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Quantifying the benefit of structural health monitoring: can the value 

of information be negative?  

The benefit of Structural Health Monitoring (SHM) can be properly quantified 

using the concept of Value of Information (VoI), which is, applied to an SHM case, 

the difference between the utilities of operating the structure with and without the 

monitoring system. The aim of this contribution is to demonstrate that, in a 

decision-making process where two different individuals are involved in the 

decision chain, i.e. the owner and the manager of the structure, the VoI can be 

negative. Indeed, even if the two decision makers are both rational and exposed to 

the same background information, their optimal actions can diverge after the 

installation of the monitoring system due to their different appetite for risk: this 

scenario could generate a negative VoI, which corresponds exactly to the amount 

of money the owner is willing to pay to prevent the manager using the monitoring 

system. In this paper, starting from a literature review about how to quantify the 

VoI, a mathematical formulation is proposed which allows one to assess when and 

under which specific conditions, e.g. appropriate combination of prior information 

and utility functions, the VoI becomes negative. Moreover, to illustrate how this 

framework works, a hypothetical VoI is evaluated for the Streicker Bridge, a 

pedestrian bridge on the Princeton University campus equipped with a fiber optic 

sensing system: the results show how the predominant factor that determines a 

negative VoI is the different risk appetite of the two decision makers, owner and 

manager. 

Keywords: value of information; Bayesian inference; expected utility theory; 

decision-making; bridge management; structural health monitoring 

1. Introduction 

Structural Health Monitoring (SHM) is a powerful tool for bridge management that 

support decisions concerning maintenance, reconstruction and repairs of assets through 

reducing uncertainties on the state of the structure. Uncertainty increases the likelihood 

of unwelcome outcomes such as neglecting necessary repairs while engaging in 

unnecessary ones. Such decision-making is challenging as it requires the decision maker 

to trade-off between anticipated risk and benefits to prioritize activities. The prioritization 



of activities will be determined in part by uncertainty and in part by the appetite for risk 

of the decision maker, which varies across individuals such that, given the same 

alternatives with the same state of uncertainty, two rational decision makers may take 

different courses of action. 

Consider a simple car maintenance example as an illustration, where an owner 

must decide to prioritize changing the battery or tires. This decision should be informed 

not only by the probability of each failing but also on the consequences of failure. Failure 

of the battery may be considered more of an inconvenience as it prevents the car from 

starting but tire failure on a moving vehicle can be a safety critical event. If the probability 

of tire failure is less than the battery failure then the decision will be influenced by the 

decision-makers appetite for risk, where the more risk adverse will choose to replace the 

tires, even with a small probability to avoid the more serious consequences, while more 

risk neutral decision makers will accept the exposure to the tire failure risk to avoid the 

more likely and inconvenient battery failure.  The extent to which a decision maker is risk 

adverse can be characterised by the extent to which they avoid exposure to rare but highly 

consequential events. For a fuller discussion, where this is methodology is explored in 

the context of programme risk management see Wilson and Quigley (2016). 

Through reduction in uncertainty such decision makers become more aligned in 

their choices. However, monitoring systems might become costly and with limited 

budgets the anticipated value of the information provided towards the safety of the 

structure must be considered. Although the utility of SHM has rarely been questioned, 

very recently a few published papers (Thons & Faber, 2013) (Zonta, et al., 2014) have 

clarified how to evaluate it. The benefit of information is formally quantified by the so-

called Value of Information (VoI), a concept anything but new: it was first introduced by 



Lindley (1956), as a measure of the information provided by an experiment, and later 

formalized by Raiffa and Schlaifer (1961) and DeGroot (1984). 

Since its introduction, it has been continuously applied in many fields, including 

statistics, reliability and operational research (Wagner, 1969) (Sahin & Robinson, 2002) 

(Ketzenberg, et al., 2007) (Goulet, et al., 2015) (Quigley, et al., 2017). Its first appearance 

in the SHM community was implicitly in the 1980s (Thoft-Christensen & Sorensen, 

1987), while explicitly it is much more recent and dates back to a paper published in 2005 

by Straub and Faber (2005), followed by Bernal, Zonta and Pozzi (2009), Pozzi, Zonta, 

Wang and Chen (2010), Pozzi and Der Kiureghian (2011), Thöns and Faber (2013), 

Zonta, Glisic and Adriaenssens (2014), Limongelli, Omenzetter, Yazgan and Soyoz 

(2017), Giordano, Prendergast and Limongelli (2020) - a recent state of the art can be 

found in Straub et al. (2017) and Thöns (2017). In the last few years, quantifying the value 

of SHM has known a renewed popularity thanks to the activity of the EU-funded COST 

action TU1402 (Thons, et al., 2017): in particular, Sousa et al. (2019), Diamantidis et al. 

(2019) and Thöns (2019) are the official guidelines of the COST action TU1402, where 

efforts have been made to properly present the subject targeting complementary 

audiences, i.e. decision-makers, practising engineers and scientists. 

In summary, the value of a SHM system can be simply defined as the difference 

between the benefit, or expected utility upp, of operating the structure with the monitoring 

system and the benefit, or expected utility u0, of operating the structure without the 

system. Both upp and u0 are expected utilities calculated a priori, i.e. before actually 

receiving any information from the monitoring system. While in u0 it is assumed that the 

knowledge of the manager is his/her a priori knowledge, upp is calculated assuming the 

decision maker has access to the monitoring information and is sometimes referred as to 

preposterior utility. In classical decision theory, one of the main assumptions is that all 



decisions concerning system installation and operation are taken by the same rational 

agent. In this case, it is easily proved that the VoI can only be positive, consistently with 

the principle that “information can’t hurt”, as first introduced by Cover and Thomas 

(2012) and later by Pozzi et al. (2017). 

However, there are several cases in the literature where a negative VoI is observed: 

regardless of the field of application, they can be classified in three different classes. The 

first one (#1) relates to non-cooperative games and decisions against nature: in summary, 

when agents compete against each other, information can produce a negative value to 

some of them, precisely because they are in the area of competitive decisions. In the 

literature, some examples can be found principally in the field of financial markets, see 

for instance Baiman (1975), Schredelseker (2001), Pfeifer, Schredelseker and Seeber 

(2009). The second case (#2) is instead about the presence of constraints in the decision 

process, which can lead the decision maker to take irrational decisions. A clear example 

is reported in Pozzi et al. (2017) and Pozzi et al. (2020), where a system’s maintenance 

agent has to blindly follow the prescriptions of codes and regulations, regardless of their 

inherent rationality: in this case, the decision maker, in order to bypass societal constraints 

(e.g., legal requirements, etc), may find it convenient to avoid information. As 

demonstrated in the papers, the constraint affects the VoI, which may consequently result 

in it being negative. Finally, the third case (#3) relates to the presence of multiple rational 

decision makers that have to take decisions at different levels, which are somehow 

connected. This case is presented for instance in Bolognani et al. (2018), where two 

individuals are involved in the decision chain as regards a SHM-based decision process. 

In the paper it is proved that, because of the different appetite for risk of the two rational 

agents, the VoI may become negative. Table 1 summarizes the main features of the three 

cases. 



Table 1. Main features of the three cases. 

Case Definition Example of application 

#1 

When agents compete against each other, 

information can produce a negative value to 

some of them, precisely because they are in the 

area of competitive decisions. 

Financial markets 

(Baiman, 1975) 

(Schredelseker, 2001) 

(Pfeifer, et al., 2009) 

#2 

The presence of constraints (e.g. prescriptions 

of codes and regulations) in the decision 

process can lead decision makers to take 

irrational decisions, e.g. they may find it 

convenient to avoid information. 

Maintenance of 

engineering systems 

(Pozzi, et al., 2017) 

(Pozzi, et al., 2020) 

#3 

The presence of multiple rational decision 

makers, that have to take decisions at different 

levels, may lead to a negative VoI because of 

the different appetite for risk of the agents. 

