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Numerical Modeling and Data Assimilation of Soil Water Flow
Soil water flow is a key process in Earth’s hydrological cycle and an essential part of many
ecosystem services. Soils are porous media and exhibit a heterogeneous, multi-scale ar-
chitecture. Their non-linear material properties have a significant influence on the soil
water dynamics, which poses difficulties for numerical models. These material properties
cannot be measured directly, but data assimilation methods can estimate them by combining
information from measurements of soil hydraulic states and from numerical models. The
validity of the estimation results can be strongly affected by model errors. This disserta-
tion (i) presents a versatile software package for modeling soil water flow and analyzes
the accuracy and efficiency of its numerical discretization schemes, and (ii) employs this
software in synthetic data assimilation tasks to investigate the effects of unrepresented
dynamics, topography, and small-scale heterogeneity on estimated material properties and
forecasts conducted with them. The results reveal that favoring low-order numerical meth-
ods over more accurate ones can be justified for use cases in soil hydrology. Moreover, the
findings indicate that one-dimensional models with estimated effective material properties
can reasonably replicate the dynamics of heterogeneous, two-dimensional domains with
complicated topography, if boundary conditions are represented correctly.

Numerische Modellierung und Datenassimilation von Bodenwasserfluss
Bodenwasserfluss ist ein Schlüsselprozess im Wasserkreislauf der Erde und ein wesentlicher
Bestandteil vieler Ökosystemdienstleistungen. Böden sind poröse Medien und weisen eine
heterogene Multiskalen-Architektur auf. Ihre nichtlinearen Materialeigenschaften haben
einen signifikanten Einfluss auf die Bodenwasserdynamik, was Schwierigkeiten für nu-
merische Modelle darstellt. Diese Materialeigenschaften können nicht direkt gemessen,
aber mit Datenassimilationsmethoden geschätzt werden, indem Informationen aus Mes-
sungen bodenhydraulischer Zustände und aus numerischen Modellen kombiniert werden.
Die Gültigkeit der Schätzungsergebnisse kann durch Modellfehler stark beeinträchtigt
werden. Diese Dissertation (i) stellt ein vielseitiges Softwarepaket zur Modellierung des
Bodenwasserflusses vor und analysiert die Genauigkeit und Effizienz seiner numerischen
Diskretisierungsschemata, und (ii) setzt diese Software bei synthetischen Datenassimilati-
onsaufgaben ein, um die Auswirkungen von nicht repräsentierter Dynamik, Topographie
und kleinskaliger Heterogenität auf geschätzte Materialeigenschaften und damit durchge-
führte Vorhersagen zu untersuchen. Die Ergebnisse zeigen, dass es für Anwendungsfälle
in der Bodenhydrologie gerechtfertigt sein kann, numerische Methoden niedriger Ord-
nung genaueren Methoden vorzuziehen. Darüber hinaus weisen die Ergebnisse darauf hin,
dass eindimensionale Modelle mit geschätzten effektiven Materialeigenschaften die Dyna-
mik heterogener, zweidimensionaler Gebiete mit komplizierter Topographie angemessen
nachbilden können, wenn die Randbedingungen korrekt repräsentiert werden.
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Introduction

Water is a key resource for humankind and Earth’s hydrosphere is characterized by a
continuous circulation of water (Oki and Kanae 2006). Soils are an essential compartment
of this hydrological cycle, and their role is crucial for nearly all terrestrial systems. Soil
water movement in the topmost, usually unsaturated layers of the soil is the interfacing
process between atmospherical and lithospherical water flow. It supports several important
ecosystem services, like retention, buffering, and filtering of fresh water. With the increasing
anthropogenic influence on all of Earth’s systems, soil science evolved along the technical
possibilities to tackle research questions and the societal needs for the understanding of
processes into a highly interdisciplinary field (Sivapalan and Blöschl 2017). Soils are the
site of numerous physical, biological, and chemical processes involving fluxes not only of
water, but also gases, solutes, and energy. Soil water content or moisture, however, is a key
variable in most of these processes (Seneviratne et al. 2010).

Water flow through the porous medium soil is described by a physical model at the spatial
scale of centimeters to meters (Roth 2012). General solutions to the highly non-linear equa-
tions require sophisticated numerical schemes (Farthing and Ogden 2017). They are further
aggravated by the inherent multi-scale architecture of soils, which involves complicated
geometries and heterogeneity at every spatial scale (Pachepsky and Hill 2017). The accuracy
of models therefore hinges on the description of not only initial and boundary conditions,
but especially material properties, which are usually expressed in parameterizations. Up-
and downscaling from a specific spatial and temporal scale is only possible to a limited
extent, as every scale features its own effective properties which are the result of dynamics
operating on a lower scale (Vogel and Roth 2003).

Discontinuous Galerkin (DG) methods are both flexible and highly accurate numerical
discretization schemes (Di Pietro and Ern 2012). Advances in computer architectures
over the last decades have increased their popularity, as they feature a high potential for
parallelization and the possibility to locally adjust their effective resolution. DG schemes can
also be applied on complicated geometries. These features make them ideal candidates for
modeling soil water flow, and formulations for heterogeneous convection-diffusion-reaction
problems have been rigorously studied (Ern, Stephansen, and Zunino 2009). However, high
accuracy and flexibility entail a complicated scheme formulation and a high computational
cost. The selection of a numerical scheme therefore depends on the particular use case.
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Introduction

Hydrological processes like farmland irrigation, precipitation runoff, and groundwater
uptake happen at the scale of fields, catchments, and landscapes. But the critical scale
for the description of soil water movement is that of pedons (Vogel 2019). The intrinsic
scaling problem forces scientists into a tradeoff between numerical accuracy and spatial
resolution, which, coupled with the complicated soil architecture, has a profound influence
on the results. In soil hydrology, simple and therefore computationally cheap discretization
schemes at high resolutions are typically favored over more accurate methods (Miller et
al. 2013). Large-scale models of catchments or landscapes often assume soil water flow to be
mainly or exclusively one-dimensional, along the vertical axis (Zeng and Decker 2009).

The soil architecture and associated material properties are the largest source of uncertainty
when modeling soil water flow. Soil hydraulic parameters are difficult to observe and cannot
be inferred from laboratory experiments with soil samples. Material properties are therefore
estimated by combining in situ measurements of system states with inverse models or data
assimilation algorithms (Vrugt et al. 2008). A successful data assimilation algorithms in
soil hydrology is the ensemble Kalman filter (EnKF; Evensen 2003), which has been used to
estimate soil hydraulic states, parameters, and even architecture (Liu et al. 2012).

Measurements are usually scarce and noisy, and the model used for inversion or data
assimilation has a critical role, as it must accurately recapture the physical processes
observed. With the multi-scale nature of soils and the large number of processes involved,
model representation errors are hardly avoidable. The focus in data assimilation therefore
shifted from an estimation of the most likely states and parameters to a quantification
of uncertainty in the estimation itself (Reichle 2008; Liu and Gupta 2007). The scientific
community has identified the quantification of model errors as major challenge in soil
hydrology, and recently developed several techniques to tackle it. These involve, for instance,
using expert knowledge to identify unrepresented dynamics and to change the treatment of
associated observations (Bauser et al. 2016), and estimating model errors frommeasurements
alone with data driven methods (Zhang et al. 2019). Nonetheless, it remains an open
question how errors in the representation of soil heterogeneity and architecture affect data
assimilation results.

In my work and this thesis, I chose a twofold approach to the recent challenges in soil
physics. With the DUNE Operated Richards Equation Solving Environment (DORiE; Riedel
et al. 2020a), I co-authored a software package for modeling soil water flow and passive solute
transport based on the Distributed and Unified Numerics Environment (DUNE; Bastian
et al. 2020). It offers low accuracy finite volume (FV) and high accuracy DG discretization
schemes for both processes and makes state-of-the-art numerical tools available to soil
scientists without strong numerical background. Within this thesis, I showcase DORiE’s
features and investigate the performance of its discretization schemes with respect to
applications in soil hydrology. I further developed the coupling between DORiE and a data
assimilation framework and thus employed DORiE as forward model in an EnKF to research
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the effect of unrepresented model errors. For a study I co-authored, we conducted synthetic
experiments in which we used a one-dimensional model of a soil profile to estimate effective
material properties with an EnKF based on measurements from a two-dimensional model
with known small-scale heterogeneity (Bauser et al. 2020). In this thesis, I recapture the
findings of this study and extend its analysis. I furthermore conduct additional synthetic
experiments involving both unrepresented heterogeneity and topography in the estimation
model, and investigate their effects onto the results.

Thesis Outline Chapter 1 introduces the physics of soil water flow. Chapter 2 derives
the FV and DG discretization schemes for the physical equations and outlines the tech-
niques required for computing solutions from them. The discussed numerical methods are
implemented in DORiE, which is presented in chapter 3. This chapter also includes the
analysis of its performance and accuracy. Chapter 4 introduces the EnKF, along with its
extensions for applications in soil hydrology, and outlines the coupling between DORiE and
an implementation of the filter. The study by Bauser et al. (2020) is revisited in chapter 5,
with an expanded analysis of the results. In chapter 6, I extend these investigations by
introducing unrepresented heterogeneity. Finally, this chapter also includes a combined
conclusion from all conducted synthetic experiments involving the effects of unrepresented
model errors.
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Part I

Modeling Soil Hydrology
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1 Soil Water Flow

Soil water flow is a central soil process and described with a continuum formulation of fluid
flow in unsaturated, porous media (Vereecken et al. 2016). This formulation combines the
laminar flow at the pore scale of micrometers to millimeters with a statistical description of
the porous medium configuration. Crucial components of this theory are the observation
that material properties of soils can be statistically averaged at certain length scales (Vogel
2019), and the assumption that the microscopic flow within the pores is in equilibrium with
respect to the local pressure gradient. The porous medium is also assumed to be static.

All of these assumptions are observed to be frequently violated in real soils (Jury et al. 2011).
Porous media typically exhibit hysteresis in the soil hydraulic state and intense forcings can
break the locally equilibrated flow. This allows water to propagate along stable fingers and
much faster than expected from the equilibrium model. Additionally, soils feature extended
macropores, which are the result of geomorphological or biological activity. These facilitate
possibly non-laminar flow processes with which water is able to bypass parts of, or the
entire, porous matrix. Such processes are subsumed as preferential flow (Hendrickx and
Flury 2001). In extreme cases, they can make up the main contribution to the overall soil
water flow. Although numerous models for preferential flow exist, there is little consensus
in their formulation and especially their coupling to the flow in the porous matrix (Šimůnek
et al. 2003). In the following, I reiterate the derivation of the Richards equation, which
neglects any of these effects but has proven robust enough to describe the dynamics of soil
water flow in many real-world scenarios.

1.1 Capillary Water Flow

Assuming water to be an isothermal, incompressible, Newtonian fluid, its flow is described
by the Navier-Stokes equation,

𝜌𝜕𝑡𝒗 + 𝜌 [𝒗 · ∇] 𝒗 = 𝜌𝒈 − ∇𝑝 + `∇2𝒗, (1.1)

with the water velocity 𝒗 and pressure 𝑝 , where 𝜌 and ` are the water density and dynamic
viscosity at constant temperature, respectively, and 𝒈 indicates the gravitational acceleration.
Analyzing the orders of magnitude of the constituents of the formula, we can approximate
the flow in soil capillaries (Roth 2008). With a small Strouhal number, the forcing becomes
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1 Soil Water Flow

much slower than the resulting internal dynamics, and the flow is essentially stationary.
We call this assumption local equilibrium. The Reynolds number is typically much smaller
than the critical Reynolds number, indicating that dissipation is efficient and turbulence can
be neglected. Equation (1.1) then simplifies to the stationary Stokes equation,

`∇2𝒗 = ∇𝑝 − 𝜌𝒈. (1.2)

Pressure and gravity are the driving forces in Stokes flow, and in the stationary case, they are
balanced by friction. As the only opposing force, the friction acts in the opposite direction
of the flow. We use that eq. (1.2) is linear in 𝒗 and insert a proportional relationship between
friction and velocity, 𝒗 = −^∇2𝒗, arriving at the simplified Stokes equation,

𝒗 = −^
`
[∇𝑝 − 𝜌𝒈] , (1.3)

where ^ (𝒙) represents the local geometry.

1.2 State Variables

Defining macroscopic state variables from microscopic quantities necessarily requires some
form of spatial averaging, which is only feasible in a certain spatial range. The representative
elementary volume (REV) defines the lower end of this range. It specifies the minimal volume
for which the value of an averaged quantity becomes insensitive to small changes of said
volume (Roth 2012). The upper end of the range is the maximum averaging volume (MAV),
indicating the maximum extension for which the local equilibrium assumption is valid. Both
definitions strongly depend on the microscopic system architecture, the current dynamics,
and the external forcing. In general, however, there is no guarantee that the MAV is actually
larger than the REV.

In spatial scales above the REV, we can then define the local water content \ as fraction of
the water volume 𝑉𝑤 in the total volume 𝑉 ,

\ ≔
𝑉𝑤
𝑉
. (1.4)

The natural upper limit of \ is the saturated water content \𝑠 and equals the soil porosity
𝜙 , \𝑠 ≔ 𝜙 . The lower limit, the residual water content \𝑟 , is the fraction of immobile
water remaining as adsorbed films in an otherwise dry medium on the timescale of interest.
It is convenient to express the soil water content in terms of the soil water saturation
Θ ∈ [0, 1],

Θ ≔
\ − \𝑟
\𝑠 − \𝑟 . (1.5)
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1.3 Richards Equation

Further, we replace the description of force acting on a unit surface of the fluid by the
potential energy density of a fluid unit volume. This matric potential 𝜓𝑚 describes the
pressure jump between water and air at their interface,𝜓𝑚 = 𝑝𝑤 − 𝑝𝑎 , and can be defined
with the Young-Laplace equation,

𝜓𝑚 ≔ 2𝜎𝑤𝑎𝐻, (1.6)

where 𝜎𝑤𝑎 is the surface tension of the interface and 𝐻 its mean curvature. The matric
potential is often expressed as energy density per unit weight, yielding the matric head,

ℎ𝑚 ≔
𝜓𝑚
𝜌𝑔
, (1.7)

where 𝑔 is the gravitational acceleration. The value of the matric head is interpreted as
height of an equivalent fluid column, [ℎ𝑚] = m.

1.3 Richards Equation

To derive the continuum formulation of the Richards equation from the obtained state
variables and the pore-scale flow given by the Stokes equation, we further follow Roth
(2008). The water flux at the macroscopic continuum scale is given by the water content \
multiplied with the spatial average of the flow velocity in the soil capillaries,

𝒋 = \ ⟨𝒗`⟩𝑤 = −\ 1
`
⟨^` [∇𝑝` − 𝜌𝒈]⟩𝑤, (1.8)

where we inserted eq. (1.3) as the pore-scale velocity 𝒗` , indicating microscopic quantities
with superscript `, and where ⟨·⟩𝑤 denotes the spatial average over the water phase. The
average poses some difficulties due to the correlations between the pressure gradient and
the pore geometry. However, owing to the linearity of the Stokes equation, the magnitude of
the macroscopic pressure gradient must be proportional to the magnitude of the microscopic
one. We can therefore relate them with a symmetric, second rank tensor 𝑨(𝒙) through
[∇𝑝` − 𝜌𝒈] = 𝑨[∇𝑝 − 𝜌𝒈], yielding Darcy’s law,

𝒋 = −1
`
\ ⟨^`𝑨⟩𝑤 [∇𝑝` − 𝜌𝒈] = −𝒌

`
[∇𝑝 − 𝜌𝒈] , (1.9)

where 𝒌 ≔ \ ⟨^`𝑨⟩𝑤 is the permeability. Neglecting hysteresis, we can express 𝒌 as a
function of the water content \ . This function is non-linear because variations in \ change
the averaging volume in ⟨·⟩𝑤 . Further assuming that the phases of water and air decouple,
and that the water flux therefore is unaffected by pressure gradients in the air phase, we
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1 Soil Water Flow

Table 1.1: Mualem–van Genuchten parameter sets for four soil types used in simulations
throughout this thesis, as reported by Carsel and Parrish (1988).

Medium 𝐾0/ms−1 𝛼/m−1 𝑛 𝜏 \𝑟 \𝑠

Loam 2.9 × 10−6 −3.6 1.56 0.5 0.078 0.43
Loamy Sand 4.1 × 10−5 −12.4 2.28 0.5 0.057 0.41
Sandy Loam 1.2 × 10−5 −7.5 1.89 0.5 0.065 0.41
Silt Loam 1.3 × 10−6 −2.0 1.41 0.5 0.067 0.45

replace the water pressure with the matric potential𝜓𝑚 and define the hydraulic conductivity
𝑲 ′(\ ; 𝒙) ≔ 𝒌/` to arrive at the Buckingham-Darcy law,

𝒋 = −𝑲 ′(\ ) [∇𝜓𝑚 − 𝜌𝒈] . (1.10)

Inserting this into the continuity equation and dividing by 𝜌𝑔 yields the Richards equation,

𝜕\

𝜕𝑡
− ∇ · [𝑲 (\ ) [∇ℎ𝑚 − �̂�]] = 0, (1.11)

which includes a redefinition of the hydraulic conductivity 𝑲 ≔ 𝑲 ′/(𝜌𝑔), [𝑲 ] = ms−1, and
where �̂� is the unit vector in the direction of gravitational acceleration.

The rigid assumptions leading to the above formulation of the Richards equation have a
profound influence on its applicability (Roth 2012). First, it is only valid for an intermediate
soil water saturation Θ because we assumed a negligible influence of the air phase and its
pressure gradients. For low soil water contents, and a consequently low magnitude of the
hydraulic conductivity 𝑲 , vapor transport has a significant influence on the overall water
flux inside the soil, but is neglected in the equation. In contrast, air bubbles are typically
trapped in the water phase for high soil water saturations, requiring a two-phase flow
formulation. Secondly, and as mentioned above, the local equilibrium assumption is a key
component of the continuum formulation, but hinges on many factors like the small-scale
architecture of the porous medium, internal state, and external forcing. Thirdly, solving
the Richards equation requires a closure of the initially independent state variables ℎ𝑚
and \ . However, this closure is a direct consequence of assuming local equilibrium and
neglecting hysteresis (Roth 2008). And finally, owing to the simplification of the Stokes flow
and the continuum representation, the Richards equation does not consider preferential
flow phenomena, as outlined in the introduction to this chapter.
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1.4 Parameterization
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Figure 1.1: Retention curves (left) and conductivity functions (center, right) of parameter
sets listed in table 1.1 according to the Mualem–van Genuchten parameteriza-
tion. Note that for a positive matric head the conductivity equals the saturated
conductivity, 𝐾 (ℎ𝑚 > 0m) = 𝐾0.

1.4 Parameterization

To solve the Richards equation, eq. (1.11), we need to specify the hydraulic conductivity
𝑲 (\ ) and the relation between matric head ℎ𝑚 and water content \ . These relations are
parameterized into functions and describe the soil hydraulic properties of the particular
medium. They encode the effect of these microscopic properties at the (macroscopic)
continuum scale and therefore represent the subscale physics not explicitly considered in
the Richards equation.

Assuming a completely wettable capillary with constant radius 𝑟 in local hydraulic equilib-
rium, the capillary rise is given by the Young-Laplace equation, eq. (1.6), if we insert the
radius as the inverse of the mean curvature, 𝐻 = 𝑟−1,

ℎ𝑚 = − 1
𝜌𝑔

𝜎𝑤𝑎
𝑟
. (1.12)

Further assuming that soil consists of several such capillaries with different radii, we can
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1 Soil Water Flow

therefore calculate the water content at any particular height using the above equation
and a pore size distribution. However, this neglects any changes in the pore radii and
overall architecture, and especially does not consider hysteresis. Presumably one of the
most commonly used soil water characteristics or retention curves is the function defined by
van Genuchten (1980),

Θ(ℎ𝑚) =
{︄
[1 + [𝛼ℎ𝑚]𝑛]−1+1/𝑛 if ℎ𝑚 < 0,
1 else,

(1.13)

where 𝑛 encodes the pore size distribution and 𝛼 can be related to the inverse air entry value,
[𝛼] = m−1. The air entry value ℎ𝑎 is the capillary rise of the largest pore with diameter 𝑟max,
cf. eq. (1.12),

ℎ𝑎 = − 1
𝜌𝑔

𝜎𝑤𝑎
𝑟max

. (1.14)

In local equilibrium, the saturation drops below 1 at the height above the groundwater table
which equals the air entry value.

The hydraulic conductivity 𝑲 is typically considered to be isotropic, reducing the tensor to a
scalar 𝐾 . Mualem (1976) proposed a formulation assuming a proportional relation between
capillary length and radius. Combining this with the retention curve by van Genuchten
(1980) yields the isotropic hydraulic conductivity 𝐾 ,

𝐾 (Θ) = 𝐾0Θ
𝜏

[︃
1 −

[︂
1 − Θ𝑛/(𝑛−1)

]︂1−1/𝑛]︃2
, (1.15)

with the saturated hydraulic conductivity 𝐾0, [𝐾0] = ms−1 and the capillary tortuosity
parameter 𝜏 . The soil hydraulic properties of a particular medium with respect to the
Richards equation are then characterized by the six parameters used in eqs. (1.5), (1.13)
and (1.15).

