brought to you by .{ CORE

View metadata, citation and similar papers at core.ac.uk

provided by Cronfa at Swansea University

Efficient Memory Arbitration in High-Level
Synthesis from Multi-threaded Code

Jianyi Cheng, Student Member, IEEE, Shane T. Fleming, Yu Ting Chen, Jason Anderson, Senior
Member, IEEE, John Wickerson, Senior Member, IEEE, George A. Constantinides, Senior Member, IEEE

Abstract—High-level synthesis (HLS) is an increasingly popular method for generating hardware from a description written in a
software language like C/C++. Traditionally, HLS tools have operated on sequential code, however in recent years there has been a
drive to synthesise multi-threaded code. In this context, a major challenge facing HLS tools is how to automatically partition memory
among parallel threads to fully exploit the bandwidth available on an FPGA device and minimise memory contention. Existing
partitioning approaches require inefficient arbitration circuitry to serialise accesses to each bank because they make conservative
assumptions about which threads might access which memory banks. In this article, we design a static analysis that can prove certain
memory banks are only accessed by certain threads, and use this analysis to simplify or even remove the arbiters while preserving
correctness. We show how this analysis can be implemented using the Microsoft Boogie verifier on top of satisfiability modulo

theories (SMT) solver, and propose a tool named EASY using automatic formal verification. Our work supports arbitrary input code with
any irregular memory access patterns and indirect array addressing forms. We implement our approach in LLVM and integrate it into
the LegUp HLS tool. For a set of typical application benchmarks our results have shown that EASY can achieve 0.13x (avg. 0.43x) of
area and 1.64x (avg. 1.28x) of performance compared to the baseline, with little additional compilation time relative to the long time in

hardware synthesis.

Index Terms—High-Level Synthesis, HLS, Formal Methods, Multi-threaded Code, FPGA.

1 INTRODUCTION

PGAS are starting to become mainstream devices for

custom computing, particularly deployed in datacen-
tres, through, such as the Microsoft Catapult project [1] and
Amazon EC2 F1 instances [2]. Using these FPGA devices,
however, requires familiarity with digital design at a low
abstraction level. This hinders their use by those who do
not have a hardware background. Aiming to bring the
benefits of custom hardware to software engineers, high-
level synthesis (HLS) allows the use of a familiar language,
such as C, and automatically translates a program into a
hardware description. This process can significantly reduce
the design effort and time compared to manual register
transfer level (RTL) implementations. Various HLS tools
have been developed by both academia and industry, such
as LegUp from the University of Toronto [3], Bambu from
the Politecnico di Milano [4], Xilinx Vivado HLS [5] and
Intel’s HLS Compiler [6].

The input to HLS tools for parallel hardware synthesis
can be either single-threaded (sequential) code (e.g. Xil-
inx Vivado HLS) or multi-threaded (concurrent) code (e.g.
LegUp). Our work targets multi-threaded input, aiming
to solve three key challenges in the general HLS world:
1) While FPGA devices provide large amounts of compute,

o] Cheng,]. Wickerson and G. Constantinides are with the Department of
Electrical and Electronic Engineering, Imperial College London.
E-mail: {jianyi.cheng17, j.wickerson, g.constantinides}@imperial.ac.uk

e S. Fleming is with the Department of Computer Science at Swansea
University.
E-mail: s.t.fleming@swansea.ac.uk

o Y. Chen and]. Anderson are with the Department of Electrical and
Computer Engineering, University of Toronto, Canada.
E-mail: {joyuting.chen@mail.utoronto.ca, janders@ece.utoronto.ca}

the memory bandwidth often limits their throughput. 2) To
increase the memory bandwidth, partitioning schemes can
be used to split memory into smaller distributed memo-
ries or banks, allowing for parallel accesses to data items.
However, to ensure each thread can still access any data
in the partitioned memory, arbitration logic must be used
to serialise accesses to each individual partition. 3) As the
number of memory banks or compute threads increases, the
overheads of arbitration grow quadratically, resulting in a
challenge in scalability.

When optimising the memory architecture of on-chip
memory, HLS tools like LegUp address the memory band-
width and correctness challenges by performing automated
memory partitioning and using a crossbar arbiter to ensure
global accessibility. However, this approach does not solve
the scalability issue, as the fully connected arbitration logic
imposes excessive routing overheads and lengthy critical
paths. One solution to this problem is for users to manu-
ally edit the software program to specify disjoint regions
of memory, which enables the optimisation of arbitration
logic. If a user specifies that a region of memory is only
accessed by one thread, then no arbitration logic is required.
However, for complex code it can often be challenging and
error prone for the user to manually determine memory
bank exclusivity. Such an approach is counter to the fully
automated design philosophy of HLS tools.

In this article, we propose EASY to solve the scalability
challenge by employing ideas from traditional software
verification. Overcoming the challenge requires solving the
problem of determining which threads can access which
memory partitions. We reduce this problem to the problem
of verifying assertions in a Boogie program. EASY automati-

https://core.ac.uk/display/389409725?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1| T_seq() { 1|T(m){ // n = {0..7}

2 K = 1024; 2 K = 1024;

3 for (1=0; 1<8+%K; 3 for (i=n=K; i< (n+1) *K;
i++) i++)

4 s += A[f (1) 4 accum += A[f(i)];
1; 5 s += accum;

51} 6|}

Sequential function. Thread function

(@) A minimal example of a sequential function and

its parallel form in a 8-thread code to perform array
summation.

1) 2) ®3)

(b) A example of memory partitioning of a 8-thread hardware and arbi-
tration simplification. (1) all the threads (T) accessing the shared memory
results in performance bottleneck in memory bandwidth; (2) the bandwidth
is increased by partitioning the memory into 4 banks (M) but cause huge
arbitration logic; (3) the arbitration logic is simplified by proving some of
them cannot be used.

Fig. 1. Motivating Examples. We show our work can simplify the memory arbitration logic among multiple threads and memory partitions.

cally transforms a multi-threaded program into a related se-
quential program in a verification-oriented language called
Boogie [7], together with assertions. We apply the Boogie
tool flow to automatically generate satisfiability modulo
theory (SMT) queries, and then EASY interprets the cor-
responding results as directives to simplify the arbitration
logic in the circuit. Our work can address the scalability
challenge by extending the current LegUp tool flow with a
fully automated static analysis that supports arbitrary input
code.

Contributions
The main contributions of this work are:

1) A general technique that uses formal methods to prove
memory bank exclusivity for arbitrary multi-threaded
input code (Section 2);

2) A technique for transforming generic LLVM interme-
diate representation (IR) code for multi-threaded pro-
grams into the Microsoft Boogie (single-threaded) veri-
fication language (Section 4) and a fully automated HLS
pass that calls the Boogie verifier to formally prove that
arbitration is not required between certain combina-
tions of memory banks and program threads, enabling
the removal or radical simplification of arbitration logic
in an automated fashion (Section 5); and

3) Analysis and results showing that, over a number of
benchmarks, the proposed approach can achieve an
area saving of up to 87% (avg. 57%) and a wall-clock
time improvement of up to 39% (avg. 22%) compared
to the design with fully-connected arbiters (Section 6).

Relationship to Prior Publications

This article expands on a conference paper by Cheng et
al. [8]. The previous work only supports partitioned ar-
rays that are directly addressed, i.e. the array index being
accessed does not depend on the data in the array. How-
ever, indirectly addressed arrays are required in various
contemporary HLS applications, such as sparse matrix com-
putation in deep learning and graph analytics and sorting
algorithms in databases. Applications with sparse memory
architecture cannot be optimised by our prior work. Our
additional contribution that this article makes is the support
for indirectly addressed partitioned arrays and the results
of evaluating this over a new series of benchmarks. We

further demonstrate that our analysis can correctly perform
code transformation and verification with such irregular
and complex memory access patterns. For applications con-
taining indirectly addressed partitioned arrays that cannot
be simplified by the original work, we show up to a 75%
(avg. 66%) area saving and up to 36% (avg. 25%) wall-clock
time reduction.

Auxiliary Material

All of the results from our experiments are available on-
line [9]. EASY and benchmarks are also open-sourced [10].

2 MOTIVATING EXAMPLE

Fig. 1(a)! gives two examples of C code for the same opera-
tion: sequential code and multi-threaded code. The sequen-
tial code on the left side of the figure accumulates the data
stored in array A sequentially in a loop. In multi-threaded
code, the process is parallelized using eight threads. Each
thread function T_n, where n ranges from 0 to 7, can
be represented as the function on the right. In both the
sequential code and the multi-threaded code, the element of
A that is selected for each assignment uses the loop iterator,
i, and the pure function int f(int i). This example
can be synthesised into three hardware architectures when
using different constraints, as shown in Fig. 1(b). Array &
is implemented as a shared memory block by default. Since
array A is accessed by all the threads, an arbiter is placed to
serialise the memory accesses, as shown in Fig. 1(b1). There
may be memory contention when two or more threads
access the same memory port concurrently. To minimise this
contention, array A can be partitioned into four memory
banks to increase the memory bandwidth. Then each thread
will use the function f to decide which memory bank
they are going to access. If £ is sufficiently complicated,
it may be non-trivial for a developer to know how the
memory should be partitioned for parallel access. Therefore,
to ensure correctness, HLS tools like LegUp implement an
arbiter for each partitioned memory bank connecting to all
threads, as shown in Fig. 1(b2).

1. The optimal number of memory partitions for this example should
equal to the number of threads for complete removal of arbiters. Here
we show that even if this is not the case, arbiter logic can be simplified
by our technique.

