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ABSTRACT 

 

Enabling robotic systems for autonomous actions such as driverless systems, 

is a very complex task in real-world scenarios due to uncertainties. Machine learning 

capabilities have been quickly making their way into autonomous systems and 

industrial robotics technology. They found many applications in every sector, 

including autonomous vehicles, humanoid robots, drones and many more. 

 

In this research we will be implementing artificial intelligence in robotic arm to be 

able to solve a complex balancing control problem from scratch, without any 

feedback loop and using state of the art deep reinforcement learning algorithm 

named DQN.  

The benchmark problem that is considered as case study, is balancing an inverted 

pendulum upward using a six-degrees freedom robot arm. Very simple form of this 

problem has been solved recently using machine learning however under this thesis 

we made a very complex system of inverted pendulum and implemented in Robot 

Operating System (ROS) which is very realistic simulation environment.  

We have not only succeeded to control the pendulum but also added turbulences on 

the learned model to study its robustness. We observed how the initial learned model 

is unstable at the presence of turbulence and how random turbulences helps the 

system to transform to a more robust model. We have also used the robust model in 

different environment and showed how the model adopt itself with the new physical 

properties.  

Using orientation sensor on the tip of the inverted pendulum to get angular velocity, 

simulation in ROS and having inverted pendulum on ball joint are few highlighted 

novelties in this thesis in compare previous publications.  
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CHAPTER 1  INTRODUCTION 

1.1 Problem Definition 

 

The Inverted pendulum control is a benchmark control problem that is used by researchers 

to test the new control strategies over past 50 years. It has a simple structure but wealthy 

model to test control strategies. Solving this type of problem with machine learning is a 

promising approach because it does not require dynamic model of system but instead the 

machine learning algorithm can generate autonomous actions based on the experience. 

The purposed case study in this thesis is balancing an inverted pendulum on a ball joint 

using a robotic arm and machine learning technique instead of normal control loop such as 

PID. The inverted pendulum can freely fall in any direction because it is connected to the 

end-effector using a ball joint. The robotic arm that has been chosen for this case study has 

6 degrees of freedom. We use an Inertial Measurement Unit (IMU) for obtaining angular 

velocity and orientation of the pendulum to use these data in the learning algorithm.  

 

Figure 1.1: 3DoF Inverted Pendulum on Robotic Arm 
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1.2 Applications 

 

The Inverted pendulum control is a benchmark control problem that is used by researchers 

to test the new control strategies over past 50 years. It has a simple structure but wealthy 

model to test control strategies. There are many robotic applications also based on the 

inverted pendulum in term of their stabilization principle. [1] For example: 

• Control of under-actuated robotic systems  

• Design of mobile inverted pendulums 

• Gait planning of humanoid robots 

The control of humanoid robots is challenging task due to having dynamic constrains and 

uncertainty. Gait pattern generation is key problem and in order to simplify the trajectory 

generation many studies use analogy between bipedal gait and the inverted pendulum 

motion[1]. 

Design and implementation of mobile wheeled pendulum emerged in commercial products 

too, Segway and self-balancing scooter are two examples of the commercial products that 

uses the inverted pendulum controller approach.[1] 

 

Figure 1.2: Commercial products using Inverted Pendulum controlling techniques 

Shuujit Kajita and his team developed a novel framework for biped stabilization control 

for humanoid robot with 42 degree of freedom using a simple linear inverted pendulum 

dynamic for walking stabilization[2]. 
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Figure 1.3: Humanoid Robot 42 DoF Walking on a Pavement[2] 

 

Solving these types of problems with machine learning is a promising approach because it 

does not require dynamic model of system but instead the machine learning algorithm can 

generate autonomous actions based on the experience. It not only helps robot to make 

decision on unseen situations but also the learned model can be used on the robots with 

different physical properties.  

 

1.3 Overall Challenges 

 

Enabling robotic systems to do tasks autonomously is a very complex task in real-world 

scenarios because of uncertainty. Uncertainties cannot be programmed by IF & THEN, so 

sort of general artificial intelligence requires for these systems to enable them to make 

human like decisions 
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Although this combination enables robots to act in a situations where constrains are 

dynamic[3] but there are many challenges, some of the major challenges to train and build 

an autonomous model is: 

• Data for specific task 

• Computation time required for learning 

• Robustness of a model 

• Safety during learning process 

When a machine learning algorithm runs on simulation environment, it is runs at high speed 

and few days or months may reach to a desired level of learning, however one of the main 

challenges is once the learnt model transferred to a real robot does it provide the same 

results. The Sim to Real transfer id big challenge and researchers are working on solutions 

to overcome the challenges some of them are listed in table 1.1 

 

Table 1-1: Possible solutions to overcome common challenges 

Solution/ 

Challenges 

Data Time Safety Robustness Comments 

Fast learning 

algorithms 

    
 

Robot Farm     
 

Realistic 

simulation 
    

It is highly depending on robot, 

task, and nature of problem 

Hybrid Training 

Method 

    
Digital Twin (Sim to Real & Real 

to Sim) 

Reinforcement 

Learning 
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1.4 Methodology 

 

Our approach to solve the proposed problem is using state of the art reinforcement learning 

algorithm in Robot Operating System (ROS) environment.  

We will be using reinforcement learning (RL) to overcome challenge of data gathering, 

because reinforcement learning does not need any data for solving a problem instead it 

learns by reward and punishment technique.  There are many reinforcement learning 

algorithms, but we will be using Deep Quality Network (DQN) which is recently attract 

many applications and emerged in recent research for variety type of application where 

human type of decision is needed. 

We will be using ROS in combination with Gazebo simulation which is highly realistic 

environment and highly used in commercial and research problems. Using the realistic 

environment helps on computation time and overcome challenge of safety. Safety is a key 

problem in reinforcement learning because agent or robot does not have any understanding 

of its environment at the beginning and needs to explore and find right action in right 

situation over time. So, it may break or do very unsafe actions during learning process.  

We will also make the learning model very robust by applying forces randomly during 

training process. So, the robust model can be used in real robot and adopt itself with the 

new dynamic model. Our proposed solution overcome all challenges that mentioned in the 

table 1.1 for this specific problem. 

We will be using a sensor on the top of the inverted pendulum to sense the angular velocity 

and orientation of the inverted pendulum, these data used as input to the learning algorithm. 

We use sensor fusion technique to make this sensor and it is explained in detail on hardware 

configuration in chapter 3. Since majority of recent publications are single degree freedom 

inverted pendulum, to better analyzing and proper apple to apple comparison with their 

results, we have broken down the complex problem into 3 phases, from simple system 

which is one degree freedom inverted pendulum to more complex system, which is 3 DoF 

inverted pendulum on a 6 degrees robot arm.  
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1.5 Novelties 

 

Multiple novelties are introduced in this thesis that makes it unique and wealthier among 

the others that are published on the same topic: 

• We made an orientation sensor using sensor fusion technique and placed it on top 

of the pendulum to measure angular velocity, pitch, and roll. This approach has not 

been done in earlier papers so far and they measured the angle of pole from the 

pivot point as input to learning program. Their approach is not practical for two 

reasons; firstly, the speed on top of the pendulum changes faster than the button 

and secondly measuring angle from the joint itself is not practical because it cannot 

be easily implemented in hardware. In our proposed solution, the base bearing, ball 

joint and inverted pendulum is block that can be placed on any robot or hardware 

for experimental trial. We used sensor fusion technique that is explained in chapter 

3 section 4. 

• We used ROS and GAZEBO simulation environment which is very popular for 

robot simulation applications and very realistic. This platform allows smooth 

transfer from simulation to real robot without changing any major changes in the 

program. In addition, the learnt model would be very close to the reality since the 

simulation environment is one of the top robotic simulation in the world with well-

known kinematic engine. 

• we use inverted pendulum on a ball joint attached to the end-effector of robot arm 

with 6DoF, this complex system has not been published in any paper before to the 

best of our knowledge in the time of writing this thesis. 

 

1.6 Structure 

 

The structure of the thesis is in a sequence.  First, in state-of-the-art chapter we discuss 

about reinforcement learning, simulation environment, robotic arm details and at the end 

close it by reviewing latest literatures in that topic.  
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In Chapter 3 we will discuss details of all 3 phases of proposed methodology for the single, 

3 DoF and robotic arm inverted pendulum and finally in Chapter 4 we will review results 

of all 3 phases. Figure 1.4 shows the structure of this thesis from beginning to the end. 

 

 

 

 

 

 

 

 

 

1.7 Conclusion 

 

In this chapter we provided an overview of the thesis and its structure, proposed 

methodology and solution methods to solve the problem of inverted pendulum with 

machine learning. In next chapter we will discuss in detail about state of the art that are 

used in this thesis. 

 

 

 

CH1- 

Introduction 

CH2- State of the Art 

CH3- Proposed 

Methods 

CH4- Results 

CH5- 

Conclusion 

Figure 1.4: Overall structure of the thesis 
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CHAPTER 2  STATE OF THE ART 

 

2.1 Introduction 

 

In this chapter we will review discuss about reinforcement learning algorithm, robot 

operating system and its simulation environment, robot arm that is used for our case 

study and will do literature review at the end.  

 

2.2 Machine Learning 

 

Machine Learning (ML) has attracted more attention nowadays and found many 

applications in every sector of industry, from big data pattern recognition to automation 

and entertainment. It plays an important role in medical field such as heart, liver, and cancer 

early detection systems. ML has opened a way to finance and businesses too and enabling 

better data-driven approaches, from stock prediction to finance. Machine learning 

algorithms are getting improved and developed, new methods and algorithms are emerging 

every day.  

ML technology is enabling a paradigm shift in problem-solving from analytical to powerful 

data-driven approach. High speed processing units, availability of big data and labeled data, 

enables computer programs learn models from training data and predict results from new 

data.[4] 

Main categories of machine learning are: 

• Supervised learning 

• Unsupervised learning  

• Reinforced learning 
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In supervised learning, with help of labeled data we look for an approximation function 

that can represent data at the end of training process. Supervised learning has many 

applications however for our case study we are not using this method since it is requiring 

data and secondly for the balancing pendulum billions of data point might needed. There 

are many algorithms for supervised learning such as Naive Bayes, Decision Trees, Linear 

Regression, Support Vector Machines (SVM), Neural Networks and many more. 

Unsupervised learning method is mainly used for pattern recognition and deceptive 

modeling, basically we have data, but they are not labeled and learning algorithm try to 

find patterns and relation between data. Again, this category of machine learning is not 

proposed on this case study since we do not have data for balancing and inverted pendulum 

either labeled or unlabeled. 

Reinforcement learning algorithm is the one we are proposing to use in this case study 

because it does not require any data and it enables robot learns task by its own without any 

supervision. Reinforcement leaning used reward technique to learn a task. 

 

2.2.1 Reinforcement Learning Algorithm 

 

Reinforcement Learning (RL) is a class of machine learning (ML) models where the 

learning process is based on evaluative feedbacks without any supervised signals. 

 

 

 

 

 

 

Figure 2.1: Overview of Reinforcement Learning Algorithm 
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RL comes from the mammal learning theory. it does not require any prior knowledge and 

in fact it can autonomously get optional policy with the knowledge obtained by trial-and-

error and continuously interacting with dynamic environment. [5] 

As seen in Figure 2.1, Agent chooses action based on each data point and later learns how 

good decision was. Over time, the algorithm changes its strategy to achieve the best reward. 

The mathematical framework for defining a solution in reinforcement learning scenario is 

called Markov Decision Process. This can be designed as: 

• Set of states, S 

• Set of actions, A 

• Reward function, R 

• Policy, π 

• Value, V 

Agent takes an action (A) to transition from the start state to the end state (S) and in 

return, gets reward (R) for each action. actions can lead to a positive reward or negative 

reward. The set of actions that agent takes, define the policy (π) and the rewards it get in 

return, defines value (V). [5] 

The task here is to maximize rewards by choosing the correct policy. So, we must maximize 

for all possible values of S for a time t that can be seen in equation 2.1, where π is policy, 

r is reward and s is state and E is a function that needs to be maximized: 

𝐸(𝑟𝑡 | 𝜋. 𝑠𝑡)  Equation 2.1 

The objective in reinforcement learning algorithm is to find optimum policy to achieve the 

goal, however the challenge is how to maximize the summation of reward, so exploration 

and exploration is dilemma for the RL system. Let assume the RL agent did an action and 

got 100 rewards in the state space, but the main question is if it is it the best that hope for. 