Structural Health 

Monitoring 

(Bolognani, et al., 2018) 

 

While in the literature it is easily demonstrated the reason why in the first two 

cases introduced above it is possible to find a negative VoI, respectively because of 

competitive decisions and because of irrational constrains, it is not so immediate to 

understand why it may happen in the third case, which is based only on rational 

behaviours. Consequently, this contribution will focus on this specific third case, which 

is also the one that mainly affects the field of SHM. A typical situation in SHM is that 

there are more individuals involved in the decision chain: a first example is the case where 

there is one agent who decides whether or not to install the monitoring system, and one 

who decides how to use it (Bolognani, et al., 2018); a second example is the pair decision 

maker and practising engineer, cited in the COST Action TU1402 (Sousa, et al., 2019) 

(Diamantidis, et al., 2019). 

The case study introduced by Bolognani et al. (2018) is examined herein and the 

main assumptions are summarised in the following. Two decision makers are involved in 

the decision chain, and they have to take decisions at two different decision stages. Firstly, 



a decision is made on whether or not to buy and install the monitoring system on the 

structure; typically, this decision is carried out by a high-level manager, conventionally 

referred to as owner. The second stage concerns the day-to-day operation of the structure, 

which includes for example maintenance, repair, retrofit or enforcing traffic limitations, 

once the monitoring system is installed; if installed these decisions may be informed by 

the monitoring system. Typically, this decision is carried out by an engineer, referred to 

as manager. The two agents are both rational and with the same background knowledge, 

they only differ in the weight they apply to the possible economic losses, meaning that 

they have different utility functions (i.e. different priorities). Therefore, the two decision 

makers may differ in their choices under uncertainty: for instance, the owner needs to 

consider the manager’s appetite for risk when deciding whether to install a monitoring 

system, as this will indicate how the system will influence the manager’s decision-making 

and as such the value of this information. As proved in Bolognani et al. (2018), these 

assumptions can lead to a negative VoI because, even if the two agents have the same 

prior knowledge of the problem, their optimal actions can diverge after the installation of 

the monitoring system, due to their different attitudes towards risk. While in the paper it 

is showed that the VoI can become negative, the proof under which generic mathematical 

conditions this is true remains under research. 

The aim of this contribution is to demonstrate under which specific conditions, 

e.g. appropriate combination of prior information (i.e. the knowledge before new data is 

collected) and utility functions (i.e. functions that reflect the utility of the consequences 

of an action), it is possible to find a negative VoI in this specific case, by developing a 

mathematical formulation. Section 2 reviews the formulation for the quantification of the 

VoI in a SHM-based decision process, both in the classical case of a singular rational 

agent and in the case of two different individuals, needed for a better understanding of 



how it is possible to achieve a negative VoI only in the second case. Next, in Section 3, a 

prototype decision problem is introduced and a mathematical formulation to investigate 

under which circumstances the VoI becomes negative is developed. Finally, to illustrate 

how this framework works, Section 4 applies it to the same decision problem reported in 

Zonta et al. (2014), Tonelli et al. (2018) and Bolognani et al. (2018), i.e. the Streicker 

Bridge case study: it is a pedestrian bridge at Princeton University campus equipped with 

a continuous monitoring system. Some concluding remarks are presented at the end of 

the article. 

2. Value of information for SHM-based decision 

In this section, the concept of VoI for SHM-based decision problems is reviewed, 

following a similar path as in Zonta et al. (2014) and Bolognani et al. (2018). The reader 

can find recent examples of SHM-based decision problems in Flynn and Todd (2010a), 

Flynn and Todd (2010b), Flynn et al. (2011), Tonelli et al. (2017), Bolognani et al. (2017), 

Verzobio et al. (2018), Verzobio et al. (2019). 

As observed in Cappello, Zonta and Glisic (2016), SHM-based decision-making, 

i.e. deciding based on the information from a SHM system, is properly a two-step process, 

as represented in Figure 1: it includes the judgment of the state S of the structure based 

on the information y from the sensors, and subsequently the decision of the optimal action 

aopt to take based on the knowledge of the state S. As regards the first step, i.e. the 

judgment, the logical inference process followed by a rational agent is mathematically 

encoded in Bayes’ rule (see for example Lindley (2006), Sivia and Skilling (2006), 

Bolstad (2010)), which allows one to estimate the posterior distribution on the state of the 

structure P(S|y) (i.e. the probability of the state S given the information y from the 

sensors). Successively, the decision-making step is about choosing the best action aopt: 



Expected Utility Theory (EUT) (Neumann & Morgenstern, 1944) (Raiffa & Schlaifer, 

1961) describes the analysis of decision-making under risk and is considered as a 

normative model of rational choice (Parmigiani & Inoue, 2009). 

 

Figure 1. Process of SHM-based decision-making. 

Before proceeding with the mathematical formulations of VoI, some generic 

assumptions are introduced: 

• The monitoring system provides a dataset that can be represented by a vector y, 

called observation in Figure 1, that is fundamental to evaluate the posterior state 

through Bayesian inference. 

• The structure, for instance a bridge, can be in a one out of N mutually exclusive 

and exhaustive states S1, S2, …, SN (e.g.: S1 = ’severely damaged’, S2 = 

’moderately damaged’, S3 = ’not damaged’, …). 

• The state of the structure is generally not deterministically known and can be only 

described in probabilistic terms. 

• The decision maker can choose between a set of M alternative actions a1, a2, …, 

aM (e.g.: a1 = ‘do nothing’, a2 = ‘limit traffic’, a3 = ‘close the bridge to traffic’, 

…). 



• Taking an action produces measurable consequences (e.g.: a monetary gain or 

loss, a temporary downtime of the structure, in some cases causalities); the 

consequences of an action can be mathematically described by several parameters 

(e.g.: the amount of money lost, the number of days of downtime, the number of 

casualties), encoded in the outcome vector z of Figure 1. 

• The outcome z of an action depends on the state of the structure, thus it is a 

function of both action a and state S: z(a, S); when the state is certain the 

consequence of an action is also deterministically known; therefore, the only 

uncertainty in the decision process is the state of the structure S. 

• For simplicity and clarity, the case of ‘single shot’ interrogation is considered, 

which is the case when the interrogation occurs only following an event which 

has a single chance to happen during the lifespan; an extension to the case of 

multiple interrogations can be found in Zonta et al. (2014). 

2.1. Unconditional VoI context 

In the classical formulation of VoI (Zonta, et al., 2014), referred to as 

unconditional, i.e. assuming all decisions concerning system installation and operation 

taken by the same rational agent, the VoI of a monitoring system is simply the difference 

between the expected utility with the monitoring system upp, and the corresponding utility 

without the monitoring system u0: 

VoI = upp −  u0. (1) 

In the case of a structure not equipped with a monitoring system, the rational manager 

decides without accessing any SHM data, and they will choose the action a that maximize 

the expected utility u0. Consequently, the utility without monitoring, also called prior 

utility, is calculated as follows: 



u0 = max
i

u(ai),           aopt = arg max
i

u(ai), (2a,b) 

where aopt is the action which carries the maximum expected utility u. Conversely, if a 

monitoring system is installed and the data are available for the agent, the monitoring 

observation y affects the state knowledge, and therefore indirectly their decisions. In this 

case, the expected utility upp, also called preposterior utility, can be derived from the 

posterior expected utility u(y) by marginalizing out the variable y (Zonta, et al., 2014) 

(Cappello, et al., 2016): 

upp = E𝐲 [max
i

u(ai,y)] = ∫ max
i

u(ai,y) ∙ p(y) 
Dy

dy, (3) 

where Ey is the expected value operator of y, while distribution p(y) is the so-called 

evidence in classical Bayesian theory (Sivia & Skilling, 2006). In conclusion, the 

unconditional VoI of a monitoring system is calculated as follows: 

VoI = upp − u0 = ∫ max
i

u(ai,y) ∙ p(y) 
Dy

dy − max
i

u(ai) . (4) 

In other words, the VoI is the difference between the expected maximum utility and the 

maximum expected utility. It is mathematically verified that upp is always greater than or 

equal to u0, and therefore the VoI as formulated above can only be positive. This is to say 

that under these assumptions it is never preferred not to have the data if they were 

available, which is consistent with the principle “information can’t hurt” (Cover & 

Thomas, 2012). 



