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Abstract  

A large number of recent studies have aimed at understanding short-duration rainfall extremes, 

due to their impacts on flash floods, landslides and debris flows and potential for these to worsen 

with global warming. This has been led in a concerted international effort by the INTENSE 

Crosscutting Project of the GEWEX (Global Energy and Water Exchanges) Hydroclimatology 
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Panel. Here, we summarise the main findings so far and suggest future directions for research, 

including: the benefits of convection-permitting climate modelling; towards understanding 

mechanisms of change; the usefulness of temperature-scaling relations; towards detecting and 

attributing extreme rainfall change; the need for international coordination and collaboration. 

Evidence suggests that the intensity of long-duration (1 day+) heavy precipitation increases with 

climate warming close to the Clausius-Clapeyron (CC) rate (6-7% K-1), although large-scale 

circulation changes affect this response regionally and rare events can scale at higher rates, while 

localised heavy short-duration (hourly and sub-hourly) intensities can respond more strongly (e.g., 

2xCC instead of CC). Day-to-day scaling of short-duration intensities supports a higher scaling, 

with mechanisms proposed for this related to local-scale dynamics of convective storms, but its 

relevance to climate change is not clear. Uncertainty remains in the influence of many factors, 

such as large-scale circulation, convective storm dynamics, and stratification, on changes to 

precipitation extremes. Despite this, recent research has increased confidence in both the 

detectability and understanding of changes in various aspects of intense short-duration rainfall. 

To make further progress, the international coordination of datasets, model experiments and 

evaluations will be required, with consistent and standardised comparison methods and metrics, 

and recommendations are made for these frameworks. 

1. Introduction 

 

Climate models project a general intensification of extreme rainfall during the 21st century on 
continental to global scales, consistent with observed trends [1][2]. However, large uncertainties 
in regional patterns and the rate of change [3][4] hamper the development of efficient adaptation 
strategies for flooding (IPCC 2013), presenting a formidable challenge to public safety, services, 
critical infrastructure and the economy. There is a particular lack of understanding around 
changes to short-duration (sub-daily) rainfall extremes which are especially hazardous and 
responsible for fatalities [5], as they lead to flash floods, landslides and debris flows that occur 
with little warning [6]. Short-duration, high intensity rainfall events are also responsible for pollution 
incidents from combined sewerage networks [7]. Cities are particularly vulnerable to floods 
generated by heavy short-duration rainfall due to ageing drainage infrastructure systems 
designed to deal with lower historical rainfall intensities, and an increase in impermeable surfaces. 
Better understanding of the impacts of global warming on sub-daily (particularly hourly to 3-hourly) 
extreme precipitation is therefore crucial for societal adaptation [8], through the management of 
the water environment (see Orr et al. this issue) and application to design of stormwater drainage 
infrastructure systems (see Dale et al. this issue), among others.  
 
Over the last six years an enormous international effort, led by the INTENSE (INTElligent use of 
climate models for adaptatioN to non-Stationary hydrological Extremes) Crosscutting Project on 
Sub-Daily Extremes [9] of the GEWEX (Global Energy and Water Exchanges) Hydroclimatology 
Panel, has produced multiple studies which have advanced scientific knowledge of climate 
change impacts on short-duration rainfall extremes, enabling substantial advances in quantifying 
historical changes and providing improved physical understanding for regional projections (Figure 
1). These range from the development of convection-permitting models (CPMs) and idealized 
model experiments to the collection and assessment of precipitation observations. Very high-
resolution CPM simulations (e.g. [10]) can explicitly simulate km-scale motions in convective 
storms and how these change with global warming but do not yet resolve turbulent cloud 
dynamics. CPMs have enabled the simulation of local storm dynamics [11], e.g. the diurnal cycle 
of convection [12], orographically-enhanced extreme precipitation [13], the spatial structure of 
rainfall and its duration-intensity characteristics [14][15], and hourly and sub-hourly precipitation 
intensities [16][17].  
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INTENSE also led an effort to collate and quality-control a global database of sub-daily 

precipitation data across multiple continents. The Global Sub-Daily Rainfall (GSDR) dataset [18]  

comprises observations from >25,000 gauges, quality-controlled using open-source Python 

codes [19]. This quality-controlled data has been used to develop UK-wide gridded 1km resolution 

hourly precipitation products [20], blended gauge-radar-satellite datasets [21] and to examine the 

ability of hourly gauge data to capture hourly rainfall extremes [22]. The GSDR has also been 

used, together with reanalyses and remotely-sensed products, to produce global 0.1° daily and 

3-hourly precipitation probability distribution climatologies for 1979–2018 [23]. These add to 

existing merged products as a key resource for the community to validate climate model outputs 

[11] and provide a significant platform for future development.  

INTENSE has provided a global assessment of observed extreme rainfall characteristics in the 

GSDR [24] and, by linking with CPM simulations, used to better understand drivers of change. 

