
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

3-10-2021

Learning Control of Robotic Arm Using Deep Q-Neural Network Learning Control of Robotic Arm Using Deep Q-Neural Network

Seyed Navid Mellatshahi
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Mellatshahi, Seyed Navid, "Learning Control of Robotic Arm Using Deep Q-Neural Network" (2021).
Electronic Theses and Dissertations. 8568.
https://scholar.uwindsor.ca/etd/8568

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F8568&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/8568?utm_source=scholar.uwindsor.ca%2Fetd%2F8568&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Learning Control of Robotic Arm Using Deep Q-Neural Network

By

Seyed Navid Mellatshahi

A Thesis

Submitted to the Faculty of Graduate Studies

through the Department of Electrical and Computer Engineering

in Partial Fulfillment of the Requirements for

the Degree of Master of Applied Science

 at the University of Windsor

Windsor, Ontario, Canada

2020

© 2020 Seyed Navid Mellatshahi

Learning Control of Robotic Arm Using Deep Q-Neural Network

by

Seyed Navid Mellatshahi

APPROVED BY:

M.J. Ahamed

Department of Mechanical, Automotive

 and Materials Engineering

__

A. Ahmadi

Department of Electrical and Computer

Engineering

__

Sh. Alirezaee, Co-Advisor

Department of Electrical and Computer

Engineering

__

M. Saif, Co-Advisor

Department of Electrical and Computer

Engineering

December18, 2020

iii

DECLARATION OF ORIGINALITY

I hereby certify that I am the sole author of this thesis and that no part of this

thesis has been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon

anyone’s copyright nor violate any proprietary rights and that any ideas, techniques,

quotations, or any other material from the work of other people included in my

thesis, published or otherwise, are fully acknowledged in accordance with the

standard referencing practices. Furthermore, to the extent that I have included

copyrighted material that surpasses the bounds of fair dealing within the meaning of

the Canada Copyright Act, I certify that I have obtained a written permission from

the copyright owner(s) to include such material(s) in my thesis and have included

copies of such copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revisions,

as approved by my thesis committee and the Graduate Studies office, and that this

thesis has not been submitted for a higher degree to any other University or

Institution.

iv

ABSTRACT

Enabling robotic systems for autonomous actions such as driverless systems,

is a very complex task in real-world scenarios due to uncertainties. Machine learning

capabilities have been quickly making their way into autonomous systems and

industrial robotics technology. They found many applications in every sector,

including autonomous vehicles, humanoid robots, drones and many more.

In this research we will be implementing artificial intelligence in robotic arm to be

able to solve a complex balancing control problem from scratch, without any

feedback loop and using state of the art deep reinforcement learning algorithm

named DQN.

The benchmark problem that is considered as case study, is balancing an inverted

pendulum upward using a six-degrees freedom robot arm. Very simple form of this

problem has been solved recently using machine learning however under this thesis

we made a very complex system of inverted pendulum and implemented in Robot

Operating System (ROS) which is very realistic simulation environment.

We have not only succeeded to control the pendulum but also added turbulences on

the learned model to study its robustness. We observed how the initial learned model

is unstable at the presence of turbulence and how random turbulences helps the

system to transform to a more robust model. We have also used the robust model in

different environment and showed how the model adopt itself with the new physical

properties.

Using orientation sensor on the tip of the inverted pendulum to get angular velocity,

simulation in ROS and having inverted pendulum on ball joint are few highlighted

novelties in this thesis in compare previous publications.

v

DEDICATION

I dedicate this dissertation to my lovely wife Sara, my little princess Alma and

strong son, Arsha.

vi

ACKNOWLEDGEMENTS

My deep gratitude goes first to my lovely smart wife, who supported me

through all these years with her hardworking. I am so thankful to her, for being

always my motivation and supporting me in all aspects of my life.

My appreciation also extends to Dr. Alirezaee and Dr. Saif, who guided me

through my research projects with their valuable comments and feedbacks. Their

support helped in transforming this paper into a more meaningful and valuable

document. Their immense passion for teaching has further inspired me to pursue this

path in the future.

I would also like to thank my committee members, Dr. Jalal Ahamed and Dr.

Arash Ahmadi, for their comments and their time in reviewing my work.

vii

TABLE OF CONTENTS

DECLARATION OF ORIGINALITY .. iii

ABSTRACT ... iv

ACKNOWLEDGEMENTS ... vi

LIST OF TABLES ... ix

LIST OF FIGURES .. x

LIST OF APPENDICES ... xii

LIST OF ABBREVIATIONS/SYMBOLS .. xiii

CHAPTER 1 INTRODUCTION ... 1

1.1 Problem Definition.. 1

1.2 Applications .. 2

1.3 Overall Challenges .. 3

1.4 Methodology ... 5

1.5 Novelties ... 6

1.6 Structure .. 6

1.7 Conclusion .. 7

CHAPTER 2 STATE OF THE ART ... 8

2.1 Introduction ... 8

2.2 Machine Learning ... 8

2.2.1 Reinforcement Learning Algorithm ... 9

2.2.2 Q Learning ... 11

2.2.3 Deep Q Learning .. 13

2.3 Simulation Environment ... 16

2.3.1 Robot Operating System (ROS) ... 16

viii

2.3.2 Gazebo Simulator / URDF File Structure .. 18

2.4 Robotic Arm ... 19

2.5 Literature Review.. 22

CHAPTER 3 PROPOSED METHOD .. 27

3.1 Introduction ... 27

3.2 One Degree Freedom Inverted Pendulum ... 27

3.3 Three DoF Inverted Pendulum on Chassis ... 36

3.4 Three DoF Inverted Pendulum on Robotic Arm ... 44

3.5 Hardware configurations ... 49

3.5.1 IMU Sensor .. 49

3.5.1 Robot Arm Setup ... 57

CHAPTER 4 EXPERIMENTAL RESULTS ... 59

4.1 Introduction ... 59

4.2 Results of one DoF Inverted Pendulum .. 59

4.3 Results of 3 DoF Inverted Pendulum on Chassis .. 64

4.4 Results of 3 DoF Inverted Pendulum on Robotic Arm ... 68

CHAPTER 5 CONCLUSION and FUTURE WORKS 71

REFERENCES/BIBLIOGRAPHY... 73

APPENDICES .. 76

VITA AUCTORIS .. 97

ix

LIST OF TABLES

Table 1-1: Possible solutions to overcome common challenges ...4

Table 3-1 : Observation space for the 1 DoF Inverted Pendulum 34

Table 3-2: Observation space for the 3 DoF Inverted Pendulum 41

Table 3-3: Input observation space for 3DoF on robot arm ... 47

Table 3-4 Accelerometer and Gyro sensitivity and range .. 54

Table 4-1: Break down of main case study in 3 phases and expectations 59

x

LIST OF FIGURES

Figure 1.1: 3DoF Inverted Pendulum on Robotic Arm ..1

Figure 1.2: Commercial products using Inverted Pendulum controlling techniques2

Figure 1.3: Humanoid Robot 42 DoF Walking on a Pavement[2]3

Figure 1.4: Overall structure of the thesis ...7

Figure 2.1: Overview of Reinforcement Learning Algorithm ..9

Figure 2.2: Robot in Maze - Q-Learning ... 12

Figure 2.3: Q-Learning Overall Algorithm .. 13

Figure 2.4: Q-Learning Vs Deep Q Learning .. 15

Figure 2.5: Overview of ROS messaging system .. 18

Figure 2.6: A Simple Joint and XML Code of URDF ... 19

Figure 2.7: 6DoF Robot Arm and its joints [15] .. 21

Figure 2.8: Simulation model of Universal Robot in Gazebo .. 22

Figure 2.9: straight-line single inverted pendulum .. 23

Figure 2.10 RL learning curve for single inverted pendulum [11] 24

Figure 2.11 V-REP Model of Cartpole [12] .. 25

Figure 2.12 Cost function of DQN Training in V-REP environment 26

Figure 3.1: Simple Single inverted pendulum on a cart ... 28

Figure 3.2: Overall URDF file structure and Joint definitions... 29

Figure 3.3 Single Inverted Pendulum in Gazebo Environment ... 30

Figure 3.4: Node list before launching the learning program .. 31

Figure 3.5 Nodes connections, topics, publishers, and subscribers 33

Figure 3.6 Single DoF cartpole RL Model with 4 observation space and 2 output 35

Figure 3.7: Package structure for simulation and learning .. 36

Figure 3.8: Two ways of implementing 3DoF bar link .. 37

Figure 3.9: Ball Joint URDF file .. 38

Figure 3.10: Ball joint design in SolidWorks .. 38

Figure 3.11: Chassis to control the 3 DoF Inverted Pendulum .. 39

Figure 3.12: URDF structure of the 3 chassis .. 40

Figure 3.13: Applying 20N force in any direction at initial state 41

Figure 3.14: ROS Nodes / Topics for the 3DoF system .. 42

Figure 3.15: 3DoF Inverted Pendulum, Program Blocks ... 43

Figure 3.16: Reward function for 3DoF Inverted Pendulum ... 44

Figure 3.17: Universal Robot with Inverted Pendulum on spherical joint......................... 44

Figure 3.18: 6DoF Robot Arm and its joints [15] .. 46

Figure 3.19: Robot at its maximum joint limits ... 47

file:///D:/Google_Drive/Thesis/Dec-4.docx%23_Toc57969622
file:///D:/Google_Drive/Thesis/Dec-4.docx%23_Toc57969622
file:///D:/Google_Drive/Thesis/Dec-4.docx%23_Toc57969623
file:///D:/Google_Drive/Thesis/Dec-4.docx%23_Toc57969623

xi

Figure 3.20: Node diagram of robot arm and inverted pendulum...................................... 48

Figure 3.21: Singe Axis Accelerometer ... 51

Figure 3.22: Angles for independent inclining sensing ... 52

Figure 3.23: Overall architecture for data acquisition ... 53

Figure 3.24: Sensor fusion algorithm with Gyro-Accelerometer....................................... 55

Figure 3.25: List of all topics after and output of acceleration node................................. 56

Figure 3.26: Acceleration on X axis (Pitch). ... 57

Figure 3.27: Ethernet setting of Universal Robo ... 58

Figure 4.1: Result of training RL for Single Inverted Pendulum without any disturbance 60

Figure 4.2 Applying 50N force to the pendulum on the tip ... 61

Figure 4.3 Applying forces randomly to the system and observe behavior 62

Figure 4.4: Reward-Episode chart for the simple trained model 63

Figure 4.5: Reward-Episode chart for the robust trained model .. 64

Figure 4.6: Reward chart for 3DoF no joint model .. 65

Figure 4.7: 3DoF reward chart with ball joint connection to chassis 66

Figure 4.8: Training for more 20,000 episodes, but no learning.. 67

Figure 4.9: UR learning to balance inverted pendulum but at much slower rate 68

Figure 4.10: Learning curve positional step is 0.005 radian and time is 0.005sec 69

Figure 4.11: Achieving reward of over 600 for balancing inverted pendulum 70

xii

LIST OF APPENDICES

Appendix A Single DoF URDF ... 76

Appendix B Single DoF Inverted Pendulum Launch Files 81

Appendix C Chassis URDF ... 84

Appendix D Technical drawing of ball joint ... 94

xiii

LIST OF ABBREVIATIONS/SYMBOLS

RL REINFORCEMENT LEARNING

AI Artificial Intelligence

AGI Artificial general Intelligence

MLP Multi-layer perceptron

A3C Asynchronous Advantage Actor-Critic Algorithm

TD3 Twin Delayed Deep Deterministic Policy Gradient

SAC Soft Actor-Critic

TRPO Trust Region Policy Optimization

NAF Q-Learning with Normalized Advantage Functions

DDPG Deep Deterministic Policy Gradient

DQN Deep Q Network

SARSA State–action–reward–state–action

IMU Inertial Measurement Unit

DOF Degree of Freedom

https://en.wikipedia.org/wiki/Q-learning#Deep_Q-learning
https://en.wikipedia.org/wiki/State%E2%80%93action%E2%80%93reward%E2%80%93state%E2%80%93action

1

CHAPTER 1 INTRODUCTION

1.1 Problem Definition

The Inverted pendulum control is a benchmark control problem that is used by researchers

to test the new control strategies over past 50 years. It has a simple structure but wealthy

model to test control strategies. Solving this type of problem with machine learning is a

promising approach because it does not require dynamic model of system but instead the

machine learning algorithm can generate autonomous actions based on the experience.

The purposed case study in this thesis is balancing an inverted pendulum on a ball joint

using a robotic arm and machine learning technique instead of normal control loop such as

PID. The inverted pendulum can freely fall in any direction because it is connected to the

end-effector using a ball joint. The robotic arm that has been chosen for this case study has

6 degrees of freedom. We use an Inertial Measurement Unit (IMU) for obtaining angular

velocity and orientation of the pendulum to use these data in the learning algorithm.

Figure 1.1: 3DoF Inverted Pendulum on Robotic Arm

2

1.2 Applications

The Inverted pendulum control is a benchmark control problem that is used by researchers

to test the new control strategies over past 50 years. It has a simple structure but wealthy

model to test control strategies. There are many robotic applications also based on the

inverted pendulum in term of their stabilization principle. [1] For example:

• Control of under-actuated robotic systems

• Design of mobile inverted pendulums

• Gait planning of humanoid robots

The control of humanoid robots is challenging task due to having dynamic constrains and

uncertainty. Gait pattern generation is key problem and in order to simplify the trajectory

generation many studies use analogy between bipedal gait and the inverted pendulum

motion[1].

Design and implementation of mobile wheeled pendulum emerged in commercial products

too, Segway and self-balancing scooter are two examples of the commercial products that

uses the inverted pendulum controller approach.[1]

Figure 1.2: Commercial products using Inverted Pendulum controlling techniques

Shuujit Kajita and his team developed a novel framework for biped stabilization control

for humanoid robot with 42 degree of freedom using a simple linear inverted pendulum

dynamic for walking stabilization[2].