In fact, exploitation is about the agent stick to what understood from the environment so 

far and accept that is good policy, but the risk is missing other opportunities out of the 

learnt policy that may lead to get more reward. On the other hand, exploration is about the 
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agent look for exploring environment and hoping to hunt more rewards but of course the 

risk is wasting time and getting negative feedback.   

Many algorithms have been developed for reinforcement learning but most of them use 

Epsilon Greedy strategy to balance between exploitation and exploration. The gamma 

factor that is a number between 0 and 1 helps agent to discover its environment at the 

beginning but over the time when learning is progressing it reduces the exploration 

probability and move more toward exploitation. 

Reinforcement learning systems have many applications such as self-driving cars, 

humanoid robots, game playing, automatic trading etc. and popular algorithms are Q-

Learning, SARRA, DQN, A3C and Genetic Algorithm.  

 

2.2.2 Q Learning  

 

Q-learning is off-policy and model-free reinforcement learning algorithm. off-policy 

methods evaluate or improve a policy different from that used to generate the data, in 

contrast On-policy methods attempt to evaluate or improve the policy that is used to make 

decisions. In model free type algorithms RL make no assumption of the dynamic model of 

the environment.  

The 'q' in Q-Learning stands for quality. Quality in this case represents how useful a given 

action is in gaining some future reward. In Q-Learning we make a Q-table that represents 

quality value of each action and each state. To briefly explain how Q-learning works, let 

assume a robot must cross a maze and reach end point but there are several mines and 

power up points in the area. Figure 2.2 represent the problem. 
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Figure 2.2: Robot in Maze - Q-Learning 

The Q-table consists of four actions in 4 columns and 5 states in 5 rows. In this example. 

This table is first initialized with zero values but then using a Bellman Equation (2.2) will 

get updated each time robots do an action.[6] 

𝑉(𝑠) = 𝑚𝑎𝑥( 𝑅((𝑠, 𝑎) + 𝛾𝑉 (𝑠′)  Equation 2.2 

 

• s = a particular state  

• a = action  

• s′ = state to which the robot goes from s 

• 𝛾 = discount factor (we will get to it in a moment) 

• 𝑅((𝑠, 𝑎) = a reward function which takes a state s and action a and outputs a 

reward value 

• 𝑉(𝑠)= value of being in a particular state (the footprint) 

The Bellman Equation in simple form says the current value of Q is related mostly to 

immediate reward plus a portion of future reward.  Overall algorithm for Q-learning can 

be seen in figure 2.3 
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Figure 2.3: Q-Learning Overall Algorithm 

 

As we saw in above example, in Q-learning, we build a memory table Q[s, a] to store Q-

values for all possible combinations of states and actions. Memory requirement for Q-

Learning is an array of states times actions. If the combinations of states and actions are 

too large, then memory and the computation requirement for Q will be extremely high or 

impossible. This constrain impose a problem for large scale situations, for example in chess 

the state space is about 10120, which make Q-Learning algorithm useless. This main 

problem leads us toward selecting a better learning algorithm suited our case for controlling 

an inverted pendulum.  

 Instead of storing all Q values in a table what if we approximate it on each state. This is 

leveraging Neural Network in Q-Learning that is explained in next section.  

 

2.2.3 Deep Q Learning 

 

After DeepMind’s paper published on 2015 “Human-level control through deep 

reinforcement learning” [7] , google company acquired DeepMind and few years later 
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Alpha Go has been released. This Deep RL algorithm mastered the game of GO without 

human knowledge and from scratch just by knowing the rules of game and playing against 

itself for 4 days. This version of Alpha Go managed to win 10 to zero against world Go 

champion. Go is abstract strategy board game for two players with number of legal board 

position of approximately 2 x 10 170. Few years after a new AlphaGo Zero emerged with 

newly developed Deep RL algorithm and achieved superhuman performance, winning 

100–0 against the previously published champion-defeating AlphaGo.[8] 

Combination of neural network with reinforcement learning opened new horizon for 

autonomous robots and recently topic of many researchers around the world. Just in IEEE 

from 2018, 390 papers are published that used this algorithm on various applications 

include robotics, autonomous vehicles, game play and all sort of control where human type 

of decision making is needed, or uncertainty are involved. DQN shows a great success in 

this type of control and that is main reason we have chosen this RL algorithm among the 

others too.  

Figure 2.4 shows the difference between Q learning and Deep Q Learning in a simple 

problem, in fact instead of having a table for all states and actions we estimate Q values for 

each action with Neural Network and approximate the Q values. With this approach we 

minimize the amount of memory requirement. However, this approach imposes some other 

problems as well. 
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Figure 2.4: Q-Learning Vs Deep Q Learning 

 

In reinforcement learning, both the input and the target change constantly during the 

process and make training unstable.[9] In contrast in the supervised learning, samples are 

randomized among batches and each batch has similar data distribution, also samples are 

independent. If these conditions are not fulfilled during training of neural network, then we 

may end up over fitting the network. We build a deep network to learn the values of Q but 

its target values are changing, basically the target values for Q depends on Q itself, so we 

are chasing a moving target. 

The solution for DQN is using experienced replied memory. For instance, we put the last 

50,000 transitions into a buffer and sample a mini batch of samples from this buffer to train 

the deep network. This forms an input dataset which is stable enough for training. As we 

randomly sample from the replay buffer, the data is more independent of each other. 
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As part of this thesis, we are not going to program DQN from scratch but instead we focus 

on implementation of this algorithm on a Robot Arm and experience the results on a more 

complex environment. For that reason, we will be using OpenAI baseline DQN algorithm.  

OpenAI is an AI research and deployment company that is governed by the board of 

OpenAI Nonprofit with Microsoft as investor. Their mission is to ensure that artificial 

general intelligence (AGI)—by which we mean highly autonomous systems that 

outperform humans at most economically valuable work. One of their main products is 

High-quality implementations of reinforcement learning algorithms that are widely used 

by many researchers around the world. 

 

2.3 Simulation Environment 

 

There are many robotic simulation platforms that enables offline programming using the 

model of robots. However, among all there are only few that are very popular among 

researchers.  Robot Operating System (ROS) in combination with Gazebo Robot 

Simulation is the top among all for about 10 years. ROS is a middleware software that 

connect high level programming to low level hardware extremely fast and in a very 

reliable way using subscription and publishing method.  

 

2.3.1 Robot Operating System (ROS) 

 

Robot Operating System (ROS) started late 2000s at Stanford university, widely becoming 

a common, standard tool among robotics researchers and industry, since its initial release 

in 2010. ROS is a tool for offline robot programming and provide great packages and 

support for artificial intelligence programming as well. Some of the highlighted features of 

ROS are [10]: 

• Open source, big community, and continuous support  
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• Fast subscribing / publishing techniques 

• Code reuse in robotics research and development 

• Ready-to-use development environment with Comprehensive tools and client API 

libraries (MATLAB, C++, Python, Lisp, Java, …) 

• Scalable (distributed network of processes) 

• ROS enables connect ML algorithms to the actual robot or in simulated 

environment 

Over the past 10 years, ROS has become the industry’s most popular robot software 

development framework. According to ABI Research, by 2024 roughly 55% of the world’s 

robots will include a ROS package. ROS supports many libraries some of the major ones 

are: 

• OpenCV: computer vision 

• Gazebo: Robot Simulator 

• KDL: Kinematics and Dynamics 

• TREX: High Level Planning 

A ROS distribution is a versioned set of ROS packages and dependent to Linux 

distributions (e.g. Ubuntu). The purpose of the ROS distributions is to let developers work 

against a relatively stable codebase until they are ready to roll everything forward [10] 

ROS starts with the ROS Master; the ROS Master allows all other ROS pieces of software 

(Nodes) to find and talk to each other. We can tell Node 1 to send messages to Node 2 or 

node 3 subscribe to Node 1 directly. Figure 2.5 shows how subscription and publishing 

message works in ROS environment. The camera node publishes messages then image 

processing node subscribe to image processing node and image display node on another 

laptop but at the same network can register to the same channel and listen to image data. 
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Figure 2.5: Overview of ROS messaging system 

 

2.3.2 Gazebo Simulator / URDF File Structure 

 

Gazebo is an open-source robotics simulation software and part of ROS software because 

it is being acquired by same company in 2011. Gazebo can use multiple high-performance 

physics engines, such as ODE (default), Bullet, etc. It provides realistic rendering of 

environments including high-quality lighting, shadows, and textures. It can model sensors 

that "see" the simulated environment, such as laser range finders, cameras (including wide-

angle), Kinect style sensors, etc. 

Gazebo highly used in research and industry and won many challenges and competition in 

world including NASA, Toyota Pirus, DARPA, Sub T, VRX etc.[11], [12]  

Modeling for gazebo to be done using XML or Xacro which is macro language for XML 

format. In addition, for more sophisticated simulation we can export design directly from 

SolidWorks. This file is in specific format and called Unified Robotic Description Format 

(URDF).  URDF is a file that describes the robot kinematic and basic physics, it has tree 

https://en.wikipedia.org/wiki/Open-source
https://en.wikipedia.org/wiki/Robotics_simulator
https://en.wikipedia.org/wiki/Open_Dynamics_Engine
https://en.wikipedia.org/wiki/Bullet_(software)
https://en.wikipedia.org/wiki/Laser_range_finder
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structure, but order does not matter. We can define Links, joints, transmissions, collision, 

visual etc.  An example of URDF shown below for a joint that has one child. [13] 

 

 

Figure 2.6: A Simple Joint and XML Code of URDF 

 

2.4 Robotic Arm 

 

Industrial robots are automated, programmable, and capable of movement on three or 

more axes. There are at least six type of industrial robots: 

• Articulated Robots 

• Cartesian Coordinate Robots 

• Cylindrical Coordinate Robots 

• Spherical Coordinate Robots 

• SCARA Robots 

• Delta or Parallel Robots 



 

20 
 

Articulated robots are the most common industrial robots. They are very similar to human 

arm and usually they have several degrees of freedom. Their articulations with 

many degrees of freedom allow the articulated arms a wide range of movements [14]. 

In practical industrial applications, there are two main categories of robotic programming 

methods: 

• Online programming 

• Offline programming 

In online programming, the handheld programmer or joystick that is called teach pendant 

in industrial robot is used to manually move the end-effector to the desired position and 

orientation at each stage of the robot task, then robot controller save an calculate relevant 

frames, coordination and configurations for each step and then can repeat it at its maximum 

speed and accuracy step by step. 

Offline programming method, which is based on the 3D model of the complete robot work 

cell and is becoming more popular. This type of programming highly related to the 

simulation model that is usually provided by manufacturer or third party has its strength on 

programming complex systems.  

The robot arm that is used in this thesis is called Universal Robot which is one of the top 

manufacturers in making collaborative robot. University of Windsor recently made an 

automation lab with some of these robots. This robot has 6 joints and comes at 3 different 

payloads, 3kg, 5kg and 10 kg. Figure 2.7 shows all six joints of this robot 

 

https://en.wikipedia.org/wiki/Degrees_of_freedom_(mechanics)
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Figure 2.7: 6DoF Robot Arm and its joints [15] 

 

According to the specification of this robot, all 6 joints can move 360 degrees with speed of 

180°/sec. the repeatability of this robot is +/- 0.1 mm and apart from hardware Input/Output 

ports, it has TCP/IP 100 Mbit IEEE 802.3u protocol which make it suitable to communicate to the 

ROS environment. 

Simulation model of this robot is available as open source and made by the manufacturer, that 

includes ROS driver. Figure 2.8 shows the simulation of this robot in Gazebo under the Robot 

Operation System platform. 
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Figure 2.8: Simulation model of Universal Robot in Gazebo 

 

2.5 Literature Review 

 

For at least fifty years, the inverted pendulum has been the most popular benchmark 

problem among others, for teaching and research in control theory and robotics. According 

to a survey done on 2012 more than 13 different types of control designs are used in IEEE 

published journals to design a control system for inverted pendulum [1]. These control 

strategies included PID, predictive control, Hybrid control, Fuzzy logic control, RL and 

many more. To narrow down our literature review more specific, we will be review only 

very recent that used the reinforcement learning algorithm to solve inverted pendulum.  



