
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

3-10-2021

RemNet: Remnant Convolutional Neural Network for Camera RemNet: Remnant Convolutional Neural Network for Camera

Model Identification and Image Manipulation Detection Model Identification and Image Manipulation Detection

Abdul Muntakim Rafi
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Rafi, Abdul Muntakim, "RemNet: Remnant Convolutional Neural Network for Camera Model Identification
and Image Manipulation Detection" (2021). Electronic Theses and Dissertations. 8570.
https://scholar.uwindsor.ca/etd/8570

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F8570&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/8570?utm_source=scholar.uwindsor.ca%2Fetd%2F8570&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

RemNet: Remnant Convolutional Neural Network for Camera Model Identification

and Image Manipulation Detection

By

Abdul Muntakim Rafi

A Thesis

Submitted to the Faculty of Graduate Studies

through the Department of Electrical and Computer Engineering

in Partial Fulfillment of the Requirements for

the Degree of Master of Applied Science

at the University of Windsor

Windsor, Ontario, Canada

2021

© 2021 Abdul Muntakim Rafi

RemNet: Remnant Convolutional Neural Network for Camera Model Identification

and Image Manipulation Detection

by

Abdul Muntakim Rafi

APPROVED BY:

__

R. Gras

School of Computer Science

__

R. Razavi-Far

Department of Electrical and Computer Engineering

__

J. Wu, Advisor

Department of Electrical and Computer Engineering

 January 11, 2021

iii

DECLARATION OF CO–AUTHORSHIP / PREVIOUS PUBLICATION

I. Co–Authorship

I hereby declare that this thesis incorporates material that is result of joint research, as

follows: This thesis incorporates the outcome of a research under the supervision of

professor Jonathan Wu and collaboration with Dr.Md Kamrul Hasan, Thamidul Islam

Tonmoy and Uday Kamal (Chapter 1- 6). In all cases, the key ideas, primary

contributions, experimental designs, data analysis, interpretation, and writing were

performed by the author, and the contribution of the co-authors was primarily through the

provision of proof reading and reviewing the research papers regarding the technical

content.

I am aware of the University of Windsor Senate Policy on Authorship and I certify that I

have properly acknowledged the contribution of other researchers to my thesis and have

obtained written permission from each of the co-authors to include the above materials in

my thesis.

I certify that, with the above qualification, this thesis, and the research to which it refers,

is the product of my own work.

II. Previous Publication

This thesis includes two original papers that have been previously published in peer

reviewed journals and conferences, as shown in the following table.

Thesis

Chapter

Publication title/full citation Publication

Status

Chapters

1-6

Rafi, A.M., Tonmoy, T.I., Kamal, U. et al. RemNet: remnant

convolutional neural network for camera model

identification. Neural Comput & Applic (2020).

https://doi.org/10.1007/s00521-020-05220-y

Published

https://doi.org/10.1007/s00521-020-05220-y

iv

Chapters

1-6

Rafi A.M., Wu J., Hasan M.K. (2020) L2-Constrained

RemNet for Camera Model Identification and Image

Manipulation Detection. In: Bartoli A., Fusiello A. (eds)

Computer Vision – ECCV 2020 Workshops. ECCV 2020.

Lecture Notes in Computer Science, vol 12538. Springer,

Cham. https://doi.org/10.1007/978-3-030-66823-5_16

Published

I certify that I have obtained written permission from the copyright owners to include the

above published materials in my thesis. I certify that the below material describes work

completed during my registration as a graduate student at the University of Windsor.

I declare that, to the best of my knowledge, my thesis does not infringe upon anyone’s

copyright nor violate any proprietary rights and that any ideas, techniques, quotations, or

any other material from the work of other people included in my thesis, published or

otherwise, are fully acknowledged in accordance with the standard referencing practices.

Furthermore, to the extent that I have included copyrighted material in excess of the

bounds of fair dealing within the meaning of the Canada Copyright Act, I certify that I

have obtained written permission from the copyright owner(s) to include such material in

my thesis.

I declare that this is a true copy of my thesis, including any final revisions, as approved

by my thesis committee and the Graduate Studies office, and that this thesis has not been

submitted for a higher degree to any other university or institution.

v

ABSTRACT

Camera model identification (CMI) and image manipulation detection are of paramount

importance in image forensics as digitally altered images are becoming increasingly

commonplace. In this thesis, we propose a novel convolutional neural network (CNN)

architecture for performing these two crucial tasks. Our proposed Remnant Convolutional

Neural Network (RemNet) is designed with emphasis given on the preprocessing task

considered to be inevitable for removing the scene content that heavily obscures the

camera model fingerprints and image manipulation artifacts. Unlike the conventional

approaches where fixed filters are used for preprocessing, the proposed remnant blocks,

when coupled with a classification block and trained end-to-end, learn to suppress the

unnecessary image contents dynamically. This helps the classification block extract more

robust images forensics features from the remnant of the image. We also propose a

variant of the network titled L2-constrained Remnant Convolutional Neural Network

(L2-constrained RemNet), where an L2 loss is applied to the output of the preprocessor

block, and categorical crossentropy loss is calculated based on the output of the

classification block. The whole network is trained in an end-to-end manner by

minimizing the total loss, which is a combination of the L2 loss and the categorical

crossentropy loss. The whole network, consisting of a preprocessing block and a shallow

classification block, when trained on 18 models from the Dresden database, shows 100%

accuracy for 16 camera models with an overall accuracy of 98.15% on test images from

unseen devices and scenes, outperforming the state-of-the-art deep CNNs used in CMI.

Furthermore, the proposed remnant blocks, when cascaded with the existing deep CNNs,

e.g., ResNet, DenseNet, boost their performances by a large margin. The proposed

approach proves to be very robust in identifying the source camera models, even if the

original images are post-processed. It also achieves an overall accuracy of 95.49% on the

IEEE Signal Processing Cup 2018 dataset, which indicates its generalizability.

Furthermore, we attain an overall accuracy of 99.68% in image manipulation detection,

which implies that it can be used as a general-purpose network for image forensic tasks.

vi

DEDICATION

To

my brother Abdul Muktadir Shafi

my friends Arup Chakrabarty Antar, Md Sirajul Islam, and Jie Huo

my parents

and to everyone else without whom it would never have been possible.

vii

ACKNOWLEDGEMENTS

I would like to convey my heartfelt thanks to Dr. Jonathan Wu who guided me

throughout my degree. He has been a kind mentor towards me. I would never be able to

finish my thesis in time without his support. I am lucky to have him as my supervisor.

I am very grateful to Dr. Roozbeh Razavi-Far and Dr. Robin Gras for serving as my

thesis committee members. I took courses under them during my degree and the

knowledge I gathered from the courses helped me make tremendous progress in my

thesis. Furthermore, I must thank our department graduate secretary Andria Ballo for her

kind guidance.

I am forever in debt to my brother Abdul Muktadir Shafi and my friend Arup

Chakrabarty Antar who provided me emotional support during the stressful period of the

pandemic. I am thankful to my friend Md. Sirajul Islam who has been my constant

companion in this foreign land. I would also like to thank my friends Nahid Hasan Ayon,

Jie Huo, Xiexing Feng, Manya Mehta, and Shivang Rana for their sincere cooperation

throughout my MASc program.

viii

TABLE OF CONTENTS

DECLARATION OF CO–AUTHORSHIP / PREVIOUS PUBLICATION iii

ABSTRACT ...v

DEDICATION ... vi

ACKNOWLEDGEMENTS .. vii

LIST OF TABLES ...x

LIST OF FIGURES .. xii

LIST OF ABBREVIATIONS/SYMBOLS .. xiv

CHAPTER 1 INTRODUCTION ..1

1.1 Overview .. 1

1.2 Motivation .. 1

1.3 Challenges Addressed .. 3

1.4 Objective .. 4

1.5 Structure of the Thesis ... 4

CHAPTER 2 BACKGROUND ...6

2.1 Related Work .. 6

2.2 Recent Trend of Research .. 7

2.3 Convolutional Neural Networks .. 8

CHAPTER 3 PROPOSED NETWORK ..11

3.1 Network Architecture ... 12

3.1.1 Preprocessing Block ... 13

ix

3.1.2 Classification Block .. 15

3.2 Loss Function ... 17

CHAPTER 4 EXPERIMENTAL RESULTS ..19

4.1 Camera Model Identification ... 19

4.1.1 Results on Dresden Dataset .. 19

4.1.2 Results on the SP Cup 2018 Dataset ... 31

4.1.3 Data Imbalance Problem .. 33

4.2 Image Manipulation Detection .. 33

CHAPTER 5 SIGNIFICANCE OF THE REMNANT BLOCKS36

5.1 With and Without the Remnant Blocks ... 36

5.2 Frequency Analysis .. 39

5.3 Advantage of Data-Adaptive Filters .. 41

5.4 Performance on Good and Bad Patches .. 42

5.5 Visualizing the Models Class Activation .. 43

CHAPTER 6 CONCLUSION ...45

REFERENCES/BIBLIOGRAPHY..46

APPENDIX ..53

Springer Permission to Reprint .. 53

VITA AUCTORIS ...54

x

LIST OF TABLES

Table 1: Architecture of the 𝑖-th remnant block………………………………………………………………….….….14

Table 2: Architecture of our Proposed RemNet………………………………………………………………….…..….16

Table 3: Camera Models of the Dresden Database Used in our Experiments…………….….…..20

Table 4: Accuracy of different design choices of RemNet trained and tested on the

unaltered train and test sets of the Dresden database……………………………………………….………………..25

Table 5: Accuracy of different methods trained and tested on the unaltered train and test

sets of the Dresden database ………25

Table 6: Accuracy of different methods trained on the augmented train set and tested on

the unaltered test set of the Dresden database……………………………………………………………………………..27

Table 7: Comparative results of our proposed network with different methods, trained on

the augmented train set, in identifying camera models from manipulated test images of

the Dresden database (Accuracy in %) ……………………………….…..…………………………………………………..29

Table 8: IEEE SP Cup 2018 data and Flickr data………………………………………………………………………31

Table 9: Accuracy of different methods on the IEEE SP Cup 2018 testing dataset…………..32

Table 10: Accuracy (in %) of different methods in image manipulation detection…………..34

Table 11: Accuracy (in %) of image manipulation detection for different manipulation

factors …………………………………………….…………………………………………………………………………………………………….34

Table 12: Results of different models, with and without remnant blocks, tested on the

unaltered test set of the Dresden dataset (Accuracy in %)……………….…………….……………………….37

Table 13: Comparative results of different models with and without remnant blocks,

trained on the augmented train set, in identifying camera models from manipulated test

images of the Dresden database (Accuracy in %)………………………………...……………………………………38

xi

Table 14: Comparative results of different models, in cascade with remnant blocks, tested

on the IEEE SP Cup 2018 testing dataset……………….……………………………………………………………………39

Table 15: Accuracy of different constrained models and our proposed model trained on

the augmented train set and tested on the unaltered test set of the Dresden

database……..…….41

xii

LIST OF FIGURES

Figure 1: General acquisition pipeline of available digital images..1

Figure 2: Block diagram of our proposed method...11

Figure 3: Schematic representation of the proposed method for CMI and image

manipulation...11

Figure 4: The architecture of our proposed RemNet. (a) Illustrates the overall architecture

with three remnant blocks with one classification block. The architectures of the remnant

and classification blocks are depicted in (b) and (c), respectively. In (b) and (c), AvgPool,