80,000
60,000
40,000
20,000

LUT count
register count - - -
max. freq. - MHz

0 e T \ ! ! !
0 25 50 75 100 125

Number of threads/memory banks

Fig. 2. Evaluation on performance and chip area of original arbiters.

However, there may be scenarios wherein a thread can-
not touch all the memory banks. For example, a simple case
is £(i) = 1i.In this case, the array indices accessed in T0
never overlap with those accessed by the other threads. That
is, for the array A of size 8K, thread ¢ only touches elements
with indices ¢ x K to (i + 1) x K — 1 of array A. As these
threads are accessing mutually disjoint regions of A, a block
partitioning strategy can be applied, where the array A of
size 8K can be divided into four sub-arrays, each of size 2K.
Threads and banks are now in two-to-one correspondence,
so we can simplify the arbiters. This results in the simplified
architecture shown in Fig. 1(b3).

Since the size and delay of the arbitration logic grow
quadratically, this simplification process can be highly effec-
tive when there are many threads and banks. Fig. 2 shows
how the arbitration logic grows in area and maximum clock
frequency as the number of memory banks and the same
number of threads. We take a single memory arbiter module
used by LegUp [3] and synthesise it in Quartus [11] with
different parameters, i.e. the number of connected threads.
Then the area of total memory arbitration can be estimated
by multiplying the area of a single arbiter by the number
of memory partitions, and the maximum clock frequency of
the arbitration logic can be estimated as the same as that of a
single arbiter. As expected, increasing the number of threads
decreases the maximum clock frequency and quadratically
increases the hardware utilisation. None of these arbiters is
simplified because the HLS tool conservatively assumes that
any thread can access any bank.

To address the scalability issue, we propose our tool
named EASY that proves the absence of access relations
between each thread and each partitioned bank. A access
relation refers to which threads accesses which banks. The
memory accesses observed through simulation provide an
under-approximation of this relation, where Boogie pro-
gram provide an over-approximation of this relation. The
safety of removing arbiters is verified using assertions (de-
tails in Section 4), for instance, that the black wires in
the arbitration of Fig. 1(b2) cannot be used. The optimised
hardware of the given example produced by EASY is shown
in Fig. 1(b3).

3 BACKGROUND

In this section, the tool flow of the LegUp HLS tool used
in our work is introduced, followed by the explanation of
the prior work on memory partitioning. Related works on

3

memory partitioning using static program analysis are then
reviewed and compared to our approach. We also compare
against an alternative, dynamic approach to arbitration op-
timisation. Finally, the Boogie verifier we use in our work is
introduced.

3.1 The LegUp HLS tool

HLS tools, like Vivado HLS [5], take sequential code as
inputs. There are also HLS tools supporting multi-threaded
code as inputs, like LegUp [3], Catapult [12], Stratus [13],
and OpenCL-based tools [14].> The problem is generic: how
to synthesise efficient memory arbitration to handle data
parallelism. For instance, in OpenCL, the shared data is
considered as global memory shared by multiple kernels,
while in LegUp, similarly, threads can share global memory.

For this work, we use the LegUp HLS tool [3], in the form
of C-style pthreads [16]. It is also a well-known and open-
source HLS tool under active development. Support for
multi-threading is essential since our technique uses formal
methods to optimise the generated memory interface for
concurrently executing hardware threads, which is realised
through the synthesis of multi-threaded code. LegUp HLS
allows spatial parallelism in hardware to be exploited by
software engineers, through the synthesis of concurrent
threads into parallel hardware modules.

LegUp is built upon the LLVM [17] compiler framework.
LLVM consists of a frontend and a backend. The frontend
converts the input program into LLVM-IR, which can then
be optimised using a collection of pre-existing optimisation
passes. The backend receives the final optimised LLVM-
IR and generates architecture-specific machine code. In the
case of LegUp, the backend performs HLS and produces a
Verilog RTL circuit implementation. We summarise the key
stages in LegUp’s multi-threaded synthesis flow as follows.

1) The input C is transformed into LLVM-IR via
Clang [18].

2) Each thread function destined for hardware is extracted
from the rest of the source, creating a hardware LLVM-
IR source for each function, and a software (host-code)
LLVM-IR source.

3) The split LLVM-IR sources are transformed multiple
times by a series of optimisation passes: some LegUp
specific, such as word-length minimisation, and others
generic, such as dead-code elimination. For the LLVM-
IR host source, an additional transformation is made to
convert all the pthread_create calls into the appro-
priate hardware function calls.

4) Each transformed LLVM-IR source is then turned into
a Verilog description of a circuit using the traditional
scheduling, allocation, and binding steps [19].

5) Interconnect logic and memory interfaces are generated
to connect each of the circuits to the host system and
instantiate them the appropriate number of times.

6) The software host code is compiled, and an FPGA
hardware bitstream is generated by synthesising the
Verilog using FPGA vendor tools.

2. Both forms of expressing parallelism are in current usage in a
variety of programming languages, with multi-threading typically used
for larger kernels of code [15]. We are not advocating for one form or
another, but to ensure that actually-used programming idioms are well
supported in HLS.

B
(hardware accel) i i

(memory
partitioning)

Backend

bitstream

Verilog
create system synthesis

LLVM llc interconnect place & route

() ()

i

Fig. 3. A coarse overview of the LegUp multi-threaded toolflow.

Fig. 3 shows a labelled tool flow of the stages outlined
above, where stages 1-3 are often referred to as the frontend
and stages 4-6 are referred to as the backend. EASY is
integrated at the end of the frontend.

In LegUp, each hardware thread is synthesised into a
hardware circuit with a Finite State Machine (FSM) and
datapath. The hardware circuits corresponding to threads
operate independently. That is, there is no global schedule
requiring (or enforcing) data synchronisation on memories
shared among threads (which can instead be achieved by
using locks and synchronisation barriers common in other
HLS tools [20]).

One advantage of FPGA devices is the high internal
memory bandwidth, as the numerous small distributed
memories (BRAMs) can be accessed concurrently. For any
data shared between multiple hardware threads, LegUp
constructs a shared memory out of BRAMs to provide fast
local access to the data.

As mentioned above, LegUp is unable to determine
which thread will access which of the shared memories,
forcing it to take a conservative approach by assuming any
thread can access any shared memory. This assumption
requires the construction of expensive crossbar-like inter-
connect and arbitration logic between all threads and every
shared memory, as illustrated in Fig. 1(b1). In the current
generated hardware, whenever multiple threads compete
for a shared memory, only one can be granted access. The
rest of the threads are stalled, unable to make progress.

3.2 Memory Partitioning Schemes

To exploit the high internal memory bandwidth available on
FPGA devices, LegUp includes a partitioning optimisation
that can split a shared memory into multiple smaller memo-
ries [21]. Memory partitioning allows multiple simultaneous
accesses to a shared memory between concurrently exe-
cuting threads. With an appropriately chosen partitioning
scheme, simultaneous memory port accesses, which would
have previously resulted in contention, can now occur
without stall cycles. By splitting memories into smaller
blocks, each of the constituent smaller memories can service
disjoint regions of the overall address space independently.
Provided multiple threads are requesting access to portions
of the address space serviced by different memories, they
can access them simultaneously. The capability to partition
memories thereby increases access parallelism, improving
application performance.

If partitioning is well balanced, with threads accessing
disjoint regions of the address space concurrently, then
performance is improved. However, if some of the banks

elf

LLVM llc

TABLE 1
Program analysis approaches for memory partitioning in HLS.

Approaches for memory partitioning
Polyhedral . . Formal
X Simulations
analysis methods
Input | Single-threaded | [22], [23], [24] [25] [25], [26]
code | Multi-threaded [21] Our work

are very “hot” with frequent accesses and others are very
“cold” with infrequent accesses, then the overheads of the
additional circuitry may outweigh the benefit seen by the
increased throughput. To select appropriate partitioning
strategies, LegUp adopts an automated simulation-trace-
based approach using a light-weight memory simulator.
Different partitioning schemes, complete, block, cyclic
and block-cyclic, are applied and simulated on the ini-
tial memory trace to experimentally identify the partitioning
strategy with the lowest memory contention.

While this approach greatly improves the throughput
for concurrent shared-memory applications, it cannot guar-
antee that multiple threads never access the same parti-
tion. This exacerbates the scalability challenge discussed in
Section 3.1, as now the complexity of the arbitration logic
scales not just with the number of shared memories and
threads, but also with the number of banks per shared
memory. Our analysis alleviates this scalability challenge,
as it is able to prove which threads cannot access which
banks of a shared memory through a static analysis of the
code. EASY enables safely optimising the arbitration logic
between memory banks andthreads, reducing its complexity
and raising performance.

3.3 Automatic Analysis of Memory Partitioning

Program analysis has been an active research area for op-
timising circuit generation with HLS tools. Table 1 shows
a comparison between our work and the following related
works. Polyhedral techniques are popular for memory anal-
ysis [27], and have been extended to HLS by the work
of Liu et al. [28]. Recent work such as Wang ef al. [22]
on polyhedral analysis for memory partitioning has shown
promising results through performing cyclic-like partition-
ing, exploring the transformation between accesses to an
original multi-dimensional array and to the newly parti-
tioned arrays. However, this approach is incompatible with
bank switching, where the data in one bank is shared by
multiple hardware units, prompting Gallo et al.’s lattice-
based banking algorithm [23]. Winterstein et al. [26] propose
a tool named MATCHUP to identify the private and shared

memory region for a certain range of heap-manipulating
programs using separation logic, targeting off-chip memory,
while we perform analysis of arbitrary code but currently
only work with on-chip memory. The most recent work by
Escobedo and Lin [24] proposes a graph-based approach
using formal methods to compute a minimal memory bank-
ing for stencil-based computing kernels to avoid memory
contention. In summary, these works are not intended for
multi-threaded input, but are rather directed towards par-
titioning of arrays with multiple accesses in a loop body.
Moreover, these techniques often require code to have a
particular structure (e.g. polyhedral loop nests). The detailed
comparison between the prior work [21] targeting multi-
threaded code and our work is explained in Section 3.2.

