
Research Article

Reshuffle minimisation to improve
storage yard operations efficiency

Hammed Bisira and Abdellah Salhi

Abstract

There are many ways to measure the efficiency of the storage area management in container terminals. These include

minimising the need for container reshuffle especially at the yard level. In this paper, we consider the container reshuffle

problem for stacking and retrieving containers. The problem was represented as a binary integer programming model

and solved exactly. However, the exact method was not able to return results for large instances. We therefore

considered a heuristic approach. A number of heuristics were implemented and compared on static and dynamic

reshuffle problems including four new heuristics introduced here. Since heuristics are known to be instance dependent,

we proposed a compatibility test to evaluate how well they work when combined to solve a reshuffle problem.

Computational results of our methods on realistic instances are reported to be competitive and satisfactory.

Keywords

Reshuffle, retrieval, container terminal, binary integer programming, heuristic

Received 16 August 2019; revised 14 January 2020; accepted 7 April 2020

Introduction

Containers are often stored temporarily in the yard

between the time they arrive at the port either through

vessels in the case of import and through external

trucks in the case of export. In practice, containers

for loading are placed in the export area and those
unloaded from ships are placed in the import area.1

Some ports stack export containers close to the quay

and import containers close to the landside gate.

Others have a dedicated area for marshalling contain-

ers just unloaded from or to be loaded onto vessels.

Fast access to stored containers is a major concern in

container terminals. Choosing an appropriate location

for a container that is to be relocated is essential in
reducing the subsequent reshuffles. There are many

ways of tackling this problem.
When containers arrive there is need to have a stor-

age strategy to stack them in order to make retrieval

efficient. Container types are stored in different places

(for instance 20-foot containers are stored separate
from 40-foot containers). Where they are stored togeth-

er, the 20-foot containers are stacked beneath the

40-foot because the latter have a higher priority when

loading onto a vessel. The storage location could also

be based on whether the container is full or empty, the

destination of vessel and even their weight. After stor-
age, containers can be reshuffled/pre-marshalled in
advance of retrieval. The aim here is to change the
initial layout of the block to a desired layout to facil-
itate retrieval.2

If the containers are placed exactly where they can
quickly be accessed, the retrieval process will be effi-
cient. However, this is hardly the case due to many
reasons especially inaccurate information as to when
the containers will be retrieved when storing them.3

Other reasons include change in vessels arrival time
due to delay, external trucks arriving late due to traffic
and the vessels stowage plan amongst others. Since
only containers at the top of a stack are accessible,
there is usually need to reshuffle containers in order
to retrieve the desired container beneath them. This
process takes time and thus hampers the operation of

Department of Mathematical Sciences, University of Essex, Essex, UK

Corresponding author:

Hammed Bisira, Department of Mathematical Sciences, University of

Essex, Wivenhoe Park, Colchester CO4 3SQ, UK.

Email: hbisir@essex.ac.uk

Journal of Algorithms & Computational

Technology

Volume 15: 1–11

! The Author(s) 2021

DOI: 10.1177/1748302621994010

journals.sagepub.com/home/act

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://

creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission

provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Essex Research Repository

https://core.ac.uk/display/389409651?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0001-6225-4565
mailto:hbisir@essex.ac.uk
http://dx.doi.org/10.1177/1748302621994010
journals.sagepub.com/home/act
http://crossmark.crossref.org/dialog/?doi=10.1177%2F1748302621994010&domain=pdf&date_stamp=2021-02-20


yard cranes YCs which will delay the trucks and/or the
vessels.

We are interested in retrieving all the containers in a
bay at minimal reshuffle. However, decision on where
to place a reshuffled container is not as easy as it looks
because it affects subsequent retrievals. Even in a static
case where there is no arrival of new containers while
stacking, the problem is still dynamic due to the fact
that the configuration of the bay changes each time
there is a retrieval. In Kim and Hong4 it was suggested
that in order to minimise reshuffles, the storage loca-
tion of incoming container should be well assigned and
the location of a reshuffled container should also be
determined. For the purpose YC drivers are given
work orders in the form of a movement sequence.
The movement sequence contains the order of contain-
er movements, instructing the driver which container to
move, where and when to move them Lee and Chao.5

Containers can be classified using different attrib-
utes such as weight, port of destination, length, being
inbound or outbound and full or empty. This deter-
mines where they are stored for easy retrieval. For
instance, a container destined for a farther port has a
higher priority when loading onto a vessel since it will
be unloaded later than a container destined for a port
that is nearer. Heavier containers are stored in higher
tiers in the yard since they are loaded in lower parts of
vessels and are thus retrieved earlier. Containers that
are stored earlier are likely to need earlier retrieval but
would be buried under later arriving containers. Hence,
there is need for reshuffle.

Literature review

The literature on selecting a storage strategy includes
Van Asperen et al.6 which investigated the role truck
arrival could have on the stacking policy of a container
terminal. They concluded that it will be more beneficial
to improve available information at the time of stack-
ing than attempting to fix poor stacking decisions later.
This was done using discrete-event simulation to eval-
uate expected departure time for an import container
to schedule the pre-emptive remarshalling moves. It
was a follow-up on the work of Dekker et al.7 which
examined various stacking strategies for an automated
container terminal and Borgman et al.8 where a study
of the knowledge of departure and stacking further
away or close to exits points were considered. It was
discovered that the trade-off between where to stack
and accepting more reshuffles leads to improvements
over the benchmark. Simulation technique was
deployed in Zhao and Goodchild9 to investigate the
truck arrival information and container rehandles in
the import container retrieval process. They found
that a complete arrival order is not required to

significantly reduce rehandles. However, benefit can
be obtained from information about truck arrival.

