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Abstract

Misbehavior detection is a critical task in vehicular ad hoc networks. However, state-

of-the-art data-driven techniques for misbehavior detection are usually conducted

through complete V2X communication data collected from simulated experiments.

This thesis evaluates the main strategies for the treatment of missing values to find

out the best match for misbehavior detection with incomplete V2X communication

data. This thesis proposes three novel methods for imputing and tolerating missing

data. The first two are novel imputation methods that are based on cooperative clus-

tering and collaborative clustering. The latter is a missing-tolerant method that is

an ensemble learning based on the random subspace selection and Dempster-Shafer

fusion. The effectiveness of the proposed techniques is evaluated in the ground truth

vehicular reference misbehavior data. Moreover, a multi-factor amputation frame-

work has been developed to induce missingness over V2X communication data with

different missing ratios, mechanisms, and distributions. This framework provides

a comprehensive benchmark resembling missingness over V2X communication data.

The proposed methods are compared with some missing-tolerant and imputation

methods. The attained results over benchmark data are analyzed and indicated the

winner treatments in each aspect.
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Chapter 1

Introduction

Recently, the advancement of Internet of Things and wireless technology has led to a

significant attention in the Vehicular Ad hoc Network (VANET). It builds a timely

robust network to communicate between vehicle to everything (V2X). V2X exchanges

basic safety messages through wireless communications to maintain traffic order, and,

thus, plays an vital role in the intelligent transportation systems [1].

1.1 Motivation

Due to the highly dynamic nature of the system and frequent exchange of emergency

and safety messages through wireless channels, VANET is highly exposed to attacks

[2]. The malicious nodes may send fake or harmful information resulting in loss

of revenue and life. Therefore, there is a need to detect misbehavior messages to

guarantee the secure operation of V2X communications.

Most experiments for misbehavior detection systems (MDS) are usually conducted

with complete simulated datasets [3]. However, VANET applications utilize the wire-

less sensor network to realize communication, and in reality received data may contain

missing values for various reasons such as errors in sensor readings, synchronization,

sensor faults, communication malfunctions, and malicious attacks. The presence of

missing value always leads to inaccurate predictions and performance reduction of

some classification algorithms [4, 5, 6, 7, 8, 9]. Therefore, handling missing values is

a crucial task in misbehavior detection systems.
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1.2 Contributions

The framework of this thesis enables an empirical comparison of the performance

of the missing data treatment strategies with a triple objective. The former is to

examine which imputation technique outperforms other imputation methods for mis-

behavior detection with incomplete V2X communications data. The second is to

find out which missing-tolerant technique outperforms other missing-tolerant meth-

ods. The third one is to study the impacts of imputation and tolerant techniques

in misbehavior detection performance. The performance of each strategy is evalu-

ated by the publicly available V2X communications datasets in terms of accuracy,

F-measure, and imputation quality for imputation methods. Meanwhile, the com-

putational complexity of each strategy is also treated as a critical criterion to select

the best method. The explorations of this work are practical and informative that

incomplete environments are rarely discussed in V2X communications.

The incomplete environments are simulated by introducing a multi-factor ampu-

tation framework. It is proposed to create a set of benchmark data to evaluate the

main strategies to treat missing values in V2X communications data for misbehavior

detection purposes. Moreover, two novel methods for missing data imputation have

been proposed to improve imputation quality. These two novel imputation methods

apply state-of-the-art ensemble clustering techniques and collaborative frameworks to

optimize the individual clustering-based imputation methods. A further contribution

has been made for the proposed missing-tolerant method. It is a missing-tolerant en-

semble, which can classify the incomplete sample directly. To study the efficiency of

these three newly introduced methods, they are compared with several state-of-the-

art missing data imputation and missing-tolerant methods over V2X communications

data. More details of these novelties are illustrated in the following subsection.

2



1.3 Novelties

This work aims to evaluate the main strategies for the treatments of missing values

to find out the best match for misbehavior detection with incomplete V2X commu-

nications data. Thus, a multi-factor amputation framework is proposed to simulate

incomplete environments, and novel algorithms are proposed to achieve better per-

formance, comparing to the existing treatments of missing values:

1.3.1 Amputation Methods

A multi-factor amputation framework, called INSERT, is introduced to generate mul-

tiple incomplete datasets from an original complete dataset. This amputation frame-

work systematically induces missingness with different missing mechanisms, ratios,

and distributions. It adopts and combines the ideas from previous amputation meth-

ods, making it more scientific and applicable.

1.3.2 Cooperative Clustering Imputation

The proposed imputation method is based on a cooperative clustering framework

(CCI), whose consensus function is designed by means of a performance matrix. The

clustering results obtained by various clustering algorithms generate a set of sub-

clusters based on the similarity among the partitions. Then, the consensus function

is utilized to decide which two sub-clusters should be merged. The final clustering

model is attained when the merging procedure can not reach further improvement.

The experimental results indicate that the proposed method has a better imputation

performance than individual clustering-based imputation techniques.

3



1.3.3 Collaborative Clustering Imputation

The proposed collaborative clustering-based imputation (COLI) uses the imputation

quality as key information to be exchanged between different clustering algorithms.

COLI makes use of a confusion matrix enabling each clustering algorithm to split or

re-cluster their partitioning. The experimental results indicate that COLI outper-

forms individual clustering-based imputation techniques and other commonly used

imputation techniques.

1.3.4 Missing-Tolerant Ensemble

The proposed missing-tolerant method in this work, called MTE-RD, is a missing-

tolerant ensemble, which uses the random subspace selection to train individual clas-

sifiers, and then combines their outcomes by means of the Dempster-Shafer fusion

module. This method is the first time to apply the Dempster-Shafer fusion module

to aggregate the predictions of the incomplete sample.

1.4 Outline

The rest of this study is organized as follows:

Chapter 2 initially describes the traditional treatments for missing values. Then,

two main strategies, imputation, and missing-tolerant are introduced. After that,

statistical-based and machine learning-based imputation methods are briefly clarified.

Finally, four state-of-the-art missing-tolerant methods, which are used as competitors,

are also introduced.

Chapter 3 explains a novel imputation method, called CCI. The development

procedures of CCI are then proposed in this chapter. In order to simulate the incom-

plete environments, the principle and the development procedures of the multi-factor

amputation methods are introduced to generate missingness for the V2X commu-

4



nications datasets. Then, the details of the V2X communications datasets used in

this work are explained. Finally, the imputation results of this method with other

clustering-based imputation methods are also included in this chapter.

Chapter 4 proposes another novel imputation method, called COLI. This novel

imputation method is compared with other imputation algorithms in fifteen pub-

licly available datasets. The experimental results of the proposed method and its

competitors are also presented in this chapter.

Chapter 5 presents the development procedures of the proposed missing-tolerant

method, called MTE-RD. Then, twenty V2X communications datasets are selected

to evaluate the performance of imputation and missing-tolerant methods in terms

of accuracy and F-measure. Finally, the significance test and the computational

complexity of the proposed methods and their competitors are also illustrated.

Chapter 6 concludes this thesis. It gives the answer of the best match for V2X

communications datasets with incomplete environments.
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Chapter 2

Previous Works

In order to deal with incomplete data, one common method is to discard incomplete

samples. This method works well with a few incomplete samples; nevertheless, it

results in the loss of important information. A more practical approach to process

missing values is imputation. The imputation methods fill a missing value with one

or a set of estimations. They have been widely applied in various research fields [10].

Another class of approaches to treat missing data is those classification methods that

can tolerate missing values and directly classify incomplete samples. Many missing-

tolerant approaches have been successfully applied for incomplete data classification

[11, 12, 13, 14]. The rest of this section explains some state-of-the-art imputation

methods and missing-tolerant methods in detail.

2.1 Imputation

The imputation approaches are mainly classified into two types, namely, statistical

and machine learning-based techniques [15]. Among the statistical approaches, the

mean imputation (MI) is the simplest statistical imputation method, which replaces

the missing values of a target feature with the mean of that feature [16].

Expectation maximization imputation (EMI) [17] is an iterative imputation meth

-od with two steps. In the expectation step, observed values are used to compute the

mean and covariance matrix, which estimate the missing values. In the maximization

step, the mean and covariance are updated based on the imputed values. These steps

are repeated until the mean and covariance matrix are stabilized. Data augmentation
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imputation (DA) is an iterative method to infer unknown parameters and imputes

missing values in a stochastic manner [18]. DA makes use of EM for initial estimation

of parameters and randomly imputes missing values by means of these parameters. It

then uses the imputed data to obtain a Bayesian posterior distribution and updates

the parameters. DA repeats these steps in a Markov chain manner until convergence.

Machine learning algorithms are also widely used to process incomplete datasets.

They explore the similarity between different features or different samples to obtain

more reasonable estimations [19]. k-nearest neighbors imputation replaces missing

scores of an incomplete target sample from a set of donors that are the k nearest

neighbors of the target sample. Sequential k-nearest neighbor imputation (SkNNI)

replaces missing values according to the order of missing rate [20]. Once an incomplete

sample has been filled, it can be used as a donor for imputing the rest of the incomplete

samples.

Clustering, as an unsupervised learning method, has been widely used to han-

dle incomplete data. Some of these approaches combined other machine learning

techniques to achieve better accuracy for missing values estimation.

k-means clustering [21] is popular for cluster analysis because of its simplicity.

It randomly assigns k initial cluster centers and then assigns those samples that are

closest to one centroid to that cluster. Each cluster updates its center by calculating

the mean of its constituent samples. The iterations will end when the cluster centers

are fixed [22]. As for the k-means imputation (KMI), the original dataset is divided

into two complete and incomplete subsets. A k-means clustering model is first created

based on the complete subset. The incomplete samples find their closest cluster

center based on their available values, and their missing values are replaced with the

corresponding values in their closest cluster centers [23].