The lack of an explicit air entry value ℎ𝑎 in the van Genuchten saturation model, eq. (1.13),
allows to compute the derivation of the parameterization functions for all potentials ℎ𝑚 <

0m. But for fine-grained soils with 𝑛 < 2, the conductivity function becomes increasingly
non-linear towards full saturation, which is a major issue for numerical solvers. Vogel,
van Genuchten, and Cislerova (2000) therefore propose to incorporate an explicit air entry
value to reduce the non-linearity of the model. They demonstrate that this has profound
influences on numerical results and stabilizes numerical simulations. The Mualem–van
Genuchten model with explicit air entry value also produces simulation results that are
more consistent with experimental data (Ippisch, Vogel, and Bastian 2006). However, with
a lack of literature providing soil hydraulic properties in this modified model, I use the
standard Mualem–van Genuchten model in numerical simulations throughout this thesis.
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1.5 Heterogeneity and Miller Scaling

1.5 Heterogeneity and Miller Scaling

Soils are inherently heterogeneous media with observable layers, featuring sharp interfaces
or smooth transitions between different soil types, depending on the spatial scale of interest
(Vogel 2019). Heterogeneity is therefore generally modeled in two different ways; either
by distinct parameter sets for the parameterization functions, or by scaling fields which
manipulate these scaling functions.

If the transition from one medium to another is sufficiently sharp, the MAV can shrink below
the spatial scale of interest. It is then suitable to characterize each medium with a different
set of Mualem–van Genuchten parameters, creating a discontinuity of the parameterization
functions at the medium interface. This breaks the notion of the REV and MAV across the
interface itself, but not inside the respective media. Still, the local equilibrium assumption
enforces a continuous potential, and the mass balance enforces a continuous flux, across
the interface. Following eq. (1.10), the conductivity, water content, and the gradient of
the matric head adjust to supply this flux. As the conductivity, water content, and matric
head directly depend on each other through the material properties, the discontinuity is
propagated to all related quantities except the matric head and water flux.

While the above approach constitutes large-scale heterogeneity by defining different soil
layers with specific extensions, small-scale heterogeneity inside a single soil layer is modeled
by locally modifying the parameterization functions. One possibility is Miller scaling, where
a single spatial scaling factor b is used to scale the reference parameterization functions of
the homogeneous medium (Miller and Miller 1956). The scaling factor is the ratio between
the reference pore length scale ℓ† and the local pore length scale ℓ (𝒙),

b (𝒙) ≔ ℓ (𝒙)
ℓ†

, (1.16)

where 𝒙 is the position. A scaling factor of b > 1 therefore creates a more coarse-grained,
and a factor of b < 1 a more fine-grained material than the reference material. The reference
parameterization functions denoted by superscript † are locally scaled according to

ℎ𝑚 (·; 𝒙) = b−1(𝒙) · ℎ†𝑚 (·), (1.17)
𝐾 (·; 𝒙) = b2(𝒙) · 𝐾†(·) . (1.18)

This scaling assumes that all regions within a soil layer are geometrically similar at the
pore scale. Consequently, the porosity is an invariant of the scaled medium. Within the
framework of Miller scaling there are no restrictions on the nature of the field defining the
local scaling factor b .
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1 Soil Water Flow

1.6 Boundary Conditions

There are two conventional ways of specifying the boundary conditions in the Richards
regime. The canonical way is stating the value of the matric head ℎ𝑚 or the water content
\ at the boundary. This is a Dirichlet problem, and through the soil water characteristic,
eq. (1.13), all values at the boundary are consequently known. In a stationary setting, this
problem yields a unique solution for the entire system.

The second way is stating the boundary flux, constituting a Neumann problem. As both the
gradient of the matric head, and—through the conductivity function—the matric head itself
contribute to the flux according to eq. (1.10), a Neumann problem alone yields no unique
solution. Only when assuming a stationary setting in which there are no capillary forces
acting on the water and thus ∇ℎ𝑚 = 0, the flux is determined by the conductivity only,

𝒋 = 𝐾 (ℎ𝑚)�̂�. (1.19)

The solution is then given by the matric head value for which the above equation holds.
This gravity flow assumption is suitable at a sufficient distance from the water table.

Another typical boundary condition in soil hydraulic applications is seepage, which allows
water to exit the domain without imposing a net force. This can be realized through a
Dirichlet boundary condition with ℎ𝑚 = 0m (implying no net pressure at the water-air
interface) that turns into a no-flow Neumann boundary condition as soon as this potential
would lead to a flux into the domain (Scudeler et al. 2017). Additionally, a boundary condition
of this type with a negative potential can also be used to model an evaporation boundary
condition.
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2 Numerical Solutions to the Richards Equation

In this chapter, I derive the FV and DG discretization schemes for the Richards equation. Cell-
centered FV schemes are very simple discretization formulations. They only contain sums
over grid faces, require no evaluation of basis functions, and avoid numerical integration.
However, in their basic formulation, they are only applicable on structured, rectangular
meshes. DG schemes, on the other hand, can be applied on any convex cell geometry and
even irregular grids with hanging nodes. They also achieve better theoretical convergence
rates, error estimates, and a higher accuracy than FV methods with the same number of
degrees of freedom (DOFs) (Di Pietro and Ern 2012). However, they also require more
computation time for simulations on the same mesh. In many cases, the grid resolution
cannot be chosen arbitrarily but is limited through the structure of the simulated domain. If
numerical accuracy is a minor concern, FV or low-order finite element schemes are therefore
favored over DG schemes in soil hydrology (Miller et al. 2013).

The Richards equation, eq. (1.11), poses several problems for numerical discretization
schemes and solvers. In the previously presented mixed form it appears as a diffusion
equation, but both its diffusion and instationary term are non-linear because of the parame-
terization functions 𝐾 (·) and \ (·). It is therefore difficult to classify. The Richards equation
is a parabolic partial differential equation (PDE) that becomes elliptic near saturation, and
even effectively hyperbolic in certain scenarios with strong convection (Ippisch 2016). Addi-
tionally, the equation is also degenerate because of the highly non-linear parameterization
and possibly non-existent derivatives. Finally, depending on the forcing and the material
properties, the dynamics can exhibit large gradients in pressure, conductivity, and water
content. These issues demand a careful numerical treatment and especially robust solvers
(Farthing and Ogden 2017).

2.1 Discrete Setting and Grid Function Spaces

We compute the solutions on the physical domain Ω ⊂ R𝑑 with boundary 𝜕Ω, where
𝑑 ∈ {2, 3} indicates the spatial dimensions. The domain is tessellated into a mesh Tℎ
consisting of simplicial or rectangular grid elements 𝑇 . All faces 𝐹 inside the domain are
collected in Fℎ , with subsets for boundary faces, F 𝑏

ℎ
∋ 𝐹 ⊂ 𝜕Ω, and interfaces between

adjacent grid elements, F 𝑖
ℎ
∋ 𝐹 = 𝜕𝑇 + ∩ 𝜕𝑇 −. The domain boundary 𝜕Ω is divided into

the segments Γ𝑁 and Γ𝐷 with respective boundary face subsets F 𝑁
ℎ
, F𝐷
ℎ

⊆ F 𝑏
ℎ
, on which
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2 Numerical Solutions to the Richards Equation

Neumann and Dirichlet boundary conditions are applied, respectively. Note that this division
of the boundary may be variable in case of transient boundary conditions. For each face
𝐹 a unit normal vector �̂�𝐹 is defined pointing from 𝑇 + towards 𝑇 − or coinciding with the
outward unit normal vector on 𝜕Ω if 𝐹 ∈ F 𝑏

ℎ
.

The discontinuous finite element function space of order 𝑘 on Tℎ is given by

𝑉ℎ =
{︁
𝑣 ∈ 𝐿2(Ω) : ∀𝑇 ∈ Tℎ, 𝑣 |𝑇 ∈ P𝑘

}︁
, (2.1)

where 𝐿2(Ω) is the space of all square-integrable functions on Ω, and where P𝑘 is the set of
polynomials of total degree 𝑘 , P𝑘 , on simplex grid elements and the set of polynomials of
maximum degree 𝑘 , Q𝑘 , on rectangular grid elements. Spaces P𝑘 with degree 𝑘 > 0 yield
“broken” polynomial spaces used for DG discretization schemes. Polynomials of degree 0
on rectangular grid elements, Q0, yield a FV space with a single DOF, and consequently a
constant value, per grid element.

Following the notation from above, we denote the restrictions 𝑣 |𝑇 ± of any function 𝑣 on grid
elements 𝑇 ± by 𝑣± and define the jump at location 𝒙 ∈ 𝜕𝑇 + ∩ 𝜕𝑇 −,

[[𝑣]] (𝒙) ≔ 𝑣+(𝒙) − 𝑣−(𝒙), (2.2)

and the weighted average with positive weights 𝜔− + 𝜔+ = 1,

{{𝑣}}𝜔 (𝒙) ≔ 𝜔+𝑣+(𝒙) + 𝜔−𝑣−(𝒙), (2.3)

for all interface locations 𝒙 ∈ 𝐹 ∈ F 𝑖
ℎ
. These definitions of jump and average are extended

to locations on boundary faces 𝒙 ∈ 𝐹 ∈ F 𝑏
ℎ
by selecting the respective “interior” value,

[[𝑣]] (𝒙) = {{𝑣}}𝜔 (𝒙) = 𝑣+(𝒙) . (2.4)

We further denote the harmonic average of two variables 𝑎 and 𝑏 by ⟨𝑎, 𝑏⟩ ≔ 2𝑎𝑏/(𝑎 + 𝑏).
The inner product of two functions 𝑣 and𝑤 over a domain 𝑄 ⊂ R𝑑 is defined by

(𝑣,𝑤)𝑄 ≔
∫
𝑄

𝑣𝑤 d𝑥, (2.5)

and used to compute the volume of said domain as |𝑄 | = (1, 1)𝑄 .

2.2 Strong Problem Formulation

Given the above definitions, the strong problem of finding the solution 𝑢 (𝒙 ; 𝑡) of the matric
head ℎ𝑚 for any location 𝒙 ∈ Ω and any time 𝑡 in the closed time span Σ = [𝑡0, 𝑡0 +𝑇 ] reads

24



2.3 Finite Volume Discretization

𝜕

𝜕𝑡
\ (ℎ𝑚) − ∇ · [𝐾 (ℎ𝑚) [∇ℎ𝑚 − �̂�]] = 0 in Ω × Σ, (2.6a)

ℎ𝑚 = 𝑢𝐷 (𝒙 ; 𝑡) on 𝜕Ω𝐷 , (2.6b)
𝐾 (ℎ𝑚) [∇ℎ𝑚 − �̂�] · �̂�Ω = 𝑗𝑁 (𝒙 ; 𝑡) on 𝜕Ω𝑁 , (2.6c)

ℎ𝑚 (𝒙 ; 𝑡 = 𝑡0) = 𝑢0(𝒙) in Ω, (2.6d)

where 𝑢𝐷 and 𝑗𝑁 are the Dirichlet and Neumann boundary conditions, respectively, 𝑢0 is the
initial condition, and �̂�Ω is the outward unit normal vector at the boundary of Ω. Note that
with this definition of the Neumann flux, the direction of the flux is outward for positive
values and inward for negative values of 𝑗𝑁 .

We discretize the problem by applying the method of lines, which transforms it into a set of
ordinary differential equations (ODEs). This will then be solved by a Runge-Kutta method.
The weak problem formulation splits the forms for spatial semi-discretization, 𝛼ℎ and _ℎ ,
from the temporal semi-discretization 𝛽ℎ ,

𝛼ℎ (𝑢ℎ (𝑡), 𝑣ℎ ; 𝑡) +
𝜕

𝜕𝑡
𝛽ℎ (𝑢ℎ (𝑡), 𝑣ℎ ; 𝑡) = _ℎ (𝑣ℎ ; 𝑡), (2.7)

where 𝑢ℎ (𝑡) ∈ [𝑉ℎ × Σ] is the solution in the finite element function space, and 𝑣ℎ ∈ 𝑉ℎ is
the test function.

By convention, I will denote the numerical solution with 𝑢ℎ and identify it with the un-
known variable, the matric head, 𝑢ℎ ≡ ℎ𝑚 . I consider both quantities synonymous in the
context of numerical solvers, but will use 𝑢ℎ and ℎ𝑚 to emphasize numerical and physical
considerations, respectively.

2.3 Finite Volume Discretization

FVmethods use aQ0 function space with a single value of𝑢ℎ ∈ 𝑉ℎ , and consequently a single
hydraulic conductivity 𝐾 and water content \ , defined per grid element𝑇 . At interfaces, the
gradient is approximated by the jump of the solution [[𝑢ℎ]] divided by the distance of the
adjacent grid element barycenters ℓ𝑇 ± . This assumes a structured rectangular mesh, where
the normal flux through one side of a grid element completely describes the flow out of
that grid element in this particular direction. The harmonic average of conductivities at the
interface is a natural choice for approximating the interface conductivity, but can lead to
instabilities when the dynamics become effectively convective (Ippisch 2016). We therefore
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2 Numerical Solutions to the Richards Equation

select an upwind matric head 𝑢∗
ℎ
for each interface 𝐹 based on the direction of the flux,

𝑢∗
ℎ
=

{︄
𝑢+
ℎ

if [[𝑢ℎ]]/ℓ𝑇 ± − �̂� · �̂�𝐹 > 0,
𝑢−
ℎ

else,
(2.8)

which is then used to evaluate the conductivity on either side,

𝐾±
∗ = 𝐾±(𝑢∗

ℎ
) . (2.9)

Dirichlet boundary conditions are applied weakly by redefining the jump of the solution
[[𝑢ℎ]] as

[[𝑢ℎ]] ≔
{︄
𝑢+
ℎ
− 𝑢𝐷 if 𝐹 ∈ F𝐷

ℎ
,

𝑢+
ℎ
− 𝑢−

ℎ
if 𝐹 ∈ F 𝑖

ℎ
,

(2.10)

where 𝑢𝐷 is the boundary condition value at the respective boundary segment, as defined
in eq. (2.6b), and by dividing this jump by the distance between grid cell barycenter and
boundary ℓ𝑇,𝐹 .

The resulting FV spatial discretization reads

𝛼FV
ℎ

(𝑢ℎ) =
∑︂
𝐹 ∈F𝑖

ℎ

⟨𝐾+
∗ , 𝐾

−
∗ ⟩

[︃ [[𝑢ℎ]]
ℓ𝑇 ±

− �̂� · �̂�𝐹
]︃
|𝐹 |

+
∑︂
𝐹 ∈F𝐷

ℎ

𝐾+
∗

[︃ [[𝑢ℎ]]
ℓ𝑇,𝐹

− �̂� · �̂�𝐹
]︃
|𝐹 |,

(2.11)

where we dropped the dependence between hydraulic conductivity and matric head, 𝐾 =
𝐾 (𝑢ℎ), for brevity. This dependency also makes 𝛼ℎ non-linear in𝑢ℎ . The Neumann boundary
condition contributes to the constant form,

_FV
ℎ

= −
∑︂
𝐹 ∈F𝑁

ℎ

𝑗𝑁 |𝐹 |, (2.12)

and the temporal discretization is given by

𝛽FV
ℎ

(𝑢ℎ) =
∑︂
𝑇 ∈Tℎ

\ (𝑢ℎ) |𝑇 |. (2.13)
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2.4 Discontinuous Galerkin Discretization

2.4 Discontinuous Galerkin Discretization

Diffusion dependent weights for interior penalty methods were analyzed by Dryja (2003) and
later extended for heterogeneous advection diffusion reaction equations by Ern, Stephansen,
and Zunino (2009). We use the symmetric weighted interior penalty (SWIP) DG formulation
for heterogeneous diffusion by Di Pietro and Ern (2012, Chapter 4.5), which revisits both
approaches. We apply their SWIP bilinear form to the stationary Richards equation, eq. (1.11)
with 𝜕𝑡\ = 0, by (i) inserting a function 𝑢ℎ ∈ 𝑉ℎ of the broken polynomial space as solution,
(ii) computing the scalar product with a test function 𝑣ℎ ∈ 𝑉ℎ , (iii) writing the integral as a
sum over integrals on single grid elements 𝑇 , (iv) integrating by parts, (v) formulating the
resulting sum over mesh faces 𝐹 instead of element boundaries 𝜕𝑇 , (vi) adding a penalty term
for jumps in solution and test function to achieve coercivity, and (vii) adding a symmetry
term, yielding

𝛼DG
ℎ

(𝑢ℎ, 𝑣ℎ) =
∑︂
𝑇 ∈Tℎ

(∇𝑣ℎ, 𝐾 [∇𝑢ℎ − �̂�])𝑇 (2.14a)

−
∑︂
𝐹 ∈F𝑖

ℎ

(︁[[𝑣ℎ]], {{𝐾 [∇𝑢ℎ − �̂�]}}𝜔𝐾 · �̂�𝐹
)︁
𝐹

(2.14b)

− 𝜎
∑︂
𝐹 ∈F𝑖

ℎ

(︁[[𝑢ℎ]], {{𝐾∇𝑣ℎ}}𝜔𝐾 · �̂�𝐹
)︁
𝐹

(2.14c)

+
∑︂
𝐹 ∈F𝑖

ℎ

[

ℎ𝐹

(︁[[𝑣ℎ]], ⟨︁𝐾−, 𝐾+⟩︁ [[𝑢ℎ]])︁𝐹 (2.14d)

+ 𝛼DG,𝐷
ℎ

(𝑢ℎ, 𝑣ℎ), (2.14e)

where 𝛼DG,𝐷
ℎ

contains the Dirichlet boundary condition terms given in the next paragraph.
The symmetry parameter 𝜎 ∈ {1, 0,−1} can be used to set a symmetric, incomplete, or non-
symmetric interior penalty formulation, respectively. In this work, I will only discuss the
symmetric case, 𝜎 = 1, which simplifies solving the resulting linear system and leads to an
optimal 𝐿2-norm error estimate (Di Pietro and Ern 2012). We use the hydraulic conductivity
𝐾 evaluated at either side of the interface as weights 𝜔𝐾 of the gradient averages,

𝜔±
𝐾 =

𝐾∓

𝐾± + 𝐾∓ , (2.15)

where we imply that the restriction of 𝐾 to one grid element 𝑇 ± is extended to the solution
with which it is evaluated, 𝐾± = 𝐾±(ℎ±𝑚). The local length scale ℎ𝐹 is given by the ratio
between the smaller adjacent grid element volume and the interface volume,

ℎ𝐹 =
min( |𝑇 + |, |𝑇 − |)

|𝐹 | . (2.16)
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2 Numerical Solutions to the Richards Equation

We follow Bastian (2014) in the definition of the penalty factor [, which includes the basis
function polynomial order 𝑘 , the spatial dimension 𝑑 , and a user-defined “penalty factor”
parameter𝑚,

[ =𝑚 · 𝑝 (𝑝 + 𝑑 − 1) . (2.17)

The summand given by eq. (2.14d) is called penalty term and used to achieve discrete
coercivity of the formulation, which is the case whenever [ is sufficiently large. We choose
𝑚 = 10. The temporal term of the Richards equation does not contain any derivatives, so it
suffices to compute the scalar product,

𝛽DG
ℎ

(𝑢ℎ, 𝑣ℎ) =
∑︂
𝑇 ∈Tℎ

(𝑣ℎ, \ (𝑢ℎ))𝑇 . (2.18)

The Neumann boundary conditions constitute the only contribution to the linear form,

_DG
ℎ

(𝑣ℎ) = −
∑︂
𝐹 ∈F𝑁

ℎ

(𝑣ℎ, 𝑗𝑁 )𝐹 . (2.19)

Dirichlet boundary conditions are again incorporated weakly by modifying the definition of
the solution jump at boundaries according to eq. (2.10). This can lead to macroscopic jumps
[[𝑢ℎ]], for which the same considerations apply as for jumps in the FV scheme. At Dirichlet
boundaries, we select an upwind matric head 𝑢∗

ℎ
according to the direction of the numerical

flux,

𝑢∗
ℎ
=

{︄
𝑢+
ℎ

if [ [[𝑢ℎ]]/ℎ𝐹 − [∇𝑢ℎ − �̂�] > 0,
𝑢−
ℎ

else.
(2.20)

This estimation only neglects the harmonic average used in the penalty term, eq. (2.14d), and
thus considers local gradient and jump equally. In cases where this assumption is erroneous,
our particular choice favors the conductivity inside the domain against the conductivity
induced by applying the boundary condition. The Dirichlet boundary condition terms then
read

𝛼DG,𝐷
ℎ

(𝑢ℎ, 𝑣ℎ) = −
∑︂
𝐹 ∈F𝐷

ℎ

(︁
𝑣ℎ, 𝐾

+
∗ [∇𝑢ℎ − �̂�] · �̂�𝐹

)︁
𝐹

− 𝜎
∑︂
𝐹 ∈F𝐷

ℎ

(︁[[𝑢ℎ]], 𝐾+
∗ ∇𝑣ℎ · �̂�𝐹

)︁
𝐹

+
∑︂
𝐹 ∈F𝐷

ℎ

[

ℎ𝐹

(︁
𝑣ℎ, 𝐾

+
∗ [[𝑢ℎ]]

)︁
𝐹
.