There are benefits in stacking higher and using a
larger number of rows. A storage system was developed
in Casey and Kozan10 that simulates and optimises the
movement and storage of containers within the termi-
nal. A mathematical model was presented that mini-
mises rehandling moves, while having total job times
as the objective function. Using four heuristics and
three meta-heuristics, they concluded that the model
and optimisation should be used within a larger
model. The focus was on optimising the movements
of machines and ensures they arrive at their final des-
tination on time.

The problem of assigning containers to storage
spaces that minimizes the total expected number of
relocations was investigated in Yang and Kim.11 The
paper addressed both dynamic and static location
problems. The static model was solved using the
Genetic Algorithm (GA) and the dynamic one by the
minimum space waste rule, which was found to outper-
form GA. The problem of assigning locations to
incoming containers and the need for reshuffle in a
container terminal was examined in Wan et al.12

Yard operations in some container terminals was inves-
tigated in Chen,13 it was concluded that higher contain-
er stacking have a direct impact on the number of
unproductive moves. They claimed that the major
impact was on the delivery operation. The use of heu-
ristics that use �- optimal policies was proposed in Li
et al.14 to compute a specific allocation of empty con-
tainers between different ports. The problem was for-
mulated as a multi-port containerisation model.

Decision trees was deployed in Kim et al.15 from a
set of optimal solutions to solve a dynamic program-
ming model formulated to locate export containers
considering weight. Simulated Annealing (SA) was
used in Kang et al.16 to derive the best stacking strategy
for containers in a yard with uncertain weight informa-
tion. Experiments showed that the strategy was able to
reduce the number of re-handles compare to traditional
same-weight group stacking strategy. They advised that
more improvement can be obtained where the accuracy
of the weight classification is done by machine learning.
The integer programming model, a neighborhood
search process and three functions were deployed in
Lee and Chao5 to minimise the number of container
pre-marshalling and reduce re-handles. The pre-
marshalling problem was modelled as an integer
programming problem based on multi-commodity
network flow in Lee and Hsu.17 The optimization
objective was to minimize the number of container
movements during pre-marshalling. A heuristic called
the tree search procedure was developed in Bortfeldt
and Forster18 for solving the container pre-marshalling

2 Journal of Algorithms & Computational Technology



problem. It is based on a natural classification of pos-
sible moves, making use of a lower bound and applying
a branching scheme for move sequences rather than
single moves. It proved effective on large real-world
instances, according to the authors.

The problem of rearranging containers before they
are shipped was examined in Kim and Bae19 using
dynamic programming. The move planning was
solved by using a transportation model. However, it
was computationally demanding. Hence, heuristics
were advised. A two-step SA was proposed in Choe
et al.20 to investigate intra-block remarshalling plan
that is free from rehandles during both the loading
and remarshalling, considering twin Automatic
Straddle Carriers (ASCs). The first step identifies the
slot that minimises reshuffles and the second step
schedules ASC that minimises the interference between
the ASCs. Integer programming was used in Lee et al.21

to solve the terminal allocation problem for vessels and
yard allocation problem for transhipment container
movements for a port that has multiple terminals. A
two level heuristic approach was adopted to solve the
integrated problem. Work on the relocation problem
includes Jin et al.2 which proposed an improved greedy
look ahead heuristic for the Container Relocation
Problem (CRP). The objective of the CRP is to find
an optimal operation plan for the crane with the fewest
number of container relocations. The method was
found to be efficient especially for large scale problems.

Three heuristic methods; index based, binary IP and
beam search were developed in Hakan Akyüz and Lee1

to solve a binary integer programming model of the
CRP. They concluded that the beam search heuristic
outperformed the others. Emptying a stack without
new arrivals was modelled as integer programming to
derive an optimum reshuffle sequence. The problem
was broken into parts and solved by four heuristics,
IP-based, Lowest Slot (LS), Reshuffle Index (RI) and
the Expected Number of Additional Relocations
(ENAR). They claimed that their heuristic MRIP-Dk
(MRIP that minimises the number of reshuffles in
retrieving k containers plus estimated future reshuffles
in stack after k containers are retrieved) outperformed
other heuristics found in the literature. A tree search
procedure was deployed in Forster and Bortfeldt22 to
solve CRP. The heuristic is based on natural classifica-
tion of possible moves and used a branching scheme
that moves sequences of promising single moves.

A meta-heuristic called the Corridor method was
developed in Caserta et al.23 to solve the CRP in stack-
ing containers in a container terminal yard, pallets and
boxes in a warehouse. The objective is to find the block
location that minimises the number of movements that
is required in the desired retrieval sequence. The impo-
sition of exogenous constraints reduced the size of the

problem and made use of constrained dynamic pro-
gramming, a practical approach even for large instan-
ces. A three-phase heuristic was proposed in Lee and
Lee3 to optimise the work plan for a crane to retrieve
containers from a yard according to a given order.
They aimed at minimising the weighted sum of the
number of container movements and the total cranes
working time. The first phase generates an initial fea-
sible movement sequence. The other two phases are
iterative and terminate when a number of consecutive
iterations cannot improve the current solution. This
study is similar to that in Bortfeldt and Forster18 on
a tree search procedure for the pre-marshalling of
containers.