Moreover, in [24], class labels have also been used for imputing missing values. In

[25], the missing values are not merely estimated by means of its closest cluster centers

as donors. It then refines the estimated values by using the multilayer perceptron
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(MLP). This hybrid approach shows that it has more accurate estimations compared

to normal k-means imputation.

In the fuzzy c-means (FCM) clustering, each sample belongs to more than one

cluster. It uses membership degrees to indicate to what degree each sample belongs

to each cluster. The fuzzy c-means imputation (FCMI) has two main steps. The first

step is to create an FCM model with the whole dataset and obtain the membership

degree for each centroid. The second step is to impute the incomplete sample as

follows:

xi,j =

η∑
t=1

M(xi, ι
t) ∗ ιt(j) (2.1)

where xi represents the target incomplete sample, in which the j − th features is

missing, η presents total number of clusters, ιt is the centroids of the t − th cluster,

and M is the membership degree of a sample xi to the certain cluster ιt.

Various strategies combine FCM with other machine learning algorithms for miss-

ing values imputation. In [26], Genetic Algorithm (GA) is applied to optimize the

membership degree and the centroids of the FCM model. In [27], MLP refines the es-

timation values that obtained by FCMI. In [28], the parameters of FCM are optimized

by Support Vector Regression (SVR) and GA. These hybrid approaches significantly

improved the imputation quality, comparing to FCMI.

Partition around medoids (PAM) clustering has the same strategy with k-means

to form partitions. In contrast to k-means, it chooses a representative medoid for each

cluster. The chosen medoid is minimizing the sum of the distance between medoid

and the samples in the same cluster [29]. To compare with k-means, PAM is robust to

outliers. Partition around medoids imputation (PAMI) has a similar procedure with

KMI. The missing values of an incomplete sample are replaced with the corresponding

values from the nearest medoid.
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2.2 Missing-Tolerant Methods

The missing-tolerant classification method is a kind of missing values treatment that

can classify incomplete samples directly. They are mainly classified into two categories

based on how subsets are created.

The first category creates complete subsets based on the missing pattern of the

original dataset. Voting based extreme learning machine (V-ELM) [12] is also an

advanced ELM algorithm. It can clarify incomplete data, where the standard ELM

classifier cannot directly classify incomplete data. It splits the incomplete data into

complete subsets based on Missing Patterns. Each complete subset is used to train

on the ELM sub-classifier, and the weighted majority vote combines the output of

these sub-classifiers. The weighted function is associated with the mutual information

between the feature set and the class labels on the complete data subsets. V-ELM is

an efficient method to handle incomplete data.

Another alternative approach has been developed in [30], which uses missing pat-

terns and feature selection (FS) to create an ensemble for classification of incomplete

data. On the one hand, the feature selection method can reduce the dimension of

the feature space and, thus, decrease the running time. On the other hand, it signifi-

cantly increases the chance that the ensemble correctly classifies incomplete samples.

Hereafter, this method is called FS due to its focus on the feature selection process

in this thesis.

Another category creates complete subsets based on the random subspace of the

feature set. Adjusted Weight Voting Random Forest (AWVRF) [14], based on the

Random Forest algorithm, classifies incomplete data without imputation. The pre-

dicted class will be preserved at the internal node if the primary splitting feature and

the surrogate feature of that node are missing. The weight function will be adjusted

by the influence of the missing value on the decision tree. Furthermore, the algorithm

uses the weighted majority vote for making final decisions. It has been proved that
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the method outperforms other surrogate decision Random Forests (surrRF).

Another method is Learn++.MF [13], which makes use of the random subspace

method (RSM) to address the issue of incomplete data classification. It generates a

group of random feature subsets for original data and creates several complete sub-

sets based on these feature subsets. Then, it trains base classifiers with the complete

subsets. In the test phase, an incomplete sample is merely predicted by those classi-

fiers that are trained with those subsets whose features are not missing in the target

sample. The outputs of base classifiers are combined through the majority of votes.

2.3 Summary

This chapter explains some treatments of missing values, including imputation meth-

ods and missing-tolerant methods. The imputation methods are introduced for statis-

tical methods and machine learning-based methods. Especially, the clustering-based

imputation methods are presented in detail. Then, four state-of-the-art missing tol-

erant methods are also introduced based on different strategies to select feature sets.

These treatments are used as competitors to compare with the proposed methods.
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Chapter 3

Cooperative Clustering Imputation

The main objective of this chapter is to develop a novel method for imputing miss-

ing values of incomplete datasets. The basic concepts of the cooperative clustering

framework and the development procedures of the proposed cooperative clustering

imputation are presented in detail. Then, In order to perform a proper verification of

the proposed method, various incomplete general datasets and V2X communication

datasets are required whose original values are available. Therefore, several general

datasets of UCI depository and Vehicular Reference Misbehavior datasets (VeReMi)

that are complete and publicly available are selected, and, then, missingness is induced

on them to generate various incomplete datasets. The process of inducing missingness

is called INSERT amputation. This chapter formally introduces the VeReMi dataset

and a set of amputation strategies that systematically induce missingness over orig-

inal datasets. Finally, the imputation quality of the proposed method is compared

with individual clustering-based imputation methods in publicly available datasets

and V2X communication datasets.

3.1 Cooperative Clustering

Cooperative clustering, also known as ensemble clustering, is a framework that ag-

gregates a set of various clustering results to attain a better partition result than the

individual clustering method. Different clustering algorithms, or the same clustering

algorithm with different parameters, are used to partition a given dataset. Then,

local partition results are combined by means of a consensus function. The consen-
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sus function explores the agreements between different local results and aggregates

them to reach stable and robust final partitions. In recent years, many cooperative

clustering methods have been published. The main diversity of these methods is in

the design of the consensus function.

A robust clustering ensemble based on an iterative fusion of base clusters

(RCEIFBC) has been proposed in [31] that has a two-step consensus function. It first

combines sub-clusters that have a higher cluster-cluster similarity and then assigns

the samples to combined clusters according to the sample-cluster similarity. Ayad and

Kamel [32] applied a cumulative voting method as the consensus function to aggregate

a set of clustering results. They described several cumulative vote-weighting schemes

for computing empirical distributions summarizing the ensemble.

Kashef and Kamel [29] presented a cooperative model to combine several cluster-

ing algorithms with the same number of clusters. It generates a set of sub-clusters

based on the cluster membership degree of each object and then merges those sub-

clusters with the highest similarity. These pair-wise similarities of sub-clusters are

presented by means of similarity histograms. The merging phase finishes when the

preset number of clusters has been reached.

This work applies cooperative clustering to treat missing values of incomplete

datasets, named CCI.

3.2 CCI Framework

The proposed method utilizes the cooperative clustering framework to aggregate mul-

tiple clustering algorithms. Then, the final consensus clustering model is used to

impute missing values of an incomplete dataset. The following subsections present

all steps in detail.
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3.2.1 Initializing Clustering Algorithms

The incomplete dataset (X) is divided into two subsets: (1) complete subset (XC)

and (2) incomplete subset (XI). The complete subset only contains those samples

that have no missing values. The incomplete subset is used to examine the imputation

performance. A = {A1, A2, . . . , Ae} presents e clustering algorithms. Each clustering

algorithm generates a set of clusters based on XC . Let R = {R1, R2, . . . , Re} be

the clustering results of all clustering algorithms. It should be noted that unlike

other cooperative clustering frameworks, the proposed method does not require the

imported clustering algorithms have the same number of clusters. Thus, the number

of clusters in each Ri can be different.

3.2.2 Generating Sub-clusters

The cooperative phase is performed based on the association of various cluster-

ing approaches. Thus, before the cooperative phase, a set of disjoint sub-clusters

(S = {S1, S2, . . . , Sw}) are generated to present the agreement among these clus-

tering results. w stands for the total number of sub-clusters. The sub-clusters are

examined to find the overlapping samples between different clustering results. The

samples are assigned to one sub-cluster, if and only if they always belong to the same

cluster according to all clustering results. Let η = {η1, η2, . . . , ηe} be the number of

clusters returned by each clustering algorithm.

In order to find the intersection of clustering results, the membership degree of

each sample x is calculated. mem(x)|Ri ∈ {1, 2, . . . , ηi} indicates sample x belongs to

which cluster. Equation 3.1 defines the membership degree function:

mem(x) =
e∑
i=1

mem(x)|Ri ∗ (ηi)
i−1 (3.1)

If the membership degree of two samples x1 and x2 ∈ XC are the same, then

mem(x1) = mem(x2). These two samples belong to the same sub-cluster.
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3.2.3 Cooperative Phase

In the cooperative phase, a new set of sub-clusters (V ) are used to present the tem-

porary merged results. For example, Vi,j indicates that Si and Sj sub-clusters are

merged. These temporary merged results are stored in a symmetric matrix Ω. The

number of elements in Ω matrix are (w × (w − 1)/2).

Ω =



0 V1,2 V1,3 . . . V1,w
... 0 V2,3 . . . V2,w
...

... 0
. . .

...
...

...
... V(w−1),w

0 0 0 . . . 0


The purpose of merging sub-clusters is to find a clustering model that is most suit-

able for missing data imputation. In each iteration, only two sub-clusters are merged.