2.2. Conditional VoI context 

Bolognani et al. (2018) have investigated a variant of the decision problem above 

where two different rational individuals, rather than one, are involved in the decision 

chain. In particular, there is an owner who decides whether or not to install a monitoring 

system, and a manager who decides which is the optimal action once the monitoring 

system is installed or not. Therefore, all utilities are from the owner perspective, but 

should be evaluated accounting for the action that the manager, not the owner, is expected 

to choose. The prior expected utility of Equation (2), in the case of a structure without the 

monitoring system, changes to: 

u0 = u(𝑎opt
∗ ) = u {arg max

i
𝑢∗(ai)} , (5) 

where the star * indicates the optimal action or the utility from the manager perspective. 

Similarly, the expected utility of the owner in the expectation of what the manager would 

decide if a monitoring system was installed turns into:  

 upp = ∫ u {arg max
i

𝑢∗(ai,y)} ∙ p(y) dy
Dy

. (6) 

The VoI of a monitoring system calculated under these assumptions is labelled 

conditional, to remind us that the utility of the owner is conditional to the action chosen 

downstream by the manager, and reads (Bolognani, et al., 2018): 

 VoI = upp − u0 = ∫ u {arg max
i

𝑢∗(ai,y)} ∙ p(y) dy
Dy

− u {arg max
i

𝑢∗(ai)} . (7) 

Table 2 summarizes the unconditional and conditional formulations. As observed in 

Bolognani et al. (2018), in the conditional case it is no longer automatically verified that 

the owner’s preposterior utility upp is always greater than or equal to the prior utility u0. 



Therefore, unlike the unconditional case, it is possible to find a combination of prior 

probabilities, likelihoods and utility functions which yield a negative conditional VoI. 

The aim of this contribution is then to demonstrate under which mathematical conditions 

it is possible to find a negative VoI.  

Table 2. Formulation of VoI for SHM in the unconditional and conditional case. 

 

Unconditional formulation 

(one agent profile, i.e. 

manager profile = owner 

profile)  

Conditional formulation 

(two different agents, i.e. 

manager profile ≠ owner profile) 

Prior utility without 

monitoring u0 
max

i
u(ai) u{arg max

i
𝑢∗(ai)} 

Preposterior utility 

with monitoring upp 
∫ max

i
u(ai,y) ∙ p(y) 

Dy

dy ∫ u {arg max
i

𝑢∗(ai,y)} ∙ p(y) dy
Dy

 

3. When does the VoI become negative? 

In the previous section, the concept of conditional value of information has been 

introduced and it has been noticed that, ‘under certain conditions’, it could become 

negative. In this section, the goal is to clarify which exactly are the conditions whereby 

the conditional VoI becomes negative. To do so, the analysis will focus on a 2-state 2-

action prototype decision problem, graphically illustrated in the decision tree of Figure 2, 

which is representative of a number of binary decision settings that can be found in the 

literature (Raiffa & Schlaifer, 1961) (Parmigiani & Inoue, 2009). Particularly, the 

following assumptions are made: 

• The structure can be in one of two mutually exclusive and exhaustive states S1 

and S2 (e.g.: S1 = the bridge is damaged; S2 = the bridge is not damaged). 



• The decision maker can choose between two alternative decisions a1 and a2 

(e.g.: a1 = do nothing; a2 = close the bridge). 

• Both actions may have consequences, depending on the (uncertain) state: z(ai, 

Sj) represents the set of consequences of action ai on the realization of state Sj. 

Both manager and owner are equally aware of these consequences. 

• The utility function of the owner is defined U(z), where the argument z is a 

particular set of consequences. To simplify the notation, the utility of the 

consequences of action ai on the realization of state Sj is labelled Uij = U(z(ai, 

Sj)). To prevent confusion, note that in this paper capital U indicates the utility 

function, while lowercase u denotes an expected utility. 

• Regardless the complexity of the monitoring system, its ultimate output is 

represented by a single parameter y, defined in the domain [0, ymax]. Parameter 

y could be, for instance, a compensated measurement, or a synthetic damage 

index calculated using the full dataset recorded to date. The manager makes a 

decision solely based on parameter y. 

• The two agents, owner and manager, have the same prior knowledge of the 

problem, i.e. their prior probability P(Sj) of being in one of the two states is 

identical. They also interpret the data from the SHM system using the same 

interpretation model, which is encoded in the two likelihood functions p(y|Sj) 

(i.e. the probability of observing the data of the monitoring system given the 

state of the structure). They are both coherent and judge consistently with 

Bayes’ rule (i.e. rationally): therefore, their judgement on the state of the 

structure, prior or posterior, is always identical. 

• Similarly, the two agents decide rationally consistently with EUT. However, 

their utility functions are generally different (i.e. they weight in a different way 



the seriousness of an action), thus their decisions, in the same situation, could 

differ. 

• Parameter y is defined in such a way that the values of y whereby the owner 

chooses an action rather than the other are separated by a single threshold y̅. 

Without losing generality, it is assumed here that when y < y̅ the owner 

chooses action a1. The same applies to the manager, except that their threshold, 

labelled y̅∗, could be different.  

 

Figure 2. Decision tree of the prototype decision problem. 

With the above assumptions, the conditions whereby the VoI becomes negative 

will be established. Before tackling the problem in full, the further assumptions are made: 

U12 = U21 = 0 and U11 < U22 < 0. This simplifying hypothesis makes the solution much 

more intuitive and easier to understand and will be released at the end of this section. To 

further help the reader picturing the problem, imagine you are dealing with a bridge that 

may be in damaged, i.e. S1, or undamaged, i.e. S2, condition. The manager can decide to 



keep the bridge open or close it. If the bridge is left open and is damaged, the bridge fails 

(i.e. the bridge collapses) producing a negative utility U11. If the bridge is unnecessarily 

closed when not damaged, the manager is sanctioned with a penalty U22. The loss for a 

failure is in absolute value much greater than the penalty for closing the bridge without 

necessity, i.e. |U11| > |U22| or U11 < U22, reminding that the utilities are negative. More 

generally, this is the prototype of any problem where an agent is faced with a binary 

decision, and each decision can be right or wrong depending on the unknown state. If the 

agent makes the right choice, nothing happens, otherwise they are sanctioned with a 

penalty. 

In summary, the decision tree of this specific situation is the same as in Figure 2, 

with the only difference that now both the branch “Without SHM” and “With SHM” have 

the situation illustrated in Figure 3, i.e. U12 = U21 = 0, and consequently the evaluation of 

the expected utilities u1 and u2 is simplified. 

 

Figure 3. How the decision tree of Figure 2 changes in this specific situation. 

