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Abstract. The force generation mechanisms of a yacht sail are discussed with the aid of force and flow measurements on a model scale 
spinnaker. The velocity and vorticity fields are measured on five horizontal sections with particle image velocimetry. By comparing 
the forces measured with a balance to those computed from the vorticity field, we demonstrate how the force generation can be 
interpreted by the production and stretching of vortex rings. We consider vortex rings to be continuously generated and shed from the 
perimeter of the sail. The intersection of their vertical legs with horizontal planes are leading and trailing edge vortices. The sail force 
is due to the rate of change of the impulse of the vortex rings. Consequently, we show that the force can be computed from the time-
averaged vorticity field using the Kutta-Joukowski lift formula, or from the strength and relative velocity of the leading and trailing 
edge vortices, or from the vorticity flux at the perimeter of the sail. The drag is estimated with Filon's drag formula. These results 
confirm experimentally the theoretical work of Viola et al. [1] and pave the way to the development of design methodologies that 
improve sail performance by manipulating the local vorticity field.

1. NOMENCLATURE 

𝛼𝛼 Sectional angle of attack 
𝛽𝛽𝑎𝑎OPT Optimum apparent wind angle 
𝛿𝛿 Twist 
𝛤𝛤− Time averaged circulation of leading edge vortex 
𝛤𝛤+ Time averaged circulation of trailing edge vortex 
𝛤𝛤LE Circulation of leading edge vortex 
𝛤𝛤TE Circulation of trailing edge vortex 
𝛤̇𝛤𝐿𝐿𝐿𝐿 Vorticity flux at leading edge 
𝛤̇𝛤𝑇𝑇𝑇𝑇 Vorticity flux at trailing edge 
𝜂𝜂 Rotational or trim angle 
𝜌𝜌 Density of fluid 
𝜔𝜔𝑧𝑧 Spanwise vorticity 
𝐴𝐴 Area of sail and initial surface area of vortex ring 
𝐴̇𝐴  Rate of change of vortex ring surface area 
𝐴𝐴𝑏𝑏 Area of bound vortex ring 
𝐶𝐶𝐷𝐷𝐷𝐷  Drive force coefficient 
𝐶𝐶𝐷𝐷𝐷𝐷,max  Maximum force coefficient 
𝑐𝑐  Sectional chord length 
𝑐𝑐0           Average chord length 
𝐼𝐼 Impulse 
L Lift force 
D Drag force 
𝐿𝐿𝐿𝐿𝐿𝐿 Vorticity flux integration line at leading edge 
𝐿𝐿𝑇𝑇𝑇𝑇   Vorticity flux integration line at trailing edge 
𝑉𝑉𝑎𝑎 Apparent wind 
𝑉𝑉𝑏𝑏 Boat velocity 
𝑉𝑉𝑡𝑡 True wind velocity 
Re Reynolds number 
S Span 
𝑡𝑡∗ Non-dimensional time 
𝑈𝑈𝐿𝐿𝐿𝐿  Velocity of leading edge vortex 
𝑈𝑈𝑇𝑇𝑇𝑇   Velocity of trailing edge vortex 
𝑈𝑈∞  Freestream velocity 
W Integration line for drag computation 
LEV  Leading edge vortex 
TEV  Trailing edge vortex 
PIV  Particle Image Velocimetry 
x, y, z Streamwise, normal, spanwise direction 

2. INTRODUCTION 

Downwind sails such as spinnakers are between the most 
powerful sails carried by a sailing yacht. However, the 
force generation mechanisms have often been incorrectly 
identified. In fact, these sails have a sharp leading edge 
that promotes flow separation. The bound circulation, 
intended as the net integral of vorticity in the thin Prandtl’s 
boundary layer, is negligible to generate a negative lift. 
Hence, it cannot be the origin of the aerodynamic force 
[2,3]. Viola et al. [1] showed theoretically that the force 
generated by a sail is due to the production and stretching 
of vortex rings. In this paper we demonstrate this theory 
with physical experiments on model scale spinnakers. We 
show that the main force generation mechanism is 
associated with the convection velocity of the leading and 
trailing edge vortices, or by the production of vorticity that 
enables the associated vortex rings to grow in size. Here, 
we interpret the shedding vortices as the intersections of a 
vortex ring with a horizontal plane. We also show that the 
relative velocity of the leading and trailing edge vortices 
results, in the time average sense, in bound circulation and 
thus enables using the Kutta-Joukowski lift formula. 
 
Twist of the onset flow and the sail geometry are not 
expected to affect the deformation and stretching of the 
vortex rings, but only their initial shape. We note however 
that non-axisymmetric vortex rings, like the ones pinched-
off from a spinnaker are not in equilibrium and would 
probably change shape while convecting downstream [4].  

3. METHODOLOGY 

3.1. Sailing Conditions 

In the laboratory setting, where the boat is fixed with 
respect to the water tunnel, the free stream represents the 
apparent wind 𝑽𝑽𝒂𝒂. Hence, the sail must be set at the 
corresponding optimum apparent wind angle (𝛽𝛽𝑎𝑎OPT), 
which is the angle between the apparent wind 𝑽𝑽𝒂𝒂 and the 
boat velocity 𝑽𝑽𝒃𝒃. This angle varies with the height and 
thus is taken at a nominal height of 10 m. In fact, the boat 
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Figure 1. (a) Experimental setup in the water tunnel, where the sail is rotated by 𝝅𝝅/2 around the x-axis compared to the real 
sailing conditions and (b) Sail 𝐒𝐒𝟏𝟏 at 𝜷𝜷𝒂𝒂𝐎𝐎𝐎𝐎𝐎𝐎 as it would appear with respect to a boat hull from a bird’s eye view 

 
sails in the atmospheric boundary layer and thus the boat 
experiences an apparent wind velocity that is 𝑽𝑽𝒂𝒂(𝒛𝒛) =
𝑽𝑽𝒕𝒕(𝒛𝒛) − 𝑽𝑽𝒃𝒃. The spinnaker considered in this paper was 
designed for 𝛽𝛽𝑎𝑎OPT = 55°. 
 

