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ABSTRACT

In the next 10 to 50 years, the quantum computer is expected to be available

and quantum computing has the potential to defeat RSA (Rivest-Shamir-Adleman

Cryptosystem) and ECC (Elliptic Curve Cryptosystem). Therefore there is an urgent

need to do research on post-quantum cryptography and its implementation.

In this thesis, four new Truncated Polynomial Multipliers (TPM), namely, TPM-I,

TPM-II, TPM-III, and TPM-IV for NTRU Prime system are proposed. To the best of

our knowledge, this is the first time to focus on time-efficient hardware architectures

and implementation of NTRU Prime with FPGA.

TPM-I uses a modified linear feedback shift register (LFSR) based architecture for

NTRU prime system. TPM-II makes use of x2-net structure for NTRU Prime system,

which scans two consecutive coefficients in the control input polynomial r(x) in one

clock cycle. In TPM-III and TPM-IV, three consecutive zeros and consecutive zeros

in the control input polynomial r(x) are scanned during one clock cycle, respectively.

FPGA implementation results are obtained for the four proposed polynomial mul-

tiplication architectures and a comparison between the proposed multiplier FPGA

results for NTRU Prime system and the existing work on NTRUEncrypt is shown.

Regarding space complexity, TPM-I can reduce the area consumption with the

least logical elements, although it takes more latency time among the four proposed

multipliers and NTRUEncrypt work [12]. TPM-II has the best performance of la-

tency with parameter sets ees401ep1, ees449ep1, ees677ep1 in security levels: 112-bit,

128-bit, and 192-bit, respectively. TPM-IV uses the smallest latency time with the

parameter set ees1087ep2 in security level 256, compared to the other three latency

time of proposed multipliers. Both TPM-II and TPM-IV have a lower latency time

compared to NTRUEncrypt work [12] in different security levels. Note that NTRU

Prime has enhanced security in comparison with NTRUEncrypt due to the fact, the

former uses a new truncated polynomial ring, which has a more secure structure.
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1 INTRODUCTION

1.1 Motivation

Internet brings great convenience and wonderful services to people, like social media,

online shopping, and online banking. At any given moment, millions of internet

users are sharing their personal information and confidential data via the internet.

Therefore, network security should never be neglected.

To safeguard confidential data stored in a computer or transmitted over the net-

work from being modified by hackers with malicious purpose, certain cybersecurity

measures must be adopted and implemented. Among a wide range of technologies

to provide network security, cryptography is probably the most effective and popular

one to ensure data confidentiality and integrity.

Modern cryptography technology can be divided into two types: symmetrical-

key cryptosystem and asymmetrical-key cryptosystem. Smmetrical-key cryptosys-

tem requires to encrypt and decrypt messages with the same shared keys. However,

asymmetrical-key cryptosystem (also called public-key cryptosystem) requires two

separate keys: a public key to encrypt messages, which is known to everyone, and a

private key to decrypt messages only known to the receiver. RSA and elliptic curve

cryptosystem (ECC) are currently two frequently used public-key cryptosystems.

A quantum computer is a machine that can execute mathematical operations,

store and process information at a much faster speed, which will transcend all elec-

tronics based computers. It is shown that the security of RSA and ECC can be

compromised by Shor’s algorithm running on a quantum computer [4]. As quan-

tum computers are expected to be practically available in the next 10 to 50 years, it

is necessary for us to study cryptographic technologies that will still be secure un-

der the attacks launched from quantum computers. This area of research is called

post-quantum cryptography [5].
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Currently, post-quantum cryptography research focuses on several approaches and

there are code-based cryptography, hash-based cryptography, multivariate cryptog-

raphy, and lattice-based cryptography. One of the most popular research areas of

post-quantum cryptography is lattice-based cryptography, which relies on the worst-

case hardness of lattice problems. One popular example of lattice-based systems is

NTRU, which is Nth Degree Truncated Polynomial Ring Unit. It is probably the

most practical and widely researched one among all the existing post-quantum cryp-

tosystems [1].

NTRU includes two algorithms: NTRUEncrypt, which is used for encryption,

and NTRUSign, which is used for digital signature. NTRUEncrypt is the encryp-

tion scheme of NTRU system, which was firstly developed by Hoffstein, Pipher, and

Silverman from Brown University in 1996 [6]. NTRU has been adopted by IEEE

P1363.1 standards under the specifications for lattice-based public-key cryptography

since 2009 [1]. The security of NTRU encryption has been reasonably-well understood

and scrutinized for decades. In the area of post-quantum cryptography, NTRU and

its efficient implementations have become a well-known research topic.