3

Figure 1.3: Humanoid Robot 42 DoF Walking on a Pavement[2]

Solving these types of problems with machine learning is a promising approach because it

does not require dynamic model of system but instead the machine learning algorithm can

generate autonomous actions based on the experience. It not only helps robot to make

decision on unseen situations but also the learned model can be used on the robots with

different physical properties.

1.3 Overall Challenges

Enabling robotic systems to do tasks autonomously is a very complex task in real-world

scenarios because of uncertainty. Uncertainties cannot be programmed by IF & THEN, so

sort of general artificial intelligence requires for these systems to enable them to make

human like decisions

4

Although this combination enables robots to act in a situations where constrains are

dynamic[3] but there are many challenges, some of the major challenges to train and build

an autonomous model is:

• Data for specific task

• Computation time required for learning

• Robustness of a model

• Safety during learning process

When a machine learning algorithm runs on simulation environment, it is runs at high speed

and few days or months may reach to a desired level of learning, however one of the main

challenges is once the learnt model transferred to a real robot does it provide the same

results. The Sim to Real transfer id big challenge and researchers are working on solutions

to overcome the challenges some of them are listed in table 1.1

Table 1-1: Possible solutions to overcome common challenges

Solution/

Challenges

Data Time Safety Robustness Comments

Fast learning

algorithms

Robot Farm

Realistic

simulation

It is highly depending on robot,

task, and nature of problem

Hybrid Training

Method

Digital Twin (Sim to Real & Real

to Sim)

Reinforcement

Learning

5

1.4 Methodology

Our approach to solve the proposed problem is using state of the art reinforcement learning

algorithm in Robot Operating System (ROS) environment.

We will be using reinforcement learning (RL) to overcome challenge of data gathering,

because reinforcement learning does not need any data for solving a problem instead it

learns by reward and punishment technique. There are many reinforcement learning

algorithms, but we will be using Deep Quality Network (DQN) which is recently attract

many applications and emerged in recent research for variety type of application where

human type of decision is needed.

We will be using ROS in combination with Gazebo simulation which is highly realistic

environment and highly used in commercial and research problems. Using the realistic

environment helps on computation time and overcome challenge of safety. Safety is a key

problem in reinforcement learning because agent or robot does not have any understanding

of its environment at the beginning and needs to explore and find right action in right

situation over time. So, it may break or do very unsafe actions during learning process.

We will also make the learning model very robust by applying forces randomly during

training process. So, the robust model can be used in real robot and adopt itself with the

new dynamic model. Our proposed solution overcome all challenges that mentioned in the

table 1.1 for this specific problem.

We will be using a sensor on the top of the inverted pendulum to sense the angular velocity

and orientation of the inverted pendulum, these data used as input to the learning algorithm.

We use sensor fusion technique to make this sensor and it is explained in detail on hardware

configuration in chapter 3. Since majority of recent publications are single degree freedom

inverted pendulum, to better analyzing and proper apple to apple comparison with their

results, we have broken down the complex problem into 3 phases, from simple system

which is one degree freedom inverted pendulum to more complex system, which is 3 DoF

inverted pendulum on a 6 degrees robot arm.

6

1.5 Novelties

Multiple novelties are introduced in this thesis that makes it unique and wealthier among

the others that are published on the same topic:

• We made an orientation sensor using sensor fusion technique and placed it on top

of the pendulum to measure angular velocity, pitch, and roll. This approach has not

been done in earlier papers so far and they measured the angle of pole from the

pivot point as input to learning program. Their approach is not practical for two

reasons; firstly, the speed on top of the pendulum changes faster than the button

and secondly measuring angle from the joint itself is not practical because it cannot

be easily implemented in hardware. In our proposed solution, the base bearing, ball

joint and inverted pendulum is block that can be placed on any robot or hardware

for experimental trial. We used sensor fusion technique that is explained in chapter

3 section 4.

• We used ROS and GAZEBO simulation environment which is very popular for

robot simulation applications and very realistic. This platform allows smooth

transfer from simulation to real robot without changing any major changes in the

program. In addition, the learnt model would be very close to the reality since the

simulation environment is one of the top robotic simulation in the world with well-

known kinematic engine.

• we use inverted pendulum on a ball joint attached to the end-effector of robot arm

with 6DoF, this complex system has not been published in any paper before to the

best of our knowledge in the time of writing this thesis.

1.6 Structure

The structure of the thesis is in a sequence. First, in state-of-the-art chapter we discuss

about reinforcement learning, simulation environment, robotic arm details and at the end

close it by reviewing latest literatures in that topic.

7

In Chapter 3 we will discuss details of all 3 phases of proposed methodology for the single,

3 DoF and robotic arm inverted pendulum and finally in Chapter 4 we will review results

of all 3 phases. Figure 1.4 shows the structure of this thesis from beginning to the end.

1.7 Conclusion

In this chapter we provided an overview of the thesis and its structure, proposed

methodology and solution methods to solve the problem of inverted pendulum with

machine learning. In next chapter we will discuss in detail about state of the art that are

used in this thesis.

CH1-

Introduction

CH2- State of the Art

CH3- Proposed

Methods

CH4- Results

CH5-

Conclusion

Figure 1.4: Overall structure of the thesis

8

CHAPTER 2 STATE OF THE ART

2.1 Introduction

In this chapter we will review discuss about reinforcement learning algorithm, robot

operating system and its simulation environment, robot arm that is used for our case

study and will do literature review at the end.

2.2 Machine Learning

Machine Learning (ML) has attracted more attention nowadays and found many

applications in every sector of industry, from big data pattern recognition to automation

and entertainment. It plays an important role in medical field such as heart, liver, and cancer

early detection systems. ML has opened a way to finance and businesses too and enabling

better data-driven approaches, from stock prediction to finance. Machine learning

algorithms are getting improved and developed, new methods and algorithms are emerging

every day.

ML technology is enabling a paradigm shift in problem-solving from analytical to powerful

data-driven approach. High speed processing units, availability of big data and labeled data,

enables computer programs learn models from training data and predict results from new

data.[4]

Main categories of machine learning are:

• Supervised learning

• Unsupervised learning

• Reinforced learning

9

In supervised learning, with help of labeled data we look for an approximation function

that can represent data at the end of training process. Supervised learning has many

applications however for our case study we are not using this method since it is requiring

data and secondly for the balancing pendulum billions of data point might needed. There

are many algorithms for supervised learning such as Naive Bayes, Decision Trees, Linear

Regression, Support Vector Machines (SVM), Neural Networks and many more.

Unsupervised learning method is mainly used for pattern recognition and deceptive

modeling, basically we have data, but they are not labeled and learning algorithm try to

find patterns and relation between data. Again, this category of machine learning is not

proposed on this case study since we do not have data for balancing and inverted pendulum

either labeled or unlabeled.

Reinforcement learning algorithm is the one we are proposing to use in this case study

because it does not require any data and it enables robot learns task by its own without any

supervision. Reinforcement leaning used reward technique to learn a task.

2.2.1 Reinforcement Learning Algorithm

Reinforcement Learning (RL) is a class of machine learning (ML) models where the

learning process is based on evaluative feedbacks without any supervised signals.

Figure 2.1: Overview of Reinforcement Learning Algorithm

10

RL comes from the mammal learning theory. it does not require any prior knowledge and

in fact it can autonomously get optional policy with the knowledge obtained by trial-and-

error and continuously interacting with dynamic environment. [5]

As seen in Figure 2.1, Agent chooses action based on each data point and later learns how

good decision was. Over time, the algorithm changes its strategy to achieve the best reward.

The mathematical framework for defining a solution in reinforcement learning scenario is

called Markov Decision Process. This can be designed as:

• Set of states, S

• Set of actions, A

• Reward function, R

• Policy, π

• Value, V

Agent takes an action (A) to transition from the start state to the end state (S) and in

return, gets reward (R) for each action. actions can lead to a positive reward or negative

reward. The set of actions that agent takes, define the policy (π) and the rewards it get in

return, defines value (V). [5]

The task here is to maximize rewards by choosing the correct policy. So, we must maximize

for all possible values of S for a time t that can be seen in equation 2.1, where π is policy,

r is reward and s is state and E is a function that needs to be maximized:

𝐸(𝑟𝑡 | 𝜋. 𝑠𝑡) Equation 2.1

The objective in reinforcement learning algorithm is to find optimum policy to achieve the

goal, however the challenge is how to maximize the summation of reward, so exploration

and exploration is dilemma for the RL system. Let assume the RL agent did an action and

got 100 rewards in the state space, but the main question is if it is it the best that hope for.

In fact, exploitation is about the agent stick to what understood from the environment so

far and accept that is good policy, but the risk is missing other opportunities out of the

learnt policy that may lead to get more reward. On the other hand, exploration is about the

11

agent look for exploring environment and hoping to hunt more rewards but of course the

risk is wasting time and getting negative feedback.

Many algorithms have been developed for reinforcement learning but most of them use

Epsilon Greedy strategy to balance between exploitation and exploration. The gamma

factor that is a number between 0 and 1 helps agent to discover its environment at the

beginning but over the time when learning is progressing it reduces the exploration

probability and move more toward exploitation.

Reinforcement learning systems have many applications such as self-driving cars,

humanoid robots, game playing, automatic trading etc. and popular algorithms are Q-

Learning, SARRA, DQN, A3C and Genetic Algorithm.

2.2.2 Q Learning

Q-learning is off-policy and model-free reinforcement learning algorithm. off-policy

methods evaluate or improve a policy different from that used to generate the data, in

contrast On-policy methods attempt to evaluate or improve the policy that is used to make

decisions. In model free type algorithms RL make no assumption of the dynamic model of

the environment.

The 'q' in Q-Learning stands for quality. Quality in this case represents how useful a given

action is in gaining some future reward. In Q-Learning we make a Q-table that represents

quality value of each action and each state. To briefly explain how Q-learning works, let

assume a robot must cross a maze and reach end point but there are several mines and

power up points in the area. Figure 2.2 represent the problem.

12

Figure 2.2: Robot in Maze - Q-Learning

The Q-table consists of four actions in 4 columns and 5 states in 5 rows. In this example.

This table is first initialized with zero values but then using a Bellman Equation (2.2) will

get updated each time robots do an action.[6]

𝑉(𝑠) = 𝑚𝑎𝑥(𝑅((𝑠, 𝑎) + 𝛾𝑉 (𝑠′) Equation 2.2

• s = a particular state

• a = action

• s′ = state to which the robot goes from s

• 𝛾 = discount factor (we will get to it in a moment)

• 𝑅((𝑠, 𝑎) = a reward function which takes a state s and action a and outputs a

reward value

• 𝑉(𝑠)= value of being in a particular state (the footprint)

The Bellman Equation in simple form says the current value of Q is related mostly to

immediate reward plus a portion of future reward. Overall algorithm for Q-learning can

be seen in figure 2.3

13

Figure 2.3: Q-Learning Overall Algorithm

As we saw in above example, in Q-learning, we build a memory table Q[s, a] to store Q-

values for all possible combinations of states and actions. Memory requirement for Q-

Learning is an array of states times actions. If the combinations of states and actions are

too large, then memory and the computation requirement for Q will be extremely high or

impossible. This constrain impose a problem for large scale situations, for example in chess

the state space is about 10120, which make Q-Learning algorithm useless. This main

problem leads us toward selecting a better learning algorithm suited our case for controlling

an inverted pendulum.

 Instead of storing all Q values in a table what if we approximate it on each state. This is

leveraging Neural Network in Q-Learning that is explained in next section.

2.2.3 Deep Q Learning

After DeepMind’s paper published on 2015 “Human-level control through deep

reinforcement learning” [7] , google company acquired DeepMind and few years later

14

Alpha Go has been released. This Deep RL algorithm mastered the game of GO without

human knowledge and from scratch just by knowing the rules of game and playing against

itself for 4 days. This version of Alpha Go managed to win 10 to zero against world Go

champion. Go is abstract strategy board game for two players with number of legal board

position of approximately 2 x 10 170. Few years after a new AlphaGo Zero emerged with

newly developed Deep RL algorithm and achieved superhuman performance, winning

100–0 against the previously published champion-defeating AlphaGo.[8]

Combination of neural network with reinforcement learning opened new horizon for

autonomous robots and recently topic of many researchers around the world. Just in IEEE

from 2018, 390 papers are published that used this algorithm on various applications

include robotics, autonomous vehicles, game play and all sort of control where human type

of decision making is needed, or uncertainty are involved. DQN shows a great success in

this type of control and that is main reason we have chosen this RL algorithm among the

others too.

Figure 2.4 shows the difference between Q learning and Deep Q Learning in a simple

problem, in fact instead of having a table for all states and actions we estimate Q values for

each action with Neural Network and approximate the Q values. With this approach we

minimize the amount of memory requirement. However, this approach imposes some other

problems as well.

15

Figure 2.4: Q-Learning Vs Deep Q Learning

In reinforcement learning, both the input and the target change constantly during the

process and make training unstable.[9] In contrast in the supervised learning, samples are

randomized among batches and each batch has similar data distribution, also samples are

independent. If these conditions are not fulfilled during training of neural network, then we

may end up over fitting the network. We build a deep network to learn the values of Q but

its target values are changing, basically the target values for Q depends on Q itself, so we

are chasing a moving target.

The solution for DQN is using experienced replied memory. For instance, we put the last

50,000 transitions into a buffer and sample a mini batch of samples from this buffer to train

the deep network. This forms an input dataset which is stable enough for training. As we

randomly sample from the replay buffer, the data is more independent of each other.

16

As part of this thesis, we are not going to program DQN from scratch but instead we focus

on implementation of this algorithm on a Robot Arm and experience the results on a more

complex environment. For that reason, we will be using OpenAI baseline DQN algorithm.