The schedule of container movement by using an
autonomous learning method was addressed in
Hirashima.24 This is based on a new learning model
considering container groups and the Q-learning algo-
rithm. The desired position of containers in a group is
provided by an algorithm based on the Markov
Decision Process (MDP). Using simulations, the pro-
posed method was able to find solutions that had a
smaller number of rehandles compared to conventional
methods. This was a follow-up to previous works by
Hirashima25 where they discovered that the number of
container arrangements increases exponentially with
increase in the total count of containers. The desirable
movements of containers was determined in Hirashima
et al.26 to reduce the total turnaround time of ships,
using the Q-learning algorithm. Heuristics were
deployed Exp�osito-Izquierdo et al.27 to minimise the
number of movements required to locate all containers.
Features that consider the occupancy rate of the bays
and the percentage with high priority are considered.
An instance generator was also suggested for instances
with varying degrees of difficulty.

After this exhaustive review, we believe that the heu-
ristics we introduce here has the following advantages
in particular over those described in Tang et al.28

1. Four new simple but still effective heuristics are
introduced.

2. Compatibilty test between the different heuristics
was undertaken.

Problem definition and modelling

Due to the limited space in a container yard, containers
are stacked on top of each other. However, the higher
containers are stacked on top of each the higher the
likelihood that there will be need for reshuffle. On the
other hand, lower stacking is likely to require less
reshuffle but takes more space in the yard. Therefore,
there is trade off between the need to manage space and
minimise reshuffle. The time lag between when these

Bisira and Salhi 3



containers are stored and when they are retrieved
results in improper location. The result is that contain-
ers that are needed earlier are underneath containers
that are needed later. In order to have access to the
desired container, we need to reshuffle the container
(s) on top. Reshuffles are only done within bays for
safety and operational reasons. When a crane picks a
container with its hoist either for retrieval, storing or
reshuffle, it only moves the containers vertically or
horizontally while the frame of the crane is kept still
Wan et al.12

The container reshuffle problem is made up of three
basic decisions; Which container to move, when to
move it and where to move it to. The configuration
of a bay can be defined by the number of columns,
the number of tiers, the number of containers and
their position in the bay. Let S be the number of con-
tainer in a bay with C columns and T tiers. The number
of container S that should be in the bay for reshuffle to
be feasible can be defined as follows;

S � CT� ðT� 1Þ (1)

where CT is the number of containers that can be in the
bay when it is full and ðT� 1Þ is the number of empty
slots to allow for reshuffle. Figure 1, shows a bay with
six columns, four tiers and twenty-one containers with
their positions.

Containers are ranked from 1 to S, indicating the
priority order for retrieval. Where containers are not
stored while retrieval is going on, we have a static state

i.e. the number of containers only decreases. We have a
dynamic state when containers are stored while retriev-
al is in process. Each time a container is retrieved, the
configuration of the bay changes due to reshuffles. This
dynamic nature of the problem even for a static case
shows the complexity of the problem. Even for a small
instance, the number of states grows exponentially with
the increase in the number of containers.

According to Carraro and de Castro,29 let fx1; x2;
x3 . . . ; xs�1g be the stages (updated state of the bay) for
retrieval of all containers. At each stage, the incremen-
tal reshuffles due to retrieval of container s is ysi.

ysi ¼ 1;
if container i is reshuffled

in retrieving container s

� �
0; otherwise

8<
:

It is important to note that s is the container to be
retrieved and also the stage of the retrieval. The
number of reshuffles necessary to retrieve container s
in stage xs can be defined as follows;

xs ¼
XS
i

ysi (2)

The total number of reshuffles in retrieving all the
containers is thus;

XS�1

s¼1

XS
i¼sþ1

ysi (3)

We are interested in determining the minimum
reshuffle possible in retrieving containers from a
given bay.

The model formulation

The first binary integer programming (BIP) model for a
container reshuffle problem was presented in Wan
et al.12 The model introduced column-relationship var-
iables that check whether a container to be retrieved is
in the same column as the container reshuffled. Due to
the long computational time needed to solve problems
with large number of containers, the model was
improved in Tang et al.28 The improved model
removed all the column-relationship variables and
added reshuffle related constraints. This reduced the
number of decision variables by 3S2.

The model we suggest here is a further improvement
on the two previous ones found in Tang et al.28 and
Wan et al.12 We have made the following modification
in view of the limitations of these models. We observed
that the last two constraints in the the two models force
containers to keep the same location they had at the
first stage of retrieval. We have removed them and
introduced a bay configuration constraint to reflect
the change arising from each container reshuffled.
The two constraints are now replaced by a new one
as shown in constraint (18). This constraint assigns
binary values to x1ict indicating the locations of the
containers in the bay at the start of the first stage of
retrieval. The modified model reduces the number ofFigure 1. A typical bay configuration.

4 Journal of Algorithms & Computational Technology



constraints by ðS� 1ÞSCT thereby reducing the solu-

tion time. For the sake of continuity we use the same

notations as in the two previous models.

Parameters.