3.1. Decision a priori 

The problem of decision a priori from the owner perspective is analysed. The owner will 

favour action a2 (i.e. close the bridge) over a1 (i.e. do nothing) when the prior expected 

utility u2 is greater than the prior expected utility u1, i.e.: 



          u1 < u2. (8) 

Recall u1 = P(S1)U11, u2 = P(S2)U22, and both utilities are negative, the inequality of 

Equation (8) can be rewritten as: 

R =
P(S2)

P(S1)
 
U22

U11

< 1, (9) 

where R is a discriminant ratio which expresses the optimal action a priori from the owner 

perspective. It can be observed that, by definition, R = 1 corresponds to the indifference 

in the choice a priori between the two actions a1 and a2, i.e. u1 = u2, while it is preferred 

to choose action a1 if R > 1, i.e. u1 > u2, or action a2 if R < 1, i.e. u1 < u2. It is convenient 

to express the discriminant R as: 

 R =
r

q
, (10) 

where: 

q =
P(S1)

P(S2)
,                 r =

U22

U11

. (11a,b) 

Index q is the prior odds of state S1 respect to S2, while index r is an indicator of the 

subjective risk appetite of the decision maker: the more the agent is risk seeking, the 

bigger is index r. The risk seeking index r is subjective and changes with the actor. So, 

the manager in general may have a different value r∗ and therefore a different value of 

the discriminant ratio R∗ a priori. In the following, it is assumed that manager and owner 

agree that the optimal action a priori is, for example, a2 (i.e. close the bridge), thus both 

ratios R and R∗ are smaller than one. 



3.2 Decision a posteriori 

In the previous subsection, how decision is made a priori has been explained, meaning 

‘before’ the decision maker has seen the data acquired by the monitoring system. In this 

subsection, it is explained instead how judgment and decision change when the 

information from the monitoring system is available to the decision maker, a situation 

called a ‘posteriori’, meaning ‘after’ the decision maker has seen the data. Recall that the 

judgment a posteriori is indicated with the notation P(Sj|y), to separate it from the 

judgment a priori P(Sj), where y is the output of the monitoring system. 

The analysis a posteriori from the owner’s perspective is now analysed. After 

observing a particular output y from the monitoring system, the owner updates their 

knowledge of the structural state from prior P(Sj) to posterior P(Sj|y). Similar to the prior 

case, the owner decides a posteriori by comparing the expected utilities of the two actions 

a posteriori, i.e. u1(y) = P(S1|y)U11 and u2(y) = P(S2|y)U22, as shown in Figure 4(d) in the 

example case of Gaussian likelihood distributions (Figure 4(a), 4(b), 4(c)). The threshold 

y̅ is the value of y (i.e. the output of the monitoring system, Figure 2) for which a posteriori 

the expected utilities are the same, i.e. u1(y̅) = u2(y̅), which can be expressed in the 

following way: 

                      
 y̅: u1(y̅) = u2(y̅). (12) 

Recall it has been assumed that the owner’s choice a priori is action a2 (i.e. close the 

bridge), and that y is defined in such a way that the optimal action a posteriori is a1 (i.e. 

do nothing) for y < y̅. Therefore, a posteriori the owner will change their decision when 

y < y̅ and confirm the prior decision otherwise. Using Bayes’ theorem, Equation (12) can 

be rearranged in the form: 



y̅ :  
p(y̅|S

1
)

p(y̅|S
2
)

=
P(S2)

P(S1)
 
U22

U11

. (13) 

It can be immediately recognized that the right-hand term of Equation (13) is the same 

ratio R a priori introduced in Equation (9). Further, a function g(y) is defined as the ratio 

between the likelihoods of the two states: 

g(y) =
p(y|S

1
)

p(y|S
2
)

. (14) 

Therefore, the owner threshold y̅ is determined by the following simple equation: 

y̅ :  g(y̅) = R. (15) 

As such function g, which depends only on the likelihood distributions, equals R when 

evaluated in the threshold, as shown in Figure 4(e). It is possible to observe that the 

threshold effectively depends on ratio R, which in turn depends on the risk apatite of the 

owner.  

In a similar manner, the manager threshold y̅∗ is such that g(y̅∗) = R∗, as illustrated 

again in Figure 4(e). The manager threshold y̅∗ can be bigger or smaller than the owner 

threshold y̅ depending on whether the manager is respectively more or less risk seeking 

than the owner. Since in general the threshold of the manager y̅∗ and the one of the owner 

y̅ do not coincide, it is possible to have three different situations a posteriori (i.e. following 

a monitoring observation y): 

• If observation y is smaller than the two thresholds, both manager and owner agree 

to change their decision to a1. 

• If observation y is bigger than the two threshold, manager and owner agree to keep 

the prior decision a2. 



• if observation y is included between the two thresholds, manager and owner 

disagree on the decision to be made. 

3.3 Preposterior analysis 

The utility gain resulting from changing a decision a posteriori is defined as Δu(y) =

u1(y) − u2(y). Evidently, changing their mind is convenient to the owner when the 

monitoring system yield value smaller than their threshold. The conditional VoI, 

introduced in Equation (7), based on the developed assumptions can be calculate as 

follows: 

VoI = ∫ Δu(y) ∙ p(y) dy

y̅∗

0

, (16) 

where Δu(y) ∙ p(y) can be seen as an expected utility density function (EUDF), plotted in 

Figure 4(f). The figure shows that the VoI is effectively the area under the expected utility 

function up to the threshold of the manager y̅∗. It is also observed that: 

• Because the EUDF is greater than zero under the threshold of the owner y̅, 

evidently the VoI is maximum and always positive when the two thresholds 

coincide; this is the case of the unconditional value of information uVoI. 

• When the manager is less risk seeking than the owner, i.e. y̅∗ < y̅, the 

conditional VoI is smaller than the unconditional, but can never be negative – 

could be at least zero when y̅∗ = 0. 

• When the manager is more risk seeking than the owner, i.e. y̅∗ > y̅ (this is 

exactly the situation of Figure 4(f)), the negative integral of the EUDF between 

the two thresholds can be interpreted as a Loss for Disagreement (LfD) of the 



two decision makers. If the LfD is bigger than the uVoI, then the conditional 

VoI results as a negative valued VoI.  

In order to better clarify the condition whereby the VoI is negative, note that in the 

particular case analysed the EUDF can be written as: 

Δu(y) ∙ p(y)=(P(S1|y)U11 − P(S2|y)U22) ∙ p(y)=P(y|S
1
)P(S1)U11 -P(y|S

2
)P(S2)U22. (17) 

Therefore, the conditional VoI becomes: 

VoI = ∫ p(y|S
1
)P(S1)U11 dy

y̅∗

0

− ∫ p(y|S
2
)P(S2)U22 dy

y̅∗

0

. (18) 

The VoI is equal to zero either if y̅∗ = 0 or:  

y̅∗:    
∫ p(y|S

1
) dy

y̅∗

0

∫ p(y|S
2
) dy

y̅∗

0

=
P(S2)

P(S1)
 
U22

U11

. (19) 

Notice that the format of Equation (19) is strikingly similar to Equation (13), with the 

only difference that the left-hand term is the ratio between the cumulative distributions 

of the two likelihoods, rather than the two mass density functions. Therefore, another 

function G(y) is defined, as the ratio between the cumulative distributions of the two 

likelihoods (i.e. F(y|S1) and F(y|S2)): 

G(y) =
F(y|S

1
)

F(y|S
2
)

=
∫ p(y|S

1
) dy

𝑦

0

∫ p(y|S
2
) dy

𝑦̅

0

. (20) 

Consequently, the minimum manager threshold y̅∗ that makes the VoI negative is 

determined by the following simple equation: 

 y̅∗:   G(y̅∗) = R. (21) 



This outcome, together with Equation (15), explicates how the threshold y̅ and the index 

R of the manager, i.e. y̅∗ and R∗, must be, in comparison to the ones of the owner, in order 

to achieve a null conditional VoI: 

   y̅∗ = G
 -1(g(y̅)), R∗ = g (G

 -1(R)) . (22a,b) 

In other words, in order to have a null VoI, the ratio between indexes r and between the 

thresholds y̅ of the two agents are: 

r∗

r
=

R∗

R
=

g (G -1(R))

R
,               

y̅∗

y̅
=

G
 -1(R)

g -1(R)
. (23a,b) 

3.4 Generalization and summary 

These formulations have been derived under the very stringent assumption that U12 = U21 

= 0 (see Figure 3). This assumption is now released: the condition whereby the owner 

will favour action a2 (i.e. close the bridge) over a1 (i.e. do nothing), which was previously 

encoded into Equation (9), now reads: 

P(S2)

P(S1)
 
U22 − U12

U11 − U21

< 1, (24) 

so, it suffices to redefine the risk seeking factor r (previously encoded into Equation 

(11b)) as: 

 r =
U22 − U12

U11 − U21

, (25) 

and the rest of the formulation is completely identical. Index r, and consequently also R, 

is an indicator about the risk appetite of the decision maker based on the definition of the 



four utilities: even in this general case, the more the agent is risk seeking, the bigger is 

index r. 

