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 Abstract—This paper presents a distributed voltage regulation 

method based on multi-agent system control and network self-

organization for a large distribution network. The network au-

tonomously organizes itself into small subnetworks through the 

epsilon decomposition of the sensitivity matrix, and agents group 

themselves into these subnetworks with the communication links 

being autonomously determined. Each subnetwork controls its 

voltage by locating the closest local distributed generation and 

optimizing their outputs. This simplifies and reduces the size of 

the optimization problem and the interaction requirements. This 

approach also facilitates adaptive grouping of the network by 

self-reorganizing to maintain a stable state in response to time-

varying network requirements and changes. The effectiveness of 

the proposed approach is validated through simulations on a 

model of a real heavily-meshed secondary distribution network. 

Simulation results and comparisons with other methods demon-

strate the ability of the subnetworks to autonomously and inde-

pendently regulate the voltage and to adapt to unpredictable 

network conditions over time, thereby enabling autonomous and 

flexible distribution networks. 

Index Terms—Distributed generation, distributed voltage regu-

lation, epsilon decomposition, multi-agent systems, self-

organization. 

I. INTRODUCTION

HE increasing penetration of distributed and renewable

generation sources in smart grids presents distribution 

networks with various technical challenges such as voltage 

control, power quality, and grid losses. Additionally, local 

elements of a power system, including distributed generation 

(DG), loads, and the network itself, have varying degrees of 

influence and coupling to each other. These challenges can be 

solved while still maintaining system-level coordination 

through the use of distributed and decentralized control meth-

ods based on local information [1]–[3]. In this paper, we pre-

sent a novel distributed voltage regulation technique able to 

autonomously divide a system into sub-systems while dealing 

with time-varying conditions. 

The voltage regulation on a distribution networks is custom-

arily implemented by regulating devices, such as on-load tap 

changer (OLTC) substation transformers, capacitor banks, and 
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voltage regulators in the feeders. For a distribution network 

with multiple DGs, however, the settings of these traditional 

regulating devices are not the same as for a network without 

DGs [4]. Additionally, these regulating devices do not react 

fast enough during emergency conditions [4]. A number of 

publications have proposed distributed voltage control 

schemes based on DG [4]–[9]. In [5], a distributed control 

technique for mitigating overvoltage events by controlling the 

active and reactive power outputs of inverters in feeders was 

proposed that requires coordination between feeders. The 

authors of [6] presented a voltage control scheme in which 

generation curtailment of DG is introduced if the reactive 

power exceeds certain limits. Additional publications have 

tackled distributed voltage control schemes either by integrat-

ing sensitivity methods [7], [8] or multi-agent systems (MAS) 

[4], [9]. In [4], an MAS-based voltage support scheme was 

presented using DGs in a distribution feeder. An agent-based 

control model was presented in [9] in which the output power 

of the DGs is adjusted to reach the balance between the supply 

and demand while providing stability of the voltage and fre-

quency. All the above distributed techniques are able to tackle 

network challenges; however, none of them is able to provide 

distributed and autonomous voltage regulation with dynamic 

grouping of DGs by considering the unanticipated conditions 

of DGs and the highly dynamic behavior of the emerging 

smart grids. 

The growing number of controllable devices (e.g., DG) and 

the corresponding control variables, as well as the increasing 

volume of data and information in future smart distribution 

networks, are leading to unprecedented complexity in the 

required control paradigm [1], [2], [10]. Additionally, time-

varying network conditions and the availability of DGs over 

time cannot be easily predicted during design, and thus, flexi-

ble techniques that can deal with such evolving control re-

quirements are necessary. The concept of self-organization has 

attracted interest in the context of distributed and complex 

systems to address their uncertainties and dynamic require-

ments [11]. In addition to its well-known benefit of adaptabil-

ity, self-organization also has key features such as decentral-

ized and dynamic properties [11].  

To address these challenges, this paper presents a control 

scheme based on a self-organizing MAS for distributed volt-

age regulation using appropriate DGs. The contributions of 

this paper are as follows. First, this approach enables a de-

composition technique in which a large distribution network 

autonomously self-subdivides into smaller subnetworks, 

thereby reducing the size of the problem while enabling volt-

age control in a distributed and cooperative manner. Each 
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subnetwork regulates its voltage autonomously and inde-

pendently using appropriate DGs in the same subnetwork. 

Second, the self-organization is enabled through a mechanism 

that adapts network subdivisions to reflect varying network 

conditions. The desired control mechanism is resilient to net-

work anomalies and uses local interactions to adjust the struc-

ture of the MAS without stopping the system. Third, the effec-

tiveness of the algorithm is tested on a model of a real heavily-

meshed distribution network with DGs and compared with 

other schemes demonstrating its autonomy and robustness 

under time-varying network conditions. 

The paper is organized as follows. Section II reviews the de-

composition and self-organization approaches, while Section 

III describes the self-organizing MAS framework for distrib-

uted voltage regulation with details of the system functions 

and behaviors. The simulation platform and the deployment of 

the algorithm in the test system are defined in Section IV. To 

demonstrate the system for voltage violation and regulation 

scenarios, comparative performance evaluations with other 

methods are presented in Section V. Section VI provides our 

conclusions. 