BN, and Conv2D represent average pooling, batch normalization, and 2D convolution,

respectively. The letters F, K, and S represent the number of filters, their kernel sizes, and

strides, respectively, in the corresponding convolution layers. The letter 𝑁𝑐𝑙𝑎𝑠𝑠 represents

the number of camera models..12

Figure 5: Examples of clusters of different qualities with their quality indices....................22

Figure 6: Confusion Matrix of our proposed RemNet trained on the augmented train set

and tested on the unaltered test set of the Dresden database. The input and predicted label

correspond to the Serial No. used in Table 3...28

Figure 7: Training history of (a) Bondi et al., (b) DenseNet, (c) ResNet, and (d) Our

Proposed Classifier, with and without remnant blocks, for training with the augmented

train set of the Dresden database...36

Figure 8: Comparison of outputs of various pre-processing schemes. (a) Input image, (b)

median filter residue, (c) high-pass filter output, and (d) output of the third remnant block

of our proposed RemNet. Columns (i), (ii), and (iii) correspond to different output

channels, whereas columns (iv), (v), and (vi) depict their frequency responses,

respectively...40

xiii

Figure 9: Results of varying voting number for (a) rich quality clusters and (b) poor

quality clusters of different methods, trained on the augmented train set, for testing with

the unaltered test set of the Dresden database...42

Figure 10: Visualization of input activation of (a) Canon IXUS 70, (b) CanonEX-Z150,

and (c) FujiFilm FinePix J50 for different networks trained on the Dresden

database..43

xiv

LIST OF ABBREVIATIONS/SYMBOLS

2D Two Dimensional

AvgPool Average Pooling

BN Batch Normalizaiton

CMI Camera Model Identification

CNN Convolutional Neural Network

Conv Convolutional

Conv 2D Two-Dimensional Convolution

L2 L2 Norm

PReLU Parametric Rectified Linear Unit

ReLU Rectified Linear Unit

RemNet Remnant Convolutional Neural Network

1

CHAPTER 1

INTRODUCTION

1.1 Overview

Camera model identification (CMI) and image manipulation detection are crucial tasks in

image forensics with applications in criminal investigations, authenticating evidence,

detecting forgery, etc. Digital images go through various camera-internal processing

before being saved in the device [1]. Moreover, they are often manipulated after they

leave the device that has been used to capture them. Nowadays, professional image

editing tools like Adobe Photoshop, ACDsee, and Hornil Stylepix are readily available,

consequently making image manipulation a common phenomenon [2]. Also, images

undergo different kinds of manipulations when they are shared online. We have observed

a proliferation of digitally altered images with the advent of modern technologies. When

the authenticity of such images is questioned, a forensic analyst has to answer two

questions first, what is the source of the image under question and whether the image has

been manipulated. The image metadata cannot be trusted as a reliable source, as this data

can be forged. Therefore, a forensic analyst resorts to different image forensics

techniques to answer these questions.

1.2 Motivation

Figure 1: General acquisition pipeline of available digital images.

2

Digital images go through multiple operations from being captured by a digital camera to

being available in different online platforms [1]. We first describe the image acquisition

pipeline of digital cameras, as depicted in Figure 1. In a typical digital camera, the light

of a scene passes through a system of lenses and optical filters, which is then collected by

an optical sensor. A color filter array (CFA) is used before the sensor to obtain RGB

color images so that the individual sensor element records light of a certain color. The

remaining color information is estimated from surrounding pixels through a process

called CFA interpolation or demosaicing. After demosaicing, the image goes through a

number of post-processing (e.g., color correction, edge enhancement, and compression)

before it is saved on a storage device. As described in [1], most of these components

leave certain `fingerprints' in the images, which can be utilized in different image forensic

tasks. Manufacturers generally employ different lens systems in their different camera

models, which causes lens distortion artifacts, such as radial lens distortion, chromatic

aberration, and vignetting. The CFA layout and demosaicing process vary widely among

different models and are generally considered as one of the most distinctive model-

specific signatures. The sensor pattern noise (SPN) is the most unique characteristic of a

digital camera, and it is used excessively in the literature for source identification. In

addition to the camera-internal processing operations, digital images face different

manipulations when they are edited by different image editing softwares. Moreover, they

are resized or re-compressed when uploaded to photo-sharing websites or social media

applications [3]. Therefore, image forensics techniques should be made robust to these

common manipulation operations.

To explain the motivation of our proposed method, we first describe the image

acquisition pipeline of digital cameras. In a typical digital camera, light from a scene

passes through a system of lenses and optical filters, which is then collected by an optical

sensor. A color filter array (CFA) is used before the sensor to obtain RGB color images

so that an individual sensor element records light of a certain color. The remaining color

information is estimated from surrounding pixels through a process called CFA

interpolation or demosaicing. After demosaicing, the image goes through a number of

3

post-processing schemes (e.g., color correction, edge enhancement, and compression)

before it is saved on a storage device. As described in [1], most of these components

leave certain `fingerprints' in the image which can be utilized in different image forensic

tasks. Manufacturers generally employ different lens systems in their different camera

models, which causes lens distortion artifacts, such as radial lens distortion, chromatic

aberration, and vignetting. The CFA layout and demosaicing process vary widely among

different models and are generally considered as one of the most distinctive model-

specific signatures. The sensor pattern noise (SPN) is a unique characteristic of a digital

camera, and it is often used in the literature for source identification.

In designing CNNs for image forensic tasks, it has been therefore a common practice to

use a pre-processing scheme to suppress the image contents and intensify the minute

signatures induced by the image acquisition pipeline [5–7]. However, these methods

suffer from their own drawbacks of using either fixed kernels or constraints as described

earlier. Our main goal is, therefore, to introduce a preprocessing scheme that is

completely data-driven but without any imposed constraints or fixed kernels. The weights

of the preprocessor block are dynamically extracted from end-to-end training with the

classifier by minimizing the loss function for the task. The benefit of designing such a

preprocessing block is that it can dynamically adapt itself to different classification

blocks in cascade with it. It can also adapt itself well on different datasets. This strategy

proves to be crucial for extracting rich camera model-specific higher-level features for

our classification task as evident from our experimental results (see Chapter 4).

1.3 Challenges Addressed

Despite the numerous researches conducted in this field, most researchers have explored

CMI and image manipulation detection problems discretely. Bayar and Stamm [6] show

that it is possible to use the same approach for both tasks. Therefore, research for coming

up with a general-purpose neural network suitable for both CMI and image manipulation

detection requires more attention. Also, strict measures should be followed while

conducting experiments so that the proposed methods can be applied in real-life

scenarios. Kirchner and Gloe suggest that the test set should always consist of images

4

captured by devices that have not been used during training or validation [1]. Also, the

scenes in the test set should be different from those used during training and validation.

Here, scene refers to a combination of a location and a specific viewpoint. Keeping

separate devices and scenes in the test set is compulsory for replicating real-life

conditions and making the result reliable for practical applications. These evaluation

criteria will ensure that the neural network is free from data leakage [7] during testing

and cannot overperform by learning features specific to the device or scene. Besides, the

performances of CMI and image manipulation detection should be measured using

images manipulated at different intensities. We strictly follow the above-mentioned

points in our experiments.

1.4 Objective

In this thesis, we propose a general-purpose novel CNN architecture, called Remnant

Convolutional Neural Network (RemNet) for performing two crucial tasks in image

forensics, CMI and image manipulation detection. Our proposed CNN has two parts, a

preprocessor block and a classification block. The preprocessor architecture consists of

several data-driven remnant blocks, and an L2 loss is applied to the output of the

preprocessor block. A CNN based classification block follows the preprocessor block,

and categorical crossentropy loss is calculated based on its output. The total loss function

is a combination of the L2 loss and the categorical crossentropy loss. The whole network

is trained end-to-end while minimizing the total loss. The L2-constrained preprocessor

learns to suppress image contents making it easier for the classification block to extract

image forensics features. Our experiments show that the proposed method can

outperform other state-of-the-art networks in both image forensic tasks.

1.5 Structure of the Thesis

We organize the rest of the thesis as follows. Chapter 2 contains a brief description about

the relevant researches that has been conducted in the field. We describe our proposed

network and loss function in Chapter 3. We discuss our training and evaluation criteria,

5

along with the experimental results in Chapter 4. We explore the significance of our

proposed remnant blocks in Chapter 5. Finally, we conclude in Chapter 6.

6

CHAPTER 2

BACKGROUND

2.1 Related Work

Image forensics is an active research area, and several methods exist in the literature for

finding out the source camera model and detecting image-processing operations of a

questioned image. But researches are conducted discretely for finding out the source and

manipulation history of an image. In [8-9], we can find a brief overview of the

approaches proposed over the last two decades. We see that initial research in CMI has

focused on merging image-markers, such as watermarks, device-specific code, etc. [9].

However, using separate external features for each camera model is an unmanageable

task [10]. Consequently, researchers have focused on utilizing the intrinsic features, such

as the Color Filter Array (CFA) pattern [11], interpolation algorithms [12], and Image

Quality Metrics (IQM) [13]. Utilizing Photo Response Non-Uniformity (PRNU) noise

patterns have been proposed for device-level identification [14-15]. Although sensor

noise carries device-specific noise artifacts, researchers have developed methods to

perform CMI using sensor noise patterns [16-17].

Most of these approaches attempt to extract camera model-specific features and compare

the features with a pre-calculated reference for the corresponding camera model [18]. In

the case of image manipulation, traces are found in the image according to the type of

processing it has gone through [19]. Following this theory, researchers have used distinct

forensic approaches for identifying different kinds of image manipulation, such as

resizing [20-21], contrast enhancement [22-23], and multiple jpeg compression [24-25],

etc. The drawback of using the above-mentioned statistical feature-based approaches is

that the performance degrades sharply, when new cases arise that have not been

considered during feature vector selection [26]. For that reason, more recent researches

have focused on becoming data-driven, such as utilizing local pixel dependencies used in

steganalysis [27-28] to perform CMI [4], [29] and detect image manipulation [30]. In

7

[31], the authors propose a Gaussian mixture model for image manipulation detection.

Though these approaches provide good results, extracting features for different

manipulations requires substantial computational resources, and the performance

degrades severely depending on the size of the questioned image [2].

2.2 Recent Trend of Research

Recently, researchers have started applying Convolutional Neural Networks (CNNs) for

image forensic tasks [32]. It is expected as CNNs have performed extremely well in

different image classification tasks [33]. Usually, CNNs tend to learn features related to

the content of an image, whereas, for image forensics, we need to refrain CNNs from

learning image contents [6]. As a result, a common practice while using CNNs in digital

image forensics is adding a preprocessing layer at the beginning of the CNN architecture.

