used to describe the dominant promotions associated with forming the various excited
states in Table 1.

Table 1. Calculated vertical excitation energies (VEE) and oscillator strengths (f ) to the lowest singlet
and lowest triplet excited states of the C:Q heterodimer. The entries in the “Character” column show
the dominant electron promotions between the active space orbitals shown in Figure 2, with the
respective contributions (i.e., the squares of the associated coefficients) shown in parentheses.

Electronic State Character VEE/eV f

S1-S0
6←3 (0.71)

1.93 0.0016←3 + 6←5 (0.04)

S2-S0
6←5 (0.51)

3.23 0.05416←4 (0.34)

T1-S0
6←5 (0.72)

1.64 -
8←3 (0.04)

T2-S0
6←5 (0.73)

2.25 -
8←5 (0.04)

Vertical excitation to the S1 state from the π-stacked ground state minimum energy
geometry is dominated by electron promotion from a largely non-bonding (n) orbital,
localized on the carbonyl oxygen atom, to an antibonding π* orbital, both of which are
localized on the benzoquinone moiety. The S1 state is best viewed as a locally excited state
(i.e., the excitation is concentrated on a common chromophore) with nπ* character, and
optically “dark” (i.e., the S1–S0 transition has a low oscillator strength—reflecting the poor
spatial overlap of the n and π* orbitals).

The S2 state is best described by a mixture of two configurations. The 6←5 orbital
promotion involves excitation of an electron from the π highest occupied molecular orbital
(HOMO) (which is mainly localized on Q but extends over the C moiety also) to the π*
lowest unoccupied molecular orbital (LUMO) localized on Q. 6←4 promotion, in contrast,
involves excitation from a bonding π orbital, largely localized on the C chromophore,
to the Q-localized π* antibonding orbital. Both promotions can be pictured as π*←π
transitions: The S2 state is thus best viewed as having ππ* character but, even in the vertical
region, formation of the S2 state of the heterodimer involves some electron transfer from
C to Q—which likely contributes to the high oscillator strength reported in Table 1. For
completeness, excitation energies to the first two triplet excited states, both of which are
also best described as locally excited ππ* states, are also included in Table 1.
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The predicted oscillator strengths and VEEs for the (weak) S1–S0 and (strong) S2–S0
transitions reported in Table 1 match well with the maxima evident (at λ ~595 nm and
~400 nm) in the UV absorption spectrum of the (t-butyl substituted) C:Q heterodimer
in cyclohexane [95], lending further support to our expectation that the tert-butyl sub-
stituents have little effect on the electronic properties (and excited state photophysics) of
the heterodimer.

3.3. Photophysics of the C:Q Heterodimer

We now consider the possible fate(s) of the C:Q heterodimer following UV photoex-
citation and the potential role of such photophysics in explaining the photostability of
eumelanin. Motivated by the work of Kohler and co-workers [95], the ensuing discussion
focuses on the mechanism of photoinduced HAT. Figure 3a displays PE profiles of the
ground and first two excited singlet electronic states along the LIIC between the ground
state minimum energy geometry and that of the optimized biradical tautomer formed by
HAT (henceforth QLIIC)—the structures of both of which are reproduced again as insets
in Figure 3a. We caution that the use of a LIIC almost inevitably means that the present
calculations do not capture the true minimum energy path from reactant to product, but
they are expected to identify key topographical features of the PE surfaces under study.
The ground state (black) PE profile increases, reaching a maximum at QLIIC ~0.5, beyond
which it decreases en route to the biradical tautomer. The electronic wavefunction of the
adiabatic ground state switches at QLIIC ~0.5, as illustrated in Figure 3b,c, which illustrates
the increasing ππ* character of the ground state configuration of the biradical tautomer
(which correlates diabatically with the S2 state of the parent C:Q heterodimer). The stability
of the biradical structure can be understood by considering the change in electronic charac-
ter. In the ππ* configuration, the O-atom donor of the pre-existing OH moiety contains a
doubly occupied p orbital which, when viewed from the biradical minimum, provides a
long-range repulsive interaction in the reverse HAT direction. As Figure 3b,c show, the
singly occupied molecular orbitals in the S0 state of the biradical are localized on different
chromophores: the S0 state at QLIIC > 0.5 is best described as a charge-separated (or charge
transfer) state.

The S1 state (red in Figure 3a) has nπ* character in the vertical region and is bound
with respect to initial motion along QLIIC—reflecting the fact that the π*← n transition is
localized on the benzoquinone moiety and shows no net driving force for HAT. The S2 state,
in contrast, has ππ* character at the Franck–Condon geometry and shows net reactivity
with respect to the “hinge-like” geometry change along QLIIC. This can be understood by
recognizing that the transition involves π and π* orbitals that are initially largely localized
on a single chromophore but then develop increasing charge-separated character, as shown
in Figure 3b,c. The diabatic 1ππ* state progressively develops charge transfer (CT) character
as QLIIC → 1, which is neutralized by proton transfer from the C to the Q moiety. Such
photoinduced HATs are also frequently termed proton-coupled electron transfer (PCET) or
electron-driven proton transfer (EDPT) processes. Upon increasing QLIIC from the Franck–
Condon region, the diabatic CT state crosses both the 1nπ* state and the ground state.
This is the origin of the evolution of the ground state electronic wavefunction described
above. As in many related systems [4,102,103], these diabatic crossing points will surely
be CIs when motion along orthogonal modes are considered, and represent regions of
configuration space where internal conversion between electronic states is favorable (i.e.,
where population is funneled efficiently to the lower PE surface).