In summary, the necessary and sufficient condition to have a negative VoI is: 

R∗ > g (G
 -1(R)),            y̅∗ > G

 -1(g(y̅)), (26a,b) 

where the ratio R depends on the prior odds q and on the risk seeking ratio r, defined in 

Equation (25). The conclusion is that, in order to achieve a negative VoI, the manager has 

to be more risk seeking than the owner, i.e. r∗ > r, so that their threshold y̅∗ is bigger of 

an amount that only depends on the choice of the likelihood distributions. 

  



 

 

 

Figure 4. Graphical representation of how the conditional VoI may become negative: 

likelihood distributions (a), joint probabilities and evidence (b), posterior probabilities 

(c), expected utilities (d), indexes g and G (e), expected utility density functions (f). 



3.5. Notable case 

Equation (26a) shows that the ratio R∗ that produces a negative VoI depends only on the 

choice of the likelihood distributions (illustrated for example in Figure 4(a) as Gaussian) 

and on the owner ratio R. In order to calculate R∗, functions g(y) and G(y) have to be 

expressed, and their inverse functions g -1(R) and G
 -1(R) have to be calculated. 

Unfortunately, in most cases it is not easy, and sometime not even possible, to express 

the inverse functions in closed form. A notable exception is when the likelihood 

distributions are described with polynomial functions, as follows: 

p(y|S
1
) = (n + 1) yn,      p(y|S

2
) =

n + 1

n
(1 −  yn),       with y ∈[0, 1]. (27) 

These likelihoods are presented in Figure 5, as an example, for the polynomial degree n 

varying from 1 to 4. For instance, n=1 corresponds to the case of triangular distributions 

over an interval. In order to make this case more intuitive to the reader, imagine that the 

monitoring system ultimately yields a damage index that is equal to 0 if there is no 

damage, and equal to 1 if the structure is fully damaged. In this case, the undamaged 

likelihood (i.e. p(y|S2)) could be described with a triangular distribution that has its 

maximum at 0, at its minimum at 1. Similarly, the damaged likelihood (i.e. p(y|S1)) could 

be described with a triangular distribution that has its maximum at 1, at its minimum at 

0. 



 

Figure 5. Likelihood distributions according to the polynomial degree n (this is a specific 

case of likelihood distributions that can be compared to Figure 4(a)). 

In this case, functions g(y), G(y) and their inverse are: 

g(y) = n 
yn

1 −  yn
, g -1(R) = √

R

n + R

n

 . (28a,b) 

G(y) = n 
yn

(n + 1) −  yn
,         G -1(R) = √

R(n + 1)

n + R

n

. (29a,b) 

An interesting feature of this class of likelihood functions is that the rate between the 

manager and owner threshold is constant and equal to: 

y̅∗

y̅
= √n + 1

n
. (30) 

This means that, to achieve a null conditional VoI, the threshold of the manager has to be 

bigger than the one of the owner of a quantity that depends only on the polynomial degree 



n. For instance, in the linear case, i.e. n = 1, it results that y̅∗ has to be double of y̅. Table 

3 reports the results for n from 1 to 4. 

Table 3. How the ratio between y̅∗  and y̅ varies according to n to achieve VoI = 0. 

n 1 2 3 4 

y̅∗

y̅
 2 √3 √3

4
 √4

5
 

It is evident that, as n increases, it decreases how much y̅∗ has to be bigger than y̅ in order 

to have (O|M)VoI = 0, and consequently a negative conditional VoI. It is possible to 

understand easily the reason of this outcome by analysing it graphically: in the linear case, 

presented in Figure 6(a), the threshold of the manager has to be clearly double of the one 

of the owner, because uVoI and LfD are two triangles. Conversely, with n > 1, as for 

example Figure 6(b) shows for n = 2, it is evident that, in order to have the area of uVoI 

and the one of LfD equal, y̅∗ has to be bigger than y̅, but less than double. 

 



Figure 6. Expected utility density function for n = 1 (a), and n = 2 (b) (uVoI = LfD based 

on the values of Table 3). 

In addition, it has already been anticipated that a bigger threshold corresponds to 

a bigger index R, meaning that the manager has to be more risk seeking than the owner 

in order to have a null conditional VoI, and consequently a negative one. It is possible to 

verify this sentence by developing Equation (23a), in this case of polynomial likelihood 

distributions: 

r∗

r
=

R∗

R
=

g (G -1(R))

R
=

n + 1

1 − R
=

n + 1

1 − r q⁄
. (31) 

This means that, in order to have a null conditional VoI, the manager has to be more risk 

seeking than the owner, i.e. r∗ > r, by an amount that increases as the polynomial degree 

n rises, and which depends also on r itself. In conclusion, while it is clear that in real-life 

the likelihood distributions may have various different shapes, e.g. Gaussian as in the case 

study of Section 4, defining them with polynomial functions allows us to achieve results 

in closed form, which is useful to understand better the practical meaning of the 

developed formulation. 

4. The Streicker Bridge case study 

To illustrate how the developed framework works, it is analysed the same case study as 

in Zonta et al. (2014) and Bolognani et al. (2018), i.e. the Streicker bridge, since it respects 

all the assumptions introduced in the previous sections. The bridge is a pedestrian steel-

concrete structure located at Princeton University Campus and, from a structural point of 

view, it consists of a thin post-tensioned supported by a high resistance steel lattice. The 

main span of the bridge overpasses Washington Road, a busy public road of the campus 



(see Figure 7(a) and 7(b)). The SHM-lab of Princeton University instrumented the bridge 

with two SHM systems: global structural monitoring using discrete long-gauge strain 

Fiber Optic Sensors (FOS), based on fiber Bragg-grating (FBG) (Kang, et al., 2007); and 

integrity monitoring, using truly distributed FOS based on Brillouin Optical Time 

Domain Analysis (BOTDA) (Nikles, et al., 1996). These two approaches are 

complementary: discrete sensors monitor an average strain at discrete points, while the 

distributed sensors monitor one-dimensional strain field. Discrete FOS embedded in the 

bridge deck have gauge length 60 cm and feature excellent measurement properties with 

error limits of ±4 με. Thus, they are excellent for assessment of global structural 

behaviour and for structural identification. Instead, distributed FOS have accuracy an 

order of magnitude lower than discrete sensors and so cannot be used for accurate 

structural identification; they are used for damage detection and localization. Figure 7(c) 

shows the sensors map in the main span. More details about the Streicker bridge and its 

case study are provided in a number of past publications (Glisic & Adriaenssens, 2010) 

(Glisic, et al., 2011) (Glisic & Inaudi, 2012). 



 

Figure 7. The Streicker bridge: view of the bridge (a)(b), location of the sensor analysed 

in the case study (c). 

4.1 Introduction of the SHM-decision problem 

The SHM-based decision problem, the main assumptions and the individuals 

involved are the same as in Bolognani et al. (2018). The bridge is managed by two 

fictitious agents with distinct roles: 

• Ophelia (O) is the owner responsible for Princeton’s estate, who has to decide 

on whether or not to install the monitoring system; she is Malcolm’s 



supervisor. 