Many cooperative clustering methods utilize normalized mutual information (NMI)

or similarities as the criterion to merge sub-clusters. The pair-wise sub-clusters with

the highest similarities or NMI are merged to achieve a better partition quality. How-

ever, since the better partition quality cannot guarantee more accurate estimations

of missing values, another criterion is introduced to merge sub-clusters for the sake

of enhancing imputation accuracy. Normalized Root Mean Square Error (NRMSE)

is commonly used to evaluate the imputation performance. The equation of NRMSE

is shown as follow:

NRMSE =

∥∥∥X̂ −Xo

∥∥∥
F

‖Xo‖F
(3.2)

where X̂ is the imputed data, Xo is the original complete data, and ‖.‖F stands for

the Frobenius norm.

The algorithm makes use of each temporary merged sub-cluster (V ) to impute

missing values of XI . It takes each sample of the incomplete subsets and finds its

nearest centroid of sub-clusters, and replaces missing values with corresponding fea-
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ture values of the nearest centroid. The imputation performance (NRMSE) of each

temporary merged result (V ) are stored in a performance measurement matrix (Γ):

Γ =



0 ψ1,2 ψ1,3 . . . ψ1,w

... 0 ψ2,3 . . . ψ2,w

...
... 0

. . .
...

...
...

... ψ(w−1),w

0 0 0 . . . 0


where ψi,j present the imputation performance based on the temporary merged results

Vi,j. A lower NRMSE indicates a better imputation performance. Thus, searching the

minimum value in the performance matrix and finding its corresponding temporary

merged result is the best merged solution for this iteration. For example, if ψ3,4 is

the lowest value in Γ, V3,4 is the best merged solution for this iteration.

3.2.4 Consensus

At the end of each iteration, the best temporary merged result is stored in Z, which

consists of a new set of sub-clusters, ω stores the performance measure of Z. For

example, Zi and Ψi present the best merged result and its performance measure in

the i − th iteration. If Ψi < Ψi−1, the iteration can continue. Otherwise, Zi−1 is

considered as the final clustering model, which is used to impute the missing values

of the incomplete subset XI . The pseudo-code of the proposed CCI technique is

presented in Algorithm 1.
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Algorithm 1: Cooperative Clustering Imputation.

Input: X and A
Output: X̂
Definitions:
X: incomplete dataset,
X̂: imputed dataset,
A: a set of clustering algorithms,
R: clustering results,
S: a set of sub-clusters,
Zi: best temporary merged result in i− th iteration,
Ψi: performance measure of Zi,
Ω: temporary cooperative result matrix,
Γ: performance measure matrix,
begin

Split X into XC and XI subsets
R← A(XC) /* A partition XC into R */
S ← mem(R) /* R generate sub-clusters S */
Z0 = S /* Initialize best clustering results with the first sub-cluster s */
Ψ0 ← performance(S)
Ω← temporary merge(S)
Ψ1 ← best performance(Ω)
i = 1
while Ψi < Ψi−1 do

i = i+ 1
Ω← temporary merge(Zi−1)
Γ← performance measure(Ω)
Ψi ←Min(Γ)
Zi ← best(Ω) /* find the best corresponding merged results in Ω */

end

X̂I ← impute(Zi−1, XI) /* missing values in XI are imputed based on
final decision clustering model Zi−1 */
X̂ = X̂I

⋃
XC

end
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3.3 Datasets

The experiments, which are used to evaluate the proposed method, are performed with

public datasets and V2X communication datasets. The details of public datasets are

listed in Table 3.1.

Table 3.1 – Characteristics of the used datasets.

Datasets No. of samples No. of features

Iris 150 4
Wine 178 13
Glass 214 9
Statlog Heart 270 13
BUPA liver disorders 345 6
Breast Cancer Wisconsin 683 9
Pima Indians Diabetes 768 8
Dermatology 358 34
Difficult Doughnut 400 12
Yeast 1484 8

VeReMi is the public labeled V2X communications dataset, which contains simu-

lated traffic behavior data, including representative samples of various attackers [33].

These datasets contain five different attackers (see Table 3.2), three traffic densities,

and different attacker densities. The features of these datasets include transmission

time, sender, attacker type, message ID, and actual position/speed vectors.

Table 3.2 – Attacker parameter

ID type parameter

2 Constant x = 5560,y = 5820

3 Constant offset ∆x = 250, ∆y = -150

4 Random uniformly random in playground

5 Random offset ∆x,y uniformly between -300 and 300

6 Eventual stop stop probability += 0.025 each update

These ground truth VeReMi datasets and publicly available datasets are not nat-

urally incomplete. Thus, the amputation methods should be introduced to create
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several incomplete datasets for experiments.

3.4 Missing Data Amputation

Missing data are inevitable in V2X communications data. Although real V2X com-

munications data contain missing values, there is a need to have a set of benchmark

V2X communications data, where missing values are systematically induced over data.

For this purpose, the ground truth VeReMi datasets that are originally complete are

considered into account. Then, missingness is induced over each VeReMi dataset in

various ways by means of a missing data amputation technique to generate multiple

incomplete V2X datasets.

Missing values are very common for the V2X communications data. Incomplete

messages are frequent according to the missing at random (MAR) mechanism. For

instance, features about the weather usually have a great impact on the transmission

strength of the signal, resulting in missingness over the received messages [34]. Al-

though MAR is a very common reason for missingness in V2X data, the missingness

might have other reasons. Thus, we aim to study the impact of other missing mech-

anisms in misbehavior detection. Therefore, for the sake of a more comprehensive

study, there is a need to induce missing values over V2X communications data with

various missing ratios, mechanisms, and distributions.

In this work, a multi-factor amputation framework is proposed, which generates

missingness with different missing ratios, mechanisms, and distributions (INSERT).

This section formally presents different components of the INSERT amputation frame-

work that systematically induce missingness over VeReMi datasets and other publicly

available datasets. INSERT induces missingness to each complete data with four dif-

ferent missing ratios (1%, 5%, 10%, and 20%), five probability distribution functions

(Normal, Logistic, Exponential, Weibull, and Inverse Gaussian), and three missing

mechanisms (MCAR, MAR, and MNAR). The probability distribution functions help
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to select a sample for inducing missingness. INSERT calculates weighted sum scores

for all samples. These are all fitted on a probability distribution to compute the

missing probability for each sample. Then, the probability random selection is used

to select samples for inducing missingness.

3.4.1 MCAR Amputation

Let us assume X is a dataset of dimension of m× n, in which xij stands for the cell

on i− th row and j − th column of X, xi stands for the i− th sample of X, and Yj
stands for the j− th feature of X. X can be split into two subsets X = Xobs ∪Xmiss,

where Xobs and Xmiss are subsets of observed and missing samples of X. Xobs and

Xmiss include all values xij, where ẍij are zeros and ones, respectively. Moreover, Z

is a binary matrix of missing indicator of X that can be defined as Zm×n = {ẍij}m,ni,j=1,

in which ẍij is one if xij is missing and is zero if xij is observed.

The probability distribution of Z might depend on Xobs and Xmiss, which yield

to describe the missingness mechanisms σ(Z|X, ξ) with a set of parameters ξ [35].

MCAR mechanism is completely unrelated to data and the missingness probabil-

ity merely depends on a set of parameters ξ as follows: σ(Z|X, ξ) = σ(Z|ξ). In

other words, in MCAR (see Algorithm 2), the missing values are randomly scattered

through data.

Algorithm 2: MCAR Amputation

Input:
Complete dataset: Xo

Missing ratio : ρ
Output: Incomplete dataset: Xincomplete

begin
for i ∈ [1, ρmn] do

Xo[random(1,m), random(1, n)] = ‘NaN’
end
Xincomplete = Xo

end
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3.4.2 MAR Amputation

To simulate the missing at random (MAR) mechanism (see Algorithm 3), INSERT

randomly divides the original dataset X into several disjoint sample subsets X =

{X1 ∪X2 ∪ . . . ∪Xq}, in which q is the number of subsets, and each sample merely

appears in one subset. The size of each subset is a user-defined parameter. For each

subset, only one missing pattern ν can be applied to generate missing values. A

missing pattern indicates which features must contain missing values. All missing

patterns consider the same number of features to induce missingness. This number

is determined based on the missing ratio.

The missingness is established by the principle of the MAR missing mechanism:

σ(Z|X, ξ) = σ(Z|Xobs, ξ), where the probability of missingness depends on ξ and

observed values Xobs, i.e., causative features [36]. Then, a feature has missing values

due to its observed values or another causative feature [17]. In this work, the corre-

lation is considered into account to identify the systematic relationship between the

missing feature and its causative feature. This mechanism firstly locates a pair of

features with the largest correlation. It then sets one of these features as a causative

feature and induces missing values on the other feature. If the missing pattern con-

tains more than one missing feature, it then selects another pair of features, which

has the second-largest correlation to induce missingness. It repeats these steps until

the number of missing features has been reached. This process is repeated for each

subset to reach the required missing pattern.

The next step is to decide which samples have to be selected to induce missing

values for each missing pattern. Each feature has a weight (ωi ∈ ω) that is determined

by the user according to its importance. If the importance of features can not be

found, more weights are assigned to the causative features. The weighted sum scores

κi aggregates the impact of features in each sample κ = ω1 · y1 +ω2 · y2 + · · ·+ωn · yn.

The probability distribution function is then applied to the weighted sum scores

to allocate the probability of being missing. In Figure 3.1, for instance, by applying
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Figure 3.1 – Cumulative probability function of logistic distribution.

the logistic distribution on κ, the sample with a higher κ has a higher probability

of being missing. Each sample in the subset is allocated the probabilities of being

missing. The probability random selection is then used to determine missing samples

until the number of missing samples has been reached. Finally, the missing values

are induced in missing features and missing samples for each missing pattern.