Decision variables.

xsict ¼
1; if container i is at tier t of column c at the

beginning of stage s:

0; otherwise

8><
>:

ysi ¼
1; if container i is reshuffled for retrieving

container s:

0; otherwise

8><
>:

wsij ¼

1; if container i and j are reshuffled during

stage s and j container is at a higher tier

than container i before reshuffling

container i before reshuffling:

0; otherwise

8>>>>>><
>>>>>>:

The model.

min
XS�1

s¼1

XS
i¼sþ1

ysi (4)

subject to:

1�
XT
t¼1

xssct

 !
Tþ ysi �

XT
t¼1

txsict �
XT
t¼1

txssct

 !
=T

1 � s < i � S; 1 � c � C

(5)

XT
t¼1

txssct �
XT
t¼1

txsict

 !
=T � 1� ysi

1 � s < i � S; 1 � c � C

(6)

XC
c¼1

XT
t¼1

xsict ¼ 1; 1 � s � i � S (7)

XS
i¼s

xsict � 1; 1 � s � S; 1 � c � C; 1 � t � T (8)

XS
i¼s

xsict �
XS
i¼s

xsic;t�1;

1 � s � S; 1 � c � C; 2 � t � T

(9)

XT
t¼1

xsþ1;ict þ
XT
t¼1

xssct � 2� ysi; 1 � s

< i � S; 1 � c � C

(10)

2� ysi � ysj þ wsij �
XC
c¼1

XT
t¼1

txsjct �
XC
c¼1

XT
t¼1

txsict

 !
=T

1 � s < i � S; 1 � s < j � S; i 6¼ j

(11)

ysi þ ysj þ wsij � 3þ
XC
c¼1

XT
t¼1

txsjct �
XC
c¼1

XT
t¼1

txsict

 !
=T

1 � s < i � S; 1 � s < j � S; i 6¼ j

(12)

wsij � ysi; 1 � s < i � S; 1 � s < j � S; i 6¼ j (13)

wsij � ysj; 1 � s < i � S; 1 � s < j � S; i 6¼ j (14)

XT
t¼1

txsþ1;ict �
XT
t¼1

txsþ1;jct � �Tð1� wsijÞ

�Tð1� ysiÞ � Tð1� ysjÞ � T 1�
XT
t¼1

xsþ1;ict

 !

1 � s < i � S; 1 � s < j � S; i 6¼ j; 1 � c � C

(15)

xsþ1;ict � xsict � �ysi; 1 � s < i � S
1 � c � C; 1 � t � T

(16)

xsict � xsþ1;ict � �ysi; 1 � s < i � S (17)

x1ict ¼ Xict; 1 < i � S; 1 � c � C; 1 � t � T (18)

ysi 2 f0; 1g; 1 � s < i � S (19)

wsij 2 f0; 1g; 1 � s < i � S;
1 � s < j � S; i 6¼ j;

(20)

xsict 2 f0; 1g; 1 � s � i � S;
1 � c � C; 1 � t � T;

(21)

Constraints (5) and (6) determine the reshuffle var-
iable ysi.

XT

t¼1
txsict and

XT

t¼1
txssct represent the posi-

tion of containers i and j in column c tier t, whileXT

t¼1
xssct is one if container s is in column c tier t at

stage s. If container i is above container s, the RHS is a
value less than one and the expression in bracket in
LHS is zero. This forces ysi to be one i.e., container i
is reshuffled in retrieving container s. On the other
hand, if container s is above container i in constraint

Bisira and Salhi 5



(6), there will be no need for reshuffle hence ysi¼0 and
the LHS of the equation is less than one. Constraints
(7) ensure that each container occupies only one spot.
At each stage of retrieval, each container i, i � s can be
traced to one slot. Constraints (8) implies not more
than one container can be at a slot i.e., a slot is either
empty or has a container. The fact that containers
cannot float is defined in Constraints (9). This means,
if in column c, there is a container in tier t>1 then,
there must be a container below it.

Constraints (10) imply a reshuffled container cannot
be in the same column after reshuffle. If container i is
above container s and both are in the same column
then, container i must be reshuffled i.e., ysi andXT

t¼1
xssct are both one. This forces

XT

t¼1
xsþ1;ict to

be zero i.e., container i cannot be in column c at the
next stage sþ 1. Suppose container i, j and s are in the
same column and container i and j are above container
s. If container j is above container i before reshuffle
therefore, the expression in bracket on RHS of con-
straints (11) and (12) will be a value less than one.
Since ysi and ysj are one, this forces wsij to be one. In
constraints (13) and (14), if either container i or j is not
reshuffled or container j is not above container i then
wsij¼ 0.

Constraints (15) address the relative positions of two
containers before and after both are reshuffled.
Suppose container i, j and s are in the same column
and container j is above container i before reshuffle. If
containers i and j are reshuffled in retrieving container
s then, ysi, ysj and wsij are all one. If both containers i
and j are reshuffled to same new column therefore,
container i will be above container j in the new
column. Constraints (16) and (17) ensure that a con-
tainer not reshuffled keep its position. If container i is
not reshuffled at stage s therefore ysi¼ 0. This means
xsþ1;ct ¼ xsict. If the container is reshuffled, it is stored
in a position higher than those already in the column.
Constraints (18) assign known values of x1ict to slots in
the initial configuration and this is updated at each
stage of retrieval i.e., the lowest ranked container is
retrieved at each stage. Constraints (19) to (21) are
self explanatory.

