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Abstract—Similarity measures have been widely used in ap-
plications dealing with reasoning, classification and information
retrieval. In this paper, we first propose three new Interval Type-2
Fuzzy Similarity measures (IT-2 FSMs) as a dual concept of some
semi-metric distances between Intuitionistic Fuzzy Sets (IFSs).
We also prove that the extended IT-2 FSMs satisfy many common
properties (i.e. reflexivity, transivity, symmetry and overlapping).
Experiments are carried out on a variety of datasets including
UCI Learning Machine and real data. Comparative studies
between the proposed IT-2 FSMs and the other well-known
existing similarity measures (Gorzalczany, Bustince, Mitchell,
Zeng and Li as well as VSM and Jaccard) are performed.
Obviously, the best results are obtained with the IT-2 FSMs
being resilient to the high levels of uncertainty noise. We also
prove that our IT-2 FSMs can overcome the drawbacks of some
existing similarity measures based on the accuracy rate measure.
In addition, the proposed IT-2 FSMs are joined with Fuzzy c-
means algorithm as a clustering method and the proposed system
is compared against the existing clustering algorithms (Type-
1 Fuzzy k-means, Type-1 and Type-2 Fuzzy c-means, Cluster
Forest, Bagged Clustering, Evidence Accumulation and Random
Projection). Relying on the clustering quality parameters R and C
(equivalent to the standard classification accuracy), the advanced
IT-2FSMs show higher classification accuracy of about 86%
which outperforms nearly the other classifiers.

Index Terms—Fuzzy Similarity Measures, Intuitionistic Fuzzy
Sets, Interval Type-2 Fuzzy Sets, Fuzzy Distance Measure, Noise,
Clustering.

I. INTRODUCTION

FUZZY Logic has been intensively utilized in several
applications like pattern recognition, decision making,

linguistic knowledge and classification. According to [1],
Type-1 Fuzzy systems have the common problem that they
cannot fully handle or accommodate for the linguistic and
numerical uncertainties associated with changing and dynamic
unstructured environments as they use precise Type-1 Fuzzy
Sets (T-1 FSs). T-1 FSs handle the uncertainties associated
with the inputs and outputs by using precise and crisp
membership. Once the Type-1 membership functions have
been chosen, all the uncertainty disappears, because Type-
1 membership functions are totally precise. Different Type-1
generalizations such as Hesitant Fuzzy Sets [2], Fuzzy Multi
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Sets [3], Intuitionistic Fuzzy Sets (IFSs) [4], Interval and
General Type-2 Fuzzy Sets (IT-2 FSs and T-2 FSs respectively)
[5]–[9] have been adopted. In fact, T-2 FSs have been applied
especially to handle high uncertainty levels in some real world
data and applications. IFSs have been employed to reveal
hesitancy or imprecise information [10], [11]. They have been
also applied in decision making [12], edge detection [13],
pattern recognition [14] and many other related problems.
Besides, IFSs have been used to deal with data hesitancy in
describing the real information status.

In some real world applications, data optimization,
feature selection [15], [16], classification and similarity fac-
torization [17], [18] are based essentially on the definition of
adequate measures. In this context, several types of measures
such as distance [4], entropy [19], correlation [20], divergence
[21], dissimilarity [22] and similarity measures [10] were
introduced in the literature. In order to indicate the degree of
closeness between fuzzy sets (FSs) in applications like pattern
recognition, computing with words and data mining, Fuzzy
Similarity Measures (FSMs) were utilized.

In fact, several FSMs were presented between Type-1,
Type-2 and Intuitionistic fuzzy sets satsifying some mathe-
matical properties which are reflexivity, transivity, symmetry
and overlapping [23]. Wu and Mendel compared in [24]
Type-1 and Type-2 FSMs. They advanced a new ranking IT-
2 FSMs by computing the centroids of words membership
functions. Indeed, this similarity measure was not appropriate
for invertible and non-invertible fuzzy numbers. Motivated
by Wu’s study, Garcia et al. introduced in [25] some fuzzy
distances to compare IT-2 fuzzy numbers using membership
functions centroids. Nevertheless, the developed approach was
applied only on triangular IT-2 Fuzzy numbers.

Heidarzade et al. suggested in [26], a new IT-2 FSM for
multiple criteria decision-making problems. By this intelligent
manner, good results were obtained while handling multiple
criteria decision making problems. However, some limits were
found in the satisfaction degree for different alternatives in
multiple criteria group decision making.

Baccour et al. presented in [14] novel Intuitionistic dis-
tance measures to compare images, classify shapes and rec-
ognize some Arabic sentences. The best results were obtained
by the following distance measures S8, d, DE , d2, W, S4 and
d [14]. Modest results are given by S6, SL, M and L [14].
The worst results are obtained with the measures T, SGO, P
and SG with 0% recognition rate in Image/shape comparisons
[14].

Papakostas introduced in [27] a detailed survey for dis-
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tances and similarity between IFSs in real pattern recognition
application. Besides, several experiments were carried out
on some medical cases and benchmarks giving high rate
of classification demonstrating the suitability of similarity
measures.

Hesamian presented in [28] a general FSM to rank Interval
Type-2 Fuzzy Numbers. The proposed measure was tested on
some examples in pattern recognition and multi-criteria group
decision making. However, it can only be applied for IT-2
Fuzzy numbers with normal fuzzy numbers.

While many FSMs exist for Type-1, Intuitionistic and
Type-2 fuzzy sets, only few ones can be applied between
general fuzzy sets. McCulloch et al. have proposed in [29]
and [30] an extension of some IT-2 FSMs to general FSMs
for z-slices presentation. The obtained measures preserved all
the similarity properties and showed better results compared
to some Type-2 FSMs.

In this paper, we present three new Interval Type-
2 FSMs (IT-2 FSMs) based on some Intuitionistic distance
measures and operations between IT-2 FSs to determine the
relation between hesitance (in IFSs) and uncertainty (in IT-2
FSs). This fusion led to Intuitionitic Type-2 Fuzzy similarity
measures. We provide mathematical justification in order to
demonstrate that the proposed FSMs satisfy proximity prop-
erties. Through experiments performed on benchmarks and
linguistic data, comparisons are made with other IT-2 FSMs
showing consistent and significant results. We finally join the
advanced measures with Fuzzy c-means algorithm for Type-
2 fuzzy data. The clustering results are evaluated through
quality clustering metrics and compared with other clustering
methods.