Satisfiability Modulo Theory (SMT) solver-based ap-
proaches are relatively new to the HLS community but have
shown potential strengths in hardware optimisation. The
closest piece of work to this paper is by Zhou et al. [25],
which proposes an SMT-based checker for the verification
of memory access conflicts based on parallel execution with
banked memory, resulting in a highly area-efficient memory
architecture. Both works use simulation traces as a starting
point for formal analysis, an approach referred to as ‘min-
ing’ by Zhou et al. [25].

However, Zhou et al. [25] only analyse a loop kernel,
without taking the control structures of the whole program
into account, and formulate an SMT query on the banking
functions themselves. Hence, their tool does not support
input-dependent memory traces, which can be analysed
by EASY. Moreover, their tool optimises memory access
conflicts and reduces MUX overhead for a single loop sched-
ule, while EASY optimises the memory arbitrations among
multiple threads. Finally, Zhou et al. [25] prove the existence
of bank conflicts, allowing each parallel hardware unit to
access different memory banks concurrently. Conversely, we
identify the memory banks never accessed by certain threads
over the whole execution, because we target arbiter removal.
In this article, we directly use the method by Chen and
Anderson [21].

3.4 NoC Approaches for Memory Partitioning

In LegUp, each memory bank has an arbiter connected to all
threads. The trace-based analysis in LegUp [21] allows the
arbiters to predict the memory request from threads. How-
ever, for complex cases like indirectly-addressed arrays, the
static analysis is limited and the memory contention can
still be frequent. Solutions can be found in two aspects:
dynamic approach and static analysis. Islam and Kapre [29]
propose a dynamic solution to the inefficiency of memory
arbiters from LegUp HLS tool when synthesising hardware
with indirect array addressing. They replace the original
round-robin arbiters by Networks-on-Chip (NoCs), which
are router-based packet-switching networks, for memory ar-
bitration enabled by routing over a packet-switched fabric.
One main advantage of such a dynamic approach is that
they can handle unpredictable cases efficiently. However,
they still need the arbiters between each memory bank
and all threads, while EASY aims to achieve minimal area,
optimally zero area, in arbitration logic.

3.5 Microsoft Boogie

Boogie is an automatic program verifier from Microsoft
Research, built on top of SMT solvers [7]. Boogie uses its
own intermediate verification language (IVL) to represent
the behaviour of the program being verified. Instead of
executing the program, an SMT solver is applied to reason
about the program’s behaviour, including the values that its
variables may take. Encoding of verification as SMT queries
is automatically performed by Boogie, hidden from the user.
Other works have proposed the automated translation of an
original program to Boogie IVL, such as SMACK [30], an
automated translator of LLVM-IR code into the equivalent
Boogie program. We built our own code generation because
our Boogie program is specifically designed to solve the
memory banking problem. EASY approximates the memory
access patterns with the given parameters, while SMACK
proves the exact program behaviour.

The effectiveness of verification in EASY depends on the
Boogie verifier itself. Using Boogie is beneficial for analysis
of non-linear memory accesses like A[(1%10) ? ixi:i],
which is not supported in common techniques like polyhe-
dral analysis. Also, the worst case of EASY does not cause
larger area but the same hardware design as the baseline.

4 METHODOLOGY

This section explains how EASY generates a Boogie program
for verification. First, we show how the problem of memory
arbitration is formalised. Then we introduce the Boogie
constructs that are used by EASY. Next, we illustrate how
a Boogie program describes the memory behaviour and
proves the absence of access relations. We also show how
Boogie efficiently handles loops. Finally, we explain how
supports for indirectly addressed arrays are implemented.

4.1 Problem Formalisation

To formalise the problem, we define the following symbols:

o T — the set of threads;

o Sy — the set of threads that do not access block b during
simulation;

o (Gj — the set of threads that cannot access block b, also
known as the “ground truth”; and

o [}, — the set of threads that have been formally proven
by EASY to never access block b.

The original arbitration method for partitioned mem-
ory [21] is to build an arbiter with |T'| connections, while our
work builds an arbiter with |T' — F}| connections. The ‘best
case’ is |T' — Fp| = 1, i.e. the bank is exclusive to a certain
thread and no arbiter is needed. The aim of our work is to
find F}, for each bank.

Since G, C Sy, C T, the objectives of our work in finding
F}, are mainly two aspects: 1) soundness, which means that
Fy, C Gy,. This is essential for ensuring the results are correct;
2) precision, which means that amongst all those Fj, that are
sound, we want F}, as large as possible, that is, we want
F, = G} in the best case.

To ensure the soundness of our approach, we choose
to use Boogie and its assertions. This formal verifi-
cation intermediate language description allows us to over-
approximate the memory behaviour for F, i.e. F, C Gp. In

1| void *accum(void xthreadarg) { 1| procedure {:inline 1} thread_func(arg: bv32) returns(read: bool,

2 2| index: bv32) { // Summarized partition index expression

3 // Thread function of the 3 // transformed for loop:

4 // input code 4 assert 1 >= arg && 1 <= arg+1024;

5 int arg = xthreadarg; SX{havoc i;

6 int accum = 0; / assume i1 >= arg && i <= arg+1024;

7 . 7 // inside the equivalent for loop in the Boogie program

8 Section 4.4 8| if (i < arg+1024){

9 // assign element values 9 index = i >> 10; // for the case f(i) = i

10 for (i=arg;i<arg+1024;i++) 10 if(x){ // non-deterministic bank address returning

11 accum += A[f(i)]; 11 _ read = true;

12 St 1 12 7 return;

13 €p 3 }

14 pthread_exit (NULL) ; 1 i =1+ 1;

15| } 15 assert i1 >= arg && i <= arg+1024;

16 16 assume false; // end of for loop

17| int main() { 17 }

18 18 read = false;

19 19 return; // if no global memory accessed, read = false

20 // initialize arguments 20| }

21 // to pass into threads 21

22 for (i = 0; i < 8; i++) 22| procedure main() {// Bank exclusivity assertions

23 datali] = 1i%1024; 23 call tO_read, tO_index = thread_func(0);

24 24 call tl_read, tl_index = thread_func(1024);

26 // create the threads / 26 // THD thread, B partitioned memory bank

27| for (i - 0; i< 8; i++) 27| // THDO accessed B0 in simulation - x Step 3

28 pthread_create (&threads([i], 28 assert !tO_read || tO_index != 1; // THDO never access Bl - V
NULL, accum, datali]); 29 assert !tO_read || tO_index != 2; // THDO never access B2 v

29 30 assert !tO_read || tO_index != 3; // THDO never access B3 - V

30 31 assert !tl_read || tl_index != 0; // THD1 never access B0 - X

31 32

32|} 33|}

(a) Input multi-threaded C code, M

(b) Output Boogie program, transform(M).

Fig. 4. The Boogie program transform (M) is generated from the C program M. Each assertion in transform (M) encodes that one of the threads
in M never accesses one of the memory partitions. Whenever the Boogie Verifier is able to prove one of these assertions, one of the arbitration

wires can be safely removed when synthesising M.

the following sections, we show how to use constructs like
non-deterministic choices, loop interpretations and an indi-
rect addressing formulation to cover the possible memory
accesses. In addition, our approach focuses on the accuracy
in the description of the memory behaviour to get minimum
Gy — Fp. Over the benchmarks we evaluated, we have
F, = S, and since Fy, C Gy C Sy, it follows that F, = Gy

4.2 Boogie Constructs

We use a Boogie program to verify the memory arbitration
problem. In addition to all the commands one would expect
in a standard programming language, Boogie contains a
number of verification-specific language constructs. Here
we list those used in our work and therefore explain below:
1) havoc x: The havoc command assigns an arbitrary
value to the variable x. This can be used to prove
an assertion that is true for any value of the variable,
unlike simulation-based testing which will only check
assertions for particular test vectors.
assume c: The assume command tells the verifier
that the condition c can be assumed to be true when
trying to prove subsequent assertions. For example
{havoc x; assume (x>0);} together encode that
the variable x can be any positive value.
if (%) {A} else {B}: The special (*) condition
tells the verifier that either branch might be taken. This
construct is called non-deterministic choice.
assert c: This instructs the verifier to try to prove
the condition c. For example {havoc x; assume

(x>1); assert (x>0);} should pass, because ev-
ery variable greater than one is also greater than zero.
5) forall x cl(x) ==> c2(x): This condition
holds if condition c2 holds for all values of x that
satisfy condition c1. These conditions can be used with
assume for assumptions or assert for verification.

4.3 Generating a Boogie program

Using the Boogie primitive operations outlined in Sec-
tion 4.2, we can generate a Boogie program that can be
used to verify bank exclusivity in our multi-threaded input
code. Our approach is fully automated — an input LegUp
multi-threaded source is automatically analysed, resulting
in a Boogie program as part of the compiler pass. This code
generation consists of four main steps as follows:

Step 1: We use non-deterministic choice to exhaustively
explore the state-space of all possible memory accesses.
Step 2: For each hardware-accelerated thread call in the
main function we call a separate instance of the single-
threaded Boogie program.