Illustration

Consider a bay with seven containers, three columns
and three tiers. The initial position is as shown in stage
(a) of Figure 2 adapted from Carraro and de Castro.29

The first reshuffle is done in stage (b) where container 7
moves from top of container 1 to top of container 2. At
stage (c), container 1 is retrieved. Container 7 moves
again from top of container 2 to the slot vacated by
container 1; this is the second reshuffle at stage (d). At
stage (e), container 2 is then retrieved. The third

reshuffle is done in stage (f) where container 6 moves

to top of container 7 and that is the last reshuffle. If

container 6 had been moved to the top of container 4

that would have necessitated another reshuffle. This

would have led to four reshuffles instead of three.

Subsequently all the remaining containers can be

retrieved without need for reshuffle.

A heuristic approach

Due to the computational complexity of the model, the

exact approach is only able to solve small scale prob-

lems. This is at variance with real world situations

where medium to large scale instances are encountered

and fast results are required. There is thus need to seek

an approximate approach solution. In this section, we

review some heuristics found in literature and propose

four new ones based on the least priority rule. They are

referred to as LPH1, LPH2, LPH3 and LPH4.

Reshuffle index (RI) heuristic

This is based on the rule that a blocking container

should be moved to a column having the least

number of containers that have to be retrieved earlier

than the blocking container as described in Murty.30

Identify the blocking container and compare it to the

minimum numbered container in each column that has

empty space. Put the blocking container in a column

that has the least number of container to be retrieved

earlier than the blocking container. Where there is a tie,

the container is put in the column with higher tier and

by arbitrary choice for a further tie.

H1 and H2 heuristic

H1 and H2 are each based on two conditions as

described in Tang et al.28 The difference between the

two heuristics is the decision rule for moving blocking

container. The first condition which is common to both

is to identify the blocking container referred to as k and

compare it to the minimum numbered container

referred to as nc in each column c that has empty

space. Put k in column c that satisfies k < nc and

Figure 2. Reshuffle process.

6 Journal of Algorithms & Computational Technology



arbitrarily decide on which is the closest column where

there is a tie. The total number of containers in the bay

is given the value S. A column with all empty space nc is

given value Sþ 1 thereby having the highest possible

value in the bay and the blocking container will

always move there, if it exists. Where there is no

column that satisfies the above condition which means

there is no column cwhere k < nc, the second condition

must be applied depending on the heuristic. H1 will put

k in the column with the minimum RI. This is the total

number of container that has a lower number than k in

each column that has empty space. Where there is a tie,

put k in the closest column. H2 on the other hand puts k

in the column with the minimum BI. This is the column

that has lower number of container that will block the

minimum number container in a column if k is moved to

that column. Where there is a tie, the decision on where

to put the container is done arbitrarily.

Framework for RI, H1 and H2

The number of containers in the bay is initially num-

bered from 1 to S. The first container to be picked is

container 1, once that is done, the remaining container

is renumbered from 1 to S-1. At each stage, the con-

tainer to pick is always container 1. M denotes the

cumulative reshuffle at a stage and M1 is the number

of reshuffles in retrieving a container. The reshuffle

process for the three heuristics above as described in

Tang et al.28 can be summarised as follows;

The least priority heuristic (LPH1)

It is based on the fact that the highest numbered con-

tainer should be retrieved last hence, it is given the least

priority. The algorithm starts by inputting a matrix of

dimension t x c representing the initial state of the bay

with t being the number of tiers and c the number of

columns. Empty slot is represented by zero which can

be randomly generated or input manually. The mini-

mum numbered container is always the one to be

retrieved at each stage hence, this indicates the priority

order i.e retrieval is done in ascending order. At each

stage, the minimum numbered container refer to as the

desired container s is identified and retrieved if there is

no container blocking it. If there is a blocking contain-

er refer to as k, the container s has to be moved to

another column.
The decision on where to put k is determined by

calculating the sum of the reciprocal for containers in

those columns where there is empty spaces. These sums

will be compared, and the column that returns the

lowest sum of reciprocal is chosen as the column

where k should be moved to. Where a column has all

slots empty, k is placed in this column. This is done for
all k blocking the s until there is no container blocking
it at which stage such container can now be retrieved.
Since at each stage, the minimum numbered container
is always the one to be retrieved the algorithm updates
the configuration and the process is repeated until all
containers are retrieved.

The least priority heuristic (LPH2)

The blocking container k is compared to the minimum
numbered container nc in each column having empty
spaces. Put k in a column that satisfies the condition
k < nc and put k in the closest column where more
than one column satisfies the condition. Where no
column satisfies the condition ie k > nc for those col-
umns, apply the least priority principle.

The least priority heuristic (LPH3)

The blocking container k is compared to the minimum
numbered container nc in each column having empty
spaces. Put k in a column that satisfies the condition
k < nc by applying the least priority principle. Where
no column satisfies the condition ie k > nc for those
columns, apply the reshuffle index principle as in con-
dition 2 of H1 heuristics.

The least priority heuristic (LPH4)

Apply the first condition in LPH3 where k < nc and
the blocking index principle where k > nc.

Framework for LPH

Computational experiments

Experiments were conducted to investigate the perfor-
mance of the model on different problem instances ran-
domly generated. The model is coded in GMPL and
executed on an Intel Core i7-4790 3.60GHz CPU with
16 GB RAM. For an exact solution, each of the prob-
lems has been solved using GLPSOL while the heuristic
is coded in MATLAB R2018b. The results given in
Tables 1 to 6 are for the static reshuffle scenario, i.e.,
emptying all container in the bay. 600 instances were
randomly generated for 12 problem classes each having
50 cases. 1-hour was set as the benchmark for a solu-
tion to be generated for each instance of the problems.