3.4.3 MNAR Amputation

To simulate the missing not at random (MNAR) mechanism (see Algorithm 3), the

probability of missingness not only depends on the observed values Xobs, but also de-

pends on missing values Xmiss as follows: σ(Z|X, ξ) = σ(Z|Xobs, Xmiss, ξ). INSERT

applies a similar strategy to MAR. However, the process of determining the missing

pattern and weight of each feature is different. The correlation cannot be used to

determine missing patterns. In this case, each feature has the same opportunity to

have missing values. The missing patterns are designed by the random selection of

features to induce missingness until a predetermined number has been reached. The

weighted sum score is based on the same equation. However, higher weights are as-

signed to the missing features. The probability distribution function is similarly used

to select missing samples.
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Algorithm 3: MAR and MNAR Amputations
Input:
Complete dataset: Xo

Missing ratio: ρ
Number of subsets (number of missing patterns): q
Distribution type: D
Features weights: ω
Output: Incomplete dataset: Xincomplete

Definitions:
νMAR
t : Missing pattern for t-th subset in MAR.
νMNAR
t : Missing pattern for t-th subset in MNAR.
nX : Number of missing features for each subset.
κt: Weighted sum score for subset t.
Xt(i, j): Value of i-th row and j-th column in subset of t.
σt: Probability of missingness for subset t.
ŝt: Missing samples for subset t.
begin

/*Split Xo into q subsets */ Xo = {X1 ∪X2 ∪ . . . ∪Xq}
nX = bρ · n/qc
for t ∈ [1, q] do

/* Compute correlation matrix of features */
ε = cor(Xt)
/* Find missing pattern for each subset */
for i ∈ [1, nX ] do

/* Find indexes of most correlated features */
[Y1,Y2] = arg max

i,j
ε(i, j)

νMAR
t (i) = Y1
ε(Y1,Y2) = 0

end
/* Design missing pattern based on random selection of nX columns for each

subset in MNAR */
νMNAR
t ← rand(Xt, nX)

/* Create weights for each subset based on νt */
if ωt == 0 then

ωt ← rand(νt)
end
for i ∈ [1,m/q] do

/* Get the κ for each row in each subset*/ κt(i) =
∑
j∈νt ω

t(j) ∗Xt(i, j)

end
/* Get the probability of being missing for each row based on the distribution

method */ σt ← D(κt)
/*Select missing values randomly based on σtm */ ŝt ← rand(Xt | σt)
/*Create missing value for each subset */ Xt(ŝt, νt) = ‘NaN‘

end
Xincomplete = {X1 ∪X2 ∪ . . . ∪Xq}

end
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Therefore, the INSERT amputation method is used to generate a set of incomplete

datasets from each dataset. The set of incomplete datasets consist of three missing

mechanisms (MCAR, MAR, and MNAR), four missing rates (1%, 5%, 10%, and 20%),

and five distributions (Exponential, Normal, Logistic, Weibull and InverseGaussian).

It should be noticed that the distributions are only applied to MAR and MNAR. Thus,

the total number of incomplete datasets for each complete dataset is 44 (MCAR only

has four incomplete datasets, MAR and MNAR both have 20 incomplete datasets).

3.5 Experimental Results

In this section, the experimental setting to evaluate the proposed method and its

competitors is firstly explained. The attained results are analyzed and compared,

which demonstrate that the cooperative clustering imputation improves the imputa-

tion accuracy, compared to individual clustering imputation methods. The proposed

imputation technique and its competitors are evaluated in estimating missing values

of the vehicle-to-everything (V2X) communication data [37].

3.5.1 Experimental Setting

The proposed cooperative clustering imputation approach is compared with three

standard clustering-based imputation techniques, including KMI, FCMI, and PAMI.

The parameters of these three imputation techniques are properly tuned. CCI makes

use of three individual clustering algorithms, including k-means, fuzzy c-means, and

partition around medoids. The parameters of these clustering algorithms are the same

as KMI, FCMI, and PAMI. Therefore, if the imputation quality of CCI is better than

the other three imputation techniques, it can prove that CCI is a more effective

technique.

23



C
1

A
N

1
N

N
1

A
L

1

N
L

1

A
E

1

N
E

1
A

W
1

N
W

1

A
G

1
N

G
1

C
5

A
N

5
N

N
5

A
L

5

N
L

5

A
E

5

N
E

5
A

W
5

N
W

5

A
G

5
N

G
5

C
1

0
A

N
1

0
N

N
1

0
A

L
1

0
N

L
1

0
A

E
1

0
N

E
1

0
A

W
1

0
N

W
1

0
A

G
1

0
N

G
1

0

C
2

0
A

N
2

0
N

N
2

0
A

L
2

0
N

L
2

0
A

E
2

0
N

E
2

0
A

W
2

0
N

W
2

0
A

G
2

0
N

G
2

0

0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

Averaged NRMSE Values

C
C

I
K

M
I

F
C

M
I

P
A

M
I

Figure 3.2 – The averaged NRMSE values over all incomplete datasets obtained by
each imputation method for each combination of the missing mechanism, missing rates,
and missing distribution.
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3.5.2 Results Analysis

Figure 3.2 illustrates the averaged NRMSE values over all incomplete datasets ob-

tained by each imputation method. The x-stick presents the combination of missing

mechanism, missing rates, and missing distribution. The first letter means the miss-

ing mechanism, C stands for MCAR, A stands for MAR, and N stands for MNAR.

This setting is also used in Figure 3.4. The second letter means missing distribution

for MAR and MNAR, N stands for the normal distribution, L stands for the logis-

tic distribution, E stands for the exponential distribution, W stands for the Weibull

distribution, and G stands for the inverse Gaussian distribution. The last number

stands for missing rate.
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Figure 3.3 – Distribution of NRMSE values attained by each imputation method. The
red crosses stand for outliers and the solid squares denote the average value for each
box. The solid dashes stand for 1st and 99th percentiles. The red solid line is the
median value for each method.
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For example, AN1 means MAR missing mechanism, 1% missing rates with the

normal missing distribution. A more accurate imputation has the lower NRMSE

value. In this figure, the proposed method has a lowest averaged NRMSE values,

which indicates that it outperforms the other three imputation techniques in all miss-

ing combinations.

Figure 3.3 presents the distribution of the attained imputation performance in

terms of NRMSE overall incomplete datasets by each imputation method. The pro-

posed imputation method has the lowest average and smallest box, which demon-

strates that the proposed method has the best and steadiest imputation performance

among other competitors. KMI has the largest variation, which indicates it has the

most unstable performance. FCMI has a better imputation result comparing with

KMI and PAMI.
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Figure 3.4 – Distribution of NRMSE values obtained by each method through all
incomplete datasets with different missing mechanisms.
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Figure 3.4 shows the distribution of imputation performance attained by each

method through incomplete datasets with different missing mechanisms. In the figure,

x-axis, the letters before the dash line present the imputation method, and the letter

after the dash line shows the missing mechanism. For example, KMI-A stands for the

imputation performance attained by k-means imputation for all incomplete datasets

with MAR missing mechanism. To compare with competitors, CCI outperforms other

imputation approaches in every missing mechanism.
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Figure 3.5 – Distribution of NRMSE values obtained by each method through all
incomplete datasets with different missing rates.

Figure 3.5 illustrates the distribution of the imputation accuracies attained by

each method through all incomplete datasets with different missing rates. With the

increase of the missing rate, the imputation performance is decreased. The higher

missing rates mean less complete samples that can be used for partitioning. Therefore,

the clustering model contains a limited number of samples, and the incomplete sample
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only has a few options to use for estimation of its missing values. In this situation,

the proposed method still has the best and stablest imputation performance for each

missing rate.
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Figure 3.6 – Imputation performance of each method for different missing distribution.

Figure 3.6 presents the influence of the distribution in the generation of miss-

ing scores. In general, all imputation methods perform well on those incomplete

datasets with the exponential distribution of the missing scores, comparing to other

distributions. These clustering-based imputation methods are more suitable for the

incomplete datasets with exponential distribution, and the performance of FCMI is

always better than KMI and PAMI. However, the proposed method is the most stable

technique overall missing distributions and always outperforms its competitors.
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3.5.3 Analysing Results on Incomplete V2X Communication

Data

Five datasets are selected from publicly available V2X communication datasets and

used in our experiments. They are collected from different simulated scenarios. The

details of these datasets are listed in Table 3.3.

Table 3.3 – Characteristics of the selected VeReMi datasets.

Datasets No. of samples No. of features
Scenario 1 1143 7
Scenario 2 1138 7
Scenario 3 1141 7
Scenario 4 1090 7
Scenario 5 1090 7

The INSERT amputation method is applied to generate 44 incomplete datasets

with different missing mechanisms, rates, and distributions for each scenario. This

results in generation of 220 incomplete VeReMi datasets. These incomplete datasets

are used to evaluate the imputation performance of the proposed method and its

competitors.