Trend analyses in the UK [25] and US [26] have shown that trends in winter extremes are 

emerging first in hourly precipitation for both magnitude and frequency statistics and that these 

can in part be linked to rising temperatures. Similar work over the Netherlands has shown that 

most hourly precipitation extremes are part of large-scale circulation systems [27]. Large-scale 

drivers of hourly precipitation extremes have been explored further, by linking these to 

atmospheric circulation patterns over Europe [28][29], the US [30], Australia [31], and globally 

[32]. Analysis of CPMs has established the large-scale precursors of small-scale storms over the 

UK [33]. This work has enabled access to rainfall extreme metrics for impact researchers, and 

provided a platform for the exploration of the role of storm dynamics in state-of-the art climate 

models.  

However, whilst progress is evident in model capability, leading to new insights to km-scale 
atmospheric responses to climate change, the use of CPMs to guide decision-making in a real-
world context is still challenging (Orr et al. this issue). This is primarily because of under-sampling 
of either model uncertainty at these finer scales (e.g. relying on output from a single, or small 
sample of, model(s)), or wider global climate model (GCM) uncertainty (i.e. the number of CPM-
GCM combinations). From an extremes-perspective, the relatively limited length of a CPM 
simulation can also be a limitation for CPMs to provide guidance on future change. For example, 
analyses of precipitation 'extremes' are still often focused on relatively frequent events from an 
impacts perspective (e.g. 99th percentile of hourly rainfall) whereas decision-makers are mostly 
interested in rare events such as the '1 in 100 year’ event. 
 
On a more positive note, the advent of CPMs allow for a more detailed assessment of the 
applicability of the Clausius-Clapeyron (CC) relation to different environmental conditions and 
storm intensities and structures. The CC-relation describes the relationship between saturation 
vapour pressure and temperature or, more simply, the moisture holding capacity of an airmass 
relative to its temperature. According to this relationship, specific humidity increases at 
approximately 6-7% per degree warming (K-1) near to the Earth’s surface [34]: a rate used as a 
first approximation to indicate how rainfall extremes may change with a warming climate. It is 
assumed that this relationship can be transferred because rainfall extremes tend to occur when 
the atmosphere is at, or near, saturation and they are limited by the amount of atmospheric 
moisture converged into the storm; therefore, changes to rainfall intensities are, to a first 
approximation, expected to scale with CC [35]. This CC rate of increase has been confirmed for 
observations and projections of daily extreme rainfall intensities when averaged globally (e.g. 
[1][2][36]), even if it is modulated by dynamical changes regionally [4]. For shorter durations, 
however, intensities can scale at higher than CC rates in some cases (e.g. [37]) and evidence 
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suggests this is caused by physical processes related to dynamical feedback mechanisms in 
clouds (e.g. [38]).  
 

In this paper we present the outcomes of expert discussion around scientific knowledge of climate 
change impacts on short-duration rainfall extremes held at a Discussion Meeting at the Royal 
Society in February 2020. The research challenges associated with understanding future impacts 
on rainfall extremes are extensive and covered in a dedicated review paper (Fowler et al., in 
press). Here we focus specifically on topics that garnered specific attention by the participants of 
the Royal Society meeting and seen as interest areas for future work, including the benefits of 
convection-permitting climate modelling, towards understanding mechanisms of change, the 
usefulness of temperature-scaling relations, towards detecting and attributing extreme rainfall 
change, and the need for international coordination and collaboration. In a concluding section we 
then consider the gaps that remain and how we might further advance scientific knowledge of 
climate change impacts on short-duration rainfall extremes and their links to decision-making.  
 

2. The Benefits of Convection-Permitting Climate Modelling 

 
Over the past decade, computational advances and improvements in CPMs have enabled a step-
change in the capacity of the climate modelling community to simulate short-duration rainfall 
extremes (see Kendon et al. this issue). CPMs substantially improve the simulation of local storm 
dynamics and better capture the details of convective organisation but some biases remain, such 
as an overestimation of heavy rainfall due to under-resolved cloud processes such as entrainment 
(e.g. [15][39] and Prein et al. this issue). CPMs are not able to capture the small-scale details of 
storms, with rainfall cells tending to be too large with too much heavy rainfall (Prein et al, this 
issue, [40]). However, they are able to capture mesoscale organisation and perform well in cases 
of large convective storms, and overall give a much more realistic representation of hourly 
precipitation than convection-parameterized models. 
 
CPMs produce quite different projections of change to short-duration rainfall extremes than 
convection-parameterized models, especially in convection-dominated environments, with 
studies so far suggesting increases in the future intensities of short-duration extremes at the CC 
rate or greater [41]. INTENSE CPM results over Northern Europe suggest that storms will become 
more intense and longer in duration [42] with climate warming, but that storm profile does not 
significantly change [43]. This is similar to results from radar observations, where storms were 
found to become more intense and larger in size with warmer temperatures [44]. It also 
corroborates work with CPMs over the US [45] but is different to storm profile changes identified 
in observations in Japan [46] and Australia [47][48] which found intensification of the storm core 
but a smaller storm size with warmer temperatures. The seasonality of intense hourly events was 
also found to change with global warming, with more events in autumn months in Europe, at the 
expense of summer [49]. 