3.2. Sailing Geometry 

The sail geometry was designed for the AC33 class yachts. 
This class, which is a set of rules for the design of the boat 
and the sails, was proposed for the 33rd America’s Cup. 
The America’s Cup is the world’s oldest trophy and one 
of the most prestigious yacht races. The AC33 class was 
never adopted because of a legal dispute between the 
Defender, Alinghi, and the Challenger, Oracle BMW. 
Hence, the 33rd America’s Cup was eventually sailed by 
multi-hulls under the conditions set by the Deed of Gift 
instead of a class rule. However, the aerodynamics of this 
spinnaker has been widely investigated in the last decade 
[5,6,7,8] and this makes it one of the best available 
benchmarks for downwind sails. The sail geometry 
together with useful notes on the spinnaker are available 
on https://voilab.eng.ed.ac.uk. 
 
The original sail was designed to be 34 m in span, with a 
sail area of 510 m2, while here a 1:100th scale model is 
considered. The particle image velocimetry (PIV) 
measurement planes were located at 7/8th, 5/6th, 3/4th, 1/2th 
and 1/4th the distance from the bottom of the sail to its tip, 
and labelled as planes A, B, C, D and E, respectively. We 
note that plane E is above the clue. A solid model was 3D 
printed in ABS. The sail had a span (𝑆𝑆) of 300 mm, an area 
(𝐴𝐴) of 0.045 m2, an average chord length (𝑐𝑐0 = 𝐴𝐴/𝑆𝑆) of 
150 mm, an average thickness of 3 mm and a bevel angle 
at the leading edge of 20°. The twist from head to foot was 
𝛿𝛿 = 16°. A 2% thickness is negligible on the sail 
aerodynamics, particularly because the leeward and 
windward sides of each sail section are parallel to the 
camber line. However, the leading-edge shape is critical 
for the direction of the separating streamline. To minimise 
this effect, we adopted the minimum sail thickness and 
bevel angle compatible with structural requirements [2]. 
 
 

 
3.3. Water tunnel setup 

Figure 1a shows the experimental setup. The water tunnel 
is located at the University of Edinburgh. It is 9 m long 
and 0.4 m wide, with a flat, horizontal bed. The mean 
water depth was set to 0.5 m. The mean flow speed over 
the area occupied by the model was 𝑈𝑈∞ = 0.14 ms−1. 
With a span of 0.3 m, this results in a Reynolds number 
𝑅𝑅𝑅𝑅 = 2 × 104. Assuming a full-scale wind speed of 
5 ms−1, 𝑅𝑅𝑅𝑅 is 4 × 10−3 times smaller than at full-scale. 
Despite this significant difference between model and full 
scale 𝑅𝑅𝑅𝑅, the differences in the flow field are expected to 
be moderated because the flow is fully separated at the 
sharp leading edge. In fact, the dynamics of leading-edge 
and trailing-edge vortices is only marginally affected by 
changes in the Reynolds number within the range from 
104 to 106 [9,10]. 
 
The sail model was mounted and rotated by 𝜋𝜋/2 in the 
water tunnel, i.e. the water plane of the model-scale sail 
was parallel to a vertical sidewall of the water tunnel. A 
right-handed coordinate system is defined at the centre of 
the chord of plane C, as shown in figure 1a. The 𝑥𝑥- and 𝑦𝑦-
coordinates are the streamwise and vertical directions,  
respectively. The sail model orientation could be adjusted 
by a rotation around a shaft parallel to the 𝑧𝑧-axis. The 
rotation is defined as the trim angle 𝜂𝜂 (figure 1b). Here, 
𝜂𝜂 = 0° when the driving force is maximum. 
 
The experiments were carried with the spinnaker in 
isolation. We assume that the main effect of the mainsail 
is to generate a uniform upwash variation of the angle of 
attack experienced by the spinnaker. We account for this 
by testing at different η. However, if we had tested with a 
mainsail, the mainsail circulation would deflect the 
spinnaker wake, resulting in potentially more attached 
flow in the results presented in the following sections.   
 
3.4. Load cells 

The load cells used in the experiments comprised a wind 
tunnel lift and drag dual-balance kit manufactured by 
KineOptics. The kit consisted of two Honeywell strain



Figure 2. Time-averaged near-wake streamlines and nondimensional vorticity contours for the optimal sail trim in light wind 
conditions (𝜼𝜼 = 𝟎𝟎°, two left columns) and a depowered trim for strong wind conditions (𝜼𝜼 = −𝟏𝟏𝟏𝟏°, two right columns). The lines 
𝑳𝑳𝑳𝑳𝑳𝑳 and 𝑳𝑳𝑻𝑻𝑻𝑻 are used in §4.6 to integrate the vorticity flux, while the dashed line 𝑾𝑾 is used in §4.7 to compute the drag force
 
gauges connected to two SGA/A amplifiers. A low pass 
filter was set to 5 Hz to reduce high frequency noise 
coming from vibrations of the belt driving the flume 
propeller or electric noise. The excitation voltage for the 
strain gauges was 10 volts DC and 5 volts DC, for the lift 
and drag gauges, respectively. The amplifiers used a 
power voltage of 18-25 volts DC. The output analogue 
signals of the amplifiers were converted to digital signals, 
with a 16-bit National Instruments 6259 A/D board. Force 
signals were recorded with Wavelab. 