Chen et al. [34] have proposed using a median filter, whereas Tuama et al. [5] have used

a high-pass filter before feeding images in their respective CNNs. However, such crude

filtering is not supported by the literature as the artifacts introduced by different camera-

internal processing and manipulations can lie in both low and high frequency domain

[17]. Therefore, fixed filters as preprocessor may lose forensics-related features. Bayar

and Stamm [6] have proposed a data-driven constrained convolutional layer which has

performed better than the above-mentioned fixed filters. Bayar and Stamm [6] have also

used their constrained CNN for image manipulation detection. However, some CNN

based approaches do not use any preprocessing scheme. Yang et al. use the idea of multi-

scale receptive fields on an input image to perform CMI [35]. In [36], the authors use

CNN and support vector machine (SVM) for CMI, where they use the CNN part as a

feature extractor. In [37], explores the performance of DenseNet [38] in both CMI and

image manipulation detection. In [2], the authors investigate the performance of densely

connected CNNs in image manipulation detection. Owing to the performance of the data-

driven preprocessing schemes, it can be inferred that further researches need to be

conducted to make the preprocessing operations more robust for image forensic tasks.

Several researches exist in the literature that use auxiliary loss function to enhance the

8

discrimination between learned features [39-41]. There is a scope of utilizing such

auxiliary loss functions in the modular CNN architectures for image forensics.

2.3 Convolutional Neural Networks

Convolutional neural networks are particular types of deep neural networks that have

gained attention from research community and industry, achieving empirical successes in

tasks such as object recognition, object detection, speech recognition, and natural

language processing [42]. They automatically extract discriminatory features from raw

input information which are very difficult to obtain through traditional hand-crafted

feature engineering [42].

In a typical CNN, the input information is passed through several convolution layers

where they are convolved with the filters to generate output feature maps. If 𝑥𝑚
𝑙 is the 𝑚-

th input feature in the 𝑙-th layer and 𝑤{𝑛,𝑚}
𝑙 is the kernel weight parameter of the 𝑙-th

layer, then the 𝑛-th output feature in that layer 𝑦𝑛
𝑙 is computed as

𝑦𝑛
𝑙 = ∑  

𝑀𝑙−1

𝑚

𝑤𝑛,𝑚
𝑙 ∗ 𝑥𝑚

𝑙 + 𝑏𝑛
𝑙

where 𝑀𝑙−1 is the number of input maps, ∗ denotes convolution operation, and 𝑏𝑛
𝑙 is the

bias of the 𝑛-th output map in the 𝑙-th level.

The convolution operations are usually followed by activation functions. The purpose of

these functions are to introduce nonlinearity in the network. In computer vision tasks,

ReLU [43] is the most popular choice for activation which is defined as

𝑓(𝑦𝑖) = {
𝑦𝑖 , if 𝑦𝑖 > 0
0, if 𝑦𝑖 ≤ 0

However, ReLU activation applies a constraint on feature generation by passing only

positive values while all negative values are set to zero. As a result, a number of

modifications of the ReLU function have been proposed in the literature of which

Parametric ReLU (PReLU) [44] has gained popularity in image recognition tasks in

9

recent years. Instead of setting the negative values to zero, PReLU incorporates a

learnable parameter 𝑎𝑖 as

𝑓(𝑦𝑖) = {
𝑦𝑖 , if 𝑦𝑖 > 0
𝑎𝑖𝑦𝑖 , if 𝑦𝑖 ≤ 0

While training neural networks, internal covariance shift causes the distribution of each

layer's inputs to change which subsequently slows down the training process. To mitigate

this problem, researchers have proposed various normalizing schemes of which batch

normalization (BN) [45] is used extensively in recent works. If 𝑥𝑖 is the 𝑖-th input feature

in a mini-batch 𝐵 with 𝑚 input features, then the output 𝑦𝑖 with BN is calculated as

𝜇ℬ =
1

𝑚
∑  

𝑚

𝑖=1

𝑥𝑖

𝜎ℬ
2 =

1

𝑚
∑  

𝑚

𝑖=1

(𝑥𝑖 − 𝜇ℬ)2

�̂�𝑖 =
𝑥𝑖 − 𝜇ℬ

√𝜎ℬ
2 + 𝜖

𝑦𝑖 = 𝛾�̂�𝑖 + 𝛽

where 𝜇𝐵 and 𝜎𝐵
2 are the mean and the variance of the mini-batch, respectively, and 𝛽

and 𝛾 are two learnable parameters. The variable 𝜖 represents a very small value that is

used to prevent possible division by zero cases.

To reduce the dimensionality of the feature maps, various pooling operations are

performed, such as, max-pooling, average-pooling, etc. The max-pooling operation takes

a window of 𝑞 × 𝑞 and keeps only the maximum value of the selected window whereas

average-pooling keeps only the average value. Pooling layers perform subsampling on

the feature space in such a way that the most dominant features are retained.

The input is passed through successive convolutional layers along with activation, BN

and pooling layers. Eventually, the feature space is gradually reduced to the number of

classes 𝑁 to get 𝑦 = [𝑦1 , 𝑦2, , 𝑦𝑁], where 𝑦𝑖 represents the score of the 𝑖-th class.

Finally, a softmax activation is applied on the output layer mapping the 𝑁 class scores to

𝑁 probability values 𝑝 = [𝑝1 , 𝑝2, , 𝑝𝑁] for each class which sum up to 1:

10

𝑝𝑖 =
exp(𝑦𝑖)

∑  𝑁
𝑛=1 exp (𝑦𝑛)

The training of a neural network is conducted through successive forward and backward

propagations of the data. During each forward pass, we get a probability output score for

each input data. A loss is then calculated based on the predicted output and the ground

truth. For multi-class classification problems, categorical crossentropy loss function is

mostly used which is given by

𝐿 = ∑  

𝑁

𝑘=1

𝑦𝑖
∗(𝑘)

log (𝑦𝑖
(𝑘)

)

where 𝑦𝑖
∗(𝑘)

 and 𝑦𝑖
(𝑘)

 are, respectively, the true label and the network output of the 𝑖-th

image at the 𝑘-th class among the 𝑁 classes. This loss is backpropagated to update the

weights of the network parameters by using various optimization algorithms, such as,

stochastic gradient descent (SGD) [46] and adaptive momentum (Adam) [47].

11

CHAPTER 3

PROPOSED NETWORK

In this paper, we propose a CNN-based patch-level method for CMI and image

manipulation detection. A block diagram of our proposed method is shown in Figure 2.

Figure 2: Block diagram of our proposed method.

As shown in Figure 3, we first extract high quality clusters of size 256 × 256 from an

input image. From each cluster, patches of size 64 × 64 are taken and fed to the network.

It then generates a class probability map for each patch. We assign a camera model or

image manipulation type label to each cluster by averaging the class probability maps of

its patches. The final prediction is made based on the majority voting on the labels of the

clusters of an image.

Figure 3: Schematic representation of the proposed method for CMI and image

manipulation.

12

3.1 Network Architecture

RemNet is comprised of two major building blocks-- a data-driven preprocessing block

used at the beginning of the network which is followed by a classification block (see

Figure 4). These blocks are trained end-to-end so that the preprocessing block acts as a

data-driven custom preprocessing scheme on the input image that learns to suppress

image contents to some extent as required for better minimization of the loss function and

intensifies camera model-specific feature-rich portions of the image at its output. The

details of our proposed network architecture are presented in the following.

Figure 4: The architecture of our proposed RemNet. (a) Illustrates the overall architecture

with three remnant blocks with one classification block. The architectures of the remnant

and classification blocks are depicted in (b) and (c), respectively. In (b) and (c), AvgPool,

BN, and Conv2D represent average pooling, batch normalization, and 2D convolution,

respectively. The letters F, K, and S represent the number of filters, their kernel sizes, and

13

strides, respectively, in the corresponding convolution layers. The letter 𝑁𝑐𝑙𝑎𝑠𝑠 represents

the number of camera models.

3.1.1 Preprocessing Block

The preprocessing block consists of several remnant blocks. The detailed architecture of

the remnant block is shown in Figure 4(b) and Table 1. Each block consists of 3

convolutional layers with kernel size 3 × 3 followed by BN. Inside each block, the

feature space is widened from 64 × 64 × 3 to 64 × 64 × 𝑓𝑖 in the first 2 convolutional

layers and then reduced to 64 × 64 × 3 again in the last convolutional layer. The

choices for 𝑓𝑖 in the consecutive remnant blocks are 64, 128, and 256, respectively.

Finally, to generate the residue, the output of the final convolutional layer in a block is

subtracted from the input in a pixel-wise manner. As the convolutional layers are

followed by batch normalization (BN) layer, in spite of directly using the input, we use

the batch normalized version of it. Our intuition behind such architectural choice is to

enable a remnant block to learn the required transformation that would disintegrate the

undesired contents so that the subsequent subtraction operation can suppress them and

generate forensic feature enriched residue. But there is still a possibility of losing some

important forensic information after such intermediate convolution operations. As the

subsequent blocks operate on the residue generated by the previous block, such

information loss would gradually build up, causing considerable degradation of the

model's performance. The input information must be preserved as much as possible

throughout the block to alleviate this problem. In order to ensure this, we include several

skip connections so that the input to a remnant block is propagated to every convolutional

layer inside that block. Even if some of the minute features are lost in a layer, it is

regenerated through the skip connections (see Figure 4(b)). This also prevents the

vanishing of gradient-flow during training. We do not use any activation function in our

remnant blocks because we prefer to build the remnant blocks as linear filters that will act

as optimal preprocessors for CMI. The contribution of the remnant blocks is

experimentally verified in our experimental results chapter.

14

There are several hyperparameter choices in the final structure of our preprocessing

scheme: the number of remnant blocks, the depth of a single block, the number of filters

in each layer, and kernel size-- all of these are set using cross-validation.

Table 1: Architecture of the 𝑖-th remnant block

Layers Output Size Kernels*

BN 64 × 64 × 3

Conv 2D & BN 64 × 64 × 𝑓1 𝐹 = 𝑓1, 𝐾 = 3 × 3, 𝑆 = 1

Concatenate 64 × 64 × (𝑓1 + 3)

Conv 2D&BN 64 × 64 × 𝑓1 𝐹 = 𝑓1, 𝐾 = 3 × 3, 𝑆 = 1

Concatenate 64 × 64 × (𝑓1 + 3)

Conv 2D&BN 64 × 64 × 3 𝐹 = 3, 𝐾 = 3 × 3, 𝑆 = 1

Subtract 64 × 64 × 3

* The letters 𝐹, 𝐾, and 𝑆 represent the number of filters, their kernel size, and strides,

respectively, in the corresponding convolution layers.

The remnant blocks are somewhat influenced by the highway networks proposed by

Srivastava et al. in [48]. A plain convolutional layer applies a linear transformation

𝐻(parameterized by 𝑾𝑯) on its input 𝒙 to produce its output 𝒚:

𝐲 = 𝐻(𝐱, 𝐖𝐇)

where 𝐻 is usually an affine transformation followed by a nonlinear activation function,

but it may take different forms for different tasks.

For a highway network, two nonlinear transforms 𝑇(𝒙, 𝑾𝑻) and 𝐶(𝒙, 𝑾𝑪) are defined

such that

15

𝐲 = 𝐻(𝐱, 𝐖𝐇) ⋅ 𝑇(𝐱, 𝐖𝐓) + 𝐱 ⋅ 𝐶(𝐱, 𝐖𝐂)

where 𝑇 is the transform gate and 𝐶 is the carry gate. 𝑇 controls how much of the

activation is passed through and 𝐶 controls how much of the unmodified input is passed

through. Our remnant blocks are motivated by these two gating units. We make

significant modifications in our transformation function 𝐻 because of the nature of the

operation we want to perform. As the remnant blocks are intended to be designed as a

linear preprocessor, as stated before, we avoid the use of nonlinear activation functions.