CPMs have been run for multi-year climate simulations over many regional domains, e.g. UK 
[15][10][50], southwest Germany [39], Sydney, Australia [51], the Colorado headwaters [52], the 
Alps [12][53][54], Scandinavia [55], and whole continents, e.g. the USA [56], Europe [49][57] and 
Africa [58]. Coordinated CPM intercomparison projects, such as the CORDEX Flagship Pilot 
Study (CORDEX-FPS) [59], the European Climate Prediction System (EUCP) [60] and the first 
ensemble of CPM projections from the UK Climate Projections (UKCP) [61][62] have enabled the 
first multi-scale assessments of precipitation extremes, from coarser convection-parameterized 
models down to CPMs, and improved understanding of uncertainties in extreme rainfall 
projections [63]. Short runs of CPMs have even been run globally [64][65], and it is also possible 
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to close the gap between planetary and convective scales in more idealized simulations (see 
O’Gorman et al. this issue). However, the growth in data volume from these very high-resolution 
simulations has given rise to problems in data sharing between scientists working with these 
models, and standard CMIP/CORDEX approaches for data sharing might be usefully replaced by 
more efficient approaches [66].  
 
We recommend that the capacity to share and compare model outputs, in combination with the 
use of high-resolution observational products for model evaluation, could aid climate model 
development and increase confidence in model performance among practitioners. The 
comparison of CPMs at different horizontal resolutions and the sharing and benchmarking of 
events/scenarios is in its infancy but has started under projects like EUCP and community efforts 
such as CORDEX-FPS. This will help to answer fundamental questions that are robust across 
different models, such as the benefits and features of using CPM resolution (e.g. [67]). We 
recommend that further investigation is made of adequate and ideal model setups for CPMs 
(e.g.[68]) and why this varies according to modelled region, e.g. Europe vs US. We suggest that 
multi-scale approaches, with downscaling from GCMs and RCMs to CPM scales, may also be 
enhanced by the use of machine learning approaches to connect models and processes at 
different scales, and perhaps enable improved representation of structural uncertainties between 
different climate models or the development of new convective parameterizations [69][70]. We 
suggest that CPM output could also help guide the development of scale-aware parameterizations 
[71]. In general, we acknowledge the scope for further analysis of the large number of existing 
simulations. We recommend that better use is made of these simulations, with the sharing of CPM 
data among modelling groups. However, we suggest that the development of CPM reanalysis 
products using numerical weather prediction (NWP) simulations would be a useful addition to 
current model sets. The ongoing C3S initiative, CERRA, is taking a lead here to produce a 5.5 
km dynamically-downscaled ERA5 regional reanalysis: https://climate.copernicus.eu/copernicus-
regional-reanalysis-europe-cerra. 

 
Widely used in CPMs are pseudo global warming (PGW) experiments, allowing us to explore the 

implications of a warming atmosphere on different precipitation regimes [72][73]. Key to this has 

been the use of PGW simulations to explore in-storm changes due to thermodynamic effects, e.g. 

[34]. A key challenge to address in PGW experiments is the convergence between model 

projections and observations regarding the existence of super-CC scaling rates and 

understanding the mechanisms behind them (see Lenderink et al. this issue). However, in regions 

where dynamical processes are important, such as changes to large-scale circulation patterns, 

we recommend that a full downscaling from GCM to CPM scales should be preferred. Although 

CPM analyses have so far mainly concentrated on ‘peak intensity’ changes over fixed durations, 

e.g. daily, multi-day, hourly, etc., likely structural changes to different storm types in the future are 

important to understand for both impacts and for updating of design guidance (see Sharma et al. 

this issue). 

Many characteristics of larger storm systems (e.g. cyclones, fronts) may be better understood 

using CPMs, with their better representation of the mesoscale structures associated with 

slantwise instabilities within fronts. We suggest that the objective identification of different types 

of storm system and their associated hazards (heavy precipitation, strong winds) in CPMs may 

help to identify likely spatial and temporal changes to hazards, as well as the likelihood of change 

in dominant event types, with global warming. One example of this is change to within-storm 

characteristics, such as the frequency of intense short-duration precipitation bursts within longer 

duration events, which are better simulated by CPMs. Indeed, the improved representation of 
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advection from sea to land and the triggering of convective showers in CPMs may be crucially 

important for understanding changes to precipitation type, for example where stratiform changes 

to convective [61]. We recommend the need for more research on changes to storm type, 

organization, orientation, and movement [45] using CPMs, which are better at representing storm 

movement and morphology and potential changes to within-storm characteristics than 

convection-parameterized simulations (Prein et al. this issue). Additional studies are also 

necessary to examine whether biases in GCM/RCM storm and convection propagation account 

for the discrepancies in trends between observations and climate models. We recommend also 

considering the possibility of unprecedented ‘black swan’ events or storm types. Together, this 

work may allow us to establish the effect of changing temporal storm patterns on 

geophysical/urban responses. 

