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Abstract: The breakdown of cardiac self-organization leads to heart diseases and failure, the number
one cause of death worldwide. Within the traditional time-varying elastance model, cardiac self-
organization and breakdown cannot be addressed due to its inability to incorporate the dynamics of
various feedback mechanisms consistently. To face this challenge, we recently proposed a paradigm
shift from the time-varying elastance concept to a synergistic model of cardiac function by integrating
mechanical, electric and chemical activity on micro-scale sarcomere and macro-scale heart. In this
paper, by using our synergistic model, we investigate the mechano-electric feedback (MEF) which is
the effect of mechanical activities on electric activity—one of the important feedback loops in cardiac
function. We show that the (dysfunction of) MEF leads to various forms of heart arrhythmias, for
instance, causing the electric activity and left-ventricular volume and pressure to oscillate too fast, too
slowly, or erratically through periodic doubling bifurcations or ectopic excitations of incommensurable
frequencies. This can result in a pathological condition, reminiscent of dilated cardiomyopathy, where
a heart cannot contract or relax properly, with an ineffective cardiac pumping and abnormal electric
activities. This pathological condition is then shown to be improved by a heart assist device (an axial
rotary pump) since the latter tends to increase the stroke volume and aortic pressure while inhibiting the
progression (bifurcation) to such a pathological condition. These results highlight a nontrivial effect of
a mechanical pump on the electric activity of the heart.
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1. Introduction

The human heart is a powerful yet complex organ and its failure is the leading cause of death
worldwide. It constitutes one of the most beautiful examples of self-organization (homeostasis) [1–3]
as a result of various control and feedback mechanisms across scales from micro-scale sarcomere
to macro-scale organ levels. One of the important feedback loops in cardiac function is the effect
of mechanical activities on electric activity—the so-called mechano-electric feedback (MEF) [4–12].
MEF is complementary to the electric-contraction coupling (ECC) where the electric activity causes
the heart contraction and mechanical deformation. MEF together with ECC closes the feedback loop
between electric activity and mechanical activity.

MEF has been known to be crucial for a long time with its intriguing contradictory proarrhythmic
and antiarrhythmic effects. An important example is Commotio cordis—lethal disruption of heart
rhythm—due to a blow to the area directly over the heart, causing a sudden death [13, 14]. In contrast,
the termination of cardiac arrhythmia can be attempted with a precordial thump by hitting the middle of
a person’s sternum with a fist [15,16]. The impact of mechanical stimulus is complex and interestingly
depends crucially on the timing relative to the cardiac cycle as well as the rate of rise of the mechanical
stimulus (see [9] and references therein). For instance, diastolic stretch depolarises cardiac cells and
tissues (e.g., [9, 17, 18] and references therein), which can in turn trigger ectopic excitation that may
lead directly to ventricular fibrillation or to severe conduction abnormalities. On the other hand, there
are situations where such mechanically-induced ectopic excitation is welcome with resuscitatory effect
as in the case of triggering contraction in asystolic hearts. In comparison, systolic stretch reduces
the amplitude of the action potential plateau [19] and shortens action potential duration or the early
part of repolarisation depending on preparation and amplitude of stretch, potentially contributing to
arrhythmias.

Although less studied than ECC, there have been various attempts to model MEF at different levels
of sophistication including lumped parameter models evolving temporal dynamics of different variables
(given by maps, or ordinary differential equations (ODEs)) [4, 20–22] or temporal-spatial dynamics
(given by partial differential equations) [10, 23–29]. The possibility of controlling cardiac alternans
and arrhythmia by MEF has also been demonstrated in [24, 26, 28] in both approaches. The advantage
of temporal-spatial modeling (at the cost of high computational efforts) is the capability of addressing
the effect of MEFs on wave propagations such as the spiral wave initiation [25], the influence of
cardiac tissue deformation on re-entrant wave dynamics [27], the initiation of spatially inhomogeneous
patterns of oscillations (discordant alternans) [21], etc. In particular, Amar, et al. [29] presented a
MEF via stretch-activated ion channels in a three-dimensional (3D) spatial model of the contracting
cardiac ventricle by including a considerable level of physiological detail and a non-continuum method
to represent the myocardium and showed that the presence of heart failure had significant effect on
excitation propagation, highlighting the importance of MEF in failing hearts with low ejection fraction.
However, Amar, et al. [29] modelled neither cellular Ca dynamics nor the whole cardiac cycle.

In fact, the levels of details on modeling of various ions and calcium dynamics vary with the
models [20,21,23,24,27,29–33]. Nevertheless, reduced models (maps, ODEs) have been shown to be
useful in gaining a key insight. For instance, 2D maps were shown to be useful in uncovering the
basic mechanism for discordant alternans [21]—beat-to-beat alternations, demonstrating alternans
bifurcation depending on the strength of the stretch-activated current [22], and reproducing the
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restitution [20] predicted in a fuller model [23]. Furthermore, Knudsen. et al. [4] proposed
four-variable system models in a cell by incorporating the overall effects of MEF and ECC due to the
changes in calcium dynamics during the cross-bridge cycle or via mechanosensitive
(stretch-activated) channels.