II. DECOMPOSITION AND SELF-ORGANIZATION 

An optimal voltage regulation approach was presented in [8] 

based on the application of the epsilon decomposition method 

to the sensitivity matrix (inverse of the Jacobian matrix of the 

Newton-Raphson power flow problem) to group the DG into 

matrices based on their influence on the voltage. The authors 

carried out planning studies in advance to test anticipated 

worst-case scenarios and to determine fixed partitioning to be 

used in the future. However, this decomposition and voltage 

regulation method can be realized by means of a distributed 

control scheme. In this paper, we implement the desired de-

composition method in an MAS architecture and extend this 

method by introducing a dynamic self-partitioning technique 

to the network to resolve voltage issues. 

Recently, some researchers have attempted to explore self-

organization for power networks. A power flow control 

scheme for DGs in feeders was developed in [12] by applying 

cooperative control theory to coordinate feeders. A self-

organizing communication architecture was proposed in [13] 

using MAS to mitigate cyber-threats on control schemes in 

smart grids. Moreover, energy market problems, such as an 

economic dispatch approach based on hierarchical particle 

swarm optimization [14], adaptive short-term load forecasting 

using a self-organized map (SOM) [15], and price and perfor-

mance management for microgrids using an MAS [16], have 

been widely investigated. Consensus-based protocols have 

been used in recent studies to implement self-organizing prop-

erties in power networks [17]-[21]. Although consensus ap-

proaches have promising properties, they require iterative 

global communication and updates to reach consensus and 

synchronized results [22], and are mostly applied in small-scale 

radial networks. In previous studies, the problems of how to 

control the voltage using appropriate DGs in large networks 

and how to make groups of DGs autonomous and dynamic 

have not been investigated.  

Through the abovementioned methods, researchers have 

demonstrated that self-organizing systems exhibit flexible 

organization behavior to permit the realization of a desired 

objective while adapting to the conditions of the immediate 

environment. These techniques can intelligently enable dis-

tributed control with autonomous agents, which can facilitate 

the exploitation of the inherent flexibility of DGs in network 

operations. In contrast to the methods discussed above, this 

paper presents a prototype self-organizing MAS control sys-

tem for distributed voltage regulation in large networks 

through local interactions of agents in a cooperative way. The 

proposed algorithm addresses the challenge of enabling dis-

tributed control and the self-organization of multiple subnet-

works while dealing with uncertainties in the network. 

III. DEPLOYING EPSILON-DECOMPOSITION-BASED CONTROL:

SELF-ORGANIZATION THROUGH AN MAS 

A. Epsilon-Decomposition-Based Voltage Regulation

Epsilon (𝜀) decomposition is an algorithm that breaks up a

matrix into diagonal submatrices [23]. The concept is based on 

the premise that in a given Jacobian matrix 𝐴 = (𝑎𝑖𝑗) and with

a threshold 0 < 𝜀 < 1, all entries with values less than 𝜀 are 

set to zero. The "new" matrix, which is a block diagonal de-

composed matrix, contains all variables that are strongly cou-

pled in the same block, while weak couplings are discarded. 

The number of discarded weak couplings depends on the ε 

value used for decomposition, e.g., for higher values of 𝜀, 
there are fewer couplings that need to be considered, resulting 

in smaller groups in terms of the number of variables. In [8], 

an epsilon decomposition algorithm was applied to the sensi-

tivity matrix to achieve the optimal voltage regulation. 

The epsilon decomposition method can be applied to divide 

a large power system into subsystems. The sensitivity matrix 

can be derived from the Jacobian matrix of the Newton-

Raphson power flow problem as 

(
Δθ
ΔV

) = (
AθP AθQ

AVP AVQ
) (

ΔP
ΔQ

 ) (1) 

where the sensitivity matrix A is 

A = (
AθP AθQ

AVP AVQ 
) ∙ (2) 

The sensitivity matrix A describes the linear relationships 

between the changes in the active and reactive power levels of 

a DG and the voltage variations. We can calculate adjustments 

to the DG active power, 𝑥𝑃 = 𝑃𝑟 − 𝑃0, or reactive power,

𝑥𝑄 = 𝑄𝑟 −  𝑄0, to control the voltage at a particular node from

an initial voltage V0 to a reference voltage Vr as 

𝑉𝑟 = 𝑉0 +  AVP ∙  𝑥𝑃 +   AVQ ∙  𝑥𝑄  (3) 

where 𝑃0 and 𝑃𝑟  are the DG active power outputs before and

after voltage regulation, respectively, and 𝑄0 and 𝑄𝑟  are the

reactive power outputs before and after voltage regulation, 

respectively. 

The purpose of epsilon decomposition is to reduce the num-

ber of variables and constraints within each small, isolated 

subnetwork to create a small optimization problem with mini-

mum interaction requirements. After decomposition of the 

sensitivity matrix A, each subnetwork maintains the voltage 
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levels in its subnetwork within certain limits by calculating the 

optimal adjustments to the involved DG outputs based on the 

information provided by the resulting decomposed matrix, as 

discussed below. 

B. Descriptions of Agents

The epsilon decomposition algorithm is implemented using 

an MAS architecture, thereby allowing the agents in a large 

network to group into small subnetworks with the communica-

tion links between agents being autonomously determined. To 

deploy this proposed approach, the system contains four types 

of agents: epsilon decomposition (ED) agent, violation detec-

tion (VD) agent, linear programming solver (LPS) agent, and 

distributed generation (DG) agent. Each agent uses its 

knowledge and behavior to autonomously manage its own 

activities and coordinate with only the appropriate agents 

while maintaining stable state of the system as described be-

low. 