OpenAI is an AI research and deployment company that is governed by the board of

OpenAI Nonprofit with Microsoft as investor. Their mission is to ensure that artificial

general intelligence (AGI)—by which we mean highly autonomous systems that

outperform humans at most economically valuable work. One of their main products is

High-quality implementations of reinforcement learning algorithms that are widely used

by many researchers around the world.

2.3 Simulation Environment

There are many robotic simulation platforms that enables offline programming using the

model of robots. However, among all there are only few that are very popular among

researchers. Robot Operating System (ROS) in combination with Gazebo Robot

Simulation is the top among all for about 10 years. ROS is a middleware software that

connect high level programming to low level hardware extremely fast and in a very

reliable way using subscription and publishing method.

2.3.1 Robot Operating System (ROS)

Robot Operating System (ROS) started late 2000s at Stanford university, widely becoming

a common, standard tool among robotics researchers and industry, since its initial release

in 2010. ROS is a tool for offline robot programming and provide great packages and

support for artificial intelligence programming as well. Some of the highlighted features of

ROS are [10]:

• Open source, big community, and continuous support

17

• Fast subscribing / publishing techniques

• Code reuse in robotics research and development

• Ready-to-use development environment with Comprehensive tools and client API

libraries (MATLAB, C++, Python, Lisp, Java, …)

• Scalable (distributed network of processes)

• ROS enables connect ML algorithms to the actual robot or in simulated

environment

Over the past 10 years, ROS has become the industry’s most popular robot software

development framework. According to ABI Research, by 2024 roughly 55% of the world’s

robots will include a ROS package. ROS supports many libraries some of the major ones

are:

• OpenCV: computer vision

• Gazebo: Robot Simulator

• KDL: Kinematics and Dynamics

• TREX: High Level Planning

A ROS distribution is a versioned set of ROS packages and dependent to Linux

distributions (e.g. Ubuntu). The purpose of the ROS distributions is to let developers work

against a relatively stable codebase until they are ready to roll everything forward [10]

ROS starts with the ROS Master; the ROS Master allows all other ROS pieces of software

(Nodes) to find and talk to each other. We can tell Node 1 to send messages to Node 2 or

node 3 subscribe to Node 1 directly. Figure 2.5 shows how subscription and publishing

message works in ROS environment. The camera node publishes messages then image

processing node subscribe to image processing node and image display node on another

laptop but at the same network can register to the same channel and listen to image data.

18

Figure 2.5: Overview of ROS messaging system

2.3.2 Gazebo Simulator / URDF File Structure

Gazebo is an open-source robotics simulation software and part of ROS software because

it is being acquired by same company in 2011. Gazebo can use multiple high-performance

physics engines, such as ODE (default), Bullet, etc. It provides realistic rendering of

environments including high-quality lighting, shadows, and textures. It can model sensors

that "see" the simulated environment, such as laser range finders, cameras (including wide-

angle), Kinect style sensors, etc.

Gazebo highly used in research and industry and won many challenges and competition in

world including NASA, Toyota Pirus, DARPA, Sub T, VRX etc.[11], [12]

Modeling for gazebo to be done using XML or Xacro which is macro language for XML

format. In addition, for more sophisticated simulation we can export design directly from

SolidWorks. This file is in specific format and called Unified Robotic Description Format

(URDF). URDF is a file that describes the robot kinematic and basic physics, it has tree

https://en.wikipedia.org/wiki/Open-source
https://en.wikipedia.org/wiki/Robotics_simulator
https://en.wikipedia.org/wiki/Open_Dynamics_Engine
https://en.wikipedia.org/wiki/Bullet_(software)
https://en.wikipedia.org/wiki/Laser_range_finder

19

structure, but order does not matter. We can define Links, joints, transmissions, collision,

visual etc. An example of URDF shown below for a joint that has one child. [13]

Figure 2.6: A Simple Joint and XML Code of URDF

2.4 Robotic Arm

Industrial robots are automated, programmable, and capable of movement on three or

more axes. There are at least six type of industrial robots:

• Articulated Robots

• Cartesian Coordinate Robots

• Cylindrical Coordinate Robots

• Spherical Coordinate Robots

• SCARA Robots

• Delta or Parallel Robots

20

Articulated robots are the most common industrial robots. They are very similar to human

arm and usually they have several degrees of freedom. Their articulations with

many degrees of freedom allow the articulated arms a wide range of movements [14].

In practical industrial applications, there are two main categories of robotic programming

methods:

• Online programming

• Offline programming

In online programming, the handheld programmer or joystick that is called teach pendant

in industrial robot is used to manually move the end-effector to the desired position and

orientation at each stage of the robot task, then robot controller save an calculate relevant

frames, coordination and configurations for each step and then can repeat it at its maximum

speed and accuracy step by step.

Offline programming method, which is based on the 3D model of the complete robot work

cell and is becoming more popular. This type of programming highly related to the

simulation model that is usually provided by manufacturer or third party has its strength on

programming complex systems.

The robot arm that is used in this thesis is called Universal Robot which is one of the top

manufacturers in making collaborative robot. University of Windsor recently made an

automation lab with some of these robots. This robot has 6 joints and comes at 3 different

payloads, 3kg, 5kg and 10 kg. Figure 2.7 shows all six joints of this robot

https://en.wikipedia.org/wiki/Degrees_of_freedom_(mechanics)

21

Figure 2.7: 6DoF Robot Arm and its joints [15]

According to the specification of this robot, all 6 joints can move 360 degrees with speed of

180°/sec. the repeatability of this robot is +/- 0.1 mm and apart from hardware Input/Output

ports, it has TCP/IP 100 Mbit IEEE 802.3u protocol which make it suitable to communicate to the

ROS environment.

Simulation model of this robot is available as open source and made by the manufacturer, that

includes ROS driver. Figure 2.8 shows the simulation of this robot in Gazebo under the Robot

Operation System platform.

22

Figure 2.8: Simulation model of Universal Robot in Gazebo

2.5 Literature Review

For at least fifty years, the inverted pendulum has been the most popular benchmark

problem among others, for teaching and research in control theory and robotics. According

to a survey done on 2012 more than 13 different types of control designs are used in IEEE

published journals to design a control system for inverted pendulum [1]. These control

strategies included PID, predictive control, Hybrid control, Fuzzy logic control, RL and

many more. To narrow down our literature review more specific, we will be review only

very recent that used the reinforcement learning algorithm to solve inverted pendulum.

23

Yue Chao and his team on 2018 has published a paper in IEEE and used double layer back

propagation neural network for inverted pendulum [16]. In this paper they used the straight-

line single inverted pendulum as see in figure 2.5

Figure 2.9: straight-line single inverted pendulum

They have used simulation model from Google Technology that included all physical

properties of the environment included angular velocity, gravitational acceleration, angle

of swing arm and so on. Their proposed neural network on this paper is shown below which

takes 4 inputs as the states of the inverted pendulum and gives one output. The output is

the speed of the cart in left or right direction. After 300 attempts, the learning system

successfully implemented the swinging up of a single inverted pendulum. The entire time

of reinforcement learning was 131s. [16]

The robustness of their model has not been verified in the paper also the physical properties

of the inverted pendulum has not identified. As we explain later in this paper, physical

properties of the model impact the robustness for example fraction between the swinging

arm and the base is one of the key factors in the control.

Q-Learning approach also has been implemented by Alessio Ghio and his team and their

paper has published in IEEE on 2019 [17]. In this paper they used two algorithms for

balancing the inverted pendulum, the first algorithm used to swing up the pendulum

upward and the second one is used to control it in upward position. A simple reward

function has implemented to give 100 points when the pendulum is placed upward at each

iteration. The physical properties that considered for the inverted pendulum is m = 1

kg, L = 1 m, b = 0.01 kg/s and g = 9.8 m/s 2. As per the chart published in the paper at the

24

beginning phase control is extremely unstable but over the 600 Episodes system was able

to learn to control.

Figure 2.10: RL learning curve for single inverted pendulum [11]

In this research same as previous one, single inverted pendulum used with minimal

physical property in the testing environment. Fraction, motor power and its transmission

to move the base cart is ignored, the pivot point friction is not defined, and main point is

the robustness of system has not been tested against any turbulence.

On December 2019, a paper is published in IEEE by X.Li & H. Liu that used DQN OpenAI

baseline cartpole environment and implemented same in V-REP (Virtual Robot

Experiment Platform). They have used V-REP because it is very rich in kinematic analysis

and more realistic simulation rather than OpenAI Gym Cartpole environment.[18]

Their paper shows how physical properties impact on the RL model and to overcome

instability during learning process they made a model with following characteristics that

shows in figure 1.7:

25

• Changing the inverted pendulum to specific height

• Considering joint speed to specific value

• The masses of base and wheels set to larger value compare to inverted pendulum

itself.

• The physics engine selected was Vortex, because of its stability in VREP

environment.

• To overcome latency issue of Python in VERP, they have used a synch method in

VERP, otherwise there will be large interference and huge impact on simulation

unless reducing the gravity.

Figure 2.11: V-REP Model of Cartpole [12]

Although they have used only single inverted pendulum, had many challenges, and preset

their physical properties to specific values however in our view this paper was the best

among all recent published ones. It was very helpful to understand expectations on this this

thesis too because it shows how difficult is to simulate a simple problem in a more realistic

simulation environment and how different results can be achieved when parameters are not

26

accurately set. As seen in figure 1.8 their cost function chart is totally different than the

results of other recent papers on solving the exact same problem.

Figure 2.12: Cost function of DQN Training in V-REP environment

Simulations provide an abundant source of data and alleviate safety issues during the

learning process however the model that is generated in simulation environment are often

specific to the characteristics of the simulator. Due to modeling error, strategies, lack of

proper kinematic model, physical properties of model etc. a simulation test might be

successful but won’t be when transferred to another simulation environment or real-world

environment. [19]

Almost in none of the published paper the robustness of the RL model has been tested fully,

and majority of them used non-realistic simulation environment where fraction, joint

definition, power, efforts and acceleration have not been simulated with a proper kinematic

engine because they have not been simulated in proper robot simulation platform unless

the last one which is done in VERP. They have shown good result, but the outcome model

only works in their environment and outside that the model is useless.

For our thesis we will be using Robot Operating System (ROS) in combination with

Gazebo which are one of the top Robot Simulation Platform in the world that are widely

used in research as well as industry.

27

CHAPTER 3 PROPOSED METHOD

3.1 Introduction

To implement reinforcement learning in the most complex system of inverted pendulum,

we have broken down the case study in 3 sections. We start with single degree freedom

inverted pendulum that is mainly used in recent published paper, this phase enables us to

check and compare our results with the published ones, find our mistakes and solve all

challenges for the next step.

Then we take step further and make it 3-degree freedom inverted pendulum where the

inverted pendulum can free fall in any direction. To control this system, we place it on few

chassis that can move freely on any directions. We tried to develop the entire program in

such a way that expanding the project from one phase to another phase does not require re-

structuring the entire program. We use classes that are written in Python language, libraries

and configuration files to enable us quickly to transform one program to another.

3.2 One Degree Freedom Inverted Pendulum

The single straight-line one-degree freedom of inverted pendulum consists of a cart or a

box that moves only in one axis and a pole that is hanged on the middle of it and where it

swing freely on the same axis that cart or box moves. As seen in figure 10 a force F is

required to move the cart to the left and right and based on the acceleration, speed, and its

position the inverted pendulum can swing to the left or right too. The objective is by

moving the cart (brown box), keep the angle φ as small as possible.

28

Figure 3.1: Simple Single inverted pendulum on a cart

To implement this environment in ROS and Gazebo two main parts to be done:

• Designing URDF, control related parameters and loading model to Gazebo

• RL algorithm, programming and storing the results

The model has 2 main links and some other links for sensors and movement rail. The URDF

for the two main links are shown in detail in APPENDIX A, the overall links and main

joints definition are shown in figure 2.2:

29

Figure 3.2: Overall URDF file structure and Joint definitions

Some of the main characteristics of our model are listed below:

• 2.5 kg for main moving cart

• 1.5kg for vertical pole

• Prismatic joint moving in x direction with limit 2.5 meters on each side of X axis

• Revolute joints for vertical pole with limit of +/- of 1.57 radians

• The Rigidness factor Kd has considered higher number to make all parts very rigid

• Bouncing factor Kp and Mu1 &Mu2 (friction factors) have been set as initial values

of 1 & 0.5 respectively

• Velocity Controller and Effort Transmission are used to move the cart

30

Figure 2.3 shows the 3D model of the cart in the Gazebo environment that include a

green bar with weight of 2.5kg, rectangular with dimensions of 0.8m x 0.05mx 0.05, a

Sensor as a red box with neglectable weight of 100 gram and main moving cart in black

color with weight of 5kg and dimensions of 0.4mx0.2mx0.2m.

Figure 3.3: Single Inverted Pendulum in Gazebo Environment

There are multiple nodes defined for orientation sensor and joint publishers that

automatically publishes joint states. Below is the diagram that shows all topics and nodes

once we run only gazebo simulation. After running the RL program the node diagram

changes because many publishers and subscribers pay roles.

31

Figure 3.4: Node list before launching the learning program

To implement reinforcement learning algorithm that can interact with the Gazebo

environment we use Python 3.7 language with some dependencies and libraries, some of

the major libraries that used in programming are numpy, rospy, openai_ros, tensorflow.

We have also used the latest release of DQN algorithm from the OpenAI baselines.

We have done some changes in existing cartpole environment of OpenAI_ROS to facilitate

reusing the code in later stage and more complicated environment. The program consists

of 3 main scripts:

• The “Robot Script” that takes care of the communication with the cartpole back and

forth to get IMU data for angular velocity, pitch, and roll, and sending velocity

commands to the cartpole

• The “Task Script” that take care of reward computation, collect observations,

generate actions and initialization the simulation after each episode of training.