Also, we make use of multiple intra-block skip connections in our remnant block to

preserve input information throughout a block. We use a pixel-wise subtraction operation

that regulates the flow of information and alleviates the loss of information through

successive convolutional operations. For the above-mentioned reasons, our transform and

carry gate are linear in nature and we set 𝑇 and 𝐶 as -1 and 1, respectively. As a result,

the equation of highway network becomes

𝐲 = 𝐱 − 𝐻(𝐱, 𝐖𝐇)

The residual network (ResNet) [49] is also a variant of the highway network [50] where

the choices for both 𝑇 and 𝐶 are 1 for the residual blocks. Besides, the transformation 𝐻

used in [49] works as a nonlinear feature extractor whereas the 𝐻 of our remnant blocks

performs linear filtering operation. Also, ResNet does not use any intra-block skip

connections. Most importantly, the remnant blocks are used at the beginning part of the

network. In Chapter 4, we provide a comparison of our proposed network with ResNet

[49] in camera model identification and image manipulation detection tasks. In Chapter 5,

we show how the performance of ResNet [49] can be improved by adding remnant blocks

at the beginning of the network.

3.1.2 Classification Block

The output of the final remnant block, of size 64 × 64 × 3, is passed to a classification

block which is outlined in Table 2. The aim of this module is to extract higher-level

camera model-specific features, reduce the dimensions of the feature vectors, and

eventually generate a class probability of the source camera model of the input image.

16

The classification block is trained end-to-end with the remnant blocks. Therefore, it

forces the remnant blocks to suppress unnecessary contents, enhance the useful ones, and

then generate a remnant of the image which contains rich camera model fingerprints for

better minimization of the classification loss function.

Table 2: Architecture of our Proposed RemNet

Layers Output Size Kernels

Remnant Block 1 64 × 64 × 3 𝑓1 = 64

Remnant Block 2 64 × 64 × 3 𝑓2 = 128

Remnant Block 3 64 × 64 × 3 𝑓3 = 256

Classification Block

Conv 2D, BN, & PReLU 32 × 32 × 64 𝐹 = 64, 𝐾 = 7 × 7, 𝑆 = 2

Conv 2D, BN, & PReLU 16 × 16 × 128 𝐹 = 128, 𝐾 = 5 × 5, 𝑆 = 2

Conv 2D, BN, & PReLU 8 × 8 × 256 𝐹 = 256, 𝐾 = 3 × 3, 𝑆 = 2

Conv 2D, BN, & PReLU 4 × 4 × 512 𝐹 = 512, 𝐾 = 2 × 2, 𝑆 = 2

Average Pool 1 × 1 × 512 𝐾 = 4 × 4

Conv 2D 1 × 1 × 18 𝐹 = 𝑁, 𝐾 = 1 × 1, 𝑆 = 1

Softmax 𝑁 −

* The letters 𝐹, 𝐾, and 𝑆 represent the number of filters, their kernel size, and strides,

respectively, in the corresponding convolution layers.

The classification block has four consecutive convolution layers at the beginning. Each of

the convolutional layers is followed by a BN layer and a PReLU activation. The output of

the fourth convolutional layer, of size 4 × 4 × 512, is followed by an average-pooling

operation, which reduces the feature vector to a size of 1 × 1 × 512. Finally, we pass the

average-pooled feature vector to a final convolution layer with softmax activation to

generate probabilities for the 𝑁𝑐𝑙𝑎𝑠𝑠 number of camera models.

Instead of using max-pool operation, we use strided convolution to reduce the feature

space in the first four convolution layers. This makes the feature reduction process

17

learnable and much less aggressive compared to max-pool [51]. As per the design

principles introduced in [6], we gradually decrease the kernel size in the first convolution

layers. The BN layer is included for regularization and faster convergence.

Previously CNNs used the ReLU as the activation function [52]. But here we want to

emphasize on extracting camera model fingerprints which are statistical in nature. They

do not necessarily have to be positive. As we do not want to put any constraint on the

feature generation, we use the PReLU activation function in our classification block.

Also, when CNNs used with a PReLU activation function, it has experimentally

demonstrated higher accuracy [53]. We have also experimentally verified this in our

experimental results section.

The average-pool operation is used as per the conventional design structure of CNNs

[38], [49], [54] to reduce the dimensionality of the feature space before making the final

decision. We do not use fully connected layers in the classification block to keep the

number of parameters lower, which in turn makes the network less prone to overfitting.

This also helps the network to train faster.

3.2 Loss Function

The preprocessing block contains 𝑀 remnant blocks. The 𝑖-th remnant block applies a

transformation 𝐻𝑖 on its input 𝒙𝒊 (which is also the output of the (𝑖 − 1)-th remnant

block) and subtracts it from its input to produce the output 𝑦𝑝𝑖
:

yPi = 𝐱𝐢 − 𝐻(𝐱𝐢, 𝐖𝐏𝐢)

The output of the last remnant block is 𝒚𝒑𝑴
. A loss is calculated based on a flattened

version of this output:

𝐿2 = ∑  

𝑁param

𝑙=1

𝒚𝒑𝑴𝒍

𝟐

18

Here, 𝒚𝒑𝑴𝒍
 is the 𝑙-th element of 𝒚𝒑𝑴

 and 𝑁𝑝𝑎𝑟𝑎𝑚 is the total number of elements in

𝒚𝒑𝑴
. Afterwards, 𝒚𝒑𝑴

 is fed the classifier block that applies a transformation 𝐺 to

generate the final output 𝑦𝑐:

yc = 𝐺(ypM, 𝐖𝐜)

We calculate categorical crossentropy loss between this output and the ground truth

using:

𝐿𝑥𝑒𝑛𝑡 = ∑  

𝑁𝑐𝑙𝑎𝑠𝑠

𝑘=1

𝑦𝑐𝑖

∗(𝑘)
log (𝑦𝑐𝑖

(𝑘)
)

where 𝑦𝑐𝑖

∗(𝑘)
 and 𝑦𝑐𝑖

(𝑘)
 are the true label and the network output of the 𝑖-th image at the 𝑘-

th class among the 𝑁𝑐𝑙𝑎𝑠𝑠 classes, respectively,. The total loss 𝐿 is defined using the

following equation:

𝐿 = 𝛼 ∗ 𝐿2 + 𝐿𝑥𝑒𝑛𝑡

Here, 𝛼 indicates how much weight we want to put in the suppression of the residue from

the preprocessor block. A larger choice for 𝛼 may cause the vanishing gradient problem

for the classifier [55]. We empirically set the value of 𝛼 as 0.5. During backpropagation,

the gradient of 𝐿2 is used to update the weights of the preprocessing block. The gradient

of 𝐿𝑥𝑒𝑛𝑡 is used to update the weights of both the preprocessing block and the classifier

block. The whole network is trained in an end-to-end manner. The preprocessing block

outputs a residue of the input, and 𝐿2 attempts to minimize this output, which results in

suppression of image contents. Simultaneously, the classifier tries to extract useful

features from this residue for accurate predictions to minimize 𝐿𝑥𝑒𝑛𝑡. Minimization of 𝐿

results in rich image forensics features in the residue for the classifier block.

19

CHAPTER 4

EXPERIMENTAL RESULTS

All of the experiments regarding training and implementation of the model are performed

in a hardware environment which includes Intel Core-i7 8700K, 3.70 GHz CPUs and

Nvidia GeForce GTX 1080 Ti (11 GB Memory) GPU. The necessary codes are written in

Python and the neural network models are implemented using the Keras API (version

2.1.6) with TensorFlow-GPU (version 1.8.0) in the backend.

4.1 Camera Model Identification

4.1.1 Results on Dresden Dataset

We comprehensively evaluate our overall approach on the Dresden dataset [56]. These

images are captured with 73 devices of 27 different camera models. Multiple shots have

been taken from several locations (e.g., office, public square, etc.) for each device.

Different pictures are acquired from different viewpoints (e.g., looking on the right, on

the left, etc.) for each location. We refer to different combinations of locations and

viewpoints as different scenes. The acquisition process is explained in detail in [56]. In

our work, we choose only those camera models which have more than one device so that

we can keep one device separate for testing purpose. This results in discarding 8 camera

models. Of the rest 19 devices, we consider two camera models, Nikon D70 and Nikon

D70s, as a single model based on the work of Kirchner and Gloe [1]. Consequently, we

train and test our models using the images of these 18 camera models. A brief description

of the dataset used is presented in Table 3.

4.1.1.1 Training and testing strategy

20

Training a CMI network is challenging because of the existence of device-specific

features such as PRNU noise [15], [17] along with model-specific features in the image.

Therefore, a network that can detect the model-specific features needs to be trained in

such a way that it excludes the device-specific features as much as possible and is able to

focus on the model-specific features. We solve this problem by using images from

multiple devices to train our network for most camera models.

We first split the dataset into train, validation, and test sets in such a way that the camera

device and scenes used during testing are never used for training or validation. This

results in 7938, 1353 and 540 images in the train, validation and test set, respectively (see

Table 3). We refer to these sets as unaltered train, validation, and test sets. This splitting

policy, proposed in [36], is of paramount importance so that we can be sure that the

neural network does not overfit on the training data and the testing accuracy is not biased

by device-specific features or the natural content of the scenes.

Table 3: Camera Models of the Dresden Database Used in our Experiments

Serial No. Camera Model No. of Images No. of Devices

Train and Val. Test

1 Canon IXUS 70 363 2 1

2 Casio EX-Z150 692 4 1

3 FujiFilm

FinePix J50

385 2 1

4 Kodak M1063 1698 4 1

5 Nikon Coolpix

S710

695 4 1

6 Nikon D200 373 1 1

7 Nikon D70

Nikon D70S

373 1

1

1

1

8 Olympus

𝜇1050SW

782 4 1

21

9 Panasonic

DMC-FZ50

564 2 1

10 Pentax Optio

A40

405 3 1

11 Praktica DCZ

5.9

766 4 1

12 Ricoh Capilo

GX100

559 4 1

13 Rollei RCP-

7325XS

377 2 1

14 Samsung

L74wide

441 2 1

15 Samsung NV15 412 2 1

16 Sony DSC-H50 253 1 1

17 Sony DSC-T77 492 3 1

18 Sony DSC-

W170

201 1 1

 Total 9831

 After splitting the dataset, we extract 256 × 256 sized clusters of pixels from the

original images. However, it is to be noted that all clusters of pixels from an image are

not rich in camera model-specific features. In particular, saturated and flat regions are not

likely to contain enough statistical information about the camera model [36]. Therefore,

different authors have used different cluster selection strategies in the literature. In [35],

the authors propose a new metric to classify the image clusters into three categories: i)

Smooth, ii) Saturated and iii) Others. After that, they train their network on these three

categories separately and get three different networks (same architecture but different

weights) on which they report the performance results for the respective categories of

image clusters. On the other hand, in [36], the authors propose a metric that gives a

higher score to the image cluster with more texture, and train and test their network with

22

these high-scoring clusters only. Since our target is to propose a single CMI network for

solving the task, we need to train and test it with clusters that contain enough statistical

information about the camera model. That is why we compute the quality value of a

cluster as outlined in [36]. For each cluster 𝑃 in an image, its quality 𝑄(𝑃) is computed

as

𝑄(𝒫) =
1

3
∑  

𝑐∈[𝑅,𝐺,𝐵]

[𝛼 ⋅ 𝛽 ⋅ (𝜇𝑐 − 𝜇𝑐
2) + (1 − 𝛼) ⋅ (1 − 𝑒𝛾𝜎𝑐)]

where 𝛼, 𝛽, and 𝛾 are empirically set constants (set to 0.7, 4 and 𝑙𝑛(0.01), respectively),

𝜇𝑐 and 𝜎𝑐, 𝑐 ∈ [𝑅, 𝐺, 𝐵] are the mean and standard deviation of the red, green, and blue

components of cluster 𝑃, respectively. For a cluster of pixels with texture, this quality

measure tends to be higher than for the overly saturated or flat clusters (see Figure 5).