1) Epsilon Decomposition (ED) Agent:

The ED agent applies epsilon decomposition to the sensitivi-

ty matrix A in (2) and activates LPS and VD agents, informing 

them about the other agents in the same subnetwork so that 

each agent links only with other agents within the same sub-

network. 

As an example of decomposition, let us consider the sensi-

tivity submatrix AVQ in (2), which can be expressed as

AVQ = A'
VQ + 𝜀 ∙ 𝐵 (4) 

where A'VQ is the decomposed submatrix, which retains the

strong couplings represented by elements greater than 𝜀, and 

𝜀 ∙ 𝐵 contains weak couplings. The resulting submatrix defines 

the topology of the subnetworks and the influence range of 

each DG. After decomposition, it is possible that not all DGs 

in a subnetwork will have strong couplings with all nodes in 

this subnetwork. Thus, the “range of influence” of a DG is 

defined as the nodes within its subnetwork for which the volt-

ages can be affected by the output of the DG. This influence 

range can be contracted or expanded by adjusting the thresh-

old value. 

The ED agent selects and updates the ɛ value based on its 

knowledge or when triggered by other agents or changes in the 

network. For example, this can be triggered by an LPS agent 

to request involving more DGs in the control when a DG has 

tripped, or when this DG is back online to restore the previous 

operation before the trip event. Moreover, this can be initiated 

by the network changes when a new DG unit is installed. This 

resets and updates the subnetworks and the ranges of influence 

of the DG in accordance with (2) and (4). The agents regroup 

and self-organize to adapt to the new network conditions 

without a complete re-engineering of the overall MAS frame-

work. This process can occur at any time without stopping or 

restarting the MAS platform and its agents. 

2) Violation Detection (VD) Agent:

The VD agents monitor the status of busses and have

knowledge of the voltage violation constraints, as specified by 

the voltage upper and lower normal operating limits (between 

0.95 pu and 1.05 pu in this paper). When a VD agent observes 

a voltage violation at its bus, it requests the LPS agent in the 

same subnetwork to resolve the network voltage issue. 

3) Linear Programming Solver (LPS) Agent:

Each LPS agent acts as a control agent for its subnetwork.

When an LPS agent receives a violation message from a VD 

agent in its subnetwork, it calculates the optimal adjustments 

to the generation of the involved DGs using a linear program-

ming (LP) algorithm that is integrated within each LPS agent. 

Thus, the LPS agent has knowledge of: a) the DG agents in the 

same subnetwork and the surplus capacity of each DG; b) the 

sensitivity submatrix of the subnetwork that is used to deter-

mine how each DG affects the voltages of the nodes within its 

range of influence; c) the sensitivity coefficients, obtained 

from (2), that define how a DG influences the voltage magni-

tudes and phase angles of the primary and secondary sides of 

the network transformers; and d) the acceptable voltage limits 

(in this paper, 0.95–1.05 pu). The third constraint ensures that 

the network protectors used to avoid reverse active power 

flows through the network from the secondary side to the 

primary side are not tripped, as shown in (7) and (9). This 

approach can be applied to networks with DGs operating in 

the unity power factor (UPF) mode by increasing or decreas-

ing the active power output and to networks with DGs operat-

ing in the power factor control (PFC) mode by injecting or 

absorbing reactive power. 

It follows that when all DGs are operating in the PFC mode, 

the LPS agent can control the voltage optimally by minimally 

decreasing or increasing the reactive power outputs of the 

local DGs involved. For the LP problem in the PFC mode, the 

objective function is  

Max: 𝑀𝑖𝑛{𝑥𝑖}  (to control overvoltage) (5) 

Min:  𝑀𝑎𝑥{𝑥𝑖} (to control undervoltage) (6) 

subject to the following constraints: 

{

𝑉𝑙  ≤  𝑉0 + 𝐴𝑉𝑄 ∙ 𝑥 ≤ 𝑉𝑢

𝑥 ≤  𝑄𝑆𝑢𝑟

0 ≤ 𝜃𝑝0 + 𝐴𝜃𝑝𝑄 ∙ 𝑥 − (𝜃𝑠0 + 𝜃𝑠ℎ𝑖𝑓𝑡 + 𝐴𝜃𝑠𝑄 ∙ 𝑥)
∙ (7) 

When operating in the UPF mode, DGs can generate only 

active power. The LPS agent calculates the optimal generation 

adjustments for the involved DG to control the voltage with 

the following objective function: 

Max: 𝑀𝑖𝑛{𝑥𝑖} (8) 

s.t.

{

𝑉𝑙 ≤ 𝑉0 + 𝐴𝑉𝑃 ∙ 𝑥 ≤ 𝑉𝑢

𝑥 ≤  𝑃𝑆𝑢𝑟

0 ≤ 𝜃𝑝0 + 𝐴𝜃𝑝𝑃 ∙ 𝑥 − (𝜃𝑠0 + 𝜃𝑠ℎ𝑖𝑓𝑡 + 𝐴𝜃𝑠𝑃 ∙ 𝑥)
∙ (9) 

To solve this LP problem in the same way as the standard 

LP problem, we can add a slack variable y to bring it into the 

same form as the standard LP problem. Let us consider over-

voltage control in the PFC mode as an example: 

Max: 𝑦  (to control overvoltage) (10) 
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s.t.