(2.21)

The treatment of the non-linearities introduced by the parameterization functions \ (·) and
𝐾 (·) is a prime concern when solving the equation. Through these non-linearities, the order
of a polynomial representation of the function results is typically higher than the order of
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2.5 Solver Application

the inserted solution 𝑢ℎ . In the spatial discretization, we aim at improving the sampling
of these functions by increasing the order of numerical quadrature for the scalar products
calculated in eqs. (2.14) and (2.18). With the polynomial order 𝑘 of the solution 𝑢ℎ ∈ 𝑉ℎ , we
employ a numerical quadrature of polynomial order 2 + 2𝑘 in the space semi-discretization
𝛼DG
ℎ

, and a quadrature of order 2𝑘 in the time semi-discretization 𝛽DG
ℎ

.

The SWIP DG formulation is well-posed and has a unique solution if 𝐾 is a constant scalar
per grid cell 𝑇 (Di Pietro and Ern 2012), and also, in an extended form, if 𝐾 is a tensor (Ern,
Stephansen, and Zunino 2009). To the best of my knowledge, no rigorous mathematical
analysis of the SWIP DG discretization with a conductivity or permeability depending on
the solution, either in a linear or non-linear relationship, has been published yet. However,
there are numerous successful applications of DG discretization schemes on the Richards
equation published in literature (e.g. Li, Farthing, and Miller 2007; Solin and Kuraz 2011;
Clément et al. 2020).

2.5 Solver Application

After selecting a tessellation Tℎ (Ω), any function 𝑣ℎ of the broken polynomial function
space 𝑉ℎ (Ω) can be expressed as linear combination of a set of suitable basis functions
Φ = {𝜑𝑖}𝑖=1,...,𝑁DOF , where 𝑁DOF = dim𝑉ℎ , with independent coefficients 𝒖 ∈ R𝑁DOF , which
encode the DOFs. Additionally, we choose a finite set of points in time {𝑡𝑘 }𝑘=1,...,𝑁𝑡 at which
we want to compute the solution. We can then define two discrete operators for expressing
the problem given by eq. (2.7),

[A(𝒖𝑘 ; 𝑡𝑘 )]𝑖 ≔ 𝛼m
ℎ

(︂ 𝑁DOF∑︂
𝑗=1

[𝒖𝑘 ] 𝑗 𝜑 𝑗 , 𝜑𝑖 ; 𝑡𝑘
)︂
− _m

ℎ
(𝜑𝑖 ; 𝑡𝑘 ) , (2.22)

[B(𝒖𝑘 )]𝑖 ≔ 𝛽m
ℎ

(︂ 𝑁DOF∑︂
𝑗=1

[𝒖𝑘 ] 𝑗 𝜑 𝑗 , 𝜑𝑖
)︂
, (2.23)

where m = {FV,DG} encodes the model type.

Runge-Kutta methods are one-step, multi-stage iterative methods for numerical integration.
In the Shu-Osher representation, explicit and diagonally implicit Runge-Kutta methods with
𝑠 stages are defined by two lower Hessenberg matrices 𝜶 , 𝜷 ∈ R𝑠×𝑠+1 and a vector 𝜹 ∈ R𝑠+1
(Ferracina and Spijker 2005). For every stage 𝑖 = 1, . . . , 𝑠 , the intermediate solution 𝒖 (𝑖)

𝑘
is
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2 Numerical Solutions to the Richards Equation

found by solving
𝑖∑︂
𝑗=0

[︃
𝛼𝑖 𝑗

𝑡𝑘+1 − 𝑡𝑘
B (︁

𝒖 ( 𝑗)
𝑘

)︁ − 𝛽𝑖 𝑗A (︁
𝒖 ( 𝑗)
𝑘
, 𝑡 ( 𝑗)
𝑘

)︁ ]︃
⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞

≔R(𝒖 ( 𝑗 )
𝑘

)

= ∅, (2.24)

where the intermediate time steps are given by

𝑡 ( 𝑗)
𝑘

= 𝑡𝑘 + 𝛿 𝑗 (𝑡𝑘+1 − 𝑡𝑘 ) . (2.25)

The initial value of the intermediate solutions is the solution for time step 𝑘 , and the solution
of the final stage 𝑖 = 𝑠 is the solution for the next time step 𝑘 + 1,

𝒖𝑘 = 𝒖 (0)
𝑘
, 𝒖𝑘+1 = 𝒖 (𝑠)

𝑘
. (2.26)

Implicit Runge-Kutta methods are especially suitable for stiff PDEs because they are un-
conditionally stable with respect to the time step size. However, eq. (2.24) then results
in a system of algebraic equations with 𝑠 × 𝑁DOF components. We employ the two-stage,
diagonally implicit Runge-Kutta method by Alexander (1977) with

𝜶 =

(︃−1 1 0
−1 0 1

)︃
, 𝜷 =

(︃
0 𝜗 0
0 1 − 𝜗 𝜗

)︃
, 𝜹 =

⎡⎢⎢⎢⎢⎣
0
𝜗
1

⎤⎥⎥⎥⎥⎦ , (2.27)

and 𝜗 = 1 − √
2/2, where the two stages are decoupled equation systems and can be solved

successively.

We solve the non-linear, algebraic equation system given by eq. (2.24) using an iterative
Newtonmethod with line search algorithm. The solution is found by minimizing the residual
R(𝒖) with respect to the solution 𝒖. The Newton method achieves quadratic convergence
to a local minimum but requires the assembly of a Jacobian 𝑱 (𝒖),

𝐽𝑖 𝑗 (𝒖) = 𝜕

𝜕𝑢 𝑗
[R(𝒖)]𝑖 , (2.28)

which makes it computationally expensive. The application of different iteration schemes on
the Richards equation has been studied extensively (Farthing and Ogden 2017). List and Radu
(2016) find that mixed schemes with approximated Jacobians can achieve global convergence
at a lower computational cost than a regular Newton scheme. However, they do not
discuss Newton schemes with line search algorithms which increase the convergence radius.
An analytical formulation of the Jacobian would require derivations of parameterization
functions, which are not universal. We therefore use numerical differentiation to estimate
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the Jacobian through
𝑱 (𝒖) ≈ R(𝒖 + 𝝐) − R(𝒖)

∥𝝐 ∥ , (2.29)

with some small difference vector 𝝐 . This estimation increases the computational cost due to
repeated applications of the residual operator R(·). On the other hand, Bastian (2014) argues
that a numerical estimation of the Jacobian “enables the treatment of nonsmooth nonlinear-
ities,” which may circumvent possible degeneracy of the parameterization functions and
thus be advantageous to analytical computations.

Each step 𝑛 ≥ 0 of the Newton solver requires a solver for computing the update 𝒛𝑛 from
the resulting linear equation system,

𝑱𝑛𝒛𝑛 − 𝒓𝑛 = 0, (2.30)

with 𝑱𝑛 = 𝑱 (𝒖𝑛) and 𝒓𝑛 = R(𝒖𝑛). The update is then applied to the solution through

𝒖𝑛+1 = 𝒖𝑛 − 𝜎𝒛𝑛, 𝜎 ∈ (0, 1] . (2.31)

For the DG discretization, we apply the algebraic multigrid solver presented by Bastian
(2014). It splits the problem into a continuous Galerkin and a FV subspace and thus enables
to apply different preconditioners for the “low frequency” and “high frequency” residual
contributions. For the FV problem, we use a similar multigrid BiCGSTAB solver with SSOR
preconditioner, but without specialization for DG discretizations. With an absolute limit
𝜖abs ≪ 1 and a reduction limit 𝜖red ≪ 1, the Newton solver is considered converged if
∥𝒓𝑛 ∥ < 𝜖abs or ∥𝒓𝑛 ∥/∥𝒓0∥ < 𝜖red.

2.6 Adaptive Time Step Scheme

Adapting time steps is a key ingredient for efficient and precise numerical time-stepping
methods. Typical control algorithms adapt the time step size according to an error measure,
which requires knowledge of the underlying problem formulation (Söderlind 2006). Implicit
time step schemes are generally unconditionally stable with respect to the time step size.
However, the locality of the Newton method and its limited capability of linearizing the
equation system poses implicit restrictions on the time step size, which also depend on the
current system state and forcing.

We use a heuristic approach based on the convergence behavior of the Newton method.
Generally speaking, the fewer iterations the Newton solver requires to converge, the better
is the linear approximation of the problem. A nearly linear problem in turn implies weak
dynamics in the Richards regime or a very small time-step, where the current solution
is already a good approximation for the next time step (Farthing and Ogden 2017). We
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Figure 2.1: Number of allowed Newton
solver iterations for a given time step size
for an exemplary setting. Note the log-
arithmic x-axis. The parameters of the
function defining the iterations (dashed
line) are specified by the user. Its values
are rounded to yield the allowed number
of Newton solver iterations 𝑁 (solid line)
for a given time step size Δ𝑡 .
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therefore allow only a certain number of Newton iterations per stage of the time step scheme
based on the logarithm of the time step size (Figure 2.1). If the solver does not converge, the
solution is discarded, the time step is reduced, and the solver is applied again. If the solver
converges, the time step is increased. This leads to a small time step and many allowed
solver iterations for strong dynamics and long time steps with few solver iterations for
weak dynamics, and allows for covering the wide temporal range of phenomena observed
in the Richards regime.

There are several ways of improving this method. Discarding solutions and re-computing
them for smaller time steps is costly and inefficient. A more elaborate method could accept
the solution with a lower precision under certain conditions and subsequently reduce the
time step. Additionally, time step sizes could be based on a prior time step estimation,
similar to the pore-scale equilibration timescale discussed by Roth (2008). Finally, time
step size could be based on an error measure of the resulting solution, independent of the
performance of the Newton method.

2.7 Flux Reconstruction

Notably, the solution 𝑢ℎ of both the DG and the FV discretization cannot be considered a
matric head ℎ𝑚 in the physical sense. This is most obvious for FV, where the potential on
each grid cell is specified by only a single value. Here, a grid cell 𝑇 can be interpreted as
averaging volume, with its respective value 𝑢𝑇 being a local average of the higher-order
“true” function 𝑢∗, 𝑢𝑇 =

∫
𝑇
𝑢∗ d𝑥 . Recalling the considerations of the REV scale in section 1.2,

this requires any grid cell to be smaller than the MAV. In a DG function space, the effective
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2.7 Flux Reconstruction

resolution additionally depends on the polynomial order of the function space. Grid cells
may therefore be generally larger than the MAV, but there exists no clear limit as to how
much. In practice, we find that the grid resolution must be high enough to adequately
represent occurring infiltration fronts for a correct estimation of the local conductivity.

It is less obvious that the solution of the DG formulation also does not conform to a
“physical” solution. While the scheme penalizes, and thus tries to minimize, the solution
jump [[𝑢ℎ]] at grid faces, small-scale jumps typically remain. In extreme cases, like intense
Dirichlet boundary conditions, these jumps can even be macroscopic, in the sense that
their magnitude is similar to that of the solution value. To recover a continuous solution,
potential reconstruction can be applied, which computes the average of potentials at each
grid or interpolation node (Di Pietro and Ern 2012).

Flux reconstruction computes a flux with continuous normal components at grid interfaces
by projecting the solution onto a Raviart-Thomas function space. The flux 𝒋ℎ computed
directly from the solution 𝑢ℎ of the weak problem,

𝒋ℎ (𝑢ℎ) = −𝐾 (𝑢ℎ) [∇𝑢ℎ − �̂�] , (2.32)

is not conforming because the jump of its normal components across grid interfaces is
non-zero,

[[𝒋ℎ (𝑢ℎ) · �̂�𝐹 ]] ≠ 0. (2.33)

The 𝐻 (div)-conforming flux in Ω can be computed from the solution 𝑢ℎ by prescription of
a vector-valued Raviart-Thomas function space defined by

RT𝑘
ℎ
= {𝒗ℎ ∈ 𝐻 (div;Ω) : ∀𝑇 ∈ Tℎ, 𝒗ℎ |𝑇 ∈ RT𝑘 (𝑇 )} , (2.34)

with RT𝑘 (𝑇 ) = [P𝑘 (𝑇 )]𝑑 + 𝒙P𝑘 (𝑇 ).

For this flux prescription, we first define the numerical fluxes 𝜙ℎ (𝑢ℎ) at grid faces 𝐹 ∈ Fℎ
for both discretization schemes. In the FV scheme, the numerical flux is given by the
contributions at each face,

𝜙FV
ℎ
≔

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⟨𝐾+∗ , 𝐾−∗ ⟩ [[[𝑢ℎ]]/ℓ𝑇 ± − �̂� · �̂�𝐹 ] if 𝐹 ∈ F 𝑖

ℎ
,

𝐾+∗
[︁[[𝑢ℎ]]/ℓ𝑇,𝐹 − �̂� · �̂�𝐹

]︁
if 𝐹 ∈ F𝐷

ℎ
,

𝑗𝑁 if 𝐹 ∈ F 𝑁
ℎ
.

(2.35)

The numerical flux in the DG scheme consists of the contributions of the consistency term,
eq. (2.14b), and of the penalty term, eq. (2.14d), and the equivalent contributions from the
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boundary conditions (Di Pietro and Ern 2012),

𝜙DG
ℎ
≔

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−{{𝐾 [∇𝑢ℎ − �̂�]}}𝜔𝐾 · �̂�𝐹 + [⟨𝐾−, 𝐾+⟩[[𝑢ℎ]]/ℎ𝐹 if 𝐹 ∈ F 𝑖

ℎ
,

−𝐾+∗ [∇𝑢ℎ − �̂�] · �̂�𝐹 + [𝐾+∗ [[𝑢ℎ]]/ℎ𝐹 if 𝐹 ∈ F𝐷
ℎ
,

𝑗𝑁 if 𝐹 ∈ F 𝑁
ℎ
.

(2.36)

Following Ern, Nicaise, and Vohralík (2007), the reconstructed flux 𝒓ℎ ∈ RT𝑘
ℎ
is prescribed

with
(𝒕ℎ · �̂�𝐹 , 𝑞ℎ)𝐹 = (𝑞ℎ, 𝜙m

ℎ
(𝑢ℎ)), m ∈ {FV,DG} (2.37)

for all 𝐹 ∈ Fℎ, 𝑞ℎ ∈ P𝑘 (𝐹 ), and in case of the DG scheme additionally with

(𝒕ℎ, 𝒓ℎ)𝑇 = −(𝒓ℎ, 𝐾 [∇𝑢ℎ − �̂�])𝑇 + 𝜎
∑︂

𝐹 ∈𝜕𝑇∩F𝑖
ℎ

(︁[[𝑢ℎ]], ⟨︁𝐾−, 𝐾+⟩︁𝒓ℎ · �̂�𝐹 )︁𝐹
+ 𝜎

∑︂
𝐹 ∈𝜕𝑇∩F𝐷

ℎ

(︁[[𝑢ℎ]], 𝐾+
∗ 𝒓ℎ · �̂�𝐹

)︁
𝐹

(2.38)

for all 𝑇 ∈ Tℎ, 𝒓ℎ ∈ [P𝑘−1(𝑇 )]𝑑 . When considering numerical solutions in the follow-
ing, I will denote fluxes calculated from the solution gradients via eq. (2.32) with 𝒋ℎ and
reconstructed fluxes with 𝒋.

We find that the prescription terms coincide directly with terms of the FV and DG space
semi-discretization forms given by eqs. (2.11) and (2.14), respectively, albeit with inverted
signs in the volume contributions and a different definition of the test functions. Therefore,
any operator written for applying these forms can be used for prescribing the reconstructed
flux with only few modifications (Ospina De Los Ríos 2019). However, the given formulation
is only applicable to matching meshes and therefore cannot handle hanging nodes on the
grid. Flux reconstruction on non-matching grids can be performed by solving a minimization
problem formulated with local Neumann problems in a mixed finite element setting (Ern and
Vohralík 2009). The approach of representing fluxes across grid interfaces with vector-valued
function spaces is also used in hybrid DG methods, which further increase the efficiency of
the method by minimizing the number of globally coupled DOFs compared to regular DG
methods (Cockburn, Gopalakrishnan, and Lazarov 2009).

2.8 Adaptive Grid Refinement

Applying adaptive grid refinement, or h-refinement, for solving the Richards equation has
proven to increase accuracy, efficiency, and even robustness of the numerical method (Li,
Farthing, and Miller 2007). The efficiency of DG methods additionally strongly profits from
simultaneous p-refinement, where the polynomial order of the local function space on

34



2.8 Adaptive Grid Refinement

single grid elements is adapted according to an error measure. Solin and Kuraz (2011) apply
hp-refinement on the Richards equation and find that it improves the spatial accuracy of
the solution, but also that h-refinement with intermediate-order polynomial basis functions
is competitive if high spatial accuracy is not required. Combined hp-refinement has suc-
cessfully been applied with a DG method for two-phase flow in DUNE (Dedner et al. 2018).
Nonetheless, p-refinement requires a highly flexible, specialized implementation, which
is necessarily less optimized in terms of memory layout and access. Simpler numerical
discretizations like FV methods typically do not even support computations on the resulting
irregular grids. With DG methods still being rarely used for soil water flow problems, h-
and p-adaptivity are uncommon in practical implementations (Miller et al. 2013).

Error indicators for grid refinement usually operate on the resulting solution and incorporate
knowledge of the discretization scheme. For the SWIP DG method, Ern and Stephansen
(2008) derive an error upper bound of the solution based on three indicators, (i) the residual
error based on a projection of the residual onto piecewise constant function space, (ii) the
nonconforming error based on the difference between the solution and the reconstructed
solution, and (iii) the diffusive flux error based on the interface jumps of the solution and the
solution gradient. The latter is the simplest to evaluate because it requires no reconstruction
or projection and is localized to single grid elements 𝑇 . Following the formulation of Di
Pietro and Ern (2012), we use it as local error indicator,

Edf,𝑇 ≔
√︁
𝐶𝐹,𝑇ℎ𝑇

∥︁∥︁∥︁∥︁12 [[𝐾∇𝑢ℎ]] · �̂�𝑇 + [

ℎ𝐹

⟨︁
𝐾+, 𝐾−⟩︁ [[𝑢ℎ]]∥︁∥︁∥︁∥︁

𝜕𝑇

, (2.39)

with
𝐶𝐹,𝑇 =

[︁
ℎ𝑇 |𝜕𝑇 | |𝑇 |−1

]︁ [︁
2𝑑−1 + 𝜋−1]︁ 𝜋−1,

where ∥·∥𝜕𝑇 is the 𝐿2-norm on the grid cell boundary 𝜕𝑇 , and [[𝐾∇𝑢ℎ]] = 0 on boundary
faces 𝐹 ∈ F 𝑏

ℎ
. The indicator has the unit of a flux, [Edf,𝑇 ] = ms−1, and can be interpreted as

erroneous numerical flux due to non-physical jumps in the solution and its gradient.

With two error bounds 𝛼𝑇 > 𝛽𝑇 , a threshold algorithm for grid refinement will split a
grid element 𝑇 if Edf,𝑇 > 𝛼𝑇 , and recombine two adjacent, refined grid elements 𝑇 ± with
common “ancestor” if Edf,𝑇 ± < 𝛽𝑇 . Then the solution is projected onto the new grid. If
the grid was refined, the typical procedure is to recompute the solution for the current
time step on the new grid, and to reiterate this procedure until all local errors are below
the refinement threshold 𝛼𝑇 , or a global error limit is reached (Li, Farthing, and Miller
2007). This procedure ensures a consistent, maximum error bound for all time steps, but is
computationally expensive.

We only apply a single adaptation step after each time step, and then continue the com-
putation for the next time step using the new grid. This means that the grid adaptation
generally lags the dynamics, which has to be counteracted by a sufficiently small refinement
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threshold 𝛼𝑇 and adequately small time steps. Additionally, the projection of the solution
onto a coarsened grid preserves the projected quantity 𝑢ℎ ≡ ℎ𝑚 , but not the water mass
represented by \ (ℎ𝑚). The error resulting from this violation of mass conservation can be
minimized by choosing a sufficiently small coarsening threshold 𝛽𝑇 , which ensures that
the local state is near equilibrium. On the other hand, computational costs may increase
greatly if the thresholds are chosen too low and local refinement of the grid is unnecessarily
strong.
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3 DORiE

3.1 Overview

This section is based on, and extends, Riedel et al. (2020a): “DORiE: A discon-
tinuous Galerkin solver for soil water flow and passive solute transport based
on DUNE.”

DORiE is a module of the DUNE framework (Blatt et al. 2016; Bastian et al. 2020) and its
high-level discretization module DUNE-PDELab (Bastian, Heimann, and Marnach 2010). It
implements the numerics of chapter 2 on structured rectangular and unstructured rectan-
gular or simplex grids in two and three spatial dimensions. The FV solver always uses the
structured rectangular YASP grid manager supplied by the DUNE-Grid module. For the DG
solver, DORiE additionally employs the UG grid manager1 for unstructured grids. While
rectangular grids are always created within the application based on specifications by the
user, unstructured simplex grids are loaded from GMSH mesh files (Geuzaine and Remacle
2009). If local grid refinement is enabled, DORiE must use the unstructured grid manager
that causes a computational overhead compared to using the structured grid manager on
the same grid. DORiE currently strictly separates grids with simplex and rectangular shapes.
Therefore, h-refinement on rectangular grids does not use closures and leads to hanging
nodes on the grid, which invalidates the reconstructed flux. For every combination of
numerical discretization, grid type, and polynomial order (in case of DG), DORiE compiles
an optimized program instance. This increases compile time but avoids any overhead when
executing the program with a certain setting.