Figure 5: Examples of clusters of different qualities with their quality indices.

We found that this quality assessment is consistent with the others category mentioned in

[35]. According to the definition in [35], 99.32% of our high-quality clusters fall into

others category while 0.63% are smooth, and the rest 0.03% are saturated. Therefore, we

can consider that our cluster selection strategy is almost identical to choosing the others

category patches of Yang et al. [35].

 .

 .

 .

 . . .

 . .

23

Although we extract 256 × 256 sized rich quality clusters from the main image, the input

patch size that we opt to use for our network is 64 × 64, as suggested in [35], [36], [57].

During training, we select a patch of size 64 × 64 randomly from a cluster of 256 × 256

in each epoch. The idea of small input patch of 64 × 64 is motivated by three reasons:

(i) it results in more data to train our proposed network; (ii) during the test, it enables us

to generate multiple predictions for a given image and averaging over all of those

predictions may ensure a more accurate classification; (iii) training our network with

patches of smaller size relative to the image prevents our network from learning

dominant spatial features of the image affixed directly to its contents, subsequently

enabling the network to learn inherent model-specific statistical features. Also, training a

network with bigger input patch size poses hardware constraints and requires more

training time.

Our cluster and patch selection strategy introduce statistical variations during training.

The network cannot rely on seeing the same patch of size 64 × 64 more than once since

they are randomly extracted from the 256 × 256 clusters in each epoch. This has a

regularizing effect and forces the network to learn more robust features that generalize

better across multiple samples of the input data. Our proposed cluster selection method

also ensures that the input patches of 64 × 64 to the network are a mix of good and bad

patches where good patches are dominant in number. Some of the rich quality clusters of

256 × 256 may contain a few bad patches of 64 × 64 as illustrated in Figure 5.

Therefore, during training, the network learns to extract features from saturated regions

as well. This, in turn, helps our network perform well in poor quality clusters extracted

from the main image, which is demonstrated in the experimental results.

During training, we extract 20 rich quality clusters of size 256 × 256 from each image

which results in 158760 and 27060 clusters for the unaltered train and validation set,

respectively. We then randomly crop a 64 × 64 size patch from each cluster in each

epoch and feed it to the network. Since we are experimenting with 18 camera models, we

set 𝑁𝑐𝑙𝑎𝑠𝑠 = 18 for our classification block. The weights of the network kernels are

24

initialized randomly with the uniform distribution proposed by Glorot and Bengio [58].

We use categorical cross-entropy as the loss function and Adam [47] as the optimizer

with the exponential decay rate factors 𝛽1 = 0.9 and 𝛽2 = 0.999. The batch size we opt

to use is 64. The initial learning rate is set to 10−3 and is decreased by a factor of 0.5 if

the softmax classification loss (𝐿𝑥𝑒𝑛𝑡) does not decrease in three successive epochs.

When the learning rate is reduced to 10−7, the training is stopped. In this way, we train

our network for a maximum of 70 epochs and save the weight with the least validation

loss for evaluation.

After training, we test our network on the unaltered test set comprised of 540 images

from unseen devices of 18 different camera models of the Dresden database. During

testing, we select 𝑁 number of rich quality clusters of size 256 × 256 from each test

image according to our quality assessment. To make a prediction for each cluster, we take

the average of the predictions on all non-overlapping patches of size 64 × 64 it contains

and assigns a camera model label 𝑙𝑗 to it. The final prediction for the image is obtained

through majority voting on 𝑙𝑛 for 𝑛 ∈ [1, 𝑁]. In all the subsequent experiments, we use

𝑁 = 20 unless otherwise stated. Finally, the accuracy of the network is obtained using

the following equation:

Accuracy =
𝑁corr

𝑁tot

× 100%

Where 𝑁𝑐𝑜𝑟𝑟 is the number of images correctly predicted and 𝑁𝑡𝑜𝑡 is the total number of

images, which in this case, is 540.

4.1.1.2 Comparison of Design Choices

We experiment with several architectural design choices of our proposed RemNet. We

train and test these various designs on the unaltered dataset. The results of these

experiments are presented in Table 4. It is evident from the table that our proposed

RemNet with 3 remnant blocks followed by a classification block with PReLU activation

results in a better accuracy. The detection accuracy it achieves is 97.03%.

25

Table 4: Accuracy of different design choices of RemNet trained and tested on the

unaltered train and test sets of the Dresden database

Design choice Accuracy (%)

Remnant Blocks + Classifier (ReLU) 96.48

Remnant Blocks with Activation (PReLU)

+ Classifier (PReLU)

96.67

Remnant Blocks + Classifier (PReLU) 97.03

4.1.1.3 Comparison with state-of-the-art networks on unaltered images

We compare our results with the established methods in CMI-- constrained-convolutional

network [6], fusion residual network [35] and first steps toward the camera model

identification with convolutional neural networks [36]. The reason behind choosing [6]

and [35] is that both of these works incorporate their own preprocessing scheme that

agrees to our main intuition in this work. Since our rich quality clusters commensurate

with the others category of [35], we implement the fusion residual network for the others

category only, instead of each of the three different categories mentioned in [35]. We also

include [36] in our comparison as we adopt their cluster selection strategy. Recently,

several works such as [59–61] confirm the superior performance of very deep neural

networks in different camera forensic applications. As a result, we also compare the

performance of the RemNet with two CNN based deeper architectures namely ResNet

[49] and DenseNet [38]. For a fair comparison, we use the same input patch size,

64 × 64, for all the networks and the implementation of each method is made under

careful scrutiny.

Table 5: Accuracy of different methods trained and tested on the unaltered train and test

sets of the Dresden database

Method Accuracy (%)

26

Bayar and Stamm [6] 95.56

Yang et al. [35] 94.81

Bondi et al. [36] 90.55

ResNet [49] 92.40

ResNeXt [62] 93.33

DenseNet [38] 93.33

RemNet 97.03

L2-Constrained RemNet 97.59

The results presented in Table 5 show that networks with preprocessing schemes perform

substantially better than the other networks and our proposed RemNet outperforms all the

networks with a significant margin. This observation, therefore, establishes our claim that

a preprocessor is indeed necessary in CMI even for deeper architectures.

4.1.1.4 Effects of Data Augmentation

Deep neural networks have a tendency to overfit due to their large number of learnable

parameters. Since these methods require a large amount of data to avoid overfitting, data

augmentation is a commonly used method in training CNNs [63]. Also, our goal is to

design a robust network that can perform CMI even if the image is post-processed. To

address these challenges, we use different types of post-processing methods as a form of

data augmentation to increase the volume of training data. The types of augmentation that

we use in this work are:

• JPEG-Compression with quality factor of 70%, 80%, and 90%

• Rescaling by a factor of 0.5, 0.8, 1.5, and 2.0

• Gamma-Correction using 𝛾 = 0.8 and 1.2

We perform the aforementioned post-processing methods on the train and validation sets

which increase the volume of data by 9 folds. We refer to these increased datasets as

27

augmented train and validation sets. The augmented datasets contain both unaltered and

manipulated images.

Table 6: Accuracy of different methods trained on the augmented train set and tested on

the unaltered test set of the Dresden database

Method Accuracy (%)

Bayar and Stamm [6] 93.89

Yang et al. [35] 95.19

Bondi et al. [36] 92.59

ResNet [49] 95.19

ResNeXt [62] 95.55

DenseNet [38] 95.05

RemNet 97.59

L2-Constrained RemNet 98.15

After training on the augmented train set, evaluation is carried out on the unaltered test

set. The results are presented in Table 6. If we compare the results of Table 6 with that of

Table 5, we observe that these post-processing schemes, as a form of data-augmentation,

indeed improve the performance of all the networks except that in [6]. Our proposed

RemNet achieves the best accuracy of 97.59% among all the models. It is worthwhile to

mention that RemNet attains 100% accuracy on identifying 16 camera models, as shown

in the corresponding confusion

28

Figure 6: Confusion Matrix of our proposed RemNet trained on the augmented train set

and tested on the unaltered test set of the Dresden database. The input and predicted label

correspond to the Serial No. used in Table 3.

matrix in Figure 6. For the rest of the two camera models, Sony DSC-H50 and Sony

DSC-W170, RemNet attains accuracy of 90% and 75%, respectively. The decrease in the

identification accuracy for these two exact models has also been observed in [5]. As

mentioned in [1], images captured with camera models of the same manufacturer are

likely to share some components which makes it harder to separate them.

To further ensure that the networks are not biased toward the augmented train set, we

perform post-processing on test images with such factors that are not necessarily used in

the augmented train and validation set. We process the test images using gamma

correction with 𝛾 = 0.5, 0.75, 1.25, and 1.5; JPEG compression quality factors (QFs)

95%, 90%, 85%, and 80%; and rescaling factor of 0.8, 0.9, 1.1, 1.2. The results of this

study are presented in Table 7. The highest result for each manipulation factor is made

29

bold (see Table 7). We can see that our proposed method has substantial improvement

over other methods for Gamma Correction. In the case of JPEG Compression, our

network achieves better performance for two factors, and RemNet [36] achieves better

performance in two. For Resize manipulation, we see that ResNeXt [47] gains higher

accuracy for two manipulation factors, whereas our proposed method gains higher

accuracy in the other two factors. We can conclude that our proposed method proves to

be most robust to external manipulation. Also, deep CNNs perform better than shallow

networks in the face of manipulated images.

Table 7: Comparative results of our proposed network with different methods, trained on

the augmented train set, in identifying camera models from manipulated test images of

the Dresden database (Accuracy in %)

Manipu

lation

Gamma Correction JPEG Compression Rescale

Factor 0.5 0.75 1.25 1.5 95 90 85 80 0.8 0.9 1.1 1.2

Bayar

and

Stamm

[6]

93.52 94.44 94.44 94.63 92.59 94.81 88.15 85.74 88.15 87.04 64.44 59.07

Yang et

al. [35]

94.26 95.37 95.00 92.78 94.07 94.07 92.59 92.59 94.26 92.59 90.93 90.56

Bondi

et al.