This document is structured as follows: Section II
presents an overview on Intuistionistic and IT-2 FSs. Section
III lists some existing Intuitionistic and Type -2 FSMs. Section
IV depicts the three new Interval Type-2 FSMs followed by
proofs and justifications. We illustrate the effectiveness of
the proposed measures by numerical examples on some real
world data in section V. Finally, section VI provides some
conclusions and exposes some future works.

II. OVERVIEW ON INTUITIONISTIC AND INTERVAL TYPE-2
FUZZY SETS

Intuitionistic Fuzzy Sets (IFS) were introduced by
Atanassov in [31] to handle vagueness and uncertainty as cited
by Baccour in [10]. An IFS B was illustrated by a truth and a
false membership functions. It was expressed in the universe
of discourse X by the following equation:

B = < x, µB(x), λB(x) > ∀x ∈ X (1)

The truth membership function of x ∈ X to B is µB(x)
while λB(x) is the false or the non- membership function. To
specify the belonging of x to B, an uncertainty function named
hesitancy function was also used to measure the belonging of
x to B. This function was computed as shown below:

ΠB(x) = 1− µB(x)− λB(x) (2)

with 0 ≤ ΠB(x) ≤ 1. An Interval Type-2 Fuzzy set Ã
was expressed in the universe of discourse X by a Type-2
membership function µÃ(x, u):

Ã =

∫
x∈X

∫
u∈J

1/(x, u) =

∫
x∈X

[

∫
u∈J

1/u]/x (3)

with Jx ∈ [0 1] and
∫ ∫

design the union of all the admissible
x in u.

III. EXISTING FUZZY SIMILARITY MEASURES

A. Intuitionistic Fuzzy Similarity Measures

In the literature, several similarity and distance measures
were proposed between IFSs. We consider two IFSs A and B
which have n elements. µA(x) and λA(x) denote respectively
the membership and the non membership functions of the
Intuitionistic set A; µB(x) and λB(x) are the correspondent
ones for the IFS B.

1) Chen’s Intuitionistic similarity Measure: Chen advanced
in [32] the first similarity measure between Intuitionistic or
vague sets as follows:

sC(A,B) = 1−
∑n

i=1 |sA(xi)− sB(xi)|
2n

(4)

with sA(xi) = µA(xi)−λA(xi), sB(xi) = µB(xi)−λB(xi).
Several studies (e.g. [33]) showed illogic results of false
numerical values in some cases. In fact, high similarity values
were obtained even with two disjoint sets.

2) Hong and Kim’s Intuitionistic Similarity Measure: To
overcome Chen’s measure limitations, some researchers (as
Hong and Kim) introduced, in [33], a new Intuitionistic
similarity as illustrated in the following equation:

sH(A,B) = 1−∑n
i=1 |µA(xi)− µB(xi)|+ |λA(xi)− λB(xi)|

2n

(5)

Although this proposed similarity gave good results mainly
for symmetry problems, it does not fit well in some cases. In
fact sH cannot distinguish positive difference from negative
difference [34].

3) Hung’s Intuitionistic Similarity Measure: Motivated by
the dual concept context between similarity and distance, Hung
developed, in [35], a new Intuitionistic similarity measure as a
generalization of the Hamming distance. The equation below
illustrates the Hung’s similarity:

sHu(A,B) = 1−
n∑

i=1

1− 1
2 (|µA(xi)− µB(xi)|+ |λA(xi)− λB(xi))|

n

(6)

This Intuitionistic similarity was evaluated on some pattern
recognition and classification applications, experimental re-
sults show the superiority of the proposed measures for stu-
dents’ evaluation. Some illogic results were found by Szmidt
and Kacprzyk in [11].
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4) Baccour’s Intuitionistic Distance Measures: Baccour et
al. generated, in [14], new intuitionistic distance measures as
an extension of the Canberra distance suggested in [36]. The
Intuitionistic generated distances DB1 and DB2 were seen as
semi-metric ones:

DB1(A,B) =
1

2n

n∑
i=1

(
|µA(xi)− µB(xi)|
µA(xi) + µB(xi)

+
|λA(xi)− λB(xi)|
(λA(xi) + λB(xi))

(7)

and DB2(A,B) =
1

2n

n∑
i=1

(
|µA(xi)− µB(xi)|
µA(xi) + µB(xi)

+
|λA(xi)− λB(xi)|

(2− λA(xi)− λB(xi))

(8)

Baccour et al. applied the obtained measures for shapes
classification and Arabic sentences recognition. They obtained
some good results and unreasonable ones Authors extended in
[14] the Square Chord’s distance [37] for IFSs and proposed
the following semi-metric distance as:

DB3(A,B) =
1

2n

n∑
i=1

(
√
|µA(xi)− µB(xi)|+

√
|λA(xi)− λB(xi)|)2

(9)

Baccour et al. also advanced in [14] a new Intiutionistic
measure based on some operators like min, max, intersection
and union between IFSs . They demonstrated via numerical
examples that the distance measure presented in the following
equation satisfies the four similarity properties but presents
modest results.

MB(A,B) =∑n
i=1min(µA(xi), µB(xi)) ∗min(λA(xi), λB(xi))∑n
i=1max(µA(xi), µB(xi)) ∗max(λA(xi), λB(xi))

(10)

B. Interval Type-2 Fuzzy Similarity Measures

In the literature, some IT-2 FSMs were advanced to handle
uncertainties between vague concepts. We consider 2 Interval
Type-2 Fuzzy Sets Ã and B̃.

1) Gorzalczany’s Type-2 similarity measure: Gorzalczany
defined, in [38], a new proximity measure for interval valued
fuzzy sets which provided good computational effectiveness
and adequacy. The Gorzalczany’s Type-2 similarity measure
is :

SG(Ã, B̃) =

[min(
max(µ

Ã
(x), µ

B̃
(x))

max µ
A

(x))
),
max(µÃ(x), µB̃(x))

max µA(x))
),

max(
min(µ

Ã
(x), µ

B̃
(x))

max µ
A

(x))
),
min(µÃ(x), µB̃(x))

max µA(x))
)] (11)

When dealing with linguistic terms, the Gorzalczany’s
measure does not satisfy reflexivity and gives insignificant
results. Some researchers like Tsiporkova and Zimmermann
considered in [39] that type-2 Gorzalczany’s similarity is not
a fuzzy one.