3.5. Particle Image Velocimetry 

PIV measurements were performed across x-y planes 
parallel to the free stream. The PIV system consisted of a 
Solo 200XT pulsed dual-head Nd:YAG laser, with an 
energy output of 200 mJ at a wavelength of λ = 532 nm. 
The laser beam was converted into a laser sheet through 
an array of underwater LaVision optics. The optics were 
fully submerged and created a laser sheet with a thickness 
of approximately 2 mm. The camera was a CCD Imperx 
5MP with a 2448 px × 2050 px resolution and a Nikkor 
f/2, 50 mm lens. Seeding particles were silver coated 
hollow glass spheres, with an average diameter of 14 μm 
and a density of 1.7 g/cc. PIV image pairs were sampled 
at 7.5 Hz and a two-pass adaptive correlation was applied. 
The first pass had a 64 px × 64 px interrogation window, 
with a Gaussian weighting and 50% window overlap. The 
second pass had a 24 px × 24 px interrogation window and  
 

 
a 75% window overlap. Finally, a 3 × 3 Gaussian filter 
was used to smooth the vector fields. In order to mitigate 
surface reflections, a coating of matt black paint doped 
with rhodamine B was applied to the sail surface, allowing 
a notch filter on the camera to subtract the wavelength of 
rhodamine B and minimise the reflected light. A second 
coating of acrylic was applied to protect the rhodamine 
from dissolving in water. Additionally, background 
subtraction removed prevailing reflections and enabled 
measurements near the wall. The leading-edge region was 
not affected by laser reflections due to the curvature of the 
sail and the direction of the laser sheet. Successful 
background subtraction showed that no discernible 
deformation of the sail or strut occurred during the 
experimental runs. The strut was made of steel and 
designed with a thick root and then stepped down into a 
slimmer section in order to minimise deflections. 

4. RESULTS 

4.1. Time-averaged vorticity fields for different flow 
conditions 

Figure 2 shows the near wake of the sail. Time- averaged 
streamlines and contours of nondimensional spanwise 
vorticity (𝜔𝜔𝑧𝑧 𝑐𝑐0/𝑈𝑈∞ ) are presented for two trim angles, 
𝜂𝜂 = 0° and 𝜂𝜂 = −10°. These two angles are selected 
because the sail trim that allows 𝐶𝐶𝐷𝐷𝐷𝐷,max ( 𝜂𝜂 = 0°) is likely 
to be optimal in low wind speed conditions. Conversely, 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3 Sequence of 𝜸𝜸𝟐𝟐 contours of sail 𝐒𝐒𝟏𝟏 based on vorticity measurements taken at five consecutive time steps (𝒔𝒔 = 1-5) on 
planes A, B, C, D and E (columns 1-5, respectively) at 𝜼𝜼 = 𝟎𝟎° (top array) and 𝜼𝜼 = −𝟏𝟏𝟏𝟏° (bottom array)
 
in strong wind conditions, the optimal trim is one that 
provides a reduced side force coefficient (𝐶𝐶𝑆𝑆𝑆𝑆), which 
increases the hydrodynamic resistance of the boat. Hence, 
there is a wind condition, which depends on the 
hydrodynamic performance of the boat, such that the 
optimal trim is  𝜂𝜂 = −10°. 
 
Five flow fields are presented in figure 2, corresponding 
to the five PIV measurement planes (A, B, C, D, E) along 
the span of the sail. In the figure, plane A is the closest to 
the head and plane E the closest to the bottom of the sail 
and above the clue. A total of 500 images are averaged per 
plane. The lines 𝐿𝐿𝐿𝐿𝐿𝐿 and 𝐿𝐿𝑇𝑇𝑇𝑇, in the vorticity plots of figure 
2, are used in §4.6 to integrate the vorticity flux and the 
vorticity moment. Whilst the dotted line W is an  
integration line that is utilised to estimate the drag force in 
§4.7. 

 
The light wind condition 𝜂𝜂 = 0° is shown on the two left  
columns of figure 2. The streamlines of figure 2 reveal a 
large time-averaged recirculation region in most of the 
planes. Following the definitions of Perry & Steiner [8], 
stable foci are observed at the centre of the circulation 
regions, indicating the tridimensionality of the flow field. 
At the head of the sail at 𝜂𝜂 = 0°, a bifurcation line appears 
in plane A at the centre of the recirculation region. 
Contrarily, it is noted that near midspan of the sail, such 
as in plane D and at 𝜂𝜂 = 0°, two-dimensional nodes appear 
at the centre of the recirculation region. 
 
In stronger breeze, at 𝜂𝜂 = −10°, a stable node near the 
surface of the sail is noted on the mid plane C. Conversely, 
in planes A and B, the streamline patterns close to the 
surface of the sail are c-shaped and indicative of vortex   
shedding. Perry and Steiner [8], for example, showed this 



same pattern behind the wake of a bluff body when the 
train of leading and trailing-edge vortices came in close 
proximity to each other. 
 
The vorticity-contours identify two opposite sign 
circulation areas in all of the planes and at both 𝜂𝜂 = 0° and 
𝜂𝜂 = −10°, with negative vorticity emerging from the 
leading-edge and positive vorticity from the trailing-edge. 
On the highest sections, the positive (red) and negative  
(blue) vorticity wakes of the strut (indicated by a black 
dot) are also visible on the windward side of the sail 
section. 
 
At 𝜂𝜂 = 0°, the highest sections of the sail (planes A, B and 
C) are stalled resulting in a large trailing-edge wake. 
Conversely, at 𝜂𝜂 = −10°, vorticity mostly follows the sail  
profile. It is to note that the bottom sections (planes D and 
E) are stalled at both angles 𝜂𝜂. 
 
On any plane, there is more negative vorticity than 
positive vorticity. We will show in §4.5 that this is because 
of slower advection of negative leading-edge vorticity 
than of positive trailing edge vorticity. Because the time-
averaged vorticity distribution is fixed with respect to the 
sail, the net vorticity (i.e. the sum of positive and negative 
vorticity) is the bound vorticity intended by Kutta [11] and 
Joukowski [12]. The bound circulation will be computed 
in §4.4 and it will be compared to that required to get the 
experimentally measured lift force. 
 