{

𝑉𝑙 ≤ 𝑉0 + 𝐴𝑉𝑄 ∙ 𝑥 ≤ 𝑉𝑢

𝑥 ≤  𝑄𝑆𝑢𝑟

0 ≤ 𝜃𝑝0 + 𝐴𝜃𝑝𝑄 ∙ 𝑥 − (𝜃𝑠0 + 𝜃𝑠ℎ𝑖𝑓𝑡 + 𝐴𝜃𝑠𝑄 ∙ 𝑥)

𝑥𝑖  ≥  𝑦 (𝑖 = 1~𝑛, 𝑛 DG agents are involved)

∙ (11) 

In the above equations, 𝑥𝑖 is the power generation adjust-

ment of the i-th DG agent; x is the vector of all 𝑥𝑖; 𝑉𝑢 and 𝑉𝑙

are the upper and lower voltage limits, respectively; 𝑄𝑆𝑢𝑟  and

𝑃𝑆𝑢𝑟  are the surplus capacities of the DG; 𝜃𝑝0 and 𝜃𝑠0 are the

initial values of the network transformer voltage angles on the 

primary side and secondary side, respectively; 𝛬𝜃𝑝𝑄 and 𝛬𝜃𝑠𝑄

are the sensitivity submatrices of the reactive power adjust-

ments and the transformer voltage angles on the primary and 

secondary sides, respectively; and 𝛬𝜃𝑝𝑝 and 𝛬𝜃𝑠𝑃 are the sensi-

tivity submatrices of the active power adjustments and the 

transformer voltage angles on the primary and secondary 

sides, respectively. 

Once an LPS agent receives a violation message from a VD 

agent, it first determines which of the DGs of its subnetwork 

are the “closest” to this violation, and then, considering only 

these involved DGs, it seeks a solution by employing the LP 

algorithm. The closest DGs to a node are defined as the neigh-

boring DGs that can influence the node’s voltage by adjusting 

their outputs, as determined by the range of influence of the 

DGs and as expressed in (4). Thus, when the LPS agent solves 

the LP problem in its subnetwork, only the closest DG agents 

to the violating node participate in voltage control, which 

further reduces the size of the optimization problem and the 

interaction requirements. The voltage control also becomes 

more “local” within each subnetwork, i.e., the VD agents 

coordinate with their local LPS agent to optimize only the 

local closest DG agents in the subnetwork. 

After determining how to resolve the voltage violation 

problem, the LPS agent communicates the control adjustments 

to the involved DG agents to request an increase or decrease in 

the DG outputs and to restore the voltage of the subnetwork to 

within the normal operating limits. However, if the subnet-

work is unable to resolve the voltage issue (e.g., a DG is not 

available or has lost communication), it will request the ED 

agent to update the ɛ value to involve more DG agents in the 

problem. As a result, the control agents reconfigure and self-

organize in the new identified subnetworks to regulate the 

voltage. 

4) Distributed Generation (DG) Agent:

Each DG agent represents its DG that is connected to the

distribution network and performs control actions to adjust its 

output. DG agents receive generation adjustment signals from 

the LPS agent in the same subnetwork to maintain appropriate 

voltage levels. 

The DG agent has knowledge of its constraints (such as gen-

eration capacity) and the decomposed sensitivity A’ matrix in

order to dynamically update its range of influence. It also 

shares its constraints and availability with other agents. For 

instance, if a DG is not available (e.g., disconnected from the 

network), the DG agent informs the LPS agent so that the LPS 

agent can find solutions using other DGs through the self-

organizing mechanism. When the DG is back online, it in-

forms the LPS agent sharing its availability and constraints. 

It is also noted that the DG agent shares its constraints, such 

its available surplus capacity, with the LPS agent in order for 

the LPS agent to consider when solving the LP problem. This 

is used by the LPS agent to maintain the operation of the in-

volved DGs and the voltage regulation process, and to enable 

the system to adapt based on conditions and constraints of 

involved DGs and network events as summarized next. 

C. Implementation for Distributed Voltage Regulation

The ED agent decomposes the sensitivity matrix with the 

initial ε value as shown in (4). The number of subnetworks 

depends on the ε value, which is selected and updated auton-

omously in accordance with the purpose of decomposition, 

i.e., the desire to achieve smaller subnetworks for distributed

control. The ε value is initialized with the value that yields the

largest number of groups.

The LPS and VD agents receive the required knowledge of 

the decomposed network, including which agents are in the 

same subnetwork, so that the agents only need to communi-

cate with other agents in the same subnetwork. After decom-

position, the agents within each subnetwork coordinate to 

realize and maintain distributed voltage regulation. If a sub-

network cannot regulate the voltage using the involved DGs 

(e.g., a DG has tripped or does not have enough surplus capac-

ity), the agents will coordinate and self-organize to involve 

more DG agents in the control problem. 

The process and steps of implementing the algorithm are 

summarized below. 

Step 1): The ED agent initiates the system via (4) and acti-

vates the LPS and VD agent according to the subnetworks 

identified. 

Step 2): Each VD agent starts monitoring its bus for voltage 

violations; if such a violation occurs, it sends a violation mes-

sage to the LPS agent of its subnetwork. 

Step 3): The LPS agent checks the violation message re-

ceived from its subnetwork and identifies generation adjust-

ments for the involved DG agents, as expressed in (5)-(7) for 

the PFC mode or in (8) and (9) for the UPF mode.  

Step 4): The LPS agent then sends the control actions to the 

DG agents to adjust their output. 

Step 5): After the voltage is normalized in the subnetwork, 

the agents return to Step 2 to continue monitoring and control-

ling the system. 

Step 6): If the subnetwork cannot regulate the voltage (e.g., 

an involved DG has tripped), the LPS agent will request the 

ED agent to determine a new 𝜀 value for decomposition and 

involve more DG agents in the control problem. Subsequently, 

the agents will self-organize to regulate the voltage. 