2) Bustince’s Type-2 similarity measure: Bustince ad-
vanced in [40] a new Type-2 fuzzy similarity measure which
verifies the inclusion grade indicators for interval-valued fuzzy
sets. The Bustince’s Type-2 similarity measure is :

SB(Ã, B̃) = [sL(Ã, B̃), sU (Ã, B̃)] (12)

where sL and sU designate the lower and upper similarity
measures defined respectively by:

sL(Ã, B̃) = ΥL(Ã, B̃) ∗ΥL(B̃, Ã)

sU (Ã, B̃)] = ΥU (Ã, B̃) ∗ΥU (B̃, Ã)

ΥL(Ã, B̃) = infx∈X{
1,min(1− µ

Ã
(x) + µ

B̃
(x), 1− µÃ(x) + µB̃(x))

}
ΥU (Ã, B̃) = infx∈X{

1,max(1− µ
Ã

(x) + µ
B̃

(x), 1− µÃ(x) + µB̃(x))
}

As explained by Mendel and Wu in [23], the Bustince’s
similarity does not satisfy the overlapping property.

3) Mitchell’s Type-2 similarity measure: Mitchell intro-
duced in [41] a general type-2 fuzzy similarity measure for
ordering Type-2 fuzzy sets as shown below:

SM (Ã, B̃) =
1

MN

M∑
m=1

N∑
n=1

smn (13)

where smn = s(Am
c , A

n
c ) and s can be any similarity measure

for Type-1 fuzzy sets. This measure shows good results
for formulating classification problems in pattern recognition.
But because embedded Type-1 fuzzy sets can be generated
randomly, the overall algorithm is too long and random values
for Mitchell’s measure can be obtained. Finding obtained by
applying Mitchells measure can change from one experiment
to another. As proved by Dongrui in [24], Mitchell’s simi-
larity presents also other limitations. In fact, it cannot satisfy
reflexivity and symmetry properties.

4) Zeng and Li’s Type-2 Similarity Measure: Zeng and Li
introduced in [42] a new interval valued similarity measure for
the continuous universe of discourse as demonstrated below:

sZ(Ã, B̃) = 1− 1

2n

n∑
i=1

(|µ
Ã

(xi)− µB̃
(xi)|+ |µÃ(xi)− µB̃(xi)|)

(14)

They also defined a novel proximity measure for the discrete
universe of discourse as follows:

sZ(Ã, B̃) = 1− 1

2(b− a)∫ b

a

((|µ
Ã

(x)− µ
B̃

(x)|+ |µÃ(x)− µB̃(x)|)dx
(15)

Zeng and Li proved that these similarity measures and en-
tropies of interval valued fuzzy sets can be changed by each
other. However, according to [23], the Zeng and Li’s measure
does not preserve the overlapping property. In fact, for disjoint
fuzzy sets, when the distance between sets rises, the Zeng and
Li’s similarity increases proportionally which is irrelevant.
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5) Vector Similarity Measure for Interval Type-2 Fuzzy Sets
: In [23], Mendel and Wu defined a new vector similarity
measure (VSM) as an extension of Yager’s measure for Type-
1 fuzzy sets. The VSM formula is written below:

sv(Ã, B̃) = (s1(Ã, B̃), s2(Ã, B̃))T (16)

with s1(Ã, B̃) =∫
x
min(µÃ(xi), µB̃(xi))dx+

∫
x
min(µ

Ã
(xi), µB̃

(xi))dx∫
x
max(µÃ(xi), µB̃(xi))dx+

∫
x
max(µ

Ã
(xi), µB̃

(xi))dx

and s2(Ã, B̃) = e−rd(Ã,B̃)

with r is a constant > 0. Based on some demonstrations
and definitions, Mendel and Wu showed that VSM can re-
solve reflexivity, overlapping and symmetry problems found
in the above-described similarities especially when dealing
with linguistic data or computing with words applications. In
fact, VSM can generate close sets depending on the shape of
their membership functions. Some limitations were mentioned
in [43] showing that VSM cannot classify crisp numbers
and is not appropriate for invertible and non-invertible fuzzy
numbers.

6) Jaccard’s Type-2 Similarity Measure: Wu and Mendel
generalized, in [44], the Type-1 Jaccard measure [45] to IT-2
FSs and presented it as:

sJ(Ã, B̃) =∫
x
min(µÃ(x), µB̃(x))dx+

∫
x
min(µ

Ã
(x), µ

B̃
(x))dx∫

x
max(µÃ(x), µB̃(x))dx+

∫
x
max(µ

Ã
(x), µ

B̃
(x))dx

(17)

The main advantage of the Jaccard’s Type-2 measure is that it
fulfills the four similarity properties and has shown reasonable
results in computing fuzzy sets analogy.
A comparison of reflexivity, symmetry, transivity and overlap-
ping properties between the above-described Type-2 FSMs is
summarized in Table I.

TABLE I
COMPARISON OF PROXIMITY PROPERTIES BETWEEN MITCHELL (M),

GORZALCZANY (G), BUSTINCE (B), ZENG AND LI (Z), VSM (V) AND
JACCARD (J) SIMILARITIES

IT-2 Fuzzy Similarity Measures
Properties M G B Z V J

Overlapping X X X X
Symmetry X X X X X
Reflexivity X X X X
Transivity X X X X X

IV. THE PROPOSED IT-2 FUZZY SIMILARITY MEASURES:
FROM IFS TO IT-2 FSS

In this section, we propose three new fuzzy similarity
measures between IT-2 fuzzy sets [46]. The main idea is
to extend Baccour’s semi-metric distance measures [10] for
Intuitionistic Fuzzy Sets (see equations 7, 8 and 10). The
genesis of this extension is based on the following motivations:
Because similarity and distance are dual proximity concepts,
we consider the semi-metric distances presented in [10] as

similarity measures. Originally, Atanassov in [31] advanced
the mapping relation from IFS to FS. Some studies (e.g. [10],
[47]–[49]) confirmed Atanassov’s theory and considered that
every classical fuzzy set can be seen as an Intuitionistic one
and vice versa. The hesitancy function Π is null (see Equation
2) and the truth and false membership functions are hence dual
concepts.