To facilitate the development of new quantum-safe and practical schemes, the

National Institute of Standards and Technology (NIST) has initiated a contest for

a standard with the aim to replace current schemes that are vulnerable to attack

by quantum computers. After the first 2 rounds of the contest, two NTRU based

schemes were among the finalists, which includes NTRUEncrypt system and NTRU

prime system [21]. NTRU Prime system was first proposed by D. J. Bernstein in 2017,

which was similar to NTRUEncrypt system [5]. It is a variant and security-enhanced

version of the NTRUEncrypt cryptosystem and comes with a couple of tweaks to

minimize the attack surface.

There are two public-key cryptosystems included in NTRU Prime, one is stream-

lined NTRU Prime, the other is NTRU LPRime. Streamlined NTRU Prime is a

2



lattice-based cryptosystem and considered to be resistant to quantum attacks. NTRU

LPRime can be considered as Ring Learning with Rounding (RLWR) which has only

one secret random variable generated in key generation and encapsulation steps. Both

of them are designed for the IND-CCA2 (cipher chosen attack) security standard,

which is regarded as the strongest as well as the best security level against a range of

real-world attacks on the internet [7].

1.2 A Summary of Contributions

In this thesis, several time-efficient multiplication architectures for Streamlined NTRU

Prime system are proposed, aiming to reduce latency time and speed up the system.

Their FPGA simulations are performed and its FPGA implementation results are

given. Note that efficiency is based on time-domain and best works are related to the

latency comparisons between four proposed works. To the best of our knowledge, it

is the first time that NTRU Prime system has been implemented in FPGA.

The main contribution includes four time-efficient multiplication architectures for

NTRU Prime and their FPGA implementation results. The four proposed multipliers

are named TPM-I, TPM-II, TPM-III, and TPM-IV. The details can be summarized

as follows:

• TPM-I is a linear feedback shift register (LFSR) based architecture for NTRU

prime system. TPM-II uses a high-speed arithmetic unit to perform modular poly-

nomial multiplication required in NTRU prime system. TPM-III takes advantage

of three consecutive zeros in polynomial coefficients from the input polynomial r(x).

TPM-IV takes advantage of consecutive zeros in polynomial coefficients by recoding

the polynomial input r(x). Compared to the four proposed architectures with each

other, it can be seen that TPM-II and TPM-IV have the best performance of latency.

While TPM-I uses the least area resources with the fewer logical modules, which

includes the number of ALMs and registers, at the expense of longer latency.

3



• When compared to the existing work on FPGA implementations of NTRU-

Encrypt systems, our proposed FPGA implementations have certain advantages on

latency over the best existing latency work on NTRUEncrypt. For example, the pro-

posed TPM-II has latency by 1.19 %, 5.4% and 3.5%, when compared to the existing

FPGA implementation results on NTRUEncrypt, which has the lowest latency time

with parameter sets ees401ep1, ees449ep1 and ees677ep1, respectively [12]. Note that

the parameter sets ees401ep1, ees449ep1 and ees677ep1 are corresponding to secu-

rity level 112, 128 and 192, respectively [1]. The proposed TPM-IV has the smallest

latency compared to the existing result on NTRUEncrypt system with the param-

eter set ees1087ep2 (in security level 256). In fact, for ees1087ep2, TPM-IV takes

advantage of the smaller latency time than NTRUEncrypt work [12] by 21.4%. In

addition, TPM-I has a smaller number of ALMs and registers but higher latency than

all existing NTRUEncrypt works,

Note that more comparisons of FPGA results of proposed NTRU Prime multipliers

with existing works on NTRUEncrypt are provided in Appendix A.

1.3 Thesis Organization

An organization of the rest of the thesis is shown as follows. In Chapter 2, mathe-

matical background and review fundamentals of NTRU Prime system are introduced.

The mathematical basics, such like truncated polynomial ring and modular arithmetic

of the ring are covered. In addition, recommended parameter sets of NTRU Prime

scheme are explained. In Chapter 3, a brief overview of existing works is given.

Chapter 4 presents one new hardware architecture based on LFSR for NTRU prime

with FPGA implementation results. Chapter 5 shows three new multiplier architec-

tures and compares their FPGA results with similar existing works. In Chapter 6,

conclusions are given and possible future works are discussed.
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2 MATHEMATICAL PRIMITIVES

In this chapter, the mathematical background of NTRU based system is introduced

firstly, then the definition of truncated polynomial ring and NTRU system are shown,

which includes the key generation, encryption, and decryption algorithms. NTRU

prime system, as well as the parameter selection for NTRU prime cryptosystem, are

covered. Then it shows the mathematical background of NTRU prime cryptosystem,

which includes key generation, encryption, decryption and parameter selection.