• The “Main Script” that loads the baseline DQN algorithm and set all parameters.

These 3 scripts written in class form and Python language and inherit all data and functions

from each other. The OpenAI_ROS is a version of OpenAI_Gym that helps a lot

implementation of RL algorithm for this case study[20]. The overall structure of the

program shows in the figure 3.5.

We consider two factors for the reward function of the reinforcement learning, one is the

angle of the pole that is coming from the sensor on the top and the other is the position of

32

the cart (black box) that is moving left or right. Each time an action is given to the system

then reward is calculated, and we check if we must reset the environment to the initial stage

or continue learning.

Equation 3.1 shows the reward function, the angle can vary from -1.57 to +1.57 radian as

per physical properties so the best reward is when the pole is exactly in vertical position,

the cart position can vary from -2.5m to +2.5m so the best reward is given when the cart is

close to the center. We used Cosine of the two inputs including weight to calculate total

reward. More weight is considered for keeping the pole in vertical position rather than

being outside of the zone.

𝑇𝑜𝑡𝑎𝑙 𝑅𝑒𝑤𝑎𝑟𝑑 = 1.7 ∗ 𝐶𝑜𝑠(𝑃𝑜𝑙𝑒 𝐴𝑛𝑔𝑙𝑒) + 1.3 ∗ 𝐶𝑜𝑠(
𝐶𝑎𝑟𝑡_𝑃𝑜𝑠𝑖𝑠𝑖𝑜𝑛

2
) Equation 3.1

We also have another limit function to detect when the environment to be reset to start over

the next episode, this function checks the limits of the pole angle and position of the cart.

If position of the cart is over 2 meters from the center or angle of the pole is more than 0.35

radian then we considered as failed and environment to be reset, learning is still continue

until the defined total steps and episodes reaches or problem solve which is reaching 300

reward as mean square.

For the output to the simulation environment or actions we consider 2 actions to increase

the speed or decrease the speed. Negative speed means just speed to the other direction.

After running the program all nodes and connection are updated and can be seen in figure

3.6. The cartpole_gym is a node that is made by main training program, it receives joint

states and IMU data and then it generates velocity commands, commands are just

publishing data on another topics that receives by Gazebo Simulation environment. Using

ROS enable us quickly to switch from simulation environment to the real robot by just

changing the system IP of Gazebo to actual physical environment.

33

Figure 3.5: Nodes connections, topics, publishers, and subscribers

Parameters of the DQN are considered as default, below are the list of the parameters for

the DQN algorithm from OpenAI baselines

• Neural Network type: Multilayers Perceptron (MLP)

• Size of the replay buffer = 50000

• Learning rate for Adam Optimizer: 0.001

• Gamma factor over which the exploration rate is annealed=0.1

• Final value of random action probability: 0.02

The observations are the inputs the neural network for estimating the Q values for the

output. We have not considered any limit for the velocity of pendulum or cart because it

may vary based on different physical characteristics of the system, the table 3-1 just shows

34

the limit of min max of the observation space but actual angular velocity and angle of the

pole will be measured in real time and input the neural network of the learning algorithm.

Table 3-1 : Observation space for the 1 DoF Inverted Pendulum

The observations are the inputs the neural network for estimating the Q values for the

output. We have not considered any limit for the velocity of pendulum or cart because it

may vary based on different physical characteristics of the system, the table 2-1 just shows

the limit of min max of the observation space but actual angular velocity and angle of the

pole will be measured in real time and input the neural network of the learning algorithm.

The action space is 2 Quality values estimation for moving the cart to the left or right,

figure 3.7 shows the overall reinforcement model being created for this case study.

Num Observation Min Max

1 Cart Position -2.5m 2.5m

2 Cart Velocity No Limit No Limit

3 Pole Angle -0.7 Rad + 0.7 Rad

4 Angular Velocity

at Tip

No Limit No Limit

35

Figure 3.6: Single DoF cartpole RL Model with 4 observation space and 2 outputs

To run the entire simulation and training program, we must make some launch files. These

launch files are responsible to load appropriate files and script at proper sequence and load

preset settings.

The structure of the program is designed to separate learning and simulation in two

different packages, that helps to debug and control version of the program much easier and

gives ability to use packages for different purposes independently.

Launch files for simulation packages are responsible to load parameters for physical world,

robot structure that includes cart and inverted pendulum and its controllers. Launch files

for learning packages are responsible to load settings for the program, initiate nodes and

run the main learning script. Details of launch files are provided in Appendix B. figure 3.8

shows the structure of the packages for both simulation and learning.

36

Figure 3.7: Package structure for simulation and learning

In addition, since the DQN baseline requires TensorFlow and Python 3 then we made a

new Virtual Environment for Python 3.6 and ran the training on that environment. We used

rqt ROS package for displaying the charts that basically subscribes to the published topics

and display them as graph.

3.3 Three DoF Inverted Pendulum on Chassis

Implementation of the single DoF helped to prepare the second and more complex inverted

pendulum system. The program structure has not been changed but the complexity of

URDF and learning program has changed to accommodate the new environment. In this

37

phase we made an inverted pendulum that free fall from any direction and the base moves

along x and y axis and can rotate along Z axis.

We have implemented 3 DoF inverted pendulum in two different ways. On the first way

we considered no joint between the base and the inverted pendulum and in second

implementation we used a 3 DoF revolute joint. Figure 3.9 shows the difference of this

implementation.

Figure 3.8: Two ways of implementing 3DoF bar link

For no joint option, we made two models, one was the chassis that loaded back to back in

simulation environment, a bar link with weight of 1.5kg, length 0.8m and radius of 0.07m

is standing on the middle of a chassis. The other design uses a ball joint that is designed in

the SolidWorks and loaded into the URDF model using mesh identifier, it is defined as

revolute joint.

38

Figure 3.9: Ball Joint URDF file

Ball joint for this experiment is great choice so we made the technical drawing to build this

joint for real robot implementation. All technical drawings are in Appendix D and figure

3.10 shows the overview of 3d drawing for the ball joint.

Figure 3.10: Ball joint design in SolidWorks

The friction parameters play an important role when using ball joint. If there is less friction

then moving the base cannot apply force in any direction to inverted pendulum, ball slip in

the bearing base so if inverted pendulum starts falling then there is no way to bring it back

to the vertical position. On the other hand, once friction is set too high then it impacts on

the nature phenomena of free fall, means when moving the chassis then pendulum moves

on that direction.

39

Gazebos uses Open Dynamic Engine (ODE) by default that is not being changed during

the entire case study. As per ODE documentation, the contact joint prevents body 1 and

body 2 from inter-penetrating at the contact point. It does this by only allowing the bodies

to have an “outgoing'' velocity in the direction of the contact normal. Contact joints

typically have a lifetime of one-time step. They are created and deleted in response to

collision detection. Contact joints can simulate friction at the contact by applying special

forces in the two friction directions that are perpendicular to the normal. Mu coefficient

zero means no friction at all and infinite number for mu means no slippery.[21]

To control the inverted pendulum, we have extended the concept from previous design, we

stacked 3 carts that are called them chassis 0, 1 and 2 in the program and they are on top

of each other and joints together, as seen in figure 3.10.

The yellow chassis moves to the X axis, the black chassis moves on Y direction on top of

the yellow chassis, and the gray chassis rotate 360 degrees on top of the black chassis with

a revolute joint on Z axis. Each of these chassis are 2.5 kg and they are using prismatic

joint with each other except the last one which has revolute joint and rotates along Z axis.

The limit of 2.5 meters on each direction is applied for chassis that have prismatic joints.

Figure 3.12 also shows links and joints between each chassis.

Figure 3.11: Chassis to control the 3 DoF Inverted Pendulum

40

Figure 3.12: URDF structure of the 3 chassis

The physical properties in Gazebo such as Kd, kp, for softness and bumpiness of the

materials, mu coefficient for frictions are considered in such a way that a force of 20N on

any direction, causing inverted pendulum to fall on that direction for both cases; no-joint

and ball joint.

The 20N force impact equally on both designs to make sure learning results of these two

models are valid for comparison. The complete URDF file with details of all parameters

are in Appendix C.

41

Figure 3.13: Applying 20N force in any direction at initial state

Implementation of DQN is almost same as previous single form of inverted pendulum, we

have same IMU sensor on the top of the bar link that transmit the angular velocity, pitch,

and roll. Observation and action space are different than single DoF. For observation we

get position and speed of each chassis, pitch and roll and their angular velocity totally an

array with 10 elements as per table 3.2.

Table 3-2: Observation space for the 3 DoF Inverted Pendulum

Num Observation Min Max

1 Chassis 0 - Position -2.5 2.5

2 Chassis 0 - Velocity No Limit No Limit

3 Chassis 1 - Position -2.5 2.5

4 Chassis 1 - Velocity No Limit No Limit

5 Chassis 2 - Position -2.5 2.5

6 Chassis 2 - Velocity No Limit No Limit

7 Pole-Pitch -0.7 Rad + 0.7 Rad

8 Pole-Roll -0.7 Rad + 0.7 Rad

9 Pole Angular Velocity No Limit No Limit

10 Roll Angular Velocity No Limit No Limit

42

For action space we command each chassis to increase, decrease or no changes to the

chassis speed. In fact, 3 outputs command that each can have 3 different outputs that leads

to totally 27 actions. Messages or data which are float64 for our case study are published

as topic with different nodes.

The main Python algorithm has a node name /Cart-Inv-Gym that communicates with all

inputs including IMU sensor and joints feedback and provides output to the controller that

is eventually connected to the Gazebo Sim. Figure 3.14 shows all nodes and topics

communication when script and Gazebo simulation are running.

As seen in this figure, the cart_inv_gym is main node from Python program that runs the

DQN algorithm, it is responsible to get data from IMU sensor and compute and send

command to the chassis. Chassis commands published in commands topic that are

consumed by Gazebo, Gazebo perform action in the realistic environment and provide

feedback through join_state.

Figure 3.14: ROS Nodes / Topics for the 3DoF system

43

The structure of the Python scripts is also same as single DoF Inverted pendulum

however with some changes in regard of sending commands to 3 chassis instead of one,

checking extra incoming signals, reward and done functions. Figure 3.15 shows the

overall structure and program block for the 3DoF inverted pendulum.

Figure 3.15: 3DoF Inverted Pendulum, Program Blocks

For the reward, we are using Cosine of Chassis Position and angles of pitch and roll but

considering some weight like previous case study. We consider more weight for keeping

the pole upward and less for the limit of chassis. Figure 3.15 shows the reward function

that is used for this system.

40 percent of weight goes for keeping the bar link vertical, but the 10 percent considered

for keeping the chassis close to the center.

44

Figure 3.16: Reward function for 3DoF Inverted Pendulum

3.4 Three DoF Inverted Pendulum on Robotic Arm

Learning path and challenges of previous case studies, made the implementation phase

much easier for the last and much more complex system. In this phase we used universal

robot to implement inverted pendulum control. We have used same spherical joint with

exact same physical properties and parameters for weight, frictions, and other coefficients.

The base bearing attached to the universal robot end-effector as seen in figure 3.17

Figure 3.17: Universal Robot with Inverted Pendulum on spherical joint

45

One of the main challenges we faced at the beginning was selecting right version and had

to change couple of times to find the best one that works for majority of libraries and in

some cases had to change the direction of AI programming too because of some packages

were not updated at the time of writing this thesis.

Our main driver to select the ROS version, was The Universal Robot package that is

officially released by Universal Robot Company. The ROS package for UR is based ROS-

Kinetic or ROS-Melodic which needs to be installed on Ubuntu 16.04 or Ubuntu 18.04

operating system. These operating system uses Python V2.7 while for some of the packages

for example, AI, we had to use Python 3.6 as minimum. The version of ROS that is used

for this thesis is Melodic that is installed on Ubuntu 18.04 however to use TensorFlow and

OpenAI baseline for machine learning part of the thesis, we used Virtual Environment

package in Python and runs those part of codes under a virtual environment that uses

Python 3.6.

For the robot simulation in Gazebo environment, we used the library from ROS_Industrial

that is open source and available for commercial or research purposes [22]. The only part

that we changed in the Robot model was the initial position, limits on the angels and

attached the inverted pendulum to the end effector. This is done by making a separate

URDF file for the inverted pendulum, making mesh folders in the Redescription package

and make a fix joint between bearing and end effector.

The robot model has trajectory controller to move all joints to the desired position with

proper speed and direction. The trajectory controller is part of the simulation package made

by the universal robot and we have not manipulated it. So, for the purpose of this study we

used trajectory command that basically let robot find best way to move its arm for reach

the desired angles for each waypoint.

In our use case we only want to move from a current angle of the joints to a new set of

angles, so we only send command for 6 joints as an array. The 6 joints of the robots are

shown in figure 4.2 and the array for joints are in radian and float64 format:

46

['elbow_joint', 'shoulder_lift_joint', 'shoulder_pan_joint', 'wrist_1_joint', 'wrist_2_joint',

'wrist_3_joint']

Figure 3.18: 6DoF Robot Arm and its joints [15]

We have considered an angle limit for each joint during training because if joint freely

moves 360 degrees then the inverted pendulum hits on the ground or other part of the robots

arm and breaks, hence entire training to be restarted.

For Elbow and Shoulder Lift joint, we considered 0.78 radian or 45 degrees freedom.

Wrist-1 joint can move between -1.57 radian to +1.57 or +/- 90 degrees, and wrist 2 has

limit between 45 degree to 135 degrees. Figure 3.19 shows once all joints are in their limit,

we see in this figure that there is no crash point for inverted pendulum and ground.

We have also lifted the robot by 10 centimeters because when robots loaded at each episode

then it does not hit the ground. In real world, robot can be placed on a stand then on the

table.

