
Geoscience Faculty Publications Geoscience 

1-1-2020 

Mildly Hydrophobic Biobased Mulch: A Sustainable Approach to Mildly Hydrophobic Biobased Mulch: A Sustainable Approach to 

Controlling Bare Soil Evaporation Controlling Bare Soil Evaporation 

Jesse Lee Barnes 
University of Nevada, Las Vegas 

Michael John Nicholl 
University of Nevada, Las Vegas, michael.nicholl@unlv.edu 

Follow this and additional works at: https://digitalscholarship.unlv.edu/geo_fac_articles 

 Part of the Sedimentology Commons 

Repository Citation Repository Citation 
Barnes, J., Nicholl, M. J. (2020). Mildly Hydrophobic Biobased Mulch: A Sustainable Approach to 
Controlling Bare Soil Evaporation. Vadose Zone Journal, 19(1), 
http://dx.doi.org/10.1002/vzj2.20047 

This Article is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV 
with permission from the rights-holder(s). You are free to use this Article in any way that is permitted by the 
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from 
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself. 
 
This Article has been accepted for inclusion in Geoscience Faculty Publications by an authorized administrator of 
Digital Scholarship@UNLV. For more information, please contact digitalscholarship@unlv.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Nevada, Las Vegas Repository

https://core.ac.uk/display/389407408?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/geo_fac_articles
https://digitalscholarship.unlv.edu/geo
https://digitalscholarship.unlv.edu/geo_fac_articles?utm_source=digitalscholarship.unlv.edu%2Fgeo_fac_articles%2F457&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1079?utm_source=digitalscholarship.unlv.edu%2Fgeo_fac_articles%2F457&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1002/vzj2.20047
mailto:digitalscholarship@unlv.edu


Received: 13 March 2020 Accepted: 19 May 2020

DOI: 10.1002/vzj2.20047

Vadose Zone Journal

ORIG INAL RESEARCH ARTICLES

Mildly hydrophobic biobased mulch: A sustainable
approach to controlling bare soil evaporation

Jesse Lee Barnes1 Michael John Nicholl2

1 Water Resources Management Graduate
Program, Univ. of Nevada, Las Vegas, 4505
S. Maryland Parkway, Las Vegas, NV
89154, USA
2 Dep. of Geoscience, Univ. of Nevada, Las
Vegas, 4505 S. Maryland Parkway, Las
Vegas, NV 89154, USA

Correspondence
MichaelNicholl,Dep. ofGeoscience,Univ.
ofNevada, LasVegas, 4505 S.Maryland
Parkway, LasVegas,NV89154,USA.
Email:michael.nicholl@unlv.edu

Abstract
Mulching with polyethylene film is the conventional approach to decrease evap-
orative water loss from agricultural soils, but it is not environmentally sustain-
able. In this study, a laboratory experiment was conducted to test the potential
utility of partially polymerized soybean oil (PSO) coated sands as a surface treat-
ment to reduce bare soil evaporation. Evaporation was tracked for 23.8 d from
saturated sand columns treated with a surface layer (1 or 2 cm) of either coated
medium sand (MS-PSO) or coated coarse sand (CS-PSO). The water drop pene-
tration time (WDPT) was used to assess the hydrophobicity of fresh PSO-coated
sands; the saturated hydraulic conductivity (Ks) and particle density (ρs) were
measured as well. The WDPT was also tested on MS-PSO and CS-PSO samples
aged in four separate environmental conditions for 20–21 d. Both PSO-coated
sands were mildly hydrophobic, and the surface treatment layers reduced evap-
orative loss by 83–96% over bare soil, which is similar to previous work using
extremely hydrophobic chemically treated sands. Freshly coated MS-PSO had a
higher WDPT score and lower Ks than CS-PSO. After the environmental aging
tests, the MS-PSO and CS-PSO samples remained mildly hydrophobic. Notably,
CS-PSO had a low initial WDPT (∼1.09 to ∼2.58 s) and a high Ks (2.66 × 10−1 cm
s−1), suggesting coarse PSO-coated sands will permit infiltration. Given these
findings, PSO-coated sand has the potential to be developed into a sustainable
alternative to polyethylene film mulch.

1 INTRODUCTION

Application of a surface cover (mulch) is a widely used
approach to decrease evaporative water loss from bare
agricultural soil (e.g., Adhikari et al., 2016; Kader, Senge,
Mojid, & Ito, 2017). In recent decades, polyethylene film