It is also worth noting that our previous experience with nonlinear dynamical/fluid systems
suggests the merit of low-order systems (e.g. lumped parameter models) in capturing qualitatively
similar behaviour in self-organization and its breakdown. For instance, Wright, et al. [2] reproduced
the pathway to slow and fast heart rhythm through periodic doubling bifurcations in the
non-autonomous Van der Pol oscillator, similar to those observed in a continuous model [34].
Furthermore, similar probability density functions were shown in the 2 dimensional fluids, 1
dimensional reduced system, and 0 dimensional (lumped parameter) model of self-organized shear
flows [35].

The main aim of this paper is to present a simplest dynamical model which predicts various forms
of arrhythmias, or alternans due to (dysfunction of) MEF in a beating heart by consistently evolving
the myocyte contraction, electric activity and ventricle pressure-volume relation at the organ level at
the same time over multiple cardiac cycles. Needless to say, it is absolutely crucial to include the
coupling between mechanical and electric activities to understand MEF. In the traditional framework
in which the ratio of the ventricular pressure to its volume is prescribed by a periodic function using
the time-varying elastance model (e.g., [36–40]), it is simply impossible to include such coupling.
Furthermore, the time-varying elastance model being largely based on (almost) physiological data, its
validity has been questioned in pathological conditions or with a heart assist device see e.g., [40, 41].
To face this challenge, we [42] recently proposed a paradigm shift from a time-varying elastance
model to a synergistic model in which the ventricular pressure and volume relation is consistently
determined through the coupling among mechanical, electric and chemical activity on micro-scale
sarcomere and macro-scale heart and investigated the effect of an axial rotary pump [43] on a failing
heart. The purpose of this paper is to investigate MEF and present various forms of heart arrhythmias
due to (dysfunction of) MEF and the progression to fast and slow heart rhythm. We then present the
utility of an axial rotary pump in assisting the inefficient pumping of the heart due to MEF. It cannot
be overemphasized that these studies are simply impossible with the time-varying elastance model.

We note that lumped-parameter representation of the cardiovascular system [43] has the great
advantage of permitting detailed investigation of different pathological scenarios at a very low cost
and important clinical applications (see e.g., [44, 45] and references therein). Our focus is thus on
modeling MEF by coupling electric activity to the tension in the contractile element and/or
left-ventricular volume at the simplest level and simulating multiple cardiac cycles. Our goal is to
provide a better alternative to the time-varying elastance model which cannot address MEF. Thus, the
precise form of restitution curves, spatio-temporal complexities associated with arrhythmias, or
detailed dynamics of different ion channels [20, 23, 30, 31] are not addressed within the framework of
this paper. Such simplification is welcome in direct clinical application for patient’s assessment and
treatment optimization.

Mathematical Biosciences and Engineering Volume 17, Issue 5, 5212–5233.



5215

2. Materials and methods

We summarize our two—basic and extended—models in [42], providing a list of our variables and
their physiological meaning in Table 1. Both models have the same mechanical/chemical and electric
activity set up, but the different (basic, extended) circulation models depend on the coupling between
the left ventricle and the systemic arterial circulation.

2.1. Mechanical/chemical model

A micro-scale dynamics of the contractile element is based on Bestel-Clement-Sorine (BCS)
model [46, 47] which evolves the active stress τc, stiffness kc, strain εc and its velocity vc = dεc

dt and
where the active force derives from the chemical activity (e.g., ATP) modelled by u (measured in
sec−1). The governing equations for vc, εc, τc and kc are then as follows:

dvc

dt
= −χvc − ω

2
0εc − aτcd0(εc) + b(

√
V/V0 − 1), (2.1)

dεc

dt
= vc, (2.2)

dτc

dt
= kcvc − (αl|vc| + |u|)τc + σ0uΘ(u), (2.3)

dkc

dt
= −(αl|vc| + |u|)kc + k0uΘ(u), (2.4)

d0(ε) = e−β0(εc)2
. (2.5)

Here, Θ(u) is a Heaviside function which takes the non-zero value of 1 for u > 0 or 0 otherwise. From
the left, the RHS of Eq (2.1) represents a damping force (χvc), a harmonic force (ω2

0εc), an active force
(aτcd0(εc)) and a passive force (b(

√
V/V0 − 1)) based on a cylindrical heart; χ > 0, a > 0, b > 0 are

positive constants and ω0 is a micro-scale high oscillation frequency. The term involving αl|vc| + |u|
in Eqs (2.3) and (2.4) represents the deactivation of contractile force while the term involving uΘ(u)
represents its activation due to a chemical input u > 0. d0(εc) in Eqs (2.1) and (2.5) represents the
length-tension curve of the contractile element which we model by a Gaussian function for simplicity.