 

23 
 

Yue Chao and his team on 2018 has published a paper in IEEE and used double layer back 

propagation neural network for inverted pendulum [16]. In this paper they used the straight-

line single inverted pendulum as see in figure 2.5 

 

Figure 2.9: straight-line single inverted pendulum 

 

They have used simulation model from Google Technology that included all physical 

properties of the environment included angular velocity, gravitational acceleration, angle 

of swing arm and so on. Their proposed neural network on this paper is shown below which 

takes 4 inputs as the states of the inverted pendulum and gives one output. The output is 

the speed of the cart in left or right direction. After 300 attempts, the learning system 

successfully implemented the swinging up of a single inverted pendulum. The entire time 

of reinforcement learning was 131s. [16] 

The robustness of their model has not been verified in the paper also the physical properties 

of the inverted pendulum has not identified. As we explain later in this paper, physical 

properties of the model impact the robustness for example fraction between the swinging 

arm and the base is one of the key factors in the control.  

Q-Learning approach also has been implemented by Alessio Ghio and his team and their 

paper has published in IEEE on 2019 [17]. In this paper they used two algorithms for 

balancing the inverted pendulum, the first algorithm used to swing up the pendulum 

upward and the second one is used to control it in upward position. A simple reward 

function has implemented to give 100 points when the pendulum is placed upward at each 

iteration. The physical properties that considered for the inverted pendulum is m = 1 

kg, L = 1 m, b = 0.01 kg/s and g = 9.8 m/s 2. As per the chart published in the paper at the 
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beginning phase control is extremely unstable but over the 600 Episodes system was able 

to learn to control. 

 

Figure 2.10: RL learning curve for single inverted pendulum [11] 

 

In this research same as previous one, single inverted pendulum used with minimal 

physical property in the testing environment. Fraction, motor power and its transmission 

to move the base cart is ignored, the pivot point friction is not defined, and main point is 

the robustness of system has not been tested against any turbulence. 

On December 2019, a paper is published in IEEE by X.Li & H. Liu that used DQN OpenAI 

baseline cartpole environment and implemented same in V-REP (Virtual Robot 

Experiment Platform). They have used V-REP because it is very rich in kinematic analysis 

and more realistic simulation rather than OpenAI Gym Cartpole environment.[18] 

Their paper shows how physical properties impact on the RL model and to overcome 

instability during learning process they made a model with following characteristics that 

shows in figure 1.7: 
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• Changing the inverted pendulum to specific height 

• Considering joint speed to specific value 

• The masses of base and wheels set to larger value compare to inverted pendulum 

itself.  

• The physics engine selected was Vortex, because of its stability in VREP 

environment. 

• To overcome latency issue of Python in VERP, they have used a synch method in 

VERP, otherwise there will be large interference and huge impact on simulation 

unless reducing the gravity. 

 

 

Figure 2.11: V-REP Model of Cartpole [12] 

 

Although they have used only single inverted pendulum, had many challenges, and preset 

their physical properties to specific values however in our view this paper was the best 

among all recent published ones. It was very helpful to understand expectations on this this 

thesis too because it shows how difficult is to simulate a simple problem in a more realistic 

simulation environment and how different results can be achieved when parameters are not 



 

26 
 

accurately set. As seen in figure 1.8 their cost function chart is totally different than the 

results of other recent papers on solving the exact same problem. 

 

 

Figure 2.12: Cost function of DQN Training in V-REP environment 

Simulations provide an abundant source of data and alleviate safety issues during the 

learning process however the model that is generated in simulation environment are often 

specific to the characteristics of the simulator. Due to modeling error, strategies, lack of 

proper kinematic model, physical properties of model etc. a simulation test might be 

successful but won’t be when transferred to another simulation environment or real-world 

environment. [19] 

Almost in none of the published paper the robustness of the RL model has been tested fully, 

and majority of them used non-realistic simulation environment where fraction, joint 

definition, power, efforts and acceleration have not been simulated with a proper kinematic 

engine because they have not been simulated in proper robot simulation platform unless 

the last one which is done in VERP. They have shown good result, but the outcome model 

only works in their environment and outside that the model is useless. 

For our thesis we will be using Robot Operating System (ROS) in combination with 

Gazebo which are one of the top Robot Simulation Platform in the world that are widely 

used in research as well as industry.  
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CHAPTER 3  PROPOSED METHOD 

3.1 Introduction 

 

To implement reinforcement learning in the most complex system of inverted pendulum, 

we have broken down the case study in 3 sections. We start with single degree freedom 

inverted pendulum that is mainly used in recent published paper, this phase enables us to 

check and compare our results with the published ones, find our mistakes and solve all 

challenges for the next step. 

Then we take step further and make it 3-degree freedom inverted pendulum where the 

inverted pendulum can free fall in any direction. To control this system, we place it on few 

chassis that can move freely on any directions. We tried to develop the entire program in 

such a way that expanding the project from one phase to another phase does not require re-

structuring the entire program. We use classes that are written in Python language, libraries 

and configuration files to enable us quickly to transform one program to another.  

 

3.2 One Degree Freedom Inverted Pendulum 

 

The single straight-line one-degree freedom of inverted pendulum consists of a cart or a 

box that moves only in one axis and a pole that is hanged on the middle of it and where it 

swing freely on the same axis that cart or box moves. As seen in figure 10 a force F is 

required to move the cart to the left and right and based on the acceleration, speed, and its 

position the inverted pendulum can swing to the left or right too. The objective is by 

moving the cart (brown box), keep the angle φ as small as possible. 
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Figure 3.1: Simple Single inverted pendulum on a cart 

 

To implement this environment in ROS and Gazebo two main parts to be done: 

• Designing URDF, control related parameters and loading model to Gazebo 

• RL algorithm, programming and storing the results 

The model has 2 main links and some other links for sensors and movement rail. The URDF 

for the two main links are shown in detail in APPENDIX A, the overall links and main 

joints definition are shown in figure 2.2: 
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Figure 3.2: Overall URDF file structure and Joint definitions 

 

Some of the main characteristics of our model are listed below: 

• 2.5 kg for main moving cart 

• 1.5kg for vertical pole 

• Prismatic joint moving in x direction with limit 2.5 meters on each side of X axis 

• Revolute joints for vertical pole with limit of +/- of 1.57 radians 

• The Rigidness factor Kd has considered higher number to make all parts very rigid 

• Bouncing factor Kp and Mu1 &Mu2 (friction factors) have been set as initial values 

of 1 & 0.5 respectively 

• Velocity Controller and Effort Transmission are used to move the cart 
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Figure 2.3 shows the 3D model of the cart in the Gazebo environment that include a 

green bar with weight of 2.5kg, rectangular with dimensions of 0.8m x 0.05mx 0.05, a 

Sensor as a red box with neglectable weight of 100 gram and main moving cart in black 

color with weight of 5kg and dimensions of 0.4mx0.2mx0.2m. 

 

Figure 3.3: Single Inverted Pendulum in Gazebo Environment 

There are multiple nodes defined for orientation sensor and joint publishers that 

automatically publishes joint states. Below is the diagram that shows all topics and nodes 

once we run only gazebo simulation. After running the RL program the node diagram 

changes because many publishers and subscribers pay roles. 
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Figure 3.4: Node list before launching the learning program 

 

To implement reinforcement learning algorithm that can interact with the Gazebo 

environment we use Python 3.7 language with some dependencies and libraries, some of 

the major libraries that used in programming are numpy, rospy, openai_ros, tensorflow. 

We have also used the latest release of DQN algorithm from the OpenAI baselines. 

We have done some changes in existing cartpole environment of OpenAI_ROS to facilitate 

reusing the code in later stage and more complicated environment. The program consists 

of 3 main scripts: 

• The “Robot Script” that takes care of the communication with the cartpole back and 

forth to get IMU data for angular velocity, pitch, and roll, and sending velocity 

commands to the cartpole 

• The “Task Script” that take care of reward computation, collect observations, 

generate actions and initialization the simulation after each episode of training. 

• The “Main Script” that loads the baseline DQN algorithm and set all parameters. 

These 3 scripts written in class form and Python language and inherit all data and functions 

from each other. The OpenAI_ROS is a version of OpenAI_Gym that helps a lot 

implementation of RL algorithm for this case study[20]. The overall structure of the 

program shows in the figure 3.5. 

We consider two factors for the reward function of the reinforcement learning, one is the 

angle of the pole that is coming from the sensor on the top and the other is the position of 
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the cart (black box) that is moving left or right. Each time an action is given to the system 

then reward is calculated, and we check if we must reset the environment to the initial stage 

or continue learning.   

Equation 3.1 shows the reward function, the angle can vary from -1.57 to +1.57 radian as 

per physical properties so the best reward is when the pole is exactly in vertical position,  

the cart position can vary from -2.5m to +2.5m so the best reward is given when the cart is 

close to the center. We used Cosine of the two inputs including weight to calculate total 

reward. More weight is considered for keeping the pole in vertical position rather than 

being outside of the zone. 

𝑇𝑜𝑡𝑎𝑙 𝑅𝑒𝑤𝑎𝑟𝑑 = 1.7 ∗  𝐶𝑜𝑠(𝑃𝑜𝑙𝑒 𝐴𝑛𝑔𝑙𝑒) +  1.3 ∗ 𝐶𝑜𝑠(
𝐶𝑎𝑟𝑡_𝑃𝑜𝑠𝑖𝑠𝑖𝑜𝑛

2
) Equation 3.1 

We also have another limit function to detect when the environment to be reset to start over 

the next episode, this function checks the limits of the pole angle and position of the cart. 

If position of the cart is over 2 meters from the center or angle of the pole is more than 0.35 

radian then we considered as failed and environment to be reset, learning is still continue 

until the defined total steps and episodes reaches or problem solve which is reaching 300 

reward as mean square. 

For the output to the simulation environment or actions we consider 2 actions to increase 

the speed or decrease the speed. Negative speed means just speed to the other direction. 

After running the program all nodes and connection are updated and can be seen in figure 

3.6. The cartpole_gym is a node that is made by main training program, it receives joint 

states and IMU data and then it generates velocity commands, commands are just 

publishing data on another topics that receives by Gazebo Simulation environment.  Using 

ROS enable us quickly to switch from simulation environment to the real robot by just 

changing the system IP of Gazebo to actual physical environment. 
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Figure 3.5: Nodes connections, topics, publishers, and subscribers 

 

Parameters of the DQN are considered as default, below are the list of the parameters for 

the DQN algorithm from OpenAI baselines  

• Neural Network type: Multilayers Perceptron (MLP) 

• Size of the replay buffer = 50000 

• Learning rate for Adam Optimizer: 0.001 

• Gamma factor over which the exploration rate is annealed=0.1 

• Final value of random action probability: 0.02 

The observations are the inputs the neural network for estimating the Q values for the 

output. We have not considered any limit for the velocity of pendulum or cart because it 

may vary based on different physical characteristics of the system, the table 3-1 just shows 



 

34 
 

the limit of min max of the observation space but actual angular velocity and angle of the 

pole will be measured in real time and input the neural network of the learning algorithm.  

Table 3-1 : Observation space for the 1 DoF Inverted Pendulum 

 

 

 

 

 

 

The observations are the inputs the neural network for estimating the Q values for the 

output. We have not considered any limit for the velocity of pendulum or cart because it 

may vary based on different physical characteristics of the system, the table 2-1 just shows 

the limit of min max of the observation space but actual angular velocity and angle of the 

pole will be measured in real time and input the neural network of the learning algorithm.  

The action space is 2 Quality values estimation for moving the cart to the left or right, 

figure 3.7 shows the overall reinforcement model being created for this case study. 

 

Num Observation Min Max 

1 Cart Position -2.5m 2.5m 

2 Cart Velocity No Limit No Limit 

3 Pole Angle -0.7 Rad + 0.7 Rad 

4 Angular Velocity 

at Tip 

No Limit No Limit 
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Figure 3.6: Single DoF cartpole RL Model with 4 observation space and 2 outputs 

 

To run the entire simulation and training program, we must make some launch files. These 

launch files are responsible to load appropriate files and script at proper sequence and load 

preset settings. 

The structure of the program is designed to separate learning and simulation in two 

different packages, that helps to debug and control version of the program much easier and 

gives ability to use packages for different purposes independently. 