Step 7): When the network returns to normal operation (e.g. 

the DG is back online), the agents reorganize and return to 

Step 2 to continue monitoring and controlling the system. 

In addition to the above steps, the system is able to adapt to 

network changes, such as expansion of the network or the 

removal of DGs through its self-organizing mechanism. The 

system will dynamically update the decomposition of the 

network, and the agents organize into new subnetworks. 
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IV. APPLICATION TO A HEAVILY MESHED DISTRIBUTION 

NETWORK 

A. Self-Organizing MAS Implementation

The MAS architecture was deployed using the Simulation of 

Agent Societies 2 (Presage2) framework [24], which offers 

agent communication capabilities and improved autonomy. 

Presage2 provides the flexibility to design self-organizing 

MASs able to meet the requirements of electrical network 

control and management applications. An example of selected 

knowledge and behavior of an LPS agent within Presage2 and 

its interactions with other agents is illustrated in Fig. 1.  

 The message format in Presage2 is as follows. 

message (performative, sender, destination, time, content) 

The message performative identifies the purpose of the mes-

sage, for instance “inform”, “confirm”, and “query-if” as de-

scribed in the FIPA-ACL standard [25]. The message sender 

and the message destination denote the agents that are sending 

and receiving the message, respectively. The message time is 

the time at which the message was sent, while the message 

content carries information that is sent between the agents. A 

message example is as follows. 

message (inform, VD362, LPS34, 23, V<0.912>) 

An  increasing number of smart grid and power systems ap-

plications require more frequent and improved data communi-

cations. There are extensive developments and research taking 

place in this field for smart grids, and the future communica-

tions systems will underpin the advanced functionality of this 

paper. The communication networks under the smart distribu-

tion systems paradigm provides connectivity to many devices 

distributed throughout a particular geographical region. A 

detailed description of these information and communication 

technologies (ICTs) and infrastructure to support the operation 

of smart distribution networks can be found in [26]-[28]. 

Moreover, future smart grids propose the use of advancements 

in ICT such as IoT [29] and energy internet [30], and with the 

support of future ICT technologies such as 5G [31]. However, 

a detailed examination of communications requirements and 

their implementation are beyond the scope of this paper. 

It  is worth noting that we assume instantaneous communica-

tion between agents when a voltage regulation event occurs. 

However, in such an event-based system, it is important to 

request control and communication resources instantaneously. 

To maintain the availability of resources, prediction protocols 

based on network conditions [32] can be implemented to im-

prove the proposed method. Developing such predictive rules 

(e.g., due to a disturbance) for agents and their use of commu-

nication resources was investigated recently in [32]. In our 

system, rules can be implemented based on network or other 

agents events and conditions, such as a DG trip or available 

surplus capacity. This can enable the processing or communi-

cation system to make unused resources available to other 

agents or to reconfigure the sleeping mode to save energy. 

Future research will be carried out in this direction. 

B. The Test System

The test system is a model of a real heavily-meshed second-

ary network containing 2083 nodes, 224 network transformers 

(13.8 kV to 480 V or 216 V), and 311 PQ loads. As shown in 

Fig. 2, the primary feeders are at 13.8 kV and contain 1043 

nodes, while the secondary network contains the remaining 

1040 nodes at 216 V or 480 V. In this network, the 311 DGs 

are installed at the load buses in the secondary network. The 

largest network in the secondary grid has all of its transform-

ers connected on the secondary side, which creates a heavily-

meshed network of 284 loads. The decomposition of the net-

work is demonstrated in Fig. 2.  

Table I shows how the value of ε influences the number of 

control subnetworks. For example, a smaller value of 0.004 

results in fewer groups than a larger value of 0.016, while a 

larger 𝜀 value provides more small-size subnetworks, which 

results in a smaller control problem. However, a large 𝜀 value 

may also yield suboptimal control strategies as a result of 

neglecting links with some significance. The MAS architec-

ture is deployed in the model system, and the agents self-

organize into subnetworks defined by the communication links 

between agents. 

Fig.2. Test system demonstrating subnetworks after decomposition. 

TABLE I 

RESULTS OF EPSILON DECOMPOSITION WITH VARIOUS 𝜀 VALUES FOR DGS 

OPERATING IN PFC AND UPF MODES   

ε 
DG with PFC mode DG with UFC mode 

No. of DG subnetworks No. of DG subnetworks 

0.004 19 20 

0.006 24 35 

0.008 34 47 

0.010 57 65 

0.012 82 75 

0.014 80 72 

Fig. 1. LPS agent architecture in Presage2.  
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It is noted that when the network is going under high pene-

tration of distributed renewable resources, intermittent renew-

ables may increase the voltage violations events in the net-

works. However, to reduce the pressure on the overall network 

and maintain the performance of the control method, we as-

sume that DGs have a mechanism (such as using energy stor-

age [33]) to help reduce variations of generation. This can also 

offer dispatchable resources available to use by the proposed 

distributed voltage regulation scheme. 