4.2. Instantaneous vorticity field 

The instantaneous vorticity field is investigated with a 
data set of 500 images, from which a subset of 5 images is 
presented in figure 3. To identify coherent regions of co-
sign rotating flow, the 𝛾𝛾2-criterion [13] is used. The full 
data set of instantaneous flow fields is available in the 
supplementary material on the Edinburgh DataShare 
repository (datashare.is.ed.ac.uk). Each image is sampled 
at 7.5 Hz, corresponding to a non-dimensional convective 
time period 𝑡𝑡∗ = 𝑡𝑡𝑈𝑈∞/𝑐𝑐0 = 0.13. The instantaneous flow 
fields are shown in figure 3 for planes A-E at 𝜂𝜂 = 0°and 
𝜂𝜂 = −10°. Each instantaneous image is labelled with an 
index 𝑠𝑠, where 𝑠𝑠 indicates the sequence number of the 
image. It should be recalled that the 5 planes were not 
recorded simultaneously.  
 
The 𝛾𝛾2-criterion enabled the identification of vortex 
structures. As anticipated by the analysis of the time-
averaged flow field topology in §4.1 vortex shedding 
occurred in all of the planes. Closed 𝛾𝛾2 isolines formed at 
the leading and trailing edges identify leading-edge 
vortices (LEVs) and trailing-edge vortices (TEVs), 
respectively. Both LEVs and TEVs are continuously 
generated and shed downstream.  
 
The LEV is a more coherent vortex structure than the 
TEV, which instead shows a more stretched vorticity 
distribution in the streamwise direction. This difference is 
also associated with a slower streamwise velocity of the 

LEV. Near the sail, the LEV convects roughly at 𝑈𝑈∞/2 
(see figure 3, plane D at 𝜂𝜂 = 0°), whilst away from the sail 
it convects at  𝑈𝑈∞ (see figure 3, plane A at 𝜂𝜂 = 0°). The 
TEV convects at 𝑈𝑈∞, both near and away from the sail, as 
estimated by Stevens et al. [14]. It will be shown in §4.4 
that this results in about twice the integral of negative 
time-averaged vorticity over the entire field of view than 
the positive one. 
 

4.3. Impulse theory formulae 

The force production mechanisms can be described using 
impulse theory. For a volume of fluid 𝑉𝑉𝑓𝑓 with constant 
density 𝜌𝜌, whose external boundaries approach infinity,  
 

𝐹𝐹 = −� 𝜌𝜌
𝑑𝑑𝒖𝒖
𝑑𝑑𝑑𝑑𝑉𝑉𝑓𝑓

𝑑𝑑𝑑𝑑 = −𝜌𝜌
𝑑𝑑
𝑑𝑑𝑑𝑑
� 𝒖𝒖𝑑𝑑𝑑𝑑
𝑉𝑉𝑓𝑓

= −𝜌𝜌
𝑑𝑑𝑰𝑰
𝑑𝑑𝑑𝑑

, (1) 

where     

𝑰𝑰 = � 𝒖𝒖𝑑𝑑𝑑𝑑
𝑉𝑉𝑓𝑓

(2) 

is the impulse. Wu [15] and Lighthill [16] showed that the 
impulse is given by the sum of the integral over the fluid 
volume 𝑉𝑉𝑓𝑓 of the first moment of the vorticity 𝜔𝜔, and the 
integral over the volume surface 𝑆𝑆𝑏𝑏 with outward unit 
normal 𝒏𝒏 of the moment of tangential velocity: 
  

𝑰𝑰 =
1

𝑛𝑛𝑑𝑑 − 1
�� 𝒙𝒙 ×  𝝎𝝎𝑑𝑑𝑑𝑑 +

𝑉𝑉𝑓𝑓
� 𝒙𝒙 × (𝒏𝒏 × 𝒖𝒖)
𝑆𝑆𝑏𝑏

𝑑𝑑𝑑𝑑� , (3) 

 
where 𝑛𝑛 = 2 and 3 in two and three dimensions, 
respectively, and 𝒙𝒙 = (𝑥𝑥,𝑦𝑦, 𝑧𝑧) is the coordinate vector. A 
complete derivation and discussion is available in, for 
instance, Eldredge [17] (p. 190). The second term of eq. 3 
vanishes in a reference system fixed with the body. This, 
in fact, is an unsteady body force equal to the difference 
between the forces as observed from the reference system 
𝑂𝑂(𝑥𝑥,𝑦𝑦, 𝑧𝑧) and those observed from a reference system 
fixed with the body. It is proportional to the mass of the 
body [18,19] and thus its effect is negligible for slender 
bodies with small volume to surface area ratio [20] and for 
small body to fluid density ratio [21].  
 
Assuming a tridimensional model, as the one considered 
here, and a reference system fixed with the sail in eq. 3, 
eq. 1 becomes 
                

𝐹𝐹 = −
𝜌𝜌
2
𝑑𝑑
𝑑𝑑𝑑𝑑
� 𝒙𝒙 ×  𝝎𝝎𝑑𝑑𝑑𝑑.
𝑉𝑉𝑓𝑓

(4) 

 
Let us consider the vorticity field as made of the sum of 
discrete vortex rings, each with a strength 𝛤𝛤𝑗𝑗 , minimum 
surface area spanned by the vortex loop 𝐴𝐴𝑗𝑗, and unit vector 
𝒏𝒏𝑗𝑗 normal to the surface and pointing in the opposite 
direction to the surface induced velocity of the vortex ring, 
which acts orthogonal to its surface. The impulse of a 
vortex ring, which was first found by Lamb [22], is 𝜌𝜌𝜌𝜌𝜌𝜌. 
Hence, eq. 4 can be written as [14],



 
Figure 4. Nondimensional leading-edge circulation 𝜞𝜞−/𝑼𝑼∞𝒄𝒄 and trailing-edge circulation 𝜞𝜞+/𝑼𝑼∞𝒄𝒄 versus the spanwise 
nondimensional coordinate 𝒛𝒛/S for (a) 𝜼𝜼 = 𝟎𝟎° and (b) 𝜼𝜼 = −𝟏𝟏𝟏𝟏°. Markers indicate measured data, whilst dotted lines are third-
order polynomial fits with shaded regions showing the 95% CI of the fit. 
 