DORiE provides a Python command line interface for user interaction. The main settings for
a simulation are supplied through an INI2 file in a format specification by the DUNE frame-
work. Therein, users supply the grid specification, discretization scheme settings, solver
precision, time stepping parameters, and data file paths, among others. Parameterization
and boundary condition data files are supplied in the hierarchical YAML3 format. DORiE
currently supports the Mualem–van Genuchten parameterization and a linear interpola-
tion of boundary condition values in time. Additional data like initial conditions, scaling

1. See https://gitlab.dune-project.org/staging/dune-uggrid.
2. Neither an abbreviation, nor a standardized format. See https://en.wikipedia.org/wiki/INI_file.
3. See https://yaml.org/.
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3 DORiE

fields, and domain mappings can be specified in HDF5 files (The HDF Group 1997–2020).
Initial conditions can also be computed from the stationary problem through an initial set
of boundary conditions. Simulation output is written in the Visualization Toolkit (VTK;
Schroeder, Martin, and Lorensen 2006) file format and can be analyzed and visualized with
third-party software or the Python package included in DORiE.

For a convenient definition of heterogeneity and soil structure, DORiE uses domainmappings.
Every grid cell 𝑇 ∈ Tℎ receives and index 𝑡 ∈ Z, and every boundary face 𝐹 ∈ F 𝑏

ℎ
an index

𝑓 ∈ Z. These indices are used to identify the parameterization of the grid cell and the
boundary condition of the face, respectively. For rectangular grids, users supply these
indices as single Z𝑑 dataset for cell mappings and 2𝑑 ×Z𝑑−1 datasets for boundaries in HDF5
files. GMSH supports a mapping of “physical” entities natively and saves these mappings
into its mesh files, which means that no additional information is required when importing
a simplex mesh. Boundary conditions and parameterizations are then assigned by repeating
the respective indices in the YAML data files. If a scaling field is supplied, the (interpolated)
field value at the barycenter of any grid cell is stored as scaling factor for this grid cell.
Scaling factors and mapping indices 𝑡 and 𝑓 are inherited by “child” grid elements under
local grid refinement.

DORiE also features a solver for passive solute transport, which has been coupled with
the Richards solver module and can be enabled optionally (Ospina De Los Ríos 2019).
Additionally, it integrates the Gaussian random field generator based on circulant embedding
of the DUNE-Randomfield module (Klein 2016). The code, documentation, and functionality
of DORiE version 2.0 have been reviewed as part of the publication in the Journal of Open
Source Software (see Riedel et al. 2020a).

3.2 Benchmarks

I investigated the accuracy and efficiency of the numerical schemes implemented in DORiE
with three different scenarios. First, I solved the stationary, pseudo one-dimensional problem
and compared it to a highly resolved reference solution. I then studied the resolution of
transient features with the example of an infiltration front passing through a layeredmedium.
Finally, I analyzed the efficiency of the transient solver with a benchmark on a heterogeneous
domain, including varying boundary conditions and h-refinement.

3.2.1 Solution Convergence

I surveyed the convergence of the solution towards a highly resolved reference for an
increasing grid resolution, i.e., a decreasing grid cell extension ℎ𝑇 . Given an exact solution
𝑢 ∈ 𝐻𝑘+1 that solves eq. (2.6), where 𝐻𝑘+1 is the Sobolev space of functions with derivatives
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up to order 𝑘+1, we expect a proportional relationship between the 𝐿2-error of the numerical
solution𝑢ℎ ∈ 𝑉ℎ and the cell extension to the power𝑘+1 for the DG scheme (Ern, Stephansen,
and Zunino 2009),

∥𝑢ℎ − 𝑢∥ ∝ ℎ𝑘+1𝑇 , (3.1)

where the 𝐿2-error of a function on the physical domain Ω ⊂ R𝑑 is defined as

∥·∥ ≔
√︄∫

Ω
|·|2 d𝑥 . (3.2)

As no general analytical solutions of the Richards equation with Mualem–van Genuchten
parameterization exist, we have to estimate the true solution 𝑢. In a stationary system,
where the time derivatives are zero, the local flux is given by the Buckingham-Darcy law.
Assuming a horizontally homogeneous system, and that gravity acts in the vertical direction,
the vertical flux is then given by

𝑗𝑧 = −𝐾 (ℎ𝑚) [𝜕𝑧ℎ𝑚 − 1] , (3.3)

where the subscript 𝑧 indicates the vertical axis. By convention, the 𝑧 encodes the depth and
the associated axis points downwards, with the soil surface at depth 𝑧 = 0m. In a stationary
system, the flux 𝑗𝑧 is constant over depth, 𝜕𝑧 𝑗𝑧 = 0. The presented equation thus is an ODE
for the matric head in the vertical direction,

d𝑧ℎ𝑚 = 1 − 𝑗0
𝐾 (ℎ𝑚) . (3.4)

This equation can only be solved analytically if the expression for the conductivity 𝐾 (ℎ𝑚) is
simplified. However, it can be solved numerically with a simple ODE integration algorithm
given the potential at the initial (largest) depth 𝑧0, ℎ𝑚 (𝑧 = 𝑧0), and the flux through the
domain 𝑗0. As the numerical implementation for ODE solvers is far simpler than the FV and
DG discretization schemes, I assumed it to yield a more accurate solution for a stationary,
one-dimensional problem.

I tested the convergence by computing a stationary solution on a pseudo one-dimensional
grid with one grid cell in horizontal direction and 5 × 2n cells in the vertical direction, with
𝑛 = 0, . . . , 8. The grid spanned a domain of 1m × 1m. At the bottom, I used a Dirichlet
boundary condition to set a constant water table, ℎ𝑚 (𝑧 = 1m) = 0m. This also served
as initial condition value for the ODE integrator. At the top, I set a Neumann boundary
condition with the desired flux for the entire domain, 𝑗𝑁 (𝑧 = 0m) = −5 × 10−8ms−1, which
I also inserted into the ODE integrator as flux throughout the domain via 𝑗0 = − 𝑗𝑁 . The
vertical boundaries had no-flow boundary conditions with 𝑗𝑁 = 0m s−1. I expected the
parameterization functions to have a profound influence on the solver accuracy, so I ran the
simulations for four different sets of parameters, namely Loam, Sandy Loam, Loamy Sand,
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Figure 3.1: Exemplary convergence plots of the solution residual (top) and the flux residual
(bottom) against the grid resolution for the FV and DG schemes, and, in case of
DG, for three different polynomial orders 𝑘 . The solution residual is computed by
the difference to the numerical ODE solver solution 𝑢ODE and the flux residual by
the difference between the vertical solution flux 𝑗ℎ,𝑧 and the negative boundary
condition flux − 𝑗𝑁 . The parameter set of this case is Loam.
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Table 3.1: Solution residual convergence rates of FV and DG in three polynomial orders 𝑘
for four parameter sets.

Medium Solution Residual Convergence Rate
FV DG, 𝑘 = 1 DG, 𝑘 = 2 DG, 𝑘 = 3

Loam 1.03 ± 0.01 1.97 ± 0.00 1.92 ± 0.04 1.78 ± 0.10
Loamy Sand 1.04 ± 0.01 1.96 ± 0.02 2.11 ± 0.07 1.98 ± 0.07
Sandy Loam 1.03 ± 0.01 2.01 ± 0.00 1.91 ± 0.03 1.81 ± 0.07
Silt Loam 1.02 ± 0.01 1.95 ± 0.00 1.82 ± 0.04 1.55 ± 0.12

Mean 1.03 ± 0.01 1.97 ± 0.02 1.94 ± 0.12 1.78 ± 0.18

Table 3.2: Flux residual convergence rates of DG in three polynomial orders 𝑘 for four
parameter sets.

Medium Flux Residual Convergence Rate
DG, 𝑘 = 1 DG, 𝑘 = 2 DG, 𝑘 = 3

Loam 1.06 ± 0.02 0.95 ± 0.07 1.04 ± 0.01
Loamy Sand 1.05 ± 0.03 2.09 ± 0.05 2.39 ± 0.16
Sandy Loam 1.07 ± 0.03 1.93 ± 0.08 1.80 ± 0.12
Silt Loam 0.98 ± 0.01 0.82 ± 0.03 0.89 ± 0.00

and Silt Loam, cf. table 1.1. The particular value of the Neumann boundary condition was
chosen to pose no numerical difficulties for the particularly stiff stationary problem in any
of the scenarios. Further investigations revealed that the value of the boundary condition
influences the absolute value of the solution residual, but not the residual convergence
rate.

The solution residual was computed with the 𝐿2-norm of the difference between the DORiE
solution 𝑢ℎ and the ODE integrator solution 𝑢ODE. I chose the fourth-/fifth-order Dormand-
Prince Runge-Kutta (DOPRI5)4 method as ODE integrator, which is readily implemented
in the Python SciPy package (Virtanen et al. 2020). This method features an automated
integration step size control based on an absolute tolerance of 10−12 and a relative tolerance
of 10−6 for the error between the results of the fourth- and fifth-order integration. For the
flux residual, I calculated the 𝐿2-norm of the difference between the vertical solution flux
𝑗ℎ,𝑧 and the negative boundary condition flux − 𝑗𝑁 . The solution flux 𝑗ℎ,𝑧 was calculated
from the solution 𝑢ℎ according to eq. (2.32) and directly represents the numerical fluxes, cf.
section 2.7. The residual of the reconstructed flux was always below the numerical precision

4. For the documentation and source code, see https://docs.scipy.org/doc/scipy/reference/generated/scipy.
integrate.ode.html.
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3 DORiE

limit in this scenario, so I did not investigate it further. For FV solutions, local gradients ∇𝑢ℎ
are always zero, and the solution flux cannot be calculated without flux reconstruction.

The mean solution convergence rate is 1.03 ± 0.02 for FV and 1.97 ± 0.02 for DG with
polynomial order 𝑘 = 1 (Table 3.1). This coincides with the expected rates, cf. eq. (3.1).
DG with orders 𝑘 > 1 do not achieve a higher convergence rate but only an offset of the
solution residual, which decreases with increasing polynomial order (Figure 3.1). I attribute
this behavior to the reduced regularity induced by the conductivity function. Convergence
rates even partially decrease for higher polynomial orders, most notably for Silt Loam. For
high grid resolutions and polynomial orders, the solution residual reaches an asymptotic
limit. This is due to the single-precision VTK output provided by the DUNE backend: Since
the solution is in the order of O(𝑢ℎ) ≈ 1m, the numerical precision limit is expected to be
about 10−8m. Still, higher-order methods always have a lower residual than lower-order
methods at the same grid resolution, and increasing the grid resolution always increases
the accuracy.

Flux convergence rates are usually higher than 1, but do not follow a clear pattern (Table 3.2).
As the flux residual is based on the gradient of the solution, it is more sensitive to oscillations,
which are a typical feature of numerical solutions. Especially in the low resolution regime,
the flux residual therefore behaves unexpectedly. For Loam, the flux residual for 𝑘 = 2 was
lower than for 𝑘 = 3 at certain low grid resolutions (Figure 3.1). At this particular instance
the setup apparently lead to comparably low oscillations for the lower order. Nonetheless,
the flux residuals always decreased with increasing grid resolution and overall showed a
smooth convergence, as indicated by the mostly low uncertainty of the fitted convergence
rates displayed in table 3.2.

3.2.2 Infiltration Front Resolution

I investigated the resolution of a sharp infiltration front by employing the instationary
solver on a pseudo one-dimensional setup similar to the one used in the last section. The
regular grid covered a 1m×1m domain with one grid cell in horizontal direction and 40×2𝑛
cells in vertical direction with 𝑛 = 0, . . . 4. I denoted the vertical extension of the grid cells
in the vertical direction with ℎ𝑇 . The domain contained two media and an interface at
depth 𝑧 = 50 cm; the upper medium was homogeneous Sandy Loam, the lower medium was
homogeneous Loamy Sand. The initial condition throughout the domain was gravity flow,
𝜕𝑧ℎ𝑚 = 0, with a constant potential of ℎ𝑚 = −1m. The same value was chosen as lower
boundary condition. The upper boundary condition was a constant Neumann infiltration
flux of 𝑗𝑁 = −10−6ms−1 = −86.4mmd−1. To achieve results independent of the temporal
integration, I chose a comparably small, fixed time step size Δ𝑡 = 200 s for all simulations.
I applied the DG scheme with 𝑘 = 1, 2, 3 and the FV scheme. Since I established in the
previous section that DORiE produces consistent results and its accuracy increases with
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Figure 3.2: Water front infiltrating into a layered medium, depicted at two times 𝑡1 =
8.5 × 104 s and 𝑡2 = 105 s for different grid resolutions and discretization methods.
The layer boundary between Sandy Loam (top) and Loamy Sand (bottom) is indi-
cated by the gray line at 𝑧 = 50 cm. Main colors denote the two different points
in time (blue: 𝑡1; red: 𝑡2) and color shades denote three different grid resolutions
ℎ𝑇 , as indicated in the legends. Note that the grid resolutions vary for FV and DG
results; bold entries for FV indicate deviating values. A high-resolution result
from a DG simulation with 𝑘 = 3, ℎ𝑇 = 1/640m is plotted as two thin black lines
(partially obscured) in every panel for comparison.
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increasing grid resolution and polynomial order 𝑘 , I used the most accurate solution with
𝑘 = 3, ℎ𝑇 = 1/640m as reference for the results with lower resolution.

The matric head over depth from the results of all discretization schemes and three grid
resolutions each for two points in time, 𝑡1 = 8.5 × 104 s and 𝑡2 = 105 s, are visualized in fig. 3.2.
At 𝑡1 ≈ 23.3 h, the water front is about to reach the medium interface at 𝑧 = 50 cm. We find
that the velocity of the water front is more overestimated with lower grid resolutions and
lower-order methods. This can be seen most clearly for FV, ℎ𝑇 = 1/40m, where the matric
head below the layer interface already begins to rise. The infiltration depth of the water
front is overestimated, and the potential at the trailing side of the front is underestimated,
which is the equivalent of an overestimated conductivity 𝐾 (ℎ𝑚), leading to a lower rise in
water content Δ\ and a consequently faster front propagation speed 𝑣 ≈ | 𝑗𝑁 |Δ\ . The effect
decreases with increasing grid resolution.

The DG method is again more accurate than the FV method. Notably, 𝑘 = 1 at ℎ𝑇 = 1/160m
achieves a higher accuracy than FV at ℎ𝑇 = 1/640m (the quadruple grid resolution), which
is also supported by the results of the stationary case, cf. fig. 3.1. Although the infiltration
front propagation speed is also overestimated for low grid resolutions, this effect is less
pronounced than for FV and reduces with increasing order 𝑘 . However, especially for low
resolutions, the DG solution features over- and undershoots not present in the FV solution,
which become even more pronounced after the front has passed the layer interface and
entered the Loamy Sand at 𝑡2 ≈ 27.8 h.

These features are a result of the DG method and its high number of DOFs per grid element.
(Numerical) fluxes between the grid elements are given by solution jumps [[𝑢ℎ]] and solution
gradients ∇𝑢ℎ at the interface, with the mass balance directly influencing the local water
content and hydraulic conductivity. Propagating water into a grid cell with low water
content and hence low conductivity requires a high gradient in the matric head, but the
gradient and the jumps of the solution at interfaces in turn limit the overall water content
of the grid cell. This leads to discrepancies if a sharp water front enters a grid cell with
comparably large extensions. The required strong gradient overshoots, and the solution
jump to the next cell produces a small reverse flux at the other side of the cell, see fig. 3.2,
DG, 𝑘 = 1, 𝑡 = 8.5 × 104 s, ℎ𝑇 = 1/40m. As long as this non-physical flux is not too strong,
it stabilizes the method because it increases the water content in the cell with water from
below the infiltration front. While the front propagates further, the overshooting potential
then “unravels” and increases until the infiltration flux can be supported without a local
gradient, which is the consistent solution for the gravity flow regime, cf. section 1.6.

Overshoots are a typical feature of convective high-order methods. They can be avoided
with slope limiters, which apply a projection on the residual in each stage of the Runge-Kutta
method (Burbeau, Sagaut, and Bruneau 2001). This could be a useful addition to a future
version of DORiE.
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Figure 3.3: Reference solution of the benchmark setup right before the infiltration stops
(left), and at the end of the simulation (right). The water content color bar applies
to both panels. Jumps in the water content denote material interfaces, with the
numbers in the left panel indicating the media Loamy Sand (1), Sandy Loam
(2), Silt Loam (3), and Loam (4), cf. table 1.1. The surface segment at which the
respective boundary condition applies is indicated by the red line at the top axis.

3.2.3 Transient Setting with Grid Refinement

I analyzed the accuracy and performance of DORiE using transient simulations with a two-
dimensional, heterogeneous domain. This 1m × 1m domain was divided into three layers
with a respective depth of 20 cm, 60 cm, and 20 cm. The top layer consisted of Loam and the
bottom layer of Loamy Sand. The center layer was horizontally divided at widths of 30 cm
and 70 cm, with the outer layers consisting of Sandy Loam and the inner layer of Silt Loam,
cf. table 1.1 for the parameter sets. All layers were homogeneous. See fig. 3.3 for the domain
division. The lower boundary condition was a constant water table, ℎ𝑚 (𝑧 = 1m) = 0m. At
the upper boundary, I applied a constant strong infiltration of 86.4mmd−1 for 25 h, followed
by an outflow boundary condition which increased linearly from ℎ𝑚 = 0m to a value of
−5m over the following 25 h. The infiltration boundary condition was only applied at a
width from 20 cm to 70 cm, whereas the outflow boundary condition was applied over the
entire upper boundary. I set no-flow boundary conditions at the lateral borders of the
domain. The initial condition was hydrostatic equilibrium with the water table at the lower
boundary.
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Figure 3.4: Results of the transient benchmark for simulation time 𝑡 = 25 h, right before
infiltration stops. Filled markers connected by solid lines denote results from
structured, rectangular grids and outlined markers connected by dashed lines
denote results from adaptive, rectangular grids. The total number of DOFs 𝑁DOF
was calculated by summing over all DOFs computed in 𝑁𝑡=25 h time steps.
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Figure 3.5: Results of the transient benchmark for simulation time 𝑡 = 50 h, after 25 h
of evaporation. Filled markers connected by solid lines denote results from
structured, rectangular grids and outlined markers connected by dashed lines
denote results from adaptive, rectangular grids. The total number of DOFs 𝑁DOF
was calculated by summing over all DOFs computed in 𝑁𝑡=50 h time steps.
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I chose this artificial setup for several reasons: The fine-grained Loam at the top allows a
comparably strong evaporation flux. The more coarse-grained materials of the center layer
produce sharp water fronts for strong infiltration fluxes, and feature different water contents
and front propagation speeds. The coarse-grained Loamy Sand in the bottom layer achieves
a decoupling from the water table at the bottom boundary, because its water content drops
relatively quickly with decreasing potential. The application of the infiltration boundary
condition additionally breaks the symmetry of the setup. I expected this setup to be highly
sensitive to the grid resolution, because strong gradients would appear at the tip of the
infiltration front and at the upper boundary during evaporation. Additionally, different time
step sizes could manifest in errors in the front propagation and the evaporation flux, with
the latter effect being amplified by the time dependency of the boundary condition.

I simulated a total of 50 h and selected the heuristic time step adjustment with a minimum
time step of 1 s, a starting time step of 100 s and a maximum time step of 105 s (approx.
27.8 h). I ran simulations with varying grid resolutions and discretization schemes, and
compared solutions from structured rectangular grids and from adaptive, unstructured
grids with a reference solution. Structured grids used (10 × 10) × 4𝑛 cells with 𝑛 = 0, . . . , 6
for the FV discretization, 𝑛 = 0, . . . , 5 for the DG discretization with order 𝑘 = 1, and
𝑛 = 0, . . . , 4 for orders 𝑘 = 2, 3. The solution (ℎ∗𝑚, \ ∗) of the combination (𝑘 = 3, 𝑛 = 4)
was used as reference for computing the residuals. Adaptive grids started with a global
refinement of level 𝑛, and allowed for a minimum local refinement level of 𝑛 − 1 and a
maximum local refinement level of 𝑛 + 1. The adaptivity algorithm used was a threshold
algorithm as explained in section 2.8, with refinement threshold 𝛼𝑇 ranging from 10−8ms−1
to 10−10ms−1 and coarsening threshold 𝛽𝑇 ranging from 5 × 10−10ms−1 to 5 × 10−12ms−1,
where the particular values selected for a simulation were defined by the order 𝑘 and the
initial grid level 𝑛.

The 𝐿2-residuals of the matric head ℎ𝑚 and the water content \ were evaluated right before
the infiltration stops at 𝑡 = 25 h, and at 𝑡 = 50 h, the end time of the simulation. The
reference solutions at these times are visualized in fig. 3.3. To indicate the performance,
I compared the residuals against the simulation wall time 𝑡wall taken up to retrieve the
respective solution, which includes the duration of grid creation, operator setup, solution
output, and grid refinement (if applicable). I additionally compared the residuals against the
total number of DOF computed by the simulation,

𝑁DOF =
𝑁𝑡∑︂
𝑖

𝑁DOF,𝑖 , (3.5)

where 𝑁DOF,𝑖 is the number of DOF computed at time step 𝑖 , and 𝑁𝑡 is the number of time
steps the simulation took to compute the solution at time 𝑡 .