47

Figure 3.19: Robot at its maximum joint limits

Table 3.3 shows the input for the DQN algorithm, as seen in this table the information from

the IMU sensor remains intact in compare of previous design and we still get the pitch, roll

and angular velocity of each but we also get all joint positions of robot arm.

Table 3-3: Input observation space for 3DoF on robot arm

Num Observation Min Max

1 Pitch Angle -0.7 0.7

2 Pole Angle -0.7 0.7

3 Pitch Angular Velocity No Limit No Limit

4 Pole Angular Velocity No Limit No Limit

5 Elbow Joint -0.78 0.78

6 Shoulder Lift Joint -0.78 0.78

7 Shoulder Pan Joint No Limit No Limit

8 Wrist1 Joint -1.57 1.57

8 Wrist2 Joint 0.78 2.357

10 Wrist3 Joint No Limit No Limit

48

The output space is action to 6 joints either increasing, decreasing or no changes. So 3

different actions for 6 joints leads to have space of 3 power 6 which is 729 different of

actions. Figure 3.20 shows all nodes and topics when the learning program and Gazebo are

started.

Figure 3.20: Node diagram of robot arm and inverted pendulum

As seen in figure 4.4, the joint state publisher, publishes all joints information from robot

arm and /arm_controller node contains all actions to send command to the joints of the

robot. It uses the trajectory command message format that contains joint angles and time

of the goal.

The node /ur_gym is the main node of the Python learning program, it gets data from the

joint states and IMU sensor and send commands to the controller of the robot, the

commands perform action in the Gazebo and new action will be generated based on the

new state.

The “done” function is like the previous case studies, but with the difference that we

applied limit to the robot joints instead of 2.5 meters limit for chassis. If an action goes

beyond the limit the training goes to “done” state or if the pendulum falls and have angle

of more than 0.7 degrees then considered as done for that episode, accumulated reward will

be shown in graph and new episode starts.

49

The reward function has not been changed from what shown in figure 3.16 in previous case

study. We take pitch and roll and consider weighing factor to calculate total reward at each

step.

3.5 Hardware configurations

In this section we describe in detail how to build an orientation sensor and integrate it to

ROS environment to read roll, pitch and their acceleration of the inverted pendulum which

are used in the learning algorithm as input.

We also explain details of communication to the universal robot and setting the hardware

for ROS communication.

3.5.1 IMU Sensor

The inertial measurement unit (IMU) for our use case should have following properties in

our case study as to minimize any negative impact on the learning process:

• Wireless communication

• Accurate reading

• Battery operated

• Small and light

There are many methods to get the orientation of a device in 3D space using combination

of gyroscope, magnetometer, and accelerometer with combination of using filters such as

Kalman or complementary.

The intention of this paper is not developing new method of measuring orientation but

instead using an existing reliable method to build a simple and reliable sensor that can be

used for this case study. For that purpose, we have chosen sensor fusion technique that is

a simple method and mainly used in commercial quadcopters balancing and it is simple,

reliable, and accurate enough for our case study.

50

The main idea of sensor fusion is to get more accurate reading by combining information

from multiple sensors. On 2017 a paper published in IEEE and proposed an algorithm to

get orientation of an object in 3D space using Gyroscope and Accelerometer which is used

in our design [23].

Gyroscope measures rotational motion and its output is degree per second. If angular

velocity is monotonous then we can say:

𝜃 = 𝜔 ∙ 𝑡 Equation 3.2

Where θ is angular displacement and 𝜔 = Angular Velocity and t is time. But in practical

scenario, angular velocity is not constant with time and it varies so basically angular

velocity is rate of change of angular displacement:

𝜃′ =
𝑑𝜃

𝑑𝑡
 Equation 3.3

By integrating from both sides over a period we can find θ

𝜃 = ∫ 𝜃′(𝑡)𝑑𝑡 ≅ ∑ 𝜃′(𝑡)𝑇𝑠
𝑡
0

𝑡

0
 Equation 3.4

Because we cannot take a perfectly continuous integral, we must take the sum of a finite

number of samples taken at a constant interval Ts. This approximation will introduce errors

specially when gyroscope data changes faster than the sampling frequency, so the integral

approximation will be incorrect and this error is called gyroscope drift and increases over

time.[24]

So, gyroscope alone, cannot provide accurate angular velocity and angles on each axis

(Pitch, Roll), mainly because of gyroscope drift.

51

In the proposed method a tri-axial gyroscope is used as a main source of information, and

a tri-axial accelerometer is used to compensate drifting deviation on gyroscope

measurements.[25]

MEMS accelerometer measures acceleration due to movement and gravity. For a static

object acceleration is due to gravity (1g). We can find the orientation from the

accelerometer and use that data to compensate the drift of Gyro. [26]

Figure 3.21: Singe Axis Accelerometer

Referring to basic trigonometry, the projection of the gravity vector on the x-axis produces

an output acceleration equal to the sine of the angle between the accelerometer x-axis and

the horizon, in figure 3.21 the θ can be calculated by following equation:

𝐴𝑥,𝑜𝑢𝑡(𝑔)=1𝑔∗ 𝑆𝑖𝑛(𝜃) Equation 3.5

When 3 dimensions accelerometer is used then the angles can be calculated using following

formulas [24]

𝜃 = 𝑡𝑎𝑛−1 (
𝐴𝑥,𝑜𝑢𝑡

√𝐴𝑦,𝑜𝑢𝑡
2 + 𝐴𝑧,𝑜𝑢𝑡

2
) Equation 3.6

𝜓 = 𝑡𝑎𝑛−1 (
𝐴𝑦,𝑜𝑢𝑡

√𝐴𝑥,𝑜𝑢𝑡
2 + 𝐴𝑧,𝑜𝑢𝑡

2
) Equation 3.7

52

𝜑 = 𝑡𝑎𝑛−1 (
√𝐴𝑥,𝑜𝑢𝑡

2 + 𝐴𝑦,𝑜𝑢𝑡
2

𝐴𝑧,𝑜𝑢𝑡
) Equation 3.8

Figure 3.22: Angels for independent inclining sensing

We have used MPU6050 for making orientation. The MPU-6050™ is motion tracking

module that is designed for the low power, low cost, and high-performance requirements

of smartphones, tablets, and wearable sensors.

It is a micro-electromechanical system (MEMS) with 3-axis Gyro/Accelerometer

combined into a single chip is also called six-axis motion tracking. We can adjust the

reading range for both gyroscope and accelerometer which has direct impact to its

accuracy. This chip has built in I2C communication port to communicate for external micro

controller.

For micro controller part, we used ESP32 that is a wireless system on Chip (SOC) module

with 4MB memory and 512KB Ram. This SOC works on battery voltage 2.7Vdc to 3.7

53

Vdc, and it has Bluetooth, WIFI, SPI and I2C communication port with some general-

purpose Input/Output (GPIO) for interacting with other devices. This SoC fits to our

requirement and with combination of ROS-Serial driver we can transfer data wirelessly

between ESP32 and WIFI module on the laptop. Figure 3.23 shows the architecture of the

entire system.

Figure 3.23: Overall architecture for data acquisition

With this MEMS sensor and a fusion algorithm, we can accurately measure pitch and roll

of the inverted pendulum which is enough for our learning algorithm. It is good to mention

that yaw cannot be calculated accurately with this sensor and a magnetometer as an

additional measurement is required.

Registers in the initialization parts to be adjusted to give a proper range of reading.

MPU6050 has 4 ranges for the accelerometer and 4 ranges for the Gyro. The accelerometer

full scale range can be set to
+

−
2𝑔 ,

+

−
4𝑔,

+

−
8𝑔 𝑎𝑛𝑑

+

−
16𝑔. We selected the lowest

range
+

−
2𝑔 for our inverted pendulum application since we would not get even close to this

acceleration, because the inverted pendulum is close to free fall. The sensitivity as per

datasheet is calculated by least significant byte LSB divided by range so in our case for the

range of 2g we get sensitivity of 32750/2g= 16384 LSB /g or 0.0006 m/s2.

54

The gyro range is selected as minimum as well
+

−
250°/s or 41.6 RPM. As per datasheet,

the sensitivity can be calculated by full scale reading value 32750 / 250 = 131 measurement

units per degree per second.[27]

 Table 3.4 shows the sensitivity of acceleration and gravity per different range setting.

Table 3-4: Accelerometer and Gyro sensitivity and range

Angular

Velocity Limit

Sensitivity Acceleration

Limit

Sensitivity

250°/s 131 LSB/°/s 2g 16834 LSB/g

500°/s 65.5 LSB/°/s 4g 8192 LSB/g

1000°/s 32.8 LSB/°/s 8g 4096 LSB/g

2000°/s 16.4 LSB/°/s 16g 2048 LSB/g

The algorithm consists of two parts, first part is the initialization where we initialize

communication and registers as well as measuring the gyro-drift at steady state condition

for 1000 readings. Second part is main loop function of the Gryo & Accelerometer then

combining them together. We use 96% of reading from Gyro and 4% reading from

accelerometer to compensate. Figure 3.24 shows the algorithm in form of blocks:

55

Figure 3.24: Sensor fusion algorithm with Gyro-Accelerometer

The rosserial protocol is a point-to-point ROS communication over a serial transmission

line. This is one of the open-source packages under BSD license that enable

serialization/de-serialization as standard ROS messages, simply adding a packet header

and tail which allows multiple topics to share a common serial link. The number of

Publishers and Subscribers are limited at 25, and the size of serialization and deserialization

buffers are limited at 512 bytes by default for rosserial_client. This limitation is not a

challenge since 4 values of float 32 bits are enough to get values of pitch, roll and their

accelerations.

ROS Serial provides a library ros.h that can be used in C++ programs inside the micro-

controller and enable to call the classes and functions to establish node communications

for diagnostics, publishing and subscribing at speed of 57600 bits/sec.

Figure 3.25 shows the nodes that are made after establishing communication to the

MPU6050 using microcontroller.

http://wiki.ros.org/rosserial
http://wiki.ros.org/rosserial_client

56

Figure 3.25: List of all topics after and output of acceleration node

Pitch and Roll are published in degree unit and acceleration on m/s2. Figure 3.26 shows

acceleration of the aitch as a curve with rqt_multiplot module of ROS platform. The x

axis of the graph is in milliseconds and Y-axis is the acceleration of the Pitch. We have

rotated the device 90 degrees in clockwise and counterclockwise and results shows the

gravity acceleration that is sensed by sensor. There is some noise when device is in flat

position for the pitch and roll acceleration however this amount of noise is neglectable for

learning application since we have, or “reward” function set to give reward when the

inverted pendulum is in -0.25 radian to +0.25 radian.

57

Figure 3.26: Acceleration on X axis (Pitch)

3.5.1 Robot Arm Setup

ROS communicates to many robots if the driver supplied from the robot manufacturer.

There are more than 500 robots are supported and are listed in the ROS Wiki page [28],

these are included Robot arms, humanoid robots, autonomous robots, drones and industrial

robots such as Fanuc, Universal Robot, ABB and so many more.

To connected the program to the universal robot as an example, first the driver for ROS

communication to be found in ROS-Industrial package, it communicates to the Universal

Robot via Ethernet communication port [29]. When communication is established the

58

ROS-Industrial package start communication with a program inside the robot that is called

URScript, which is universal robot own’s Python-Like scripting language. This program

has main duty to handshake with ROS and interpret ROS messages to hardware commands.

ROS driver has a test command to bring the robot to the vertical position and starts with

rosrun ur_driver test.py.

Figure 3.27: Ethernet setting of Universal Robot

59

CHAPTER 4 EXPERIMENTAL RESULTS

4.1 Introduction

In this section we review results for each experimental phase. Table 4-1 shows the detail of

each case study and experiment that carried out on each phase.

Table 4-1: Break down of main case study in 3 phases and expectations

 Phases Experiment on each phase

1 One DoF Inverted Pendulum on

a single cart

1. Comparing results with previous papers

2. Apply turbulence to the model

3. Use the trained model on new inverted

pendulum with different physical properties

2 Three DoF Inverted Pendulum

on 3 chassis

1. Attach inverted pendulum with and without

Ball Joint to Chassis

2. Apply turbulence to the pendulum and

observer learning speed

3 Three DoF Inverted Pendulum

on a 6 DoF Robot arm

1. Use exact same inverted pendulum design

on 6 DoF robot

2. Train the model to balance the pendulum

4.2 Results of one DoF Inverted Pendulum

As per figure 4.1 is the curve of reward vs episode shows after about 400 episodes we

reached to a stable level of control. Each episode means system controlled the pendulum

until it fells (angle reaches more than 0.70 radian +/- 40 degrees) or the cart reaches to the

end of its limit which 2.5 meter on each side.

60

Gazebo simulation automatically calculates a simulation time and real time by considering

all wasted time for sending commands, receiving commends and spent time for

calculations. Based on stops between each episode, that is set manually for initialization

purposes, about 100 rewards is equal 5 seconds of real time. In other word, 1000 rewards

means balancing the inverted pendulum for about a minute.

Figure 4.1: Result of training RL for Single Inverted Pendulum without any

disturbance

This chart is very similar to what is published as result on the first literature review that is

discussed on chapter 2.

To test the robustness of the learnt model we applied forces to the inverted pendulum.

Gazebo simulation environment has feature to manipulate settings or apply forces to the

robot and environment without stopping simulation. As seen in figure 4.2 force direction

and its amount can be adjusted during simulation or at the beginning.

61

We applied forces at the steady state situation first, to see how much force pushes the

pendulum in one direction. The physical parameters of the structure such as weight, length

and friction at the pivot point are in such a way that applying only 50N at steady state

situation causing the pendulum to fall off.