 

3. Towards Understanding Mechanisms of Change 

INTENSE and other initiatives have established a firm scientific basis for the relation between 

temperature and extreme precipitation intensities at daily and hourly durations; an infographic on 

the acquired knowledge and the missing pieces is shown in Figure 2 and explained in the 

following. The rate of intensification of rainfall extremes under climate change depends on various 

processes that range from the microscale to the synoptic scale and planetary scale. Published 

scientific evidence suggests that daily precipitation extremes for large-scale precipitation increase 

with temperature at approximately the CC rate (6-7% K-1) over large regions [1][2][36], while 

warm, convective storms can potentially increase at higher rates (~1-2xCC)[37]. Uncertainty 

remains in the influence that changes to large-scale circulation dynamics, temperature 

stratification (affecting atmospheric stability), and latent heat release will have on the 

intensification of extreme rainfall, particularly for short-duration extremes. Studies indicate that 

local effects are important, but changes in precipitation efficiency, cold pool dynamics, and wind 

shear effects are still poorly understood. This is partly due to the concentration of studies on ‘peak 

intensity’ changes, the more complex analysis methods necessary to investigate change in small-

scale cloud processes, a lack of consistent analysis methods and a lack of observational datasets 

to fully evaluate CPMs. Recent observational and CPM studies have enhanced understanding of 

how these processes interact and how they might affect future extreme rainfall and a full review 

of our current understanding is provided in Fowler et al. (in press).   

We suggest that theory and idealized modelling experiments of convection in limited-size domains 

have the potential to provide further guidance as to where and when higher rates of change of 

precipitation extremes with climate warming (e.g. 2xCC) should be expected. For climate warming 

experiments in the simplest setting of radiative convective equilibrium (RCE), warming is greater 

higher in the atmosphere than at lower levels, hence increasing the dry static stability of the 

atmosphere. In these RCE experiments we see the atmosphere following close to a moist adiabat 

and the response of short-duration precipitation extremes is close to CC [74][75][76], although 

changes in precipitation efficiency can cause deviations from CC at lower surface temperatures 

[77]. When warming is uniform in the vertical, experiments yield higher rates of increase in 

precipitation extremes [78][79] but since this experimental design imposes an increase in moist 

instability this is an expected result. Thus, we suggest that to make theoretical progress it would 

be helpful to develop a simple framework of convection (possibly in a disequilibrium state) in which 

the vertical profile of warming is not externally imposed and yet super-CC rates of increase of 

precipitation extremes can in some cases be realized in response to climate warming. 
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There are some well understood mechanisms. Storms will tend to intensify due to increased latent 

heat release and updraft velocities and increases in moisture-convergence producing larger 

storms (Fowler et al. in press). These increases will be dampened by  enhanced atmospheric 

stratification due to a fundamental thermodynamic effect related to changes in the  moist-adiabatic 

lapse rate in a warmer atmosphere which increase static stability both in the tropics where the 

atmosphere stays close to a moist adiabat [80] and in the extratropics [81]. These competing 

effects of increased latent heating versus increased static stability are crucial for changes in 

updrafts speeds and thus precipitation rates [78] (O’Gorman et al this issue)., The changes in 

stratification also drive large-scale geographical patterns in surface warming and significant 

changes in precipitation frequency and amount [82]. This effect is particularly important in tropical 

regions and in extratropical summer conditions, and is a more robust response than large-scale 

circulation changes that, for e.g., dominate precipitation changes during the European winter [82]. 

Changes to large-scale atmospheric dynamics are clearly important and not well-researched. We 

recommend that it is important in future work to establish the relative contributions of atmospheric 

stratification, dynamics and thermodynamics to changes to extreme precipitation not just for peak 

intensities but with event-based analysis according to storm/precipitation type (see Moron et al. 

this issue). We suggest that this will enable the disentangling of processes causing extreme 

events and move us further towards answering questions like, why is intensification higher for the 

most extreme events [83][84][85], and is this a simple result of changes in frequency mixing with 

changes to intensity?  

It will also enable us to establish the importance of small-scale dynamics vs. large-scale 

dynamical changes on storm intensification and frequency. Local dynamical scaling might 

enhance precipitation within an event but a large-scale shift of circulation patterns might move 

the moisture sources sufficiently to affect the regional-scale response [86][87]. For example, 

large-scale circulation effects caused by Arctic amplification may lead to change in jet stream 

positioning over Europe, but overall there is low understanding due to multiple driving 

mechanisms [88]. However, an increased gradient in moisture from low to high latitudes 

determined by the CC relation will lead to more moisture transport into the Arctic which will alter 

cloud/radiative/precipitation characteristics which, in turn, affect Arctic amplification [89]. Similarly, 

changes in large-scale dynamics can strongly affect where precipitation extremes occur most 

frequently in both the subtropics and the tropics. Uncertain dynamical influences must be explored 

to establish more clearly the likely response of large-scale systems and the role they will play in 

enhancing/dampening thermodynamically-driven extreme precipitation increases with warming.  