Step 3: Within each Boogie thread instance, we generate
Boogie assert statements that are used to test for memory
bank exclusivity.

Step 4: We describe the data of the address array being
overwritten in a loop using additional loop invariants with
forall constructs.

In this section, we explain the first three steps with a
code example shown in Fig. 4. Step 4 is explained in Sec-

tion 4.5. Based on prior work on memory partitioning [21],
we introduce several terms that are used in our model:

Partition index — The address of the memory partition.
Local address — The address of the requested data in the
partition. The array index in the input program is a function
of the partition index and the local address.

Address array — The array that controls the partitioned
array accesses.

For instance, in Fig. 4, we have (i >> 10) as the
partition index, the 10 LSBs of i as the local address, and
no address array. In Fig. 6, the address array is array B.

Step 1: A procedure named thread_func represents
the memory behaviour of the original thread function
(named accum in the example code). From the input code,
it is intuitive that a thread accesses the array index range
from A[i] to A[1+1023] in the for loops when £ (1) =
i. In the equivalent loop in thread_func, the partition
index is required to identify which partition is accessed.
In this example, the partitioning index is bit 10, 11 and
12 of the 13-bit array index, but the expression can be
arbitrary in general. The goal of the Boogie program is to
prove whether the partition index value in any iteration
cannot equal to the partition index of a partitioned bank,
eg. Vi € [arg,arg + 1024), partition_index(i) # B. This
means that the current access at address i cannot touch the
partitioned bank with a partition index of B across all the
loop iterations.

A novelty of this work is that we use the non-
deterministic choice concept if (x) to model the fact that
we need to capture the partition index accessed by any loop
iteration. If the verification succeeds, we can deduce that
the assertions hold whichever way this non-deterministic
choice is resolved. Taking the if branch causes the veri-
fier to flag that a read has happened with partition index
index — if the branch is not taken, this corresponds to
skipping this particular memory access in the original code.
Such arbitrary behaviour allows Boogie to jump to any
loop iteration and capture the memory behaviour in any
iteration. For this example, any loop iteration in thread 0
can only return index = 0 because the set of all possible
partition indices is {0} for array indices ranging from 0 to
1023. Similarly thread 1 only returns index = 1. The use
of assume false instructs the verifier to ignore the rest
part of the function since the partition index is invalid when
reaching this point, that is, all the 1 f () are skipped.

The generated Boogie program only describes the pro-
gram behaviour of the partitioned memory for the memory
arbitration problem. EASY uses the pre-existing slicing tool
by Fleming and Thomas [31] to automatically extract the
memory behaviour from the input code. The sliced code
is a list of instructions that affects the partitioned memory
access, disregarding all other irrelevant instructions in the
thread function. When the data in an array is accessed such
as A[f (i)] in Fig. 1(a), the corresponding instruction is
represented as:

1| index = partition_index;

2| if (%) { // arbitrarily true
3 read = true;

4 return;

5|}

in Boogie to capture its behaviour across all the loop itera-
tions.

Step 2: Two further parts of the Boogie model appear
in the main procedure. The generated Boogie program
sequentially calls each thread procedure. These call instruc-
tions are separate and independent modules for memory
access analysis. Each call instruction returns a read state and
an arbitrary partition index among accessed banks. Thus,
each called thread procedure returns two variables named
tX_read and tX_index. The tX_read indicates whether
the returned partition index is valid. It is invalid when all
the i f (») blocks are skipped. The tX_index indicates one
of reachable partition indices. EASY then uses assertions to
prove the properties of these two variables to identify the
set of partitioned banks that this thread cannot access.

Step 3: The final part of the verification code is a list of
final assertions. EASY automatically generates these final
assertions by enumerating the connections between each
partitioned bank and each thread. Each single assertion
states that a specific thread cannot return a specific par-
tition index value, i.e. that thread cannot touch a specific
partitioned bank. If the assertion holds, the corresponding
arbitration logic can be removed in the hardware, other-
wise, it is necessary to maintain this arbitration wire in the
hardware. The prior work on memory partitioning [21] has
observed some memory accesses in simulations, indicating
which thread can access which partitioned banks. EASY
reuses these memory accesses to remove the assertions as an
optimisation, as they do not hold. For instance, if bank 0 has
been accessed by thread 0 in the simulation, the assertion
indicating that thread 0 never accesses bank 0 certainly fails
and is removed in the Boogie program.

With a Boogie program containing a list of final asser-
tions that are not observed in the simulation, the Boogie
verifier is automatically called to filter all failed assertions.
Based on the successful assertions left in the Boogie pro-
gram, the verification results can correctly identify where ar-
bitration is required in the HLS-generated hardware. When
the memory accesses are complex, the Boogie verifier may
not be able to prove an assertion that is nonetheless true,
and some arbiters might be left in unnecessarily. Even so,
in the worst case, our approach does not make the original
hardware design worse.

4.4 Handling Loops

Memory accesses in loops are a primary source of memory
bottlenecks, as they often correspond to the overwhelming
majority of accesses. In our analysis, we aim to support
loops without having to unroll them in the Boogie program,
in order to support general while loops and also to keep
the size of the verification code small. A loop in a Boogie
program requires the programmer to specify a loop invariant
to formally abstract the program state. An invariant is a
property describing the program state that always holds on

assert phi; // base case
havoc modset (B) ;
assume phi;
// inductive hypothesis
if (c) {
Bj
assert phi; //
assume false;

}

while (c)
invariant phi;
{

B;
}

U1 W N~

step case

O 0N ONUT = WN -~

(a) Input code. (b) Generated Boogie code.

Fig. 5. Loop summary in Boogie using loop-cutting transformation [32].

TABLE 2
Reference table for invariants of for loops of the form for (
i=start; cond; step).

Loop form | Guessed invariant

for (i=start; i<end; i++) start<=i && i<end
for (i=start; i>end; i--) start>=1i && i>end
for (i=start; i<=end; i++) start<=i && i<=end
for (i=start; i>=end; i--) start>=1i && i>=end

entry to the loop and after every iteration of the loop. Au-
tomated generation of loop invariants is an active research
area in program verification. Here we adopt the approach
described by Chong [32].

Fig. 5 shows the general case of our loop transformation
process: Fig. 5(a) shows the general structure of a while
loop, and Fig. 5(b) shows the equivalent transformed loop
in Boogie. In Fig. 5(a), a while loop contains a loop con-
dition ¢ and a loop body B. Additionally, phi represents
the loop invariant. In Fig. 5(b), the invariants for the loop
are established inductively. At the entry point of the loop
at line 1, also known as the base case, the first assertion
asks Boogie to verify that the loop invariant holds as a
precondition for the loop, where an example is shown as
line 4 in Fig. 4(b). The code in line 2 skips an arbitrary
number of loop iterations, jumping to an arbitrary iteration
of the loop. We use havoc to select arbitrary values for a
set of variables that have carried dependences in the loop
body B, known as the ‘modified set’, modset (B). Then the
induction hypothesis is assume’d in order to restrict these
arbitrary values still make the loop invariants hold.

The loop invariants still hold after each loop iteration,
verified by the assertion on line 7. Once the verifier has
proved the assertion, we do not want the effects of executing
c or B to be visible to code that may come after the loop. So,
we issue an assume false on line 8, which has the effect
of ‘cancelling’ this control flow path. Hence, any code that
comes after the loop can assume that the if-statement on
line 5 was not taken, i.e. that we have exited the loop. In
summary, our formulation describes one arbitrary iteration
of the whole loop, instead of the whole loop iteration. A
main advantage is that it has short code length and the
verifer can still prove the property of loop by capturing any
iteration.

The selection of an appropriate invariant phi is key to
verification success. We find that the loops we encounter in
practice have a simple structure of increasing or decreasing
single-strided for-loops with strict or non-strict inequalities

8

as loop exit conditions. Therefore, it is sufficient to auto-
matically derive the loop invariants from the exit conditions
of for loops for most HLS applications. We implement a
simple lookup table of proposed loop invariants, shown in
Table 2. The loop invariants are derived from loop condi-
tions, but not the same as loop conditions. The difference is
the non-strict inequality in the upper bound due to the final
iteration. EASY checks the properties of the loop iterator, i.c.
the striding behaviour and the exit bound, and generates the
guessed loop invariants for any for loop in the input code.
We note that it is safe to guess loop invariants without being
concerned about whether they are correct, because we place
an obligation on Boogie to verify that a guessed invariant
actually does hold.

4.5

In the preceding sections, we explained how to reason
about the memory behaviour of a directly-addressed array.
A directly-addressed array is one where the expression of
an array index only depends on register values and does
not depend on any array data. For instance, in Fig. 4, £ is
independent of any array data but only depends on i. An
indirectly-addressed array is one where the value of its array
index is dependent on data in one or more arrays. Indirect
array indexing is used in applications such as sparse matrix
multiplication and 3D rendering [33]. In this section, we
show how to prove the memory behaviour of an indirectly-
addressed array with additional step 4 listed in Section 4.3.