Launch files for simulation packages are responsible to load parameters for physical world, 

robot structure that includes cart and inverted pendulum and its controllers. Launch files 

for learning packages are responsible to load settings for the program, initiate nodes and 

run the main learning script. Details of launch files are provided in Appendix B. figure 3.8 

shows the structure of the packages for both simulation and learning. 
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Figure 3.7: Package structure for simulation and learning 

 

In addition, since the DQN baseline requires TensorFlow and Python 3 then we made a 

new Virtual Environment for Python 3.6 and ran the training on that environment. We used 

rqt ROS package for displaying the charts that basically subscribes to the published topics 

and display them as graph. 

 

3.3 Three DoF Inverted Pendulum on Chassis 

 

Implementation of the single DoF helped to prepare the second and more complex inverted 

pendulum system. The program structure has not been changed but the complexity of 

URDF and learning program has changed to accommodate the new environment. In this 
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phase we made an inverted pendulum that free fall from any direction and the base moves 

along x and y axis and can rotate along Z axis. 

We have implemented 3 DoF inverted pendulum in two different ways. On the first way 

we considered no joint between the base and the inverted pendulum and in second 

implementation we used a 3 DoF revolute joint. Figure 3.9 shows the difference of this 

implementation. 

 

Figure 3.8: Two ways of implementing 3DoF bar link 

 

For no joint option, we made two models, one was the chassis that loaded back to back in 

simulation environment, a bar link with weight of 1.5kg, length 0.8m and radius of 0.07m 

is standing on the middle of a chassis. The other design uses a ball joint that is designed in 

the SolidWorks and loaded into the URDF model using mesh identifier, it is defined as 

revolute joint. 
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Figure 3.9: Ball Joint URDF file 

Ball joint for this experiment is great choice so we made the technical drawing to build this 

joint for real robot implementation. All technical drawings are in Appendix D and figure 

3.10 shows the overview of 3d drawing for the ball joint. 

 

Figure 3.10: Ball joint design in SolidWorks 

 

The friction parameters play an important role when using ball joint. If there is less friction 

then moving the base cannot apply force in any direction to inverted pendulum, ball slip in 

the bearing base so if inverted pendulum starts falling then there is no way to bring it back 

to the vertical position. On the other hand, once friction is set too high then it impacts on 

the nature phenomena of free fall, means when moving the chassis then pendulum moves 

on that direction.  
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Gazebos uses Open Dynamic Engine (ODE) by default that is not being changed during 

the entire case study.  As per ODE documentation, the contact joint prevents body 1 and 

body 2 from inter-penetrating at the contact point.  It does this by only allowing the bodies 

to have an “outgoing'' velocity in the direction of the contact normal. Contact joints 

typically have a lifetime of one-time step. They are created and deleted in response to 

collision detection. Contact joints can simulate friction at the contact by applying special 

forces in the two friction directions that are perpendicular to the normal. Mu coefficient 

zero means no friction at all and infinite number for mu means no slippery.[21]  

To control the inverted pendulum, we have extended the concept from previous design, we 

stacked 3 carts that are called them chassis 0, 1 and 2 in the program and they are on top 

of each other and joints together, as seen in figure 3.10.  

The yellow chassis moves to the X axis, the black chassis moves on Y direction on top of 

the yellow chassis, and the gray chassis rotate 360 degrees on top of the black chassis with 

a revolute joint on Z axis. Each of these chassis are 2.5 kg and they are using prismatic 

joint with each other except the last one which has revolute joint and rotates along Z axis. 

The limit of 2.5 meters on each direction is applied for chassis that have prismatic joints.  

Figure 3.12 also shows links and joints between each chassis. 

 

 

Figure 3.11: Chassis to control the 3 DoF Inverted Pendulum 
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Figure 3.12: URDF structure of the 3 chassis 

The physical properties in Gazebo such as Kd, kp, for softness and bumpiness of the 

materials, mu coefficient for frictions are considered in such a way that a force of 20N on 

any direction, causing inverted pendulum to fall on that direction for both cases; no-joint 

and ball joint.  

The 20N force impact equally on both designs to make sure learning results of these two 

models are valid for comparison. The complete URDF file with details of all parameters 

are in Appendix C. 
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Figure 3.13: Applying 20N force in any direction at initial state 

Implementation of DQN is almost same as previous single form of inverted pendulum, we 

have same IMU sensor on the top of the bar link that transmit the angular velocity, pitch, 

and roll. Observation and action space are different than single DoF. For observation we 

get position and speed of each chassis, pitch and roll and their angular velocity totally an 

array with 10 elements as per table 3.2.  

Table 3-2: Observation space for the 3 DoF Inverted Pendulum 

 

 

 

 

 

 

 

 

Num Observation Min Max 

1 Chassis 0 - Position -2.5 2.5 

2 Chassis 0 - Velocity No Limit No Limit 

3 Chassis 1 - Position -2.5 2.5 

4 Chassis 1 - Velocity No Limit No Limit 

5 Chassis 2 - Position -2.5 2.5 

6 Chassis 2 - Velocity No Limit No Limit 

7 Pole-Pitch -0.7 Rad + 0.7 Rad 

8 Pole-Roll -0.7 Rad + 0.7 Rad 

9 Pole Angular Velocity No Limit No Limit 

10 Roll Angular Velocity No Limit No Limit 
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For action space we command each chassis to increase, decrease or no changes to the 

chassis speed. In fact, 3 outputs command that each can have 3 different outputs that leads 

to totally 27 actions. Messages or data which are float64 for our case study are published 

as topic with different nodes. 

The main Python algorithm has a node name /Cart-Inv-Gym that communicates with all 

inputs including IMU sensor and joints feedback and provides output to the controller that 

is eventually connected to the Gazebo Sim. Figure 3.14 shows all nodes and topics 

communication when script and Gazebo simulation are running. 

As seen in this figure, the cart_inv_gym is main node from Python program that runs the 

DQN algorithm, it is responsible to get data from IMU sensor and compute and send 

command to the chassis. Chassis commands published in commands topic that are 

consumed by Gazebo, Gazebo perform action in the realistic environment and provide 

feedback through join_state.  

 

Figure 3.14: ROS Nodes / Topics for the 3DoF system 
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The structure of the Python scripts is also same as single DoF Inverted pendulum 

however with some changes in regard of sending commands to 3 chassis instead of one, 

checking extra incoming signals, reward and done functions. Figure 3.15 shows the 

overall structure and program block for the 3DoF inverted pendulum. 

 

 

 

Figure 3.15: 3DoF Inverted Pendulum, Program Blocks 

 

For the reward, we are using Cosine of Chassis Position and angles of pitch and roll but 

considering some weight like previous case study. We consider more weight for keeping 

the pole upward and less for the limit of chassis. Figure 3.15 shows the reward function 

that is used for this system.  

40 percent of weight goes for keeping the bar link vertical, but the 10 percent considered 

for keeping the chassis close to the center. 
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Figure 3.16: Reward function for 3DoF Inverted Pendulum 

 

3.4 Three DoF Inverted Pendulum on Robotic Arm 

 

Learning path and challenges of previous case studies, made the implementation phase 

much easier for the last and much more complex system. In this phase we used universal 

robot to implement inverted pendulum control. We have used same spherical joint with 

exact same physical properties and parameters for weight, frictions, and other coefficients. 

The base bearing attached to the universal robot end-effector as seen in figure 3.17 

 

 

Figure 3.17: Universal Robot with Inverted Pendulum on spherical joint 
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One of the main challenges we faced at the beginning was selecting right version and had 

to change couple of times to find the best one that works for majority of libraries and in 

some cases had to change the direction of AI programming too because of some packages 

were not updated at the time of writing this thesis.  

Our main driver to select the ROS version, was The Universal Robot package that is 

officially released by Universal Robot Company. The ROS package for UR is based ROS-

Kinetic or ROS-Melodic which needs to be installed on Ubuntu 16.04 or Ubuntu 18.04 

operating system. These operating system uses Python V2.7 while for some of the packages 

for example, AI, we had to use Python 3.6 as minimum. The version of ROS that is used 

for this thesis is Melodic that is installed on Ubuntu 18.04 however to use TensorFlow and 

OpenAI baseline for machine learning part of the thesis, we used Virtual Environment 

package in Python and runs those part of codes under a virtual environment that uses 

Python 3.6. 

For the robot simulation in Gazebo environment, we used the library from ROS_Industrial 

that is open source and available for commercial or research purposes [22]. The only part 

that we changed in the Robot model was the initial position, limits on the angels and 

attached the inverted pendulum to the end effector. This is done by making a separate 

URDF file for the inverted pendulum, making mesh folders in the Redescription package 

and make a fix joint between bearing and end effector. 

The robot model has trajectory controller to move all joints to the desired position with 

proper speed and direction. The trajectory controller is part of the simulation package made 

by the universal robot and we have not manipulated it. So, for the purpose of this study we 

used trajectory command that basically let robot find best way to move its arm for reach 

the desired angles for each waypoint.  

In our use case we only want to move from a current angle of the joints to a new set of 

angles, so we only send command for 6 joints as an array.  The 6 joints of the robots are 

shown in figure 4.2 and the array for joints are in radian and float64 format: 
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['elbow_joint', 'shoulder_lift_joint', 'shoulder_pan_joint', 'wrist_1_joint', 'wrist_2_joint', 

'wrist_3_joint'] 

 

 

Figure 3.18: 6DoF Robot Arm and its joints [15] 

We have considered an angle limit for each joint during training because if joint freely 

moves 360 degrees then the inverted pendulum hits on the ground or other part of the robots 

arm and breaks, hence entire training to be restarted.  

For Elbow and Shoulder Lift joint, we considered 0.78 radian or 45 degrees freedom. 

Wrist-1 joint can move between -1.57 radian to +1.57 or +/- 90 degrees, and wrist 2 has 

limit between 45 degree to 135 degrees. Figure 3.19 shows once all joints are in their limit, 

we see in this figure that there is no crash point for inverted pendulum and ground.  

We have also lifted the robot by 10 centimeters because when robots loaded at each episode 

then it does not hit the ground. In real world, robot can be placed on a stand then on the 

table. 
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Figure 3.19: Robot at its maximum joint limits 

 

Table 3.3 shows the input for the DQN algorithm, as seen in this table the information from 

the IMU sensor remains intact in compare of previous design and we still get the pitch, roll 

and angular velocity of each but we also get all joint positions of robot arm. 

Table 3-3: Input observation space for 3DoF on robot arm 

 

 

 

 

 

 

 

 

Num Observation Min Max 

1 Pitch Angle -0.7 0.7 

2 Pole Angle -0.7 0.7 

3 Pitch Angular Velocity No Limit No Limit 

4 Pole Angular Velocity No Limit No Limit 

5 Elbow Joint -0.78 0.78 

6 Shoulder Lift Joint -0.78 0.78 

7 Shoulder Pan Joint No Limit No Limit 

8 Wrist1 Joint -1.57 1.57 

8 Wrist2 Joint 0.78 2.357 

10 Wrist3 Joint No Limit No Limit 
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The output space is action to 6 joints either increasing, decreasing or no changes. So 3 

different actions for 6 joints leads to have space of 3 power 6 which is 729 different of 

actions. Figure 3.20 shows all nodes and topics when the learning program and Gazebo are 

started. 

 

Figure 3.20: Node diagram of robot arm and inverted pendulum 

As seen in figure 4.4, the joint state publisher, publishes all joints information from robot 

arm and /arm_controller node contains all actions to send command to the joints of the 

robot. It uses the trajectory command message format that contains joint angles and time 

of the goal. 

The node /ur_gym is the main node of the Python learning program, it gets data from the 

joint states and IMU sensor and send commands to the controller of the robot, the 

commands perform action in the Gazebo and new action will be generated based on the 

new state. 

The “done” function is like the previous case studies, but with the difference that we 

applied limit to the robot joints instead of 2.5 meters limit for chassis. If an action goes 

beyond the limit the training goes to “done” state or if the pendulum falls and have angle 

of more than 0.7 degrees then considered as done for that episode, accumulated reward will 

be shown in graph and new episode starts.  
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The reward function has not been changed from what shown in figure 3.16 in previous case 

study. We take pitch and roll and consider weighing factor to calculate total reward at each 

step.  

3.5 Hardware configurations 

 

In this section we describe in detail how to build an orientation sensor and integrate it to 

ROS environment to read roll, pitch and their acceleration of the inverted pendulum which 

are used in the learning algorithm as input.  

We also explain details of communication to the universal robot and setting the hardware 

for ROS communication. 