Figure 3.7 presents the imputation performance in terms of NRMSE attained

by each imputation method overall incomplete V2X communication datasets. The

proposed method, CCI, has the lowest average and median NRMSE values, which

indicate that the proposed method is the most accurate method compared to other

competitors. Moreover, CCI has the smallest box that illustrates the proposed method

is the most stable method among other competitors through all V2X communication

scenarios. The attained results show that the proposed method is the most efficient

and stable technique to estimate missing values of the V2X communication data.
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Figure 3.7 – Distribution of the NRMSE values attained by each imputation method
in estimating missing values of incomplete VANET datasets. The red crosses stand for
outliers and the solid squares denote the average value of each box. The solid dashes
stand for 1st and 99th percentiles. The red solid line is the median of the NRMSE
values attained by each method.
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3.6 Summary

In this chapter, a novel imputation algorithm is proposed that is based on cooperative

clustering. This chapter also develops a multi-factor amputation framework, called

INSERT, to induce missingness over V2X data with various ratios, mechanism, and

distributions, and create multiple incomplete benchmark data. For cooperative clus-

tering imputation, various clustering algorithms generate a set of sub-clusters based

on the agreement among themselves. Then, a consensus function is used to merge

these sub-clusters to explore the best model for imputation. The proposed method

is compared with three standard clustering-based imputation methods for imputing

missing values of incomplete datasets, in which the missing scores are generated over

ten public datasets and five V2X communication data with different missing mech-

anisms, missing rates, and missing distributions. The experimental results indicate

that the proposed method significantly outperforms the competitors. In the future,

CCI will be evaluated to impute missing values of more V2X incomplete datasets.
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Chapter 4

Collaborative Clustering Imputation

This chapter illustrates another proposed imputation method COLI. The basic con-

cepts of collaborative clustering are presented at first. Then, the development pro-

cedures of the proposed method are introduced in detail. It explains the exchange

of information, which is the key factor in the development of the collaborative step.

Later, two operators are considered into account to update the partitioning. Then, it

presents the proposed imputation algorithm and the main steps. Finally, the experi-

mental results of the proposed method and its competitors are presented.

4.1 Collaborative Clustering

Collaborative clustering is a framework in which different clustering results collabo-

rate to reach a better partitioning on common data. Each partitioning refines itself by

exchanging information with other partitionings. These partitionings can be obtained

through different clustering algorithms or different parameters of the same algorithm.

Moreover, these clustering results can be the partition of one data or the partition of

subsets of data [38].

Collaborative clustering mainly has five critical characteristics: (1) partitioning

information is being exchanged between different partitioning results, (2) different

algorithms must have common characters, (3) the criteria are set to evaluate the

performance of each partitioning, (4) different algorithms have a common goal to

improve the consensus, (5) various operations are used to update each partitioning.

The implements of collaborative clustering are various. Some methods are devoted
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to creating a suitable framework for different clustering algorithms. A collaborative

clustering has been developed in [39] to increase the agreements of partitioning among

different clustering algorithms. This general method is applicable to all clustering

algorithms. A similar collaborative clustering framework [40] is adopted for multiple

consensus clustering, multi-view clustering, and alternative clustering. It iteratively

exchanges information to obtain a consensus or an alternative clustering solution.

This method is independent of the types and parameters of the clustering algorithms.

Another general collaborative clustering method has been developed in [41] that is

able to exchange information between various partitioning results obtained through

different subsets of data.

Some collaborative clustering approaches only focus on a single clustering algo-

rithm. In [42], the FCM clustering is applied to several independent subsets of data

to obtain partitioning results. Then, these results exchange information about local

partition matrices to acquire a common partition. Another collaborative cluster-

ing method is based on the k-means algorithm [43]. It improves the validity of the

k-means algorithm through large distributed data. In order to accelerate the con-

vergence, this method introduces a collaborative seeding among different partitioning

results.

4.2 COLI Framework

Recently, a lot of work has focused on the use of multiple clusterings to improve the

clustering process. However, there is little research done on missing value imputa-

tion using multiple clustering results. Moreover, existing approaches are based on

Ensemble clustering, which combines multiple clustering results into an alternative

approach without any collaboration between different partitions [44, 45]. This chapter

proposes a novel imputation technique that is based on collaborative clustering. The

fundamental concept of collaborative clustering is that the algorithms operate locally
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and then collaborate by exchanging information about their structure to improve

their result. The proposed collaborative clustering-based imputation (COLI) treats

the imputation quality as the key information and be exchanged between different

clustering partitions. According to the confusion matrix, COLI chooses the split or

re-cluster operation to update the partitioning of each clustering algorithm. Finally,

the updated partitions are aggregated by the point majority voting to obtain the final

model, which is used to impute missing values.

4.2.1 Exchange of Information

Collaborative clustering is a framework in which different clustering results collabo-

rate to reach a better partitioning of common data. Each partitioning refines itself by

exchanging information with other partitionings. Determining the type of information

for the exchange within the collaborative process is of paramount importance. The

partition structure is one of the most common characters among all clustering meth-

ods. Therefore, in order to design a more general algorithm, the proposed method

treats the partitions as the key information to exchange.

Let us assume R presents a set of partitioning results, where Ri means the parti-

tioning result obtained by i − th clustering method. cui stands of the u − th cluster

in Ri. The confusion matrix is introduced to compare the partitions between two

partitioning results. It presents the overlapped samples between two clusters in two

different clustering results. The confusion matrix Λi,j between Ri and Rj is defined

as follows:

Λi,j =


ϑ1,1
i,j . . . ϑ

1,ηj
i,j

...
. . .

...

ϑηi,1i,j . . . ϑ
ηi,ηj
i,j

 (4.1)

where ηi and ηj stand for the number of clusters in Ri and Rj, respectively, and
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ϑu,ti,j is defined as follows:

ϑu,ti,j =

∣∣cui ∩ ctj∣∣
|cui |

(4.2)

In this formula,
∣∣cui ∩ ctj∣∣ is the number of samples in u-th cluster of Ri, and t-th

cluster of Rj at the same time. The confusion matrix makes it possible to know

whether or not the samples of two partitions have been grouped in a similar way or

if the two clustering results are dissimilar.

Now the intersection relationship of the clusters in two different clustering results

can be find. oui,j is used to store a set of clusters in Rj that have overlapped samples

with cui . This is the information that will be used to exchange during the collaborative

process (oui,j = {ctj,∀1 ≤ t ≤ nj : ϑu,ti,j 6= 0).

4.2.2 Performance Evaluation

There exist various clustering quality criteria that can be used to evaluate the validity

of the partitioning results [46]. However, these quality indexes are independent of the

imputation quality. In this situation, the proposed method makes use of an impu-

tation performance index, so-called Normalized Root Mean Square Error (NRMSE),

as of partitioning performance and the quality of each cluster in each partitioning.

NRMSE is defined as follows:

NRMSE =
‖Ximputed −Xoriginal‖F

‖Xoriginal‖F
(4.3)

whereXimputed is the imputed data, Xoriginal is the original complete data, and ‖.‖F
stands for the Frobenius norm. Different partitioning results exchange the information

and modify their partitions in such a way that they obtain lower NRMSE measures.
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4.2.3 Collaborative Process Operators

During the collaborative process, each algorithm modifies its partitioning based on

oui,j. |oui,j| presents the number of clusters in oui,j. If |oui,j| > 1, it means more than one

cluster in Rj have overlapping samples with cluster cui . In this case, the split operator

is applied to change the partition cui (see Algorithm 4). If |oui,j| = 1, it means only

one cluster of Rj has overlapping samples with the cluster cui . Thus, the re-cluster

operator is used for cui (see Algorithm 5).

Algorithm 4: The pseudocode of split operation.

Input: cui , Ri , oui,j
Output: New partitioning: R̂i

Definitions:
oui,j[t]: t− th cluster in oui,j
begin

Ri = Ri\{cui }
for t ∈ [1, |oui,j|] do

Ri = Ri ∪ (cui ∩ oui,j[t])
end

R̂i = Ri

end

Once each partitioning has refined to its best that is the highest imputation qual-

ity, point majority voting is then used to combine all refined partitioning results into

a consensus outcome. This step aims to combine the clustering results that might

have different numbers of partitions. For each sample x a voting matrix calculated

as:

V(x) =
{(
v1i (x), . . . , vηii (x)

)
, 1 ≤ i ≤ e

}
(4.4)

where ηi is the number of clusters in Ri, e is the number of clustering algorithms

and v1i (x) is defined as Eq. (8).

vui (x) =
e∑
j=1

vote(x, cui , Rj) (4.5)
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Algorithm 5: The pseudocode of re-cluster operation.

Input: cui , Ri

Output: New partitioning: R̂i

Definitions:
xt: Value of t-th sample in cui
ιδi : Centroid of j-th cluster in Ri

begin
Ri = Ri\{cui }
for t ∈ [1, |cui |] do

/* assign xt to the closest cluster cδi ∈ Ri */ λ = arg min
δ=1:ηi

dist(xt, ι
δ
i )

/* update center of ιλi by averaging all of the points that have been
assigned to it. */ ιλi = 1

|ιλi |
∑

x∈cλi
x

Ri = Ri ∪ {cλi }
end

R̂i = Ri

end

where

vote(x, cui , Rj) =


1 if (i = j and x ∈ cui )

or x ∈ max(oui,j)

0 else

(4.6)

Each sample belongs to the cluster according to the opinion of the majority of

different clustering algorithms. So, the clustering result Ri votes for its cluster (cui )

and also for the cluster in each other clustering result (Rj) that has the maximum

number of overlapped samples with cui . The summation of all values presents the

membership degree between x and cui . Finally, the sample x belongs to cluster V̆

which has the maximum membership degree V̆(x) = arg maxcui v
u
i (x).