Micro-scale dynamics in Eqs (2.1)–(2.5) and macro-scale dynamics are related through the coupling
between τc in Eqs (2.1) and (2.3) and the left ventricular pressure PV [42, 47] as

PV = γ
V0

V

[
d0(εc)τc + σp

]
, (2.6)

σp =
k2

k1

[
ek1(

√
V

V0
−1)
− 1
]
. (2.7)

In Eq (2.6), γ is a constant parameter proportional to the ratio of left ventricular wall thickness to its
radius and its physiological meaning is provided in [42, 47]. For the purpose of coupling micro-scale
and macro-scale dynamics, we treated this constant as a parameter proportional to the above ratio and
tuned it [42]. In Eq (2.7), σp represents the passive stress which is assumed to be exponential for
simplicity; k1 and k2 are non negative parameters for the passive tension based on a cylindrical heart.
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2.2. Electric activity model

As in [42], we use p and q as dimensionless slow and fast variables for the electric activity and
assume that the chemical activity u in Eqs (2.3)–(2.4) is proportional to q with a proportional constant
αu > 0. We use constant parameters µ1 and µ2 to represent MEF [4–7]. Note that our variables p and q
represent processes on different time scales and do not correspond to individual ionic currents [4]. The
governing equations are then

dp
dt

= 0.1(q − p + µ1τc), (2.8)

dq
dt

= 10q(1 − q2) − 10(2π)2 p + µ2VΘ(V − V0) + 10 cos(2πt), (2.9)

u = αuq. (2.10)

Here, 10 cos(2πt) in Eq (2.9) is chosen to model a control case with heart rate 1 Hz [42]; Θ(V−V0) is the
Heaviside function which takes the non-zero value of 1 only for V > V0. MEF (µ1 or µ2) introduces the
coupling among (p, q) and τc or V . Recall that µ1 mimics the effect of mechanical stress on the action
potential during myocardial contraction (e.g., see [4]) where the contraction modulates the dynamics
of the slow excitation variable (q in our case) while µ2 models the effect of stretch (e.g., through a
stretch-activated ion channel) (e.g., see [10]). Since the mechanical stress on myocardial contraction
is associated with systole in a cardiac cycle, µ1 mimics the effect of the systolic stretch in [9]. On
the other hand, µ2 taking a non-zero value when the ventricular volume V exceeds the reference value
V0 (modeled by Θ(V − V0) in Eq (2.9)), and thus mimics the diastolic stretch in [9]. Biologically,
the over/under expression of an ion channel can affect the value of µ1 and µ2. The units of µ1 and µ2

are µ1 = 0.0024 kpa−1 and (s mL)−1, respectively. In [42], we calibrated the values of µ1 and µ2 as
µ1 = 0.0024 kpa−1 and µ2 = 0 (s mL)−1 in order to reproduce the P-V loop for the control case, which
is reasonable given the implicit role of MEF in a beating heart. In this paper, we vary µ1 for the control
value µ2 = 0 (s mL)−1 and vary µ2 for the control value of µ1 = 0.0024 kpa−1, respectively to study
MEF. From now on, for notational simplicity, we do not explicitly write the units of µ1 ((s mL)−1) and
µ2 (kpa−1) when the values of µ1 and µ2 are given.

We note that there have been much more sophisticated modeling of electric activities involving up
to a few dozens of different variables (e.g., see [29, 48, 49]). However, as noted in the introduction,
our focus is on a simple, consistent lumped parameter model to investigate MEF and LVAD which
enables us to overcome the limitations of the time-varying elastance model. Further extension of our
model is left for future work.

2.3. Basic circulation model

Our basic circulation model ignores the dynamics of the systemic arterial circulation and employs
the following evolution equations for the left ventricular volume V , aortic pressure m, and pump flow
n through an axial rotary pump [43]:

dV
dt

=
1

RM
(PR − PV)Θ(PR − PV) −

1
RA

(PV − m)Θ(PV − m) − δpn, (2.11)

dm
dt

= −
m − m0

RCCS
+

(PV − m)Θ(PV − m)
CARA

+
δpn
CA

, (2.12)
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Table 1. Summary of variables and meanings from [42].

Variables Physiological Meaning (Unit)
vc Velocity of the contractile element (s−1)
εc Strain of the contractile element
τc Active tension of the contractile element (mmHg)
kc Stiffness of the contractile element (mmHg)
σP Passive stress (mmHg)
u Chemical activity (s−1)
p Slow electric variable
q Fast electric variable
PV Left ventricular pressure (mmHg)
V Left ventricular volume (mL)
PR Atrial pressure (mmHg)
PS Arterial pressure (mmHg)
m Aortic pressure (mmHg)
m0 Arterial pressure parameter for the basic model (mmHg)
Fa Aortic (total) flow (mL/s)
n Pump flow (mL/s, mL/min)
δp Pump parameter (1 for pump, 0 for no pump)

dn
dt

=
δp

L∗

[
PV − m − R∗n + βω2

]
. (2.13)