Figure 4.2: Applying 50N force to the pendulum on the tip

We started learning process for longer period and added turbulence randomly while

training. We have started with 10N force applied to the tip of the inverted pendulum and

increased until 50N over time and randomly. Figure 4.3 shows the chart of reward when

force is applied as turbulence in the system. We see that at the beginning the system was

confusing and unable to control the pendulum, a very wavy chart shows system was

unstable but over time learnt to control.

As shown in Figure 4.3 after 400 episodes, we reached more stable control and reward

stopped fluctuating. System starts learning to control while turbulence still applied

randomly. After episode 800, we reached to reward 600 means 30 second keeping the

inverted pendulum in upward position. After that applying 50N forces continuously but

changing it directions, system still achieved good control.

This means we were able to make more robust model by applying forces during training

and showed how initial learnt model was very primitive controller and unstable to any

62

turbulences. The leant model improved itself by being exposed to changes in environment

and started adopts itself.

Figure 4.3 Applying forces randomly to the system and observe behavior

.

The other part of the study of this simple system was to understand how the learned model

can adapt itself with the new physical model.

We trained two models, one that was trained without any turbulences and another with

random turbulences during training. These models have been trained on normal laptop with

Ubuntu OS for about a day. We loaded the models to train a new system with different

physical properties and monitored how they behave new conditions.

63

Running a model is much faster than learning and running at the same time because many

steps are skipped. When loading a trained model, 100 rewards equal about 20 seconds. We

changed the weight of the pole from 1.5kg to 2.5kg and started observing the reward

function. Figure 4.4 shows although trained model had average of 100 reward during 379

episodes, but it was instable. In contrast the robust model that is being trained by adding

random turbulences, was able adopted itself with the new environment much quicker and

after 300 episode reached stable reward of over 100. Figure 4.5 is showing the output data

for this experiment.

Figure 4.4: Reward-Episode chart for the simple trained model

64

Figure 4.5: Reward-Episode chart for the robust trained model

4.3 Results of 3 DoF Inverted Pendulum on Chassis

In no joint experiment there were many challenges, first we had to make two Gazebo

models and load them in sequence, if we place the bar link exactly on the surface of the top

chassis in vertical orientation, it stands there and RL learns quickly that can hold the bar

vertical with minimal changes in chassis positions. In fact, we got great reward, but the

model is extremely poor and not resistance to any turbulences.

As seen in figure 4.6 we achieved over 1000 rewards at the beginning of the training while

there was no turbulence however reward reduced tremendously to less than 100 in presence

of turbulences.

65

Figure 4.6: Reward chart for 3DoF no joint model

The challenge was because of no joint then turbulence was moving the bar link off its

original position and causing falling off and losing control. A cylinder on the flat surface

has more contact area than in angle position. Similar challenges reported in one of the

papers mentioned in the literature review. [18]

The other challenge in no-joint design was the initialization after each failure, since there

was no joint between the chassis and the bar link, and we had two models to load on

sequence. We had to drop the bar-link from few centimeters above the chassis to give a bit

of turbulence at initial stage otherwise RL decides to send actions with zero speed to the

chassis which is failing the entire reinforcement learning approach.

On the other hand, ball joint approach showed a lot promises on learning the 3DoF Inverted

pendulum. As seen in figure 4.7, it took more time for the system to learn how to control

66

in compare single inverted pendulum but was able to achieve better control and more

reliable in compare of no-joint approach. The main reason for taking more time is the

space of the observation and actions. In single inverted pendulum we had only 4 inputs and

2 outputs while in 3 DoF, we have 10 inputs and 27 outputs.

As seen in figure 4.7, after 400 episodes we achieved the reward of over 200 and then

applying turbulence causing system slowly learns and adopts its model to more robust

system. After about 800 episodes, system was able to achieve about 1000 reward points

and applying turbulences did not bring the reward below its original level which was about

200. In addition, applying turbulence in different directions to the tip of the pendulum at

the later stage was helping system to be more resistance and about 1300 episode the model

achieved to learn and control the pendulum without hitting the sides and controlling it

toward center point.

Figure 4.7: 3DoF reward chart with ball joint connection to chassis

67

The friction parameters play an important role when using ball joint. If there is less friction

then moving the base cannot apply force in any direction to inverted pendulum, ball slip in

the bearing base so if inverted pendulum starts falling then there is no way to bring it back

to the vertical position. On the other hand, once friction is set too high then it impacts on

the nature phenomena of free fall, means when moving the chassis then pendulum moves

on that direction.

The system achieves very high reward with too much friction on the joint but not robust at

all. In fact, friction prevents it falls but when pendulum starts falling then there is no way

to prevent it. Highest reward in this case is a fake value and unrealistic.

By changing the friction parameters to different values and keeping the training to learn

for 2 days, we found the best values for mu1 and mu2 are 1.5 for the physical properties

that we defined for this problem. Figure 4.8 shows reward function once we started learning

with friction 0.5, at some point of time it shows it is learning but at the end fails to learn.

Figure 4.8: Training for more 20,000 episodes, but no learning

68

4.4 Results of 3 DoF Inverted Pendulum on Robotic Arm

As expected, learning process is more time consuming for the robotic arm mainly because

of action space which is 729 in compare of previous case. So RL requires more time to

learn the sequence of commands and make a proper approximation function to estimate Q

values.

Figure 4.9 shows the improvement on the reward occurs and RL models started to learn

control after 3000 episodes. Since the robot base is fixed and we have limitations on the

angles for most of the joints, the amount of reward or time to balance the pendulum upward

is not as equal as the previous case study.

Figure 4.9: UR learning to balance inverted pendulum but at much slower rate

69

The number of changes in the angles for each action, play huge role in control and

achieving learning. It was important in other case studies but not as much as in this case

study.

 In previous case studies we had velocity controllers for the robot, and we were changing

speed of movement of the chassis however in the robot arm control we are not changing

the speed of each angle and instead we let trajectory controller moves the robot arm within

the specific time frame to the new position. This time frame is also constant value. We used

different positional steps angle and tried to experiment how it impact the learning. As seen

in figure 4.10, the position step of 0.005 radian and the amount of time 0.005 seconds leads

to getting more reward in same number of episodes.

Figure 4.10: Learning curve positional step is 0.005 radian and time is 0.005sec

70

We have also experimented the learning rate and when we reduced the learning rate of the

DQN algorithm and let robot to learn for longer period, then we could achieve much higher

reward during training. The reason behind that is having a very smaller learning rate leads

to have higher gamma factor in longer period. The gamma factor controls exploration and

exploitation as explained in the chapter 1. Since the observation and space for the neural

network of the DQN is huge in compare the other case studies, have more time for

explorations helps RL to find better policy.

 Figure 4.7 shows learning rate 0.00001 and after episode 14,000 which was about 2 days

training on the laptop. We have reward of above 600 at some point of time. Although we

get very high reward but as seen in figure 4.11 it is not consistent result in compare previous

studies. The reward curve shows there is no overfit and system is still learning if kept for

longer period. It is good to mention that in Deep Mind paper that is published for a DQN

agent that learnt to play Atari games, they used 84 x84 size of image in 4 sequences which

leads to have input space of 28,224. Their DQN algorithms learnt to play Atari games better

than human in more than 50 million training episodes which is not possible under the

normal laptops.[15]

Figure 4.11: Achieving reward of over 600 for balancing inverted pendulum

71

CHAPTER 5 CONCLUSION AND FUTURE

WORKS

In this thesis we have demonstrated that artificial intelligence is able to solve a complex

balancing control problem from scratch, without any feedback loop and using state of the

art deep reinforcement learning algorithm DQN. The benchmark problem that is

considered as case study is balancing an inverted pendulum upward.

In our thesis we had multiple novelties in compare of published papers on similar subjects

and some of them are:

• Six-degree freedom robot arm with ball joint inverted pendulum

• Using state of the art Robot Simulation platform, ROS and Gazebo

• Using Orientation sensor on the tip of the pendulum to get input data for learning

We have shown how different parameters impact the learning process and robustness of a

model. We started from simple case study and slowly switched toward main goal which

was controlling the inverted pendulum using robot arm. Simulation has been completed,

tested and the experimental results showed the effectiveness of DQN algorithm in very

complex problem. We also demonstrated that how applying turbulences during learning

can help to achieve more robust model that can balance the inverted pendulum in more

reliable way.

Once of the key achievement of this thesis was proving that a robust model can adopt itself

with new environment much easier than a model that is being trained without presence of

any turbulences. When physical parameters of a robot changes, a RL model has difficulty

to adopt its model to the new environment so basically it is training the RL from scratch

and nothing transferred from its past learning experience. While a robust model in same

shows that after 300 episodes, it started to achieve a reliable control on the new robot

environment.

72

We have designed and build a sensor for orientation using sensor fusion technique,

successfully connected to the ROS to get the inputs. Guideline for communication between

ROS and real robot provided as well as drawing to make a ball joint that is located in

Appendix D however real robot testing has not being conducted and can be considered as

future work.

 In addition, this thesis can be considered a great source for testing similar problem with

different reinforcement learning algorithms and comparing results in different scenarios.

73

REFERENCES/BIBLIOGRAPHY

[1] O. Boubaker, “The inverted pendulum: A fundamental benchmark in control theory and

robotics,” 2012 Int. Conf. Educ. e-Learning Innov. ICEELI 2012, 2012, doi:

10.1109/ICEELI.2012.6360606.

[2] S. Kajita et al., “Biped walking stabilization based on linear inverted pendulum tracking,”

IEEE/RSJ 2010 Int. Conf. Intell. Robot. Syst. IROS 2010 - Conf. Proc., pp. 4489–4496,

2010, doi: 10.1109/IROS.2010.5651082.

[3] X. B. Jin, T. L. Su, J. L. Kong, Y. T. Bai, B. B. Miao, and C. Dou, State-of-the-art mobile

intelligence: Enabling robots to move like humans by estimating mobility with artificial

intelligence, vol. 8, no. 3. 2018.

[4] L. Huang and K. S. Ma, “Introducing Machine Learning to First-year Undergraduate

Engineering Students Through an Authentic and Active Learning Labware,” Proc. -

Front. Educ. Conf. FIE, vol. 2018-Octob, pp. 2018–2021, 2019, doi:

10.1109/FIE.2018.8659308.

[5] Q. Wang and Z. Zhan, “Reinforcement learning model, algorithms and its application,”

Proc. 2011 Int. Conf. Mechatron. Sci. Electr. Eng. Comput. MEC 2011, no. 1, pp. 1143–

1146, 2011, doi: 10.1109/MEC.2011.6025669.

[6] V. Mnih et al., “Playing Atari with Deep Reinforcement Learning,” pp. 1–9, 2013,

[Online]. Available: http://arxiv.org/abs/1312.5602.

[7] V. Mnih et al., “Human-level control through deep reinforcement learning,” Nature, vol.

518, no. 7540, pp. 529–533, 2015, doi: 10.1038/nature14236.

[8] D. Silver et al., “Mastering the game of Go without human knowledge,” Nature, vol. 550,

no. 7676, pp. 354–359, 2017, doi: 10.1038/nature24270.

[9] F. Jiang, K. Dashtipour, and A. Hussain, “A Survey on Deep Learning for the Routing

Layer of Computer Network,” 2019 UK/China Emerg. Technol. UCET 2019, pp. 14–17,

2019, doi: 10.1109/UCET.2019.8881852.

[10] J. M. O’Kane, A gentle introduction to ROS, no. 2.1.3. 2016.

74

[11] W. E. Howlett, “Gazebo,” Notes Queries, vol. s3-X, no. 253, p. 352, 1866, doi:

10.1093/nq/s3-X.253.352-h.

[12] M. Mittal, “Introduction to Robot Simulation (Gazebo),” 2018.

[13] G. Walck, “Introduction to Robot Modeling in ROS Understanding URDF and XACRO,”

2015.

[14] Wikipedia, “Industrial Robot,” 2020, [Online]. Available:

https://en.wikipedia.org/wiki/Industrial_robot.

[15] A. Topalidou-kyniazopoulou and S. Behnke, “Motion Planning Strategy For a 6-DOFs

Robotic Arm In a Controlled Environment,” no. August, 2017.

[16] W. Linglin, “Single Inverted Pendulum Swing Control,” pp. 1558–1562, 2018.

[17] A. Ghio and O. E. Ramos, “Q-learning-based model-free swing up control of an inverted

pendulum,” Proc. 2019 IEEE 26th Int. Conf. Electron. Electr. Eng. Comput. INTERCON

2019, 2019, doi: 10.1109/INTERCON.2019.8853619.

[18] X. Li, H. Liu, and X. Wang, “Solve the inverted pendulum problem base on DQN

algorithm,” Proc. 31st Chinese Control Decis. Conf. CCDC 2019, no. 2, pp. 5115–5120,

2019, doi: 10.1109/CCDC.2019.8833168.

[19] X. Bin Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-to-Real Transfer of

Robotic Control with Dynamics Randomization,” Proc. - IEEE Int. Conf. Robot. Autom.,

pp. 3803–3810, 2018, doi: 10.1109/ICRA.2018.8460528.

[20] M. A. R. and R. T. (of T. C. Alberto Ezquerro, “openai_ros,” [Online]. Available:

http://wiki.ros.org/openai_ros.

[21] O. D. Engine, “ODE.”

[22] “ROS_Industrial / Universal Robot Package,” [Online]. Available: https://github.com/ros-

industrial/universal_robot.

[23] L. A. Contreras-Rodriguez, R. Munoz-Guerrero, and J. A. Barraza-Madrigal, “Algorithm

for estimating the orientation of an object in 3D space, through the optimal fusion of

gyroscope and accelerometer information,” 2017 14th Int. Conf. Electr. Eng. Comput. Sci.

Autom. Control. CCE 2017, 2017, doi: 10.1109/ICEEE.2017.8108879.

75

[24] N. O-Larnnithipong and A. Barreto, “Gyroscope drift correction algorithm for inertial

measurement unit used in hand motion tracking,” Proc. IEEE Sensors, no. 4, pp. 5–7,

2017, doi: 10.1109/ICSENS.2016.7808525.