[36]

85.92 91.85 89.07 92.03 84.07 85.92 91.48 90.74 92.56 92.77 91.48 89.44

DenseN

et [38]

91.66 95.18 92.03 94.62 92.77 92.96 94.26 94.81 95.00 94.81 94.44 94.26

ResNet

[49]

91.85 95.18 92.77 94.81 93.88 94.82 95.55 95.00 95.18 95.18 95.00 95.18

30

ResNe

Xt [62]

94.25 95.55 93.88 95.18 95.18 94.82 94.25 94.07 95.00 95.00 96.11 95.55

RemNe

t

96.11 97.22 96.11 95.56 97.59 94.82 92.59 92.78 95.00 93.33 92.04 92.41

L2-

Constra

ined

RemNe

t

96.29 98.14 97.59 97.96 92.96 93.33 96.11 97.03 96.67 96.67 90.74 91.66

4.1.1.5 Justification of Using the L2 Loss

L2-constrained RemNet achieves an overall accuracy of 98.15%, which is better than all

other approaches we compare with (see Table 6). It should be noted that we set the value

for in our custom loss function (5) empirically. We have achieved accuracy of 97.77%,

98.15%, and 97.77%, when 𝛼 is chosen as 0.1, 0.5, and 1, respectively. Therefore, we

propose using 𝛼 = 0.5.

We perform several experiments to justify the use of the L2-constrained pre-processing

block in our network. First, we train the RemNet without any pre-processing block at the

beginning of the network, that is, we only train the classification block. Then, we train

the RemNet without any auxiliary L2 loss at the output of the preprocessing block.

Afterward, we experiment with replacing the L2 loss with the L1 loss. The lower

accuracy of the RemNet without the pre-processing block justifies the use of the

preprocessing step (see Chapter 5). Similarly, the lower accuracy of RemNet without any

additional loss justifies the use of the auxiliary loss (see Table 6). When we use the L1

loss in our custom loss function, the total loss oscillates throughout the training and does

not converge. After a complete run, the L1-constrained RemNet attains an accuracy of

31

58.88%. The L1 loss enforces sparsity on the output of the preprocessing block, whereas

the image forensics features, in this case, are non-sparse and present throughout the

image. The L2 loss forces the output of the preprocessing block to be small and provides

a non-sparse solution.

4.1.2 Results on the SP Cup 2018 Dataset

To test the generalizability of our approach, we have also trained and tested the

aforementioned networks on the CMI Dataset provided for the IEEE Signal Processing

(SP) Cup 2018 [64]. The training dataset provided by the IEEE Signal Processing Society

consists of images captured by 10 different camera models having 275 images for each

model. Since only one device is used to capture these images for each camera model, we

collect external data from multiple devices from Flickr under the creative commons

license. All these images are used for training and validation purposes only. A brief

summary of the dataset is given in Table 8.

Table 8: IEEE SP Cup 2018 data and Flickr data

Camera Model No. of images

SP Cup Data Flickr Data

HTC-1-M7 275 746

iPhone-4s 275 499

iPhone-6 275 548

LG-Nexus-5x 275 405

Motorola-Droid-Maxx 275 549

Motorola-Nexus-6 275 650

Motorola-X 275 344

Samsung-Note3 275 274

Samsung-Galaxy-S4 275 1137

32

Sony-NEX-7 275 557

Sub-Total 2750 5709

Grand-Total 8459

The dataset described in Table 8 is split into train and validation data by a 3:1 ratio. The

test dataset is provided separately, which includes 2640 images of size 512 × 512 ,

among which 1320 are unaltered, and the rest are augmented, i.e., resized, gamma-

corrected, or JPEG compressed. All the test images are acquired with a separate device

other than the ones used for capturing training and validation images.

The training and testing is done by following the same procedures as mentioned in the

earlier experiments. This time, we train our network for 10 classes. The testing is done on

the test set which contains images from completely separate devices that are used for

training. Since the size of the test images is 512 × 512, we extract the best clusters of

size 256 × 256 and generate result following the testing procedure mentioned

previously. According to the competition rules of IEEE SP Cup 2018, the score on the

test-results are calculated based on the following formula:

 Accuracy = 0.7 × (Accuracy of Unaltered Images) +
0.3 × (Akcuracy of Manipulated Images).

Table 9 summarizes the result of our model on the SP cup dataset along with comparing

it with different networks. From the table, it is clear that our proposed RemNet

outperforms the other networks. This satisfactory performance is evidence of the

generalizability of our approach. Among the other networks, wider [35] and deeper ([38],

[49]) networks perform comparatively better than the shallower ones.

Table 9: Accuracy of different methods on the IEEE SP Cup 2018 testing dataset

Method Accuracy (%)

Bayar and Stamm [6] 90.97

33

Yang et al. [35] 94.83

Bondi et al. [36] 90.07

ResNet [49] 93.92

DenseNet [38] 93.70

RemNet 95.11

L2-Constrained RemNet 95.49

4.1.3 Data Imbalance Problem

If the data used to train a network is not evenly distributed into different classes, then

supervised machine learning algorithms can become biased or skewed to specific classes.

A machine learning algorithm should be trained with a somewhat equal number of

images in each category in an ideal situation. Data imbalance can lead to poor

performance, particularly for the classes with fewer samples available during training.

We can see in Table 3 that the number of images available for different camera models is

quite imbalanced. Therefore, we have the possibility of facing a data imbalance problem

in our experiments. However, we can see in Figure 6 that it is not the case in our

experiments. In CMI, RemNet achieves 100% accuracy for 16 camera models of the 18

camera models in the Dresden database. Despite having an unequal number of training

images for different camera models, it does not affect the network's performance. The

alleviation of the data imbalance problem can be attributed to our patch selection

strategy, the data augmentation methods, and the proposed network's better performance.

4.2 Image Manipulation Detection

Now, we show the use of our network in a completely different image forensic task. We

use it to identify the kind of image-manipulation done on an image. The same network is

used here except the number of output classes, which is four-- unaltered, rescale, JPEG

compression, and gamma correction. The input size for all the networks is also

maintained at (64 × 64). We use the same train and validation set from our experiments

34

with CMI and sub-divide it into the four manipulation classes. The L2-constrained

RemNet is then trained to detect the type of manipulation applied to an image. It is to be

mentioned that, during training, our dataset consisting of 1587600 train and 270600

validation clusters has been reduced in order to make the training data evenly distributed

among four classes. Since the number of unaltered train and validation clusters are

158760 and 27060, respectively, we select 158760 train and 27060 validation clusters

randomly for each type of manipulation.

Table 10: Accuracy (in %) of different methods in image manipulation detection

Method Accuracy (%)

Yang et al. [35] 91.74

Bayar and Stamm [6] 87.28

RemNet 98.27

L2-Constrained RemNet 99.68

Table 11: Accuracy (in %) of image manipulation detection for different manipulation

factors

Method Gamma Correction JPEG Compression Rescale

 0.5 0.75 1.25 1.5 95 90 85 80 0.8 0.9 1.1 1.2

Yang et al.

[35]

99.07 98.52 97.04 98.70 49.44 100 100 100 100 97.40 60.74 100

Bayar and

Stamm [6]

94.44 83.33 77.22 90.56 11.30 100 100 100 100 100 90.93 99.63

RemNet 100 99.81 99.63 100 81.48 98.33 100 100 100 100 100 100

L2-

Constrained

RemNet

100 99.63 99.26 98.70 100 98.7 100 100 100 100 100 100

35

In testing, we have used the test images from the Dresden dataset and generated a total of

540 × 12 = 6480 test images, which include 540 unaltered images; 540 × 4 = 2160

gamma-corrected images with 𝛾 = 0.5, 0.75, 1.25, and 1.5; 540 × 3 = 1620 JPEG

compressed images compressed with factors of 85%, 90%, and 95%; and 540 × 4 =

 2160 resized images images with scaling factor of 0.8, 0.9, 1.1, and 1.2. Details of the

results are given in Table 10. We achieve an overall accuracy of 99.68% in this task

whereas RemNet, Bayar and Stamm [6], and Yang et al. [35] achieve 98.27%, 87.28%

and 91.74%, respectively. We demonstrate the detection accuracy for different factors of

manipulation in Table 11. For gamma-corrected images, the performances of [35],

RemNet and L2-Constrained RemNet are substantially better than that of [6]. In the case

of JPEG compression, all four networks perform almost the same except at the

compression factor of 95, where [6] and [35] fail miserably by misclassifying most of the

compressed images as unaltered images. There is a significant drop in the detection

accuracy for RemNet as well. This is expected since there is very little difference

between the original image and JPEG compressed image with factor 95. However, our

proposed method achieves 100% accuracy even at this factor, which indicates that the

network can detect even minute manipulation artifacts introduced during manipulation

operation. When detecting rescaled images, our network and RemNet performs the same

by attaining a 100% accuracy. Of the other two networks, [6] performs better than [35].

36

CHAPTER 5

SIGNIFICANCE OF THE REMNANT BLOCKS

To demonstrate the effectiveness of the RemNet and the remnant blocks separately, we

conduct a number of experiments. In this section, we discuss those experimental results

in detail.

5.1 With and Without the Remnant Blocks

In order to validate the significance of our proposed preprocessor, we train and test our

proposed classifier network without the remnant blocks. We also train and test the

network proposed in [36], ResNet [49], and DenseNet [38] together with the remnant

blocks to demonstrate its generalizability to any classification network and its positive

impact on their performances. All these networks are trained end-to-end on the Dresden

Figure 7: Training history of (a) Bondi et al., (b) DenseNet, (c) ResNet, and (d) Our

Proposed Classifier, with and without remnant blocks, for training with the augmented

train set of the Dresden database.

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

37

database. It is to be mentioned that we do not perform similar experiments on [35] and

[6] since these networks already consist of their own preprocessing schemes.

The training histories of the models are presented in Figure 7. As we can see, the addition

of the remnant blocks not only improve the performances but also helps the models

converge faster. The credit for these improvements can be attributed to the remnant

blocks. When raw input images are fed directly to these classification networks, they are

required to perform two tasks at the same time that is, to suppress the image content and

to extract the required camera model fingerprints. Our proposed preprocessing scheme

makes the later task easier as it suppresses the unnecessary content of the image and

provides the classification block with inputs which are rich in camera model-specific

features. Therefore, it becomes easier for these classification networks to identify camera

models and update their weights faster during training compared to when they are trained

with raw input images.

Table 12: Results of different models, with and without remnant blocks, tested on the

unaltered test set of the Dresden dataset (Accuracy in %)

Method Trained on unaltered train set Trained on augmented train set

Without

remnant blocks

With remnant

blocks

Without

remnant blocks

With remnant

blocks

Bondi et al. 90.55 95.92 92.59 96.29

ResNet 92.40 96.85 95.18 98.33

DenseNet 93.33 96.29 95.01 98.14

RemNet 93.31 97.03 95.74 97.59

38

From the experimental results presented in Table 12, it is clearly evident that our

proposed preprocessing scheme improves the performance of all the aforementioned

methods with a significant margin. The addition of our remnant blocks in cascade with

these models helps them achieve substantially better performance even when they are

trained with unaltered images only. Their performances further improve when they are

trained with augmented data.

Table 13: Comparative results of different models with and without remnant blocks,

trained on the augmented train set, in identifying camera models from manipulated test

images of the Dresden database (Accuracy in %)

Manipulati

on

Gamma Correction JPEG Compression Rescale

Factor 0.5 0.75 1.25 1.5 95 90 85 80 0.8 0.9 1.1 1.2

Bondi et

al.