4.2.4 Algorithm and Procedure

step 1: The original incomplete dataset is split into a complete subset and an incom-

plete subset. The complete subset contains all complete samples, and the incomplete
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subset contains the samples that have missing values.

step 2: Each clustering algorithm is applied to the complete subset to obtain

the partition result independently. The imported clustering algorithm is well-tuned

to attain a temporary optimized partitioning, which indicates the best imputation

quality.

step 3: Incomplete samples are imputed according to the obtained clustering

results. The corresponding values in the nearest cluster centroid are used to impute

missing values. The performance of the u-th cluster in Rj (ψuj ) is the NRMSE value

of imputed samples, which are imputed based on the centroid of cuj . The performance

of Rj (Ψj) is the NRMSE value of all imputed samples in this partition.

step 4: Find the cluster cur , which has the worst imputation performance

(max(ψur )). That means this cluster is not suitable to impute missing values. Op-

timizing the partition of this cluster might get a better imputation quality. Then,

another clustering result with the best imputation quality (RB) is treated as the

partition to exchange information with cluster cur .

step 5: The confusion matrix Λr,B and overlapped cluster set our,B are calculated

between cluster cur and partition RB. The number of the overlapped clusters |our,B|

are used to decide the operation type for cur . if |our,B| > 1, split cluster cur . Otherwise,

recluster cur . The updated clustering result is stored in temporary partition R̂r.

step 6: If the imputation performance of temporary partition R̂r (Ψ̂r) is better

than the imputation performance of Rr (Ψr), replace Rr with R̂r and update Ψ̂r

based on the new partition R̂r. Otherwise, keep the original Rr, and modify the

performance of cluster cur equal to 0. It means updating the cluster cur cannot achieve a

better imputation quality for Rr. Then, the cluster with the second-worst imputation

quality is selected to update its partitioning.

step 7: Repeat steps 4 ∼ 6 until the performance of clusters (ψ) are all equal

to 0. Then, the incomplete subset (XI) is imputed based on (V̆) which is the final

unified partitioning result. The pseudocode of COLI is shown in Algorithm 6.
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Algorithm 6: COLI
Input: Incomplete dataset: X
Output: Completed dataset: X̂
Definitions: XI : Incomplete subset.
XC : Complete subset; R: Set of clustering results.
ψδj : Imputation quality of δ-th cluster for j-th partition.
Ψj : Imputation quality of j-th partition.
ιδj : Centroid of δ-th cluster in Rj
ηj : Number of clusters in Rj
e: the number of import cluster algorithms.
begin

Split X into XC and XI subsets.
R = ∪ej=1Rj
for j = 1, 2, ..., e do

for ∀xi ∈ XI do
λ = arg min

δ=1:ηj
dist(xi, ι

δ
j)

ψδj = NRMSE(ιλj , xi)

end

Ψj = 1
ηj

∑ηj
δ=1 ψ

δ
j

end

while ( ∃ψδj 6= 0 ) do
[u, r] = arg max

j,δ
ψδj

B = arg min
j=1:e

Ψj

if | our,B |> 1 then

R̂r = (Rr\{cur }) ∪ split(cur , Rr, our,B)

else

R̂r = (Rr\{cur }) ∪ recluster(cur , Rr)
end
R = R\Rr
if Ψ̂r < Ψr then

R = R ∪ R̂r (Update Ψr)
else

R = R ∪Rr, ψur = 0
end

end
for ∀xi ∈ XI do
U ← PointMajorityV ote(R)
x̂i = impute(xi,U)

end

X̂I = {x̂1 ∪ x̂2 ∪ x̂3 ∪ . . . ∪ x̂i}
X̂ = {Xc ∪ X̂I}

end

4.3 Experimental Results

In this section, the setting of the experiments and the information of experimental

datasets are explained in detail. Then, the imputation performance of the proposed
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method is compared with three clustering-based imputation methods and five other

imputation methods in terms of NRMSE.

Table 4.1 – Size of the experimental datasets.

Datasets # of features # of samples

4-gauss 12 800
Breast Cancer Wisconsin 9 683
Buddy Move 6 249
BUPA liver disorders 6 345
Dermatology 34 358
Difficult Doughnut 12 400
Divorce 54 170
Glass 9 214
Ionosphere 34 351
Iris 4 150
QSAR aquatic toxicity 9 546
Statlog Heart 13 270
Wholesale customers 8 440
Wine 13 178
Yeast 8 1484

4.3.1 Experimental Settings

The proposed collaborative clustering imputation method (COLI) is compared with

three standard clustering-based imputation methods (KMI, FCMI, and PAMI), four

classical imputation methods (MI, SkNNI, EMI, and DA) and also the ensemble

clustering method (CCI) [44]. These imputation methods have optimized their pa-

rameters through pre-experiments. CCI and COLI utilize three individual clustering

algorithms, including k-means, fuzzy c-means, and partition around medoids. These

clustering algorithms apply the same parameters as KMI, FCMI, and PAMI.

The experiments make use of fifteen publicly available datasets. The number

of samples and features are listed in Table 4.1. These datasets did not originally

contain missing values. In this case, the INSERT amputation method is applied

to create incomplete datasets from each original dataset. These incomplete datasets
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have three missing mechanisms (MCAR, MAR, and MNAR), four missing ratios (1%,

5%, 10%, and 20%), and five missing distributions (Exponential, Normal, Logistic,

Weibull and InverseGaussian). Only MAR and MNAR have different distributions.

Thus, each original dataset can generate 44 incomplete datasets (MCAR has four

incomplete datasets, MAR and MNAR have 20 incomplete datasets).

4.3.2 Results Analysis
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Figure 4.1 – The average NRMSE values obtained by each imputation method over
all incomplete datasets for each combination of missing mechanism and missing ratio.

Figure 4.1 shows the average NRMSE values for the combination of missing mech-

anism and missing ratio. For example, 5%MAR stands for the average NRMSE value

for all incomplete datasets with a 5% missing ratio and MAR missing mechanism.

In this figure, the proposed method has the lowest averaged NRMSE values overall

missing combinations, which demonstrates that the proposed method outperforms its
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competitors. The proposed method always has a better performance compared with

other clustering-based imputation methods. It proves that the proposed collaborative

clustering framework is able to improve the quality of the imputation.
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Figure 4.2 – The imputation performance of all incomplete datasets for each imputa-
tion method. The red line presents the median value, and the solid square presents the
mean value.

Figure 4.2 presents the imputation performance in terms of NRMSE for each

imputation method in the form of the boxplot. Obviously, the proposed method has

the lowest mean and median values. The size of the box illustrates the variance of

imputation performance. The proposed method has the smallest box, which means

it has the most stable performance.

Figure 4.3 presents the boxplot of imputation quality in terms of NRMSE obtained

by each method overall incomplete datasets with three different missing mechanisms.

In this figure, the x-axis presents imputation with different missing mechanisms, the
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Figure 4.3 – Imputation performance of each method for different missing mechanisms.
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name of the imputation method is shown before the dash line, and the letter after the

dash line presents the missing mechanism. C stands for MCAR, A stands for MAR,

and N stands for MNAR. This figure demonstrates that the proposed method always

has the best and the most stable imputation quality. Although the proposed method

has worse performance in MAR, comparing to MCAR and MNAR, its performance is

still better than any other imputation method. It means that the proposed method is

suitable for all missing mechanisms. CCI has the second-best imputation quality. DA

and EMI have equal imputation quality with SkNNI for MCAR and MNAR. How-

ever, DA and EMI outperforms SkNNI for MAR because these iterative imputation

methods are more suitable for missing at random.
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Figure 4.4 – Imputation performance of each method for different missing distribu-
tions.

Figure 4.4 presents averaged NRMSE values of different missing distributions for
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each imputation method. In this figure, the imputation performances of different

distributions do not have a significant difference in all imputation methods. That

means different probability distribution functions in the amputation process have less

influence on the imputation performance. The proposed method still has the best

imputation quality comparing to its competitors.

4.4 Summary

This chapter proposes a novel imputation method that is developed from the collab-

orative clustering framework. The partitioning results obtained by various clustering

algorithms communicate with each other to reach a better imputation performance.

The imputation quality of the clusters is treated as the information exchanged in

the collaborative process. Then, each clustering result updates its partition by two

operations, split and recluster. Finally, the updated partitions are aggregated by a

consensus function to attain the final partitioning. The proposed method compares

with three standard clustering-based imputation methods, four classical imputation

methods, and also cooperative clustering imputation. Plenty of incomplete datasets

generated from fifteen publicly available datasets are used to evaluate the performance

of the proposed method and its competitors. The experimental results demonstrate

that the proposed method is an effective method to improve the accuracy of imputa-

tion.
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Chapter 5

Missing-Tolerant Method

This chapter proposes a novel missing-tolerant method, called MTE-RD. Then, the

prediction results of the imputation methods and missing-tolerant methods are ana-

lyzed. The significance test and the computational complexity of all missing values

treatments are also presented in this chapter. Finally, it gives an answer to the best

match for V2X communication datasets with incomplete environments.

5.1 Missing-Tolerant Ensemble

In order to achieve a better prediction result, this thesis proposes a novel missing-

tolerant method. It applies Learn++ which creates an ensemble of sub-classifiers.

Moreover, the predictions of all available sub-classifiers are aggregated by Dempster-

Shafer theory that is more effective than the majority vote in information fusion.

5.1.1 Training Phase

MTE-RD creates a set of feature subsets in each iteration to train sub-classifiers. Dt

presents the probability distribution for selecting random feature subspace in t − th

iteration. Dt can be iteratively updated and it should be normalized at the beginning

of each iteration to get the proper distribution. Based on Dt and without replacement,

nof features are randomly selected to create F (t) that stores the indices of the selected

features. Each sample in the training dataset will be selected for the training subset

X (t) to train t− th sub-classifier Ct, if the feature values of that sample are observed

according to F (t). Different sub-classifiers are then trained by the same classification
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algorithm. If no training sample is complete in F (t), then nof features will be re-

selected to create a new F (t). The features that have been selected in the current

iteration have less chance to be selected in the next iteration. Hence, the weights

of the features in F (t) are reduced by the factor β (0 < β ≤ 1). Consequently, the

probability distribution for selecting random feature subspace in the next iteration

is updated according to Dt+1 = β ∗ Dt. After all sub-classifiers are trained, their

effectiveness are presented in a decision profile (θ). The decision profile θ illustrates

the support given by the t− th sub-classifier to all classes for a given sample x:

θ(x) =


p11 p21 ... pL1

p12 p22 ... pL2

... ... plt ...

p1T p2T ... pLT

 (5.1)

where plt presents the probability prediction of sub-classifier t for class l, T stands

for the total number of sub-classifiers, and L presents the number of classes.