Abbreviations: CS, narrow-distribution, washed coarse sand; MS,
narrow-distribution, washed medium sand; PF, polyethylene film
mulch; PSO, partially polymerized soybean oil.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
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(PF) mulch has largely supplanted low-cost biodegrad-
able alternatives (e.g., straw, grass clippings) because its
usage leads to increased crop yields and water conserva-
tion (He, Wang, Li, & Malhi, 2018; Kader et al., 2017). Use
of PF mulch has adverse side effects on agricultural effi-
ciency, including restricting infiltration, increasing runoff,
and limiting soil–atmosphere gas exchange (Kader et al.,
2017). In addition, the production, use, and disposal of PF
mulch incur substantial adverse environmental impacts
(Steinmetz et al., 2016). Of particular concern is the release
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ofmicroplastics into the soil profile, hydrosphere, and food
chain. These issues suggest a need for an environmentally
neutral alternative to PF mulch that significantly inhibits
bare soil evaporation while allowing the free passage of
both gases and liquid water (rain, irrigation).
Bare soil evaporation occurs through two distinct mech-

anisms or stages (e.g., Or, Lehmann, Shahraeeni, & Shokri,
2013). In Stage 1, capillary rise brings water to the soil sur-
face, where it evaporates directly into the atmosphere. For
drier conditions, the evaporation surface recedes down-
wards into the soil profile (Stage 2), and water vapor must
diffuse upwards through the overlying soil to reach the
atmosphere (Lehmann, Assouline, & Or, 2008; Shokri &
Or, 2011). Under Stage 1 conditions, the evaporative flux
(Ef) is expected to approach the atmospheric evaporative
demand (Ed), which is a function of relative humidity and
temperature (e.g., Shokri & Or, 2011). Although Ed also
drives Stage 2 evaporation, the need for diffusional trans-
port to the soil surface causes Ef to be substantially lower
(Shokri, Lehmann, & Or, 2009). Soil parameters play a sig-
nificant role in that fine-grained hydrophilic soils exhibit
substantial capillary rise (Stage 1), whereas large and well-
connected soil pores promote Stage 2 diffusion (Lehmann
et al., 2008; Or et al., 2013).
Usage of PF lowers evaporation for both mechanisms

(Stages 1 and 2) by decoupling soil water from Ed and cre-
ating a humid environment beneath the film. An alternate
approach would be to restrict the more significant Stage
1 mechanism by blocking capillary rise to the soil surface
with a hydrophobic (water-repellant) mulch. Experiments
in sand-filled columns (Shokri, Lehmann, & Or, 2008) and
drip-irrigated pots (Gupta et al., 2015) have shown that a
thin (<3 cm) surface layer of chemically treated hydropho-
bic sand can reduce evaporative water loss by up to 90%
relative to untreated soil. From a mechanistic standpoint,
the evaporation plane rapidly drops to the base of the
hydrophobic layer, effectively skipping Stage 1 and going
directly to the much less efficient Stage 2 mechanism.
The silane-based treatments used in previous work result
in extreme hydrophobicity (Chan & Lourenço, 2016) and
would be of limited utility for large-scale agriculture; poly-
merized plant oils (de Espinosa &Meier, 2011) have poten-
tial as a low-cost and renewable alternative. Preliminary
laboratory tests have shown it possible to create a loose
hydrophobic mulch by coating agricultural waste prod-
ucts with fast-drying linseed oil that polymerizes at room
temperature (Vaicekauskaite et al., 2019). The polymeriza-
tion of slow-drying vegetable oils (e.g., soybean [Glycine
max (L.) Merr.]) can be accelerated through heat treat-
ment (Lozada, Suppes, Hsieh, Lubguban, & Tu, 2009) or
the addition of catalysts (Shogren, 2000).
Here, we test the utility of sand coated with partially

polymerized soybean oil (PSO) as a potential alternative to

Core Ideas

∙ Partially polymerized vegetable oil is used to
form a mildly hydrophobic coating on sand
grains.

∙ Performance at reducing evaporative loss is
comparable with chemically coated grains.

∙ Mildly hydrophobic coarse grains are expected
to facilitate infiltration.

∙ Coarse and fine mildly hydrophobic grains
reduce evaporative loss at a comparable rate.

∙ Coated grains may offer a potentially effective
and sustainable mulch alternative.

PF mulch for reducing evaporative loss. Individual grains
of silica sand (medium or coarse) are coated with PSO
using a thermal process, then packed into thin layers (1
or 2 cm) at the top of laboratory columns filled with
saturated hydrophilic sand. An additional column filled
with sand is used as a reference for evaporation from
bare soil. Measured data show that a surface layer of the
mildly hydrophobic PSO-coated sand leads to a signifi-
cant reduction in evaporative flux (Ef) with respect to bare
soil. Results serve as a first step towards using biobased
soil coatings as an environmentally neutral alternative to
PF mulch that not only reduces evaporative loss but also
allows free passage of liquid water, heat, and gasses.