For static grids, the residuals at time 𝑡 = 25 h for both matric head ℎ𝑚 and water content

48



3.3 Conclusion and Outlook

\ show a similar behavior than those of the static benchmark in section 3.2.1 (Figure 3.4).
Residuals of the DG method are lower than those of the FV methods for the same grid
resolution and DOFs, and have a higher convergence rate. Residuals decrease for increasing
DG orders 𝑘 , but all orders used achieve similar convergence rates. DG methods also achieve
a higher accuracy than the FV method when comparing simulation wall times. However,
increasing the polynomial order 𝑘 generally does not yield lower residuals for the same
wall time.

At time 𝑡 = 50 h, the results for static grids are less conclusive (Figure 3.5). The residuals
of the matric head resemble a super-convergence, where the convergence rate increases
with increasing grid resolution and number of DOFs. This can be an artifact due to the
finite resolution of the reference solution. While all discretization schemes achieve similar
results for the same number of DOFs when comparing residuals of the matric head, the
DG schemes perform better than the FV scheme with respect to the water content. When
comparing residuals based on wall time 𝑡wall, the DG schemes perform similar or even worse
than the FV scheme.

Adaptive grids have a worse performance than static grids when comparing solutions at
time 𝑡 = 25 h, and a better performance when comparing them at time 𝑡 = 50 h, both in
terms of number of DOFs and simulation wall time. They achieve similar or slightly better
convergence rates than the method with the same respective polynomial order 𝑘 on static
grids. Also, residuals decrease with increasing polynomial order in most cases.

In this benchmark, the DG method only clearly outperforms the FV method on static grids
when infiltration is simulated. Sufficiently strong infiltration leads to sharp infiltration
fronts, which can be better resolved by the polynomial representation of the DG method.
The front diffuses during evaporation, and the FV method profits from its much simpler
formulation. But the results also demonstrate that the DG scheme can still be more accurate
and efficient than the FV scheme in such situations if h-refinement is employed, which
optimizes the number of DOFs and increases the resolution where the solution is less smooth.
Nonetheless, the h-refinement algorithm shows deficits during infiltration, when the overall
error mostly hinges on the resolution of the infiltration front moving through the domain.
In this case, the algorithm apparently was unable to track the moving features sufficiently
well, but it successfully refined upon static features of the solution.

3.3 Conclusion and Outlook

I verified the results of both discretization schemes featured in DORiE by comparing them to
a highly resolved reference solution. As expected, increasing the grid resolution or the order
of the discretization scheme always improves the accuracy of the solution. However, DG
methods are also expected to strongly increase their accuracy with increasing polynomial
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order. I could not observe this feature in our application, which is likely due to the non-
regularity induced by the conductivity function, and, in the transient case, additionally by
the retention curve. The properties of these parameterization functions effectively reduce
the integrability and differentiability of the solution, which makes its higher-order represen-
tation less beneficial. Consequently, the computational efficiency of the DG discretization
does not necessarily surpass that of the FV method. While the accuracy of the DG method
is much higher than that of the FV method on the same grid, the FV method can reach an
equivalent accuracy for the same number of computed DOFs, and even a better accuracy for
the same wall time in certain scenarios. This deficit can be improved upon by optimizing
the code base and by employing h- or p-refinement.

Adaptive refinement allows the solver to optimize the resolution during a simulation run.
I demonstrate that our h-refinement method significantly outperforms computations on
static grids if the solution features to be refined upon are static. In these cases, the error
convergence rate for adaptive grids is higher than for static grids, which is supported by the
results of Li, Farthing, and Miller (2007) and Solin and Kuraz (2011). However, our method
can fail to resolve these essential features in transient scenarios with sharp infiltration
fronts. Further work on DORiE therefore should improve the refinement algorithm.

Similar toMiller et al. (2013), I conclude that theDG discretization is not always advantageous
to the much simpler FV method, at least not without further optimization. If the simulated
domain features considerable heterogeneity and numerical accuracy is a lesser concern, the
FV method is the better choice. The DG method can produce a similar accuracy in the same
or lower simulation wall time on a coarser grid. But increasing the grid cell size necessarily
reduces the resolution of heterogeneity in the simulated domain. The prior knowledge of
heterogeneity therefore sets a lower limit to the grid resolution used during simulations.
This, in turn, makes the regime of low accuracy and short simulation wall time inaccessible
to the DG scheme.
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Application with Data Assimilation
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4 Ensemble Kalman Filter in Soil Hydrology

Forward models are used for forecasting future system states from a known state. Accurate
forecasts therefore require an appropriate conceptual and numerical representation of the
physical problem and an exact knowledge of the problem parameters, like boundary condi-
tions and material properties. Due to the highly non-linear material properties encountered
in soil hydrology, uncertainties in the material properties lead to significant uncertainties in
the resulting forecast. As soil hydraulic material properties typically cannot be measured
directly, they have to be inferred through inverse modeling. Inverse modeling is the tech-
nique of “inverting” the model and determining model parameters based on observations of
the true system and simulations. Consequently, inverse modeling has been applied in soil
hydrology for several decades (Vrugt et al. 2008).

The need for quantifying uncertainties in both model parameters and estimated system
states led to the application of data assimilation methods in soil hydrology (Liu et al. 2012).
Likewise, inverse methods have been adapted to evaluate uncertainties and representation
errors (Jaumann and Roth 2017). Data assimilation and inverse modeling are considered
to be strongly overlapping concepts. In particular, Vrugt et al. (2008) see data assimila-
tion as technique for inverse modeling, whereas van Leeuwen, Cheng, and Reich (2015)
regard inverse modeling as a branch of data assimilation. We interpret data assimilation
as a unifying approach to estimate system state, model parameters, and model structure,
following Liu and Gupta (2007). In our application, we employ the EnKF as algorithm for
data assimilation.

Data assimilation represents knowledge using probability density functions (pdfs) 𝑝 (𝑋 = 𝑥),
where 𝑥 is the realization of a random variable 𝑋 . Interpreting model or system states 𝒖
and observations of these states 𝒅 as such realizations of random variables, we use Bayes’
theorem to update an estimated system state based on observations,

𝑝 (𝒖 |𝒅) = 𝑝 (𝒅 |𝒖)𝑝 (𝒖)
𝑝 (𝒅) . (4.1)

Here, 𝑝 (𝒖) is the prior information of the state before the observations are taken and 𝑝 (𝒅 |𝒖)
is the conditional likelihood of the observations as function of the state itself. Van Leeuwen,
Cheng, and Reich (2015) interpret 𝑝 (𝒅) as probability of a specific measurement right before
the observation. They point out that this is a normalization factor which can be computed
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from the likelihood and the prior,

𝑝 (𝒅) =
∫

𝑝 (𝒅 |𝒖)𝑝 (𝒖) d𝒖 .

The resulting posterior 𝑝 (𝒖 |𝒅) is interpreted as optimal estimate of the true system state
resulting from prior information and observations.

Algorithms for data assimilation are classified as “filters” and “smoothers.” Filters apply a
momentary update based on observations at a single time. Smoothers perform an update
based on an extended interval of observations. This has the advantage of incorporating
future observations into a state update and the disadvantage that fewer such updates can be
performed. Apart from the fact that filters can be applied in real-time, their computational
effort also scales linearly in the dimension of the state space and the number of observations.
In soil hydrological applications, EnKFs have been shown to outperform ensemble smoothers
because more frequent state updates ease the data assimilation task if the model is strongly
non-linear (Crestani et al. 2013).

4.1 Ensemble Kalman Filter

The original Kalman filter assumes the random variables of states and observations to be
normally distributed, which means that any state is characterized by a vector of mean values
𝒖 and a covariance matrix

𝑷 = [𝒖 − 𝒖true] [𝒖 − 𝒖true]𝑇 , (4.2)

where the overline denotes the expectation value and 𝒖true is the true state. The pdf of a state
𝒖 and the corresponding covariance matrix 𝑷 is given by a normal distribution N(𝒖, 𝑷 ),

𝑝 (𝒙) ∝ exp
(︃
−12 [𝒙 − 𝒖]𝑇 𝑷−1 [𝒙 − 𝒖]

)︃
, (4.3)

where 𝒙 ∈ R𝑁𝑠 is the value of a vector of independent random variables 𝑿 , and 𝑁𝑠 is the
dimension of the state space. To receive the state pdf at a later time, a forecasting model
has to be applied to the previous mean and covariance matrix, which is particularly simple
if the model is linear and its application can be formulated as matrix (multiplication).

The EnKF is a Monte-Carlo extension of the Kalman filter for non-linear models (Evensen
1994, 2003). It represents the state pdf with an ensemble of states, and approximates the
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first and second moments of this distribution with

𝒖 ≈ 𝒖𝑖 , (4.4)

𝑷 ≈
[︂
𝒖𝑖 − 𝒖𝑖

]︂ [︂
𝒖𝑖 − 𝒖𝑖

]︂𝑇
, (4.5)

where 𝑖 = 1, . . . , 𝑁ens denotes the ensemble member and 𝑁ens is the ensemble size. From the
perspective of the filter, the model is a “black-box” operator𝑀 (·) which takes a state 𝒖𝑖𝑡−1
at time 𝑡 − 1 as argument and computes the state 𝒖𝑖𝑡 at time 𝑡 while adding a model error or
“process noise” 𝜼𝑖 ,

𝒖𝑖𝑡 = 𝑀 (𝒖𝑖𝑡−1) + 𝜼𝑖 . (4.6)

The process noise is assumed to be normally distributed with mean 0 and error covariance
𝑸 , 𝜼 ∼ N(0,𝑸), and is intended to account for errors that are not represented in the model.
Note that an initial ensemble of states 𝒖𝑖 that follows a normal distribution will lose this
property if the model operator is non-linear in 𝒖.

The EnKF uses the model to propagate the ensemble states to the time 𝑡 of the next ob-
servation 𝒅𝑡 . This observation is then compared with artificial observations of the states
𝒖𝑖
𝑡,𝑓
, where the subscript 𝑓 indicates the state resulting from a model forecast. Like the

original Kalman filter, the EnKF assumes an observation on a state to be a linear operation
𝑯𝑡 , resulting in the noisy observation

𝒚𝑖𝑡 = 𝑯𝑡𝒖
𝑖
𝑡,𝑓

+ 𝝐𝑖𝑡 , (4.7)

with the measurement error 𝝐𝑖𝑡 being drawn from another unbiased normal distribution with
covariance 𝑹𝑡 , 𝝐𝑡 ∼ N(0, 𝑹𝑡 ). The perturbation by this error is required for an adequate
comparison because the observations 𝒅𝑡 are intrinsically perturbed by a measurement error
(Burgers, Jan van Leeuwen, and Evensen 1998; van Leeuwen, Cheng, and Reich 2015).
Each forecast state of the ensemble is then updated based on the difference between the
observation 𝒅𝑡 and the measurement of the state 𝒚𝑖𝑡 , yielding an analysis state

𝒖𝑖𝑎,𝑡 = 𝒖𝑖
𝑡,𝑓

+ 𝑲𝑡
[︁
𝒅𝑡 −𝒚𝑖𝑡

]︁
. (4.8)

The Kalman gain 𝑲 provides a covariance-weighted map from the observation vector space
to the state vector space,

𝑲𝑡 ≔ 𝑷𝑡,𝑓 𝑯
𝑇
𝑡

[︁
𝑯𝑡𝑷𝑡,𝑓 𝑯

𝑇
𝑡 + 𝑹𝑡

]︁−1
, (4.9)

where 𝑷𝑡,𝑓 denotes the covariance matrix estimated from the forecast states 𝒖𝑖
𝑡,𝑓

according
to eq. (4.5). Assuming an infinite ensemble size and a normal distribution of the forecast
states, the EnKF is equivalent to the Kalman filter and its update minimizes the trace of the
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4.1 Ensemble Kalman Filter

error covariance 𝑷𝑎,𝑡 of the analysis ensemble, which is given by

𝑷𝑎,𝑡 = [𝑰 − 𝑲𝑡𝑯𝑡 ] 𝑷𝑡,𝑓 . (4.10)

The pdf of the resulting analysis ensemble is equivalent to the posterior pdf of Bayes’
theorem (Bauser 2018),

𝑝 (𝒖𝑡 |𝒅𝑡 ) ∝ exp
(︃
−12

[︁
𝒖𝑡 − 𝒖𝑎,𝑡

]︁𝑇
𝑷−1
𝑎,𝑡

[︁
𝒖𝑡 − 𝒖𝑎,𝑡

]︁ )︃
. (4.11)

The model is then applied on the ensemble of analysis states 𝑢𝑖𝑡,𝑎 to yield the forecast state
at the next observation time 𝑡 + 1, thus concluding the iteration.

For model parameter estimation, the estimated parameters can be wrapped into a vector 𝝓
and appended to the model state 𝝌 , yielding an augmented state

𝒖 = [𝝌 , 𝝓]𝑇 . (4.12)

The model 𝑀𝑢 for propagating an augmented state according to eq. (4.6) then has two
separate components𝑀𝜒 and𝑀𝜙 for propagating the respective part of the augmented state.
As model parameters are usually considered constant in time, the model𝑀𝜙 for propagating
them is a trivial identity map with𝑀𝜙 (𝝓) = 𝝓, and the application of the combined model
𝑀𝑢 yields

𝒖𝑡+1,𝑓 = 𝑀𝑢 (𝒖𝑡,𝑎) =
[︁
𝑀𝜒 (𝝌𝑡,𝑎), 𝑀𝜙 (𝝓𝑡,𝑎)

]︁𝑇
=
[︁
𝝌𝑡+1,𝑓 , 𝝓𝑡,𝑎

]︁𝑇
. (4.13)

The EnKF assumes that the ensemble of states, the model error, and the measurement error
are normally distributed and it updates the state ensemble based on this assumption. If
a non-linear model is then applied on the analysis ensemble, the resulting forecast states
will necessarily have a different distribution. Although the EnKF performance is directly
related to the distribution of the ensemble, and especially if it can be approximated with a
normal distribution, the filter performs successfully in many scenarios where this is not the
case (Evensen 2003). As long as the state ensemble is not skewed too much, and there are
many observations, the Gaussian model and measurement errors will continuously reduce
higher moments in the state distribution. This probabilistic approach has been shown to
outperform filter variants with analytic updates, like the ensemble square root filter, given
that the ensemble size is large enough (Lawson and Hansen 2004).

Another method closely related to the EnKF is the particle filter (Leeuwen 2009). It considers
higher moments of possibly multimodal state distributions and is especially suitable for low
dimensional, chaotic systems. While it can be applied for data assimilation in soil hydrology,
the particle filter requires sophisticated localization and resampling techniques to reach
an accuracy and efficiency comparable to the EnKF (Berg 2018). Generally though, the
particle filter requires a larger ensemble. The probabilistic update of the EnKF also avoids
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4 Ensemble Kalman Filter in Soil Hydrology

the computation of adjoint or inverse matrices, and especially does not require the Jacobian
of the model operator. This is the main advantage of the EnKF against variational methods.
The relatively low computational cost of the EnKF makes it suitable for applications in soil
hydrology, where the model operator contributes by far the most computational cost to the
entire data assimilation task.

4.2 EnKF Extensions for Soil Hydrology

In practice, the limited ensemble size, non-linear models, andmisrepresented or biasedmodel
errors significantly hamper the performance of the EnKF. These issues usually culminate in
an underestimation of the state error covariance 𝑷 . In the extreme case 𝑷 → 0, the Kalman
gain becomes minimal and the analysis state is equivalent to the forecast state, ignoring
any update by the observations according to eq. (4.8). As the observations are the crucial
information supplied, many extensions of the EnKF focus on increasing the state error
covariance. However, the small ensemble size also leads to spurious correlations, which
need to be counteracted by a spatial localization.

Damping Through nonlinearities in the parameterization, the parameters defining the
material properties have a profound influence on the dynamics of soil hydraulic systems.
Since observations of these parameters are not possible, they are considered more “valuable”
information than the soil hydraulic state, which is updated for every observation. To reduce
the effect of nonlinear relations between soil hydraulic state and parameters in the linear
state update, and also to reduce effects of spurious correlations, the state update can be
damped with a constant factor 𝛾 ∈ (0, 1] multiplied to the correction vector in eq. (4.8)
(Hendricks Franssen and Kinzelbach 2008). This factor is usually extended to a vector 𝜸
with element-wise multiplication to enforce a stronger damping on parameters than on the
soil hydraulic state (Wu and Margulis 2011).

Multiplicative Inflation A simple way of increasing the forecast covariance 𝑷𝑓 is an
artificial spread of the ensemble around the ensemble mean using an inflation factor _ ≥ 1
to yield inflated ensemble states

𝒖𝑖
𝑓 ,infl =

√
_
[︂
𝒖𝑖
𝑓
− 𝒖𝑖

𝑓

]︂
+ 𝒖𝑖

𝑓
. (4.14)

Like the damping factor, the inflation factor can be extended to a vector. Anderson (2009)
optimized the inflation with a spatially and temporally adaptive formulation. In this ap-
plication, we use the method by Bauser et al. (2018), which is specialized for the use in
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4.3 Data Assimilation with DORiE

soil hydrology and employs a Kalman filter to estimate the inflation for every observation
independently.

Localization Spurious correlations are noise in the covariance matrix resulting from a
reduced ensemble size and a therefore non-optimal estimation according to eq. (4.5). Some
of these spurious correlations can be cut off based on the observation that correlations in
states at two different locations decrease with increasing distance (Hamill, Whitaker, and
Snyder 2001). The covariance matrix can therefore be multiplied with a correlation function
𝜌 based on the physical distance between state dimensions (Houtekamer and Mitchell 2001),
altering the Kalman gain definition of eq. (4.8) to

𝑲𝑡 =
[︁
𝜌 ◦ 𝑷𝑡,𝑓

]︁
𝑯𝑇
𝑡

[︁
𝑯𝑡

[︁
𝜌 ◦ 𝑷𝑡,𝑓

]︁
𝑯𝑇
𝑡 + 𝑹𝑡

]︁−1
, (4.15)

where ◦ denotes the product of the result of 𝜌 with the respective entry in the covariance
matrix.

4.3 Data Assimilation with DORiE

The Richards solver of DORiE was coupled with the research group internal data assimilation
software package Knowledge Fusion (KnoFu; Berg 2018) to estimate soil hydraulic states and
parameters using a DG solver (Riedel 2017). This coupling has been upgraded throughout
the development of DORiE and now includes the FV solver and the option to estimate scaling
factors. KnoFu handles the application of the filter algorithm. For the forecast between
measurements, the filter states are passed to the model, which then propagates the state
to the next measurement time and returns the new state. To that end, KnoFu initializes an
instance of the DORiE solver that works like an independent instance of DORiE, with the
difference that it can be called through an application programming interface (API). This
API also supplies model specific information which is required by an EnKF specialized for
soil hydrology as outlined by Bauser et al. (2018).

Model State The unknown variable within DORiE is the matric head ℎ𝑚 and selecting it
as state variable in the filter would be a natural choice. However, the EnKF requires a linear
observation operator 𝑯 and soil hydraulic state observations often supply water content
data, e.g. from time domain reflectometry (TDR) probes. If the observations are water
content values, DORiE therefore transforms its internal state to water content values via the
soil water characteristic, eq. (1.13), before passing it to the filter as forecast state. Likewise,
the initial state received from the filter is transformed back into matric head values. This
transformation is unique in an unsaturated regimewhereℎ𝑚 ≤ 0, if local equilibriumwithout
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4 Ensemble Kalman Filter in Soil Hydrology

hysteresis is assumed. Using water content values is generally considered advantageous
because the skewness of the state distribution caused by extreme matric head values is
reduced under the transformation (Erdal, Rahman, and Neuweiler 2015).

Localization DORiE returns physical positions associated with each dimension of the
state vector to the filter. In case of the FV discretization, the position is the barycenter of
the grid cell the respective dimension in the state vector is associated with. In contrast, the
solution at every point of the domain in a DG function space is given by a linear combination
of basis functions and DOFs on the local element. However, a local function space with
Langrange polynomials as basis features nodes—i.e., positions on the grid—where the
value of the solution is given by exactly one DOF. Since the DUNE-Localfunctions module
does not supply an interface for such information, the positions for common geometries
and polynomial orders were hard-coded and the associated state dimension is selected by
searching for the local basis function whose value is sufficiently close to 1.

Discretization Scheme Selection Employing an EnKF with a DG Richards solver has
proven difficult because the solver is often unable to propagate the filter analysis states,
especially when parameters are estimated (Riedel 2017). This can be attributed to the
instability of the DG method and its susceptibility for over- and undershoots, as discussed
in section 3.2.2. The forecast state is a consistent result of the numerical method, but the
analysis state is the result of a probabilistic update in the filter algorithm and not necessarily
physically consistent. While localization helps in reducing these inconsistencies, it does not
apply to the parameters. Their update, in turn, can imply large jumps and gradients in the
matric head after transforming the water content state received by the filter. The issue can
be reduced by increasing the penalty factor𝑚, which penalizes solution jumps [[𝑢ℎ]] across
interfaces, cf. eqs. (2.14d) and (2.17). Additionally, the grid resolution can be increased,
but this also increases the computational cost of the forward model. Overall, a stable, less
accurate numerical method is preferable to an unstable, more accurate one because the
variance of the state ensemble is orders of magnitude larger than the discrepancy between,
e.g., FV and DG discretization methods, at least for high grid resolutions.
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5 Effects of Unrepresented Soil Heterogeneity

This chapter is based on, and extends, Bauser et al. (2020): “Challenges with
effective representations of heterogeneity in soil hydrology based on local water
content measurements.”