Static case

Here we compare the results from the model solved
with B&C and the heuristics for a small size problem
defined as a bay with 50% utilisation capacity. We
observe that they all return the same results for

Bisira and Salhi 7



problem classes ð6� 2� 6Þ and ð6� 3� 8Þ. However,

as the problem size increases for ð6� 4� 11Þ and ð6�
5� 13Þ we begin to observe differences in results

between the methods as the tier and number of con-

tainer increase. The utilisation capacity is calculated as:

Number of containers in the bay

Total number of possible container reshuffles
(22)

In Table 1, we compare the model with original ver-

sion of the heuristics for small size problems. While

Table 2 shows comparison with the extended versions.

The extended version of each heuristic as defined in

Wan et al.12 is obtained by considering each possible

slot for a reshuffled container based on the original rule

of the heuristic and the one that gives the minimum

possible reshuffle to empty the bay is chosen. They

are denoted by E for each of the heuristic. For problem

class ð6� 2� 6Þ and ð6� 3� 8Þ, all the methods

return the same average reshuffle. This is due to the

fact that the number of tiers is still reasonably small;

hence, reshuffle can still be achieved with relative ease.

When the size increases to ð6� 4� 11Þ and ð6� 5�
13Þ we observe a difference in the average reshuffle

between the methods because of the increase in tiers

and number of containers. Note that all extended heu-

ristics performed better than the original heuristic;

LPH4_E has the least performance. H1_E and

LPH2_E have the best performance among the heuris-

tics for problem class ð6� 4� 11Þ. LPH2_E has the

best performance for problem class ð6� 5� 13Þ.
‘- ’: Out of time.
Medium size problems are considered in Tables 3

and 4. We compared the model with the heuristics for

80% utilisation capacity. H1_E, H2_E and LPH2_E

performed better than other heuristics for problem

classes ð6� 3� 13Þ. While H1_E and LPH_E have

the best performance for problem classes ð6� 4� 17Þ
and ð6� 5� 21Þ respectively. The model was not able
to return results for all the 50 instances for problem
classes ð6� 4� 17Þ and ð6� 5� 21Þ within 1-hour.

In Tables 5 and 6, we compare all heuristics for large
size problems defined as bay with 100% capacity. As
expected, all the heuristics return the same average
reshuffle for problem class ð6� 2� 11Þ due to the

fact that all the 50 instances in the class have the
same result. As we increase the problem class by
increasing both the number of containers and the
number of tiers, we begin to notice a difference in
results. All the heuristics return the same results for
some of the instances but there are instances where
we observe differences depending on the configuration
of the bay. HI_E has the best performance for problem

class ð6� 3� 16Þ while LPH2_E has the best perfor-
mance for problem classes ð6� 4� 21Þ and
ð6� 5� 26Þ.

Dynamic case

The true test of a reshuffle process is the application to

a dynamic situation. In container terminal, reshuffle is
done while both retrieval and storage is taking place. 50
instances were generated for four problem classes with
80% utilisation capacity. 1000 containers were
retrieved and 650 containers stored for each problem
class. The retrieval of containers is the same as static
case except that an incoming container will affect the
priority order based on the expected departure time of

the new container. In view of this, every container in
the bay will be re-assigned a new index each time there
is an incoming container. The heuristic rule determines
where the container will be stored similar to how
reshuffles are treated. The RTG is assumed to be posi-
tioned close to the sixth column hence, the incoming
container is stored from right to left of the bay. Note,

Table 1. Comparison between model and heuristics for small problems.

Classes Model H1 H2 RI LPH1 LPH2 LPH3 LPH4

6� 2� 6 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84

6� 3� 8 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52

6� 4� 11 3.32 3.46 3.46 3.46 3.48 3.42 3.56 3.58

6� 5� 13 4.32 4.64 4.68 4.68 4.64 4.52 4.82 4.82

Table 2. Comparison between model and heuristics for small problems.

Classes Model H1_E H2_E RI_E LPH1_E LPH2_E LPH3_E LPH4_E

6� 2� 6 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84

6� 3� 8 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52

6� 4� 11 3.32 3.38 3.42 3.40 3.48 3.38 3.42 3.48

6� 5� 13 4.32 4.52 4.54 4.62 4.64 4.52 4.64 4.70

8 Journal of Algorithms & Computational Technology



since the extended heuristics has been shown to be

better than the original version, only the extended are

treated here.
The average number of reshuffle for the 50 instances

and the CPU time in seconds is shown in Table 7. It can

be observed that LPH1 has the best performance for

problem class ð6� 2� 9Þ while H1 and LPH3 have the

same result. LPH2 is the best performing heuristics for

other problem classes.

Compatibility

Here we check how well the different heuristics work

together when they are combined to solve a given prob-

lem. Since heuristics are known be instance dependent,

it is not surprising to observe some heuristics perform-

ing well on some instance and very poorly on some

others. In view of this, it is worthwhile investigating

how well the heuristics perform individually compare

to when they are combined to solve an instance of a

problem. We have chosen the problem class ð6� 5�
26Þ since it is the most difficult problem as seen in

previous sections.
Table 8 show the average reshuffle when the heuris-

tics are used individually as well as when they are com-

bined to solve the problems. Entries along the main

diagonal are results when each of the heuristics are

used alone and other entries indicate pairing of the

heuristics. Once again we observe LPH2 returning the

best result either as a stand alone heuristics or when

combined with other heuristics.