MTE-RD then calculates the averages of the decision profile for each class by

means of the decision template matrix (Θ(l)). The t− th row of the decision template

for class l is calculated as Θt(l) = 1
N

∑
x∈X l(t) θt(x). In this equation θt(x) presents

t − th row of θ(x), X l(t) represents the samples belonging to class l in subset X (t).

N is the number of samples in subset X l(t).

5.1.2 Testing Phase

MTE-RD then finds the available classifiers for the given test sample z based on its

no-missing features in the test phase. F (z) is used to store those feature indices that

are observed in the target sample z. If all feature indices of F (t) are in the F (z), it

means the classifier Ct can be used to predict the test sample z. γ is then created to

store the indices of all available sub-classifiers, and τ is the total number of available
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sub-classifiers. Then, the probability prediction of t − th available classifier for the

test sample z is presented by Pt(z). Meanwhile, the rows of all available classifiers

Θγ(l) in the decision template matrix Θ(l) form a new decision template matrix Θ̂(l)

for the given test sample z:

Θ̂(l) =


Θγ1(l)

Θγ2(l)

...

Θγτ (l)

 (5.2)

Pt(z) is used to present the probability prediction of t − th sub-classifier for the

test sample z, Pt(z) = [p1t (z), p2t (z), . . . , pLt (z)]. In order to apply the Dempster-Shafer

theory to fuse the evidences, the proximity Φl,t(z) between class l in the decision

template of the t − th sub-classifier Θ̂t(l) and the probability prediction Pt(z) is

calculated as follows:

Φl,t(z) =
(1 + ‖Θ̂t(l)− Pt(z)‖2)−1∑L
i=1(1 + ‖Θ̂t(i)− Pt(z)‖2)−1

(5.3)

The belief value of sub-classifier Pt can then be computed as follows:

bl(Pt(z)) =
Φl,t(z)

∏
i 6=l(1− Φi,t(z))

1− Φl,t(z)[1−
∏

i 6=l(1− Φi,t(z))]
(5.4)

Once the belief values for each class are computed, then, the Dempster’s rule

of combination is used to make the final decision. The final support of each class

can be obtained by the product of the belief values from all available sub-classifiers:

µl(z) = K
∏τ

t=1 bl(Pt(z)), where K is a normalization constant to make the sum of

the supports from all sub-classifiers for the j− th class equal to 1. The class that has

the highest support is the final prediction for the given test sample z.

The pseudocode of this proposed method is provided in Algorithm 7.
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Algorithm 7: MTE-RD.
Input: Training data: Xtrain with n features
Testing sample: z; Number of subspaces: T
Number of features used to train each classifier: nof
Output: Final prediction result: Y
Definitions:
L: Number of classes; F : Selected features
β: Update factor; X (t): t− th training subset
Θ: Decision template; Θ̂: Decision template for z
Pt: The probability prediction of the t-th classifiers
Φ: Proximity function; b: Belief function
µ: Support of each class; Ct: t− th sub-classifier
begin

Initial D1(j) = 1/n,∀j, j = 1, ..., n;β = nof/n
t = 1
while t ≤ T do

Normalize Dt

/* Select nof features randomly based on Dt */
F (t)← rand(nof |Dt)
if Xtrain(F (t)) != NaN then
X (t) = Xtrain(F (t))
Train Ct with training subset X (t)
update Dt+1 = β ∗Dt

t = t+ 1
end

end
for l ∈ [1, L] do

Calculate Θ(l)
end
Find complete features indices F (z) of z
Select applicable Ct and use Eq.2 to create Θ̂
Get the prediction result Pt(z)
Φ(z)← proximity(Pt(z), Θ̂) (Eq.3)
b(Pt(z))← belief(Φ(z)) (Eq. 4)
µ(z)← combination(b(Pt(z)))
Output final prediction Y

end

5.2 Experimental Results

This section initially compares COLI and CCI with commonly used imputation meth-

ods in terms of the imputation performance, i.e., the normalized root mean square
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error (NRMSE), and, misbehavior detection performance measures, i.e., accuracy

and F-measure. It then compares MTE-RD with the state-of-the-art missing-tolerant

methods in terms of accuracy and F-measure. All these imputation and tolerant

methods are compared together as group or individually to find the best match for

misbehavior detection in terms accuracy, F-measure, and computational complexity.

These experiments are conducted in a 10-folds cross-validation scheme over incom-

plete benchmark datasets. The average values of NRMSE, accuracy, and F-measure

over ten folds are used in this comparison.

5.2.1 Benchmark Data

Twenty VeReMi datasets with different scenarios are selected for the misbehavior

detection. These scenarios include three traffic densities (7 low, 6 moderate, and 7

high densities) and five attacker types. In each dataset, the number of misbehav-

ior messages are far less than the normal messages, which results in class-imbalance

datasets, and, thus, F-measure is used as a performance metric for misbehavior de-

tection. To generate incomplete benchmark datasets, original VeReMi datasets are

fed to the multi-factor amputation framework (see Section II). INSERT induces miss-

ingness over each VeReMi dataset with different missing ratios (1%, 5%, 10%, and

20%), five distributions (Normal, Logistic, Exponential, Weibull, and Inverse Gaus-

sian), and three missing mechanisms (MCAR, MAR, and MNAR), and returns 44

incomplete datasets. Therefore, 880 incomplete datasets are used for the misbehavior

detection.

5.2.2 Experimental Result of Imputation Methods

These imputation methods are evaluated by means of the imputation quality (NRMSE)

and the prediction performance in terms of accuracy and F-measure. The critical pa-

rameters of SkNNI, EMI, DA, and clustering based imputation techniques (KMI,
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FCMI, and PAMI) are determined within through the cross-validation. The import

clustering methods used in the CCI and COLI frameworks are k-means, fuzzy c-

means, and partition around medoids. Moreover, according to the previous research

[47], the decision tree has the best performance in comparison with other base classi-

fiers, and, thus, the hypothesis set is bounded to decision tree, imputed datasets are

fed to the decision tree for the misbehaviour detection.
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Figure 5.1 – (a) and (d) present the performance measurements of incomplete datasets
with different missing ratios. (b) and (e) present the performance measurements of
incomplete datasets with different missing mechanisms. (c) and (f) present the perfor-
mance measurements of incomplete datasets with different missing distributions.

Figure 5.1 shows the detection accuracy and F-measure attained by the decision

tree through each imputation method. Each measure, in panels (a-f), is averaged over

all benchmark data with different missing ratio, mechanism, and distributions. These

imputation methods result in mostly similar performance measures w.r.t. different
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missing factors. Figure 1 (a) and (d) show that the performance measures decrease

by increasing the missing ratio. Figure (b) and (e) show that imputation methods

result in slightly better results in the MAR and MNAR missingness compared to

MCAR. Figure (c) and (f) show that the detection performance is not very sensitive

to the missingness distribution over the benchmark data. In general, Figure 1 (a) to

(f) show that imputation methods (dash lines) outperform missing-tolerant methods

(solid lines), except MTE-RD, which outperforms all methods in all scenarios.

Table 5.1 reports the averaged measures over all incomplete benchmark data at-

tained through each imputation method. Although COLI and CCI underperform

EMI in terms NRMSE, however, they outperform all imputation methods in terms

of detection accuracy and F-measure (see bold entries in Table 5.1). In general,

clustering-based imputation methods result in better detection performance, but

worse imputation quality. SkNNI, EMI, and DA have better imputation quality,

but underperform other imputation methods in terms of accuracy and F-measure.

Our proposed method, COLI, outperforms all clustering-based imputation methods

in terms of NRMSE and all imputation methods in terms of accuracy and F-measure,

that are the most important measures for the sake of misbehavior detection.

Table 5.1 – Imputation and classification performance

Name Accuracy F-measure NRMSE

KMI 0.9716 0.9715 0.3336

FCMI 0.9706 0.9705 0.3060

PAMI 0.9698 0.9697 0.3597

SkNNI 0.9661 0.9658 0.1447

EMI 0.9701 0.9699 0.1401

DA 0.9694 0.9694 0.1760

CCI 0.9716 0.9715 0.2766

COLI 0.9721 0.9720 0.2717
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5.2.3 Experimental Result of Missing-Tolerant Methods

MTE-RD is compared with four state-of-the-art missing-tolerant methods (FS,

Learn++.MF, V-ELM, and AWVRF). FS applies the feature selection method to

reduce the dimension of the original dataset. In the experiments, only half of the fea-

tures are selected by the correlation feature selection (CFS) method. In Learn++.MF,

The size of the RSM and the number of features in each feature subsets are decided

by pre-experiments. The pre-experiments indicate that the performance does not im-

prove significantly after the size of RSM reached 100, and two features in each feature

set have the best performance. Therefore, the critical parameters nof and T are set

to 2 and 100. In V-ELM, 11 ELM classifiers are created for each missing pattern, and

the activation function is sigmoid. In AWVRF, the random forest has 100 decision

trees. The proposed method also applied Learn++ to create an ensemble of classifiers.