ΠB(x) = 1− µB(x)− λB(x) = 0 (18)

then λB(x) = 1− µB(x) (19)

However, several works (e.g. [50]–[52]) demonstrated that an
IFS is not similar to a FS. Indeed, it is not evident to determine
an exact degree of truth of a FS when dealing with IFSs having
an hesitancy function. It is also difficult to set membership
and non-membership functions when handling FSs (lack of
definitions and axioms [49]). To overcome those drawbacks,
T-2 FSs have been used to handle uncertainty and hesitance. A
new association between IFSs and T-2 FSs was made in [49],
[50] demonstrating that IFSs are closer to T-2 FSs. When using
IFSs, there is uncertainty on determining the membership
and the non-membership functions with a certain hesitancy.
However when dealing with T-2 FSs, there is uncertainty only
on the selection of the membership function. The switch from
IFSs to T-2 FSs is based on the following statement: ” In the
uncertainty, there is hesitance and in the hesitance, there is
uncertainty.” Zhu et al. demonstrated also, in [52], that IFSs
are particular cases of T-2 FSs. In [49], authors mentioned that
IFSs were organized similarly to Interval Valued Fuzzy Sets
considered as special cases of T-2 FSs. Switching from IFSs
to T-2 FSs allowed obtaining good results in decision making
[51], clustering [50] and medical diagnosis [49] and led to
the introduction of the Intuitionistic Type-2 Fuzzy Sets (InT-2
FSs) handling both hesitance and uncertainty. Mathematically,
the mapping from an IFS called A to a T-2 FS Ã is defined
as follows:

Ã =
∑

[1/(µÃ(x) + pΠA(x)) + 0/(1− λA(x) + pΠA(x))]/x

(20)

where p ∈ [0, 1]. The true and false membership functions are
represented by the secondary grade in Equation 20. When the
hesitancy function ΠA(x) is null, the Ã is illustrated by the
following formula:

Ã =
∑

[1/(µÃ(x)] (21)

The obtained expression (Equation 21) is very compatible to
the general definition of an IT-2FS as described in Equation
3. For this reason, we generalize each IFS to an IT-2FS by
modifying the false and truth degrees to upper and lower
membership functions to handle vague data. We present the
three proposed IT-2 FSMs S1, S2 and S3, each of which is
justified and proved in order to define its own properties.

A. Interval Type-2 Fuzzy Similarity Measure S1

The Interval Type-2 fuzzy similarity measure S1 is the dual
concept of the semi metric distance described in Equation
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TABLE II
COMPARISON OF PROXIMITY PROPERTIES BETWEEN THE PROPOSED IT-2

FSMS: S1, S2 AND S3

Proposed IT-2 FSMs
Properties S1 S2 S3

Overlapping X X X
Symmetry X X
Reflexivity X X
Transivity X X X

7 between IT-2 FSs. By analogy to Type-2 Fuzzy Logic,
the S1 measure is defined through upper and lower values
(respectively s1 and s1). The false membership function λ(x)
of any IFS is replaced by 1− µ(x). For 2 IT-2 FSs Ã and B̃,
Equation 7 will be transformed and written as follows:

S1(Ã, B̃) = 1− (s1 + s1)

2
(22)

with s1 =
1

2n

n∑
i=1

(
|µÃ(xi)− µB̃(xi)|
µÃ(xi) + µB̃(xi)

+
|µB̃(xi)− µÃ(xi)|

2− µÃ(xi)− µB̃(xi)

and s1 =
1

2n

n∑
i=1

(
|µ

Ã
(xi)− µB̃

(xi)|
µ
Ã

(xi) + µB̃(xi)
+
|µ

B̃
(xi)− µÃ

(xi)|
2− µ

Ã
(xi)− µB̃

(xi)

Proof and Justification: See Appendix Proof of S1 prop-
erties. Through proof and justification, we showed that S1
measure satisfies the four analogy properties.

B. Interval Type-2 Fuzzy Similarity Measure S2

The Interval Type-2 Fuzzy similarity Measure S2 is defined
by computing the mean of lower and upper values (s2 and
s2). The latter are generalized from the semi-metric distance
measure between IFS presented in Equation 8 . The false
membership function λ(x) written in Equation 8 is modified
and computed as 1 − µ(x). For two IT-2 FSs Ã and B̃, the
following formula is hence obtained:

S2(Ã, B̃) = 1− (s2 + s2)

2
(23)

s2 =
1

2n

n∑
i=1

(
|µÃ(xi)− µB̃(xi)|
µÃ(xi) + µB̃(xi)

+
|µB̃(xi)− µÃ(xi)|
µB̃(xi)− µÃ(xi)

s2 =
1

2n

n∑
i=1

(
|µ

Ã
(xi)− µB̃

(xi)|
µ
Ã

(xi) + µB̃(xi)
+
|µ

B̃
(xi)− µÃ

(xi)|
µ
B̃

(xi)− µÃ
(xi)

Proof and justification: See Proof of S2 properties in Ap-
pendix. Through proof and justification, we proved that S2
measure satisfies only reflexivity, transivity and overlapping
properties.

C. Interval Type-2 Fuzzy Similarity Measure S3

The Interval Type-2 Fuzzy Similarity Measure S3 and the
distance presented in Equation 10 are dual concepts ( similarity
= 1 - Distance). As described for the two previous proposed
IT-2 FSMs, S3 can be defined through upper and lower values.
The migration from the semi-metric distance between IFS to
similarity between IT-2 FSs is illustrated by the following
formula:

S3(Ã, B̃) = 1− (s3 + s3)

2
(24)

s3 =∑n
i=1min(µÃ(xi), µB̃(xi)) ∗min(1− µÃ(xi), 1− µB̃(xi))∑n
i=1max(µÃ(xi), µB̃(xi)) ∗max(1− µÃ(xi), 1− µB̃(xi))

s3 =∑n
i=1min(µ

Ã
(xi), µB̃

(xi)) ∗min(1− µ
Ã

(xi), 1− µB̃
(xi))∑n

i=1max(µ
Ã

(xi), µB̃
(xi)) ∗max(1− µ

Ã
(xi), 1− µB̃

(xi))

Proof and justification: See Proof of S3 properties in Ap-
pendix. We demonstrated that S3 does not fulfill the reflexivity
property and satisfy the transivity, symmetry and overlapping
properties.
The three proposed measures (S1, S2 and S3) are the dual
concepts of some semi-metric distances used in pattern recog-
nition, medical diagnosis and decision-making applications.
They are effectively Fuzzy Similarity Measures between IT-2
FSs because they satisfy similarity properties (i.e. overlapping,
symmetry, reflexivity and transivity) as summarized in Table
II.