𝐹𝐹 =
𝜌𝜌
2
��𝛤̇𝛤𝑗𝑗𝐴𝐴𝑗𝑗 + 𝛤𝛤𝑗𝑗𝐴̇𝐴𝑗𝑗�𝒏𝒏𝑗𝑗 .
𝑗𝑗

(5) 

 

4.4. Bound vorticity 

In this section, the time-averaged vorticity field is 
interpreted as a vortex ring bound to the sail. The ring is 
made by the net vorticity shown in the near wake of the 
sail (figure 2), the tip vortices and the starting vortex. Later 
on, in §4.5, discrete vortex rings are considered, whose 
cross-sections are the leading and trailing edge vortices 
from the instantaneous flow field.  
 
Here, let us assume the vorticity as forming a single bound 
vortex ring with circulation −𝛤𝛤𝑏𝑏  and a surface area 𝐴𝐴𝑏𝑏. 
Because this hypothetical vortex ring at steady state is 
long due to the starting vortex being at infinity, the surface 
of the ring is orthogonal to the 𝑦𝑦 axis and thus the 
computed force will act in the lift direction. 
 
The rate of change of the surface area of the vortex ring is 
𝐴̇𝐴𝑏𝑏 = 𝑆𝑆𝑈𝑈∞. We recall that 𝑆𝑆 is the span, whilst −𝛤̇𝛤𝑏𝑏 is the 
production of the circulation needed to lengthen the tip 
vortex with strength −𝛤𝛤𝑏𝑏  at a rate 𝑈𝑈∞. Hence  
−Γ̇𝑏𝑏𝐴𝐴𝑏𝑏 = −𝛤𝛤𝑏𝑏𝑆𝑆𝑈𝑈∞. Substituting into eq. 5, we find the 
Kutta-Joukowski lift formula  

𝐿𝐿 = −𝜌𝜌𝜌𝜌𝑈𝑈∞𝛤𝛤b . (6) 

As mentioned in the previous section, in the time-averaged 
vorticity field, the net vorticity on each plane is the bound 
circulation 𝛤𝛤b. An integral value of the bound circulation 
is given by: 

𝛤𝛤b =
1
𝑆𝑆
� (Γ− + Γ+)𝑑𝑑𝑑𝑑,
𝑆𝑆

(7) 

 
where 𝛤𝛤− and 𝛤𝛤+ are the total negative and positive time-
averaged circulations in the field of view of figure 2.  
 
The circulation around the time-averaged leading and 
trailing-edge circulation zones is computed from the 
(discrete) area integral of vorticity. Vorticity is  
thresholded above the measurement uncertainty level to  

 
 
avoid accumulation of low-level vorticity in the results. 
The circulation is nondimensionalised and plotted in 
Figures 4a and 4b, for every plane and for the two trim 
angles 𝜂𝜂. The marks show the measured circulations, 
whilst the spanwise circulation distributions are 
approximated with third order polynomials showed by 
dotted lines. The area under the 𝛤𝛤− distribution is 
approximately twice of that under 𝛤𝛤+ for both of the trim 
angles 𝜂𝜂. By using the fitted curves in Fig. 4, the bound 
circulation is 0.9𝑈𝑈∞𝑐𝑐 at 𝜂𝜂 = 0° and 0.73𝑈𝑈∞𝑐𝑐 at at 𝜂𝜂 =
−10°. These values are 4% and 12% greater, respectively, 
than those measured with the load cells. Force 
comparisons with wind tunnel measurements are difficult 
since it is not known whether the maximum driving force 
trim angle (𝜂𝜂 = 0°) between this experiment and wind 
tunnel tests of spinnakers in isolation is the same. At 
maximum driving force, the measured lift coefficient here 
was 𝐶𝐶𝐿𝐿 = 1.3, whilst according to CFD studies [5], it 
could be 𝐶𝐶𝐿𝐿 = 1.6. Differences can be attributed to the 
mainsail upwash which rotates the effective lift and drag 
axes and higher Reynolds numbers.  
 
The comparison between Fig. 4a and 4b shows that, when 
the sail is depowered (from  𝜂𝜂 = 0° to 𝜂𝜂 = −10°), the 
bound circulation decreases almost uniformly along the 
span of the sail by a proportional reduction of both positive 
and negative vorticity.  
 

4.5. Vortex force 

An alternative approach to use the time-averaged vorticity 
field as in the previous section, is to compute the vortex 
force based on the relative velocity of the leading and 
trailing edge vortices. In steady conditions, the same 
amount of positive and negative vorticity is shed into the 
wake. Hence, for every LEV, it is possible to identify a 
region whose integral of vorticity is opposite to the LEV 
circulation. Because the LEV and the TEV advect at 
different velocities, more leading-edge vorticity than 
trailing-edge vorticity is observed on average near the sail. 
This occurs only in the near wake though. In fact, in the 
far wake, positive and negative vorticity must convect at 



the same velocity to ensure that the net time-averaged 
vorticity vanishes in accordance with Kelvin's theorem. 
The instantaneous vorticity fields can be interpreted as 
made of vortex rings, where each LEV-TEV pair in planes 
A-E are the intersection of one ring with the planes. The 
surface 𝐴𝐴𝑗𝑗 of the vortex ring is the distance between the 
LEV and the TEV, integrated over the span 𝑆𝑆. It is worth 
noting that, chosen the 𝑗𝑗th LEV, the choice of the 
corresponding 𝑗𝑗th TEV to form a vortex ring is arbitrary, 
as long as the sum of their circulations is null (ΓLEV𝑗𝑗 +
ΓTEV𝑗𝑗 = 0). 
 