3.5.1 IMU Sensor 

 

The inertial measurement unit (IMU) for our use case should have following properties in 

our case study as to minimize any negative impact on the learning process: 

• Wireless communication 

• Accurate reading 

• Battery operated 

• Small and light 

There are many methods to get the orientation of a device in 3D space using combination 

of gyroscope, magnetometer, and accelerometer with combination of using filters such as 

Kalman or complementary.  

The intention of this paper is not developing new method of measuring orientation but 

instead using an existing reliable method to build a simple and reliable sensor that can be 

used for this case study. For that purpose, we have chosen sensor fusion technique that is 

a simple method and mainly used in commercial quadcopters balancing and it is simple, 

reliable, and accurate enough for our case study.  
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The main idea of sensor fusion is to get more accurate reading by combining information 

from multiple sensors. On 2017 a paper published in IEEE and proposed an algorithm to 

get orientation of an object in 3D space using Gyroscope and Accelerometer which is used 

in our design [23]. 

Gyroscope measures rotational motion and its output is degree per second. If angular 

velocity is monotonous then we can say: 

𝜃 = 𝜔 ∙ 𝑡 Equation 3.2 

Where θ is angular displacement and 𝜔 = Angular Velocity and t is time. But in practical 

scenario, angular velocity is not constant with time and it varies so basically angular 

velocity is rate of change of angular displacement: 

 

𝜃′ =
𝑑𝜃

𝑑𝑡
 Equation 3.3 

By integrating from both sides over a period we can find θ 

 

𝜃 = ∫ 𝜃′(𝑡)𝑑𝑡 ≅ ∑ 𝜃′(𝑡)𝑇𝑠
𝑡
0

𝑡

0
 Equation 3.4 

Because we cannot take a perfectly continuous integral, we must take the sum of a finite 

number of samples taken at a constant interval Ts. This approximation will introduce errors 

specially when gyroscope data changes faster than the sampling frequency, so the integral 

approximation will be incorrect and this error is called gyroscope drift and increases over 

time.[24]  

So, gyroscope alone, cannot provide accurate angular velocity and angles on each axis 

(Pitch, Roll), mainly because of gyroscope drift. 
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In the proposed method a tri-axial gyroscope is used as a main source of information, and 

a tri-axial accelerometer is used to compensate drifting deviation on gyroscope 

measurements.[25] 

MEMS accelerometer measures acceleration due to movement and gravity. For a static 

object acceleration is due to gravity (1g). We can find the orientation from the 

accelerometer and use that data to compensate the drift of Gyro. [26] 

 

Figure 3.21: Singe Axis Accelerometer 

 

Referring to basic trigonometry, the projection of the gravity vector on the x-axis produces 

an output acceleration equal to the sine of the angle between the accelerometer x-axis and 

the horizon, in figure 3.21 the θ can be calculated by following equation: 

𝐴𝑥,𝑜𝑢𝑡(𝑔)=1𝑔∗ 𝑆𝑖𝑛(𝜃)  Equation 3.5 

When 3 dimensions accelerometer is used then the angles can be calculated using following 

formulas [24] 

𝜃 = 𝑡𝑎𝑛−1 (
𝐴𝑥,𝑜𝑢𝑡

√𝐴𝑦,𝑜𝑢𝑡
2 + 𝐴𝑧,𝑜𝑢𝑡

2  
) Equation 3.6 

𝜓 = 𝑡𝑎𝑛−1 (
𝐴𝑦,𝑜𝑢𝑡

√𝐴𝑥,𝑜𝑢𝑡
2 + 𝐴𝑧,𝑜𝑢𝑡

2  
) Equation 3.7 
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𝜑 = 𝑡𝑎𝑛−1 (
√𝐴𝑥,𝑜𝑢𝑡

2 + 𝐴𝑦,𝑜𝑢𝑡
2  

𝐴𝑧,𝑜𝑢𝑡
)   Equation 3.8 

 

 

Figure 3.22: Angels for independent inclining sensing 

 

We have used MPU6050 for making orientation. The MPU-6050™ is motion tracking 

module that is designed for the low power, low cost, and high-performance requirements 

of smartphones, tablets, and wearable sensors.  

It is a micro-electromechanical system (MEMS) with 3-axis Gyro/Accelerometer 

combined into a single chip is also called six-axis motion tracking. We can adjust the 

reading range for both gyroscope and accelerometer which has direct impact to its 

accuracy. This chip has built in I2C communication port to communicate for external micro 

controller. 

For micro controller part, we used ESP32 that is a wireless system on Chip (SOC) module 

with 4MB memory and 512KB Ram. This SOC works on battery voltage 2.7Vdc to 3.7 
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Vdc, and it has Bluetooth, WIFI, SPI and I2C communication port with some general-

purpose Input/Output (GPIO) for interacting with other devices. This SoC fits to our 

requirement and with combination of ROS-Serial driver we can transfer data wirelessly 

between ESP32 and WIFI module on the laptop. Figure 3.23 shows the architecture of the 

entire system.  

 

Figure 3.23: Overall architecture for data acquisition 

 

With this MEMS sensor and a fusion algorithm, we can accurately measure pitch and roll 

of the inverted pendulum which is enough for our learning algorithm. It is good to mention 

that yaw cannot be calculated accurately with this sensor and a magnetometer as an 

additional measurement is required. 

Registers in the initialization parts to be adjusted to give a proper range of reading. 

MPU6050 has 4 ranges for the accelerometer and 4 ranges for the Gyro. The accelerometer 

full scale range can be set to  
+

−
2𝑔 ,   

+

−
4𝑔,   

+

−
8𝑔 𝑎𝑛𝑑   

+

−
16𝑔. We selected the lowest 

range 
+

−
2𝑔 for our inverted pendulum application since we would not get even close to this 

acceleration, because the inverted pendulum is close to free fall. The sensitivity as per 

datasheet is calculated by least significant byte LSB divided by range so in our case for the 

range of 2g we get sensitivity of 32750/2g= 16384 LSB /g or 0.0006 m/s2. 
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The gyro range is selected as minimum as well  
+

−
250°/s or 41.6 RPM. As per datasheet, 

the sensitivity can be calculated by full scale reading value 32750 / 250 = 131 measurement 

units per degree per second.[27] 

 Table 3.4 shows the sensitivity of acceleration and gravity per different range setting.  

 

Table 3-4: Accelerometer and Gyro sensitivity and range 

Angular 

Velocity Limit 

Sensitivity  Acceleration 

Limit 

Sensitivity 

250°/s 131 LSB/°/s  2g 16834 LSB/g 

500°/s 65.5 LSB/°/s  4g 8192 LSB/g 

1000°/s 32.8 LSB/°/s  8g 4096 LSB/g 

2000°/s 16.4 LSB/°/s  16g 2048 LSB/g 

 

The algorithm consists of two parts, first part is the initialization where we initialize 

communication and registers as well as measuring the gyro-drift at steady state condition 

for 1000 readings. Second part is main loop function of the Gryo & Accelerometer then 

combining them together. We use 96% of reading from Gyro and 4% reading from 

accelerometer to compensate.  Figure 3.24 shows the algorithm in form of blocks: 
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Figure 3.24: Sensor fusion algorithm with Gyro-Accelerometer 

The rosserial protocol is a point-to-point ROS communication over a serial transmission 

line. This is one of the open-source packages under BSD license that enable 

serialization/de-serialization as standard ROS messages, simply adding a packet header 

and tail which allows multiple topics to share a common serial link. The number of 

Publishers and Subscribers are limited at 25, and the size of serialization and deserialization 

buffers are limited at 512 bytes by default for rosserial_client. This limitation is not a 

challenge since 4 values of float 32 bits are enough to get values of pitch, roll and their 

accelerations. 

ROS Serial provides a library ros.h that can be used in C++ programs inside the micro-

controller and enable to call the classes and functions to establish node communications 

for diagnostics, publishing and subscribing at speed of 57600 bits/sec. 

Figure 3.25 shows the nodes that are made after establishing communication to the 

MPU6050 using microcontroller. 

http://wiki.ros.org/rosserial
http://wiki.ros.org/rosserial_client
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Figure 3.25: List of all topics after and output of acceleration node 

Pitch and Roll are published in degree unit and acceleration on m/s2.  Figure 3.26 shows 

acceleration of the aitch as a curve with rqt_multiplot module of ROS platform. The x 

axis of the graph is in milliseconds and Y-axis is the acceleration of the Pitch. We have 

rotated the device 90 degrees in clockwise and counterclockwise and results shows the 

gravity acceleration that is sensed by sensor. There is some noise when device is in flat 

position for the pitch and roll acceleration however this amount of noise is neglectable for 

learning application since we have, or “reward” function set to give reward when the 

inverted pendulum is in -0.25 radian to +0.25 radian. 
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Figure 3.26: Acceleration on X axis (Pitch) 

 

3.5.1 Robot Arm Setup 

 

ROS communicates to many robots if the driver supplied from the robot manufacturer. 

There are more than 500 robots are supported and are listed in the ROS Wiki page [28], 

these are included Robot arms, humanoid robots, autonomous robots, drones and industrial 

robots such as Fanuc, Universal Robot, ABB and so many more. 

To connected the program to the universal robot as an example, first the driver for ROS 

communication to be found in ROS-Industrial package, it communicates to the Universal 

Robot via Ethernet communication port [29]. When communication is established the 
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ROS-Industrial package start communication with a program inside the robot that is called 

URScript, which is universal robot own’s Python-Like scripting language. This program 

has main duty to handshake with ROS and interpret ROS messages to hardware commands. 

ROS driver has a test command to bring the robot to the vertical position and starts with 

rosrun ur_driver test.py. 

 

Figure 3.27: Ethernet setting of Universal Robot 
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CHAPTER 4  EXPERIMENTAL RESULTS 

4.1 Introduction 

 

In this section we review results for each experimental phase. Table 4-1 shows the detail of 

each case study and experiment that carried out on each phase.  

Table 4-1: Break down of main case study in 3 phases and expectations 

 Phases Experiment on each phase 

1 One DoF Inverted Pendulum on 

a single cart 

1. Comparing results with previous papers 

2. Apply turbulence to the model 

3. Use the trained model on new inverted 

pendulum with different physical properties 

2 Three DoF Inverted Pendulum 

on 3 chassis 

1. Attach inverted pendulum with and without 

Ball Joint to Chassis 

2. Apply turbulence to the pendulum and 

observer learning speed 

3 Three DoF Inverted Pendulum 

on a 6 DoF Robot arm 

1. Use exact same inverted pendulum design 

on 6 DoF robot 

2. Train the model to balance the pendulum 

 

 

4.2 Results of one DoF Inverted Pendulum 

 

As per figure 4.1 is the curve of reward vs episode shows after about 400 episodes we 

reached to a stable level of control. Each episode means system controlled the pendulum 

until it fells (angle reaches more than 0.70 radian +/- 40 degrees) or the cart reaches to the 

end of its limit which 2.5 meter on each side. 
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Gazebo simulation automatically calculates a simulation time and real time by considering 

all wasted time for sending commands, receiving commends and spent time for 

calculations. Based on stops between each episode, that is set manually for initialization 

purposes, about 100 rewards is equal 5 seconds of real time. In other word, 1000 rewards 

means balancing the inverted pendulum for about a minute. 

 

Figure 4.1: Result of training RL for Single Inverted Pendulum without any 

disturbance 

 

This chart is very similar to what is published as result on the first literature review that is 

discussed on chapter 2. 

To test the robustness of the learnt model we applied forces to the inverted pendulum. 

Gazebo simulation environment has feature to manipulate settings or apply forces to the 

robot and environment without stopping simulation.  As seen in figure 4.2 force direction 

and its amount can be adjusted during simulation or at the beginning.  
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We applied forces at the steady state situation first, to see how much force pushes the 

pendulum in one direction. The physical parameters of the structure such as weight, length 

and friction at the pivot point are in such a way that applying only 50N at steady state 

situation causing the pendulum to fall off. 

 

 

Figure 4.2: Applying 50N force to the pendulum on the tip 

We started learning process for longer period and added turbulence randomly while 

training. We have started with 10N force applied to the tip of the inverted pendulum and 

increased until 50N over time and randomly.  Figure 4.3 shows the chart of reward when 

force is applied as turbulence in the system. We see that at the beginning the system was 

confusing and unable to control the pendulum, a very wavy chart shows system was 

unstable but over time learnt to control. 

As shown in Figure 4.3 after 400 episodes, we reached more stable control and reward 

stopped fluctuating. System starts learning to control while turbulence still applied 

randomly. After episode 800, we reached to reward 600 means 30 second keeping the 

inverted pendulum in upward position. After that applying 50N forces continuously but 

changing it directions, system still achieved good control.  