Note that m0 in Eq (2.12) and PR in Eq (2.11) are constant, representing the fixed value of arterial and
atrial pressure, respectively. RC, RM, RA and R∗ are resistances while CS and CA are compliances. L∗ is
inertance. In Eq (2.13), the pump flow n through an axial pump—Left-ventricular Assist Device
(LVAD)—is driven by βω2 where β is the pump parameter and ω is the pump speed (not angular
frequency) (see [38,39,42,43]). The parameter values for the contractile component (σ0, kc, k1, k2) are
taken from Sorine [46, 47] while those for resistance, compliance, inertance, etc are taken from
Simaan [38, 39]. Table 2 (see also [42]) summarizes physiological meaning of all the parameters in
Eqs (2.1)–(2.12) and their values.

As noted in [42], in our basic model, m in Eq (2.12) is not coupled to the aortic flow but instead
has a parameter m0 which models a constant arterial pressure while PR in Eq (2.11) is the atrial
pressure which we take as a constant value instead of treating it dynamically. Clinical implications of
the basic model is to impose the arterial pressure PS to take the constant value m0 while imposing the
atrial pressure PR to be also constant (that is, PS and PR are not dynamic variables). The basic model
has the advantage that solutions are not too sensitive on initial conditions, allowing us to find (almost)
unique solutions after initial transients disappear.
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Table 2. Typical model parameters for control case.

ParametersValue Physiological meaning
RA 0.001 mmHg s/mL Aortic valve resistance
RM 0.005 mmHg s/mL Mitral valve resistance
RS 0.5 mmHg s/mL Systemic vascular resistance
RC 0.0398 mmHg s/mL Characteristic resistance
R∗ 0.3061 − 3.5(PV − 1mmHg)Θ(1mmHg − PV)Total pump resistance
CR 4.4 mL/mmHg Left atrial compliance
CS 1.33 mL/mmHg Systemic compliance
CA 0.08 mL/mmHg Aortic compliance
LS 0.0005 mmHg s2/mL Inertance of blood in aorta
L∗ 0.0472 mmHg s2/mL Total pump inertance
σ0 240 kpa Maximum sarcomere active tension
k0 120 kpa Maximum sarcomere active elastance
k1, 0.002 kpa Model parameters for a passive tension
k2 14 kpa Model parameters for a passive tension
χ, αl 100 s−1, 10 m−1 Dampling parameters in sarcomere
ω0 100 s−1 Sarcomere microscale oscillation frequency
a, b 100 m s−2 kpa−1, 6000 m s−2 Active and passive force parameters
β0 20 mL−2 Length-tension parameter
γ 0.6 PV parameter
V0

144
1.5 mL Volume parameter

µ1, µ2 0.0024 kpa−1, 0 (s mL)−1 MEF parameters
αu 5 s−1 chemical-electric coupling parameter
β 9.9025 ×10−7 mmHg/(rpm)2 Pump parameter

2.4. Extended circulation model

By incorporating the dynamics of the systemic arterial circulation based on Simaan [38, 39], our
extended circulation model includes the additional evolution equations for atrial pressure PR, arterial
pressure PS , and aortic flow Fa while generalizing Eq (2.12) as follows:

dm
dt

= −
Fa

CA
+

(PV − m)Θ(PV − m)
CARA

+ δp
n

CA
, (2.14)

dFa

dt
=

m − PS

LS
−

RcFa

LS
, (2.15)

dPR

dt
=
−PR + PS

RS CR
−

(PR − PV)Θ(PR − PV)
CRRM

, (2.16)

dPS

dt
=

PR − PS

RS CS
+

Fa

CS
. (2.17)

Here, RS is the systemic vascular resistance. In summary, for our extended model, we solve Eqs (2.1)–
(2.11) and (2.14)–(2.17) using parameter values given in Table 2.
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3. Results

We first discuss MEF without pump support (δp = 0) in the basic and extended models,
respectively and then investigate the effect of an axial rotary pump on MEF by using δp = 1. We again
note that the parameter values for the control case are given in Table 2 [42], in particular, µ1 = 0.0024
and µ2 = 0. To study MEF, we vary either µ1 or µ2. We try many different parameter values of µ1 or
µ2, and in the following, we show the most interesting cases near the bifurcations where the period of
systems changes (e.g., period doubling, quasi-periodicity, etc.). Since bifurcations do not occur
uniformly in the parameter space, the chosen parameter values are not uniformly spaced. Also, we
remove initial transients and show only stationary states wherever possible (apart from
Figures 6 and 8).

3.1. MEF in the basic model (δp = 0)

For the basic model, we use the parameter values for the control case PR = 9 mmHg and
m0 = 70 mmHg and the initial condition V(0) = 0.5V0 [42].