Changes to small-scale cloud physics will also be important. In particular, continental convection 

is generally much less “efficient” than maritime convection but its efficiency can be greatly 

increased if it organises into a mesoscale convective system. At the moment little is known about 

differing responses over the ocean and continents. However, if changing temperatures lead to 

different modes of mesoscale organisation of the convection that could provide a mechanism for 

a different response. The processes involved in the organization of extreme precipitation events 

are multi-fold and vary by region. Extremes can self-organize due to feedbacks that are triggered 

by small-scale processes (e.g., convective self-aggregation) or they can be organized and 

intensified by larger-scale processes (e.g., fronts, orographic lifting). High-end extreme events 

are, however, typically related to process interactions that amplify extreme rainfall [90]. In this 

case, synoptic-scale processes usually trigger, organize, steer, and amplify mesoscale processes 

[91] [92]. The role of changes in convective organization in the response of extreme precipitation 

to climate change remains uncertain and is an important avenue for future research [93]. It is 
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possible that there may be a difference, too, arising from the dominance of different microphysical 

mechanisms: e.g. liquid vs ice dominated clouds and ice multiplication. All of these processes 

must be further understood to fully understand potential regional changes. 

 

4. The Usefulness of Temperature-Scaling Relations 

INTENSE evaluated the potential usefulness of temperature-scaling for projections of changes to 

precipitation extremes. It established that the scaling relation between extreme daily rainfall and 

day-to-day variability in temperature, the ‘apparent’ scaling [94], across the globe approximately 

follows the CC rate or below [95] when using a moisture component in temperature-scaling 

[96][97]. This is consistent with both observed trends and projected changes to extreme daily 

rainfall intensities [2]. An INTENSE study also indicated that sub-daily precipitation extremes are 

in some regions increasing at faster rates, at up to three times, than would be expected from 

atmospheric moisture increases alone [37]. This is consistent with super-CC apparent scaling 

(rates larger than 6.5% K-1) found for sub-daily rainfall intensities in some locations (e.g. 

[98][99][100][101]). In CPMs apparent scaling with near-surface temperature is approximately CC 

during warm days but decreases on the hottest days, as also seen in observations; scaling is 

consistently CC or above if a moisture-component is included [102]. It is still uncertain what this 

will mean for future projections of changes to precipitation intensities, due to the unknown effect 

of large-scale circulation changes [43], but evidence is emerging that sub-daily rainfall 

intensification is related to an intensification of flash flooding, at least locally [44].  

CPMs have been used to establish some of the mechanisms for enhanced rainfall intensities from 

local in-storm effects [38] and from urbanisation [103]. However, it is uncertain whether these 

apparent scaling rates are suitable for projecting change to extreme precipitation with future 

warming. For example, present day scaling may alias changes in meteorological regimes (e.g. 

stratiform to convective) with temperature that are not relevant for climate change [94]. 

Temperature scaling could be expected to be the same for day-to-day variability and future 

warming when considering some factors that affect extreme precipitation, such as moisture, latent 

heating and hydrometeor type, but there is no a priori physical reason to think it will be the same 

when considering changes in temperature stratification or mesoscale and synoptic circulations 

which can also strongly affect extreme precipitation [4][78][104]. Nevertheless, we suggest that 

evaluation of the scaling relationship in observations compared to climate models can identify 

model weaknesses and potential under-simulation of change. 

One of the main issues in establishing whether scaling is a useful prediction mechanism is the 

lack of comparability among current studies, which use different metrics of ‘extremeness,’ different 

datasets, different scaling methods, and often lack quality control methods. A full comparison of 

existing methods – a meta-analysis on scaling – would provide information on the consistency of 

scaling across space and whether this is a likely candidate to explain and predict future changes 

to extreme precipitation from warming. This should focus on standard metrics and examine the 

difference in using scaling variables such as surface air temperature, surface dew point 

temperature or atmospheric observations at higher levels of the atmosphere, using quality-

controlled and standardised datasets. Additionally, all studies should include confidence intervals 

on their scaling curves to allow uncertainties to be better established and should publish their 

analysis scripts since small details in methodology can have significant impacts on resulting 

scaling rates [105]. Furthermore, multi-decadal-long large-region or continental studies of 
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intensification and scaling should be executed to distinguish the climate signal of event 

intensification from local day-to-day noise ([26], also see discussion in Wasko this issue). This 

would also help to illuminate potentially coherent spatial patterns of change to extreme 

precipitation frequency and intensity, and the potential effects of regional dynamics and local-

scale effects resulting from e.g. urbanisation [103]. 