[25] L. A. Contreras-Rodriguez, R. Munoz-Guerrero, and J. A. Barraza-Madrigal, “Algorithm

for estimating the orientation of an object in 3D space, through the optimal fusion of

gyroscope and accelerometer information,” 2017 14th Int. Conf. Electr. Eng. Comput. Sci.

Autom. Control. CCE 2017, pp. 1–5, 2017, doi: 10.1109/ICEEE.2017.8108879.

[26] C. J. Fisher, Accelerometer. .

[27] B. Ave, D. Number, and R. Date, “1 of 46,” vol. 1, no. 408, pp. 1–46, 2013, [Online].

Available: www.inversense.com.

[28] ROS, “ROS Supported Robots,” 2020, [Online]. Available: https://robots.ros.org/.

[29] ROS, “ROS & Universal Robot.” http://wiki.ros.org/universal_robot/Tutorials/Getting

Started with a Universal Robot and ROS-Industrial.

76

APPENDICES

Appendix A Single DoF URDF

This is complete of the URDF file for single inverted pendulum, it includes all joints, links,

transmission, and physical properties of the cartpole problem.

<?xml version="1.0" encoding="utf-8" ?>

<robot name="cartpole_v0">

 <gazebo>

 <plugin name="gazebo_ros_control" filename="libgazebo_ros_control.

so">

 <robotNamespace>/cartpole_v0</robotNamespace>

 </plugin>

 </gazebo>

 <!-- * * * Link Definitions * * * -->

 <!-- * * * Define World Link to fix the foot rail to the world * * * -

->

 <link name="world"/>

 <link name="bar_link">

 <visual>

 <origin xyz="0 0 0.4" rpy="0 0 0"/>

 <geometry>

 <box size="0.05 0.05 0.8"/>

 </geometry>

 <material name="green">

 <color rgba="0.9 0.8 0.6 1.0"/>

 </material>

 </visual>

 <collision>

 <origin xyz="0 0 0.4" rpy="0 0 0"/>

 <geometry>

 <box size="0.05 0.05 0.8"/>

 </geometry>

 </collision>

 <inertial>

 <origin xyz="0 0 0.4" rpy="0 0 0"/>

 <mass value="1"/>

77

 <inertia ixx="0.0535416666667" ixy="0.0" ixz="0.0" iyy="0.0535

416666667" iyz="0.0" izz="0.000416666666667"/>

 </inertial>

 </link>

 <gazebo reference="bar_link">

 <kp>1000.0</kp>

 <kd>1000.0</kd>

 <mu1>0.5</mu1>

 <mu2>0.5</mu2>

 <material>Gazebo/Green</material>

 </gazebo>

 <link name="base_link">

 <visual>

 <origin xyz="0 0 0.2" rpy="0 0 0"/>

 <geometry>

 <box size="0.4 0.2 0.2"/>

 </geometry>

 <material name="black">

 <color rgba="0 0 0 1.0"/>

 </material>

 </visual>

 <collision>

 <origin xyz="0 0 0.2" rpy="0 0 0"/>

 <geometry>

 <box size="0.4 0.2 0.2"/>

 </geometry>

 </collision>

 <inertial>

 <origin xyz="0 0 0.2" rpy="0 0 0"/>

 <mass value="2.5"/>

 <inertia ixx="0.0166666666667" ixy="0.0" ixz="0.0" iyy="0.0416

666666667" iyz="0.0" izz="0.0416666666667"/>

 </inertial>

 </link>

 <gazebo reference="base_link">

 <kp>1000.0</kp>

 <kd>1000.0</kd>

 <mu1>0.5</mu1>

 <mu2>0.5</mu2>

 <material>Gazebo/Black</material>

 </gazebo>

 <link name="foot_link">

 <visual>

78

 <origin xyz="0 0 0.05" rpy="0 0 0"/>

 <geometry>

 <box size="6 0.025 0.1"/>

 </geometry>

 <material name="white">

 <color rgba="1 1 1 1.0"/>

 </material>

 </visual>

 <collision>

 <origin xyz="0 0 0.05" rpy="0 0 0"/>

 <geometry>

 <box size="6 0.025 0.1"/>

 </geometry>

 </collision>

 <inertial>

 <origin xyz="0 0 0.05" rpy="0 0 0"/>

 <mass value="5"/>

 <inertia ixx="0.00442708333333" ixy="0.0" ixz="0.0" iyy="15.00

41666667" iyz="0.0" izz="15.0002604167"/>

 </inertial>

 </link>

 <gazebo reference="foot_link">

 <kp>1000.0</kp>

 <kd>1000.0</kd>

 <mu1>0.5</mu1>

 <mu2>0.5</mu2>

 <material>Gazebo/White</material>

 </gazebo>

<!-- * * * Joint Definitions * * * -->

 <joint name="cartpole_joint" type="revolute">

 <parent link="base_link"/>

 <child link="bar_link"/>

 <origin xyz="0 0 0.32" rpy="0 0 0"/>

 <dynamics damping="0.0" friction="0.1"/>

 <limit lower="-1.57" upper="1.57" effort="1" velocity="100"/>

 <axis xyz="0 1 0"/>

 </joint>

 <joint name="foot_joint" type="prismatic">

 <parent link="foot_link"/>

 <child link="base_link"/>

 <limit lower="-

2.0" upper="2.0" effort="2000000" velocity="100000"/>

79

 </joint>

 <joint name="fixed" type="fixed">

 <parent link="world"/>

 <child link="foot_link"/>

 </joint>

<link name="sensor_box">

 <inertial>

 <origin xyz="0 0 0" rpy="0 0 0"/>

 <mass value="0.01" />

 <inertia ixx="0.000001083" ixy="0.0" ixz="0.0" iyy="0.00000108

3" iyz="0.0" izz="0.0000015"/>

 </inertial>

 <collision>

 <origin xyz="0 0 0" rpy="0 0 0"/>

 <geometry>

 <box size="0.1 0.1 0.08"/>

 </geometry>

 </collision>

 <visual>

 <geometry>

 <box size="0.08 0.08 0.05"/>

 </geometry>

 <material name="red">

 <color rgba="1.0 0 0 1.0"/>

 </material>

 </visual>

 </link>

<joint name="sensor_joint" type="fixed">

 <parent link="bar_link"/>

 <child link="sensor_box"/>

 <origin xyz="0 0 0.81" rpy="0 0 0"/>

</joint>

 <gazebo reference="sensor_box">

 <kp>10000000</kp>

 <kd>10000000</kd>

 <mu1>10.0</mu1>

 <mu2>10.0</mu2>

 <material>Gazebo/Red</material>

</gazebo>

 <!-- IMU sensor -->

 <gazebo>

80

 <plugin name="gazebo_ros_imu_controller" filename="libgazebo_ros_i

mu.so">

 <frameName>my-imu</frameName>

 <robotNamespace>/cartpole_v0</robotNamespace>

 <topicName>imu/data</topicName>

 <serviceName>imu/service</serviceName>

 <bodyName>sensor_box</bodyName>

 <gaussianNoise>0</gaussianNoise>

 <rpyOffsets>0 0 0</rpyOffsets>

 <!--<updateRate>50.0</updateRate>-->

 <alwaysOn>true</alwaysOn>

 <gaussianNoise>0</gaussianNoise>

 </plugin>

 </gazebo>

<!-- * * * Transmission Definitions * * * -->

 <transmission name="pole_joint_trans">

 <type>transmission_interface/SimpleTransmission</type>

 <joint name="cartpole_joint">

 <hardwareInterface>hardware_interface/EffortJointInterface</hardwa

reInterface>

 </joint>

 <actuator name="pole_jointMotor">

 <hardwareInterface>hardware_interface/EffortJointInterface</hardwa

reInterface>

 <mechanicalReduction>1</mechanicalReduction>

 </actuator>

 </transmission>

 <transmission name="foot_joint_trans">

 <type>transmission_interface/SimpleTransmission</type>

 <joint name="foot_joint">

 <hardwareInterface>hardware_interface/EffortJointInterface</hardwa

reInterface>

 </joint>

 <actuator name="foot_jointMotor">

 <hardwareInterface>hardware_interface/EffortJointInterface</hardwa

reInterface>

 <mechanicalReduction>1</mechanicalReduction>

 </actuator>

 </transmission>

</robot>

81

Appendix B Single DoF Inverted Pendulum Launch Files

This appendix is copy of all launch files, The main one is responsible to load other launch

files, set the parameters and load controller of the single DoF inverted pendulum

Main Launch File:

<launch>

 <!-- load controller configuration to the ros parameter server -->

 <rosparam file="$(find cartpole_description)/config/cartpole_v0_veloci

ty.yaml" command="load"/>

 <!-- launch the custom world -->

 <include file="$(find gazebo_ros)/launch/empty_world.launch" >

 <arg name="paused" value="True"/>

 <!--arg name="use_sim_time" value="False" /-->

 <arg name="world_name" value="$(find cartpole_description)/worlds/

cart_world.world"/>

 <env name="GAZEBO_MODEL_PATH" value="$(find cartpole_description)/

models:$(optenv GAZEBO_MODEL_PATH)"/>

 </include>

 <!-- spawn the Cartpole_v0 construct -->

 <include file="$(find cartpole_description)/launch/spawn_cartpole_v0.l

aunch"/>

 <node name="robot_state_publisher_cartpole_v0" pkg="robot_state_publishe

r" type="robot_state_publisher"

 respawn="false" output="screen">

 <param name="publish_frequency" type="double" value="5000.0" /

>

 <param name="ignore_timestamp" type="bool" value="true" />

 <param name="tf_prefix" type="string" value="cartpole_v0" />

 <remap from="/joint_states" to="/cartpole_v0/joint_states" />

 </node>

 <node name="controller_spawner" pkg="controller_manager" type="spawner"

respawn="false"

 output="screen" args="--namespace=/cartpole_v0

 joint_state_controller

 pole_joint_velocity_controller

 foot_joint_velocity_controller">

 </node>

 </launch>

82

Spawner Launch file that is responsible to spawn model into the simulation world

<launch>

 <arg name="x" default="0.0" />

 <arg name="y" default="0.0" />

 <arg name="z" default="0.0" />

 <arg name="roll" default="0.0"/>

 <arg name="pitch" default="0.0"/>

 <arg name="yaw" default="0.0"/>

 <!-- load controller configuration to the ros parameter server -->

 <rosparam file="$(find cartpole_description)/config/cartpole_v0_veloci

ty.yaml" command="load"/>

 <!-- spawn the Cartpole_v0 construct -->

 <include file="$(find cartpole_description)/launch/spawn_cartpole_v0.l

aunch">

 <arg name="x" value="$(arg x)" />

 <arg name="y" value="$(arg y)" />

 <arg name="z" value="$(arg z)" />

 <arg name="roll" value="$(arg roll)"/>

 <arg name="pitch" value="$(arg pitch)"/>

 <arg name="yaw" value="$(arg yaw)" />

 </include>

 <node name="robot_state_publisher_cartpole_v0" pkg="robot_state_publishe

r" type="robot_state_publisher"

 respawn="false" output="screen">

 <param name="publish_frequency" type="double" value="5000.0" /

>

 <param name="ignore_timestamp" type="bool" value="true" />

 <param name="tf_prefix" type="string" value="cartpole_v0" />

 <remap from="/joint_states" to="/cartpole_v0/joint_states" />

 </node>

 <node name="controller_spawner" pkg="controller_manager" type="spawner"

respawn="false"

 output="screen" args="--namespace=/cartpole_v0

 joint_state_controller

 pole_joint_velocity_controller

 foot_joint_velocity_controller">

 </node>

</launch>

83

Th Simulation world that is responsible to make the main simulation environment:

<launch>

 <!-- launch the custom world -->

 <include file="$(find gazebo_ros)/launch/empty_world.launch" >

 <arg name="paused" value="True"/>

 <!--arg name="use_sim_time" value="False" /-->

 <arg name="world_name" value="$(find cartpole_description)/worlds/

cart_world.world"/>

 <env name="GAZEBO_MODEL_PATH" value="$(find cartpole_description)/

models:$(optenv GAZEBO_MODEL_PATH)"/>

 </include>

 <arg name="put_robot_in_world" default="false" />

 <arg name="put_robot_in_world_package" default="" />

 <arg name="put_robot_in_world_launch" default="" />

 <arg name="x" default="0.0" />

 <arg name="y" default="0.0" />

 <arg name="z" default="0.0" />

 <arg name="roll" default="0.0"/>

 <arg name="pitch" default="0.0"/>

 <arg name="yaw" default="0.0"/>

 <group if="$(arg put_robot_in_world)">

 <include file="$(eval find(put_robot_in_world_package) + '/launch/

' + put_robot_in_world_launch)">

 <arg name="x" value="$(arg x)" />

 <arg name="y" value="$(arg y)" />

 <arg name="z" value="$(arg z)" />

 <arg name="roll" value="$(arg roll)"/>

 <arg name="pitch" value="$(arg pitch)"/>

 <arg name="yaw" value="$(arg yaw)" />

 </include>

 </group>

</launch>

84

Appendix C CHASSIS URDF

This appendix shows the details of the URDF file for all chassis in the second study

<?xml version="1.0" encoding="utf-8" ?>

<robot name="inv">

 <gazebo>

 <plugin name="gazebo_ros_control" filename="libgazebo_ros_control.

so">

 <robotNamespace>/inv</robotNamespace>

 </plugin>

 </gazebo>

<link name="world"/>

<link name="foot_link">

 <visual>

 <origin xyz="0 0 0.05" rpy="0 0 0"/>

 <geometry>

 <box size="6 6 0.1"/>

 </geometry>

 <material name="white">

 <color rgba="1 1 1 1.0"/>

 </material>

 </visual>

 <collision>

 <origin xyz="0 0 0.05" rpy="0 0 0"/>

 <geometry>

 <box size="6 6 0.1"/>

 </geometry>

 </collision>

 <inertial>

 <origin xyz="0 0 0.05" rpy="0 0 0"/>

 <mass value="5"/>

 <inertia ixx="15" ixy="0.0" ixz="0.0" iyy="15" iyz="0.0" izz="30"/

>

 </inertial>

</link>

<gazebo reference="foot_link">

 <kp>100000.0</kp>

 <kd>100000.0</kd>

85

 <mu1>0.5</mu1>

 <mu2>0.5</mu2>

 <material>Gazebo/Orange</material>

</gazebo>

 <joint name="f" type="fixed">

 <parent link="world"/>

 <child link="foot_link"/>

 <!-- <origin xyz="0 0 0.025" rpy="0 0 0"/> -->

 </joint>

<link name="link_chassis0">

 <visual>

 <origin xyz="0 0 0.05" rpy="0 0 0"/>

 <geometry>

 <box size="0.4 5.5 0.1"/>

 </geometry>

 <material name="black">

 <color rgba="0 0 0 1.0"/>

 </material>

 </visual>

 <collision>

 <origin xyz="0 0 0.05" rpy="0 0 0"/>

 <geometry>

 <box size="0.4 5.5 0.1"/>

 </geometry>

 </collision>

 <inertial>

 <origin xyz="0 0 0.05" rpy="0 0 0"/>

 <mass value="2.5"/>

 <inertia ixx="6.304" ixy="0.0" ixz="0.0" iyy="0.03542" iyz="0.