2 MATERIALS ANDMETHODS

Individual grains of washed, narrow-distribution medium
(MS) and coarse (CS) silica (>99%) sands were coated with
PSO. The MS (0.177–0.420 mm in diam.) was prepared by
passing Quickrete medium sand through a No. 40 sieve,
washing it twice with distilled water on a No. 80 sieve, and
then oven drying it for >24 h at 100 ◦C. We applied the
same process to prepare the CS (0.841–1.68 mm in diam.)
fromQuickrete pool filter sand, substituting the No. 12 and
No. 20 sieves. Based on preliminary tests, a partial thermal
polymerization process (see Lozada et al., 2009) was used
to coat individual grains without linking them together. A
2.3-kg portion of each sand (MS or CS) was mixed into a
roughly equal volume of food-grade soybean oil (∼830 g)
and allowed to soak overnight. After draining the excess
fluid, each oil–sand mixture was cured for 1 h in a muffle
furnace preheated to 335 ◦C, then allowed to cool. Residual
liquid oil was removed from the coated sands (MS-PSO and
CS-PSO) by gently washing each batch in distilled water,
then repeating the process before allowing them to air dry.
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F IGURE 1 Conceptual design of evaporation experiments (not
to scale). Five test columns were placed on individual electronic bal-
ances (0.01- or 0.1-g precision) inside a five-sided enclosure (front face
was open to the laboratory environment). Two fan-coil units inside
the enclosure circulated constant temperature air. Three sets of sen-
sors (relative humidity [RH], temperature [T]) were suspended from
a horizontal support rod above the columns. A fourth set of sensors,
including barometric pressure (Pb)was located just outside the enclo-
sure. Sensors and scales were monitored using a National Instru-
ments LabView-based data acquisition system (DAQ)

Laboratory columns were used to test thin (1- or 2-
cm) surface layers of MS-PSO and CS-PSO as potential
treatments for reducing bare soil evaporation from the
underlying MS. Five columns were constructed by cutting
31.75-cm lengths of 3-inch (7.62-cm) Schedule 40 polyvinyl
chloride (PVC) pipe with a 7.76-cm inside diameter and
sealing each at the bottom (Figure 1). Loose-drymedia was
added to each column in∼100-g increments (Table 1), then
compacted with a 7.6-cm-diam. wooden pestle and mal-
let (after Oliviera, Demond, & Salehzadeh, 1996). The pro-
cess was repeated until the packed media reached a thick-
ness of 29.5 cm, leaving the top 1.1 cm of each column

unfilled (Figure 1). One column (labeled “bare soil”) was
filled solely with uncoated MS to act as a reference. Two
columns (labeled MS-PSO-1 and CS-PSO-1) were packed
with 28.5 cm of uncoated MS before filling the remain-
ing 1 cm with PSO-coated sand. Columns labeled MS-
PSO-2 and CS-PSO-2 contained 27.5 cm of uncoated MS
toppedwith 2 cmof PSO-coated sand. Prior to addingwater
(Table 1), each column was flooded with CO2 to reduce air
entrapment, and the surface was weighted to prevent the
possibility of the treatment layer rising. Distilled water was
then added through the base (Figure 1) until a thin, free-
standing layer covered the soil surface.
The evaporation test was conducted in an open-faced

enclosure (Figure 1). Constant-temperature air was circu-
lated within the enclosure to buffer diurnal thermal effects
and promotemixingwith the room air. Over the 23.8-d test,
the mass of each column was measured at 1-min intervals,
along with temperature (T) and relative humidity (RH)
within the enclosure. Mass change was used to calculate
the evaporative flux (Ef) exiting each column in centime-
ters per day. Measured values of RH were used to estimate
evaporative demand (Ed) inside the enclosure by assuming
a steady-state Fickian process (after Shokri et al., 2008):

𝐸d = 𝐷o 𝐶sat
1 − RH∕100

𝐿D
(1)

where Do is the diffusion coefficient for water vapor in air,
Csat is the saturated air density, and LD represents the dif-
fusion length. Variation in T during the experiment (aver-
age = 26.1 ◦C, σ = 0.1 ◦C) was sufficiently small that Do
(2.16 × 104 cm2 d−1) and Csat (2.7 × 10−4 g cm−3) were
assumed to be constant. The diffusion length (LD = 0.6 cm)
was estimated through calibration of (Equation 1) to evap-
oration from a water-filled vessel. Immediately after the
evaporation test (t = 23.8 d), each column was split ver-
tically, then sectioned in 1- to 2-cm horizontal intervals
to obtain the gravimetric moisture content (θg); a small,
unquantified amount of liquid water and MS was lost dur-
ing the sectioning process.

TABLE 1 Mass of material added to columns (medium sand [MS], treatment, water) prior to the experiment and initial saturation (S).
Mass change and percentage water loss during the 23.8-d test are also shown

Column MS Treatment Water Initial S Mass change Water loss
g cm3 cm−3 g

Bare soil 2,194.11 0.00 483.46 0.87 245.61 51
MS-PSO-1 2,106.74 93.64 525.84 0.96 14.84 2
MS-PSO-2 2,038.22 170.71 503.23 0.94 10.82 3
CS-PSO-1 2,110.22 90.70 523.22 0.95 42.10 7
CS-PSO-2 2,033.57 167.03 531.03 0.98 38.56 8