V. PERFORMANCE ANALYSIS

A. Adopted approach

The conformity of the proposed measures was evaluated
through some experimentation on examples taken from real
data: linguistic, medical, classification, correlation and crimi-
nological fields. Comparisons with existing IT-2 FSMs were
done and interpretations were given. When dealing with crisp
data, each crisp value was substituted by a Type-2 repre-
sentation having the following form [leftvalue, rightvalue].
A certain threshold was used to compute the left and right
values in the Type-2 representation. In order to obtain Type-2
membership functions, the Enhanced Interval approach (EIA)
[53]–[55], which is a generalization of the Interval Approach
(IA) introduced by [56], was applied to model imprecision.
The main advantage of the EIA is that it results in thinner
and narrower Footprint Of Uncertainty (FOU) than the IA
algorithm [57]. The EIA consists mainly in transforming words
into IT-2 FSs and generating FOUs for all data attributes.
It is composed of two steps: the Data part and the FS
part. The former is a pre-processing one in which n data
intervals [a(i), b(i)] are first collected from subjects. Second,
the intervals are filtered by eliminating bad data and outliers.
However, the latter consists first in computing uncertainty by
establishing the FOU’s nature (left shoulder, right shoulder
or interior). Inadmissible shapes are rejected and both lower
and upper membership functions are computed. We describe
the different steps of the experimental process followed to
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TABLE III
COMPARISON BETWEEN S1, S2 AND S3 AND IT-2 EXISTING SIMILARITY MEASURES FOR MENDEL’S ATTRIBUTES

none to very
little

/ extremely
low

somewhat
high/more

or less high

Moderately
high/some or

less high

high/ very
high

very
High/

extremely
High

Fair/ Very
Fair

Mitchell 0.5847 0.5082 0.4829 0.5981 0.5033 0.5124
Bustince 0.5441 0.7433 0.6381 0.5932 0.4572 0.8157
Gorzalczany 1 0.9577 0.9312 1 0.9937 0.9937
jaccard 0.7237 0.7689 0.6963 0.6074 0.5270 0.8246
zeng Li 0.8929 0.9197 0.8950 0.8123 0.7933 0.9430
vsm 0.5959 0.6689 0.5394 0.3859 0.3796 0.7346
S1 0.8718 0.9202 0.9012 0.8655 0.8059 0.9467
S2 0.5897 0.9635 0.9225 1 1 1
S3 0.3334 0.3057 0.2225 0.0918 0.1107 0.4146

TABLE IV
COMPARISON BETWEEN S1, S2,S3 AND IT-2 EXISTING SIMILARITY MEASURES FOR WINE’S ATTRIBUTES

Ash /
Alcanity

Of
Ash

Flavanoids/
Alcanity

of
Ash

Ash /
Flavanoids

Color
intensity /

OD280-OD315
of diluted wines

Flavanoids/
Nonflavanoid

phenols

Ash/
Nonflavanoid

phenols

Alcanity
of Ash/

Nonflavanoid
phenols

Mitchell 0.4184 0.5213 0.4991 0.0858 0.4645 0.7970 0.3987
Bustince 0.5 0.8462 0.6091 0.2231 0.5369 0.9149 0.5
Gorzalczany 0.7074 0.8479 0.7972 0.3226 0.9881 0.9934 0.9985
jaccard 0.4484 0.8126 0.5575 0.1031 0.4912 0.8813 0.4033
zeng Li 0.7599 0.9284 0.8086 0.6111 0.7738 0.9470 0.7350
vsm 0.2408 0.6717 0.3416 0.1029 0.2842 0.8089 0.2014
S1 0.7012 0.8908 0.7979 0.4356 0.7625 0.9584 0.6745
S2 0.7836 0.9221 0.8634 0.7588 0.8376 0.9908 0.7635
S3 0.0954 0.3039 0.1805 0.0178 0.1558 0.5157 0.0892

compute similarity measures between two IT-2 FSs based
on the proposed IT-2 FSMs. Our IT-2 FSMs were evaluated
on both noise free and noisy data. The results obtained are
described below.
• Step 1: For each Attribute, applying the three steps of

the Enhanced Interval Approach: Data pre-processing,
establishing FOU Nature and computing the Upper Mem-
bership Functions (UMF) and the Lower Membership
Functions (LMF). Consequently, each attribute will be
presented by an IT-2FS.

• Step 2: Computing the similarity between two IT-2FSs.
Applying S1 (see Equation 22), S2 (see Equation 23) and
S3 (see Equation 24) measures.

• Step 3: Comparing between the proposed Similarity
measures with other existing IT-2 FSMs.

• Step 4: Combining the proposed Similarity Measures
with Fuzzy C Means algorithm for Type-2 fuzzy data.

• Step 5: Comparing with other clustering algorithms

B. Noise Free Data
1) Mendel’s Data: The Mendel’s databases [58], [59] are

the most known and used data in the linguistic field when
the uncertainty rate is very high. The utilized features were
collected from the Mendel’s databases ”Data72” and ”Data73”.
These data are composed of 40 objects and 15 words. Type-
2 degrees of truth were obtained and FOUs were generated
for the following attributes: ”None to very Little”, ”Extremely
Low”, ”Somewhat High”, ”Moderately High”, ”More or less

High”, ”Some or less high”, ”High”, ”Very High”, ”Extremely
High”, ”Fair” and ”Very Fair”. The proposed IT-2 FSMs (S1,
S2 and S3) were applied on some words and compared to
the existing IT-2 ones as depicted in Table III. Generally,
attributes are considered close based on their membership
functions (MFs) and their FOUs which is confirmed with our
IT-2 FSMs. Table III presents the similarity values between the
above-mentioned attributes. The proposed IT-2 FSMs S1, S2
and Gorzalczany measures gave the best results compared to
other existing IT-2 FSMs especially for approximate degrees
of truth. For example, for the attributes ”Moderately High”
and ”Some or Less High”, S1 value is equal to 0.9012, S2 is
equal to 0.9225 and Gorzalczany measure is about 0.9312. S1
and S2 results were reasonable; However, for similar cases,
S3 measure gave lower values even for similar cases which is
illogical and invalid. The S2 measure achieved values which
are in average 0.17% more efficient than the other existing
IT-2FSMs for Mendel Data; whereas the S1 measure achieved
a similarity performance which is in average near to 0.14%.
The main advantage of S1 measure is that it satisfies all the
proximity properties while Gorzalczany and S2 measures do
not fulfill the reflexivity and symmetry properties respectively
(see Table I).