Thus, it has the same parameters as Learn++.MF. Meanwhile, to maintain experi-

mental consistency, the decision tree is treated as the base classifier for each method,

except that V-ELM has its own base classifier, ELM.

Figure 5.1 shows the averaged performance measures over all benchmark scenarios

with different missing ratios, mechanisms, and distributions attained by each missing-

tolerant method (solid lines). MTE-RD outperforms all treatment methods including

imputation and tolerant methods over all scenarios with different factors. Although

the missing ratio has more influence on the performance of the methods with the

random subspace selection mechanism, however, these methods outperform those

with the missing pattern mechanism. AWVRF has a better performance with the

MAR mechanism, comparing to other two mechanisms. The missing distributions

do not affect the performance of the missing-tolerant methods. However, FS has the

best (worst) performance over the cases with the Weibull (Exponential) distribution

of missingness.
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5.2.4 Missing-Tolerant vs Imputation

Figures 5.2 and 5.3 depict the distribution of the attained accuracy and F-measure

through each missing data treatment method. Each solid square presents the mean

of the performance measure and each red solid line stands for the median value of

the performance measures. The green solid line on the top of each box presents the

maximum value attained by each method. These missing treatment techniques are

ranked w.r.t. the mean values of the attained performance measures as MTE-RD,

COLI, KMI, CCI, EMI, FCMI, PAMI, DA, SkNNI, Learn++.MF, AWVRF, FS, and

V-ELM, respectively.
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Figure 5.2 – Distribution of the accuracy values obtained by each missing values
treatment for all incomplete datasets

The distribution of the attained measures through imputation methods are similar

54



K
M

I

FC
M

I

PA
M

I

SkN
N

I
EM

I
D

A
C

C
I

C
O

LI
FS

Learn++M
F

V
-E

LM

A
W

V
R

F

M
TE-R

D

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

F
-m

e
a
s
u

r
e

Figure 5.3 – Distribution of the F-measure values obtained by each missing values
treatment for all incomplete datasets

to some extent. FS and V-ELM are the most unstable methods and have the lowest

performance. That means those tolerant ensemble methods with the missing patterns

mechanism are not the prior choice for misbehavior detection over V2X benchmark

data. The proposed missing-tolerant method, MTE-RD, has the smallest box and

highest mean value, which indicate the maximum stability and highest performance

among all competitors. Figures 5.2 and 5.3 also show that imputation methods more

stable compared to missing-tolerant methods.

Finally, a two-step test is used to check whether the performance of the proposed

methods are significantly different from other methods. The Friedman rank test at

the significance level α = 0.05 is applied to determine if the performance of one
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Figure 5.4 – Nemeyi test for (a) accuracy and (b) F-measure

or more methods are significantly different. The attained p-values of the accuracy

and F-measure are both less than the significance level of 0.05, which reject the null

hypothesis and state that all these methods are not equivalent.

Then, the Nemeyi test with the same significance level is used to compare all

methods in a pairwise manner. This test uses a critical difference (CD) diagram to

interpret the results, whereas the performance of two methods are significantly differ-

ent if the gap between the average ranking of these two methods is greater than the

critical difference (CD). On the other hand, two methods that do not have a signifi-

cant difference are connected with the red solid line, where the difference between the

average rankings of these two methods is less than the CD value. Figure 5 (a) and (b)

depict the CD diagrams in terms of the accuracy and F-measure, respectively. There

is no significant difference among the imputation methods. The proposed imputation

method COLI has the second high ranks, but it has no significant difference with CCI
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and KMI. Missing-tolerant methods are significantly different from each other, except

V-ELM and FS. MTE-RD has the highest rank and it significantly outperforms all

other methods for treating missing values including imputation and tolerant methods.

5.2.5 Complexity Analysis

Table 5.2 reports the computational complexity of all imputation and missing-tolerant

methods. The computational complexity of the training and test phases are reported

separately. In the complexity formulas, m stands for the number of training samples,

n indicates the number of features, η stands for the number of clusters, and d indicates

the number of iterations, e indicates the number of import clustering methods to build

ensemble, T presents the number of sub-classifiers, g stands for the number of missing

patterns, k stands for the number of nearest neighbors, h shows the number of hidden

layers, and L is the number of classes.

Table 5.2 – Computational complexity and processing time (ms) for each imputation
and missing-tolerant method.

Algorithms Training Test Time Rank

KMI O(mnηd) O(η) 0.013 1

FCMI O(mnηd2) O(η) 0.014 2

PAMI O(mnηd) O(η) 0.022 3

SkNNI O(mnk) O(mk) 2.10 9

EMI O(mn2 + n3) O(mn2 +mn3) 0.48 6

DA O(mn2 +mn) O(mn2 +mn) 1.90 8

CCI O(emnηd+m2d) O(ηe) 0.023 4

COLI O(emnηd+med) O(ηe) 0.025 5

FS O(gm) O(g) 2.20 10

V-ELM O(g(mh2n+ h3)) O(g) 1.30 7

Learn++.MF O(Tmn) O(T ) 19.3 12

AWVRF O(Tmn) O(T ) 8.30 11

MTE-RD O(Tmn) O(L2T ) 25.4 13
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The computational complexity of all methods is reported in Table 5.2. The right-

most column of this table shows the rank of each method w.r.t. the processing time

of the test phase. Three clustering-based imputation methods are faster than other

methods. CCI and COLI create various partitions and update them to form the

ensemble, and, thus, they have higher complexities. Missing-tolerant methods have

higher training complexities than imputation methods since the number of subspaces

and missing patterns are always larger than the number of clusters. In online de-

tection applications, the computational complexity of the test phase matters. The

imputation methods have less process time than the missing-tolerant methods in most

cases because the missing-tolerant methods contain many sub-classifiers to make the

predictions. However, in the MAR and MNAR missing mechanisms, the number of

missing patterns becomes smaller and the processing time of FS and V-ELM becomes

shorter. MTE-RD has the highest processing time.
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5.3 Summary

This chapter proposes a novel missing-tolerant ensemble (MTE-RD). The generated

benchmark data enables a careful comparison between the proposed methods and

state-of-the-art imputation and missing-tolerant methods for the sake of misbehavior

detection with incomplete V2X benchmark data. This helps not only to find the best

method for misbehavior detection but also allows us to compare two major groups of

techniques for the treatment of missing data. The attained results indicate that MTE-

RD outperforms all other methods in terms of accuracy and F-measure, but has the

highest computational complexity. Nevertheless, MTE-RD is the best choice given

the fact its prediction time is still shorter than the required time to receive messages.

Moreover, the attained results show that, excluding MTE-RD, all imputation methods

outperform all missing-tolerant methods in terms of accuracy and F-measure. This

shows in general imputation of missing data is better than tolerating them due to the

faster processing time as well as having estimations of missing values that can be used

for the sake of other applications. Among all these methods, COLI has the second

rank and has the closest performance to that of MTE-RD, with less computational

complexity.
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Chapter 6

Conclusion

The main work of this thesis is to study the strategies for treatments of missing values

to find out the best match for misbehavior detection with incomplete V2X commu-

nication data. In order to accomplish this task, several imputation and missing-

tolerant methods are evaluated by publicly available datasets, VeReMi. In addition,

a multi-factor amputation framework is developed to generate incomplete datasets

for the purpose of simulating incomplete environments. Then, two novel imputation

methods, which are based on cooperative clustering and collaborative clustering, are

proposed to achieve better imputation quality. Moreover, a novel missing-tolerant

method is also proposed to reach higher accuracy and F-measure. The performance

of all missing values treatments is evaluated in terms of accuracy, F-measure, and

computational complexity.

In order to comprehensively study the missingness of V2X communication, the in-

troduced INSERT amputation method induces missingness with four missing ratios,

three missing mechanisms, and five missing distributions. It can generate 44 incom-

plete datasets from an original complete dataset in a more scientific and applicable

way.

The first proposed missing values treatment is cooperative clustering-based im-

putation. It generates a set of sub-clusters from different clustering results. The

sub-clusters are pairwise merged to reach a better imputation quality. The experi-

ments are conducted in ten publicly available datasets and five V2X communication

datasets, and results show that it can significantly improve the imputation quality,

comparing with individual clustering-based imputation.
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The second proposed imputation method is based on collaborative clustering. It

treats the partition of clustering results as the information to be exchanged, and each

local clustering result is updated to achieve better imputation quality. This method is

compared with cooperative clustering imputation and seven other imputation meth-

ods. Fifteen originally complete publicly available datasets are used to test their

performance in terms of NRMSE. The results present that the COLI is a much better

and more stable imputation method.

The third proposed missing values treatment is a missing-tolerant method. It

applies the Learn++ to create an ensemble of feature subsets, and the sub-classifier is

trained for each feature subset. The testing sample applies all available sub-classifiers

to predict its label. The predictions from the different sources are combined with

Dempster-Shafer fusion. The method is compared with other four state-of-the-art

missing-tolerant methods and eight imputation methods, including CCI and COLI,

in twenty selected VeReMi datasets. The experimental results prove that the impu-

tation methods are better than the missing-tolerant methods. However, MTE-RD is

significantly better than other missing values treatments in terms of accuracy and F-

measure. Moreover, the computational complexity of all missing values treatments is

also analyzed. The imputation methods have less processing time, comparing to the

missing-tolerant methods. If the application of Misbehavior detection systems have

a strict processing time limitation, COLI is the prior choice. Otherwise, MTE-RD

methods has the best accuracy for misbehavior detection systems, and it is applicable

in most incomplete environments.
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