3.1.1. Effect of µ1 (µ2 = 0)

In the absence of pump support, we first examine the effect of mechanical stress by increasing µ1

as µ1 = 0.0008× [9, 15, 18, 31, 200] for a fixed value of µ2 = 0. Figure 1 shows the time evolution of q
(in blue) and p (in red), the time evolution of PV (in blue) and m (in red), and P-V loop from the left
to the right panels; the value of µ1 increases from the top to the bottom panels as
µ1 = 0.0008 × [9, 15, 18, 31, 200]. In general, as µ1 increases, End Systolic Volume (ESV) increases
and the Stroke Volume (SV=EDV-ESV) decreases where EDV is the End Diastolic Volume.
Furthermore, as µ1 increases, the maximum value of the fast electric variable q in blue tends to
decrease. In the bottom row, p is observed to rise very rapidly and then decrease very slowly. By
linking p (the slow variable) to the action potential, this result is consistent with the previous findings
in [5] that MEF due to contraction prolongs the action potential duration through the slower
recovery [4]. This is also consistent with [7] where the effects of shortening of mammalian ventricular
muscle led to the prolongation of the duration of the action potential (through myoplasmic calcium
concentration). What is remarkable is the fact that our model is able to reproduce similar results
without addressing calcium dynamics or any ionic current in detail.

More remarkable is the demonstration that a prolonged action potential comes about through a
periodic doubling bifurcation (c.f., [2]) as µ1 increases (e.g., see [50] for bifurcations in nonlinear
dynamical systems). Specifically, in Figure 1, the first periodic doubling is seen in the second row and
then the transition to quasi-periodicity in the third row. Here, the quasi-periodicity refers to the
appearance of a finite number (two or more) of incommensurable frequencies, driving
quasi-periodicity [50]. This quasi-periodicity can be seen more clearly from a long time trace of q and
its Fourier spectrum (Figure S1). In particular, the Fourier spectrum shows strong peaks not only at
frequency 1

2 and its integer multiples but also in between due to the presence of incommensurable
frequencies. We note that the Fourier spectrum would be almost continuous in the case of chaos.
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Figure 1. Basic model: µ2 = 0, µ1 = 0.0008 × [9, 15, 18, 31, 200] from top to bottom. Note
that µ1 is MEF mimicking the effect of (systolic) stretch on electric activity. Note also that
PV-loops are shown on the different x-axis limits in the bottom panel so that the details can
be seen.

It is intriguing to look in detail how this periodic doubling comes about. The first periodic
doubling in the second row for µ1 = 0.0008 × 15 involves the decrease in the maximum value of the
fast electric activity q, which in turn reduces the maximum value of PV and m. The total number of
the oscillation in 20 secs at this stage remains 20. When µ1 is increased to µ1 = 0.0008 × 18 shown in
the third row, around t ∼ 3, 9, 15 secs, the maximum value of q becomes too small (∼ 0) to cause the
heart contraction/beat, causing the missing oscillation peaks in PV and m at t ∼ 3, 9, 15 secs. As µ1 is
further increased from µ1 = 0.0008 × 18, we observe the appearance of period four (results not
shown). For µ = 0.008 × 31 shown in the fourth row, the maximum value of q at odd seconds are all
too small (∼ 0), and consequently, the peaks at odd seconds completely disappear in PV and m,
making the dominant frequency 1

2 Hz (the period two (2 secs)). Further increase in µ1 increases ESV
such that in the last row, SV is reduced to a very small value < 1 mL, with the significant reduction in
the pumping power of the heart.
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Figure 2. Basic model: µ1 = 0.0024, µ2 = 0.18 × [0.88, 0.9, 0.95, 1, 2, 3, 50] from the top to
bottom. Note that µ2 is MEF mimicking the effect of (diastolic) stretch on electric activity.

3.1.2. Effect of µ2 (µ1 = 0.0024)

Resetting µ1 to the control value µ1 = 0.0024, we now examine the effect of strain/stretch by
increasing µ2 as µ2 = 0.18 × [0.88, 0.9, 0.95, 1, 2, 3, 50] and show results in Figure 2. In Figure 2,
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the value of µ2 increases from the top to the bottom panels. Compared with the control case in [42]
which has the oscillation period of 1 sec (10 oscillations per 10 secs), the top row in Figure 2 shows
about 11 oscillations in 10 secs with the appearance of one additional (ectopic) oscillation around time
t ∼ 0.5 secs. This ectopic oscillation is caused by the appearance of a new incommensurable frequency,
leading to a quasi-periodicity [50]. This can be seen more clearly from a long time trace of q and its
Fourier spectrum (Figure S2). More ectopic peaks appear when µ2 is further increased. For instance,
in the second and third row from the top, the total number of oscillations (in 10 secs) is about 12
and 13, respectively, with two and three additional oscillations appearing around time t ∼ 8.5 secs and
then 5.5 secs.