5.1 ResearchQuestion

With the highly non-linear effects of material properties on soil hydraulic fluxes presented in
chapter 1, these material properties are the primary source of uncertainty when estimating
and forecasting soil hydraulic states. Soils have been identified as complex systems featuring
heterogeneity at every spatial scale, and efforts to investigate self-similarity of different
scales are ongoing and not yet conclusive (Pachepsky and Hill 2017). Although the scale of
interest for many problems in hydrology is larger, the spatial scale of soil profiles ranging
from centimeters to a few meters has been identified as the critical scale for soil hydrology,
governing larger-scale processes (Vogel 2019). Even on this scale, the inherent heterogeneity
makes it difficult to deduce material properties for extended soil layers. This is aggravated
by the fact that soil hydraulic states are difficult to observe at high spatial resolutions or
high accuracy.

Soil hydraulic parameters can be estimated from in situ water content or matric potential
measurements using inverse modeling and data assimilation (Vrugt et al. 2008; Liu et
al. 2012). If the soil is known to have distinct layers, independent parameter sets can be
estimated for each layer (Botto, Belluco, and Camporese 2018). Incorporating heterogeneity
within such layers is more difficult. To account for local deviations of the water content,
Bauser et al. (2016) estimated an additional scaling factor at each measurement location and
combined these linearly to a scaling field. This field yielded an effective description of the
true heterogeneity and replicated the observed dynamics at the measurement locations. If
the measurement density is high enough, data assimilation can also be used to estimate an
entire three-dimensional heterogeneity field (Chaudhuri, Hendricks Franssen, and Sekhar
2018). However, any such estimation is limited by the spatial resolution of the measurements
and does not account for heterogeneity at a lower scale. A different approach is therefore to
not estimate heterogeneity itself but to acknowledge unresolved heterogeneity as structural
model error and estimate its effect on the model states through a data-driven Gaussian
process regression (Zhang et al. 2019).
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5 Effects of Unrepresented Soil Heterogeneity

The effect of unresolved heterogeneity is difficult to quantify, especially prior to experi-
ments. In the presented study, we aimed to investigate the isolated effects of unrepresented
heterogeneity on the accuracy of a forecast performed with estimated soil properties. Our
synthetic experiments consisted of computing a synthetic truth on a two-dimensional do-
main with small-scale heterogeneity and estimating this domain by using a one-dimensional
model with reduced representation of heterogeneity. In both cases, however, heterogeneity
was achieved by a Miller scaling field, and the medium contained only a single reference
material. We followed the approach of Bauser et al. (2016) to only estimate scaling factors
at measurement locations, but added a scaling factor to be estimated at the surface. These
estimated factors were combined to a field, which, by design of the experiment, could not
resolve the heterogeneity of the synthetic truth. The estimated model therefore accounted
neither for lateral fluxes induced by heterogeneity, nor the full heterogeneity itself.

5.2 Synthetic Experiments

The presented study conducted 80 synthetic experiments including unrepresented, small-
scale soil heterogeneity as structural model error. We chose to simulate a two-dimensional,
2m × 2m domain with four local water content measurements at its center in depths of
9.5 cm, 19.5 cm, 39.5 cm and 79.5 cm. While focusing on varying heterogeneity, we used two
soil types and two boundary condition sequences to indicate that the results are generalizable
to a certain extent. In this thesis, I will limit my analyses to a single medium and a single
boundary condition sequence. This reduces the investigated scenarios to the ones listed in
table 5.1, comprising a total of 50 experiments.

5.2.1 Model Setup

The reference material for all scenarios considered in this thesis is Sandy Loam, cf. table 1.1.
The small-scale heterogeneity is created by employing Miller scaling, see section 1.5. For
every scenario, we generated five realizations of a two-dimensional, scalar Gaussian random
field with mean value 0. A control case for each realization with effectively one-dimensional
scaling field was created by taking a vertical slice at the center of the field. We used
this control case to investigate unrepresented heterogeneity without the influence of two-
dimensional flow. We created the Gaussian random fields with a resolution of 1 cm using
the random field generator included in DORiE (Klein 2016). The autocovariance function
used was Gaussian and the anisotropy was defined by the vertical and horizontal correlation
lengths ℓ𝑣 and ℓℎ . The Miller scaling factors at position 𝒙 were then calculated from the
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Figure 5.1: Boundary condition sequence applied in the data assimilation cases discussed
in chapter 5. Shaded areas denote the (negative) Neumann flux − 𝑗𝑁 (blue, left
𝑦-axis scale) and outflow matric head ℎ𝑚 (red, right scale) applied at the upper
boundary. The black line (left scale) indicates the resulting vertical flux 𝑗𝑧 at the
upper boundary of a homogeneous Sandy Loam domain with the model setup
described in section 5.2.1. Note that a positive vertical flux points downwards,
but a positive Neumann flux at the upper boundary points upwards.

value of the random field 𝑟 (𝒙) and the prescribed field variance 𝜎b according to

b (𝒙) = exp
(︂
𝑟 (𝒙) − 𝜎2

b

)︂
, (5.1)

which keeps the expectation value of the resulting hydraulic conductivity equal to that of
the unscaled reference material (Roth 1995).

The initial condition for all experiments was created through a 30 d spin-up simulation. The
initial condition for this simulation was hydraulic equilibrium, 𝜕𝑧ℎ𝑚 = 1, with a water table
at the lower end of the domain in a depth of 2m. This water table also was the fixed lower
boundary condition for the entire simulation. For the first 10 d, we simulated a constant
infiltration of 𝑗𝑁 = −10−7ms−1, followed by a no-flow boundary condition for the rest
of the simulation. The final state of the simulation was used as initial condition for the
synthetic experiment.

The total simulated time of each experiment was 52 d. This time was split in two phases,
(i) an assimilation phase of 24 d, where an EnKF estimates the soil hydraulic state, material
properties, and small-scale heterogeneity, and (ii) a verification phase of 28 d, where the
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5 Effects of Unrepresented Soil Heterogeneity

prediction capabilities of the estimated material properties were tested with an ensemble
forecast.

Each phase consisted of three alternating irrigation and evaporation events (Figure 5.1).
During the assimilation phase, each rain event lasted for 4 dwith a flux of 𝑗𝑁 = −10−7ms−1 ≈
−8.64mmd−1. The same flux was applied during the first irrigation event of the verification
phase. The next event had a reduced influx of 2.5 × 10−8ms−1 (2.68mmd−1), and the last
rain event an increased influx of 4 × 10−7ms−1 (34.56mmd−1), but the latter only lasted
for 2 d. All evaporation events were modeled with an outflow boundary condition which
avoids a flux into the domain. Its value was chosen to linearly increase by 1md−1 starting
with a potential of ℎ𝑚 = 0m at the end of the preceding irrigation event. The first five
evaporation events lasted 4 d each, and the final event was extended to 10 d. The lower
boundary condition at a depth of 2m was a constant water table, and no-flow boundary
conditions were applied at the lateral domain boundaries. The rain events were chosen
large and long enough to cause a response in all measurement depths.

The model structural error was introduced by using different models for generating the
syntheticmeasurements and for propagating the ensemble states during the data assimilation.
The state ensemble was propagated by an effectively one-dimensional model with a vertical
resolution of 1 cm and a single grid cell in the horizontal direction. Its Miller scaling field was
reconstructed from five estimated scaling factors, as explained in the following subsection.
The synthetic measurements were generated by using models with fully resolved scaling
field. The two-dimensional model used 200 × 200 grid cells. For the control case, the one-
dimensional model was used, and the applied scaling field was a slice of the two-dimensional
scaling field at the center. In the following, we will refer to the former as 2D case (two-
dimensional synthetic truth with one-dimensional estimation model) and to the latter as
1D case (one-dimensional synthetic truth with one-dimensional estimation model). This
results in two experiments for each random field realization. We decided to use the FV
discretization because it is computationally cheaper and more stable than the DG scheme,
cf. section 4.3.

Reduced Miller Field Representation

From the set of estimated Miller scaling factors 𝝃 at certain locations in the domain, a scaling
field b (𝑧) at depth 𝑧 was reconstructed following

b (𝑧) = 1 + 𝝋 (𝑧)𝑇𝑨(𝑧)−1 [𝝃 − 1] , (5.2)

where 𝝋 is a vector containing one kernel function 𝜑𝑖 (𝑧) for each scaling factor b𝑖 , and
𝑨(𝑧) is the local correlation matrix of the scaling factors. The kernel functions are chosen
to be unnormalized Gaussian functions whose means are the locations of the estimated
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scaling factors, respectively, and whose standard deviation is 10 cm. The correlation matrix
𝑨 consists of the products of these kernel functions,

𝐴𝑖 𝑗 (𝑧) = 𝐴 𝑗𝑖 (𝑧) = 𝜑𝑖 (𝑧)𝜑 𝑗 (𝑧), 𝐴𝑖𝑖 = 1. (5.3)

This heuristic choice makes the estimated scaling factors the extrema or saddle points of the
resulting field. With increasing distance to the estimation locations, the scaling relaxes to
the reference material properties, b (𝑧) → 1. See section 5.2.2 for the estimation locations.

Apart from the choice of Gaussian functions, the only prior information required for this
method is the standard deviation used in the kernels. The value is ideally set to an esti-
mated correlation length of the true heterogeneity. However, the method is expected to
be insensitive against the exact value of the kernel standard deviation used, as long as its
magnitude is reasonably approximated.

5.2.2 Data Assimilation

The synthetic measurements of the water content at the given locations were generated
every 2 h and perturbed with an unbiased normally-distributed measurement uncertainty
of 0.007, which is a typical value for TDR probes measuring water content in situ (Jaumann
and Roth 2017). During the assimilation phase, these observations were used as input for
the EnKF to estimate the one-dimensional soil hydraulic state, the Mualem–van Genuchten
parameters 𝛼 , lg𝐾0, and 𝑛, the Miller scaling factors lg b at the measurement locations, and
an additional Miller scaling factor at the top grid cell. The scaling factors were therefore
estimated in depths of 0.5 cm, 9.5 cm, 19.5 cm, 39.5 cm and 79.5 cm. As indicated, the decimal
logarithm of the saturated hydraulic conductivity 𝐾0 and the scaling factors b were used
in the data assimilation. The parameters \𝑟 , \𝑠 , and 𝜏 were set to their true values. In the
verification phase, the EnKF was turned off and the model only produced an ensemble
forecast.

The initial guess for the estimated water content was a linear interpolation of the synthetic
measurements of the initial condition. The values towards the upper boundary were
extrapolated from the topmost measurement, and the values towards the lower boundary
were linearly extrapolated towards the saturated water content \𝑠 , which corresponds to
the lower boundary condition. The initial uncertainty of the ensemble was created with an
unbiased normal distribution with standard deviation 0.01 and a spatial covariance given
by an approximated normal distribution with standard deviation 20 cm. The initial guess
for the Mualem–van Genuchten parameters and the Miller scaling factors were normal
distributions, with their mean set to the respective true value to reduce the impact of the
EnKF performance. The standard deviations were 𝜎𝛼 = 2.0m−1, 𝜎𝑛 = 0.25, 𝜎lg𝐾0 = 1.0, and
𝜎lg b = 0.2.
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Table 5.1: Overview and results of experiments conducted by Bauser et al. (2020) for se-
lected scenarios. The center column group lists the properties of the generated
Miller scaling fields. The right column group contains the averaged results of the
experiments. The overline denotes the mean calculated from the five cases run
for each combination.

Scenario Miller Scaling Field AHFR RMSE\ |Δ𝐽 | NSE𝑗
𝜎2
b

ℓℎ/cm ℓ𝑣/cm 2D 1D 2D 1D 2D 1D 2D

Default 0.1 10 10 0.14 0.0022 0.0040 0.02 0.10 0.97 0.84
MedVar 0.2 10 10 0.18 0.0029 0.0049 0.03 0.13 0.92 0.73
HighVar 0.5 10 10 0.24 0.0051 0.0072 0.05 0.15 0.78 0.36
Horizontal 0.1 30 10 0.09 0.0021 0.0022 0.02 0.05 0.98 0.97
Vertical 0.1 10 30 0.09 0.0019 0.0041 0.01 0.06 0.97 0.92

5.2.3 Evaluation

We characterized and evaluated the predictions from the verification phase of each experi-
ment. As indicator for the relevance of lateral, two-dimensional fluxes we calculated the
average horizontal flux ratio (AHFR) from the spatial average of the absolute horizontal flux
in the top 100 cm of the domain, ⟨| 𝑗𝑥,𝑡 |⟩𝑧 , and the spatial average of the vertical flux in the
same region, ⟨| 𝑗𝑧,𝑡 |⟩𝑧 , as

AHFR =
1
𝑁𝑡

𝑁𝑡∑︂
𝑡

⟨| 𝑗𝑥,𝑡 |⟩𝑧
⟨| 𝑗𝑧,𝑡 |⟩𝑧 , (5.4)

where 𝑡 indexes the time step with respect to the measurements, and 𝑁𝑡 = 28 d/2 h = 336 is
the total number of observations in the verification phase. This value could only be obtained
for the two-dimensional synthetic truth, for all other models it would be 0. We therefore
use the value from the two-dimensional synthetic truth to characterize both the 1D and the
2D case from the same scaling field realization.

The water content root mean squared error (RMSE) is calculated by

RMSE\ =

⌜⃓⎷
1

𝑁𝑡𝑁𝑚

𝑁𝑡∑︂
𝑡

𝑁𝑚∑︂
𝑚

[︂
\ ∗𝑡,𝑚 − \𝑡,𝑚

]︂2
, (5.5)

where the index𝑚 denotes the measurement location a total number of measurements per
observation 𝑁𝑚 = 4, and where \ ∗𝑡,𝑚 and \𝑡,𝑚 are the true water content and the ensemble
mean water content at measurement location𝑚 and observation index 𝑡 , respectively.

The flux prediction is evaluated with two different measures. We calculate the relative
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cumulative flux error at a depth of 100 cm as

Δ𝐽 =

∑︁𝑁𝑡
𝑡

[︁
𝑗𝑧,𝑡 −

⟨︁
𝑗∗𝑧,𝑡

⟩︁
𝑥

]︁∑︁𝑁𝑡
𝑡

⟨︁
𝑗∗𝑧,𝑡

⟩︁
𝑥

, (5.6)

where 𝑗𝑧,𝑡 and
⟨︁
𝑗∗𝑧,𝑡

⟩︁
𝑥
are the ensemble mean and the horizontally averaged true vertical flux

for observation 𝑡 , respectively. The Nash-Sutcliffe efficiency (NSE) of the flux is calculated
by

NSE𝑗 = 1 −
∑︁𝑁𝑡
𝑡

[︁
𝑗𝑧,𝑡 −

⟨︁
𝑗∗𝑧,𝑡

⟩︁
𝑥

]︁2∑︁𝑁𝑡
𝑡

[︂⟨︁
𝑗∗𝑧,𝑡

⟩︁
𝑥
−∑︁𝑁𝑡

𝑡

⟨︁
𝑗∗𝑧,𝑡

⟩︁
𝑥
/𝑁𝑡

]︂2 . (5.7)

Thismeasure indicates the quality of the flux prediction compared to the temporally averaged
(mean) flux. All fluxes are evaluated at a depth of 100 cm.

5.3 Results and Discussion

We find that the EnKF is able to estimate effective material properties which adequately
reproduce the dynamics of the fully resolved scaling field formost cases (Table 5.1 and fig. 5.2).
The error of the water content at the measurement locations, RMSE\ , grows with the
heterogeneity of the local flow field indicated by AHFR, and is usually higher for the
respective 2D case, but generally lies below a value of 0.01 and therefore in the range of the
measurement uncertainty of TDR probes. Fluxes can also be estimated well, although there
are several severe outliers and no clear trend can be discerned. The relative cumulative
flux error Δ𝐽 of most cases lies within 10 %, but we also find several outliers with an error
of up to 50 %, apparently independent of the scenario. The range of values for Δ𝐽 slightly
increases with increasing AHFR. In most cases, the cumulative flux is underestimated. The
results for the NSE are similar. Most cases achieve an efficiency of NSE𝑗 > 0.8, indicating
that the estimated model approximates the flux in a depth of 100 cm much better than the
mean observed flux. The efficiency of 1D cases is usually slightly higher than that of the
respective 2D cases. Overall, it decreases with increasing AHFR, and several outliers are
close to, or even below, a value of NSE𝑗 = 0 that indicates the same predictive capabilities
as the mean observed flux throughout the entire verification phase.

The Horizontal and Vertical scenarios were used to investigate different structures of the
Miller similar media. Both scenarios feature the lowest mean AHFR. In case of Horizontal,
the two-dimensional medium can locally be approximated well with a vertically layered,
effectively one-dimensional medium. These experiments therefore yield the lowest observed
errors throughout all considered scenarios. In case of Vertical, mostly vertical flow channels
form through regions with high conductivity. The data assimilation produces reasonable
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Figure 5.2: Summary measures for selected scenarios of experiments conducted by Bauser et
al. (2020). The water content root mean squared error RMSE\ , relative cumulative
flux error Δ𝐽 , and flux Nash-Sutcliffe efficiency NSE𝑗 are plotted against the
average horizontal flux ratio AHFR of the respective 2D case, which measures
the heterogeneity of the flow field. Therefore, there are two values plotted for
each case and AHFR: Rectangles denote the values for the 1D cases and circles
denote the values for the 2D cases. Colors indicate the scenario, with scenario
settings listed in table 5.1. Gray lines highlight the ideal values Δ𝐽 = 0 and
NSE𝑗 = 1, and the critical value NSE𝑗 = 0 below which the mean flux is a better
description of the real flux than the estimated flux.

66



5.3 Results and Discussion

results if the soil profile does not match a single channel exactly, but if a representative
amount of lateral fluxes between the channels can be observed.

In the following, I extended the analysis of the two cases the study by Bauser et al. (2020)
focused on to emphasize the results.

5.3.1 Two-Dimensional Flow

The realization of the HighVar scenario with AHFR = 0.33 has the largest AHFR observed
throughout all conducted experiments. Although the variance of the true Miller scaling field
is high with 𝜎b = 0.5, and the average horizontal flux is one third of the average vertical
flux, the error in the water content prediction is rather low with RMSE\ = 0.0058 for the
1D case and RMSE\ = 0.0078 for the 2D case. The relative cumulative flux error is also low
with Δ𝐽 = 3 % for 1D and Δ𝐽 = 2 % for 2D, but the NSE indicates a much worse predictive
capability of the flux with NSE𝑗 = 0.93 in 1D against a value of 0.27 in 2D.

In the 1D case, the water content predictions at all measurement locations follow the
true dynamics well, apart from the lowest measurement, where the water content change
caused by the last infiltration event is underestimated (Figure 5.3). In the 2D case, there are
larger errors during the first infiltration event, and the arrival time of the final infiltration
front is misjudged at all measurement locations, resulting in sharp spikes in the water
content residual. Although the ensemble spread is slightly increased in the 2D case, both
cases underestimate the uncertainty in the water content state, with the ensemble spread
not covering the synthetic truth as structural model errors manifest through increased
residuals.

The estimation results can be better understood when comparing the true and estimated
Miller scaling fields. In the 1D case, the topmost part of the estimated scaling field is very
similar to the true scaling field (Figure 5.4, top panels). This is due to the high density
of measurements and estimated scaling factors in a depth from 0 cm to 20 cm. Between
the third and the fourth measurement location (counting from the top), the true scaling
field features two layers with high scaling factor and one layer with low scaling factor,
which cannot be resolved by the reduced representation of the estimated field. The EnKF
compensates by selecting an approximately mean scaling factor in depths below 40 cm. The
resulting scaling field is able to estimate the arrival time of infiltration fronts well. As this
mean value matches the true scaling factor at the third measurement location well, the
water content prediction at this measurement works. However, the estimated value at the
fourth measurement location is higher than the true value, indicating a more coarse-grained
material than in the true field. Compared to a fine-grained material, we expect a lower
water content for the same flux magnitude in a coarse-grained material. This is precisely
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Figure 5.3: Water content predictions at the four measurement depths for the 1D and 2D
cases of the HighVar scenario with the largest AHFR value. The top panels show
the mean of the ensemble forecast (dark lines) with respective standard deviation
(shaded areas), the synthetic truth (dashed lines), and the noisy measurements
(markers). The center panels display the absolute residuals between the ensemble
mean \ and the synthetic truth \ ∗, and the lower panels show the same values
divided by the respective standard deviation 𝜎\ computed from the ensemble at
this location. The gray lines indicate the 𝜎\ - and 3𝜎\ -uncertainty ranges.
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Figure 5.4: True and estimated Miller scaling fields for the 1D and 2D cases of the HighVar
scenario with the largest AHFR value. Measurement positions are indicated by
black circles and coincide with scaling factor estimation locations. One additional
scaling factor is estimated at a depth of 0.5 cm.

what becomes visible in fig. 5.3, where the water content for the deepest measurement is
underestimated, but the arrival time of the infiltration front is estimated well.