Conclusion

Container reshuffle is a potent way to measure the effi-

ciency of operations in container ports. Basically, the

fewer the reshuffles made to retrieve needed containers,

the better since a reshuffle, when necessary, is a waste

Table 3. Comparison between model and heuristics for medium problems.

Classes Model H1 H2 RI LPH1 LPH2 LPH3 LPH4

6� 2� 9 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52

6� 3� 13 3.98 4.16 4.14 4.18 4.12 4.10 4.16 4.16

6� 4� 17 – 6.94 7.02 6.98 7.0 6.80 7.20 7.30

6� 5� 21 – 13.4 13.28 13.34 13.30 12.92 14.02 13.94

Table 4. Comparison between model and heuristics for medium problems.

Classes Model H1_E H2_E RI_E LPH1_E LPH2_E LPH3_E LPH4_E

6� 2� 9 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52

6� 3� 13 3.98 4.06 4.06 4.08 4.12 4.06 4.12 4.12

6� 4� 17 – 6.74 6.76 6.82 6.78 6.78 7.0 6.98

6� 5� 21 – 12.52 12.52 12.64 13.26 12.32 13.34 13.18

Table 5. Comparison between the heuristics for large problems.

Classes H1 H2 RI LPH1 LPH2 LPH3 LPH4

6� 2� 11 2.72 2.72 2.72 2.72 2.72 2.72 2.72

6� 3� 16 7.16 7.04 7.14 7.10 7.02 7.26 7.10

6� 4� 21 11.88 11.70 11.94 11.78 11.54 12.26 11.96

6� 5� 26 22.80 22.36 23.08 22.60 21.74 23.88 23.56

Table 6. Comparison between the heuristics for large problems.

Classes H1_E H2_E RI_E LPH1_E LPH2_E LPH3_E LPH4_E

6� 2� 11 2.72 2.72 2.72 2.72 2.72 2.72 2.72

6� 3� 16 6.92 6.96 6.96 7.10 6.94 7.08 7.08

6� 4� 21 11.44 11.28 11.46 11.72 11.20 11.72 11.72

6� 5� 26 22.18 21.72 22.42 22.60 21.06 23.12 22.90

Bisira and Salhi 9



of effort. The problem of minimising the number of

reshuffles has therefore, been recognised for some
time now and has been approached by many. Integer
programming models of the binary type have been con-
structed for it and solved both exactly and approxi-
mately using heuristics and meta-heuristics. The issue
is that these models are less than satisfactory for the

following reasons.

1. The models are too big; they have too many unnec-
essary variables and/or constraints.

2. The heuristics use arbitrary rules to resolve issues of
ties to determine storage position of reshuffled
containers.

We have, thus addressed these issues by considering

an alternative model to fit our requirements. This alter-
native model has been given and described extensively.
Given the computational complexity of the problem
(NP-hard, since it is represented as an ILP), papers
relying on exact methods are not realistic. Those
using heuristics are more realistic in that sense although

some of the heuristics are crude. We have, therefore
carried out experiments on realistic instances using
the model as well as some of the prominent heuristics
found in the literature and used on the reshuffle prob-
lem namely H1, H2 and RI. Moreover, we have

designed four novel heuristics LPH1, LPH2, LPH3
and LPH4 which has been tested and compared with
others on static and dynamic reshuffle problems. We

also presented a compatibility test to check how well

the heuristics work when combined to solve a problem.

The results show that LPH2 is superior to other

heuristics.

Acknowledgements

The authors would also like to thank the anonymous

reviewers for their valuable comments and suggestions to

improve the quality of the paper.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with

respect to the research, authorship, and/or publication of this

article.

Funding

The author(s) disclosed receipt of the following financial sup-

port for the research, authorship, and/or publication of this

article: We are grateful to ESRC for funding this work within

the “Smart Data Analytics for Business and Local

Government” project, Grant ES/L011859/1.

ORCID iD

Hammed Bisira https://orcid.org/0000-0001-6225-4565

References

1. Hakan Akyüz M and Lee CY. A mathematical formula-

tion and efficient heuristics for the dynamic container

relocation problem. Naval Res Logist 2014; 61: 101–118.

Table 7. Dynamic.

Average number of reshuffles Average CPU time(s)

Heuristics (6� 2� 9) (6� 3� 13) (6� 4� 17) (6� 5� 21)

H1 1.68 0.0272 8.02 0.0346 13.28 0.0478 19.26 0.0446

H2 1.70 0.0289 8.40 0.0346 13.84 0.0401 20.86 0.0472

RI 1.70 0.0280 8.22 0.0369 13.28 0.0440 18.74 0.0490

LPH1 1.66 0.0297 7.16 0.0345 13.10 0.0415 20.10 0.0461

LPH2 1.70 0.0304 6.88 0.0342 11.76 0.0386 17.18 0.0443

LPH3 1.68 0.0287 8.32 0.0338 14.14 0.0414 21.94 0.0477

LPH4 1.70 0.0259 8.46 0.0337 15.38 0.0436 22.94 0.0499

Table 8. Compatibility.