85.92 91.85 89.07 92.03 84.07 85.92 91.48 90.74 92.56 92.77 91.48 89.44

Remnant-

Bondi et

al.

94.07 95.74 95.37 95.92 88.88 89.07 93.52 92.22 91.66 91.85 90.00 88.14

ResNet 91.85 95.18 92.77 94.81 93.88 94.82 95.55 95.00 95.18 95.18 95.00 95.18

Remnant-

ResNet

98.33 98.33 97.59 97.59 93.33 93.33 95.18 95.92 95.37 95.18 92.40 95.00

DenseNet 91.66 95.18 92.03 94.62 92.77 92.96 94.26 94.81 95.00 94.81 94.44 94.26

Remnant-

DenseNet

96.85 97.59 97.96 97.59 93.70 93.88 94.81 95.92 95.37 94.81 93.52 95.18

Also, in order to verify the effect of remnant blocks on the robustness of the networks

trained with the augmented dataset, we further evaluate the performance of [36], ResNet

[49], and DenseNet [38] with remnant blocks on the manipulated test dataset. The

experimental results shown in Table 13 demonstrate that with the addition of the remnant

39

blocks, all three models have a performance gain in most of the cases and also in totality.

Also, due to the adaptive nature of our preprocessing scheme and end-to-end training, the

remnant blocks can learn to produce the optimum output as required by the subsequent

classifier block. Such adaptive nature of our preprocessing scheme makes it a promising

approach to further improve the CMI performance of the existing DNN based approaches

without changing their configuration.

To verify the effect of remnant blocks on different networks for the IEEE SP Cup 2018

dataset, we train the networks [36], [49], [59] in cascade with remnant blocks. The

experimental results are presented in Table 14. It is clear from the table that the addition

of the remnant blocks improves the performances of the aforementioned networks.

Therefore, our presumption that the remnant blocks can improve the performance of any

classification network in CMI is further verified in different datasets.

Table 14: Comparative results of different models, in cascade with remnant blocks, tested

on the IEEE SP Cup 2018 testing dataset

Method Accuracy (%)

Remnant-Bondi et al. 92.15

Remnant-ResNet 93.98

Remnant-DenseNet 94.68

5.2 Frequency Analysis

To demonstrate that the dynamically designed remnant blocks truly performs the desired

pre-processing task, we show in Figure 8 the outputs of the final remnant block along

with their frequency characteristics for a randomly selected image. We also make a

spatial and frequency domain comparison of the conventional filters, e.g., median and

high-pass filters used in [5], [34], respectively. Figure 8(a) shows the RGB image, Figure

8(b)- Figure 8(d) show the median filtered residue, high-pass filtered output, and the

output of the last remnant block, respectively. If we observe the frequency domain

40

representation of the outputs, we notice that conventional fixed filters are constrained in

the frequency domain as compared to our remnant blocks since the conventional filters

apply the same frequency domain transformation on all the channels equally. However, it

is well known that the sensor pattern noise is not uniformly distributed throughout all

three channels [65], and Lukas et al. [17] have explicitly stated that both low and high

Figure 8: Comparison of outputs of various pre-processing schemes. (a) Input image, (b)

median filter residue, (c) high-pass filter output, and (d) output of the third remnant block

of our proposed RemNet. Columns (i), (ii), and (iii) correspond to different output

channels, whereas columns (iv), (v), and (vi) depict their frequency responses,

respectively.

frequency information are required for CMI. We, therefore, claim that our data-adaptive

preprocessing performs better filtering operation, preserving the camera signature from a

wide range of frequencies.

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

 .

41

5.3 Advantage of Data-Adaptive Filters

The advantage of using data-adaptive dynamic filters of different frequency bands for

different image channels is demonstrated in Table 15. Here, we first train our proposed

classification block without the remnant blocks. Then we constrain the last remnant block

of our proposed RemNet to look at the same frequencies in all three channels. Lastly, we

replace the remnant blocks with the fixed highpass filter proposed in [5]. The high-pass

filter is followed by our proposed classification block. All the networks are trained on the

augmented training set and tested on the unaltered test set. As evident, the performance of

the proposed RemNet is better than using only the classification block or the constrained

RemNet. It can be also observed that using a fixed high-pass filter with the classification

block significantly deteriorates the performance of the network as compared to any other

configuration as demonstrated in Table 15. These results suggest that the dynamic filters

are superior to the constrained or fixed filters.

Table 15: Accuracy of different constrained models and our proposed model trained on

the augmented train set and tested on the unaltered test set of the Dresden database

Method Accuracy (%)

Proposed classification block 95.74

Constrained RemNet 96.48

High-pass filter [5] followed by our

proposed classification block

92.14

Proposed RemNet 97.59

42

Figure 9: Results of varying voting number for (a) rich quality clusters and (b) poor

quality clusters of different methods, trained on the augmented train set, for testing with

the unaltered test set of the Dresden database.

5.4 Performance on Good and Bad Patches

In Figure 9, we observe the effect of the voting number, the number of clusters on which

the prediction is made during testing, on the performance of different networks. For the

rich quality clusters (see Figure 5), our network shows a somewhat steady trend, whereas

the other networks show oscillatory behavior. This indicates that the performance of our

network is nearly independent of the voting number of clusters, whereas an optimum

voting number has to be selected for other networks. On the other hand, for prediction on

 .

 .

43

poor quality clusters of an image, the accuracy gradually increases with the increment of

voting number for all of the networks, as is evident from Figure 9(b). In both of these two

cases, our proposed RemNet outperforms the other networks in comparison.

5.5 Visualizing the Models Class Activation

Figure 10: Visualization of input activation of (a) Canon IXUS 70, (b) CanonEX-Z150,

and (c) FujiFilm FinePix J50 for different networks trained on the Dresden database.

Due to a large number of parameters, the CNNs can easily get biased to the image

content, rather than the intrinsic camera fingerprint. It has been, therefore, a topic of great

interest among the camera-forensic experts about what type of forensic features such

deep models learn for CMI. To explore this, we adopt the class activation maximization

method proposed by Erhan et al. [66] at the highest level of feature representation of the

44

networks, i.e., on the output neuron to understand what type of input patterns activate the

final class. The main goal of such an experiment is to observe and explore the hidden

patterns present in the image that the networks have learned to extract for CMI. Due to

the paper size limit, we show the generated patterns for 3 different camera models for

ResNet [49], DenseNet [38], and our proposed network in Figure 10. From this figure, it

is evident that deep networks trained for CMI do not focus on the visible image content.

The noticeable difference among the patterns of different networks can be explained by

the fact that different network architecture can be thought of different transformation

function to be applied to the same input, which on the other hand, may result in such a

difference.

45

CHAPTER 6

CONCLUSION

In this thesis, a novel CNN model has been proposed for performing two important image

forensics tasks, namely, CMI and image manipulation detection. To address the problem

effectively, a dynamic CNN-based preprocessing block has been placed in cascade with

the shallow CNN-based classifier for enhancing the intrinsic image forensics fingerprints

at its output by suppressing the undesired contents of the input image. Unlike the

conventional fixed filter-based approaches for preprocessing in image forensics, the

remnant blocks of the proposed preprocessing unit are completely data-driven. The

experimental results on the Dresden and the IEEE SP Cup 2018 Camera Model

Identification datasets, focusing on the unseen devices of closed set camera models and

post-processed images, have demonstrated improved performance and generalizability of

the proposed modular RemNet for real-world CMI application. Furthermore, the

demonstrated ability of the remnant blocks to improve the CMI performance along with

the speed of convergence of the well-known CNN based approaches indicate that they are

suitable as a general-purpose preprocessing scheme for varieties of CMI networks.

Additionally, we have used our proposed method for image manipulation detection. The

satisfactory performances of our network on both classification tasks prove that it can be

used for a general-purpose network for image forensics.

In future works, we wish to explore the possibility of coming up with an improved loss

function to facilitate the training of the RemNet better. We can further study the image

acquisition pipeline to investigate appropriate loss functions, which will help suppress the

image's image contents at the preprocessing step. It should be noted that the

accompanying design choices of the RemNet may also change for different loss

functions. We wish to explore the potential of such a preprocessing scheme in other

image forensic tasks as well.

46

REFERENCES/BIBLIOGRAPHY

[1] M. Kirchner and T. Gloe, “Forensic camera model identification,” Proc. WOL

Handb. Digit. Forensics Multimed. Data Devices, pp. 329–374, 2015.

[2] Y. Chen, X. Kang, Y. Q. Shi, and Z. J. Wang, “A multi-purpose image forensic

method using densely connected convolutional neural networks,” J. Real-Time

Image Process., vol. 16, no. 3, pp. 725–740, 2019.

[3] B. Bayar and M. C. Stamm, “Augmented convolutional feature maps for robust

cnn-based camera model identification,” in Proc. IEEE Int. Conf. on Image

Process., (ICIP), 2017, pp. 4098–4102.

[4] C. Chen and M. C. Stamm, “Camera model identification framework using an

ensemble of demosaicing features,” in Proc. IEEE Int. Works. Infor. (WIFS), 2015,

pp. 1–6.

[5] A. Tuama, F. Comby, and M. Chaumont, “Camera model identification with the

use of deep convolutional neural networks,” in Proc. IEEE Int. Workshop on inf.

Forensics and Secur. (WIFS), 2016, pp. 1–6.

[6] B. Bayar and M. C. Stamm, “Design principles of convolutional neural networks

for multimedia forensics,” Electron. Imaging, vol. 2017, no. 7, pp. 77–86, 2017.

[7] S. Alneyadi, E. Sithirasenan, and V. Muthukkumarasamy, “A survey on data

leakage prevention systems,” J. Netw. Comput. Appl., vol. 62, pp. 137–152, 2016.

[8] M. C. Stamm, M. Wu, and K. J. R. Liu, “Information forensics: An overview of

the first decade,” {IEEE} Access, vol. 1, pp. 167–200, 2013.

[9] A. Piva, “An overview on image forensics,” Proc. ISRN Signal Process., vol.

2013, 2013.

[10] H. Farid, “Image forgery detection,” {IEEE} Signal Process. Mag., vol. 26, no. 2,

pp. 16–25, 2009.

47

[11] S. Bayram, H. Sencar, N. Memon, and I. Avcibas, “Source camera identification

based on CFA interpolation,” in Proc. IEEE Int. Conf. on Image Process., (ICIP),

2005, vol. 3, pp. III--69.

[12] M. Kharrazi, H. T. Sencar, and N. Memon, “Blind source camera identification,”

in Proc. IEEE Int. Conf. on Image Process., (ICIP), 2004, vol. 1, pp. 709–712.

[13] T. Gloe, “Feature-based forensic camera model identification,” in LNCS Trans.

Data Hiding and Multimed. Secur. VIII , Vol. 7228 of Lect. Notes Comput. Sc.,

Springer, 2012, pp. 42–62.

[14] A. E. Dirik, H. T. Sencar, and N. Memon, “Source camera identification based on

sensor dust characteristics,” in Proc. IEEE Workshop Signal Process. Appl. Public

Secur. Forensics, 2007, pp. 1–6.

[15] J. Fridrich, J. Lukas, and M. Goljan, “Digital camera identification from sensor

noise,” {IEEE} Trans. Inf. Forensics Secur., vol. 1, no. 2, pp. 205–214, 2006.