In the 2D case, the estimated scaling factors at the measurement locations mostly follow
the true scaling factors at these locations (Figure 5.4, bottom panels). This improves the
estimation of the local retention curve and thus the water content estimations when the
system equilibrates after an infiltration has stopped. However, it worsens the estimation
of the dynamics of the infiltration events themselves. The estimated scaling field does not
account for the fine-grained regions in between the measurement locations, which cause
a channelling and lateral deviations of strong infiltration fluxes. As a consequence, the
propagation speed of the front is underestimated. Nonetheless, the evaporation from the
topmost measurement location is correctly estimated by a reduced scaling factor near the
surface. This does not represent the coarse-grained region directly above the measurement,
but the more fine-grained regions next to it, which support a higher evaporation flux. The
resulting effective representation is able to predict water contents and cumulative fluxes
reasonably well, but, as indicated by the low NSE value, the flux estimation only reaches
slightly better results than the mean flux.

The preceding arguments focus on the estimated scaling field for a description of the effective
model dynamics. But the estimated saturated hydraulic conductivity 𝐾0 and the pore size
distribution 𝑛 also have a profound effect on the dynamics. However, one can argue that the
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scaling factors have a more immediate effect on the dynamics around the locations where
they are estimated. Changes to the saturated hydraulic conductivity have less effect the
lower the fluxes are—if the domain were in hydrostatic equilibrium, the saturated hydraulic
conductivity could not be estimated. The pore size distribution 𝑛 directly affects the relation
between water content and matric head, but as a global parameter it also applies on the entire
domain. While the scaling factors similarly affect the retention curve and the dynamics,
they only have a localized effect. The latter allows them to account for unrepresented
dynamics around their estimation location, but any deviation from the true scaling factors
is immediately penalized because of their alteration of the local retention curve, at least as
long as there is no global bias. It is therefore reasonable to assume that differences between
true and estimated scaling fields are due to unrepresented heterogeneity with dynamics
that cannot be explained by adjustments to the state or the global parameters 𝐾0 and 𝑛.

5.3.2 Surface Heterogeneity and Evaporation

We further investigate the 2D case of the HighVar scenario with the highest RMSE and
the worst NSE of all conducted experiments. The water content residuals are high during
infiltration events, and the relative residual reaches values of more than six times the
ensemble spread 𝜎\ (Figure 5.5, left panels). This is a prime indicator for structural model
errors which are not represented by the ensemble uncertainty. We also note that the water
content at the lowest measurement position only reacts significantly to the last, strong
infiltration event. While the evaporation fluxes are overestimated, the infiltration fluxes are
underestimated, and the predicted dynamics generally lag the observations (Figure 5.6, left
panels).

The bad predictive performance is the result of a particular realization of the Miller scaling
field. Right above the topmost measurement, the true scaling field reaches a very low scaling
value of b = 0.09, inducing a very fine-grained medium. Additionally, the measurement is
bordered by regions with large scaling factors in the horizontal direction, inducing coarse-
grained media. The fine-grained medium at the top causes a strong evaporation flux, which
is not representative of the mean evaporation flux, and the coarse-grained regions cause a
funnel-like merger of infiltration fluxes towards the top measurements (Figure 5.7).

We created an additional experimental case by running the 2D case without estimating
the Miller scaling factor in the surface grid cell. In this modified 2D case, the estimated
scaling field was thus relaxed towards the surface. As the correlation lengths of the field are
much lower than its extensions, this better resembles the average material properties of
the synthetic truth at the surface. The modification increases the RMSE to a value of 0.014
due to fewer DOFs available to the EnKF for state optimization, but it also increases the
NSE to 0.64, reduces the cumulative flux error to 19 %, and increases the overall ensemble
uncertainty. Although the relative residuals still hint at structural model errors, they are
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Figure 5.5: Water content predictions at the four measurement depths for the 2D case of
the HighVar scenario with the worst prediction results (left) and for the same
case with the modification of not estimating the topmost Miller scaling factor
(right). The top panels show the mean of the ensemble forecast (dark lines) with
respective standard deviation (shaded areas), the synthetic truth (dashed lines),
and the noisy measurements (markers). The center panels display the absolute
residuals between the ensemble mean \ and the synthetic truth \ ∗, and the lower
panels show the same values divided by the respective standard deviation 𝜎\
computed from the ensemble at this location. The gray lines indicate the 𝜎\ - and
3𝜎\ -uncertainty ranges.
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Figure 5.7: Water content and flow field of the synthetic truth at two different times 𝑡 for
the case of the HighVar scenario with the worst prediction results. Measurement
positions are indicated by black circles. Arrows indicate flux direction and
magnitude. The color bars apply to both panels.

significantly reduced (Figure 5.5, right panels). The flux prediction in all depths also clearly
improves (Figure 5.6, right panels).

In the 2D case, the estimated water content better resembles the true water content above
the profile (Figure 5.8). The state uncertainty grows towards the surface because there are
no water content measurements available for the estimation of the scaling factor and the
observed high evaporation flux can be explained by either a large water content or a low
scaling factor. Contrary, through the scaling field relaxation, the estimated state of the
modified 2D case better estimates the average water content at the surface. This can be
considered coincidental: in the modified 2D case, the observed evaporation flux demands a
stronger gradient in the water content because the scaling factor is larger than in the 2D case.
This flux, however, is a localized effect of the heterogeneity above the measurement profile.
The enforced deviation at the surface causes the entire profile to be a worse representation
of the observed dynamics. This results in an overall increase of the state uncertainty, which,
in our case, is preferential because the uncertainty is generally underestimated.

Although fluxes between the measurement locations can be estimated, fig. 5.8 also exem-
plifies that the water content cannot, because the simplified estimated scaling field is not
able to follow the true heterogeneity. Therefore, the EnKF in our application is only able to
represent the true water content at the measurement locations. The estimated water content
provides almost no information about the true water content in unobserved locations of the
domain. Simultaneously, the horizontally averaged water content is a bad description of
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Figure 5.8: Soil hydraulic state for the regular and modified 2D case of the HighVar scenario
with the worst prediction results at time 𝑡 = 29 d. True water content and
ensemble prediction are evaluated at the center of the domain, whereas the mean
water content is the horizontal average. The shaded areas denote the respective
standard deviation. The measurement uncertainty is roughly the width of the
measurement markers.

the local water content and the associated measurements, and hence not represented in the
ensemble either.

This demonstrates the interplay of model prescription and observations used in the data
assimilation, as meaningful results can only be extracted from where the model is actually
able to represent the desired information. If a soil is locally heterogeneous, then state
forecasts are only valid where this heterogeneity is represented or estimated. Depending
on the overall material properties and the heterogeneity itself, averaging data does not
necessarily yield additional insights if localized information is requested. In case of the flux,
we seek information averaged over the entire domain. As the dominating drivers for fluxes
are gravity and the forcing at domain boundaries, it is crucial that the boundary fluxes at
the measurement profile do not deviate strongly from the average boundary conditions.
Especially evaporation, however, directly depends on the conductivity in the topmost part
of the soil. Thus, material properties that strongly deviate from the average induce non-
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representative fluxes there. If the single measurement profile is placed at such a location,
a reasonable representation of the average fluxes in the domain requires adjustments of
material properties or boundary conditions.

5.3.3 Conclusion

In this section and in the presented study we demonstrate that the soil hydraulic dynamics of
a two-dimensional domain with small-scale heterogeneity and significant horizontal fluxes
can be estimated with a one-dimensional domain and a reduced representation of small-scale
heterogeneity. The accuracy of this estimation hinges on the exact configuration. Estimation
errors become most obvious when comparing predicted against true fluxes, because the
EnKF only operates on measurements of the water content in our case. However, this
information is often difficult to obtain experimentally.

A large RMSE of the water content usually indicates a bad prediction for the flux and thus a
low NSE. We find that the relative residual of the water content, where the absolute residual
is divided by the ensemble spread, is a useful marker for structural model errors. If the
prediction ensemble represented the uncertainty correctly, the relative residual would be
<1 for approx. 68 % of the time, and <3 for approx. 99.7 % of the time, assuming the water
content states would remain normally distributed. The latter is rarely the case, but a relative
residual with values significantly larger than 3 should indicate considerable representation
errors nonetheless. We used the synthetic truth to calculate the relative residual. But it
can also be computed from the measurements, which yields the same quantity with an
additional measurement error.

The investigated case with strong surface heterogeneity demonstrates that the measurement
profile must be placed where the material properties of the soil near the surface do not
deviate strongly from the mean material properties. This should be achievable in most
experimental setups; in our example, the local length scale of the medium pore space was ten
times lower than the average length scale, and this relation directly translates to the grain
size distribution. Alternatively, local deviations above the measured soil profile can be taken
into account in the data assimilation, as we achieved in the Modified 2D case. Even strong
local deviations become less important with increasing depth, as the diffusive dynamics
decrease the discrepancies emerging through the interplay of boundary conditions and
errors in the estimation of local material properties.
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Real-world soil surfaces are rarely flat but feature a variety of shapes resulting primarily
from erosion. With DORiE’s ability to use unstructured grids, we can compute solutions
of the Richards equation on domains with slanted or hill-like topographies. This gives
new opportunities for investigating unrepresented model errors akin to the experiments
conducted in chapter 5. In the absence of a preferred wind direction, precipitation and thus
infiltration can be considered parallel to the acceleration of gravity. Therefore, a slanted
surface will have a lower (normal) infiltration flux than a horizontal one by a factor of cosa ,
where a is the slope angle of the surface. Evaporation, on the other hand, is driven by the
vapor pressure between the water phase at the surface and the surrounding air. Assuming
that the air is a sufficiently large, well-mixed compartment, evaporation is independent of
the topography and applies on any surface equally. This, however, can only be reasonably
assumed on small spatial scales. In this chapter, I want to investigate the effects of model
errors introduced through unrepresented topography of the domain by estimating soil
hydraulic states and parameters of a domain with shaped surface using a model with flat
surface in synthetic experiments.

Introducing a more complicated topography also calls for a discussion of associated pro-
cesses DORiE does not consider. In the Richards regime, any infiltration flux into a soil can
be supported by an appropriate adjustment of the matric head gradient. If the infiltration flux
exceeds the saturated hydraulic conductivity, the matric head becomes positive, indicating
that a force larger than the atmospheric pressure acts on the water phase to achieve infiltra-
tion at the boundary. Assuming that precipitation is the cause of infiltration, this force can
only be supplied by gravity acting on the infiltrating water. Therefore, fluxes exceeding the
saturated hydraulic conductivity typically imply water ponding on the surface, which in
turn causes water runoff if the surface is tilted. As entrapped air often prohibits infiltration
to saturate the soil matrix completely, runoff can be observed for lower precipitation fluxes
as well. Its effect even on the scale of small catchments is considerable, as surface runoff
was observed to contribute to total runoff by approx. 80 % for high intensity rainfall events
in semi-arid regions (van Schaik, Schnabel, and Jetten 2008).

Nonetheless, surface runoff does not need to be considered in every scenario. In a hillslope
experiment with sandy soil at the surface, Botto, Belluco, and Camporese (2018) did not
observe surface runoff when applying irrigation fluxes of 1.63 × 10−5ms−1 (1408mmd−1,
some 16 % of the estimated saturated hydraulic conductivity) for several hours. Gevaert
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et al. (2014) observed ponding and surface runoff on a sandy loam hillslope only after 22 h of
continuous irrigation of 3.33 × 10−6ms−1 (287.7mmd−1). The authors did not estimate the
saturated hydraulic conductivity, however, and possible values ranged from 7.8 × 10−6ms−1
to 1.4 × 10−4ms−1, placing the irrigation flux in a range from 2 % to 42 % of saturated
hydraulic conductivity.

In the study presented in chapter 5, the largest infiltration flux applied on a Sandy Loam
domain was 4 × 10−7ms−1 over a time span of 2 d, some 3.3 % of the saturated hydraulic
conductivity of the homogeneous reference material, cf. table 1.1. However, the scaling
field b modifies the local saturated hydraulic conductivity by a factor of b2. In the HighVar
scenario, the infiltration flux can therefore reach the saturated hydraulic conductivity at
locations with very low scaling factors. In the MedVar scenario with 𝜎2

b
= 0.2, statistically

only approx. 2.5 % of the domain has a lower saturated hydraulic conductivity than

𝐾0 = 𝐾
∗
0 · exp2

(︂
2𝜎b − 𝜎2b

)︂
= 1.34 × 10−6ms−1, (6.1)

of which the strongest applied infiltration flux was approx. 30 %. One could thus expect
ponding at these locations in the MedVar scenario, but the water could then infiltrate in
surrounding areas, as the correlation lengths of the random field are relatively short. It is
therefore reasonable to assume that the parameterization and boundary conditions of the
MedVar scenario could be applied to a tilted surface as well, without considering surface
runoff. This also relieves us from incorporating processes resulting from runoff, like water
ponding in surface depressions and erosion, which modifies the domain over time.

6.1 Synthetic Experiments

Similar to the study presented in chapter 5, I generated a synthetic truth and synthetic mea-
surements from it by applying the Richards solver of DORiE on a two-dimensional domain
with fully resolved heterogeneity. I then estimated the soil hydraulic state and parameters,
and a reduced representation of the heterogeneity using a pseudo one-dimensional model. In
this case, the synthetic truth involved a more complicated surface shape. Thus, in addition to
the heterogeneity at full resolution, the estimation model also did not represent the surface
shape. Both features led to inherently two-dimensional flow, which could not be represented
in the estimation model. Additionally, the surface itself has implications on the boundary
conditions. The measurement setup remained the same, with four measurements being
placed in depths of 9.5 cm, 19.5 cm, 39.5 cm and 79.5 cm below the surface. The settings for
the data assimilation and the reduced representation of heterogeneity by only five estimated
Miller scaling factors (at the measurement location and below the surface) with interpolation
were directly adopted for the experiments in this chapter.
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Figure 6.1: Hydraulic state and flux of the two-dimensional synthetic truth (left) and the
mean ensemble forecast (right) at time 𝑡 = 43 d for one case of the MedVarHill
scenario. Gray lines indicate the evaluation positions of the perpendicular flux
at a depth of 0 cm, 50 cm and 100 cm from the surface. Measurement positions
are indicated by black circles. Arrows indicate flux direction and magnitude. The
color bars apply to both panels.

6.1.1 Model Setup

The simulated domain had overall extensions of 2m×2.2m, with the highest elevation in the
center (Figure 6.1, left panel). Towards the left, I modeled a continuous slope reducing the
elevation to 1.8m at the left boundary. Towards the right, I chose a steeper slope, followed by
a depression and a slight upward slope towards the right boundary. The elevation difference
of the domain was nearly 50 cm. I chose the highest point of the domain to have a depth of
𝑧 = 0m, meaning that other parts of the surface were located at positive depths.

I applied the same boundary conditions as in the previous chapter, cf. section 5.2.1. Only
the outflow boundary condition, which modeled evaporation, had to be adjusted because of
the elevation difference. Applying a constant matric potential𝜓𝑚 on a tilted surface would
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Figure 6.2: Instance of a surface-
distorted Miller scaling field
used in the scenario Shifted.
This is the result of a mod-
ified evaluation of a scal-
ing field with axially parallel
anisotropy. The applied shift
causes the heterogeneous pat-
tern to follow the surface in
low depths, and recovers the
original anisotropy towards
the bottom of the domain.

induce a gradient parallel to the boundary due to changes in the gravitational potential𝜓𝑔.
However, the atmospheric forcing induces a (total) fluid potential𝜓𝑤 which, in the soil, is
the sum of the matric potential and the gravitational potential (Roth 2012),

𝜓𝑤 = 𝜓𝑚 +𝜓𝑔 = ℎ𝑚𝜌𝑔 − 𝑧𝜌𝑔. (6.2)

Assuming a constant fluid potential in the atmosphere over the entire domain, this yields
a boundary condition potential𝜓𝑚 which is in hydraulic equilibrium with itself, meaning
that the boundary condition only induces fluxes perpendicular to the boundary. With
the original boundary condition value 𝑢𝐷 to be applied at the surface, I therefore chose a
modified boundary condition of

𝑢 ′𝐷 (𝑧) = 𝑢𝐷 + 𝑧. (6.3)

The infiltration boundary conditions were adjusted to the surface as well. I envisaged the
cause of the infiltrating water being precipitation or irrigation. Assuming negligible wind,
these fluxes apply parallel to the gravitational acceleration and are measured with respect
to a unit area. Neumann boundary condition fluxes, however, are applied perpendicular to
the boundary. If a surface is tilted by an angle a , one has to multiply the irrigation flux by
a factor of Δ = cosa to ensure that the amount of infiltrated water per unit area remains
constant over the domain. Alternatively, one can compute this factor with the scalar product
of the boundary unit normal vector and the unit normal vector in direction of gravitational
acceleration, Δ = |�̂�𝐹 · �̂� |. DORiE supports this adjustment via a simple key in the Neumann
boundary condition definition.

Like in the last chapter, I chose the only difference between all cases to be the Miller scaling
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6 Additional Effects of Unrepresented Topography

field used when simulating the synthetic truth. In a first step, I generated new fields covering
the now extended 2m×2.2m domain, yielding five cases of theMedVarHill scenario. DORiE
only accepts rectangular scaling fields and applies them on the field spanned by the domain
maxima by default, which simply disregards field values that lie outside the mesh. In a
separate scenario, I created scaling fields with locally varying anisotropy, as opposed to the
anisotropy characterized by axially parallel, vertical and horizontal correlation lengths used
until now. To that end, I first generated a high-resolution scaling field with axially parallel
anisotropy on a 3m × 3m domain. I then extracted a portion of the size of the simulated
domain while applying distortion. With the original scaling field b , the values at width 𝑥
and depth 𝑧 were given by

b ′(𝑥, 𝑧) = b (𝑥, 𝑧 ′(𝑥, 𝑧)) , (6.4)

with the shifted evaluation depth

𝑧 ′(𝑥, 𝑧) = 2.2m − 𝑧
2.2m⏞ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ⏞

decrease with depth

·
shift according to surface⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟
(𝑆 (𝑥) − 0.2m) + 0.5m⏞⏟⏟⏞

evaluation offset

, (6.5)

where 𝑆 (𝑥) is the depth of the surface at width 𝑥 . This vertical shift achieves that the
local anisotropy of the field is axially parallel to the surface tangent and normal. The shift
is linearly reduced with increasing depth, reaching a value of zero at the lower domain
boundary. The additional offset is used to avoid evaluating the original field b outside its
bounds. This procedure produced a field with anisotropic statistical properties. For the
original scaling field, I chose a larger horizontal correlation length of ℓℎ = 20 cm to achieve
a layer-like pattern while avoiding the situation where the medium appears locally layered,
as in the Horizontal scenario of chapter 5. At the same time, this choice of the horizontal
correlation length also avoided dominantly vertical features in the shifted field. A resulting
field used to compute the synthetic truth is displayed in fig. 6.2, and the scenario was named
ShiftedHill.

As the FV scheme of DORiE cannot be used on unstructured grids, I computed the two-
dimensional synthetic truth and the synthetic measurements using the DG scheme with
an unstructured grid built with the GMSH application (Geuzaine and Remacle 2009). Its
simplex grid elements had an average edge length of 1 cm. The grid for the ensemble filter
forward model was extended to span the domain of 2m×2.2mwith a vertical grid resolution
of ℎ𝑇 = 1 cm. This model used the FV scheme for reducing the computational cost and
to avoid failing forecasts after state updates, as discussed in section 4.3. In this series of
experiments, I did not compute the one-dimensional control cases, but instead computed a
single two-dimensional Hill control case without heterogeneity to investigate the effects of
unrepresented topography alone and compare it to the cases with heterogeneity.
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6.2 Results and Discussion

For the initial condition of the synthetic truth I dropped the 30 d spin-up phase implemented
by Bauser et al. (2020) and instead computed a stationary solution from an infiltration flux
of 5 × 10−9ms−1 (0.432mmd−1) into the domain. This feature was not yet implemented in
DORiE at the time the experiments discussed in chapter 5 were conducted and significantly
reduced the computational cost for the initial condition. While the solution of the stationary
problem is not equivalent to that of the spin-up simulation, it achieves a similar initial
condition: the domain is not in hydrostatic equilibrium, but the current fluxes are negligible
with respect to the boundary conditions applied during the assimilation and verification
phases of the experiments. The initial guess for the water content in the data assimilation
was again achieved by interpolating synthetic measurements of the initial condition and
distorting each state with localized values drawn from an unbiased normal distribution
(Section 5.2.2).