This means we were able to make more robust model by applying forces during training 

and showed how initial learnt model was very primitive controller and unstable to any 
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turbulences.  The leant model improved itself by being exposed to changes in environment 

and started adopts itself.  

 

Figure 4.3 Applying forces randomly to the system and observe behavior 

. 

The other part of the study of this simple system was to understand how the learned model 

can adapt itself with the new physical model.  

We trained two models, one that was trained without any turbulences and another with 

random turbulences during training. These models have been trained on normal laptop with 

Ubuntu OS for about a day. We loaded the models to train a new system with different 

physical properties and monitored how they behave new conditions. 
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Running a model is much faster than learning and running at the same time because many 

steps are skipped. When loading a trained model, 100 rewards equal about 20 seconds. We 

changed the weight of the pole from 1.5kg to 2.5kg and started observing the reward 

function. Figure 4.4 shows although trained model had average of 100 reward during 379 

episodes, but it was instable. In contrast the robust model that is being trained by adding 

random turbulences, was able adopted itself with the new environment much quicker and 

after 300 episode reached stable reward of over 100. Figure 4.5 is showing the output data 

for this experiment. 

 

Figure 4.4: Reward-Episode chart for the simple trained model 
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Figure 4.5: Reward-Episode chart for the robust trained model 

 

4.3 Results of 3 DoF Inverted Pendulum on Chassis 

 

In no joint experiment there were many challenges, first we had to make two Gazebo 

models and load them in sequence, if we place the bar link exactly on the surface of the top 

chassis in vertical orientation, it stands there and RL learns quickly that can hold the bar 

vertical with minimal changes in chassis positions. In fact, we got great reward, but the 

model is extremely poor and not resistance to any turbulences.  

As seen in figure 4.6 we achieved over 1000 rewards at the beginning of the training while 

there was no turbulence however reward reduced tremendously to less than 100 in presence 

of turbulences. 
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Figure 4.6: Reward chart for 3DoF no joint model 

The challenge was because of no joint then turbulence was moving the bar link off its 

original position and causing falling off and losing control. A cylinder on the flat surface 

has more contact area than in angle position. Similar challenges reported in one of the 

papers mentioned in the literature review. [18]   

The other challenge in no-joint design was the initialization after each failure, since there 

was no joint between the chassis and the bar link, and we had two models to load on 

sequence. We had to drop the bar-link from few centimeters above the chassis to give a bit 

of turbulence at initial stage otherwise RL decides to send actions with zero speed to the 

chassis which is failing the entire reinforcement learning approach. 

On the other hand, ball joint approach showed a lot promises on learning the 3DoF Inverted 

pendulum. As seen in figure 4.7, it took more time for the system to learn how to control 
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in compare single inverted pendulum but was able to achieve better control and more 

reliable in compare of no-joint approach.  The main reason for taking more time is the 

space of the observation and actions. In single inverted pendulum we had only 4 inputs and 

2 outputs while in 3 DoF, we have 10 inputs and 27 outputs.  

As seen in figure 4.7, after 400 episodes we achieved the reward of over 200 and then 

applying turbulence causing system slowly learns and adopts its model to more robust 

system. After about 800 episodes, system was able to achieve about 1000 reward points 

and applying turbulences did not bring the reward below its original level which was about 

200.  In addition, applying turbulence in different directions to the tip of the pendulum at 

the later stage was helping system to be more resistance and about 1300 episode the model 

achieved to learn and control the pendulum without hitting the sides and controlling it 

toward center point.  

 

 

Figure 4.7: 3DoF reward chart with ball joint connection to chassis 



 

67 
 

The friction parameters play an important role when using ball joint. If there is less friction 

then moving the base cannot apply force in any direction to inverted pendulum, ball slip in 

the bearing base so if inverted pendulum starts falling then there is no way to bring it back 

to the vertical position. On the other hand, once friction is set too high then it impacts on 

the nature phenomena of free fall, means when moving the chassis then pendulum moves 

on that direction.  

The system achieves very high reward with too much friction on the joint but not robust at 

all. In fact, friction prevents it falls but when pendulum starts falling then there is no way 

to prevent it. Highest reward in this case is a fake value and unrealistic. 

By changing the friction parameters to different values and keeping the training to learn 

for 2 days, we found the best values for mu1 and mu2 are 1.5 for the physical properties 

that we defined for this problem. Figure 4.8 shows reward function once we started learning 

with friction 0.5, at some point of time it shows it is learning but at the end fails to learn.  

 

Figure 4.8: Training for more 20,000 episodes, but no learning 
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4.4 Results of 3 DoF Inverted Pendulum on Robotic Arm 

 

As expected, learning process is more time consuming for the robotic arm mainly because 

of action space which is 729 in compare of previous case. So RL requires more time to 

learn the sequence of commands and make a proper approximation function to estimate Q 

values. 

Figure 4.9 shows the improvement on the reward occurs and RL models started to learn 

control after 3000 episodes. Since the robot base is fixed and we have limitations on the 

angles for most of the joints, the amount of reward or time to balance the pendulum upward 

is not as equal as the previous case study.  

 

Figure 4.9: UR learning to balance inverted pendulum but at much slower rate 
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The number of changes in the angles for each action, play huge role in control and 

achieving learning. It was important in other case studies but not as much as in this case 

study. 

 In previous case studies we had velocity controllers for the robot, and we were changing 

speed of movement of the chassis however in the robot arm control we are not changing 

the speed of each angle and instead we let trajectory controller moves the robot arm within 

the specific time frame to the new position. This time frame is also constant value. We used 

different positional steps angle and tried to experiment how it impact the learning. As seen 

in figure 4.10, the position step of 0.005 radian and the amount of time 0.005 seconds leads 

to getting more reward in same number of episodes. 

 

Figure 4.10: Learning curve positional step is 0.005 radian and time is 0.005sec 

 



 

70 
 

We have also experimented the learning rate and when we reduced the learning rate of the 

DQN algorithm and let robot to learn for longer period, then we could achieve much higher 

reward during training. The reason behind that is having a very smaller learning rate leads 

to have higher gamma factor in longer period. The gamma factor controls exploration and 

exploitation as explained in the chapter 1.  Since the observation and space for the neural 

network of the DQN is huge in compare the other case studies, have more time for 

explorations helps RL to find better policy. 

 Figure 4.7 shows learning rate 0.00001 and after episode 14,000 which was about 2 days 

training on the laptop. We have reward of above 600 at some point of time. Although we 

get very high reward but as seen in figure 4.11 it is not consistent result in compare previous 

studies. The reward curve shows there is no overfit and system is still learning if kept for 

longer period. It is good to mention that in Deep Mind paper that is published for a DQN 

agent that learnt to play Atari games, they used 84 x84 size of image in 4 sequences which 

leads to have input space of 28,224. Their DQN algorithms learnt to play Atari games better 

than human in more than 50 million training episodes which is not possible under the 

normal laptops.[15] 

 

Figure 4.11: Achieving reward of over 600 for balancing inverted pendulum 
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CHAPTER 5  CONCLUSION AND FUTURE 

WORKS 

 

In this thesis we have demonstrated that artificial intelligence is able to solve a complex 

balancing control problem from scratch, without any feedback loop and using state of the 

art deep reinforcement learning algorithm DQN. The benchmark problem that is 

considered as case study is balancing an inverted pendulum upward.  

In our thesis we had multiple novelties in compare of published papers on similar subjects 

and some of them are: 

• Six-degree freedom robot arm with ball joint inverted pendulum  

• Using state of the art Robot Simulation platform, ROS and Gazebo 

• Using Orientation sensor on the tip of the pendulum to get input data for learning 

We have shown how different parameters impact the learning process and robustness of a 

model. We started from simple case study and slowly switched toward main goal which 

was controlling the inverted pendulum using robot arm. Simulation has been completed, 

tested and the experimental results showed the effectiveness of DQN algorithm in very 

complex problem. We also demonstrated that how applying turbulences during learning 

can help to achieve more robust model that can balance the inverted pendulum in more 

reliable way. 

Once of the key achievement of this thesis was proving that a robust model can adopt itself 

with new environment much easier than a model that is being trained without presence of 

any turbulences. When physical parameters of a robot changes, a RL model has difficulty 

to adopt its model to the new environment so basically it is training the RL from scratch 

and nothing transferred from its past learning experience. While a robust model in same 

shows that after 300 episodes, it started to achieve a reliable control on the new robot 

environment. 
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We have designed and build a sensor for orientation using sensor fusion technique, 

successfully connected to the ROS to get the inputs. Guideline for communication between 

ROS and real robot provided as well as drawing to make a ball joint that is located in 

Appendix D however real robot testing has not being conducted and can be considered as 

future work.  

 In addition, this thesis can be considered a great source for testing similar problem with 

different reinforcement learning algorithms and comparing results in different scenarios. 
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APPENDICES 

 

Appendix A Single DoF URDF 

This is complete of the URDF file for single inverted pendulum, it includes all joints, links, 

transmission, and physical properties of the cartpole problem. 

 

<?xml version="1.0" encoding="utf-8"  ?> 

<robot name="cartpole_v0"> 

     

    <gazebo> 

        <plugin name="gazebo_ros_control" filename="libgazebo_ros_control.

so"> 

            <robotNamespace>/cartpole_v0</robotNamespace> 

        </plugin> 

    </gazebo> 

     

    <!-- * * * Link Definitions * * * --> 

    <!-- * * * Define World Link to fix the foot rail to the world * * * -

-> 

    <link name="world"/> 

    <link name="bar_link"> 

        <visual> 

            <origin xyz="0 0 0.4" rpy="0 0 0"/> 

            <geometry> 

                <box size="0.05 0.05 0.8"/> 

            </geometry> 

            <material name="green"> 

                <color rgba="0.9 0.8 0.6 1.0"/> 

            </material> 

       </visual> 

        <collision> 

            <origin xyz="0 0 0.4" rpy="0 0 0"/> 

            <geometry> 

                <box size="0.05 0.05 0.8"/> 

            </geometry> 

       </collision> 

        <inertial> 

            <origin xyz="0 0 0.4" rpy="0 0 0"/> 

            <mass value="1"/> 
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            <inertia ixx="0.0535416666667" ixy="0.0" ixz="0.0" iyy="0.0535

416666667" iyz="0.0" izz="0.000416666666667"/> 

        </inertial> 

    </link> 

    <gazebo reference="bar_link"> 

        <kp>1000.0</kp> 

        <kd>1000.0</kd> 

        <mu1>0.5</mu1> 

        <mu2>0.5</mu2> 

        <material>Gazebo/Green</material> 

    </gazebo> 

 

    <link name="base_link"> 

        <visual> 

            <origin xyz="0 0 0.2" rpy="0 0 0"/> 

            <geometry> 

                <box size="0.4 0.2 0.2"/> 

            </geometry> 

            <material name="black"> 

                <color rgba="0 0 0 1.0"/> 

            </material> 

       </visual> 

        <collision> 

            <origin xyz="0 0 0.2" rpy="0 0 0"/> 

            <geometry> 

                <box size="0.4 0.2 0.2"/> 

            </geometry> 

       </collision> 

        <inertial> 

            <origin xyz="0 0 0.2" rpy="0 0 0"/> 

            <mass value="2.5"/> 

            <inertia ixx="0.0166666666667" ixy="0.0" ixz="0.0" iyy="0.0416

666666667" iyz="0.0" izz="0.0416666666667"/> 

        </inertial> 

    </link> 

    <gazebo reference="base_link"> 

        <kp>1000.0</kp> 

        <kd>1000.0</kd> 

        <mu1>0.5</mu1> 

        <mu2>0.5</mu2> 

        <material>Gazebo/Black</material> 

    </gazebo> 

 

    <link name="foot_link"> 

        <visual> 
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            <origin xyz="0 0 0.05" rpy="0 0 0"/> 