V. RESULTS AND DISCUSSION

In the following, we present the simulation results of the 

proposed distributed control algorithm performed in the test 

system under various network conditions to validate the au-

tonomy and adaptability of the system. In addition, to verify 

the overall performance of the proposed framework, we com-

pare the results with four other control approaches: i) no DG 

control, ii) using our self-organizing method without partition-

ing, iii) the local voltage control only without coordination 

where each DG acts on its local bus voltage only [34], [35], 

and, iv) the community detection algorithm based on the mod-

ularity index method presented in [36]. It is worth noting that 

when implementing our presented method without partition-

ing, it uses the voltage sensitivity coefficients associated with 

the whole network; therefore, it can be used as a centralized 

equivalent control case benchmark since its LP problem ac-

counts for all the links between nodes and DGs in the second-

ary network. For the community detection algorithm, the parti-

tioning method is based on the sensitivity matrix (5) and the 

voltage is regulated using DGs in each partition. 

A. Case Study 1: Distributed Voltage Regulation

The algorithm is simulated in the network to demonstrate 

effective distributed voltage regulations with 𝜀 = 0.012 in 

PFC and UPF modes. For PFC mode, the agents in the sec-

ondary network are decomposed into 82 isolated subnetworks, 

with one LPS agent activated in each subnetwork. As demon-

strated in the agent interaction chart in Fig. 3, the ED agent 

informs the VD and LPS agents about their subnetworks. To 

create a voltage violation, we assume a disconnection of DG 

unit 71, in subnetwork 5, from the secondary network, which 

causes a voltage violation to appear in the distribution net-

work. The violation is detected by VD agent 1327, in subnet-

work 5, with a voltage value of 0.9488 pu. This VD agent 

sends a message with the location and value of the voltage to 

the corresponding subnetwork’s control agent, LPS agent 5, as 

illustrated in Fig. 3. 

For this case study, subnetwork 5 is the largest DG group, 

containing 81 DGs and around 250 nodes of the total 311 DGs 

and 1040 nodes in the secondary network. Although the size 

of this subnetwork is much smaller than the original secondary 

network, solving the LP problem may still have 81 variables 

and around 500 constraints if all the DGs of this subnetwork 

are involved in the voltage regulation function. However, for 

such a large subnetwork, it is possible that not all DGs have a 

strong coupling with all nodes in the subnetwork. Thus, after 

decomposition, only the corresponding closest DG or DGs 

whose range of influence covers the node voltage are involved 

in the voltage regulation process. Therefore, LPS agent 5 first 

determines the DG agents in its subnetwork that can influence 

the node voltage, which are DG agent 59 and DG agent 251 in 

this case, as shown in Fig. 3. As a result, out of the 81 DG 

agents in this subnetwork, only two DGs are involved in the 

control problem. This further reduces the size of the LP con-

trol problem from 81 variables and nearly 500 constraints, to 

only 2 variables and 42 constraints, as show in Table II. It also 

simultaneously reduces the interactions required between only 

the involved agents. As shown in Fig. 3, when LPS agent 5 

finds the solution, it sends messages to DG agents 59 and 251, 

Fig. 3. Communication among agents for distributed voltage regulation (Case Study 1). 

TABLE II 

RESULTS OF CONTROL WITH 𝜀 = 0.012 IN PFC AND UPF MODES FOR THE 

SAME VIOLATION EVENT (CASE STUDY 1) 

Control Mode PFC UPF 

No. of DG agents in the subnetwork  81 25 

No. of DG agents involved in the control 2 1 

No. of involved nodes in the control 21 8 

Ploss after control (pu) 0.2507 0.2330 

Qloss after control (pu) 0.8332 0.8061 
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instructing them to inject reactive powers of 0.241 pu and 

0.262 pu, respectively. 

To test the algorithm in UPF control mode, the same volt-

age drop as above is analyzed. Table II compares the results 

of voltage regulation under the different control modes for the 

same 𝜀 value. It also shows that in the UPF mode, fewer DGs 

and nodes are involved in solving the control problem, with 

lower system power losses. 

This case study demonstrates effective distributed voltage 

regulation based on the proposed MAS architecture for a par-

ticular area with sufficient local DG. This architecture may 

also have further applications for static partitioning when 

considering proper DG allocation planning in distribution 

networks [8], [37], which can be used as a reference to expand 

the network.  

B. Performance Comparison

We use case study 1 to compare the performance of present-

ed distributed voltage regulation to that of the system without 

DG control, the basic control on local bus voltage only with-

out coordination, the non-partition control scheme, and the 

community detection algorithm. In this case study, we com-

pared the results when using the community detection algo-

rithm to evaluate the performance of our proposed distributed 

voltage regulation and when using only the closest DG.  

Fig. 4 illustrates the voltage profiles of the nodes after the 

control actions for all compared methodologies. The horizon-

tal dotted line in the inset in Fig. 4 represents the lower voltage 

limit (0.95 pu), which is exceeded at bus 1327. The best solu-

tion could be achieved by the global optimization method 

without partitioning the network (black dotted line), which 

regulates the voltage by solving the control problem consider-

ing all links between DGs and nodes in the network.  

Fig. 4 shows that the proposed method (blue line) is as effec-

tive as the method without partitioning, while having less 

influence on other nodes when compared to no partition and to 

the community detection algorithm. When the community 

detection algorithm (purple line) is applied, the effected parti-

tion uses all DGs in its partition when solving the control 

problem and regulating the voltage, while our proposed meth-

odology seeks to use the closest DGs only, as summarized in 

Table III. This table indicates that when compared to no parti-

tion and the community detection algorithm, in our methodol-

ogy fewer DGs are involved in control of the voltage, and the 

size of the control problem is reduced significantly. When the 

uncoordinated local control method (green dotted line) is ap-

plied, the voltage at bus 1327 is below the 0.95 pu limit. This 

is because it does not have a coordination mechanism to regu-

late the voltage when the corresponding local DG 71 at bus 

1327 has tripped.  