• Malcolm (M) is the manager responsible for the bridge operation and 

maintenance, who has to take decisions on the state of the bridge based on 

monitoring data. 

They are both rational individuals and they have the same background knowledge, they 

only differ in the way how to weight the seriousness of the consequences of a failure. 

They are concerned by a single specific scenario: a truck, driving along Washington road, 

could collide with the steel arch of the bridge. After the incident, the bridge will be in one 

of the following two states: 

• S1 = damaged (D), i.e. the bridge is still standing but has suffered major 

damage, and there is a change of collapse of the entire bridge. 

• S2 = undamaged (U), i.e. the structure has either no damage or some minor 

damage. 

According to Malcolm and Ophelia, the two states are mutually exclusive and exhaustive, 

i.e. P(D) + P(U) = 1. It is assumed that they focus on the sensor installed at the bottom of 

the middle cross-section between P6 and P7 (called Sensor P6-7d, see Figure 7(c)). The 

output of the monitoring system is then represented by the strain ε of this specific fiber 

optic sensor. It is also assumed that the two agents use the same interpretation model, i.e. 

they interpret identically the data from the monitoring system, as it will be presented in 

Section 4.2. 

After Malcolm the manager estimates the state of the bridge, he may decide 

between two alternative actions: 

• a1 = do nothing (DN), i.e. no special restrictions to traffic under and over the 

bridge. 



• a2 = close bridge (CB), i.e. both Streicker Bridge and Washington Road are 

closed to traffic for the time needed for a thorough inspection, estimated to be 

1 month. 

Finally, Ophelia and Malcolm agree that the costs, denoted by z, related to each action, 

for each state, are the same as estimated in Glisic and Adriaenssens (2010) and reported 

in Table 4: zF is the failure cost while zDT is a 1-month downtime cost. The resultant 

decision tree of this case study is illustrated in Figure 8. 

Table 4. Costs per action and state. 

 State S1 = D (damaged) State S2 = U (undamaged) 

Action a1 = DN 

(do nothing) 
z11 = zF = 881.60 k$ z12 = 0.00 k$ 

Action a2 = CB 

(close bridge) 
z21 = zDT = 139.80 k$ z22 = zDT = 139.80 k$ 

 



Figure 8. Decision tree for the Streicker bridge case study (application of Figure 2). 

In order to apply the formulation about the negative VoI introduced in Section 3, 

the likelihood distributions, i.e. indexes g(ε) and G(ε) (see Equation (14) and (20)), the 

appetite for risk of the decision makers and the choice of prior probabilities, i.e. index R, 

have to be analysed. 

4.2 Analysis of likelihood distributions 

In this subsection, firstly the likelihood distributions of the case study are introduced, then 

the resultant indexes g(ε) and G(ε) are evaluated. 

Similar to Zonta et al. (2014), the likelihoods of the two states are described by 

Gaussian distributions: p(ε|U) is the likelihood of no damage, defined with mean value 

µ = 0 με and standard deviation σ = 300 με, since Malcolm and Ophelia expect the bridge 

to be undamaged if the change in strain will be close to zero, along with a natural 

fluctuation of the strain due to thermal effects and to a certain extent due to creep and 

shrinkage; p(ε|D) is instead the likelihood of damage, defined with mean value µ =

 1000 με and standard deviation σ = 600 με, since in this case they expect a significant 

change in strain. Table 5 summarizes the main features of these likelihoods. 

Table 5. Main features of the Gaussian likelihood distributions. 

 
Mean value 

µ [µε] 

Standard deviation 

σ [µε] 

Likelihood of no 

damage p(ε|U) 
0 300 

Likelihood of 

damage p(ε|D) 
1000 600 

 



Before the data are available, Malcolm and Ophelia can predict the distribution of 

ε, which is practically the so-called evidence in classical Bayesian theory, through the 

formula: 

p(ε) = p(ε|D)∙P(D) + p(ε|U)∙P(U). (32) 

When the measurement ε is instead available, both the agents update their estimation of 

the probability of damage consistently with Bayes’ theorem: 

p(D|ε) = 
p(ε|D)∙P(D)

p(ε)
, (33) 

where p(D|ε) is the posterior probability of damage. 

The defined likelihood distributions, illustrated in Figure 9(a), allow us to 

calculate the resulting indexes g(ε) (from Equation (14)) and G(ε) (from Equation (20)), 

which are presented in Figure 9(b). Note that the plot of g(ε) has been cut at g(ε) = 2, 

since for ε > 500 µε g(ε) tends to infinity. 

 

Figure 9. Analysis of the likelihood distributions: likelihoods (a), index g(ε) and G(ε) (b) 



(this figure corresponds to Figure 4(a) and 4(e)). 

4.3 Analysis of appetite for risk of decision makers 

The index R varies according to the appetite for risk of the decision maker, i.e. index r 

(see Equation (25)), and to the choice of prior probabilities, i.e. index q (see Equation 

(11(a))). While the prior probabilities will be analysed later, the different utility functions 

of the two agents are now presented. 

As introduced before, Ophelia and Malcolm differ in their utility functions, which 

is the weight they apply to the possible economic losses. In general, the risk appetite of 

an individual depends on multiple factors, which include: their confidence in making 

decision, funded on their professional experience and maturity; their position and 

responsibility into the decision chain; and most importantly their personal attitude and 

scale of value respect to the possible consequences of a collapse. Clearly these quantities 

can change according to the age and cultural background of the individual. In principle, 

understanding the risk appetite can be done with an elicitation process (Verzobio, et al., 

2020). In the following, indices (M) and (O) will indicate that a quantity is intended 

respectively from Malcolm the manager’s perspective and Ophelia the owner’s 

perspective. 

According to Bolognani et al. (2018), Ophelia is defined as risk neutral with 

respect to the loss compared to the value of a single structure, since she is in charge of a 

large stock of structures and then the loss corresponding to an individual structure is much 

smaller than the overall asset value. This means that, according to her behaviour, a 

negative utility is linear with the incurred loss. Strictly speaking, a utility function is 

defined except for a multiplicative factor, therefore it should be expressed in an arbitrary 

unit sometime referred to as util (McConnell, 1966). Since Ophelia’s utility is linear with 



loss, for the sake of clarity negative utility will be deliberately confused with loss, and 

therefore Ophelia’s utility will be measured in k$. 

Unlike Ophelia, in order to demonstrate the formulation introduced in Section 3 

about the negative VoI, it is supposed that the behaviour of Malcolm the manager can be 

risk adverse or risk seeking: in this way, since it is assumed the owner to be always risk 

neutral, it is possible to analyse both the situations of a manager more risk seeking and 

more risk adverse than the owner. These behaviours can be described mathematically 

using various models, for instance the Arrow-Pratt’s utility model (Pratt, 1964) (Arrow, 

1965), where the different aptitude of an agent is encoded in the coefficient of Absolute 

Risk Aversion (ARA) θ. Similarly to Bolognani et al. (2018), it is assumed that the 

manager’s utility has constant ARA, and then the utility function takes the form of an 

exponential: 

U(z)(M)
>

1 − e - z∙θ

θ
, (34) 

where θ is the constant ARA coefficient. Figure 10 shows the linear utility function of 

Ophelia’s behaviour and both Malcolm’s utility functions, which depend on his particular 

behaviour:  

• Risk adverse, i.e. his negative utility increases more than proportionally with 

the loss. To calibrate θ, it is assumed that for a loss equal to the failure cost, 

Malcolm’s negative utility is twice that of Ophelia’s. This results in a constant 

ARA coefficient θ = -1.423 M$-1 

• Risk seeking, i.e. his negative utility increases less than proportionally with the 

loss. In this case, it is assumed that for a loss equal to the failure cost, 

Malcolm’s negative utility has to be less than half that of Ophelia’s. 