            <geometry> 

                <box size="6 0.025 0.1"/> 

            </geometry> 

            <material name="white"> 

                <color rgba="1 1 1 1.0"/> 

            </material> 

       </visual> 

        <collision> 

            <origin xyz="0 0 0.05" rpy="0 0 0"/> 

            <geometry> 

                <box size="6 0.025 0.1"/> 

            </geometry> 

       </collision> 

       <inertial> 

            <origin xyz="0 0 0.05" rpy="0 0 0"/> 

            <mass value="5"/> 

            <inertia ixx="0.00442708333333" ixy="0.0" ixz="0.0" iyy="15.00

41666667" iyz="0.0" izz="15.0002604167"/> 

        </inertial> 

    </link> 

    <gazebo reference="foot_link"> 

        <kp>1000.0</kp> 

        <kd>1000.0</kd> 

        <mu1>0.5</mu1> 

        <mu2>0.5</mu2> 

        <material>Gazebo/White</material> 

    </gazebo> 

 

     

<!-- * * * Joint Definitions * * * --> 

    <joint name="cartpole_joint" type="revolute"> 

        <parent link="base_link"/> 

        <child link="bar_link"/> 

        <origin xyz="0 0 0.32" rpy="0 0 0"/> 

        <dynamics damping="0.0" friction="0.1"/> 

        <limit lower="-1.57" upper="1.57" effort="1" velocity="100"/> 

        <axis xyz="0 1 0"/> 

    </joint> 

    <joint name="foot_joint" type="prismatic"> 

        <parent link="foot_link"/> 

        <child link="base_link"/> 

        <limit lower="-

2.0" upper="2.0" effort="2000000" velocity="100000"/> 
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    </joint> 

    <joint name="fixed" type="fixed"> 

        <parent link="world"/> 

        <child link="foot_link"/> 

    </joint> 

<link name="sensor_box"> 

        <inertial> 

            <origin xyz="0 0 0" rpy="0 0 0"/> 

            <mass value="0.01" /> 

            <inertia ixx="0.000001083" ixy="0.0" ixz="0.0" iyy="0.00000108

3" iyz="0.0" izz="0.0000015"/> 

        </inertial> 

        <collision> 

            <origin xyz="0 0 0" rpy="0 0 0"/> 

            <geometry> 

                <box size="0.1 0.1 0.08"/> 

            </geometry> 

        </collision> 

        <visual> 

          <geometry> 

              <box size="0.08 0.08 0.05"/> 

          </geometry> 

          <material name="red"> 

            <color rgba="1.0 0 0 1.0"/> 

          </material> 

        </visual> 

    </link> 

 

<joint name="sensor_joint" type="fixed"> 

        <parent link="bar_link"/> 

        <child link="sensor_box"/> 

        <origin xyz="0 0 0.81" rpy="0 0 0"/> 

        

</joint>   

 

    <gazebo reference="sensor_box"> 

    <kp>10000000</kp> 

    <kd>10000000</kd> 

    <mu1>10.0</mu1> 

    <mu2>10.0</mu2> 

    <material>Gazebo/Red</material> 

</gazebo> 

 

    <!-- IMU sensor --> 

    <gazebo> 



 

80 
 

        <plugin name="gazebo_ros_imu_controller" filename="libgazebo_ros_i

mu.so"> 

          <frameName>my-imu</frameName> 

          <robotNamespace>/cartpole_v0</robotNamespace> 

          <topicName>imu/data</topicName> 

          <serviceName>imu/service</serviceName> 

          <bodyName>sensor_box</bodyName> 

          <gaussianNoise>0</gaussianNoise> 

          <rpyOffsets>0 0 0</rpyOffsets> 

          <!--<updateRate>50.0</updateRate>--> 

          <alwaysOn>true</alwaysOn> 

          <gaussianNoise>0</gaussianNoise> 

        </plugin> 

    </gazebo> 

<!-- * * * Transmission Definitions * * * --> 

    <transmission name="pole_joint_trans"> 

      <type>transmission_interface/SimpleTransmission</type> 

      <joint name="cartpole_joint"> 

        <hardwareInterface>hardware_interface/EffortJointInterface</hardwa

reInterface> 

      </joint> 

      <actuator name="pole_jointMotor"> 

        <hardwareInterface>hardware_interface/EffortJointInterface</hardwa

reInterface> 

        <mechanicalReduction>1</mechanicalReduction> 

      </actuator> 

    </transmission> 

     

    <transmission name="foot_joint_trans"> 

      <type>transmission_interface/SimpleTransmission</type> 

      <joint name="foot_joint"> 

        <hardwareInterface>hardware_interface/EffortJointInterface</hardwa

reInterface> 

      </joint> 

      <actuator name="foot_jointMotor"> 

        <hardwareInterface>hardware_interface/EffortJointInterface</hardwa

reInterface> 

        <mechanicalReduction>1</mechanicalReduction> 

      </actuator> 

    </transmission> 

  

</robot> 
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Appendix B Single DoF Inverted Pendulum Launch Files 

This appendix is copy of all launch files, The main one is responsible to load other launch 

files, set the parameters and load controller of the single DoF inverted pendulum 

Main Launch File: 

<launch> 

    <!-- load controller configuration to the ros parameter server --> 

    <rosparam file="$(find cartpole_description)/config/cartpole_v0_veloci

ty.yaml" command="load"/> 

     

    <!-- launch the custom world --> 

    <include file="$(find gazebo_ros)/launch/empty_world.launch" > 

        <arg name="paused" value="True"/> 

        <!--arg name="use_sim_time" value="False" /--> 

        <arg name="world_name" value="$(find cartpole_description)/worlds/

cart_world.world"/> 

        <env name="GAZEBO_MODEL_PATH" value="$(find cartpole_description)/

models:$(optenv GAZEBO_MODEL_PATH)"/> 

    </include> 

    <!-- spawn the Cartpole_v0 construct --> 

    <include file="$(find cartpole_description)/launch/spawn_cartpole_v0.l

aunch"/> 

 

  <node name="robot_state_publisher_cartpole_v0" pkg="robot_state_publishe

r" type="robot_state_publisher" 

        respawn="false" output="screen"> 

            <param name="publish_frequency" type="double" value="5000.0" /

> 

            <param name="ignore_timestamp" type="bool" value="true" /> 

            <param name="tf_prefix" type="string" value="cartpole_v0" /> 

            <remap from="/joint_states" to="/cartpole_v0/joint_states" /> 

        </node> 

 

  <node name="controller_spawner" pkg="controller_manager" type="spawner" 

respawn="false" 

        output="screen" args="--namespace=/cartpole_v0 

                              joint_state_controller 

                              pole_joint_velocity_controller 

                              foot_joint_velocity_controller"> 

 

  </node> 

  </launch> 
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Spawner Launch file that is responsible to spawn model into the simulation world 

<launch> 

    <arg name="x" default="0.0" /> 

    <arg name="y" default="0.0" /> 

    <arg name="z" default="0.0" /> 

    <arg name="roll" default="0.0"/> 

    <arg name="pitch" default="0.0"/> 

    <arg name="yaw" default="0.0"/> 

 

    <!-- load controller configuration to the ros parameter server --> 

    <rosparam file="$(find cartpole_description)/config/cartpole_v0_veloci

ty.yaml" command="load"/> 

 

    <!-- spawn the Cartpole_v0 construct --> 

    <include file="$(find cartpole_description)/launch/spawn_cartpole_v0.l

aunch"> 

        <arg name="x" value="$(arg x)" /> 

        <arg name="y" value="$(arg y)" /> 

        <arg name="z" value="$(arg z)" /> 

        <arg name="roll" value="$(arg roll)"/> 

        <arg name="pitch" value="$(arg pitch)"/> 

        <arg name="yaw" value="$(arg yaw)" /> 

  </include> 

 

  <node name="robot_state_publisher_cartpole_v0" pkg="robot_state_publishe

r" type="robot_state_publisher" 

        respawn="false" output="screen"> 

            <param name="publish_frequency" type="double" value="5000.0" /

> 

            <param name="ignore_timestamp" type="bool" value="true" /> 

            <param name="tf_prefix" type="string" value="cartpole_v0" /> 

            <remap from="/joint_states" to="/cartpole_v0/joint_states" /> 

        </node> 

 

  <node name="controller_spawner" pkg="controller_manager" type="spawner" 

respawn="false" 

        output="screen" args="--namespace=/cartpole_v0 

                              joint_state_controller 

                              pole_joint_velocity_controller 

                              foot_joint_velocity_controller"> 

 

  </node> 

</launch> 
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Th Simulation world that is responsible to make the main simulation environment: 

<launch> 

    <!-- launch the custom world --> 

    <include file="$(find gazebo_ros)/launch/empty_world.launch" > 

        <arg name="paused" value="True"/> 

        <!--arg name="use_sim_time" value="False" /--> 

        <arg name="world_name" value="$(find cartpole_description)/worlds/

cart_world.world"/> 

        <env name="GAZEBO_MODEL_PATH" value="$(find cartpole_description)/

models:$(optenv GAZEBO_MODEL_PATH)"/> 

    </include> 

 

    <arg name="put_robot_in_world" default="false" /> 

    <arg name="put_robot_in_world_package" default="" /> 

    <arg name="put_robot_in_world_launch" default="" /> 

 

    <arg name="x" default="0.0" /> 

    <arg name="y" default="0.0" /> 

    <arg name="z" default="0.0" /> 

    <arg name="roll" default="0.0"/> 

    <arg name="pitch" default="0.0"/> 

    <arg name="yaw" default="0.0"/> 

 

    <group if="$(arg put_robot_in_world)"> 

        <include file="$(eval find(put_robot_in_world_package) + '/launch/

' + put_robot_in_world_launch)"> 

            <arg name="x" value="$(arg x)" /> 

            <arg name="y" value="$(arg y)" /> 

            <arg name="z" value="$(arg z)" /> 

            <arg name="roll" value="$(arg roll)"/> 

            <arg name="pitch" value="$(arg pitch)"/> 

            <arg name="yaw" value="$(arg yaw)" /> 

        </include> 

    </group> 

 

</launch> 
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Appendix C CHASSIS URDF 

This appendix shows the details of the URDF file for all chassis in the second study 

 

<?xml version="1.0" encoding="utf-8"  ?> 

<robot name="inv"> 

 

     

      <gazebo> 

        <plugin name="gazebo_ros_control" filename="libgazebo_ros_control.

so"> 

            <robotNamespace>/inv</robotNamespace> 

        </plugin> 

    </gazebo>  

 

<link name="world"/>   

 

<link name="foot_link"> 

    <visual> 

            <origin xyz="0 0 0.05" rpy="0 0 0"/> 

        <geometry> 

            <box size="6 6 0.1"/> 

        </geometry> 

        <material name="white"> 

            <color rgba="1 1 1 1.0"/> 

        </material> 

    </visual> 

    <collision> 

            <origin xyz="0 0 0.05" rpy="0 0 0"/> 

        <geometry> 

            <box size="6 6 0.1"/> 

        </geometry> 

    </collision> 

    <inertial> 

            <origin xyz="0 0 0.05" rpy="0 0 0"/> 

        <mass value="5"/> 

        <inertia ixx="15" ixy="0.0" ixz="0.0" iyy="15" iyz="0.0" izz="30"/

> 

    </inertial> 

</link> 

<gazebo reference="foot_link"> 

    <kp>100000.0</kp> 

    <kd>100000.0</kd> 
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    <mu1>0.5</mu1> 

    <mu2>0.5</mu2> 

    <material>Gazebo/Orange</material> 

</gazebo> 

    <joint name="f" type="fixed"> 

        <parent link="world"/> 

        <child link="foot_link"/> 

        <!-- <origin xyz="0 0 0.025" rpy="0 0 0"/> --> 

  </joint>  

 

<link name="link_chassis0"> 

 <visual> 

            <origin xyz="0 0 0.05" rpy="0 0 0"/> 

            <geometry> 

                <box size="0.4 5.5 0.1"/> 

            </geometry> 

            <material name="black"> 

                <color rgba="0 0 0 1.0"/> 

            </material> 

       </visual> 

        <collision> 

            <origin xyz="0 0 0.05" rpy="0 0 0"/> 

            <geometry> 

                <box size="0.4 5.5 0.1"/> 

            </geometry> 

       </collision> 

        <inertial> 

            <origin xyz="0 0 0.05" rpy="0 0 0"/> 

            <mass value="2.5"/> 

            <inertia ixx="6.304" ixy="0.0" ixz="0.0" iyy="0.03542" iyz="0.