The final solution of the proposed method may not lead to 

the same result obtained by the overall optimization of the 

entire secondary network without partitioning, but, as shown 

in Fig 4, they are comparable. However, the aim of the pro-

posed technique is to provide a voltage regulation platform 

that uses distributed approach with sufficiently accurate re-

sults, while dealing with increasing complexity of such large 

networks with DGs and a need to obtain fast solutions In Ta-

ble III, we also report the power losses in the secondary net-

work after control. This can be seen as another criterion show-

ing that the proposed method maintains power losses compa-

rable to solving for the whole network, and also may result in 

reduced power losses such as in this case study.  

C. Case Study 2: Voltage Violations in Multiple Subnetworks

The agent communication diagram in Fig. 5 shows the 

agents involved in this control problem. To study the control 

algorithm, it is assumed that there is no communication delay, 

such that each LPS agent receives the violation messages at 

the same time; i.e., each of LPS agent 5 and LPS agent 45 

receives violation messages simultaneously from the VD 

agents in its subnetworks. Each LPS agent identifies solutions 

for its own subnetwork to optimize the involved DG outputs 

and to control the voltage in its area. Therefore, the voltage 

control problem is divided into 2 LP problems that are solved 

independently by each corresponding LPS agent. The infor-

mation of these two LPS agents to solve their LP problems is 

TABLE III 

COMPARISON OF THE CONTROL PARAMETERS AND RESULTS  

Technique 
Proposed 

Method 

Without 

Partitioning 

Local 

Control [34] 

Community 

Detection [36] 

No. of involved 

DGs 
2 12 1 9 

No. of involved 

nodes 
21 138 1 123 

Ploss after  

control (pu) 
0.2507 0.2667 0.2512 0.2594 

Qloss after  

control (pu) 
0.8332 0.8395 0.8360 0.83735 

Fig. 5. Coordination among agents to simultaneously and independently 
control the voltage within each subnetwork (Case Study 2). 

Fig. 4. Voltage profiles of the secondary network under different scenarios. 
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summarized in Table IV. 

Simulations were performed to test the performance of the 

system when multiple voltage violation events occur in differ-

ent subnetworks at the same time. This is simulated by simul-

taneously tripping multiple DGs in different subnetworks, 

causing voltages to exceed the acceptable operating limits in 

each affected subnetwork. In this case, in addition to the dis-

connection of DG 71, as in the first case study, we assume that 

a disconnection of a second DG (DG 119 in subnetwork 45) 

occurs at the same time. As a result, as shown in Fig. 5, in 

addition to a voltage drop appearing in subnetwork 5 and 

being detected by VD agent 1327 (similar to Case Study 1), 

violation events are detected by VD agents 1635 and 1636 (in 

subnetwork 45), which communicate these violations to LPS 

agent 45. 

The voltage profiles of the secondary network after control 

for various methods are presented in Fig. 6. The voltage at the 

effected buses 1635 and 1636 in subnetwork 45 before and 

after control is shown in Fig. 7. The performance is compared 

with the method without partitioning and when using basic 

local control. As expected, the results show that the voltage 

regulation of the proposed distributed method is almost equiv-

alent to the method without partitioning. As shown in Fig. 6, 

the voltage limits in the proposed method are maintained in 

each subnetwork with very little influence on other areas. This 

is because the proposed distributed voltage regulation enables 

each subnetwork to regulate the voltage independently and to 

use the closest DGs to a node.  

As summarized in Table V, in comparison to the situation 

where the network is not partitioned, the proposed method 

enables solving the control problem with less DG involved 

and with a reduced size of the control problem. This not only 

leads to results comparable to solving for the whole network, 

but also allows dividing and simplifying the problem into 

smaller independent sub-problems. In this case study, the 

basic local control without coordination was able to success-

fully regulate the voltage in subnetwork 45 using DG number 

190 connected to bus 1635. 

D. Case Study 3: The Self-Organizing Mechanism

The self-organizing property of the system is implemented

by autonomously adjusting the decomposition of the subnet-

works to adapt to anomalies. For 𝜀 = 0.012, with the DGs 

operating in the UPF mode, 75 subnetworks are generated. A 

disconnection of DG 192 in subnetwork 51 is considered in 

this test. As illustrated in the communication diagram in Fig. 

8, VD agent 1694 (in subnetwork 51) reports a voltage viola-

tion event to LPS agent 51, which identifies two DG agents in 

its network, namely, DG agents 192 and 247, that can influ-

ence the voltage of the violating bus. However, because DG 

agent 192 was disconnected from the network, the subnetwork 

attempts to control the voltage with the one available DG 

agent (247).  

In this scenario, the subnetwork is not able to restore the 

voltage using the available DG resources of its subnetwork 

and informs the ED agent to select a smaller ε value to expand 

the ranges of influence of the DGs and to involve more DG 

agents in the voltage control problem. When selecting ε=0.01, 

the network is reset, and the agents regroup and reorganize 

based on the new decomposition. As shown in Fig. 8, VD 

agent 1694 is now in subnetwork 9, in which four DGs can 

influence the bus voltage. Thus, the corresponding control 

agent, LPS agent 9, finds a solution and sends the optimal 

adjustment messages to the DG agents to take control actions. 

Due to the limited space available for the interaction diagram, 

Fig. 6. Voltage profiles of busses showing violations and regulation in 

multiple subnetworks at the same time (Case Study 2). 