2) Wine Data: The Wine data [60], which are chemical
analysis’ results of wines, are composed of 178 instances and
13 attributes. The experimental process was applied on Wine
attributes in order to generate IT-2 FSs and compute IT-2
FSMs. Table IV reveals that S1 and S2 provided the best
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Fig. 1. Comparison Between Jaccard, S1 and S2 measures for Mendel Data

Fig. 2. Comparison between Jaccard, S1 and S2 measures for Wine Data

results compared to other similarities especially S2. For ex-
ample, for the attributes ”Alcanity of Ash” and ”Flavanoids”,
S1 measure is equal to 0.8908; S2 measure is about 0.9221
while Jaccard measure is equal 0.8126. Although, Gorzalczany
measure is equal to 0.8479, it did not satisfy all the similarity
measures properties. Besides, some researchers considered in
[39] that the Gorzalczany similarity measure is not a fuzzy one.
The S2 measure allowed reaching higher values which are in
average 0.23% more efficient than the other existing similarity
measures. The S1 measure achieved, in average, 0.11%. Since
Jaccard and S1 measures satisfied all the similarity properties,
and S2 gave the best overall results, a comparison between
them was done (Figure 1 for Mendel data and Figure 2
for Wine data). Obviously, S1 and Jaccard measures present
approximate curves while S2 shows high values for closer sets
or approximate shapes.

For the rest of our tests, we focus on Jaccard, S1 and S2
similarity measures (recall that S1 and Jaccard are the only
measures that fulfilled the following properties: symmetry,
reflexivity, transivity and overlapping).

3) Mammography Data: The mammography data presented
in [61] is composed of 961 instances and 6 attributes which are
”BI-RADS assessment”, ”Age”, ”Margin”, ”Shape”, ”Density”
and ”Severity” (benign or malignant). Shape can be round,
oval, lobular or irregular. However, Margin can be circum-
scribed, microlobulated, obscured, ill-defined and spiculated.
Density can be high, iso, low and fat-containing. In our
experience, we concentrated only on ”Margin”, ”Density” and
”Shape” attributes. Data was transformed into left and right
values in order to generate IT-2 FSs for each attribute based
on the EIA method. The measures computed for S1, S2 and
Jaccard are summarized in Table V. Obtained results demon-
strate approximate values between all IT-2FMs except for S3
measure which provided lower values even for similar vectors.

TABLE V
COMPARISON BETWEEN S1, S2 AND JACCARD SIMILARITY MEASURES

FOR MAMMOGRAPHY ’S ATTRIBUTES

Jaccard S1 S2
microbulated/circumscribed 0.5932 0.6594 0.61
microbulated/obscured 0.6170 0.6778 0.6923
microbulated/spiculated 0.6099 0.7149 0.5076
obscured/ spiculated 0.9109 0.8552 0.8297
spiculated / ill defined 0.7146 0.7333 0.9582
oval / lobular 0.8326 0.8241 0.8402
Iso / fat containing 0.7565 0.7994 0.3435

For example, for Microbulated and Spiculated attributes, hav-
ing closer IT-2 FSs, S3 measure is about 0.1496, S2 is equal
to 0.5076, S1 is equal to 0.7149 while Jaccard measure is
about 0.6099. S1 measure achieved higher similarity accuracy
which is in average 0.2% more efficient than that of Jaccard
measure. Figure 3 illustrates the comparison between S1, S2
and Jaccard measures for mammography Data. Jaccard and
S1 measures satisfied all the similarity properties. They also
presented approximate curves, as described in Figure 3.

4) Glass Data: The Glass data, presented in [60], is com-
posed of 214 instances and 10 attributes which are ”Id Num-
ber”, ”RI” (Refractive index), ”Na” (Sodium), ”Mg” (Magne-
sium), ”Al” (Aluminum), ”Si” (silicon), ”k” (Potassium), ”Ca”
(Calcium), ”Ba” (Barium), ”Fe” (Iron) and ”Type of glass”.
After generating an IT-2FS for each attribute, the proximity
between features was calculated and compared to the other
existing IT-2FSMs. The attributes used in experimentation are
: RI , MG, AL and K. Table VI summarizes all the obtained
values for S1, S2 and Jaccard for RI, MG, AL and K attributes.
For example, between RI and Al attributes, Jaccard measure
is equal to 0.4114, S1 is equal to 0.6826 and S2 is about
0.7744. S1 and S2 measures achieved higher performance
which are in average 0.3% and 0.79%, respectively more
efficient than Jaccard. A comparison between S1, S2 and
Jaccard measures is illustrated in Figure 4 demonstrating that
S1 and S2 proximity measures always gave better results than
Jaccard measure.

TABLE VI
COMPARISON BETWEEN S1, S2 AND JACCARD SIMILARITY MEASURES

FOR GLASS’S ATTRIBUTES

Jaccard S1 S2
Refractive Index / Magnesium 0 0.4030 0.3719
Refractive Index / Aluminum 0.4114 0.6826 0.7744
Magnesium / Aluminum 0 0.4033 0.7812
Aluminum/Potassuim 0.0234 0.3501 0.7296
Magnesium / Potassuim 0 0.4291 0.7994
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Fig. 3. Comparison between S1, S2 and Jaccard Measures for Mammography
Data

TABLE VII
GENERATED FOUS FROM MENDEL’S DATA UNDER NOISY AND NOISE

FREE ENVIRONMENTS WITH STANDARD DEVIATION = 0.1

Attribute
noise-Free
FOU noisy FOU

Very High

Fair

Fig. 4. Comparison between S1, S2 and Jaccard Measure for Glass data

C. noisy Data

Compared to the existing IT-2 FSMs, our advanced IT-
2 FSMs S1 and S2 provided relevant results when dealing
with natural language (Mendel’s data) and numerical examples
(Glass, Wine and Mammography data). The robustness of the
proposed IT-2 FSMs was evaluated when a White Gaussian
noise was added to the initial Data with zero mean and
Standard Deviations equal to 0.1 and 0.01. We used the same
databases under the same conditions for faithful comparison.

1) noisy Mendel’s Data: The Mendel’s Data was affected
by a White Gaussian Noise with different standard deviation
values (0.01 and 0.1). New IT-2 FSs were also generated (some
examples are listed in Table VII: the attributes ”Very high”
and ”Fair”) showing that noise can affect the shapes of FOUs
leading to new numerical MFs.