Our verification procedure is sound but not complete,
i.e. we can prove absence of memory accesses but not their
presence. However, the lack of completeness means that the
verification may be less precise, as there may theoretically
still be an absence of accesses unprovable by our procedure.
For instance, Fig. 6(a) shows a similar example to Fig. 4 but it
contains two arrays A and B. In the first loop, the elements in
array B are assigned with a function g of the loop iterator j
in a directly-addressed format. Subsequently, in the second
loop, the values of elements in array A are summed. Array
A is partitioned and indirectly-addressed by the data stored
in array B in the form of h (B[1i]). Unlike Fig. 4, the index
of array A depends on both the loop iterator i and the data
in another array B. Hence proving the memory behaviour
of array A requires not only the expression of function h but
the data stored in array B. Therefore, the verifier to assume
that h (B[i]) in any iteration can be an arbitrary integer,
which could be a smaller set of values like h (B[i])

Step 4: We solve this by including the information of the
address array for the indirectly-addressed partition array.
Firstly, with a given partitioned array, EASY identifies its
memory accesses in the thread function and uses the slicing
tool to extract all the related instructions. If the address
of a memory access depends on any load instruction, the
memory access is indirectly addressed. Knowing that, we
include information about the loaded data in the array in
the Boogie program. In this example, we find the index of
array A depends on the data in array B, so we describe the
data in array B in the Boogie program, as shown in Fig. 6(b).

For simplicity, we assume g (i) = i and h(i) = i,
but they can be any arbitrary functions in the general case.
Fig. 6(b) shows the Boogie program generated from the

Indirect Array Addressing

== 1.

// The address array B is
// initialised as follows:
int B[N] = {0, 1, 3, ...}; havoc j;

void xaccum(void xthreadarg) { assume

B[]
Ste

p 4
// assign indirect addresses 9
10 for (j= arg; j<arg+1024; j++) 10 }

O 0N ONTT = W~

assert

1 B[3] = g(J); 1

12 12 index = h(B[i])
13 for (i= arg;i<arg+1024;i++) 13 if(=){ //

14 accum += A[h(B[i])]; 14

15 15 }

16 16 .

17| } 17|}

procedure {:inline 1} thread_func... {
assert Jj >= arg && J <= arg+1024;

(forall j:int ::
if (j < arg+1024){
=g(J);

assert Jj >= arg && Jj <= arg+1024;
(forall j:int ::

1
2
3
4 assume Jj >= arg && j <= arg+1024;
5
6

. // the second loop

non-deterministic bank address returning
read = true; return;

j >= arg && j < arg+l024 ==> B[]j] == g(J));

j >= arg && j < arg+1l024 ==> B[j] == g(J));

>> 10; // partition index

(a) Input multi-threaded C code, M

(b) Output Boogie program, transform(M).

Fig. 6. The Boogie program transform(M) is generated from the indirect addressing behaviour for partitioned arrays in the C program M.

input code in Fig. 6(a). The second loop that contains the
accesses to the partitioned array 2 is represented as a non-
deterministic returning form in an arbitrary loop iteration
like Section 4.3. This representation allows thread_func
to arbitrarily return one of all possible bank addresses if
the access is valid (read == true). The additional work
for the indirectly-addressed array is the description of the
address array.

We use another approach to describe the address array,
as the non-deterministic representation does not provide
enough information regarding the address array. The non-
deterministic choice only describes one element in the ad-
dress array at a particular index j. For instance, in this
example, the values of j and i selected in the two loops
can be different. Hence when i != j, knowing B[j] ==
j does not help proving the access to array A at bank address
of h(B[i]) >> 10.

We summarise the array data by the use of forall
constructs as an additional loop invariant. In the example,
the expression of array B is regular, where B[1] = g (i).
The additional loop invariant describes the expression of
the elements in array B that are overwritten in the first loop.
In the Boogie program shown in Fig. 6(b), lines 11 and 12
state that at the exit of the first loop, for any values of loop
index j between arg and arg+1023, the value of array
data B[j] is always function g of the corresponding loop
index 7, i.e. g (j). This summarises all the values of B[]
for the verification of the following accesses to array A in the
second loop.

The expression defining the data in the address array can
also contain more constructs, and our approach still works.
For instance, there may be conditional branches in the loop,
such that the array elements can have various expressions.
EASY also verifies the memory conflicts among conditional
reads and writes by including these in the description auto-
matically. Therefore, the Boogie representation generated by
EASY both describes the array data pattern and proves that
a certain set of memory banks cannot touched by a certain
thread.

4.6 Summary

We have shown how to use the Boogie verifier to prove
the memory arbitration problem in parallel hardware with
memory partitioning. EASY automatically extracts the parti-
tioned memory behaviour and generates a Boogie program
to prove threads do not access certain memory banks. The
memory access patterns can be arbitrary, and the proposed
technique remains valid and correct. The verification result
is a conservative over-approximation, where the tool may
not be able to prove a connection is removable yet is actu-
ally unnecessary. For instance, the values of address arrays
should be known at the entry of the loop, initialised by the
code. However, the approach is guaranteed to not make the
hardware worse.

5 INTEGRATION INTO THE LLVM FRAMEWORK

We describe the technical details on how EASY is integrated
within the LegUp HLS framework as shown in Algorithm 1.
At top level, EASY takes the input program M and gener-
ates a Boogie program B. Then the verification of B guides
EASY to transform M to a more efficient architecture M’.

Before generating B, the analysis extracts the follow-
ing parameters: the set of threads 7', the partitions for
partitioned arrays A, the loop invariants for loops L and
the observed memory accesses by simulation S (line 4-
7). S observed through simulation provides an under-
approximation of access relation. With these parameters,
EASY extracts all the partitioned memory accesses, where
1 — a means that an instruction % touches array a, and
constructs (the left arrow) a set I (line 8). Then it removes
all the irrelevant instructions to I, and constructs a sliced
program Mg (line 9). The remaining program Mg is used to
generate B.

The generation of B contains two parts. First, for the
main procedure (line 11-14), each instruction in Mg is
translated into an equivalent Boogie instruction and added
to B. At the end of the procedure, EASY enumerates the
assertions for all the access relation between the threads T’
and the partitioned arrays A except those that have already
been observed in S. These assertions are also added to B
like Fig. 4(b). Second, for the thread functions (line 16-22),

Algorithm 1: Algorithm of EASY.

1 M: Input program module ;

2 B: Boogie program ;

3 M': Output program module ;

4 Extract the set of threads T in M ;

5 Extract partitioned arrays A ;

6 Extract L, the set of basic blocks of M corresponding to
loop entries and exits ;

7 Load observed access relation S C T x A ;

8 «{icM|3ac A i—a}

9

10 Ms < sliceProgram(M, I) ;

11 for each function f in Ms do

12 if f # main then

13 // Step 2 from Fig. 4

14 for each basic block bb in f do

15 // Step 4 from Fig. 4

16 if bb € L then

17 | B.addLoopInvariants(bb) ;
18 for each instruction i in bb do
19 B.addInstr(z) ;

20 // Step 1 from Fig. 4

21 ifi —array a € A then

22 | B.addNonDeterministicChoice(a) ;
23 else

24 // Step 3 from Fig. 4

25 for each instruction i in f do

26 | B.addInstr(i) ;

27 B.addAssertions(T' x A — S) ;

28
29 F < verify(B) ;

30 M’ < removeArbiterPorts(M, F) ;
31 return M’

at the entry of the basic blocks, EASY checks whether the
current block is a loop header or exit as stated in Section 4.4
and Section 4.5. If true, it inserts the corresponding loop
invariants to B. Also, in each basic block, every instruction
is translated into an equivalent Boogie instruction. If an
instruction accesses a partitioned array, a non-deterministic
choice is also added to the Boogie program (line 21-22).
Once B is generated, EASY verifies B by calling Boogie
verifier and constructs a set of access relations F for all the
banks that can be safely removed (line 23). Then it takes
the original program M and removes these accesses I,
constructing a more efficient program M’. An example of
how these accesses are removed is shown in Fig. 7. The left
side of the figure is part of the code in M, and the right side
is the corresponding hardware from the code on the left.
In hardware, a multiplexer used to access the partitioned
memory, which is represented as a number of select
instructions in M. For the case of the current thread being
proven to not access sub-arrays 1 and 2, EASY removes the
corresponding selecting instructions in the input code to
construct M’. The final hardware is then simplified, where
red “x’s show the arbitration wires that are safely removed.

6 EXPERIMENTAL RESULTS

The FPGA family and synthesis tool that we used for
result measurements including Fig. 2 are Cyclone V
(5CSEMAS5F31C6) and Quartus II 15.0.0, as this FPGA is

10

one of the devices supported by the LegUp HLS tool. We
evaluate the arbitration simplification process on a set of
benchmarks, assessing its impact on both circuit area and
speed: Fy .., latency in cycles, and wall-clock time (latency
in cycles x 1/ F};,qz). We also discuss its impact on CAD tool
run-time.