Let us now consider the two force production mechanisms 
in eq. 5. The surface of the 𝑗𝑗th vortex ring with positive 
circulation 𝛤𝛤𝑗𝑗 = −𝛤𝛤LEV𝑗𝑗  stretches in the streamwise 
direction at a rate 𝐴̇𝐴𝑗𝑗 = 𝑆𝑆(𝑈𝑈TEV𝑗𝑗 − 𝑈𝑈LEV𝑗𝑗). The force 
associated with the streamwise stretching of the vortex 
enclosed surface is in the lift direction. Only 𝑛𝑛 vortex rings 
within the near wake stretch at a rate 𝐴̇𝐴𝑗𝑗, because 
𝑈𝑈LEV gradually increases to the same velocity as 𝑈𝑈TEV. 
Hence, only 𝑛𝑛 vortex rings can be considered. To estimate 
the force due to the rate of production of vorticity, let us 
consider the circulation needed to lengthen (in the 
streamwise direction) the area enclosed by the vortex ring. 
Akin to the consideration made to derive the Kutta-
Joukowski lift formula in §4.4, here we find that 𝛤̇𝛤𝑗𝑗𝐴𝐴𝑗𝑗 =
Γ𝑗𝑗 �𝑈𝑈TEV𝑗𝑗 − 𝑈𝑈LEV𝑗𝑗�S. Hence the two terms between 
parentheses on the right hand side of eq. 5 are identical 
and by substitution 
 

𝐿𝐿 = −𝜌𝜌� ��𝑈𝑈TEV𝑗𝑗 − 𝑈𝑈LEV𝑗𝑗� 𝛤𝛤LEV𝑗𝑗dz
𝑛𝑛

𝑗𝑗

.
𝑆𝑆

(8) 

 
An equivalent formulation for the lift of a flat plate based 
on the relative velocity of the LEV and TEV was derived 
by Stevens et al. [14]. 
 
This formulation is equivalent to that in eq. 6 and 7 as can 
be shown by comparing the sectional lift computed with 
the two approaches. Assume for example, 𝑛𝑛 LEVs 
convecting downstream at 𝑘𝑘𝑈𝑈∞ while the TEVs convect 
with velocity 𝑈𝑈∞, and the same circulation for both LEVs 
and TEVs since they both form discrete vortex rings. The 
time-averaged net circulation on the plane depends on the 
difference between the number of LEVs (𝑛𝑛) and TEVs 
(𝑛𝑛𝑛𝑛) in the near wake, i.e.  
 

𝛤𝛤− + 𝛤𝛤+ = 𝑛𝑛(1 − 𝑘𝑘)𝛤𝛤LEV = 𝑛𝑛
𝑈𝑈TEV − 𝑈𝑈LEV

𝑈𝑈∞
𝛤𝛤LEV . (9) 

 
We can now show that the sectional lift computed with eq. 
8 is the same as that computed with eq. 6 and 7: 
 

    −𝜌𝜌𝑈𝑈∞(𝛤𝛤− + 𝛤𝛤+) = −𝜌𝜌𝜌𝜌(𝑈𝑈TEV − 𝑈𝑈LEV)ΓLEV. (10) 
 

This equivalence was also confirmed by the measurements 
of the streamwise velocity of the LEV by tracking the 
centroids of the 𝛾𝛾2 isosurfaces in figure 3 and by 
considering 𝑛𝑛 = 3. The convective velocity of the TEV is 
considered to be 𝑈𝑈∞ [14]. 
 
The ratio of two between these two velocities matches the 
approximate ratio of two between 𝛤𝛤− and 𝛤𝛤+ showed in 
figure 4. Therefore, it can be concluded that when the sail 
is depowered (from 𝜂𝜂 = 0° to 𝜂𝜂 = −10°), the sectional lift 
decreases almost uniformly along the span of the sail 
because of a lower circulation of the leading edge vortices, 
whilst near the sail, they convect downstream always at 
about half of the free steam velocity. 
 

4.6. Vorticity production 

Both in  §4.4 and  §4.5 we transformed the vortex ring 
production term in eq. 5 into an equivalent vortex ring 
growth term. Here we show that a similar force result can 
be achieved by considering the vortex ring production 
term directly. In fact, 𝛤̇𝛤 can be estimated from the vorticity 
flux through the leading and trailing edge shear layers. 
Figure 2 shows the two segments 𝐿𝐿LE and 𝐿𝐿TE. The first 
one extends from the surface of the sail in the 𝑦𝑦 direction 
and has a length 0.3𝑐𝑐0. The latter is 0.1𝑐𝑐0 downstream of 
the trailing edge and has a length of 0.1𝑐𝑐0 The dimension 
of 𝐿𝐿TE is such to avoid inclusion of negative vorticity from 
either the leading edge or the vertical strut holding the 
model. Vorticity is not included below the noise threshold. 
The vorticity fluxes are computed as 
 

𝛤̇𝛤LE = � 𝑢𝑢𝑥𝑥𝜔𝜔𝑧𝑧𝑑𝑑𝑑𝑑,
𝐿𝐿LE

(11) 

𝛤̇𝛤TE = � 𝑢𝑢𝑥𝑥𝜔𝜔𝑧𝑧𝑑𝑑𝑑𝑑.
𝐿𝐿TE

(12) 

 
Results are shown in figures 5a and 5b for 𝜂𝜂 = 0° and  
𝜂𝜂 = −10°, respectively. The differences between the 
magnitude of the vorticity production at the leading and 
trailing edge are within the experimental uncertainty. 
When the sail is eased for strong wind conditions, the 
nondimensional vorticity production decreases on every 
spanwise section. 
 
The lift force can be estimated from the vortex ring 
circulation production, which we found to be  
𝛤̇𝛤 ≈ −𝛤̇𝛤LE ≈ −𝛤̇𝛤TE. The area of the vortex ring is the sail 
itself, and for the lift component of the force we consider 
only the area projection orthogonal to the lift direction. 
Hence, for each sail section along the span, the width of 
the vortex ring is 𝑐𝑐 cos𝛼𝛼, where 𝑐𝑐 is the sectional chord 
length. Finally, assuming that most of the circulation is 
generated by horizontal shear layers at the leading and 
trailing edge, eq. 5 can be written as 
            

𝐿𝐿 = 𝜌𝜌� 𝑐𝑐 cos α 𝛤̇𝛤
𝑆𝑆

𝑑𝑑𝑑𝑑. (13)



 
Figure 5 Nondimensional leading-edge circulation production �𝚪̇𝚪𝐋𝐋𝐋𝐋/𝑼𝑼∞

𝟐𝟐 � and trailing-edge circulation �𝚪̇𝚪𝐓𝐓𝐓𝐓/𝑼𝑼∞
𝟐𝟐 � versus the 

spanwise nondimensional coordinate 𝒛𝒛/𝑺𝑺 for (a) 𝜂𝜂 = 0° and (b) 𝜂𝜂 = −10°. Markers indicate measured data, whilst dotted lines 
are third-order polynomial fits with shaded regions showing the 95% CI of the fit. 
 