These additional oscillations lead to complicated phase portraits, as seen in the last columns in
Figure 2. The complexity somewhat decreases going from the third to the fourth rows. For
µ2 = 0.18 × 3, the number of oscillations is 20 (twice the value for the control case µ2 = 0) in the
sixth row. The bottom row shows further increase in the number of oscillations and complexity. What
is important to notice is that the SV and thus pumping power of the heart degrades with increasing µ2.
Interestingly, the appearance of ectopic peaks and shortening of the oscillation period are similar to
the effect of stretch-activated ion channels, reported in previous works [6, 8, 9]. Our model allows us
to demonstrate that the number of ectopic peaks increases systematically with an increasing µ2. Of
interest is also that as µ2 increases, the maximum value of q (p) tends to increase (decrease), opposite
to the behaviour noted above due to increasing µ1.

Two more points should be noted although no detailed results are shown here. First, when µ2 < 0,
the opposite behavour of the slowing down of the heart rhythm is observed, the number of oscillations
decreasing as |µ2| increases through a periodic doubling (results not shown here). This is similar to
the effect of increasing µ1 > 0 shown in Figure 1. However, in contrast to µ1 > 0, µ2 < 0 does
not significantly affect ESV and SV. Our finding of overactivation/underactivation of MEF leading
to faster/slower oscillations are reminiscent of the effect of stretch-activated ion channel above/below
a certain activation value in a continuous cardiac model in [10, 11]. Second, we observe that for
dilated cardiomyopathy (discussed in [42]), ectopic oscillations and transition to complex behaviour
(quasi-periodicity) occur for smaller values of µ2 (results not shown here). Notably, this suggests the
vulnerability of a pathological heart (e.g., after myocardial infarction) to arrhythmias, in agreement
with [12].

3.2. MEF in the extended model (δp = 0)

We recall that for the control case [42], initial conditions are PR(0) = 10 mmHg,
PR(0) = 70 mmHg, m(0) = 70 mmHg, Fa = 90 mL/s, V(0) = 0.9V0.

3.2.1. Effect of µ1 (µ2 = 0)

Figure 3 shows the results for µ2 = 0 and and µ1 = 0.0008 × [15, 20, 30, 1000, 2000], µ1 increasing
from the top to the bottom panels. We can see a periodic doubling in the first row, period three in the
second row, and period four to period two bifurcation (again see [50] for bifurcations in nonlinear
dynamical systems) in the third row. As observed in Figure 1 for the basic model, it is interesting to
see that the missing heart beat is accompanied by the reduction in the maximum value of the electric
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activity q. The total number of oscillations in 20 secs decreases to 10 (from 20 in the control case) in
the third row and then to 7 in the last row. Further increase in µ1 involves the mixture of what we see
in Figure 3, that is, further missing oscillation peaks, the decrease in SV, and the significant
degradation of the pumping power of the heart. These overall results are qualitatively similar to those
found in the basic model although periodic doublings occur at different values of µ1 in the two
models. This is why the values of µ1 shown in Figure 3 (for the extended model) are different from
those in Figure 1 (for the basic model). In particular, the effect of µ1 tends to be more significant in
the basic model compared with the extended model; for instance, the SV is < 1 mL for
µ1 < 0.0008 × 200 in the basic model while S V ∼ 10 mL for µ1 = 0.0008 × 1000.
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Figure 3. Extended model: µ2 = 0, µ1 = 0.0008 × [15, 20, 30, 1000, 2000] from the top to
the bottom panels. µ1 mimicks the effect of (systolic) stretch on electric activity.
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Figure 4. Extended model: µ1 = 0.0024, µ2 = 0.18 × [0.85, 0.88, 0.94, 2, 10] from the top to
the bottom panels. µ2 mimicks the effect of (diastolic) stretch on electric activity.

3.2.2. Effect of µ2 (µ1 = 0.0024)

Resetting µ1 to the control value µ1 = 0.0024, we now increase µ2 as
µ2 = 0.18 × [0.85, 0.88, 0.94, 2, 10] and show results in Figure 4. As seen in Figure 2, ectopic peaks
appear as µ2 increases. Specifically, in the first three rows from the top, the total number of
oscillations per 10 secs is about 11, 12 and 13, respectively, with one, two and three additional
oscillations. These additional oscillations lead to complex phase portrait. As µ2 is further increased,
the number of oscillations keeps increasing. Similarly to the basic model, the pumping power of the
heart degrades with increasing µ2, EDV (ESV) gradually decreasing (increasing). The opposite
behavour of the slowing down of the heart rhythm is observed for µ2 < 0, the number of oscillations
gradually decreasing as −µ2 increases (results not shown here). Again, these results are qualitatively
similar to those found in the basic model.
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3.3. Effect of a rotary pump on MEF (µ2 = 0)

In [42], we considered a failing heart due to dilated cardiomyopathy where the heart becomes
enlarged and cannot pump blood effectively and investigated the effect of an axial rotary pump on
such a failing heart, for instance, showing the improvement of the aortic pressure and SV with pump
support. In the previous subsections, we have demonstrated the inefficient heart pumping, in
particular, due to a large µ1 (Figures 1 and 3). An intriguing question is then how this situation can be
improved with pump support. To answer this question, we include a pump by letting δp = 1 in
Eqs (2.11)–(2.13) and investigate the effect of a pump in the basic and extended models, respectively.
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Figure 5. Basic model: µ1 = 0.0008 × 18, µ2 = 0, pump speed ω = 13.3 krpm (to be
compared with the third row in Figure 1 without pump support).
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Figure 6. Basic model: µ1 = 0.0008 × 18, µ2 = 0, pump speed ω = 8000 + 200t
3 rpm.