Given the foregoing descriptions of the various electronic states of the C:Q heterodimer,
the reported photophysics can be rationalized as follows: Photoexcitation populates the
“bright” 1ππ* state, which is initially largely localized on Q but evolves spontaneously
along the coordinate associated with HAT. Internal conversion is likely to occur at both
the S2/S1 and S1/S0 CIs (see Figure 3a). The former may well lead to some population
becoming temporarily trapped in the 1nπ* state—as has been proposed in the case of
oxybenzone [72]—while non-adiabatic interaction at the latter CI will promote efficient



Photochem 2021, 1 32

internal conversion back to the S0 state. Having accessed the S0 PE surface, population may
bifurcate to reform the ground state heterodimer (thereby demonstrating photostability) or
evolve towards the biradical tautomer and thence to two (potentially harmful) semiquinone
free radical species. Thus, the extent to which the C:Q heterodimer offers photoprotection
and photostability will be sensitively dependent on the non-adiabatic dynamics prevailing
at the S1/S0 CI—which will be sensitive to the detailed topography of the CI and the
nuclear momenta within the evolving population. Such details, in turn, are likely to be
sensitively dependent upon the natures of any (less benign than tert-butyl) substituents
within the C and Q moieties and, in any condensed phase application, to the prevailing
solvent [104]. Extrapolating to eumelanin itself, any such competition between reformation
of the minimum energy ground state structure and biradical (and thence radical) formation
might well be influenced by the extent (or otherwise) to which the system is able to
distort away from any structural layering imposed by more extensive π-stacking between
polymer strands.
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localized on a single chromophore but then develop increasing charge-separated charac-
ter, as shown in Figure 3b,c. The diabatic 1ππ* state progressively develops charge transfer 
(CT) character as QLIIC → 1, which is neutralized by proton transfer from the C to the Q 
moiety. Such photoinduced HATs are also frequently termed proton-coupled electron 
transfer (PCET) or electron-driven proton transfer (EDPT) processes. Upon increasing 
QLIIC from the Franck–Condon region, the diabatic CT state crosses both the 1nπ* state and 
the ground state. This is the origin of the evolution of the ground state electronic wave-
function described above. As in many related systems [4,102,103], these diabatic crossing 

Figure 3. (a) Adiabatic potential energy (PE) profiles of the S0 (black), S1 (red) and S2 (blue) states of
the C:Q heterodimer plotted as a function of the linear interpolation in internal coordinates (LIIC)
linking the ground state minimum energy geometry (at QLIIC = 0) with that of the optimized biradical
tautomer (at QLIIC = 1.0). Representations of the evolving structure of the ground state heterodimer
and of orbitals 5 and 6 are shown below for QLIIC = (b) 0.6 and (c) 1.0 (with, in each case, the
square of the coefficient associated with this ππ* contribution to the S0 state configuration shown
in parenthesis).

4. General Discussion and Conclusions

This study, which is limited to the isolated heterodimer only, adds to the growing body
of computational research aimed at exploring possible excited state decay paths in organic
acid-base heterodimers. The present results support earlier suggestions, from analysis of
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transient absorption measurements in a weakly interacting solvent [95], that HAT from an
OH moiety of a catechol sub-unit to the carbonyl-oxygen atom of a quinone unit arranged
in a π-stacked C:Q heterodimer could contribute to the pool of photoprotection mechanisms
available to eumelanin upon exposure to UV radiation.

From the photophysical perspective, the π-stacked chromophores in the C:Q het-
erodimer exhibit similarities and differences with the excited state decay mechanisms
identified for the chromophores in double-stranded DNA. UV excitation of a, base pair
starts with a π*←π promotion localized on the purine (adenine (A) or guanine (G)), which
is dissipated by PCET to the pyrimidine (thymine (T) or cytosine (C)) partner and subse-
quent coupling via a CI to the S0 state [105–109]. The H atom in these cases is transferred
within an H-bonded base pair wherein the individual bases are parts of complementary
strands (i.e., an inter-strand HAT process). UV photoinduced intra-strand electron trans-
fer between stacked nucleobases—more reminiscent of the present situation—has been
identified also, but the subsequent charge-separation (and ultimate photostability) is again
achieved by an inter-strand proton transfer in the resulting radical anion base-pair [110,111].

As noted in the Introduction, eumelanin is a heterogeneous macromolecule, and
much remains to be learned both about its exact structure and the mechanisms of the
photoprotection it affords. Several studies of intramolecular processes contributing to
the decay of excited states of monomers (and oligomers) of various of the proposed key
sub-units of eumelanin, like DHI and DHICA, have been reported [75,82,84], along with
some studies of their intermolecular interactions with solvent molecules [104]. The present
work supports another inter-chromophore excited state decay pathway wherein HAT
facilitates non-radiative coupling to, and reformation of, the ground state C:Q heterodimer.
But, as experimental studies of (the di-tert-butyl substituted form of) this heterodimer
also show, the biradical structure at the asymptote of the HAT coordinate can decompose
to two semiquinone radicals [95]. While it is notable from an energetic perspective that
absorption of one photon with an energy less than that required to break an O–H bond in
bare catechol [88] could result in the formation of two semiquinone radicals, it is unlikely
that nature would have adopted eumelanin as a skin pigment if such heterodimers could
act as significant light-driven radical generation centers. Clearly, much further work will
be needed in order to establish the importance (or otherwise) of the excited state decay
pathways identified thus far for small constituent parts to the overall photoprotection
afforded by bulk eumelanin.

Supplementary Materials: The following are available online at https://www.mdpi.com/2673-7
256/1/1/3/s1, Cartesian coordinates associated with the various optimized structures of C:Q and
(harmonic) normal mode wavenumbers for the ground states of bare C and the C:Q heterodimer.
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