6.1 Benchmarks

The goal of HLS is to automatically produce architectures
from software descriptions. Our benchmarks focus on the
support for explicit parallelism via threads. When combined
with other HLS transformations, advanced architectures
like systolic architectures can be synthesised from code
expressed through thread-level parallelism. We apply our
approach to the nine multi-threaded benchmarks with di-
rectly addressed partitioned arrays:

matrixadd sums one integer matrix of size 128 x 128 by
blocking into groups of row summations, each per-
formed by a different thread.

histogram reads an input integer array of size 32768 and
counts the number of elements in five distinct ranges,
storing the final element distribution in a result array.

matrixmult multiplies two integer matrices of size 128 x
128. The element operations are divided into groups of
row multiplications for parallelism.

matrixmult (cyclic) is the same as matrixmult but use
the cyclic memory partitioning scheme, grouping rows
with matching LSBs to be operated on by a single
thread.

matrixtrans computes the transpose of an input matrix of
size 128 x 128 following the cyclic scheme.

matrixtrans (block cyclic) is the same as matrixtrans,
but the row allocation to different threads is based on
both MSBs and LSBs of the index in a block-cyclic parti-
tioning scheme, where for instance, a thread transposes
rows at addresses of 0-3, 32-35, 64-67 and 96-99.

substring searches for a string pattern of size 3 within an
input string of size 2048, counting the number of occur-
rences of this pattern. The input string has been divided
into several continuous substrings for multi-threaded
execution. The arbitration complexity is relatively high
due to there being multiple memory statements in a
single loop accessing the same partitioned array.

los analyses the presence of an obstacle between the ele-
ments in a predefined obstacle map of size 64 x 64
and centre of the map, wherein an element with value
1 indicates an obstacle, while an element with value
0 represents free space. The analysis of the elements
is distributed to several threads for parallelism and
the resultant output is a map, where elements having
value 0 represent the presence of obstacles between the
test coordinates and centre point, while 1s are verified
line-of-sight cases. This benchmark has a loop-carried
dependency at the thread level, and an infinite while
loop is used with two conditional breaks, leading to
more complex partition index expressions.

fft performs the fast Fourier transformation for each row in
a 16 x 256 matrix.

We also obtained the results from four other benchmarks
in which the partitioned arrays are indirectly addressed.

1 $par_idx = ashr 132 %i, 13

2 $pred_0 = icmp eq 132 %par_idx, O

3| %pred_l=—iempeqi32 %par—idx,—1

4 e e s

5 $pred_3 = icmp eq 132 %par_idx, 3

6 %addr = and 132 %i, 8191

7 $GEP_0 = getelementptr * input_sub_array_0, 132 %addr
8| %GER_1 = getelementptr + input_sub_array—l, 32 %addr
9 $GEP_2 = getelementptr W‘r\p\\ﬁ-7 ub—array 2,3 2 adde
10 %GEP_3 = getelementptr x input_sub_array_3, 132 %addr
11 %$Load_0 = load 132+ $%GEP_O

12 %data_0 = select il %pred_0, 132 %Load_0, i32 0

13 Load-1 = load 132+ %GEP 1

14 Sdata—1t— leet 31 S%pr 5_1, =2 Shoad—2—332—0

15 b = =1 g3 e CEPR

16| Sdata2 — seleet i1 Spred 2, 132 SLead—2, 432 0

load 132% SGEP_3

17 %$Load_3 = _
= $pred_3, 132 %$Load_3, i32 0

18 %data_3 = select il

19 %0r_0 = or i32 %data_0, %data—21 132 0
20 %0r_1 = or 132 %data—2 132 0, %data_3
21 %0r_2 = or i32 %0r_0, %O0r_1

11

input_sub_array_0 H input_S}&lrrayj H input_%lrray} H input_sub_array_3

,,

pred_1 pred_2

thread_0

Fig. 7. EASY automatically modifies the source at LLVM-IR level on the left, which results in a simplified hardware architecture on the right.

i b ¢
S 18,0004 11,500 % ’§
(4]

e 11,000 £ &
3 5,500 + 242
T 2,200 500 g 95’
n|

900 3000 22
) h il
2 s}l
= 400r 160 < 5
@ 1 2 4 8 16 TR
2 ==

Number of threads/memory banks

Fig. 8. Evaluation of area and performance on histogram hardware
with equal numbers of threads and banks.

ida_histogram1 has a memory pattern of b[i]+T + k for
the partitioned array, where T is number of threads and
k is the thread ID. So regardless of the values stored
in array b, each thread always accesses a certain parti-
tioned bank if a cyclic partitioning scheme is applied.

ida_histogram2 has memory behaviour depending on
b [1i] with a single expression.

ida_histogram3 is similar to ida_histogram2, but b[i]
has a conditional expression.

sparse_matrixmult performs sparse matrix multiplication.
The index of the partitioned array is also indirectly
addressed but through two pointer arrays, of the form
JA[IA[Kk]].

These benchmarks present some common program struc-

tures in modern HLS applications such as indirect array

addressing, array overwriting, and conditional branches.

6.2 Case Study 1: Directly Addressed Histogram

Overall computational performance is maximised when the
degree of computational parallelism matches the degree of
parallelism provided by the memory system. In the sim-
plest cases, this is often achieved when there is an equal

1 2 4 8 16
Number of threads/memory banks

i b ¢
- —~
5 L 3 g
= 10,000 g3
E 5,000)
+ 2,000 | v g
L 1,000 | £ 5
£ !
2 500: R}
e/ o 9
& ChG
2 ==

Fig. 9. Evaluation of area and performance on ida_histogram2 hard-
ware with equal numbers of threads and banks.

number of partitioned banks and threads, with each thread
operating on a private portion of the data. Fig. 8 shows
the wall-clock time and LUT utilisation of the optimised
design (with efficient memory arbitration) as compared to
the original architecture, for the histogram benchmark.
Observe that the wall-clock time appears to have a re-
ciprocal relationship with number of threads, where more
threads with sufficient memory bandwidth and no memory
contention results in faster hardware execution. However,
due to the increased number of parallel hardware units,
hardware utilisation increases quadratically. After arbiter
simplification, both performance and chip area are generally
improved with an increasing gap as the number of threads
increases. Although the total number of clock cycles is not
noticeably reduced, the critical path is optimised, improving
wall clock time by up to 27%. The chip area also decreases
compared to the original design by up to 58%. Since this
work modifies the arbitration hardware alone, memory
block usage is unchanged. However, the hardware resources
for the arbitration circuit, namely LUTs and registers, are
reduced appreciably. More importantly, with more threads,
the improvements in performance and chip area are more
effective as more arbitration wires may be removed.

12

TABLE 3
Arbitration simplification evaluation for 16 memory banks and 16 threads. The baseline (written ‘base’) is the hardware from the tool flow without
our work, i.e. it has the memory arbitration like Fig. 2

LUT Count Register Count Max Clock Total clock cycles W‘all Clock Speedup vs.
Benchmark Frequency (MHz) Time (us) 1 thread 1 bank

base ‘ ours ‘ X base ‘ ours ‘ X base ‘ ours‘ X base ‘ ours ‘ X base ‘ ours ‘ X base ours
histogram 18.1k | 7.64k | 0.42x | 22.3k | 13.5k | 0.61x | 71.8 | 94.5 | 1.32x | 153k | 14.7k | 0.96x 213 155 | 0.73x | 7.3x 10.0x
matrixadd 14.3k | 2.26k | 0.16x | 14.6k | 4.18k | 0.29x | 73.7 | 107 | 1.45x | 2.12k | 2.12k | 1.00% 288 | 19.8 | 0.69x | 7.5% 10.9x
matrixmult 21.0k | 3.64k | 0.17x | 159k | 518k | 0.33x | 74.0 | 85.9 | 1.16x | 2.13M | 2.13M | 1.00x | 28.8k | 24.8k | 0.86x | 2.1x 2.5%
matrixmult(cyclic) 209k | 11.2k | 0.54x | 159k | 10.5k | 0.66x | 73.8 | 83.1 | 1.13x | 2.13M | 2.13M | 1.00x | 28.8k | 25.6k | 0.89x | 2.1x 24x
matrixtrans 18.6k | 2.36k | 0.13x | 14.4k | 3.55k | 0.25%x | 61.3 | 92.3 | 1.51x | 37.2k | 36.2k | 0.97x 607 | 392 | 0.65%x | 1.2x 1.9x
matrixtrans(blockcyclic) | 10.6k | 9.10k | 0.86x | 9.00k | 7.40k | 0.82x | 755 | 75.5 | 1.00x | 629k | 61.7k | 0.98x 833 817 | 0.98x | 0.9x 0.9x
substring 11.0k | 2.56k | 0.23x | 12.0k | 4.72k | 0.39x | 77.4 | 125 | 1.62% 443 439 | 0.99x 5.72 | 3.50 | 0.61x | 7.0x 11.5x
los 23.8k | 20.6k | 0.87x | 31.3k | 25.1k | 0.80x | 73.8 | 81.5 | 1.10x | 46.5k | 45.4k | 0.98x 630 557 | 0.88x | 5.7x 6.4x
fftd 25.6k | 23.0k | 0.90x | 36.3k | 33.1k | 0.91x | 108 | 122 | 1.13x 413k | 413k | 1.00x | 3.84k | 3.39k | 0.88x | 1.7x 2.0x
ida_histogram1 23.4k | 5.88k | 0.25x | 31.7k | 8.05k | 0.25%x | 73.1 | 91.4 | 1.25%x | 33.9k | 33.8k | 1.00x 464 370 | 0.80x | 4.6x 5.7x
ida_histogram2 17.5k | 6.45k | 0.37x | 22.2k | 8.49k | 0.38x | 58.7 | 91.1 | 1.55%x | 66.4k | 66.4k | 1.00x | 1.13k 728 | 0.64x | 2.0x 3.2x
ida_histogram3 17.5k | 6.62k | 0.38x | 22.4k | 8.56k | 0.38x | 58.1 | 87.8 | 1.51x | 66.4k 66.4 | 1.00x | 1.14k 756 | 0.66x | 2.0x 3.0x
sparse_matrixmult 16.8k | 6.03k | 0.36x | 18.9k | 8.70k | 0.46x | 87.3 | 96.6 | 1.11x | 5.62k | 5.58k | 0.99x 64 | 57.8]0.90x |29x 3.2x
geom. mean | -] - Joasx] - [- Josox| - [- Juaox][- [- Jooox[- [- Jomsx[- [490x

TABLE 4 6.4 Results for All Benchmarks

Results of Table 3 for arbitration logic only.