For the basic model, we consider the case of µ1 = 0.0008 × 18 and µ2 = 0, shown in the third row
in Figure 1, where the heart rhythm is very irregular (quasi-periodic) involving P-V loops with a small
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SV. We take an axial rotary pump speed (frequency) to be ω = 13.3 krpm in Eq (2.13). The results with
pump support (δp = 1) are shown in Figure 5, showing how the behaviour in the thrid row in Figure 1
(without a pump) changes due to a pump. Compared with the case without the pump where electric
oscillations q contain peaks that are too weak to cause missing peaks in pressure/volume oscillations, q
in Figure 5 shows regular oscillations with period one. This means that pump support can help recover
regular electric oscillations as well as regular contraction. Furthermore, with pump support, the left
ventricular volume V in general decreases, but ESV is reduced more than EDV so that SV increases in
comparison with the case without pump support (the bottom panel in Figure 1); the aortic pressure m
increases and PV and m decouple. This is similar to the effect of a pump on dilated cardiomyopathy
discussed in [42].

Figure 6 is for the case where the pump speed linearly increases as ω = 8000 + 200t
3 rpm, as shown

in the last panel; the four panels show how PV , m (aortic pressure), P-V loop, pump flow n, and pump
speed ω evolve in time. As the pump speed linearly increases in time, irregular oscillations in PV , m,
and pump flow n change into regular oscillations while PV (m) slowly decreases (increases), the P-V
loops shifting to a smaller volume with a larger SV. We note that Figure 5 is shown for the value of ω
at the final time t = 80 in Figure 6.
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Figure 7. Extended model: µ1 = 0.0008 × 1000, µ2 = 0, pump speed ω = 13.3 krpm (to be
compared with the second bottom row in Figure 3 without a pump).

For the extended model, we consider the extreme case of µ1 = 0.0008 × 1000 and µ2 = 0 shown in
the second bottom row in Figure 3 and present the effect of a pump with ω = 13.3 krpm in Figure 7. We
observe that due to a pump, the left ventricular volume V in general decreases while the SV and aortic
pressure m increase. The four panels in Figure 8 show PV , m (aortic pressure), P-V loop, pump flow
n, and pump speed ω = 8000 + 200t

3 rpm against time t. As the pump speed ω shown in the last panel
increases with time, PV (m) slowly decreases (increases), the P-V loops shifts to a smaller volume, and
the pump flow n increases. Again, note that Figure 7 is for ω = 13.3 krpm which is the value of ω at
t = 80 (the final time) in Figure 8.

Therefore, in both basic and extended models, pump support increases the aortic pressure and assists
a pathological heart due to MEF. Another important effect of pump support is to recover lost electric
oscillations and heart beats. For instance, we observe 10 oscillations in 10 secs with pump support in
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Figure 8. Extended model: µ1 = 0.0008 × 1000, µ2 = 0, pump speed ω = 8000 + 200t
3 rpm.

Figure 7 while there are only 8 oscillations in 10 secs without pump support in the second bottom row
in Figure 3.

As implied above in Figures 5–6, a further parameter scan reveals clearly that pump support delays
the onset of periodic doublings as µ1 increases. For instance, for µ1 = 0.0008 × 15 and µ2 = 0, pump
support makes it possible that the number of oscillations of the electric activity, left-ventricular
pressure/volume, etc. remains normal (10 oscillations/10 secs) even at a pump speed
(ω = 11.333 krpm). This is shown in Figure S3 for the basic model and Figure S4 for the extended
model, respectively. This can be understood to be a consequence of unloading of the left-ventricle by
pump support due to the reduced left-ventricular pressure/tension/contraction. We also check that
pump support improves the condition caused by too large µ2. Figure S5 is one example, showing that
pump support reduces the number of ectopic oscillations and increases SV in comparison with the last
panel in Figure 4 without pump support.

Finally, we remark that the main difference between the basic and extended models in
Figures 6 and 8 lies in the behaviour of the pump flow n for a sufficiently large ω. Specifically,
Figure 8 for the extended model shows the increase in the oscillation envelope of n towards smaller n
around t ∼ 60 secs when the pump speed ω ∼ 12 krpm. This is similar to the onset of suction
observed from in vivo data shown in Figure 79.13 in [38]. In comparison, such behaviour is not seen
in Figure 6 for the basic model. These results are consistent with those from [42] where the extended
model worked better for capturing the interaction between the pump and the circulation due to the
inclusion of the peripheral circulation.