Note. Saturation was calculated from measured particle densities (ρs) for medium sand (MS), coarse sand (CS), MS coated with partially polymerized soybean oil
(MS-PSO), and CS coated with partially polymerized soybean oil (CS-PSO). All mass change is attributed to evaporation of the liquid water phase
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Water drop penetration time (WDPT) tests were used
to characterize the water repellency of the test media
(Papierowska et al., 2018). The WDPT was measured on
individual samples of the CS-PSO andMS-PSO, both when
freshly coated and after being aged at 26 ◦C under four
different environmental conditions: exposed to the labo-
ratory atmosphere for 21 d (open), held in an airtight jar
for 21 d (sealed), near 100% humidity for 20 d (humid),
and covered with distilled water for 20 d (submerged). The
humid and submerged samples were air dried for 1 d after
aging. Before measuring WDPT, all samples were packed
with a mallet and pestle as described above. The saturated
hydraulic conductivity (Ks) of the uncoated and freshly
coated sands were obtained through constant head tests,
and a pycnometer was used to measure particle density
(ρs). Density of the PSO coating was estimated though ace-
tone digestion.

3 RESULTS

Evaporative demand (Ed) during the column experiment
averaged 0.80 cm d−1, with a standard deviation (σ) of
0.062 cm d−1 (Figure 2a). Temporal variation in Ed showed
a strong diurnal cycle superimposed on longer-wavelength
change (i.e., weather shifts). During the first ∼30 min of
the experiment, evaporative flux (Ef) from all five columns
closely mimicked Ed, confirming that the soil surface was
covered with a thin water film. Afterward, Ef for the bare
soil declined along a roughly linear path until Day 7, when
it dropped from ∼50% of Ed to <15%. After this rapid
change, the bare soil Ef declined gradually for the remain-
der of the experiment (Figure 2b). In the treated columns,
Ef exhibited a power-law decline to <5% of Ed by the end
of Day 2 (Figure 2a). The two columns topped with MS-
PSO showed concurrent behavior up throughDay 12; after-
ward, Ef displayed a gentle upward trend for MS-PSO-
1, whereas values for MS-PSO-2 remained roughly con-
stant (Figure 2b). Evaporative flux for CS-PSO-1 leveled
off abruptly at t ∼1.5 d, then began a gradual decline after
Day 15. Conversely, Ef for the CS-PSO-2 showed a signifi-
cant dip on Day 4, then recovered to remain mostly con-
stant through the end of the experiment. Diurnal cycling
in Ed was reflected in Ef for all five columns (Figures 2a
and 2b); the strongest effects were for the bare soil, fol-
lowed in order byCS-PSO-1, CS-PSO-2,MS-PSO-1, andMS-
PSO-2.
Initial saturation (S) of the bare soil column was 0.87

and 0.94–0.98 for the treated columns (Table 1). Total water
loss during the 23.8-d experiment was 51% for the bare
soil and 2–8% for the treated columns (Table 1). Water
loss was higher for columns topped with the CS-PSO than
for the MS-PSO, whereas thickness of the treatment layer

F IGURE 2 (a) Evaporative demand (Ed) during the 23.8-d
experiment (9 June 2019 to 3 July 2019) is shown along with evap-
orative flux (Ef) exiting the test columns; units for both are centime-
ters per day. (b) Vertical scale expanded by 10× to focus on Ef = 0.0–
0.1 cm d−1. MS-PSO, medium sand coated with partially polymerized
soybean oil; CS-PSO, coarse sand coated with partially polymerized
soybean oil

had only a small effect. At the end of the experiment (t =
23.8 d), the bare soil column was air dry at the surface (θg
∼ 0) and exhibited an almost linear increase in moisture
with depth (Figure 3). Conversely, water loss in the treated
columns was limited to the top 10 cm; the treatment lay-
ers were nearly dry, and θg in the underlyingMS increased
rapidly to∼0.26 at a depth of 7–10 cm. The treated columns
all showed a slight decrease in θg at depths of 15–25 cm
before returning to ∼0.26 near the base (Figure 3). The
moisture profiles were insensitive to thickness of the treat-
ment layer, whereas the columns topped in CS-PSO were
slightly wetter than the MS-PSO columns at depths of
3–8 cm. Both of the MS-PSO layers (1 and 2 cm) solidi-
fied into a hard, porous crust during the experiment. Con-
versely, the CS-PSO layers remained flexible and disaggre-
gated easily but showed clear evidence of congealing from
the surface downwards. The uncoated MS directly below
the 2-cm layer of CS-PSO showed light yellowing to a depth
of 4–6 mm, whereas the MS underlying the other three
treatment layers appeared to be unaffected.
The WDPT was negligible for the uncoated MS and CS,

whereas finite values were obtained for all tests on the
coated sands (Table 2). Under dry initial conditions,WDPT
was 36.9 s for freshly treated MS-PSO and 2.6 s for the
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TABLE 2 Measured water drop penetration time (WDPT) for medium sand and coarse sand coated with partially polymerized soybean
oil (MS-PSO and CS-PSO, respectively) aged under various environmental conditions