Benchmark: LUT Count Register Count
enchmarks

base ours X base ours X
histogram 12.0k | 1.5Tk | 0.13x | 13.1k | 4.29k | 0.33x
matrixadd 12.4k 389 | 0.03x | 10.9k 528 | 0.05x
matrixmult 19.4k | 2.00k | 0.10x | 10.8k 144 | 0.01x
matrixmult(cyclic) 15.8k | 6.20k | 0.39%x 7472 | 2079 | 0.28x
matrixtrans 184k | 2.12k | 0.12x | 12.5k | 1.68k | 0.13x
matrixtrans(blockcyclic) | 6.99k | 548k | 0.78x | 3.76k | 217k | 0.58x
substring 9.60k | 1.13k | 0.12x | 8.22k 974 | 0.12x
los 14.0k | 10.8k | 0.77x | 16.6k | 10.4k | 0.63x
fft3 20.6k | 18.0k | 0.88x | 28.1k | 249k | 0.89x
ida_histogram1 20.6k | 3.11k | 0.15x | 25.8k | 2.08k | 0.08x
ida_histogram?2 143k | 3.22k | 0.23x | 15.6k | 1.96k | 0.13x
ida_histogram3 142k | 3.38k | 0.24x | 15.8k | 2.02k | 0.13x
sparse_matrixmult 14.4k | 353k | 0.25x | 11.9k | 1.70k | 0.14x
geom. mean - - 0.32x B = 0.27x

6.3 Case Study 2: Indirectly Addressed Histogram

When dealing with indirectly addressed array partitioning,
our work also achieves promising results. Fig. 9 shows
the results for benchmark ida_histogram2, where each
thread accesses a data array A at b [1]. The optimal solution
of memory partitioning for this benchmark is to partition
both array A and array b that controls the accesses to the
former array. To demonstrate that our work is also effective
on indirect array addressing, only array 2 is partitioned.

In Fig. 9, the increase in total area as the number of
threads/banks increases is similar to that in Fig. 8. The
wall clock time in seconds is defined as the number of
cycles multiplied by the clock period, that is, divided by
the maximum clock frequency. The wall clock time is also
optimised as illustrated by the increasing gap between the
red lines. When the number of threads reaches 16, the wall
clock time increases compared to that with 8 threads. This
is due to the fact that the number of clock cycles of the
benchmark are not reducing significantly but the maximum
clock frequency drops by 16%. So the total wall-clock time
increases.

3. The 16-thread 16-bank fft cannot fit in CycloneV, so here are the
results for the maximum thread /bank number of 2 for CycloneV.

The post Place & Route results for the whole hardware
of all benchmarks are given in Table 3 for the case
of 16 threads and 16 memory banks.* The table shows
LUT and register count, F},qs, cycle latency, and wall-
clock time of the whole benchmarks. We observe that all
benchmarks are improved in area and performance, how-
ever, the extent of the improvement varies, depending on
benchmark-specific memory-access behaviour. Significant
improvements in benchmarks such as matrixmult, £ft
and substring are due to multiple accesses to partitioned
arrays in one iteration, or to partitioning of multiple arrays,
where the original arbitration circuits are larger leading
to greater improvements. We also observe that the same
benchmark with different memory partitioning schemes can
have dramatically different results. For the matrixtrans
benchmark, the cyclic partitioning scheme has been applied
by default, which has significantly benefited from the pro-
posed work with clock period improved by 51% and logic
utilisation by 87%. However, when applying a block-cyclic
scheme, the improvements are more modest. This attributed
to the fact that each bank is touched by all threads during
execution, so the arbiters cannot be simplified.

For the benchmarks with indirect array addressing, we
only partition the array that is indirectly addressed. The
results demonstrate that EASY can still prove that certain
arbitration wires are unnecessary, even when the memory
behaviour depends on the data in other arrays. Whether the
data stored in an address array is initialised with constants
or conditionally overwritten, the tool can automatically
prove the data is within a certain range, so unused arbi-
tration wires can be identified as well as directly-addressed
memory. The results for benchmark sparse_matrixmult
also show that our work supports multiple levels of indirect
array addressing, where 64% of LUTs and 54% of registers
are saved. Across all benchmarks, LUT count was reduced
by up to 87%, and wall-clock time was improved by up to

4. Full dataset DOI: 10.5281/zenodo.1523170.

39%. Greater improvements are expected for these bench-
marks with more threads. On average, wall-clock time is
improved by 22%, and LUT count is reduced by 57%. The
results for the arbitration logic only are shown in Table 4.

6.5 Runtime analysis

While the theoretical worst-case runtime of the approach
we present is exponential in program size, in practice, the
runtime of the verification process is reasonably short. The
average runtime for all the benchmarks was 13 seconds.
The increase in the number of threads also leads to more
assertions, as well as duplicated thread procedure calls. This
is directly related to the number of assertions constructed,
which in turn is related to two issues: the complexity of
partition memory accesses and the number of threads. For
instance, if the address of the array is simple like f (i)
== 1 in Section 4.3, it is easy for Boogie verifier to prove;
if £(1) is complex enough, e.g. functions having various
arithmetic operations and conditional branches, the verifi-
cation time is longer. The longest verification time was 70s
for substring, which has multiple memory accesses in one
iteration using different partition index values resulting in
multiple assertions for each access. Such verification times
are insignificant compared to Synthesis/Place & Route time.

7 CONCLUSIONS

In this work, we propose an automated process to simplify
and/or remove memory arbiters in HLS-generated circuits
for multi-threaded software code. Our flow uses previously-
proposed simulation trace-based memory banking as formal
specifications for memory exclusivity which, if verified,
guarantee that arbiters can be removed or simplified with-
out impacting program correctness. Across a range of bench-
marks, the execution time of the circuits has been improved
by up to 39% (avg. 22%) combined with an area saving of
up to 87% (avg. 57%). The performance of hardware with
different numbers of threads and banks is also promising
from our measurements.

The novelty of this work is in the automated procedure
for optimisation of the arbitration circuits. We have shown
that the behaviour of typical concurrent multi-threaded
code can be over-approximated using non-deterministic
choice in a sequential Boogie program, allowing existing
verification tools to represent and check the verification
conditions required. The runtime of the proposed compiler
pass is 13 seconds, on average, across a set of 8 multi-
threaded benchmarks.

One of the key advantages our approach over more
structured approaches, such as polyhedral methods, is the
ability to deal with arbitrary code. However, although EASY
can accept arbitrary code as input, we can certainly contrive
examples where it fails to prove the necessary properties
without human guidance, due either to the over approxi-
mation of concurrent behaviour induced, or execution time.

Our future work will explore the fundamental limits
of this approach, both theoretically and practically. For
instance, the automated invariant guessing only works with
for loops at the current stage. Inferring invariants for
general while loops still needs human guidance. Auto-
matically guessing the loop invariants with proper triggers

13

can be another direction for future work, perhaps using the
Daikon tool [34] and Dafny tool [35].

ACKNOWLEDGMENTS

The authors wish to thank Jingming Hu for his assistance
with result measurements. This work is supported by EP-
SRC (EP/P010040/1, EP/R006865/1), the Royal Academy
of Engineering and Imagination Technologies.

REFERENCES

[1] Microsoft Project Catapult, 2019. [Online]. Available: https://
www.microsoft.com/en-us/research/project/project-catapult/

[2] Amazon EC2 F1 instances, 2019. [Online]. Available: https:
/ /aws.amazon.com/ec2/instance-types/fl/

[3] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, T. Cza-
jkowski, S. D. Brown, and]J. H. Anderson, “LegUp: An Open-
source High-level Synthesis Tool for FPGA-based Processor/Ac-
celerator Systems,” ACM Trans. Embed. Comput. Syst., vol. 13, no. 2,
pp- 24:1-24:27, Sep. 2013.

[4] V. G. Castellana, A. Tumeo, and F. Ferrandi, “High-level syn-
thesis of memory bound and irregular parallel applications with
Bambu,” in 2014 IEEE Hot Chips 26 Symposium (HCS). Cupertino,
CA, USA: IEEE, Aug 2014, pp. 1-1.

[5] Xilinx Vivado HLS, 2019. [Online]. Available: https://www.xilinx.
com/products/design-tools/vivado/integration/esl-design.html

[6] Intel HLS Compiler, 2019. [Online]. Avail-
able: https://www.intel.co.uk/content/www /uk/en/software/
programmable/quartus-prime /hls-compiler.html

[7] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M.
Leino, “Boogie: A Modular Reusable Verifier for Object-oriented
Programs,” in Proceedings of the 4th International Conference on
Formal Methods for Components and Objects, ser. FMCO’05. Am-
sterdam, The Netherlands: Springer-Verlag, 2006, pp. 364-387.

[8] J. Cheng, S. T. Fleming, Y. T. Chen, J. H. Anderson, and G. A.
Constantinides, “EASY: Efficient Arbiter SYnthesis from Multi-
threaded Code,” in Proceedings of the 2019 ACM/SIGDA Interna-
tional Symposium on Field-Programmable Gate Arrays, ser. FPGA "19.
Seaside, CA, USA: ACM, 2019, pp. 142-151.