It would also help to understand how storm-tracked scaling rates compare to gauge-level rates 

and whether CC scaling (and perhaps changes with warming) are different within different parts 

or types of storms (e.g. [47]). In particular, event attribution studies of individual tropical cyclones 

in the US suggest that precipitation totals averaged over a storm’s duration and spatial extent  

scale close to CC. However,  in the heaviest precipitating regions of intense tropical cyclones, 

precipitation rates scale at 2xCC or higher  [106][107]. This is thought to be due to storm structural 

changes in warmer environments [108] but requires further understanding. Further complicating 

the issue is how climate change will affect tropical cyclone frequency. While most, but not all, 

tropical cyclone permitting climate models (horizontal resolutions of 20-50km) project a decrease 

in the global tropical cyclone count with global warming, there are competing viewpoints of 

whether this is realistic [109][110][111]. While the community agrees that the fraction of tropical 

cyclones that become intense will increase, a decrease in intense tropical cyclone frequency is 

possible if the total storm count decrease is large. To facilitate these analyses, it would be useful 

to update the definitions of storms that produce heavy rainfall and to produce automated tracking 

systems: we currently define storm structures based on satellite images but could produce much 

more detailed classifications based on new radar products (e.g. [44][112]), among others. These 

could for example include vertical thermodynamic profiles, indispensable for understanding the 

water and energy cycle [113].  

 

5. Towards Detecting and Attributing Extreme Rainfall Change 

Given the damages often associated with extreme short-duration rainfall, there is growing 

importance on the reliable monitoring, attribution and prediction of such events. A key component 

of this, in recent years, has been increasing interest in the detection and attribution of large-scale 

changes in extreme precipitation and in the attribution of weather events involving extreme 

precipitation, which seeks to calculate the extent to which anthropogenic factors have increased 

the likelihood or intensity of particular types of event (e.g. [114]). There have also been attempts 

to demonstrate the close link between conventional detection and attribution and event attribution 

[115]. 

A subjective expert assessment, by the authors, of our current confidence in both the detectability 

and understanding of changes in various aspects of extreme short-duration rainfall is provided in 

Figure 3. Understanding, shown on the vertical axis, is based on both the volume of literature and 

its consistency while detectability, shown on the horizontal axis, is based primarily on the volume 

and quality of observations. Aspects on one side or the other of the diagonal line mean that 

confidence is greater in understanding or attribution respectively. Extreme precipitation metrics 

are shown in blue, selected severe storm types shown in red, and processes relevant across 

storm types shown in black. Daily precipitation extremes from station data are well observed over 

North America, Western Europe and parts of Asia and Australia but are sparse in the developing 

nations [116]. Attribution to human influences of changes in daily precipitation extremes over land 

at large-scales is well established [117][118], although uncertainties remain with respect to larger 
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magnitudes of change in observations than GCMs, the representativeness of stations both in 

spatial distribution and scale, and the level of internal rainfall variability in GCMs. However, 

observational uncertainties over oceans are large as a result of both retrieval algorithms and 

temporal sampling. Nevertheless, the widespread increasing trend in observed annual maximum 

1-day precipitation increases confidence and follows physical and climate model expectations 

(Clausius-Clapeyron); with about 18% of moderate daily precipitation extreme events over land 

now attributable to warming [115].  

Sub-daily precipitation extremes are less well observed in general over land [119], hence we have 

less confidence in our ability to detect changes. There has also been less work on detection 

studies of 3-hour and 1-hour precipitation, including extremes. However, a growing number of 

observational analyses indicate increases in the frequency and/or intensity of 1-hour extreme 

precipitation in, e.g. Australia [120], parts of China [121], SE Asia [122], Europe [123][124] and 

North America [26]; with [120] detecting large increases outside the range of natural variability 

(up to 3xCC) for hourly extreme precipitation in Australia. A full review of this topic can be found 

in Fowler et al. (in press) and suggests that extreme sub-daily precipitation will increase at the 

Clausius-Clapeyron rate, or higher. This, coupled with the fact that we expect large-scale 

circulation changes to affect sub-daily precipitation extremes less than thermodynamic drivers 

and that we have reasonable understanding of the thermodynamic feedbacks, means that the 

confidence in our understanding of the effect of climate change on extreme sub-daily precipitation 

is nearly as high as for daily extreme precipitation.  

Event attribution studies of extreme rainfall events have used a variety of approaches including 

the statistical analysis of observational data and the analysis of large ensembles of climate model 

simulations. There is no a priori reason to expect different types of intense storms to respond in 

the same way to higher temperatures, and studies have so far not separated storm types. In fact, 

there is substantial evidence that changes to the most intense storms may be quite different than 

changes to more frequent, less intense storms of the same type [125][111][126]. The literature on 

the effect of climate change on tropical cyclones is rapidly expanding due to advances in 

computing and high-resolution climate modelling. Intense tropical cyclones (TC) are readily 

identifiable in both the real world and in appropriate high-resolution simulations [127], placing 

them relatively high and to the right in Figure 3, with attributable increases of the risk of extreme 

rainfall found for Hurricane Harvey [128][107]. Intense extratropical cyclones (ETC) are well-

simulated in a wider class of climate models but are not as readily identified in models or 

reanalyses [129][130] placing them to the left of intense tropical cyclones, although event 

attribution was performed for the August 2016 flood-inducing event in South Louisiana [131] 

Atmospheric rivers (AR) and frontal systems pose similar identification problems [132][133] so 

they are placed at the same position at intense ETC on the detection axis. A sparsity of literature 

on extreme precipitation changes in these two storm types places them lower on the 

understanding axis [134]. For robust results from event attribution, observational and modelled 

datasets of sufficiently high resolution are required, stretching current capabilities for event 

attribution to the utmost. But with ensembles of CPMs becoming available there is a strong 

potential for event attribution of localised extreme rainfall to make a big step forward in the next 

few years. 