In Eq. 13, 𝛼𝛼 is the angle between the chordline of the sail’s 
cross-section and the horizontal axis, as shown in Figure 
1b. By using the values of 𝛤̇𝛤 in figure 5 the lift is 12% and 
10% higher than that measured with the load cells for 𝜂𝜂 =
0° and 𝜂𝜂 = −10°, respectively.  
 

4.7. Drag 

The time-averaged drag can be estimated using Taylor’s 
formula, found in Bryant et al. [23], where it is defined as 

                𝐷𝐷 = � (𝑝𝑝 − 𝑝𝑝0)𝑑𝑑𝑑𝑑.
𝑊𝑊

 (14) 

This expression states that the drag is the integral over a 
line 𝑊𝑊 intersecting orthogonally the wake, of the 
difference between the pressure in the wake 𝑝𝑝 and that in 
the far field 𝑝𝑝0. By using the Bernoulli equation, this 
equation shows that the drag is equal to the momentum 
loss in the wake. Wu [24] recently showed that the first 
order approximation of Eq. 14 is 

                    𝐷𝐷 = 𝜌𝜌𝑈𝑈∞𝑄𝑄, (15) 

where, in 2D, 

               

𝑄𝑄 = � −𝑦𝑦𝜔𝜔𝑧𝑧𝑑𝑑𝑑𝑑.
𝑊𝑊

(16) 

This enables the use of Taylor’s formula by knowledge of 
only the vorticity field along 𝑊𝑊 and the expression is 
referred to as the Filon’s drag formula. A 2nd order 
polynomial is utilised to approximate the spanwise 
distribution of 𝑄𝑄. By utilising Eq. 16 and integrating 𝑄𝑄 
along the span of the sail, the steady-state drag coefficient 
is computed to be 𝐶𝐶𝐷𝐷 = 0.4 and 0.26 for the light wind 
conditions (𝜂𝜂 = 0°) and the strong breeze condition  
(𝜂𝜂 = −10°), respectively.  
 
These values lie within 15 to 20%, respectively, of the 
drag force coefficients measured with the load cells. The 
discrepancy is possibly due to the five plane data 
availability in the spanwise direction and to the effect of 
vorticity diffusion. We note that the drag of the strut and  
 

 
the rig were measured separately and subtracted to the 
force measurements, and so the strut and the rig were not 
the reasons for the discrepancy. 
 
When the sail is depowered from  𝜂𝜂 = 0° to 𝜂𝜂 = −10°, the 
drag decreases. Interpreting this reduction through Eq. 16, 
allows the use of figure 2 to identify how a reduction in 
vorticity enables drag reduction along the span of the sail. 
By decreasing the angle of attack, the width of the wake 
on the highest planes A and B decreases significantly, 
resulting in a lower drag generation. Conversely, the same 
angle of attack reduction on the lower sections, has a 
comparatively smaller effect on the wake width and thus 
on the drag generation. 

5. FULL-SCALE SAILS CONSIDERATIONS 

Firstly, we recognize that the motion of the flying shape 
and motion of the boat on the stability of the vortex rings 
are important considerations that need to be addressed in 
future research. Secondly, the LEVs and TEVs identified 
in this paper are fully turbulent and a further increase in 
the Reynolds number and of the turbulent intensity could 
enhance mixing and result in smaller vortices. However, 
their dynamics and the force generation mechanisms are 
not expected to significantly change. It is noted that that at 
the low Reynolds number at which we tested, the 
boundary layer forming from the stagnation points on the 
sail could be laminar while it would be most likely 
turbulent at full scale conditions. However, because we 
showed that the circulation associated with the vorticity in 
the boundary layer is negligible compared to the free 
circulation in the bulk flow field, it is unlikely that this 
would make a significant difference on the flow field. 
Lastly, at higher Reynolds number and turbulence 
intensity, we might expect enhanced mixing and 
consequent lower coherence of the vortex structures and, 
in turn, lower effectiveness of the different stabilising 
mechanisms of the leading-edge vortex. For example, the 
vorticity extraction through axial flow within the core of 
the leading-edge vortex might be lower at much higher 
Reynolds numbers than those tested in this work.      



6. CONCLUSIONS 

We presented force and flow measurements on a 
spinnaker in a water tunnel to analyse the force generation 
mechanisms. We considered the sail trim enabling the 
maximum driving force and a depowered trim. Using 
particle image velocimetry, we analysed the vorticity 
fields on five horizontal planes. We observed separated 
and tridimensional flow, with negligible bound 
circulation. In contrast, we showed that the vortex 
dynamics of leading and trailing edge vorticity is the 
governing force generation mechanism. This was 
demonstrated by comparing the force derived from the 
vorticity field with the force measured by the balance.  
 
The vortex force is the rate of change (or the time 
derivative) of the impulse of a vortex ring in 3D, or a 
vortex pair in 2D. The leading and trailing edge vortices 
are the intersection of two of the legs of the vortex ring 
with the horizontal plane. We showed that considering the 
vortex lift from the dynamics (strength and relative 
velocity) of the leading and trailing edge vortices is 
mathematically equivalent to measuring the lift with the 
Kutta-Joukowski formula using the time-averaged 
vorticity field. Similarly, the drag force can be computed 
from the time-averaged vorticity field and by applying the 
Filon’s drag formula. Furthermore, we noted that the sail 
force can also be computed from the vorticity flux at the 
leading edge and trailing edge, because this is equivalent 
to the production of circulation that feeds the vortex rings 
that emerge from the perimeter of the sail.  
 