MS-PSO CS-PSO
Condition Aged Dry Prewetted Dry Prewetted

d s
Fresh 0 36.87 (2.07)a 16.22 (2.05)a 2.58 (0.20)b 1.09 (0.14)b

Sealed 21 12.14 (2.65)a 6.89 (1.15)a 9.06 (2.38)a 4.38 (0.56)b

Open 21 21.09 (5.01) a 12.46 (2.41)a 252.32 (49.99)c 106.10 (22.85)c

Humid 20 160.62 (39.42)c 56.93 (20.2)a 90.19 (11.72)c 30.55 (6.68)a

Submerged 20 57.29 (18.73)a 25.87 (8.48)a 5.86 (0.27)a 2.64 (0.86)b

Note. Values are reported as the average of four to five replicate tests, with standard deviation (σ) in parentheses. Higher WDPT times correspond to greater
hydrophobicity. The WDPT for uncoated MS and CS was negligible. Environmental conditions: fresh, newly coated; sealed, isolated from the atmosphere in a
sealed jar for 21 d; open, atmospheric conditions identical to the test columns for 21 d; humid, near 100% humidity for 20 d, air dried for 1 d; submerged, covered
with distilled water for 20 d, air dried for 1 d.
aSlightly hydrophobic. bWettable. cModerately hydrophobic (see Papierowska et al., 2018).

F IGURE 3 Final gravimetric moisture content (θg). The upper-
most measurement represents the 1- or 2-cm-thick treatment layer
(except for the bare soil column); the second is for the 1-cm-thick
layer directly below the treatment. Remaining measurements were
taken at 2-cm intervals. MS-PSO, medium sand coated with partially
polymerized soybean oil; CS-PSO, coarse sand coated with partially
polymerized soybean oil

CS-PSO; prewetting the freshly coated sands lowered the
WDPT by 55–60%. All of the ageing processes that were
considered led to a statistically significant (>95% confi-
dence level) change in the WDPT, except for the MS-PSO
exposed to submerged conditions. All of the CS-PSO sam-
ples experienced an increase in WDPT during aging, as
did the MS-PSO under humid and submerged conditions
(Table 2). Magnitude of the aging-induced changes was
much larger for the CS-PSO (127 to 9,680%) than for the
MS-PSO (−67 to 335%). Both sets of open and humid sam-
ples were observed to form spongey clusters during aging,
whereas the appearance of the sealed and submerged sam-

ples showed little change. There was no detectable change
in mass for any samples during the aging process.
Installation of the PSO coating reduced the hydraulic

conductivity (Ks) of the MS by a factor of ∼20 (8.60 × 10−2
to 4.01 × 10−3 cm s−1) and lowered particle density (ρs)
from 2.62 to 2.15 g cm−3. The coating had a smaller effect
on the CS in that Ks dropped by a factor of ∼2 (5.43 × 10−1
to 2.66 × 10−1 cm s−1) and ρs was reduced from 2.63 to
2.35 g cm−3. Density of the PSO coating (1.07 g cm−3) was
slightly higher than liquid soybean oil (0.99 g cm−3). Aver-
age thickness of the PSO coating was estimated to be on
the order of 60 μm by treating the MS and CS as uniform
spheres with diameters of 0.03 and 0.13 cm, respectively.

4 DISCUSSION

Coating silica sand with PSO produced loose porous
media that exhibited a small, but finite, WDPT (Table 2).
Installing a surface layer of mildly hydrophobic PSO-
coated sand reduced evaporative flux (Ef) from the under-
lying hydrophilic sand by a total of 83–96% in our 23.8-d
experiment (Table 1, Figure 2). For comparison, thin sur-
face layers of silane-treated sand have been reported to
reduce evaporative loss from partially saturated soil pots
by 78–90% over 3 d (Gupta et al., 2015) and by ∼80% over
30 d for initially saturated vertical columns (Shokri et al.,
2008). Although neither of these previous studies reported
WDPT, subsequent work (Chan & Lourenço, 2016) has
shown silane-treated sands to be extremely hydrophobic
(WDPT > 3,600 s). As expected from previous work, effec-
tiveness of the PSO-coated treatment layer at reducing
evaporative loss (Figure 2) decreased for coarser grains
(An et al., 2018) and increased with layer thickness (Gupta
et al., 2015; Shokri et al., 2008).
Measured values of WDPT on the PSO-coated sands

decreased with increasing grain size (Table 2), which is
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consistent with results for other hydrophobic coatings
(Wijewardana et al., 2015). For a water droplet of a given
size, entry into dry media will be controlled by the con-
tact angle and the geometry of the air–water–solid inter-
face. At first order, the Young–LaPlace equation predicts
that water entry pressure will increase with decreasing
pore size. However, the three-dimensional nature of pore
geometry is far more complex than a simple capillary tube,
thus complicating any attempt to scale WDPT, even for
narrow-distribution sands such as those considered here.
In comparison with silane-based hydrophobic treatments,
the relatively thick nature of the PSO coating would tend
to smooth outmicro-roughness on grain surfaces, affecting
both effective contact angle and geometry of the interface.
The PSO-coating also showed evidence of continued poly-
merization when exposed to both O2 and water (Table 2).
The large difference in WDPT between sealed and humid
conditions suggests that polymerization ismoisture depen-
dent, whereas the smaller changes for the submerged sam-
ples indicates a need for O2. The greater effects on the
coarser CS-PSO are attributed to the ability of moisture
and O2 to move through the open pore structure. The lim-
ited congealing observed for the CS-PSO layers during the
evaporation tests is likely due to reduced intergranular
contact in comparison with the compacted MS-PSO.
Although the MS-PSO was more effective at blocking