Changes in specific humidity are well-observed to scale with temperature over oceans according 

to the CC relationship and have been attributed to human activities [135]. Quality observations 

and sound theory place it in the upper right corner of Figure 3. Changes in severe convection, on 
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the other hand, are difficult to observe over wide regions of the planet but are well simulated in 

very-high-resolution models not requiring convective parameterizations [136] [137], placing 

severe convection far to the left but relatively high in Figure 3. Temperature scaling is not 

independent of changes in large-scale circulation nor changes in modes of large-scale variability. 

Changes in large-scale circulation such as the Walker and Hadley cells can affect the locations 

of storm tracks of all types [88]. These changes are generally well understood and observed [138]. 

Changes in modes of inter-annual/decadal variability, such as the El Niño Southern Oscillation or 

the Pacific Decadal Oscillation, are more difficult to detect due to a relatively short observational 

record. Literature on this subject is extensive but not conclusive [138]. Temperature scaling of 

short-term precipitation extremes, as discussed in this paper, involves these changes in 

circulation and humidity but also potential changes in storm structural dynamics. These effects 

could include changes in vertical uplifting, changes in convection, changes in translational speeds 

and other structural changes, as previously discussed. 

 

6. The Need for International Coordination and Collaboration 

To further advance knowledge there is a clear need to foster international coordination and 

collaboration around the identified scientific gaps in understanding. We suggest that a variety of 

frameworks could be used to facilitate this, such as collaborative meetings, enabled by 

programmes such as the European COST Actions or the US National Science Foundation’s 

AccelNet programme. Follow-up meetings could also be arranged as satellite meetings, or 

specialised meetings, e.g. American Geophysical Union Chapman conference, or BIRS Banff 

workshop. In addition, funding or networking opportunities with intergovernmental organizations 

(e.g. International Monetary Fund, World Bank, World Health Organisation) or re-insurance firms 

should be explored. We recognise a need to improve connections between the climate research 

community and related disciplines such as statisticians, weather forecasters, and the climate 

impacts community, as well as policymakers and practitioners (see Figure 4 for a schematic 

illustrating the benefits of the crossover between disciplines). This may also help communities 

focussing on sustainable development to be made aware of developments in climate science, 

and to allow them to be part of shaping funding streams and research directions useful for 

decision-making processes. We suggest that is particularly important to include connections to 

scientists in developing countries to build data availability in data-poor regions of the tropics, and 

for capacity-building, as infrastructure may be more vulnerable in the low latitudes. 

INTENSE, and the development of the GSDR dataset in particular, has been an exemplar of 

international coordination and collaboration, but issues still hinder progress. These include data 

availability, quality issues and biases in datasets; for example much of the GSDR dataset is not 

shareable to the international community although efforts are underway to identify mechanisms 

for dataset maintenance and updating to ensure the GSDR’s long-term legacy. While progress 

has been made in this respect through initiatives such as Copernicus [139], an improved 

international capacity to both monitor change and share data remains a significant challenge 

[140]. In the meantime, the development of derived products, such as the Expert Team on Climate 

Change Detection and Indices (ETCCDI [141]), provide the scientific community with information 

on these restricted datasets. Since results can change significantly with quality control, we 

recommend good quality-control of datasets in all scientific studies (e.g. [19][20]). We also 

recommend taking account of biases in different data products and identify potential shortcomings 

in short and sparse gauge data records. We recommend the increased use of different data types, 
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such as remotely sensed (i.e. satellite and radar) datasets, reanalyses and blended products, 

each with their own strengths and weaknesses; together these can further enable understanding 

of how extreme precipitation is changing and help to elucidate key mechanisms.  

We encourage more internationally coordinated intercomparison studies of CPMs. Such efforts 

have started with CORDEX-FPS, EUCP and efforts focusing on organized convection in 

Argentina and over the Tibetan Plateau (http://rcg.gvc.gu.se/cordex_fps_cptp/). We suggest that 

comparison studies with standard metrics and coordinated model design criteria will further the 

understanding of model biases and shortcomings. This should lead to model improvements, 

greater understanding of mechanisms causing increases in extreme precipitation and allow the 

evaluation of uncertainties. One key deficiency of existing models is land-surface feedbacks; we 

recommend a priority should be improving the representation of the soil/water table which was 

not designed for CPMs and seems to have a strong impact, especially on dry bias. Incorporating 

physically-based hydrologic models within climate model land surface components could also 

help to improve the simulation of local feedbacks in CPMs that partly drive convective processes 

in continental regions. Similarly, improvements in the representation of urban landscapes would 

improve related atmospheric feedbacks, such as rainfall intensification from urban heat island 

effects [103], and CPMs could be really useful for examining the effects of planned urban/peri-

urban expansion on micro-climates, guiding local adaptation measures, such as implementation 

of city wide green infrastructure. Alongside this, we suggest that comparison of CPM vs gauge 

observations will be useful in understanding network density effects, which have also been 

observed from radar vs gauge comparisons [22][142], and may severely affect our estimates of 

regional return levels, crucially needed for design decisions. 