[16] T. H. Thai, R. Cogranne, and F. Retraint, “Camera model identification based on

the heteroscedastic noise model,” {IEEE} Trans. Image Process., vol. 23, no. 1,

pp. 250–263, 2014.

[17] J. Lukas, J. Fridrich, and M. Goljan, “Digital camera identification from sensor

pattern noise,” {IEEE} Trans. Inf. Forensics Secur., vol. 1, no. 2, pp. 205–214,

2006.

[18] H. Cao and A. C. Kot, “Accurate detection of demosaicing regularity for digital

image forensics,” {IEEE} Trans. Inf. Forensics Secur., vol. 4, no. 4, pp. 899–910,

2009.

[19] B. Bayar and M. C. Stamm, “Constrained Convolutional Neural Networks: A New

Approach Towards General Purpose Image Manipulation Detection,” {IEEE}

Trans. Inf. Forensics Secur., vol. 13, no. 11, pp. 2691–2706, 2018.

[20] A. C. Popescu and H. Farid, “Exposing digital forgeries by detecting traces of

resampling,” IEEE Trans. signal Process., vol. 53, no. 2, pp. 758–767, 2005.

48

[21] X. Feng, I. J. Cox, and G. Doerr, “Normalized energy density-based forensic

detection of resampled images,” IEEE Trans. Multimed., vol. 14, no. 3, pp. 536–

545, 2012.

[22] M. C. Stamm and K. J. R. Liu, “Forensic detection of image manipulation using

statistical intrinsic fingerprints,” {IEEE} Trans. Inf. Forensics Secur., vol. 5, no. 3,

pp. 492–506, 2010.

[23] H. Yao, S. Wang, and X. Zhang, “Detect piecewise linear contrast enhancement

and estimate parameters using spectral analysis of image histogram,” 2009.

[24] T. Bianchi and A. Piva, “Image forgery localization via block-grained analysis of

JPEG artifacts,” IEEE Trans. Inf. Forensics Secur., vol. 7, no. 3, pp. 1003–1017,

2012.

[25] R. Neelamani, R. De Queiroz, Z. Fan, S. Dash, and R. G. Baraniuk, “JPEG

compression history estimation for color images,” IEEE Trans. Image Process.,

vol. 15, no. 6, pp. 1365–1378, 2006.

[26] M. Chen, J. Fridrich, M. Goljan, and J. Lukás, “Determining image origin and

integrity using sensor noise,” {IEEE} Trans. Inf. Forensics Secur., vol. 3, no. 1, pp.

74–90, 2008.

[27] J. Fridrich and J. Kodovsky, “Rich models for steganalysis of digital images,”

IEEE Trans. Inf. Forensics Secur., vol. 7, no. 3, pp. 868–882, 2012.

[28] T. Pevny, P. Bas, and J. Fridrich, “Steganalysis by subtractive pixel adjacency

matrix,” IEEE Trans. Inf. Forensics Secur., vol. 5, no. 2, pp. 215–224, 2010.

[29] F. Marra, G. Poggi, C. Sansone, and L. Verdoliva, “A study of co-occurrence

based local features for camera model identification,” Multimed. Tools Appl., vol.

76, no. 4, pp. 4765–4781, 2017.

[30] X. Qiu, H. Li, W. Luo, and J. Huang, “A universal image forensic strategy based

on steganalytic model,” in Proceedings of the 2nd ACM workshop on Information

hiding and multimedia security, 2014, pp. 165–170.

49

[31] W. Fan, K. Wang, and F. Cayre, “General-purpose image forensics using patch

likelihood under image statistical models,” in 2015 IEEE International Workshop

on Information Forensics and Security (WIFS), 2015, pp. 1–6.

[32] P. Yang, D. Baracchi, R. Ni, Y. Zhao, F. Argenti, and A. Piva, “A Survey of Deep

Learning-Based Source Image Forensics,” J. Imaging, vol. 6, no. 3, p. 9, 2020.

[33] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural

networks, vol. 61, pp. 85–117, 2015.

[34] J. Chen, X. Kang, Y. Liu, and Z. J. Wang, “Median filtering forensics based on

convolutional neural networks,” {IEEE} Signal Process. Lett., vol. 22, no. 11, pp.

1849–1853, 2015.

[35] P. Yang, W. Zhao, R. Ni, and Y. Zhao, “Source camera identification based on

content-adaptive fusion network,” Pattern Recog. Lett., vol. 119, pp. 195–204,

2019.

[36] L. Bondi, L. Baroffio, D. Güera, P. Bestagini, E. J. Delp, and S. Tubaro, “First

steps toward camera model identification with convolutional neural networks,”

{IEEE} Signal Process. Lett., vol. 24, no. 3, pp. 259–263, 2017.

[37] A. M. Rafi et al., “Application of DenseNet in Camera Model Identification and

Post-processing Detection.,” in CVPR Workshops, 2019, pp. 19–28.

[38] G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten, “Densely connected

convolutional networks,” in Proc. IEEE Conf. Comput. Vision Pattern Recognit.

(CVPR), 2017, vol. 1, no. 2, p. 3.

[39] Y. Wen, K. Zhang, Z. Li, and Y. Qiao, “A discriminative feature learning

approach for deep face recognition,” in European conference on computer vision,

2016, pp. 499–515.

[40] Y. Wen, Z. Li, and Y. Qiao, “Latent factor guided convolutional neural networks

for age-invariant face recognition,” in Proceedings of the IEEE conference on

computer vision and pattern recognition, 2016, pp. 4893–4901.

50

[41] Y. Sun, X. Wang, and X. Tang, “Deeply learned face representations are sparse,

selective, and robust,” in Proceedings of the IEEE conference on computer vision

and pattern recognition, 2015, pp. 2892–2900.

[42] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553,

p. 436, 2015.

[43] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann

machines,” 2010.

[44] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing

human-level performance on imagenet classification,” in Proc. IEEE Int. Conf.

Comput. Vis., 2015, pp. 1026–1034.

[45] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training

by reducing internal covariate shift,” arXiv Prepr. arXiv1502.03167, 2015.

[46] L. Bottou, “Large-scale machine learning with stochastic gradient descent,” in

Proceedings of COMPSTAT’2010, Springer, 2010, pp. 177–186.

[47] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv

Prepr. arXiv1412.6980, 2014.

[48] R. K. Srivastava, K. Greff, and J. Schmidhuber, “Highway networks,” arXiv

Prepr. arXiv1505.00387, 2015.

[49] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” in Proc. IEEE Conf. Comput. Vision Pattern Recognit. (CVPR),

2016, pp. 770–778.

[50] K. Greff, R. K. Srivastava, and J. Schmidhuber, “Highway and residual networks

learn unrolled iterative estimation,” arXiv Prepr. arXiv1612.07771, 2016.

[51] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, “Striving for

simplicity: The all convolutional net,” arXiv Prepr. arXiv1412.6806, 2014.

[52] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep

51

convolutional neural networks,” in Adv. in Neural Inf. Process. Systems, 2012, pp.

1097–1105.

[53] B. Bayar and M. C. Stamm, “A deep learning approach to universal image

manipulation detection using a new convolutional layer,” in Proc. 4th-ACM

Workshop on inf. Hiding and Multimedia Secur., 2016, pp. 5–10.

[54] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-

scale image recognition,” arXiv Prepr. arXiv1409.1556, 2014.

[55] T. Tong, G. Li, X. Liu, and Q. Gao, “Image super-resolution using dense skip

connections,” in Proceedings of the IEEE International Conference on Computer

Vision, 2017, pp. 4799–4807.

[56] T. Gloe and R. Böhme, “The Dresden Image Database for Benchmarking Digital

Image Forensics.,” J. Digit. Forensic Pract., vol. 3, pp. 150–159, 2010.

[57] H. Yao, T. Qiao, M. Xu, and N. Zheng, “Robust Multi-Classifier for Camera

Model Identification Based on Convolution Neural Network,” {IEEE} Access, vol.

6, pp. 24973–24982, 2018.

[58] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep

feedforward neural networks,” in Proc. AISTATS, 2010, pp. 249–256.

[59] Y. Chen, X. Kang, Z. J. Wang, and Q. Zhang, “Densely Connected Convolutional

Neural Network for Multi-purpose Image Forensics Under Anti-forensic Attacks,”

in Proc. 6th ACM Workshop Inf. Hiding Multimedia Secur., 2018, pp. 91–96, doi:

10.1145/3206004.3206013.

[60] M. Barni, A. Costanzo, E. Nowroozi, and B. Tondi, “Cnn-Based Detection of

Generic Contrast Adjustment with Jpeg Post-Processing,” in Proc. IEEE Int. Conf.

on Image Process. (ICIP), Oct. 2018, pp. 3803–3807, doi:

10.1109/ICIP.2018.8451698.

[61] F. J. Boroumand Mehdi, “Deep Learning for Detecting Processing History of

Images,” Electron. Imaging, 2018.

52

[62] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual

transformations for deep neural networks,” in Proceedings of the IEEE conference

on computer vision and pattern recognition, 2017, pp. 1492–1500.

[63] S. C. Wong, A. Gatt, V. Stamatescu, and M. D. McDonnell, “Understanding data

augmentation for classification: when to warp?,” in Int. Conf. Digit. Image

Comput.: Tech. and Appl. (DICTA), 2016, pp. 1–6.

[64] M. Stamm, P. Bestagini, L. Marcenaro, and P. Campisi, “Forensic camera model

identification: Highlights from the IEEE Signal Processing Cup 2018 student

competition [SP Competitions],” IEEE Signal Process. Mag., vol. 35, no. 5, pp.

168–174, 2018.

[65] Ashref, Lawgaly, Fouad, and Khelifi, “Sensor Pattern Noise Estimation Based on

Improved Locally Adaptive DCT Filtering and Weighted Averaging for Source

Camera Identification and Verification,” {IEEE} Trans. Inf. Forensics Secur., vol.

12, 2017.

[66] D. Erhan, Y. Bengio, A. Courville, and P. Vincent, “Visualizing higher-layer

features of a deep network,” Univ. Montr., vol. 1341, no. 3, p. 1, 2009.

53

APPENDIX

Springer Permission to Reprint

In reference to Springer copyrighted material which is used with permission in this thesis,

the Springer does not endorse any of University of Windsor's products or services.

Internal or personal use of this material is permitted. If interested in reprinting/

republishing Springer copyrighted material for advertising or promotional purposes or for

creating new collective works for resale or redistribution, please go to

https://www.springer.com/gp/rights-permissions/obtaining-permissions/882 to learn

how to obtain a License from RightsLink.

https://www.springer.com/gp/rights-permissions/obtaining-permissions/882

54

VITA AUCTORIS

NAME: Abdul Muntakim Rafi

PLACE OF BIRTH:

Sylhet, Bangladesh

YEAR OF BIRTH:

1995

EDUCATION:

Blue Bird School & College, Sylhet, Bangladesh

MC College, Sylhet, Bangladesh

Bangladesh University of Engineering and

Technology, Dhaka, Bangladesh

	RemNet: Remnant Convolutional Neural Network for Camera Model Identification and Image Manipulation Detection
	Recommended Citation

	tmp.1615407122.pdf.Ilh95