evaporative loss than the coarser CS-PSO (Figure 2), the
latter has greater potential as an effective mulch. The PSO
coating is considerably less hydrophobic than silane treat-
ments (Gupta et al., 2015; Shokri et al., 2008) and is thus
expected to be less resistant to infiltration. Coating the MS
with PSO reduced Ks by more than an order of magni-
tude, suggesting that the relatively thick coating may have
deformed during compaction, with a negative impact on
pore size and/or connectivity. Conversely, the coating had
only a small effect on Ks for the CS-PSO, resulting in a
highly conductivematerial (Ks = 2.66× 10−1 cm s−1) with a
smallWDPT thatwill present low resistance towater entry.
Paper mulch coated with fully polymerized soybean oil
underwent significant degradation during a 12-wk field test
(Shogren, 2000), whereas the CS-PSO continued to poly-
merize when exposed to O2 and water during our 23.8-d
test. Given these results, we expect the CS-PSO to remain
mildly hydrophobic through much of a growing season,
but additional work is needed to understand degradation
of PSO, particularly in the presence of microbial activity.
Based on the experiments presented here, we believe that
the CS-PSO has significant potential for use as an environ-
mentally neutral mulch that will act as a selective barrier,
significantly restricting evaporation while simultaneously
allowing infiltration, gas exchange with the atmosphere,
and heat transfer.

Evaporative flux (Ef) from the bare soil column (Fig-
ure 2) generally followed a two-stage process (Lehmann
et al., 2008; Shokri et al., 2009) in which a period of rapid
evaporation at the soil surface (Stage 1) was followed by a
sharp decline to stabilize at a much lower value (Stage 2).
However, behavior during Stage 1 (t < 7 d) differed from
the conceptual model proposed by Lehmann et al. (2008)
in that Ef declined relative to Ed, rather than remaining
relatively constant (Figure 2). Similar behavior has been
observed for evaporation from partially saturated bare soil
(An et al., 2018), which suggests that our measurements
may have been affected by the low initial saturation in the
bare soil column (S= 0.87). The low S likely led to reduced
Ef during Stage 1 and early onset of Stage 2. This suggests
that water loss from a fully saturated bare soil would
have been considerably higher than what we measured,
thus further accentuating the effectiveness of the PSO
treatment layers. The sharp decline in Ef for bare soil in
Day 7 (Figure 2) signals the onset of Stage 2 (t> 7 d), where
the evaporation surface recedes into the soil profile and is
controlled by vapor diffusion (Or et al., 2013; Shokri et al.,
2008). The gradual decline in Ef late in the experiment
reflects increased LD, and the final moisture distribution
(Figure 3) suggests that upwards flow extended to the base
of the bare soil column.
The dramatic initial decline inEf for the treated columns

(Figure 2) is consistent with previous experiments that
considered extremely hydrophobic surface layers (Gupta
et al., 2015; Shokri et al., 2008). Such behavior can be
attributed to the vertical recession of the evaporation
plane through hydrophobic surface materials in which
drainage is virtually complete. An unexpected observa-
tion was the sudden decline in Ef for CS-PSO-2 that was
observed at t = 4 d (Figure 2b). We suspect that a very
small amount of liquid soybean oil seeped from the CS-
PSO and spread along the top of the underlying MS, par-
tially restricting evaporation. As the wetting front receded,
new paths for vapor flow were opened, allowing Ef to
recover. The residual oil then adhered to the uncoated
MS, causing the slight yellowing that was only observed
in this column. It is likely that the opening of new path-
ways to the surface is also responsible for the gradual rise
in Ef for MS-PSO-1 at t > 11 d. Despite the evaporation
front being located at depth for t > 4 d, all four of the
treated columns (Figure 2b) responded to changes in atmo-
spheric demand (Ed), which partially conflicts with the
theory articulated in Or et al. (2013). Although Stage 2
evaporation is certainly dominated by diffusion through
the partially dry layer above the drying front, the pro-
cess remains driven by Ed. Thus, one expects a time lag
between the two processes, which we leave for future
investigation.
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A thermal process was shown to be effective for coating
individual grains of silica sand with PSO. When used as a
surface treatment, the resultingmildly hydrophobicmedia
reduced evaporative loss with an efficacy similar to that
of extremely hydrophobic silane-treated sands. This result
demonstrates that lack of wettability is the necessary con-
dition for blocking capillary rise to the soil surface, rather
than true soil hydrophobicity. The experiments presented
here thus have important implications for developing new
approaches to control evaporative loss from bare agricul-
tural soils, and also for understanding evaporation from
land damaged through low-intensity burns.
As a potential mulch, PSO-coated sand is expected to

act as a selective barrier by limiting evaporative loss, while
allowing the passage of liquid water (infiltration), gasses,
and heat. In contrast, PF is highly effective but is a nonse-
lective barrier that blocksmass fluxes, including those that
benefit agricultural production and reduce runoff; it also
increases soil temperature (Kader et al., 2017). Futurework
should compare the performance of PSO-coated sand and
other hydrophobic surface treatments with that of PF. In
addition, the methodology that we used for preparing and
installing the PSO-coated sand would be cost prohibitive
at the agricultural scale. Transforming the concept of a
biobased coating such as PSO into a cost-effective and sus-
tainable mulch will require considerable effort and may
require use of a substrate other than sand, such as paper
or agricultural waste.