7. Conclusions and Future Directions 

Over the last six years the INTENSE Crosscutting project of the GEWEX (Global Energy and 

Water Exchanges) Hydroclimatology Panel has led a concerted international effort to advance 

scientific knowledge of climate change impacts on short-duration rainfall extremes. This 

culminated in a Discussion Meeting at the Royal Society, London, UK where a number of experts 

discussed the state-of-the-art in this research field and how to address remaining gaps. 

Improvements in observations and the advent of CPMs has led to considerable advances in the 

understanding of thermodynamic drivers of changes and their impacts on peak intensities, with 

much clearer understanding of the potential role of relationships between day-to-day temperature 

variabilities and precipitation (scaling) in projecting changes to rainfall extremes. Progress has 

also been made on the understanding of changes to storm spatial structures and profiles with 

warming with considerable evidence of changes with climate change. Considerable progress has 

also been made on the understanding of local dynamical enhancements causing super-CC 

scaling, such as latent heat release, enhanced vertical uplift and moisture convergence. Less well 

understood is the moderating role of large-scale circulation on thermodynamic changes and the 

climate change impacts on small-scale cloud dynamics (i.e., turbulence) and cloud microphysics 

and their effects on changing extreme precipitation.  

To further advance this research field, we recommend that an event-based conceptual framework 

would be a useful approach to help clarify differences among various rainfall mechanisms and 

scaling rates. This focus on local event properties is however balanced by a need to gain a better 

understanding of the impact that potential changes to large-scale circulation patterns could have 

on intense rainfall extremes. These questions are complementary, and of particular interest was 

the possibility of circulation-driven changes to the dominant event type across regions.  Despite 

http://rcg.gvc.gu.se/cordex_fps_cptp/
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high variability, observed changes can be vital to evaluate and challenge climate model 

simulations. This can be done either by comparing attributed changes to model simulated 

changes, or through emergent constraints where observations narrow uncertain climate model 

projections. 

Finally, to make this ever-increasing understanding useful to decision-makers, we recommend 

that the international community must consider language, headline messages and communication 

mechanisms as well as experimental design [143]. We suggest that there is also a need to 

connect the atmospheric science community (e.g., climate modellers) with the hydrologic, and 

climate impacts, community. Our current understanding is limited to changes in extreme 

precipitation (this article is a good example of this), which is only part of the equation when we 

are interested in future flooding. With the recent advances in atmospheric modelling, we 

recommend now is the time to take the next step and tackle the question of how this relates to 

changes in flooding. Although some instances exist of translation of current state-of-the-art model 

results into flood design guidance, e.g. [144], this is still in its infancy (see Wasko et al. this issue 

for an extensive review). To increase uptake from decision-makers we may need to change our 

current approach to adopt alternative modelling strategies such as storylines [145]. As well as 

producing a ‘likely’ range of change we need to consider the ‘plausible worst case’ scenario as 

the most important risks rarely lie within the ‘likely’ range, e.g. [146]. This includes dealing with 

the modelling of unprecedented yet physically plausible extremes and rare events such as the '1 

in 100 year' event or 'Probable Maximum Precipitation' which are often missed in current 

analyses. We suggest that understanding the extent to which the results are consistent across 

the frequency distribution is also an important research priority. 
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Figure 1: The INTENSE project’s key questions. 

  



25 
 

 

Figure 2: Knowledge path on relationship between precipitation extremes and global warming: 

consensus and missing pieces.  Additional studies are required to dissipate uncertainties linked 

to the influence of large-scale circulation dynamics, latent heat release and moist static stability, 

changes in storms characteristics and temperature stratification. International collaboration is 

needed to increase model confidence, to evaluate uncertainties, and to advance scientific 

knowledge on poorly understood phenomena like cold pools, wind shear and precipitation 

efficiency.   
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Figure 3: Confidence in understanding causes and detection of changes in extreme precipitation. 
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Figure 4: The INTENSE Project culminated in bringing together experts across multiple 

disciplines at the Royal Society, London to discuss recent advances in understanding climate 

change impacts on short-duration rainfall extremes and what is required to make further advances 

in the field. This diagram is conceptual only and aims to illustrate the crossovers between 

disciplines in a general sense. It is not to designed to be accurate in the placement of the Venn 

diagram circles. 

 