0" izz="6.335"/>

 </inertial>

</link>

<gazebo reference="link_chassis0">

 <kp>100000.0</kp>

 <kd>100000.0</kd>

 <mu1>0.5</mu1>

 <mu2>0.5</mu2>

 <material>Gazebo/Yellow</material>

 <!-- <material>Gazebo/Orange</material> -->

</gazebo>

86

<joint name="chassis0_prismatic_joint" type="prismatic">

 <parent link="foot_link"/>

 <child link="link_chassis0"/>

 <origin xyz="0 0 0.1" rpy="0 0 0"/>

 <limit effort="200000" velocity="100000" lower="-2.5" upper="2.5"/>

 <axis xyz="1 0 0"/>

</joint>

<link name="link_chassis1">

 <visual>

 <origin xyz="0 0 0.05" rpy="0 0 0"/>

 <geometry>

 <box size="0.4 0.2 0.1"/>

 </geometry>

 <material name="black">

 <color rgba="0 0 0 1.0"/>

 </material>

 </visual>

 <collision>

 <origin xyz="0 0 0.05" rpy="0 0 0"/>

 <geometry>

 <box size="0.4 0.2 0.1"/>

 </geometry>

 </collision>

 <inertial>

 <origin xyz="0 0 0.05" rpy="0 0 0"/>

 <mass value="2.5"/>

 <inertia ixx="0.0166666666667" ixy="0.0" ixz="0.0" iyy="0.0416

666666667" iyz="0.0" izz="0.0416666666667"/>

 </inertial>

</link>

<gazebo reference="link_chassis1">

 <kp>100000.0</kp>

 <kd>100000.0</kd>

 <mu1>0.5</mu1>

 <mu2>0.5</mu2>

 <material>Gazebo/Black</material>

 <!-- <material>Gazebo/Orange</material> -->

</gazebo>

<joint name="chassis1_prismatic_joint" type="prismatic">

87

 <parent link="link_chassis0"/>

 <child link="link_chassis1"/>

 <origin xyz="0 0 0.1" rpy="0 0 0"/>

 <limit effort="200000" velocity="100000" lower="-2.5" upper="2.5"/>

 <axis xyz="0 1 0"/>

</joint>

<link name="link_chassis2">

 <visual>

 <origin xyz="0 0 0.05" rpy="0 0 0"/>

 <geometry>

 <box size="0.4 0.2 0.1"/>

 </geometry>

 <material name="gray">

 <color rgba="0 0 0 1.0"/>

 </material>

 </visual>

 <collision>

 <origin xyz="0 0 0.05" rpy="0 0 0"/>

 <geometry>

 <box size="0.4 0.2 0.1"/>

 </geometry>

 </collision>

 <inertial>

 <origin xyz="0 0 0.05" rpy="0 0 0"/>

 <mass value="2.5"/>

 <inertia ixx="0.0166666666667" ixy="0.0" ixz="0.0" iyy="0.0416

666666667" iyz="0.0" izz="0.0416666666667"/>

 </inertial>

</link>

<gazebo reference="link_chassis2">

 <kp>100000.0</kp>

 <kd>100000.0</kd>

 <mu1>0.5</mu1>

 <mu2>0.5</mu2>

 <material>Gazebo/Gray</material>

 <!-- <material>Gazebo/Orange</material> -->

</gazebo>

<joint name="chassis2_continuous_joint" type="continuous">

 <parent link="link_chassis1"/>

 <child link="link_chassis2"/>

 <origin xyz="0 0 0.1" rpy="0 0 0"/>

88

 <axis xyz="0 0 1"/>

</joint>

<link name="base_bearing">

 <contact>

 <rolling_friction value="0.005"/>

 <spinning_friction value="0.005"/>

 </contact>

 <inertial>

 <origin rpy="0 0 0" xyz="0 0 0"/>

 <mass value="0.17"/>

 <inertia ixx="0.0000491866666667" ixy="0" ixz="0" iyy="0.0000491866666

667" iyz="0" izz="0.00008704"/>

 </inertial>

 <visual>

 <origin rpy="0 0 0" xyz="0 0 0"/>

 <geometry>

 <mesh filename="package://cart_inv_pendulum/meshes/inverted_pendul

um/base.dae" scale="1 1 1"/>

 </geometry>

 <material name="green">

 <color rgba="0 1 0 1"/>

 </material>

 </visual>

 <collision>

 <origin rpy="0 0 0" xyz="0 0 0"/>

 <geometry>

 <mesh filename="package://cart_inv_pendulum/meshes/inverted_pendul

um/base.dae" scale="1 1 1"/>

 </geometry>

 </collision>

</link>

<gazebo reference="base_bearing">

 <kp>1000000.0</kp>

 <kd>1000000.0</kd>

 <mu1>0.5</mu1>

 <mu2>0.5</mu2>

 <material>Gazebo/Blue</material>

</gazebo>

<joint name="base_chassis_joint" type="fixed">

 <parent link="link_chassis2" />

89

 <child link = "base_bearing" />

 <origin rpy="0 0 0" xyz="0.0 0 0.105" />

</joint>

<link name="ball">

 <contact>

 <rolling_friction value="0.005"/>

 <spinning_friction value="0.005"/>

 </contact>

 <inertial>

 <origin rpy="0 0 0" xyz="0 0 0"/>

 <mass value="0.17"/>

 <inertia ixx="0.00005883" ixy="0" ixz="0" iyy="0.00005883" iyz="0" izz

="0.00001224"/>

 </inertial>

 <visual>

 <origin rpy="0 0 0" xyz="0 0 0"/>

 <geometry>

 <mesh filename="package://cart_inv_pendulum/meshes/inverted_pendul

um/ball3.dae" scale="1 1 1"/>

 </geometry>

 <material name="red">

 <color rgba="1 0 0 1"/>

 </material>

 </visual>

 <collision>

 <origin rpy="0 0 0" xyz="0 0 0"/>

 <geometry>

 <mesh filename="package://cart_inv_pendulum/meshes/inverted_pendul

um/ball3.dae" scale="1 1 1"/>

 </geometry>

 </collision>

</link>

<gazebo reference="ball">

 <kp>10000000</kp>

 <kd>10000000</kd>

 <mu1>0.5</mu1>

 <mu2>0.5</mu2>

 <material>Gazebo/Green</material>

</gazebo>

<joint name="base_bearing_ball" type="revolute">

90

 <parent link="base_bearing"/>

 <child link="ball"/>

 <origin xyz="0.0023 0 -0.0005" rpy="0 0 0"/>

 <dynamics damping="0.0" friction="0.1"/>

 <limit lower="-1.46" upper="1.46" effort="1" velocity="100"/>

 <axis xyz="1 1 1"/>

</joint>

<link name="pole">

 <contact>

 <rolling_friction value="0.005"/>

 <spinning_friction value="0.005"/>

 </contact>

 <inertial>

 <origin rpy="0 0 0" xyz="0 0 0"/>

 <mass value="2.5"/>

 <inertia ixx="0.0833639583333333" ixy="0" ixz="0" iyy="0.0833639583333

333" iyz="0" izz="0.00006125"/>

 </inertial>

 <visual>

 <origin rpy="0 0 1.57" xyz="0 0 0.015"/>

 <geometry>

 <cylinder radius="0.007" length="0.4"/>

 </geometry>

 <material name="green">

 <color rgba="0 1 0 1"/>

 </material>

 </visual>

 <collision>

 <origin rpy="0 0 1.57" xyz="0 0 0.015"/>

 <geometry>

 <cylinder radius="0.007" length="0.4"/>

 </geometry>

 </collision>

</link>

<gazebo reference="pole">

 <kp>1000</kp>

 <kd>1000</kd>

 <mu1>0.5</mu1>

 <mu2>0.5</mu2>

 <material>Gazebo/Green</material>

</gazebo>

<joint name="ball_pole" type="fixed">

 <parent link="ball"/>

91

 <child link="pole"/>

 <origin xyz="0 0 0.217" rpy="0 0 0"/>

</joint>

 <link name="sensor_box">

 <inertial>

 <origin xyz="0 0 0" rpy="0 0 0"/>

 <mass value="0.01" />

 <inertia ixx="0.000001083" ixy="0.0" ixz="0.0" iyy="0.00000108

3" iyz="0.0" izz="0.0000015"/>

 </inertial>

 <collision>

 <origin xyz="0 0 0" rpy="0 0 0"/>

 <geometry>

 <box size="0.03 0.03 0.02"/>

 </geometry>

 </collision>

 <visual>

 <geometry>

 <box size="0.05 0.03 0.02"/>

 </geometry>

 <material name="red">

 <color rgba="1.0 0 0 1.0"/>

 </material>

 </visual>

 </link>

<gazebo reference="sensor_box">

 <kp>10000000</kp>

 <kd>10000000</kd>

 <mu1>0.5</mu1>

 <mu2>0.5</mu2>

 <material>Gazebo/Red</material>

</gazebo>

<joint name="sensor_joint" type="fixed">

 <parent link="pole"/>

 <child link="sensor_box"/>

 <origin xyz="0 0 0.21" rpy="0 0 0"/>

</joint>

 <!-- IMU sensor -->

 <gazebo>

92

 <plugin name="gazebo_ros_imu_controller" filename="libgazebo_ros_i

mu.so">

 <robotNamespace>/mpu6050</robotNamespace>

 <topicName>imu/data</topicName>

 <serviceName>imu/service</serviceName>

 <bodyName>sensor_box</bodyName>

 <gaussianNoise>0</gaussianNoise>

 <rpyOffsets>0 0 0</rpyOffsets>

 <!--<updateRate>50.0</updateRate>-->

 <alwaysOn>true</alwaysOn>

 <gaussianNoise>0</gaussianNoise>

 </plugin>

 </gazebo>

 <transmission name="pole_joint_trans">

 <type>transmission_interface/SimpleTransmission</type>

 <joint name="base_bearing_ball">

 <hardwareInterface>hardware_interface/EffortJointInterface</hardwa

reInterface>

 </joint>

 <actuator name="pole_jointMotor">

 <hardwareInterface>hardware_interface/EffortJointInterface</hardwa

reInterface>

 <mechanicalReduction>1</mechanicalReduction>

 </actuator>

 </transmission>

<transmission name="chassis0_prismatic_trans">

 <type>transmission_interface/SimpleTransmission</type>

 <joint name="chassis0_prismatic_joint">

 <hardwareInterface>hardware_interface/EffortJointInterface</ha

rdwareInterface>

 </joint>

 <actuator name="motor0">

 <hardwareInterface>hardware_interface/EffortJointInterface</ha

rdwareInterface>

 <mechanicalReduction>1</mechanicalReduction>

 </actuator>

 </transmission>

 <transmission name="chassis1_prismatic_trans">

 <type>transmission_interface/SimpleTransmission</type>

93

 <joint name="chassis1_prismatic_joint">

 <hardwareInterface>hardware_interface/EffortJointInterface</ha

rdwareInterface>

 </joint>

 <actuator name="motor2">

 <hardwareInterface>hardware_interface/EffortJointInterface</ha

rdwareInterface>

 <mechanicalReduction>1</mechanicalReduction>

 </actuator>

 </transmission>

 <transmission name="chassis2_continuous_trans">

 <type>transmission_interface/SimpleTransmission</type>

 <joint name="chassis2_continuous_joint">

 <hardwareInterface>hardware_interface/EffortJointInterface</ha

rdwareInterface>

 </joint>

 <actuator name="motor3">

 <hardwareInterface>hardware_interface/EffortJointInterface</ha

rdwareInterface>

 <mechanicalReduction>1</mechanicalReduction>

 </actuator>

 </transmission>

</robot>

94

Appendix D Technical Drawing of ball joint

This appendix shows the details of the URDF file for all chassis in the second study

95

96

97

VITA AUCTORIS

NAME: Seyed Navid Mellatshahi

PLACE OF BIRTH:

Lahijan, IR

YEAR OF BIRTH:

1981

EDUCATION:

Roodaki High School, Lahijan, IR, 1998

University of Shiraz, B.Sc., Shiraz, IR, 2004

University of Windsor, M.Sc., Windsor, ON, 2020

	Learning Control of Robotic Arm Using Deep Q-Neural Network
	Recommended Citation

	tmp.1615407122.pdf.ynxMO