CONFL ICT OF INTEREST
The authors of this manuscript certify that they have no
affiliations with or involvement in any organization or
entity with any financial or nonfinancial interest in the
subject matter or materials discussed in this manuscript.

DATA AVAILAB IL ITY
The data that support the findings of this study are avail-
able from the corresponding author (M. J. Nicholl) upon
reasonable request.

ACKNOWLEDGMENTS
The authors thank Dr. Markus Berli for his helpful discus-
sions during the experimental stages of this work and Dr.
Daniel Gerrity for providing access to the muffle furnace
used to polymerize the soybean oil. We would also like
to thank the two anonymous reviewers and the Associate
Editor for their constructive comments.

ORCID
Jesse LeeBarnes https://orcid.org/0000-0002-1490-732X

Michael JohnNicholl https://orcid.org/0000-0003-2424-
0271

REFERENCES
Adhikari, R., Bristow, K. L., Casey, P. S., Freischmidt, G., Horn-
buckle, J. W., & Adhikari, B. (2016). Preformed and sprayable poly-
meric mulch film to improve agricultural water use efficiency.
AgriculturalWaterManagement, 169, 1–13. https://doi.org/10.1016/
j.agwat.2016.02.006

An, N., Tang, C.-S., Xu, S.-K., Gong, X.-P., Shi, B., & Inyang, H.
I. (2018). Effects of soil characteristics on moisture evapora-
tion. Engineering Geology, 239, 126–135. https://doi.org/10.1016/j.
enggeo.2018.03.028

Chan, C. S. H., & Lourenço, S. D. N. (2016). Comparison of three
silane compounds to impart water repellency in an industrial
sand. Geotechnique Letters, 6, 263–266. https://doi.org/10.1680/
jgele.16.00097

de Espinosa, M. L., & Meier, M. A. R. (2011). Plant oils: The per-
fect renewable resource for polymer science?! European Polymer
Journal, 47, 837–852. https://doi.org/10.1016/j.eurpolymj.2010.11.
020

Gupta, B., Shah, D. O., Mishra, B., Joshi, P. A., Gandhi, V. G., &
Fougat, R. S. (2015). Effect of top soil wettability on water evap-
oration and plant growth. Journal of Colloid and Interface Science,
449, 506–513. https://doi.org/10.1016/j.jcis.2015.02.018

He, G., Wang, Z., Li, S., & Malhi, S. S. (2018). Plastic mulch: Trade-
offs between productivity and greenhouse gas emissions. Jour-
nal of Cleaner Production, 172, 1311–1318. https://doi.org/10.1016/
j.jclepro.2017.10.269

Kader, M. A., Senge, M., Mojid, M. A., & Ito, K. (2017). Recent
advances in mulching materials and methods for modifying soil
environment. Soil and Tillage Research, 168, 155–166. https://doi.
org/10.1016/j.still.2017.01.001

Lehmann, P., Assouline, S., & Or, D. (2008). Characteristic lengths
affecting evaporative drying of porous media. Physical Review E,
77(5). https://doi.org/10.1103/PhysRevE.77.056309

Lozada, Z., Suppes, G. J., Hsieh, F. H., Lubguban, A., & Tu,
Y. C. (2009). Preparation of polymerized soybean oil and soy-
based polyols. Journal of Applied Polymer Science, 112, 2127–2135.
https://doi.org/10.1002/app.29662

Oliviera, I. B., Demond, A. H., & Salehzadeh, A. (1996). Packing of
sands for the production of homogeneous porous media. Soil Sci-
ence Society of America Journal, 60, 49–53. https://doi.org/10.2136/
sssaj1996.03615995006000010010x

Or, D., Lehmann, P., Shahraeeni, E., & Shokri, N. (2013). Advances
in soil evaporation physics: A review. Vadose Zone Journal, 12(4).
https://doi.org/10.2136/vzj2012.0163

Papierowska, E.,Matysiak,W., Szatyłowicz, J., Debaene,G.,Urbanek,
E., Kalisz, B., & Łachacz, A. (2018). Compatibility of methods used
for soil water repellency determination for organic and organo-
mineral soils. Geoderma, 314, 221–231. https://doi.org/10.1016/j.
geoderma.2017.11.012