4. Discussions

The application of mathematical models, lumped parameter models in particular, to clinical
settings has the great advantage of permitting detailed investigation of different pathological scenarios
at a very low cost (e.g., without damage to living bodies) [44, 45]. Despite the popularity of the
time-varying elastance, its validity for capturing cardiac self-organization and its breakdown has been
questioned. Furthermore, MEF in a beating heart over multiple cardiac cycles by consistently
evolving the myocyte contraction, electric activity and ventricle pressure-volume relation at the organ
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level is not well-studied/modelled as far as we are aware. Therefore, our aim was to undertake a
systematic study of MEF in a synergistic cardiac model that include feedback mechanisms between
mechanical and electric/chemical activities across microscale sarcomere and macroscale organ levels.

Using our synergistic model, we demonstrated various forms of heart arrhythmias due to
(dysfunction of) MEF which would otherwise be impossible with the time-varying elastance concept
or in real experiments (e.g. a subject would die in extreme conditions). We modeled MEF via systolic
and diastolic stretch [9] by µ1 and µ2, respectively. Our basic and extended models revealed
qualitatively similar results that positive µ1 and µ2 led to slow or fast heart beats through periodic
doubling and ectopic excitations of incommensurable frequencies (quasi-periodic bifurcations),
respectively. This resulted in a pathological condition, reminiscent of dilated cardiomyopathy, where
a heart cannot contract or relax properly, with an ineffective pumping of a heart. Specifically, the
increase in µ1 caused the disappearance of oscillations in electric activity, left-ventricular volume and
pressure as well as the decrease in the stroke volume while the increase in µ2 leads to the appearance
of ectopic peaks, in agreement with [6, 8–11]. In particular, the increase in µ1 makes some of the
electric oscillations too weak to cause heart contraction, causing the missing peaks in ventricular
pressure/volume oscillations. For sufficiently large µ1 or µ2, the stroke volume (SV) becomes too
small.

Such pathological condition was then shown to be improved by an axial rotary pump which helps
recovering the normal electric and pressure/volume cycles, preventing progression towards
pathological condition, and increasing the SV. While a heart assist device has been considered to
provide a mechanical support only, our results highlighted its nontrivial effect on the electric activity
of the heart (recovering missed electric oscillations) as a result of unloading of the left-ventricle by
pump support due to the reduced left-ventricular pressure/tension/contraction.

Finally, we point out an interesting similarity in the overall bifurcations in heart rhythm in our
models and in the forced Van der Pol oscillator in [2] and in a continuous model [34]. Specifically, [2]
showed that the progression to slow and fast heart rhythm can be caused by stochasticity in the linear
growth rate and nonlinear negative feedback, respectively. Comparing these with our results in this
paper, we can see that µ1 > 0 is analogue to stochasticity in the linear growth rate in the Van der Pol
oscillator while µ2 > 0 is reminiscent of stochasticity in the nonlinear negative feedback. However,
given the complexity of our models in this paper, it is not immediately obvious why this would be the
case mathematically.

Limitation of our study: Given the simplicity of our lumped parameter model based on a set of
ordinary differential equations, our model cannot inform us how MEF affects the distribution of our
variables in space (e.g., waves) and their inhomogeneity such as the precise form of spatio-temporal
complexities associated with arrhythmias, detailed dynamics of different ion channels, or reconstitution
curves. Our study is also limited to modeling the left-ventricle dynamics.

5. Conclusions

Despite its simplicity, our model allowed us to study MEF and the effect of an axial rotary pump.
It will be of interest to explore how MEF can help re-setting arrhythmias mechanically (e.g., by ‘chest
thump’). It will also be interesting to extend this work to incorporate ionic dynamics (e.g., calcium),
atria [33], and the coupling between left-ventricle and right-ventricle. Our model could well become
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part of a software with direct clinical application for patient’s assessment and treatment optimization
where the clinician is the ultimate decision-maker.
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Figure S1. Basic model: The time trace (left) and Fourier spectrum (right) of q showing the
presence of a quasi-periodicity for µ1 = 0.0008 × 18 and µ2 = 0, corresponding to the third
row in Figure 1.
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Figure S2. Basic model: The time trace (left) and Fourier spectrum (right) of q showing the
presence of a quasi-periodicity for µ1 = 0.0008 × 3 and µ2 = 0.18 × 0.88, corresponding to
the top row in Figure 2.
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Figure S3. Basic model: µ1 = 0.0008 × 15, µ2 = 0, pump speed ω = 11333 rpm, showing
the normal 1 sec period of heart beat (to be compared with the second top row in Figure 1
without pump support).
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Figure S4. Extended model: µ1 = 0.0008×15, µ2 = 0, pump speed ω = 11333 rpm, showing
the normal 1 sec period of heart beat (to be compared with the top row in Figure 3 without
pump support).
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Figure S5. Extended model: µ1 = 0.0008 × 3, µ2 = 0.18 × 10, pump speed ω = 1.2 krpm
with pump support (to be compared with the last row in Figure 4 without pump support).
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