Consequently, constant ARA coefficient θ = 3.034 M$-1 is chosen. 

Based on these utility functions, the utilities U of the costs related to each action, for each 

state can be calculated, and consequently the index r, which in this case turns into: 

              r =
U(zDT)

U(zF) − U(zDT)
. (35) 

All the outcomes are reported in Table 6. As expected, it is possible to notice that the 

more the decision maker is risk seeking, the bigger is the index r: (O)r = 0.189 > (M)r = 

0.096 if the manager is risk adverse and then he is less risk seeking than the owner, (M)r 

= 0.590 > (O)r = 0.189 if the manager is risk seeking and then he is more risk seeking than 

the owner (who is considered always risk neutral). 

In summary, index r has been fixed, while R will depend on the choice of the prior 

probabilities. In the next subsections, to understand how the VoI varies depending on the 

different appetite for risk of the two agents, and when it may consequently become 

negative, it will be evaluated both in the case of the manager risk adverse and risk seeking. 

 

Figure 10. Representation of the utility functions for Malcolm the manager (Equation 34) 



and Ophelia the owner. 

Table 6. Ophelia’s and Malcolm’s loss perception. 

Ophelia the owner RISK NEUTRAL 

 State D State U 
(O)r 

Action DN U(zF)
(O)

 = -881.60 k$ U(z)
(O)

 = 0.00 k$ 
0.189 

Action CB U(zDT)
(O)

 = -139.80 k$ U(zDT)
(O)

 = -139.80 k$ 

Malcolm the manager RISK ADVERSE 

 State D State U 
(M)r 

Action DN U(zF)
(M)

 = -1762.94 k$ U(z)(M)
 = 0.00 k$ 

0.096 
Action CB U(zDT)

(M)
 = -154.94 k$ U(zDT)

(M)
 = -154.94 k$ 

Malcolm the manager RISK SEEKING 

 State D State U 
(M)r 

Action DN U(zF)
(M)

 = -306.88 k$ U(z)
(M)

 = 0.00 k$ 
0.590 

Action CB U(zDT)
(M)

 = -113.93 k$ U(zDT)
(M)

 = -113.93 k$ 

4.4 Case 1: Malcolm the manager risk adverse 

In this first case Ophelia is risk neutral while Malcolm is risk adverse, meaning that the 

manager is less risk seeking than the owner. According to the formulation introduced in 

Section 3, the goal is to verify that in this case it is not possible to find a negative 

conditional VoI. Since all the indexes have been defined about the formulation except q, 

in the following everything will be analysed in term of P(D), i.e. in term of q. 

To start, the expected utilities u0 a priori are evaluated, i.e. if the monitoring 

system is not installed. A decision maker would always choose to close the bridge when 

their utility related to the action CB is less negative than the utility of DN, in formula: 

uCB ≥ uDN,            U(zDT) ≥ U(zF) ∙ P(D). (36a,b) 



Consequently, it is obtained that for Ophelia it is always convenient a priori to close the 

bridge if P(D) > 0.16, while for Malcolm if P(D) > 0.09, that is smaller because of his 

risk adverse behaviour. The outcomes are presented in Figure 11(a), along with the 

conditional expected utility (O|M)u0 calculated as in Equation (5), which is what is really 

needed in order to evaluate the conditional VoI. Note that (O|M)u0 has a discontinuity for 

P(D) = 0.09, since this is the value of P(D) for which a priori the manager changes the 

decision from action DN to action CB. In addition, it is important to remind that the 

formulation introduced in Section 3 is based on the assumption that a priori it is always 

convenient to choose action a2, i.e. CB for this case study: this corresponds to having 

P(D) > 0.16, since in this way both the agents agree on choosing action CB a priori, i.e. 

their index R is < 1. 

Consider the case of the monitoring system installed. In this case the decision 

maker can rely on the monitoring data ε, and then the preposterior expected utilities can 

be evaluated, in formula: 

uCB|ε = u(zDT),            uDN|ε = u(zF) ∙ p(D|ε). (37a,b) 

Note that the preposterior expected utilities of action DN depends on the posterior 

probability of having the bridge damaged p(D|ε), that can be calculate as in Equation (33). 

The resultant preposterior expected utilities upp are presented in Figure 11(b), in term of 

P(D), both in the unconditional and conditional form. It is possible to notice that the 

conditional outcome, i.e. (O|M)upp, has again a discontinuity, this time for P(D) = 0.53, 

which corresponds to the value of P(D) for which a posteriori the manager changes his 

decision from action DN to action CB. 

Finally, the VoI is simply the difference between the preposterior expected utility 

and the prior expected utility. Both the unconditional and conditional VoI can be 



calculated, according respectively to Equation (4) and Equation (7). Figure 11(c) shows 

the results, always in term of P(D). As regards the unconditional VoI, i.e. (O)uVoI and 

(M)uVoI, it is possible to observe that they are maximum exactly at the value of P(D) for 

which it becomes convenient a priori to close the bridge, i.e. if P(D) = 0.16 for the owner 

and P(D) = 0.09 for the manager; these are the values which corresponds to having R = 

1. In addition, it is possible to verify that it is never possible to find a negative 

unconditional VoI, according to the principle introduced in Section 2 that “information 

can’t hurt”. In addition, it can be noticed that, as expected since in this case the manager 

is less risk seeking than the owner, it is not possible to find any value of P(D) for which 

the conditional VoI, i.e. (O|M)VoI, becomes negative. This happens because, due to 

Malcolm’s risk adverse behaviour, he would always choose to close the bridge a 

posteriori sooner than Ophelia, i.e. (M) ε̅ < (O) ε̅, and then a smaller positive uVoI may be 

obtained, but it is not possible to achieve what has been defined as Loss for Disagreement 

(LfD): consequently, it is impossible to get a negative VoI, as expected. 

  



 

 

 

Figure 11. Prior expected utilities u0 (see Equation 2 and 5) (a), preposterior expected 

utilities upp (see Equation 3 and 6) (b), VoI (see Equation 4 and 7) (c). 



4.5 Case 2: Malcolm the manager risk seeking 

In this second case, Ophelia the owner is considered still risk neutral, while Malcolm the 

manager is now risk seeking. This corresponds to the case where, according to the 

developed formulation of Section 3, it should be possible to find a negative conditional 

VoI. The goal is then to find out for which values of P(D), and consequently of the term 

q, this happens. The procedure followed is the same as in Section 4.4. 

The expected utilities u0 a priori are evaluated, i.e. in the case of a monitoring 

system not installed. In this case, as shown in Figure 12(a), for Ophelia is again 

convenient a priori to close the bridge if P(D) > 0.16, since she is still risk neutral, while 

for Malcolm it becomes P(D) > 0.37, that is clearly higher because of his risk seeking 

behaviour. As a consequence, the two agents agree on choosing a priori action CB if P(D) 

> 0.37. 

Figure 12(b) presents the unconditional and conditional preposterior expected 

utilities, needed in order to evaluate the VoI, which is instead illustrated in Figure 12(c). 

As regards the unconditional VoI, i.e. (O)uVoI and (M)uVoI, it can be observed again that 

they are maximum exactly at the value of P(D) for which it becomes convenient a priori 

to close the bridge, i.e. if P(D) = 0.16 for the owner and P(D) = 0.37 for the manager, and 

that it is never possible to find a negative unconditional VoI. Conversely, it is clearly 

possible to find some values of P(D) for which the conditional VoI, i.e. (O|M)VoI, becomes 

negative: 0.58 < P(D) < 0.87. This happens because, due to his risk seeking behaviour, 

Malcolm would always choose to close the bridge a posteriori later than Ophelia, i.e. (M) ε̅ 

> (O) ε̅, and therefore the so-defined LfD is obtained. Since there are some values of P(D), 

i.e. 0.58 < P(D) < 0.87, for which this the LfD is bigger than the uVoI, the consequence 

is that a negative conditional VoI is achieved. 