Shogren, R. L. (2000). Biodegradable mulches from renewable
resources. Journal of SustainableAgriculture, 16, 33–47. https://doi.
org/10.1300/J064v16n04_05

Shokri, N., Lehmann, P., & Or, D. (2009). Critical evaluation of
enhancement factors for vapor transport through unsaturated
porous media. Water Resources Research, 45(10). https://doi.org/
10.1029/2009WR007769

https://orcid.org/0000-0002-1490-732X
https://orcid.org/0000-0002-1490-732X
https://orcid.org/0000-0003-2424-0271
https://orcid.org/0000-0003-2424-0271
https://orcid.org/0000-0003-2424-0271
https://doi.org/10.1016/j.agwat.2016.02.006
https://doi.org/10.1016/j.agwat.2016.02.006
https://doi.org/10.1016/j.enggeo.2018.03.028
https://doi.org/10.1016/j.enggeo.2018.03.028
https://doi.org/10.1680/jgele.16.00097
https://doi.org/10.1680/jgele.16.00097
https://doi.org/10.1016/j.eurpolymj.2010.11.020
https://doi.org/10.1016/j.eurpolymj.2010.11.020
https://doi.org/10.1016/j.jcis.2015.02.018
https://doi.org/10.1016/j.jclepro.2017.10.269
https://doi.org/10.1016/j.jclepro.2017.10.269
https://doi.org/10.1016/j.still.2017.01.001
https://doi.org/10.1016/j.still.2017.01.001
https://doi.org/10.1103/PhysRevE.77.056309
https://doi.org/10.1002/app.29662
https://doi.org/10.2136/sssaj1996.03615995006000010010x
https://doi.org/10.2136/sssaj1996.03615995006000010010x
https://doi.org/10.2136/vzj2012.0163
https://doi.org/10.1016/j.geoderma.2017.11.012
https://doi.org/10.1016/j.geoderma.2017.11.012
https://doi.org/10.1300/J064v16n04_05
https://doi.org/10.1300/J064v16n04_05
https://doi.org/10.1029/2009WR007769
https://doi.org/10.1029/2009WR007769


8 of 8 BARNES and NICHOLLVadose Zone Journal

Shokri, N., Lehmann, P., & Or, D. (2008). Effects of hydrophobic lay-
ers on evaporation from porous media. Geophysical Research Let-
ters, 35(19). https://doi.org/10.1029/2008GL035230

Shokri, N., & Or, D. (2011). What determines drying rates at the
onset of diffusion controlled Stage-2 evaporation from porous
media? Water Resources Research, 47(9). https://doi.org/10.1029/
2010WR010284

Steinmetz, Z., Wollmann, C., Schaefer, M., Buchmann, C., David,
J., Tröger, J., . . . Schaumann, G. E. (2016). Plastic mulching in
agriculture. Trading short-term agronomic benefits for long-term
soil degradation? Science of the Total Environment, 550, 690–705.
https://doi.org/10.1016/j.scitotenv.2016.01.153

Vaicekauskaite, J., Ostrauskaite, J., Treinyte, J., Grazuleviciene, V.,
Bridziuviene, D., &Rainosalo, E. (2019). Biodegradable linseed oil-
based cross-linked polymer composites filledwith industrial waste
materials for mulching coatings. Journal of Polymers and the Envi-
ronment, 27, 395–404. https://doi.org/10.1007/s10924-018-1360-y

Wijewardana, N. S., Kawamoto, K., Moldrup, P., Komatsu, T.,
Kurukulasuriya, L. C., & Priyankara, N. H. (2015). Characteriza-

tion of water repellency for hydrophobized grains with different
geometries and sizes. Environmental Earth Sciences, 74, 5525–5539.
https://doi.org/10.1007/s12665-015-4565-6

SUPPORT ING INFORMATION
Additional supporting information may be found online
in the Supporting Information section at the end of the
article.

How to cite this article: Barnes JL, Nicholl MJ.
Mildly hydrophobic biobased mulch: A sustainable
approach to controlling bare soil evaporation.
Vadose Zone J. 2020;19:e20047.
https://doi.org/10.1002/vzj2.20047

https://doi.org/10.1029/2008GL035230
https://doi.org/10.1029/2010WR010284
https://doi.org/10.1029/2010WR010284
https://doi.org/10.1016/j.scitotenv.2016.01.153
https://doi.org/10.1007/s10924-018-1360-y
https://doi.org/10.1007/s12665-015-4565-6
https://doi.org/10.1002/vzj2.20047

	Mildly Hydrophobic Biobased Mulch: A Sustainable Approach to Controlling Bare Soil Evaporation
	Repository Citation

	Mildly hydrophobic biobased mulch: A sustainable approach to controlling bare soil evaporation
	Abstract
	1 | INTRODUCTION
	2 | MATERIALS AND METHODS
	3 | RESULTS
	4 | DISCUSSION
	5 | CONCLUSIONS
	CONFLICT OF INTEREST
	DATA AVAILABILITY
	ACKNOWLEDGMENTS
	ORCID
	REFERENCES
	SUPPORTING INFORMATION