These results demonstrate the theoretical considerations 
made by Viola et al. [1]. They also pave the way to the 
development of design methodologies for sails that 
operate in separated flow conditions, where potential flow 
approaches are not suitable. The design can be informed 
by the observation of the local flow field, which can be 
either measured or computed with, for example, a Navier-
Stokes code. Understanding the force generation 
mechanisms associated with the free vorticity in the field 
will enable tailoring the vorticity dynamics by design to 
achieve the desirable aerodynamic force.  
 

Acknowledgements 
 

This work was supported by Consejo Nacional de Ciencia 
y Tecnologia (CONACYT) with grant number 384490.  
 

References 

1. Viola I. M., Arredondo-Galeana, A., Pisetta, G., 
(2020), “How sails generate forces.”, Proceedings of 
the 5th Innov’sail Conference, Gothenburgh, Sweden, 
June 2020, 1-16. 

2. Arredondo-Galeana, A. & Viola, I. M. (2018), “The 
leading-edge vortex of yacht sails.”, Ocean 
Engineering, 159, 552-562. 

3. Viola I. M., Arredondo-Galeana, A. (2017), “The 
leading-edge vortex of yacht sails.”, Proceedings of 

the 4th Innov’sail Conference, Lorient, France, June 
2017, 115-126. 

4. O’Farrell, C., & Dabiri, J. (2014), “Pinch-off of non-
axisymmetric vortex rings.”, JFM, 740, 61-96.  

5. Viola, I. M. & Flay, R. G. J. (2009), “Force and 
pressure investigation of modern asymmetric 
spinnakers.”, IJSCT Technology Transaction RINA 
Part B2, 151(2), 31–40. 

6. Viola, I.M. & Flay, R.G.J. (2010), “Pressure 
distributions on modern asymmetric spinnakers.”, Int. 
J. Small Cr. Technol. 152 (B1), 41-50.  

7. Viola, I. M., Bartesaghi, S., Van-Renterghem, T. & 
Ponzini, R. (2014), “Detached Eddy simulation of a 
sailing yacht.” Ocean Engineering, 90, 93-103.  

8. Bot, P., Viola, I. M., Flay, R. G. J. & Brett, J.-S. 
(2014), “Wind-tunnel pressure measurements on 
model-scale rigid downwind sails.”, Ocean 
Engineering, 90, 84-92. 

9. Perry, AE & Steiner, TR (1987), “Large-scale vortex 
structures in turbulent wakes behind bluff bodies. Part 
1. Vortex formation processes.”, JFM, 174, 233–270. 

10. DeVoria, A. C. & Mohseni, K. (2017), “On the 
mechanism of high-incidence lift generation for 
steadily translating low-aspect-ratio wings.”, JFM 
813, 110–126. 

11. Kutta, W. M., (1902), “Auftriebskräfte in strömenden 
flüssigkeiten.”, Illust. Aeronaut. Mitt. 

12. Jowkowski, N. E., (1906)y, “On annexed vortices.”, 
Proc. Phys. Sect. Nat. Sci. Soc., 13 (2), 12-25. 

13. Graftieaux, L., Michard, M. & Grosjean, N. (2001), 
“Combining PIV, POD and vortex identification 
algorithms for the study of unsteady turbulent 
swirling flows.” Meas Sci Technol 12 (1201), 1422–
1429. 

14. Stevens, P. R. R. J., Babinsky, H., Manar, F., 
Mancini, P., Jones, A. R., Granlund, K. O., Nakata, 
T., Phillips, N., Bomphrey, R. J. & Gozukara, A. C. 
(2016), “Low Reynolds Number Acceleration of Flat 
Plate Wings at High Incidence (Invited).”, In 54th 
AIAA Aerosp. Sci. Meet. AIAA SciTech Forum, 
(AIAA 2016-0286), pp. 1-15. 

15. Wu, J. C. (1981), “Theory for aerodynamic force and 
moment in viscous flows.” AIAA Journal, 19 (4), 432-
441. 

16. Lighthill, J. (1986), An Informal Introduction to 
Theoretical Fluid Mechanics, Clarendon Press, UK. 

17. Eldredge, J. D. (2019), Mathematical Modelling of 
Unsteady Inviscid Flows, Springer, Switzerland. 

18. Koumoutsakos, P. & Leonard, A. (1995), “High-
resolution simulation of the flow around an 



impulsively started cylinder using vortex methods.”, 
JFM, 296, 1-38.  

19. Leonard, A & Roshko, A (2001), “Aspects of flow-
induced vibrations.”, J. Fluids Struct., 15, 415-425. 

20. Rival, D. E. & van Oudheusden, B. (2017), “Load-
estimation techniques for unsteady incompressible 
flows.”, Exp. Fluids, 58 (3), 1-11.  

21. Lentink, D. (2018), “Accurate fluid force 
measurement based on control surface integration.”, 
Exp. Fluids, 59 (1), 1-12.  

22. Lamb, H. (1932), Hydrodynamics. Cambridge 
University Press.  

23. Bryant, L. W., Williams, D. H., Taylor, G. I. & 
Bairstow, L. (1926), “An investigation of the flow of 
air an aeorofoil of infinite span.”, Philosophical 
Transactions of the Royal Society of London, Series 
A, Containing Papers of Mathematical or Physical 
Character, 225 (626-625), 199-245 

24. Wu J, Ma H, Zhou M (2006), Vorticity and vortex 
dynamics, Springer, Germany. 

 


	FORCE GENERATION MECHANISMS OF DOWNWIND SAILS
	1. NOMENCLATURE
	2. INTRODUCTION
	3. METHODOLOGY
	3.1. Sailing Conditions
	3.2. Sailing Geometry
	3.3. Water tunnel setup
	3.4. Load cells
	3.5. Particle Image Velocimetry

	4. RESULTS
	4.1. Time-averaged vorticity fields for different flow conditions
	4.2. Instantaneous vorticity field
	4.3. Impulse theory formulae
	4.4. Bound vorticity
	4.5. Vortex force
	4.6. Vorticity production
	4.7. Drag

	5. FULL-SCALE SAILS CONSIDERATIONS
	6. CONCLUSIONS