With White Gaussian, results are presented in Table VIII
(with mean=0 and deviation= 0.1) and Table IX (with mean=
0 and deviation= 0.01). In the case of deviation equal to 0.1
and for the attributes ”Moderately High” and ”Some or Less
High” for example, S1 measure is equal to 0.7074; Jaccard
is about 0.7412 and S2 measure is equal to 0.6068. Although

TABLE VIII
COMPARISON BETWEEN S1, S2 AND JACCARD SIMILARITY MEASURES
FOR NOISY MENDEL’S ATTRIBUTES WITH STANDARD DEVIATION = 0.1

Jaccard S1 S2
None to very little/ Extremly Low 0.6125 0.8875 0.942
some what high / more or less high 0.6512 0.8302 0.7267
Moderately High / Some or less high 0.7074 0.7412 0.6068
high/very high 0.6970 0.7076 0.9717

Very High / Extremely High 0.4681 0.6908 1
fair /very fair 0.7133 0.8108 1

TABLE IX
COMPARISON BETWEEN S1, S2 AND JACCARD SIMILARITY MEASURES

FOR NOISY MENDEL’S ATTRIBUTES WITH STANDARD DEVIATION = 0.01

Jaccard S1 S2
None to very little/ Extremly Low 0.5198 0.8510 0.9171
some what high / more or less high 0.7324 0.9023 0.9423
Moderately High / Some or less high 0.6823 0.8973 0.9444
High/ Very high 0.6524 0.8816 1

Very High / Extremly High 0.7825 0.9201 1
fair /very fair 0.8196 0.8642 1

Zeng and Li and Gorzalczany measures gave also high values
for similar attributes, they did not satisfy the overlapping and
the reflexivity properties which are fundamental in applications
like classification, knowledge reduction and decision making.
Obtained results demonstrated in Tables VIII and IX show that
S1 and S2 measures provided better findings by achieving
higher similarity accuracy which is in average 0.3% more
accurate than that obtained applying Jaccard measure. The
observation confirms the robustness of our measures under
noisy environments.

2) noisy Glass Data: The previously-described Glass data
was also affected by a White Gaussian Noise with zero mean
and different standard deviation values (0.1 and 0.01). New IT-
2 FSs were hence generated. S1, S2 and Jaccard were applied
between the different FOUs and compared to the existing IT-2
FSMs. The results obtained are illustrated in Table X showing
the effectiveness of S1 measure even when affected by noise.
Zeng and Li measure also gave reasonable and good results
compared to the other IT-2 FSMs. However, we should recall
that this measure did not satisfy the overlapping property
while S1 and Jaccard satisfied all the similarity properties.
For example, for RI and Al attributes, S1 measure is equal
to 0.7454 while Jaccard measure is about 0.4757 under noise
free (see Table VI). When affected by a Gaussian Noise with
standard deviation = 0.1, S1 is equal to 0.9259 and Jaccard is
about 0.8179 (see Table X). This result confirms our idea that
S1 is an appropriate measure between IT-2 FSs even under
noisy environments.

TABLE X
COMPARISON BETWEEN S1, S2 AND JACCARD SIMILARITY MEASURES

FOR GLASS’S ATTRIBUTES WITH STANDARD DEVIATION = 0.1

Jaccard S1 S2
Refractive Index / Magnesium 0.1377 0.4627 0.6760
Refractive Index / Aluminum 0.8179 0.9259 0.9414
Magnesium / Aluminum 0.1119 0.4085 0.3946

As illustrated in Figures 1, 2, 3 and 4, S1 and S2 similarity
measures provided relevant results even under noisy environ-
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TABLE XI
COMPARISON OF SOME CLUSTERING METHODS FOR THE METRIC R

Dataset FKM FCM FCM2 [62] CF [63] BC2 [64] EA [65] RP [66] S1M S2M
Statlog (Heart) (%) 51.54 52.13 52.13 56.8 51.50 53.20 52.41 52.86 53.01
Image Segmentation (%) 83.95 84.39 84.49 79.71 82.19 85.75 85.88 83.78 83.52
Robot Execution Failures (%) 59.83 65.28 66.09 63.42 39.76 58.31 41.52 66.1 66.21
SPECT Heart (%) 51.11 51.00 50.78 56.78 50.61 51.04 49.89 50.48 51.23
Wine (%) 71.78 72.04 72.71 79.70 71.97 71.86 71.94 73.47 73.98
Breast Cancer Wisconsin (Diagnostic) (%) 75.04 76.81 77.86 79.66 74.87 75.04 74.89 78.47 78.23

TABLE XII
COMPARISON OF SOME CLUSTERING METHODS FOR THE METRIC C

Dataset FKM FCM FCM2 [62] CF [63] BC2 [64] EA [65] RP [66] S1M S2M
Statlog (Heart) (%) 59.26 60.74 60.74 68.26 59.10 59.26 60.54 61.31 61.02
Image Segmentation (%) 58.86 57.62 57.05 48.24 49.91 51.30 47.71 56.95 57.02
Robot Execution Failures (%) 42.94 46.63 47.24 41.2 35.37 37.19 35.50 47.31 47.29
SPECT Heart (%) 39.7 40.45 41.2 68.02 56.28 56.55 61.11 40.78 41.09
Wine 70.22 70.79 70.79 79.19 70.22 70.22 70.79 71.01 70.86
Breast Cancer Wisconsin (Diagnostic) (%) 85.41 86.64 87.35 88.7 85.38 85.41 70.79 86.45 86.43

ments. The similarity measure S2 gave better results than S1
(for Mendel, Wine and Glass data); whereas the similarity
measure S1 was good for Mammography data. In practical
application, we can use either S1 or S2 measure between IT-2
FSs.

D. Clustering Results

Similarity Measures are often used in applications dealing
with clustering, data reduction or knowledge representation.
Clustering is an unsupervised methodology applied to group
similar objects into the same clusters or classes. Instances in
the same class must be as dissimilar as possible to objects in
other classes. In general, clustering methods utilize distance
or similarity functions like Euclidean, Hamming, Manhat-
tan, Minkowski distances [67], Cosine [68] or Jaccard [24]
measures to group items. The performance of any clustering
algorithm depends on selecting an appropriate distance or
similarity function over the input data set. As cited in [67],
distance-based clustering (depending on a distance function)
shows some limits in capturing correlations among the input
data objects. Similarity-based clustering relies on grouping
objects that are not only physically close (distance) but also
have similar patterns. Similarity-based clustering (depending
on a similarity function) was then adopted for better data clas-
sification. In order to prove the effectiveness of the proposed
measures (S1 and S2), we combined these measures with
Fuzzy c-means algorithm for IT-2FSs. The Euclidean distance
was altered with S1 and S2 to determine the belonging of an
instance to a specified class. In our clustering experiments, we
used 6 datasets from the UCI Machine Learning Repository
[63] under noise free environment. These data illustrated
in Table XIII are also used to compare our approach with
other unsupervised clustering algorithms like Fuzzy k-means
(FKM), Cluster Forest (CF) [69], Type-1 and Type-2 Fuzzy C-
means (FCM and FCM2 respectively) [62], Bagged Clustering
(BC2) [64], Evidence Accumulation (EA) [65] and Random
Projection (RP) [66]. As cited in [69], there exist some metrics
that can be used for clustering quality comparison. In our
experiments, two clustering quality performers were applied