6.1.2 Evaluation

For evaluating the results I used the quantities and descriptors AHFR, RMSE\ , Δ𝐽 , and
NSE𝑗 , cf. section 5.2.3 for the definitions. The shaped surface present in the synthetic truth,
however, required a change in the evaluation of the true flux used in the computation of
Δ𝐽 and NSE𝑗 . The one-dimensional model used in the estimation does not account for the
surface shape. Thus, fluxes will be vastly different when comparing them at the same depth
𝑧 because of different distances to the surface, where infiltration and evaporation applies.
For a sensible comparison, I evaluated the true fluxes at constant depths from the surface
(Figure 6.1) by averaging the flux component normal to the surface 𝑗⊥ over the surface curve
length 𝑠 . I denote this averaged normal flux by ⟨ 𝑗⊥⟩𝑠 , changing the definition of the relative
cumulative flux error to

Δ𝐽 =

∑︁𝑁𝑡
𝑡

[︁
𝑗⊥,𝑡 −

⟨︁
𝑗∗⊥,𝑡

⟩︁
𝑠

]︁∑︁𝑁𝑡
𝑡

⟨︁
𝑗∗⊥,𝑡

⟩︁
𝑠

, (6.6)

and that of the flux NSE to

NSE𝑗 = 1 −
∑︁𝑁𝑡
𝑡

[︁
𝑗⊥,𝑡 −

⟨︁
𝑗∗⊥,𝑡

⟩︁
𝑠

]︁2∑︁𝑁𝑡
𝑡

[︂⟨︁
𝑗∗⊥,𝑡

⟩︁
𝑠
−∑︁𝑁𝑡

𝑡

⟨︁
𝑗∗⊥,𝑡

⟩︁
𝑠
/𝑁𝑡

]︂2 , (6.7)

respectively. In the one-dimensional estimation model, the flux perpendicular to the surface
is equivalent to the vertical flux, 𝑗⊥ ≡ 𝑗𝑧 .
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Figure 6.3: Summary measures for experiments conducted using unrepresented heterogene-
ity and topography. The water content root mean squared error RMSE\ , relative
cumulative flux error Δ𝐽 , and flux Nash-Sutcliffe efficiency NSE𝑗 are plotted
against the average horizontal flux ratio AHFR, which measures the heterogene-
ity of the flow field. Colors indicate the scenario. Filled markers denote the cases
of this study, and outlined markers denote three scenarios from chapter 5 for
comparison. Gray lines highlight the ideal values Δ𝐽 = 0 and NSE𝑗 = 1.
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6.2 Results and Discussion

Table 6.1: Overview and results of experiments conducted using unrepresented heterogene-
ity and topography. The center column group lists the properties of the generated
Miller scaling fields. (★) denotes the properties of the original scaling field before
shifting was applied. The right column group contains the averaged results of the
experiments. The overline denotes the mean calculated from the five cases run
for each combination. (†) indicates that no mean was taken as only a single value
was given. Results for MedVar, Horizontal, and Vertical scenarios are taken from
chapter 5 and listed for comparison.

Scenario Miller Scaling Field AHFR RMSE\ Δ𝐽 NSE𝑗
𝜎2
b

ℓℎ/cm ℓ𝑣/cm
Hill 0.0 / / 0.06† 0.0053† 0.11† 0.88†
MedVarHill 0.2 10 10 0.21 0.0058 −0.04 0.59
ShiftedHill 0.2★ 20★ 10★ 0.20 0.0060 0.08 0.68

MedVar (2D) 0.2 10 10 0.18 0.0049 −0.13 0.73
Horizontal (2D) 0.1 30 10 0.09 0.0022 −0.05 0.97
Vertical (2D) 0.1 10 30 0.09 0.0041 −0.06 0.92

6.2 Results and Discussion

The cases from the MedVarHill and ShiftedHill scenarios are best compared to the MedVar
scenario of chapter 5, which featured the same scaling field variance. We find that the
hill-shaped surface in the synthetic truth increases the horizontal flux component and thus
the overall AHFR, with mean values of 0.2 and 0.21 for ShiftedHill and MedVarHill against
values of 0.18 for MedVar and 0.25 for HighVar (Table 6.1). The RMSE of the water content
is increased and the NSE of the flux is decreased, indicating a worse predictive performance
of the estimated model. Similar to the AHFR, the gray mean NSE𝑗 for both new scenarios
lies roughly in between the values computed for MedVar and HighVar. Nonetheless, the
mean relative cumulative flux error Δ𝐽 lies comparably close to zero. The tendency in the
measures is similar to the ones reported in chapter 5 (Figure 6.3). The RMSE of the water
content generally increases with increasing AHFR, while the NSE of the flux decrease. The
conducted cases show no clear tendency in the relative cumulative flux error, but its spread
of values for a single scenario is large with a range of approx. 30 % and 40 % in the ShiftedHill
and MedVarHill scenarios, respectively. The single case with homogeneous mean in the
Hill scenario has a low AHFR of 0.06 resulting only from the horizontal flux components of
the infiltration and evaporation boundary conditions. With an RMSE\ of 0.0053, a relative
cumulative flux error Δ𝐽 = 11 %, and a flux NSE of 0.88 it yields nearly equivalent results to
the other scenarios of this section with heterogeneous domain.

83



6 Additional Effects of Unrepresented Topography

Although AHFR and RMSE\ are similar, the estimation in the ShiftedHill scenario yields a
significantly better flux NSE than in the MedVarHill scenario, with NSE𝑗 = 0.68 against a
value of 0.59. This can be explained with the heterogeneous soil structure following the
surface shape. In the upper part of the domain, the heterogeneity forms layers effectively
parallel to the surface. Fine-grained layers divert strong infiltration fronts in directions
parallel to the surface, whereas coarse-grained layers block evaporation from center regions
of the hill. Both phenomena reduce effects from the surface shape on the measurements
and therefore make the one-dimensional model a better representation of the observed
dynamics. One could expect that the above effects would be inverted if the measurements
were placed below the hill slopes, or especially below the depression towards the right
boundary of the domain, where infiltration fluxes from below the slopes are expected to be
converging.

With these results, I conclude that data assimilation of a two-dimensional, heterogeneous
domain with complicated topography is possible with a one-dimensional model and a re-
duced representation of heterogeneity. The errors in the estimation of water content and
fluxes increase compared to scenarios which only feature unrepresented heterogeneity, but
in a similar way as if only the heterogeneity was increased. In the following subsections, I
will investigate how to improve the flux estimation in scenarios with unrepresented topog-
raphy and heterogeneity, and attempt to combine results from all experiments presented in
chapter 5 and this chapter.

6.2.1 Modeling of Evaporation

The boundary condition applied in the one-dimensional estimation model was chosen to
represent the boundary condition directly above the measurement profile of the synthetic
truth. While the adjusted infiltration boundary conditions are equivalent, the evaporation
boundary condition of the synthetic truth is adjusted to account for the surface shape and
decreases with increasing depth of the surface. Therefore, the estimation model applies a
stronger outflow boundary condition through a lower matric head and generally overesti-
mates evaporation. This has a profound effect on the estimation of the flux, resulting in
a flux NSE of 0.88 and a cumulative flux error Δ𝐽 of 11 % in the Hill scenario, where the
synthetic truth was a homogeneous domain.

The average depth of the topography depicted in figs. 6.1 and 6.2 is 𝑧 = ⟨𝑆 (𝑥)⟩ ≈ 24.24 cm.
To better resemble the mean evaporation from the domain modeled in the synthetic truth, I
adjusted the outflow boundary condition of the estimationmodel by reducing the initial value
from ℎ𝑚 = 0m to ℎ𝑚 = 24.24 cm while maintaining the temporal increase, and repeated a
single experimental case of the MedVarHill scenario. This particular case is characterized
by an AHFR of 0.12 and the estimation results were RMSE\ = 0.011, Δ𝐽 = −25 %, and
NSE𝑗 = 0.63 without modified boundary condition.
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Figure 6.4: Water content predictions at the four measurement depths for the original and
modified boundary conditions of one case of the Hill scenario. The top panels
show the mean of the ensemble forecast (dark lines) with respective standard
deviation (shaded areas), the synthetic truth (dashed lines), and the noisy mea-
surements (markers). The center panels display the absolute residuals between
the ensemble mean \ and the synthetic truth \ ∗, and the lower panels show the
same values divided by the respective standard deviation 𝜎\ computed from the
ensemble at this location. The gray lines indicate the 𝜎\ - and 3𝜎\ -uncertainty
ranges.
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With the reduced outflow boundary condition the results improved to RMSE\ = 0.010,
Δ𝐽 = −10.6 %, and NSE𝑗 = 0.90, indicating a slight improvement in the forecast of the water
content, but a significant improvement one for the flux prediction. The most notable change
was in the ensemble spread 𝜎\ , which increased by a factor of > 4 (Figure 6.4). This meant
that the relative residual dropped into the 3𝜎\ -range, indicating that the model correctly
represented model errors in the state uncertainty. The increase in the ensemble spread was
achieved by the state inflation. Compared to the original evaporation boundary condition,
the modified, averaged boundary condition provides a worse description of the evaporation
right above the measurement profile. The increased matric head applied means that the
evaporation flux in the estimation model starts later than in the synthetic truth (Figure 6.5).
This increases the deviation between measurements and estimated state in the topmost
parts of the soil. The EnKF reacts to this discrepancy using the inflation. Increasing the
ensemble spread, this lets the filter adjust the state to the measurement values which cannot
be explained by the dynamics of the estimation model. As the modified outflow boundary
condition is a better description of the average evaporation from the true domain, the flux
residual was significantly reduced.

These results emphasize the importance of the inflation method used in the EnKF. It is
required not only to adjust the estimated state to measurements that cannot be explained by
the modeled dynamics, but also for a sensible estimation of the state uncertainty, which is
encoded in the ensemble spread. Bauser et al. (2018) already stressed and demonstrated that
a specialized inflation method is key for achieving valuable estimation results from models
with unrepresented model errors. Their inflation method, which is also applied in the
EnKF used in all experiments of this thesis, features a spatio-temporal adaptation based on
deviations between measurements and the mean ensemble state. The authors point out that
this is an important feature because for data assimilation in soil hydrology, inflation methods
must be able to locally and rapidly increase and decrease ensemble inflation. Apparently,
temporally short increases of inflation are sufficient to resolve most discrepancies between
estimation model and measurements due to unrepresented heterogeneity and topography.
Because the applied boundary conditions are the same as in the synthetic truth, errors in
the water content are quickly accounted for by adjusting soil hydraulic parameters, local
scaling factors, and the water content state itself. The inflation then quickly decreases, thus
underestimating the model error. The modified boundary condition, on the other hand,
produces a temporally extended deviation, which induces longer periods of inflation during
the assimilation phase. This results in a broader ensemble at the end of that phase and
consequently also in the verification phase.

One could thus interpret the improved representation of uncertainty as artifact of an
artificially increased inflation. With respect to the observations, the modified boundary
condition increased the discrepancy between synthetic truth and estimation model. This
yielded a stronger and more continuous signal to increase inflation, which ultimately
improved the estimation. These findings emphasize the need for the right amount and
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Figure 6.6: Flux Nash-Sutcliffe efficiency NSE𝑗 plotted against the water content root mean
squared error RMSE\ (left) and normalized root mean squared error NRMSE\
(right) for 2D cases of all experiments discussed in chapters 5 and 6, except for the
single case with negative NSE𝑗 discussed in section 5.3.2. The gray line indicates
the ideal value of NSE𝑗 = 1.0.

duration of inflation expressed by Bauser et al. (2018), which depends on the model and the
application. In our case, a temporally less adaptive inflation method generally might have
yielded better results, especially in terms of estimated model uncertainty. Analogous to the
findings in section 5.3.2, we can also conclude again that the correct representation of the
boundary conditions over the entire domain improve the estimation result.

6.2.2 Overall Estimation and Forecast Accuracy

The nature of the synthetic experiments discussed and conducted within this thesis allowed
for comparisons of different quantities between the synthetic truth and the ensemble states
of the simplified model used for assimilation and forecast. This enabled discussions on the
performance of the estimation and the quality of the forecast. In the analysis, I focused
on the accuracy of the flux prediction because the flux is a better descriptor of the overall
dynamics than the water content at the measurement locations. But in a real world scenario,
the information on the true flux will hardly be available. I therefore studied the quantities
retrievable from the measurements alone to find relationships between them and the flux
forecast accuracy.
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Figure 6.7: Matric head root mean squared error RMSEℎ𝑚 plotted against the water content
root mean squared error RMSE\ (left) and normalized root mean squared error
NRMSE\ (right) for 2D cases of all experiments discussed in chapters 5 and 6,
except for the single case with negative flux Nash-Sutcliffe efficiency NSE𝑗
discussed in section 5.3.2. Marker colors indicate NSE𝑗 and marker sizes denote
the respective absolute value of the relative cumulative flux error Δ𝐽 ranging
from 0.7 % to 39.3 %.

The ensemble spread in a dimension of the EnKF state vector gives the estimation accuracy
of the state in this particular dimension. Its value can be interpreted as the (inverse)
confidence in the currently estimated state and thus as the estimated uncertainty in this
state considering the estimation model, the measurements, and possibly unrepresented
model errors. As speculated by Bauser et al. (2020) and in section 5.3.3, an error between
estimated state and measurements that has been normalized based on the ensemble spread
could be a useful indicator for the estimation accuracy. I therefore define the normalized
root mean squared error (NRMSE) of the water content as

NRMSE\ ≔

⌜⃓⎷
1

𝑁𝑡𝑁𝑚

𝑁𝑡∑︂
𝑡

𝑁𝑚∑︂
𝑚

[︄
\ ∗𝑡,𝑚 − \𝑡,𝑚
𝜎\,𝑡,𝑚

]︄2
, (6.8)

where 𝜎\,𝑡,𝑚 is the standard deviation of the water content state at time 𝑡 and measurement
location𝑚 in the state ensemble.

If the ensemble spread was large enough to accurately represent the deviations between the
ensemble mean and the truth, we would expect that NRMSE\ ≤ 1. However, such a value is
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only reached in a single case from all discussed experiments, which affirms the preceding
conclusion that the state ensemble generally underestimates the uncertainty (Figure 6.6).
We find that RMSE\ and NRMSE\ alone are not able to indicate a tendency for the flux NSE
and the cumulative flux error. While experimental cases with very low values of RMSE and
NRMSE also have a flux NSE close to one, the NSE𝑗 may range from 1 to nearly 0 for any
observed RMSE value. Still, a low NSE𝑗 also implies a low cumulative flux error |Δ𝐽 |.

While fluxes inside the soil are difficult to observe, measurements of the matric potential
at specific locations are possible, e.g. with tensiometers. Therefore, it is experimentally
feasible to use water content measurements for data assimilation, as done in the experiments
discussed in this thesis, and then verify the results by additionally using measurements of
the matric potential. Analogous to the water content RMSE, I define the matric head RMSE
for our setup as

RMSEℎ𝑚 ≔

⌜⃓⎷
1

𝑁𝑡𝑁𝑚

𝑁𝑡∑︂
𝑡

𝑁𝑚∑︂
𝑚

[︂
(ℎ∗𝑚)𝑡,𝑚 − (ℎ𝑚)𝑡,𝑚

]︂2
, (6.9)

where (ℎ∗𝑚)𝑡,𝑚 and (ℎ𝑚)𝑡,𝑚 indicate the true and mean estimated matric head at time 𝑡 and
measurement location𝑚, with said locations being the same as for the water content. Both
values are computed by inserting the respective water content value in the inverse of the
retention curve, eq. (1.13), using the true or estimated material properties and scaling factors
at location𝑚.

For any RMSE\ , the resulting RMSEℎ𝑚 can take a wide range of values (Figure 6.7). Nonethe-
less, these values are relatively small, as all considered experiments yield RMSEℎ𝑚 < 20 cm.
Combining the results for NRMSE\ , RMSEℎ𝑚 , NSE𝑗 , and |Δ𝐽 | indeed reveals a clearer con-
nection: The accuracy in the flux prediction is generally high if both NRMSE\ and RMSEℎ𝑚
are low. For the experiments discussed in this thesis, we find that NSE𝑗 > 0.5 for all cases
with NRMSE\ < 2 and RMSEℎ𝑚 < 9 cm. Nonetheless, high flux NSE values are also possible
for higher RMSE values. While these results only include the MedVarHill and ShiftedHill
scenarios with original evaporation boundary condition, we can assume that repeating the
cases with the modified boundary condition matches this relation: through the increased
inflation and ensemble spread, the NRMSE\ will be significantly decreased, while the NSE𝑗
will be increased.

I conclude that the RMSE of the assimilated variable alone is an insufficient descriptor of the
estimation accuracy and additional quantities have to be measured and compared. This can
be explained with the basic principle of the EnKF, which aims to minimize discrepancies
between the ensemble of estimated states and measurements based on correlations. As the
ensemble spread and thus the model uncertainty is generally underestimated, the NRMSE
alone cannot give more insight into the accuracy either. However, my analysis indicates
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that the results based on water content measurements can be combined with observations
of other quantities to yield a better estimation of the accuracy and predictive capabilities of
the EnKF results.
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Summary

The physics of soil water flow describes the essential hydrological process for many ecosys-
tem services at a key terrestrial interface. The complicated multi-scale architecture of soils
and their highly non-linear fluid dynamics require robust numerical solvers and a good
knowledge of material properties to compute reliable solutions. My research focused on the
development, implementation, and analysis of tools for numerically solving the Richards
equation and for estimating soil hydraulic states and parameters. In this thesis, I analyzed
the DUNE Operated Richards Equation Solving Environment (DORiE; Riedel et al. 2020a) for
computing soil water flow with the finite volume (FV) and the discontinuous Galerkin (DG)
method, and applied it in synthetic experiments to research the accuracy and robustness of
a data assimilation method when it encounters unrepresented model errors.

Using DORiE, I investigated the accuracy and performance of FV and DG discretization
schemes for solving the Richards equation. DG schemes generally achieve a much higher
accuracy than the FV method. They can be applied on unstructured grids of various shapes
and also support local adaptive grid refinement (h-refinement), which is implemented in
DORiE. This flexibility increases their computational cost and thus reduces their efficiency,
especially in applications where accuracy is less important. In line with the related literature,
I find that the DG discretization is not generally advantageous to the FV discretization
of the Richards equation. The DG scheme is preferred when highly accurate solutions or
solutions on unstructured grids with possibly complicated domain shapes are required. If
the domain can be approximated by a regular grid and solutions are not required to be highly
accurate, the FV method is favorable. Like similar studies, my benchmarks also indicate that
h-refinement might bridge this gap, given that its algorithm is improved and optimized. As
presented, DORiE implements a versatile Richards solver for various applications, including a
DG discretization with h-refinement as unique feature among comparable software packages.
Future work on DORiE could focus on improving the numerics to increase efficiency and
broaden use cases of the DG method, e.g. by implementing p-refinement. This would make
DORiE more suitable for the integration in other frameworks for inverse modeling, data
assimilation, or large-scale hydrology.

As measurements of soil hydraulic states are typically noisy and scarce, robust methods for
combining observations and model forecasts are needed for an accurate estimation of soil
water flow and material properties. With several associated processes found in soils, models
for soil water flow typically entail a considerable representation error. This is also the case
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for the process of soil water movement itself: any model with a limited resolution is unable
to represent the complete multi-scale, heterogeneous soil architecture. In a real-world
scenario, this structure can typically only be estimated.

I therefore investigated the robustness and accuracy of an ensemble Kalman filter (EnKF;
Evensen 2003) with specializations for soil hydrology using synthetic experiments. Some
findings of this research on the effects of unrepresented small-scale heterogeneity were
already published by Bauser et al. (2020). I revisited and further analyzed these results,
and I expanded the research effort with experiments including unrepresented topography
as additional model error. The main setup of all experiments was a two-dimensional,
heterogeneous domain containing a one-dimensional soil profile, in which four synthetic
measurements were conducted. This synthetic truth was then assimilated using a one-
dimensional model with reduced representation of heterogeneity. The combined results
show that the specialized EnKF is capable of estimating soil hydraulic states, water fluxes,
andmaterial properties even if topography and small-scale heterogeneity are not represented
in the assimilation model. The estimation yields effective material properties which do not
necessarily resemble the true properties but account for the errors in the representation.
However, further analysis and modification of two experimental cases demonstrated that an
accurate prediction of fluxes in the estimated domain requires boundary conditions applied in
the estimationmodel to approximate the boundary conditions throughout this domain. In the
given setup, forecast fluxes are sensitive to errors in the boundary condition representation,
but the EnKF is able to compensate discrepancies between the assimilated soil hydraulic
state and the boundary conditions by adapting the effective material properties. Using
the presented methods, a one-dimensional model is capable of representing the essential
dynamics of a two-dimensional, heterogeneous flow field with complicated topography.

The accurate representation of uncertainty remains an open question. While the EnKF was
able to assimilate the observed dynamics in the majority of experimental cases discussed
in this thesis, it usually underestimated the state uncertainty. This is a problem for real-
world applications, where estimation results are difficult to verify and a low uncertainty
in the filter state would lead to a high confidence in said results. One cause of the low
uncertainty is the low influence of inflation in the experimental cases. The deviation from
unrepresented heterogeneity and topography could usually be resolved too quickly to
demand a continuous inflation. While the inflation method could be improved to better
detect such errors, a possibly more viable option for increasing the uncertainty is to add an
explicit model error. As such an error is specific to the application and the model used, it
was set to zero in all discussed experiments. However, its estimation is the target of ongoing
research in soil hydrology, and recent studies suggest that it can be estimated with purely
data-driven methods. My analysis further indicates that additional observables—primarily
the matric potential—can be used to verify the results if they have not been used for the
data assimilation itself.
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