Heuristics H1 H2 RI LPH1 LPH2 LPH3 LPH4

H1 21.98 21.66 21.73 22.25 21.19 22.42 22.34

H2 21.66 21.42 21.48 21.99 20.94 22.18 22.13

RI 21.73 21.48 21.58 22.01 21.00 22.28 22.22

LPH1 22.25 21.99 22.01 22.38 21.45 22.70 22.57

LPH2 21.19 20.94 21.00 21.45 20.44 21.77 21.72

LPH3 22.42 22.18 22.28 22.70 21.77 22.96 22.80

LPH4 22.34 22.13 22.22 22.57 21.72 22.80 22.74

10 Journal of Algorithms & Computational Technology

https://orcid.org/0000-0001-6225-4565
https://orcid.org/0000-0001-6225-4565


2. Jin B, Zhu W and Lim A. Solving the container reloca-

tion problem by an improved greedy look-ahead heuris-

tic. Eur J Oper Res 2015; 240: 837–847.
3. Lee Y and Lee YJ. A heuristic for retrieving containers

from a yard. Comput Oper Res 2010; 37: 1139–1147.
4. Kim KH and Hong GP. A heuristic rule for relocating

blocks. Comput Oper Res 2006; 33: 940–954.
5. Lee Y and Chao SL. A neighborhood search heuristic for

pre-marshalling export containers. Eur J Oper Res 2009;

196: 468–475.
6. Van Asperen E, Borgman B and Dekker R. Evaluating

impact of truck announcements on container stacking

efficiency. Flex Serv Manuf J 2013; 25: 543–556.
7. Dekker R, Voogd P and van Asperen E. Advanced meth-

ods for container stacking. In: Container terminals and

cargo systems. Berlin: Springer, 2007, pp.131–154.
8. Borgman B, van Asperen E and Dekker R. Online rules

for container stacking. Or Spectrum 2010; 32: 687–716.
9. Zhao W and Goodchild AV. The impact of truck arrival

information on container terminal rehandling. Transport

Res Part E: Logist Transport Rev 2010; 46: 327–343.
10. Casey B and Kozan E. Optimising container storage pro-

cesses at multimodal terminals. J Oper Res Soc 2012; 63:

1126–1142.
11. Yang JH and Kim KH. A grouped storage method for

minimizing relocations in block stacking systems. J Intell

Manuf 2006; 17: 453–463.
12. Wan Y, Liu J and Tsai PC. The assignment of storage

locations to containers for a container stack. Naval

Research Logistics 2009; 56: 699–713.
13. Chen T. Yard operations in the container terminal – a

study in the unproductive moves. Maritime Policy &

Management 1999; 26: 27–38.
14. Li JA, Leung SC, Wu Y, et al. Allocation of empty con-

tainers between multi-ports. Eur J Oper Res 2007; 182:

400–412.
15. Kim KH, Park YM and Ryu KR. Deriving decision rules

to locate export containers in container yards. Eur J Oper

Res 2000; 124: 89–101.
16. Kang J, Ryu KR and Kim KH. Deriving stacking strat-

egies for export containers with uncertain weight infor-

mation. J Intell Manuf 2006; 17: 399–410.
17. Lee Y and Hsu NY. An optimization model for the con-

tainer pre-marshalling problem. Comput Oper Res 2007;

34: 3295–3313.

18. Bortfeldt A and Forster F. A tree search procedure for
the container pre-marshalling problem. Eur J Oper Res

2012; 217: 531–540.
19. Kim KH and Bae JW. Re-marshaling export containers

in port container terminals. Comput Ind Eng 1998; 35:
655–658.

20. Choe R, Park T, Oh MS, et al. Generating a rehandling-
free intra-block remarshaling plan for an automated con-
tainer yard. J Intell Manuf 2011; 22: 201–217.

21. Lee DH, Jin JG and Chen JH. Terminal and yard allo-
cation problem for a container transshipment hub with
multiple terminals. Transport Res Part E: Logist

Transport Rev 2012; 48: 516–528.
22. Forster F and Bortfeldt A. A tree search procedure for

the container relocation problem. Comput Oper Res 2012;
39: 299–309.

23. Caserta M, Voß S and Sniedovich M. Applying the cor-
ridor method to a blocks relocation problem. Or

Spectrum 2011; 33: 915–929.

24. Hirashima Y. A Q-learning system for
container marshalling with group-based learning model
at container yard terminals. In: Proceedings of the inter-

national multiconference of engineers and computer scien-

tists 2009 (IMECS 2009), volume 1. Princeton: Citeseer,
2009.

25. Hirashima Y (2008) A Q-learning system for container
transfer scheduling based on shipping order at container
terminals. Int J Innovat Comput Inform Control 4(3):
547–558.

26. Hirashima Y, Takeda K, Harada S, et al. A Q-learning
for group-based plan of container transfer scheduling.
JSME Int J Ser C 2006; 49: 473–479.

27. Exp�osito-Izquierdo C, Melián-Batista B and Moreno-
Vega M. Pre-marshalling problem: heuristic solution
method and instances generator. Expert Syst Appl 2012;
39: 8337–8349.

28. Tang L, Jiang W, Liu J, et al. Research into container
reshuffling and stacking problems in container terminal
yards. IIE Trans 2015; 47: 751–766.

29. Carraro LA and de Castro LN. A clonal selection algo-
rithm to minimize reshuffling in container stacking oper-
ations. In: 2012 IEEE congress on evolutionary

computation. Piscataway, NJ: IEEE, 2012, pp.1–8.
30. Murty KG. Yard crane pools and optimum layouts for

storage yards of container terminals. J Ind Syst Eng 2007;
1: 190–199.

Bisira and Salhi 11