TABLE XIII
DATA COLLECTIONS

Dataset Objects Attributes Classes
SPECT Heart 267 22 2
Image Segmentation 2100 19 7
Statlog (Heart) 270 13 2
Wine 178 13 3
Breast Cancer Wisconsin (Diagnostic) 596 30 2
Robot Execution Failures 164 90 5

in order to evaluate different clustering algorithms. The first
metric is called R. It is defined as follows:

R =

∑N
i=1

∑N
j=1 σ(Oi, Oj)σ(Ai, Aj)

N(N − 1)
, i 6= j (25)

with σ =

{
1 if the attributes are the same

0 otherwise

}
O is the vector of the original (expected) classes, A repre-

sents the vector of the assigned classes and N denotes the
number of classified vectors. This metric is based on the
assumption that all possible pairs of vectors belonging to the
same class in the original class vector, must have the same
class in the assigned class vector. The second metric is called
C and it is equivalent to the standard classification accuracy.
It is represented by the following equation:

C = maxt⊂T

{
1

N

N∑
i=0

σ(t(Oi), Ai)

}
(26)

with T is the set of all class permutations and σ, Oi and Ai

are defined in Equation 25. For the two metrics R and C,
the best results correspond to the high value in the clustering
experiments. The maximum of threshold of the fitness function
was set empirically to 300 for all the used methods for
better comparison. In addition, the best-selected method is the
approach that can provide the best results with the smallest
number of fitness function evaluations. The obtained clustering
results are illustrated in Tables XI and XII. Table XI shows
the comparison between FKM, FCM, FCM2, CF, BC2, EA,
RP, our S1 (S1M) and S2 (S2M) measures for the metric R
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Fig. 5. Comparison between FKM, FCM, FCM2, CF, S1M and S2M for the
metric R

Fig. 6. Comparison between FKM, FCM, FCM2, CF, S1M and S2M for the
metric C

while Table XII represents the comparison between the same
clustering methods above-cited for the metric C. All results for
BC2, EA and RP were taken from [70]. Results for Cluster
Forest and those for Type-2 Fuzzy C-means were derived from
[69] and [62], respectively. As described in Table XI and XII,
the findings, obtained for S1 and S2 measures, show relevant
and significant results reaching 83% and 86% for the metric
R and C, respectively. For example, for Breast Cancer data
and for the metric R, clustering results based on S1 and S2
measures reached higher classification accuracy which is in
average 0.6% more accurate than that provided by FCM2,
1% than that given by FCM and 3% than that obtained by
FKM, BC2, EA and RP. Our proposed IT-2 FSMs gave better
clustering results than all the cited algorithms, except for the
CF method. Similarly, for the Statlog (Heart) data and for
the metric C, clustering results based on S1 and S2 measures
achieved higher classification accuracy which is in average 2%
more accurate than FKM; 0.5% than FCM and FCM2; 2% than
BC2 and EA and 1% than RP, respectively. From Tables XI
and XII, it is clear that S2 measure gave better results than
S1 measure for the 2 metrics R and C in term of accuracy.
We can then conclude that S1 and S2 measures can perform
better in clustering tasks for 6 datasets that differ in instances,
features and classes numbers. As depicted by Janousek et al. in
[69], the CF algorithm outperforms BC2, EA and RP methods.
In Figure 5 and 6, only FKM, FCM, CF, FCM2, S1M and
S2M classifiers. All these classifiers present similar curves
including our S1 and S2 measures which confirms the fact
that the proposed IT-2 FSMs can really be used in clustering
applications, decision making and knowledge reduction.

In practical application, since S1 measure satisfies the four
similarity properties, it may be used in almost all applications
especially decision making problems. While, S2 has shown

good results in applications dealing with linguistic terms
or computing with words field. Very relevant results were
obtained also in classification application or clustering data.
The findings obtained by applying S3 similarity measure, have
shown that S3 performance may change from one experiment
to another. S3 was not good in linguistic data but was efficient
in detecting non similar cases.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, three Interval Type-2 Fuzzy Similarity mea-
sures (S1, S2 and S3) were proposed as an extension of
some Intuitionistic ones to be used between IT2-FSs in
clustering applications. Mathematical Proofs were provided
in order to demonstrate that the introduced IT-2 FSMs can
satisfy similarity properties (Transivity, reflexivity, overlapping
and symmetry). In fact, S1 measure satisfied all the four
proximity properties while S2 and S3 did not fulfill the
symmetry and the reflexivity property, respectively. These IT-2
FSMs were tested on real data, compared with some existing
Type-2 similarity measures (Gorzalczany, Bustince, Mitchell,
Zeng and Li, VSM and Jaccard IT-2FSMs) in both noisy
and noise free environments showing relevant and reasonable
results especially for S1 and S2 measures. The advanced IT-
2FSMs achieved higher similarity performance, which is in
average, 0.5% more efficient than the existing IT-2FSMs. In
order to prove the effectiveness of these IT-2 FSMs, S1 and
S2 measures were evaluated in clustering applications. We
combined these measures with Fuzzy c-means algorithm by
changing the Euclidean distance with the use of the advanced
S1 and S2 measures. Then, our algorithm was compared
with the existing clustering ones (Type-1 Fuzzy k-means,
Type-1 and Type-2 Fuzzy c-means, Cluster Forest, Bagged
Clustering, Evidence Accumulation and Random Projection).
This comparison demonstrated that our algorithm, based on 2
clustering quality performers: R and C (considered as the stan-
dard classification accuracy), reached the highest classification
accuracy (86%). The performance of clustering system relying
on the advanced IT-2FSMs is almost the same as that of the
other exiting classifiers. In our future work, these measures
will be tested in the psychology of concepts and knowledge
reduction domain by factorizing similar concepts, selecting
concepts prototypes and generating the Interval Type-2 Fuzzy
Formal Lattice as a knowledge representation form for better
decision or subjective judgment.
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