[9]]. Cheng, S. Fleming, C. Yuting, J]. Anderson, and G. Constan-
tinides, “Dataset for EASY: Efficient Arbiter SYnthesis from Multi-
threaded Code,” Dec. 2020.

[10] EASY, 2020. [Online].
JianyiCheng/EASY

[11] Intel Quartus Prime Software Suite, 2020. [Online]. Avail-
able: https://www.intel.co.uk/content/www /uk/en/software/
programmable/quartus-prime/overview.html

[12] Catapult High-Level Synthesis, 2020. [Online]. Available: https:
//www.mentor.com/hls-1p/catapult-high-level-synthesis/

[13] Stratus High-Level Synthesis, 2020. [On-
line]. Available: https:/ /www.cadence.com/en_
US/home/tools/digital-design-and-signoff/synthesis/
stratus-high-level-synthesis.html

[14] Intel FPGA SDK for OpenCL Software Technology, 2020.
[Online]. Available: https://www.intel.co.uk/content/www /uk/
en/software/programmable /sdk-for-opencl/overview.html

[15] V. W. Freeh, “A comparison of implicit and explicit parallel
programming,” Journal of Parallel and Distributed Computing,
vol. 34, no. 1, pp. 50 — 65, 1996. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S0743731596900453

[16]]J. Choi, S. D. Brown, and J. H. Anderson, “From Pthreads to
Multicore Hardware Systems in LegUp High-Level Synthesis for
FPGAs,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 25, no. 10, pp. 2867-2880, Oct 2017.

[17] C. Lattner and V. Adve, “LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation,” in Proceedings of
the International Symposium on Code Generation and Optimization:
Feedback-directed and Runtime Optimization, ser. CGO '04. Palo
Alto, California: IEEE Computer Society, 2004, pp. 75-. [Online].
Available: http:/ /dl.acm.org/ citation.cfm?id=977395.977673

[18] Clang, 2019. [Online]. Available: https://clang.llvm.org/

[19] P. Coussy, D. D. Gajski, M. Meredith, and A. Takach, “An Intro-
duction to High-Level Synthesis,” IEEE Design Test of Computers,
vol. 26, no. 4, pp. 8-17, July 2009.

Available: https://github.com/

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Xilinx, “SDAccel Development Environment -
User Guide (v206.2),” 2019. [Online]. Avail-
able: https:/ /www.xilinx.com/support/documentation/sw_

manuals/xilinx2019_1/ug1023-sdaccel-user-guide.pdf

Y. T. Chen and J. H. Anderson, “Automated generation of
banked memory architectures in the high-level synthesis of multi-
threaded software,” in 2017 27th International Conference on Field
Programmable Logic and Applications (FPL). Ghent, Belgium: IEEE,
Sep. 2017, pp. 1-8.

Y. Wang, P. Li, and J. Cong, “Theory and Algorithm for Gen-
eralized Memory Partitioning in High-level Synthesis,” in Pro-
ceedings of the 2014 ACM/SIGDA International Symposium on Field-
programmable Gate Arrays, ser. FPGA '14. Monterey, California,
USA: ACM, 2014, pp. 199-208.

A. Cilardo and L. Gallo, “Improving Multibank Memory Access
Parallelism with Lattice-Based Partitioning,” ACM Trans. Archit.
Code Optim., vol. 11, no. 4, pp. 45:1-45:25, Jan. 2015.

J. Escobedo and M. Lin, “Graph-Theoretically Optimal Mem-
ory Banking for Stencil-Based Computing Kernels,” in Proceed-
ings of the 2018 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, ser. FPGA '18. Monterey, CALIFOR-
NIA, USA: ACM, 2018, pp. 199-208.

Y. Zhou, K. M. Al-Hawaj, and Z. Zhang, “A New Approach to
Automatic Memory Banking Using Trace-Based Address Mining,”
in Proceedings of the 2017 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, ser. FPGA "17. Monterey,
California, USA: ACM, 2017, pp. 179-188.

F. Winterstein, K. Fleming, H.-]. Yang, S. Bayliss, and G. Constan-
tinides, “MATCHUP: Memory Abstractions for Heap Manipulat-
ing Programs,” in Proceedings of the 2015 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, ser. FPGA "15. Mon-
terey, California, USA: ACM, 2015, pp. 136-145.

A. Darte, R. Schreiber, and G. Villard, “Lattice-based memory
allocation,” IEEE Transactions on Computers, vol. 54, no. 10, pp.
1242-1257, 2005.

Q. Liu, G. A. Constantinides, K. Masselos, and P. Y. K. Cheung,
“Automatic On-chip Memory Minimization for Data Reuse,” in
15th Annual IEEE Symposium on Field-Programmable Custom Com-
puting Machines (FCCM 2007). Napa, CA, USA: IEEE, April 2007,
pp- 251-260.

A. Islam and N. Kapre, “LegUp-NoC: High-Level Synthesis of
Loops with Indirect Addressing,” in 2018 IEEE 26th Annual In-
ternational Symposium on Field-Programmable Custom Computing
Machines (FCCM). Boulder, CO, USA: IEEE, April 2018, pp. 117-
124.

M. Carter, S. He, J. Whitaker, Z. Rakamari¢, and M. Emmi,
“SMACK Software Verification Toolchain,” in Proceedings of the
38th International Conference on Software Engineering Companion, ser.
ICSE "16. Austin, Texas: ACM, 2016, pp. 589-592.

S. T. Fleming and D. B. Thomas, “Using Runahead Execution to
Hide Memory Latency in High Level Synthesis,” in 2017 IEEE
25th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM). Napa, CA, USA: IEEE, April 2017,
pp- 109-116.

N. Y. S. Chong, “Scalable Verification Techniques for Data-Parallel
Programs,” Doctoral Thesis, Imperial College London, London,
UK, 2014.

Y. Zhou, U. Gupta, S. Dai, R. Zhao, N. Srivastava, H. Jin,
J. Featherston, Y.-H. Lai, G. Liu, G. A. Velasquez, W. Wang, and
Z. Zhang, “Rosetta: A Realistic High-Level Synthesis Benchmark
Suite for Software Programmable FPGAs,” in Proceedings of the
2018 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, ser. FPGA "18. New York, NY, USA: ACM, 2018, pp.
269-278.

M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco,
M. S. Tschantz, and C. Xiao, “The Daikon System for Dynamic
Detection of Likely Invariants,” Sci. Comput. Program., vol. 69, no.
1-3, pp. 3545, Dec. 2007.

K. R. M. Leino and C. Pit-Claudel, “Trigger Selection Strategies
to Stabilize Program Verifiers,” in Computer Aided Verification,
S. Chaudhuri and A. Farzan, Eds. Cham: Springer International
Publishing, 2016, pp. 361-381.

14

Jianyi Cheng (S°20) received an MSc in Ana-
logue and Digital Integrated Circuit Design from
Imperial College London in 2018 and a BEng in
Electrical and Electronic Engineering from Uni-
versity of Nottingham in 2017. Currently, he is
a PhD student in Electrical and Electronic En-
gineering at Imperial College London. His re-
search interests include reconfigurable comput-
ing, high-level synthesis, program analysis and
formal verification. He is a Student Member of
the IEEE.

Shane Fleming received a PhD from Imperial
College London in 2018. Since then he has
worked as a research associate at Imperial Col-
lege on the POETS project and in 2019 he joined
Microsoft Research Cambridge as a researcher.
He is now a lecturer at the Department of Com-
puter Science at Swansea University. His re-
search interests are in developing tools to make
hardware development more agile and in devel-
oping custom hardware for datacenter infrastruc-
ture.

Yu Ting Chen (S'15) received a B.A.Sc. and
M.A.Sc. in electrical and computer engineering
from the University of Toronto. Her research area
focused on improving memory performance in
high-level synthesis generated hardware for par-
allel programs. She currently holds the position
of senior software engineer at Tenstorrent Inc.

Jason Anderson (8’96, M’'05, SM’'20) received
the Ph.D. degree from the University of Toronto
(U of T), Toronto, ON, Canada. He joined the
Field-Programmable Gate Array (FPGA) Imple-
mentation Tools Group, Xilinx, Inc., San Jose,
CA, USA, in 1997, where he was involved in
placement, routing, and synthesis. He is cur-
rently a Professor with the Department of Elec-
trical and Computer Engineering, U of T. He has
authored over 100 papers in refereed conference
proceedings and journals, and holds 29 issued

U.S. patents. He co-founded LegUp Computing in 2015 — a startup to
commercialize high-level synthesis research. LegUp was acquired by
Microchip Technology in 2020. His current research interests include
computer-aided design, architecture, and circuits for FPGAs.

fon

John Wickerson (M'17, SM’19) received a
Ph.D. in Computer Science from the University of
Cambridge in 2013. He is a Lecturer in the De-
partment of Electrical and Electronic Engineer-
ing at Imperial College London. His research
interests include high-level synthesis, the design
and implementation of programming languages,
and software verification. He is a Senior Member
of the IEEE and a Member of the ACM.

George A. Constantinides (S'96, M’'01, SM’08)
received the Ph.D. degree from Imperial College
London in 2001. Since 2002, he has been with
the faculty at Imperial College London, where
he is currently Royal Academy of Engineering /
Imagination Technologies Research Chair, Pro-
fessor of Digital Computation, and Head of the
Circuits and Systems research group. He has
served as chair of the FPGA, FPL and FPT
conferences. He currently serves on several pro-
gram committees and has published over 150

research papers in peer refereed journals and international conferences.
Prof Constantinides is a Senior Member of the IEEE and a Fellow of the
British Computer Society.