 

 

 

Figure 12. Prior expected utilities u0 (see Equation 2 and 5) (a), preposterior expected 

utilities upp (see Equation 3 and 6) (b), VoI (see Equation 4 and 7) (c). 



4.6 Discussion about negative conditional VoI 

In the previous subsections has been demonstrated that, as expected, it is possible to 

obtain a negative conditional VoI only when the manager is more risk seeking than the 

owner, which agrees with the conclusions obtained theoretically in Section 3. In this 

specific case study, it happens when 0.58 < P(D) < 0.87, which corresponds to 1.38 < q 

< 6.69. 

One specific case in this range is now analysed: for instance, P(D) = 0.65 is 

chosen, i.e. q = 1.86. In this case, indexes R and the thresholds for the two agents are:  

R
(M)

= 0.32 > R
(O)

= 0.10. (38) 

ε̅
(M)

= 247 με > ε̅
(O)

= −84 με. (39) 

As expected, the threshold of Malcolm the manager is bigger than the one of Ophelia the 

owner, since Malcolm is more risk seeking than Ophelia. Consequently, there is a very 

wide range of values, from -84 με to 247 με, whereby Malcolm would keep the bridge 

open in disagreement with Ophelia, who instead believes this is a dangerous practice 

which can potentially result in a big loss. She is then forced to keep the bridge open for ε 

= [-84 με ÷ 247 με], even if it would be more convenient for her to close it: this causes a 

LfD, as shown in Figure 13(b). Since this negative area is bigger than the one of uVoI, the 

resultant conditional VoI is negative: 

VoI
(O|M)

= −11.61 𝑘$. (40) 

This means that in this case Ophelia perceives the monitoring information as damaging: 

in summary, a negative VoI corresponds exactly to the amount of money Ophelia the 

owner is willing to pay to prevent Malcolm the manager using the monitoring system. 



In conclusion, it has been proved that, for the prototype decision problem analysed 

in this contribution, the achievement of a negative conditional VoI depends on a 

combination between how much more seeking is the manager in comparison to the owner, 

and the choice of prior probabilities. While the development of the case study has been 

conditioned by the choice of specific risk appetites of the agents, i.e. fixed θ, in order to 

have a final verification of the conclusions achieved, it is interesting to investigate how 

the conditional VoI varies according to both the prior damage probability P(D), i.e. in 

term of index q, and the ARA coefficient θ of the manager, i.e. in term of his appetite for 

risk. Figure 14 shows graphically the results, with both a top view and a 3D view: it is 

clear that a negative conditional VoI, i.e. the dark blue area, can be achieved only for 

some specific combinations of high P(D) and positive θ, which indeed corresponds to a 

manager who is more risk seeking in comparison to the owner (who instead is defined to 

be risk neutral, i.e. θ = 0). In the top view of Figure 14(a), the specific case analysed in 

this section is highlighted, i.e. θ =3.034 M$-1 for the manager and P(D) = 0.65: it allows 

one to verify that, as calculated in Equation (40), this case falls into the area where a 

negative conditional VoI is achieved. 



 

Figure 13. Analysis of the conditional VoI: density function of the two expected utilities 

(a); expected utility density function (EUDF), zoom in the values of interest (b) (it 

corresponds to Figure 4(f)).  

  



 

Figure 14. Graphical representation of the conditional VoI in function of both the prior 

damage probability P(D) and the ARA coefficient θ: top view (the red point corresponds 

to the case analysed in Equation 38, 39 and 40) (a) and 3D view (b). 

5. Conclusions 

The benefit of SHM can be quantified using the concept of the Value of Information 

(VoI), which is the difference between the utilities of operating the structure with and 



without the monitoring system. In its calculation, a commonly understood assumption is 

that the individual who decide on the installation of the monitoring system, i.e. the owner, 

is the same rational agent who will later use it, i.e. the manager. In the real word, these 

two agents involved in the decision chain are often different individuals. In this paper, 

the conditions for which it is possible that the VoI becomes negative are investigated, in 

the case of a specific prototype decision problem. A negative VoI means that the owner 

perceives the idea of monitoring as damaging, to the point they are willing to pay to 

prevent the manager using the monitoring information. It can be concluded that:  

• The VoI is never negative when manager and owner are the same rational 

individual, consistently to the principle that “information can’t hurt”; this ideal 

value is labelled unconditional VoI (uVoI). 

• When manager and owner are not the same individual, the VoI is equal or less 

than the uVoI. 

• The smaller VoI originates from a disagreement between manager and owner 

on what is the most convenient action to take based on the information from 

the monitoring system. 

• This disagreement produces an overall negative expected utility, labelled Loss 

for Disagreement (LfD).  

• When the disagreement is such that the LfD exceed the uVoI, the value VoI 

become negative. 

• The predominant factor that determines a negative VoI is the different risk 

appetite of the two decision makers, owner and manager. 

• A necessary, but not sufficient, condition for a negative VoI is that the manager 

is more risk seeking than the owner. 



• Other influential factors are the shape of the likelihood distributions and the 

values of prior probabilities. 

• The general mathematical conditions whereby the VoI is negative are encoded 

in Equation (26). 

To conclude, one may wonder whether a negative VoI is a “good” or a “bad” thing. 

The answer is that it is not possible to say if it is always a good or a bad thing because, as 

everything discussed into this paper, it depends on the perspective: if the perspective is 

the owner’s, clearly the owner optimal situation is to have a manager with the same scale 

of values and the same risk appetite. As discussed in Section 4.3, this strongly depends 

not only on the level of education, but also on their role, responsibility and reliability into 

the decision chain. In principle, by providing strict guidance in form of a standard or 

procedure for making decision could compel the manager to align to the owner 

perspective standpoint, resulting in the maximum utility for the owner perspective. 
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Appendix A: Notation list 

Symbol Definition 

VoI Value of Information 

U Utility 

u Expected utility 

upp Expected utility of operating the structure with the monitoring system 

u0 Expected utility of operating the structure without the system 

S Structural state 

y Output of the monitoring system 

a Action 

aopt Optimal action 

z Consequences of an action 

P(S) Prior probability 

p(y|S) Likelihood distribution 

F(y|S) Cumulative distribution of the likelihood 

p(y) Evidence 

P(S|y) Posterior probability 

Ey Expected value operator of y 

u* Expected utility of the manager 

a* Action of the manager 

a*
opt Optimal action of the manager 

y̅ Threshold of the owner 

y̅∗ Threshold of the manager 

R Index that expresses the optimal action a priori from the owner perspective 

R* 
Index that expresses the optimal action a priori from the manager 

perspective 

r Index that expresses the subjective risk appetite of the owner 



r* Index that expresses the subjective risk appetite of the manager 

q Index that expresses the prior odds 

g Ratio between the likelihoods of two states 

G Ratio between the cumulative distributions of two likelihoods 

Δu Utility gain resulting from changing a decision a posteriori 

EUDF Expected utility density function 

uVoI Unconditional value of information 

LfD Loss for Disagreement 

n Polynomial degree 

O Owner 

M Manager 

(O|M)VoI Conditional value of information 

D State of the case study: damaged 

U State of the case study: undamaged 

DN Action of the case study: do nothing 

CB Action of the case study: close the bridge 

zF Cost in the case study: failure cost 

zDT Cost in the case study: 1-month downtime cost 

ε Output of the monitoring system in the case study: optical sensor reading 

𝜀 ̅ Threshold in the case study 

µ Mean value 

σ Standard deviation 

θ Coefficient of Absolut Risk Aversion (ARA) 

 