                

          

    

    

    

    

    

 
 
  
  
 
  
 
 

                                              

                

    

    

TABLE IV 

DATA USED BY 2 LPS AGENTS TO SOLVE THEIR INDIVIDUAL LP PROBLEMS 

FOR VOLTAGE CONTROL (CASE STUDY 2) 

Area Subnetwork 5 Subnetwork 45 

LPS agent ID 5 45 

No. of DG agents in the subnetwork 81 3 

No. of DG agents involved in the control 2 2 

No. of nodes involved in the control 21 4 (a) 

(b) 

Fig. 7. Voltage of nodes in subnetowrk 45. (a) Bus 1635 . (b) Bus 1636. 

      

        

    

    

    

    

 
 
  
  
  
  
 

                                        

      

        

    

    

    

    

 
 
  
  
  
  
 

                                        

TABLE V 

COMPARISON OF THE CONTROL PARAMETERS FOR CASE STUDY 2. 

Technique 
Proposed 

Method 

Local 

Control 

Without 

Partitioning 

No. of involved DGs 4 3 15 

No. of involved nodes  25 3 271 

Ploss after control (pu) 0.3263 0.3255 0.3402 

Qloss after control (pu) 0.9076 0.9105 0.9161 
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Fig. 8 shows only the agents that are involved in this control 

problem. Table VI also summarizes the proposed distributed 

control results for scenarios with different ε values for the 

same violation event.  

As presented in Fig. 9, after the self-organizing mechanism 

and the outputs are optimized, the voltage is controlled and 

returned to an acceptable level. The performance of various 

methods is also included in Fig. 9 and Table VII. Figure 9 

shows that the proposed mechanism can perform as effectively 

as the system without partitioning. Although the basic local 

control does not require any communication, it does not have a 

coordination mechanism to adapt and regulate the voltage 

when the involved local DG has tripped. Table VII summariz-

es the results of the methods under study. They are consistent 

with the conclusions of case studies 1 and 2. 

The system is not only capable of maintaining a stable state, 

e.g., by expanding the network when DG resources are not

available, but can also self-divide into a more distributed state

of small groups once the network returns to normal operation

(e.g. when a DG is back online in this cases study). As illus-

trated in Fig. 10, in this case study, DG 192 trips at time T2 

causing undervoltage at bus 1694. The agents self-organize at 

time T3 to regulate the voltage successfully. When DG agent 

192 returns back online at T6, it informs the LPS agent in 

order to return to the previous operation before the DG trip. 

The LPS agent first resets the four DGs agent (used to regulate 

the voltage due to the trip of DG 192) at T8 to return to nor-

mal operation. The LPS agent then informs the ED agent to 

restore the initial ε value before the DG trip event. The system 

self-reorganizes, and the 𝜀 value is reset to its value before the 

DG tripped. This mechanism also allows the system to self-

organize in response to various conditions such as uncertainty 

and the availability of energy resources over time (e.g., DG 

does not have sufficient power or has lost communication). 

VI. CONCLUSIONS

This paper presents a self-organizing distributed voltage 

regulation approach that can be applied in large networks and 

uses only the appropriate neighboring DG. The distributed 

control technique is implemented using an MAS framework, 

in which the agents autonomously group themselves into sub-

Fig. 10. The voltage levels at bus 1694 realized through self-organization. 

           
          

    

    

    

    

    

 
 
  
  
  
  
 

         

Fig. 9. The voltage profiles after regulation through self-organization. 

                

          

    

    

    

    

    

 
 
  
  
  
  
 

             
             
             
        

            

          

    

   

TABLE VI 
RESULTS OF THE VIOLATION EVENT WITH THE SELF-ORGANIZING 

MECHANISM (CASE STUDY 3) 

Control Mode UPF 

ε value 0.012 0.010 

No. of DG agents can influence the node 1 4 

Sufficient DG resources No Yes 

Fig. 8. Coordination and self-organization of agents for distributed voltage regulation (Case Study 3). 

TABLE VII 

COMPARISON OF THE CONTROL PARAMETERS FOR CASE STUDY 3. 

Technique 
Proposed 

Method 

Local 

 Control 

Without 

Partitioning 

No. of involved DGs 4 1 7 

No. of involved nodes 25 1 146 

Ploss after control (pu) 0.2640 0.2840 0.2722 

Qloss after control (pu) 0.8427 0.8658 0.8495 
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networks to control the voltage through local interactions of 

agents in a cooperative way. Additionally, the system can 

realize the adjustment of DG active power outputs in UPF 

mode or reactive power outputs in PFC mode. The system can 

also adapt to time-varying network conditions to maintain 

stable control by dynamically updating the grouping of the 

network without re-engineering the complete system. 

The effectiveness of the proposed approach is validated 

through simulations based on a complex network model of a 

real heavily-meshed secondary network, and the performance 

is compared to various techniques. Simulation results prove 

the autonomy of subnetworks to control the voltage inde-

pendently using only the involved DGs. The system was also 

tested to validate the adaptability and robustness of the system 

by maintaining stable voltage control in response to network 

anomalies over time.  

This method offers a novel MAS-based distributed voltage 

regulation approach with improved self-organization capabili-

ties for complex distribution networks, potentially giving rise 

to an adaptive and robust control approach suitable for wider 

adoption in smart grids. The future work includes extending 

the presented method to explore and solve voltage control 

challenges, such as voltage collapse analysis, posed by the 

increasing penetration of distributed and renewable generation 

sources in smart grids.  
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