0" izz="6.335"/> 

        </inertial> 

</link> 

 

<gazebo reference="link_chassis0"> 

    <kp>100000.0</kp> 

    <kd>100000.0</kd> 

    <mu1>0.5</mu1> 

    <mu2>0.5</mu2> 

     <material>Gazebo/Yellow</material> 

    <!-- <material>Gazebo/Orange</material> --> 

</gazebo> 
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<joint name="chassis0_prismatic_joint" type="prismatic"> 

  <parent link="foot_link"/> 

  <child link="link_chassis0"/> 

    <origin xyz="0 0 0.1" rpy="0 0 0"/> 

    <limit effort="200000" velocity="100000" lower="-2.5" upper="2.5"/> 

     <axis xyz="1 0 0"/>  

</joint> 

 

 

<link name="link_chassis1"> 

 <visual> 

            <origin xyz="0 0 0.05" rpy="0 0 0"/> 

            <geometry> 

                <box size="0.4 0.2 0.1"/> 

            </geometry> 

            <material name="black"> 

                <color rgba="0 0 0 1.0"/> 

            </material> 

       </visual> 

        <collision> 

            <origin xyz="0 0 0.05" rpy="0 0 0"/> 

            <geometry> 

                <box size="0.4 0.2 0.1"/> 

            </geometry> 

       </collision> 

        <inertial> 

            <origin xyz="0 0 0.05" rpy="0 0 0"/> 

            <mass value="2.5"/> 

            <inertia ixx="0.0166666666667" ixy="0.0" ixz="0.0" iyy="0.0416

666666667" iyz="0.0" izz="0.0416666666667"/> 

        </inertial> 

</link> 

 

<gazebo reference="link_chassis1"> 

    <kp>100000.0</kp> 

    <kd>100000.0</kd> 

    <mu1>0.5</mu1> 

    <mu2>0.5</mu2> 

     <material>Gazebo/Black</material> 

    <!-- <material>Gazebo/Orange</material> --> 

</gazebo> 

 

<joint name="chassis1_prismatic_joint" type="prismatic"> 



 

87 
 

  <parent link="link_chassis0"/> 

  <child link="link_chassis1"/> 

    <origin xyz="0 0 0.1" rpy="0 0 0"/> 

    <limit effort="200000" velocity="100000" lower="-2.5" upper="2.5"/> 

     <axis xyz="0 1 0"/>  

</joint> 

 

<link name="link_chassis2"> 

 <visual> 

            <origin xyz="0 0 0.05" rpy="0 0 0"/> 

            <geometry> 

                <box size="0.4 0.2 0.1"/> 

            </geometry> 

            <material name="gray"> 

                <color rgba="0 0 0 1.0"/> 

            </material> 

       </visual> 

        <collision> 

            <origin xyz="0 0 0.05" rpy="0 0 0"/> 

            <geometry> 

                <box size="0.4 0.2 0.1"/> 

            </geometry> 

       </collision> 

        <inertial> 

            <origin xyz="0 0 0.05" rpy="0 0 0"/> 

            <mass value="2.5"/> 

            <inertia ixx="0.0166666666667" ixy="0.0" ixz="0.0" iyy="0.0416

666666667" iyz="0.0" izz="0.0416666666667"/> 

        </inertial> 

</link> 

 

<gazebo reference="link_chassis2"> 

    <kp>100000.0</kp> 

    <kd>100000.0</kd> 

    <mu1>0.5</mu1> 

    <mu2>0.5</mu2> 

     <material>Gazebo/Gray</material> 

    <!-- <material>Gazebo/Orange</material> --> 

</gazebo> 

 

<joint name="chassis2_continuous_joint" type="continuous"> 

  <parent link="link_chassis1"/> 

  <child link="link_chassis2"/> 

    <origin xyz="0 0 0.1" rpy="0 0 0"/> 
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    <axis xyz="0 0 1"/> 

</joint> 

 

<link name="base_bearing"> 

   <contact> 

    <rolling_friction value="0.005"/> 

    <spinning_friction value="0.005"/> 

  </contact>  

  <inertial> 

    <origin rpy="0 0 0" xyz="0 0 0"/> 

    <mass value="0.17"/> 

    <inertia ixx="0.0000491866666667" ixy="0" ixz="0" iyy="0.0000491866666

667" iyz="0" izz="0.00008704"/> 

  </inertial> 

  <visual> 

    <origin rpy="0 0 0" xyz="0 0 0"/> 

    <geometry> 

        <mesh filename="package://cart_inv_pendulum/meshes/inverted_pendul

um/base.dae" scale="1 1 1"/> 

    </geometry> 

    <material name="green"> 

      <color rgba="0 1 0 1"/> 

    </material> 

  </visual> 

  <collision> 

    <origin rpy="0 0 0" xyz="0 0 0"/> 

    <geometry> 

        <mesh filename="package://cart_inv_pendulum/meshes/inverted_pendul

um/base.dae" scale="1 1 1"/> 

    </geometry> 

  </collision> 

</link> 

<gazebo reference="base_bearing"> 

    <kp>1000000.0</kp> 

    <kd>1000000.0</kd> 

    <mu1>0.5</mu1> 

    <mu2>0.5</mu2> 

    <material>Gazebo/Blue</material> 

</gazebo> 

 

 

<joint name="base_chassis_joint" type="fixed"> 

    <parent link="link_chassis2" /> 
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    <child link = "base_bearing" /> 

    <origin rpy="0 0 0" xyz="0.0 0 0.105" /> 

     

</joint> 

 

<link name="ball"> 

  <contact> 

    <rolling_friction value="0.005"/> 

    <spinning_friction value="0.005"/> 

  </contact> 

  <inertial> 

    <origin rpy="0 0 0" xyz="0 0 0"/> 

    <mass value="0.17"/> 

    <inertia ixx="0.00005883" ixy="0" ixz="0" iyy="0.00005883" iyz="0" izz

="0.00001224"/> 

  </inertial> 

  <visual> 

    <origin rpy="0 0 0" xyz="0 0 0"/> 

    <geometry> 

        <mesh filename="package://cart_inv_pendulum/meshes/inverted_pendul

um/ball3.dae" scale="1 1 1"/> 

    </geometry> 

    <material name="red"> 

      <color rgba="1 0 0 1"/> 

    </material> 

  </visual> 

  <collision> 

    <origin rpy="0 0 0" xyz="0 0 0"/> 

    <geometry> 

        <mesh filename="package://cart_inv_pendulum/meshes/inverted_pendul

um/ball3.dae" scale="1 1 1"/> 

    </geometry> 

  </collision> 

</link> 

 

<gazebo reference="ball"> 

    <kp>10000000</kp> 

    <kd>10000000</kd> 

    <mu1>0.5</mu1> 

    <mu2>0.5</mu2> 

    <material>Gazebo/Green</material> 

</gazebo> 

 

<joint name="base_bearing_ball" type="revolute"> 
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        <parent link="base_bearing"/> 

        <child link="ball"/> 

        <origin xyz="0.0023 0 -0.0005" rpy="0 0 0"/> 

        <dynamics damping="0.0" friction="0.1"/> 

        <limit lower="-1.46" upper="1.46" effort="1" velocity="100"/> 

        <axis xyz="1 1 1"/> 

</joint> 

 

<link name="pole"> 

  <contact> 

    <rolling_friction value="0.005"/> 

    <spinning_friction value="0.005"/> 

  </contact> 

  <inertial> 

    <origin rpy="0 0 0" xyz="0 0 0"/> 

    <mass value="2.5"/> 

    <inertia ixx="0.0833639583333333" ixy="0" ixz="0" iyy="0.0833639583333

333" iyz="0" izz="0.00006125"/> 

  </inertial> 

  <visual> 

    <origin rpy="0 0 1.57" xyz="0 0 0.015"/> 

    <geometry> 

         <cylinder radius="0.007" length="0.4"/> 

    </geometry> 

    <material name="green"> 

      <color rgba="0 1 0 1"/> 

    </material> 

  </visual> 

  <collision> 

     

    <origin rpy="0 0 1.57" xyz="0 0 0.015"/> 

    <geometry> 

         <cylinder radius="0.007" length="0.4"/> 

    </geometry> 

  </collision> 

</link> 

<gazebo reference="pole"> 

    <kp>1000</kp> 

    <kd>1000</kd> 

    <mu1>0.5</mu1> 

    <mu2>0.5</mu2> 

    <material>Gazebo/Green</material> 

</gazebo> 

<joint name="ball_pole" type="fixed"> 

        <parent link="ball"/> 
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        <child link="pole"/> 

        <origin xyz="0 0 0.217" rpy="0 0 0"/> 

        

</joint> 

 

 <link name="sensor_box"> 

        <inertial> 

            <origin xyz="0 0 0" rpy="0 0 0"/> 

            <mass value="0.01" /> 

            <inertia ixx="0.000001083" ixy="0.0" ixz="0.0" iyy="0.00000108

3" iyz="0.0" izz="0.0000015"/> 

        </inertial> 

        <collision> 

            <origin xyz="0 0 0" rpy="0 0 0"/> 

            <geometry> 

                <box size="0.03 0.03 0.02"/> 

            </geometry> 

        </collision> 

        <visual> 

          <geometry> 

              <box size="0.05 0.03 0.02"/> 

          </geometry> 

          <material name="red"> 

            <color rgba="1.0 0 0 1.0"/> 

          </material> 

        </visual> 

    </link> 

<gazebo reference="sensor_box"> 

    <kp>10000000</kp> 

    <kd>10000000</kd> 

    <mu1>0.5</mu1> 

    <mu2>0.5</mu2> 

    <material>Gazebo/Red</material> 

</gazebo> 

<joint name="sensor_joint" type="fixed"> 

        <parent link="pole"/> 

        <child link="sensor_box"/> 

        <origin xyz="0 0 0.21" rpy="0 0 0"/> 

        

</joint>    

 

    <!-- IMU sensor --> 

    <gazebo> 
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        <plugin name="gazebo_ros_imu_controller" filename="libgazebo_ros_i

mu.so"> 

          <robotNamespace>/mpu6050</robotNamespace> 

          <topicName>imu/data</topicName> 

          <serviceName>imu/service</serviceName> 

          <bodyName>sensor_box</bodyName> 

          <gaussianNoise>0</gaussianNoise> 

          <rpyOffsets>0 0 0</rpyOffsets> 

          <!--<updateRate>50.0</updateRate>--> 

          <alwaysOn>true</alwaysOn> 

          <gaussianNoise>0</gaussianNoise> 

        </plugin> 

    </gazebo> 

 

    <transmission name="pole_joint_trans"> 

      <type>transmission_interface/SimpleTransmission</type> 

      <joint name="base_bearing_ball"> 

        <hardwareInterface>hardware_interface/EffortJointInterface</hardwa

reInterface> 

      </joint> 

      <actuator name="pole_jointMotor"> 

        <hardwareInterface>hardware_interface/EffortJointInterface</hardwa

reInterface> 

        <mechanicalReduction>1</mechanicalReduction> 

      </actuator> 

    </transmission> 

 

 

<transmission name="chassis0_prismatic_trans"> 

        <type>transmission_interface/SimpleTransmission</type> 

        <joint name="chassis0_prismatic_joint"> 

            <hardwareInterface>hardware_interface/EffortJointInterface</ha

rdwareInterface> 

        </joint> 

        <actuator name="motor0"> 

            <hardwareInterface>hardware_interface/EffortJointInterface</ha

rdwareInterface> 

            <mechanicalReduction>1</mechanicalReduction> 

        </actuator> 

    </transmission> 

   

 

    <transmission name="chassis1_prismatic_trans"> 

        <type>transmission_interface/SimpleTransmission</type> 
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        <joint name="chassis1_prismatic_joint"> 

            <hardwareInterface>hardware_interface/EffortJointInterface</ha

rdwareInterface> 

        </joint> 

        <actuator name="motor2"> 

            <hardwareInterface>hardware_interface/EffortJointInterface</ha

rdwareInterface> 

            <mechanicalReduction>1</mechanicalReduction> 

        </actuator> 

    </transmission> 

   

  <transmission name="chassis2_continuous_trans">  

        <type>transmission_interface/SimpleTransmission</type> 

        <joint name="chassis2_continuous_joint"> 

            <hardwareInterface>hardware_interface/EffortJointInterface</ha

rdwareInterface> 

        </joint> 

        <actuator name="motor3"> 

            <hardwareInterface>hardware_interface/EffortJointInterface</ha

rdwareInterface> 

            <mechanicalReduction>1</mechanicalReduction> 

        </actuator> 

    </transmission> 

 

 

</robot> 
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Appendix D Technical Drawing of ball joint 

This appendix shows the details of the URDF file for all chassis in the second study 
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