2.1 Group

Group and ring are two important abstract algebraic concepts to understand the

cryptosystem, like NTRU and NTRU prime. Firstly, a brief introduction to group

will be given.

In mathematics, a group is a set equipped with a binary operation that combines

any two elements to form a third element in such a way that four conditions called

group axioms are satisfied, namely closure, associativity, identity, and invertibility.

The concept of a group arose from the study of polynomial equations, starting with

Evariste Galois in the 1830s, who introduced the term of group for the symmetry

group of the roots of an equation, now called a Galois group [16].

Defination 2.1.1 A group is a set G together with a binary operation ∗ on G such

that:

1. Binary operator is closure, for all a, b ∈ G,

a ∗ b ∈ G.

2. Binary operator is associative, for all a, b, c ∈ G,

(a ∗ b) ∗ c = a ∗ (b ∗ c).
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3. There is an identity element, for all a ∈ G,

e ∗ a = a ∗ e = a.

4. For all a ∈ G, there exists an inverse element a−1 ∈ G such that,

a ∗ a−1 = a−1 ∗ a = e.

A group is called abelian or commutative if it satisfies for all a, b ∈ G, a∗ b = b∗a,

which are named after early 19th-century mathematician Niels Henrik Abel.

In mathematics, a semigroup is an algebraic structure consisting of a set together

with a binary operation, which only satisfies conditions closure and associative, but

not identity or inverse. Note that a group must be a semigroup, but a semigroup is

not necessarily a group [16].

2.2 Ring

In mathematics, a ring is one of the fundamental algebraic structures used in abstract

algebra. Two binary operations are defined in a ring, which is named as addition and

multiplication. Through this generalization, theorems from arithmetic are extended

to non-numerical objects, like polynomials, series, matrices, and functions. The con-

ceptualization of rings began in the 1870s and was completed in the 1920s. Key

contributors include Dedekind, Hilbert, Fraenkel, and Noether [17].

Defination 2.2.1 A ring is a set R together with two binary operations + and · that

satisfy the following properties:

Defination 2.2.2 R is an abelian group under addition +, which satisfies the fol-

lowing properities:

1. Operation + is associative, for all a, b, c ∈ R,
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(a+ b) + c = a+ (b+ c);

2. Operation + is commutative, for all a, b ∈ R,

a+ b = b+ a;

3. There is an identity element 0 ∈ R, for all a ∈ R,

0+a = a+0 = a.

Defination 2.2.3 R is a monoid under multiplication ·, meaning that:

1. Operation · is associative, for all a, b, c ∈ R,

(a · b) · c = a · (b · c);

2. There is a multiplicative identity element 1 ∈ R, for all a ∈ R,

1 · a = a · 1 = a.

Defination 2.2.4 Multiplication · is distributive with respect to addition +, which

satisfies the following properities:

1. Operation is left distributivity, for all a, b, c ∈ R,

a · (b+ c) = a · b+ a · c.

2. Operation is left distributivity, for all a, b, c ∈ R,

(b+ c) · a = b · a+ c · a
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2.3 Truncated Polynomial Ring

The orginal NTRU is a lattice-based cryptosystem, which is called Nth Degree Trun-

cated Polynomial Ring Unit and it uses a ring denoted by R = Zq[x]/(xn− 1), where

n is a prime number [3]. Zq[x] is the set of polynomials modulo xn−1 with integer co-

efficients and taken modulo q. Arithmetic operations on R = Zq[x]/(xn− 1) includes

addition and multiplication, which are discussed in the following two subsections.

2.3.1 Addition

Let a(x), b(x) ∈ R be given as

a(x) = an−1x
n−1 + an−2x

n−2 + · · ·+ a0 (1)

b(x) = bn−1x
n−1 + bn−2x

n−2 + · · ·+ b0 (2)

Note that ai ∈ {0, 1, . . . , q−1} and bi ∈ {0, 1, . . . , q−1}.

Addition operation a(x) and b(x) can be performed by simply adding their coef-

ficients.

a(x) + b(x) , c(x) = cn−1x
n−1 + cn−2x

n−2 + · · ·+ c0 (3)

where

ci = ai + bi mod q, i = 0, 1, · · · , n− 1 (4)

2.3.2 Multiplication

Let a(x), b(x) ∈ R be given as in (1), (2):

a(x) · b(x) , d(x) = dn−1x
n−1 + dn−2x

n−2 + · · ·+ d0 (5)
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where

dk =
∑

i,j=0,1,...,n−1
i+j mod n=k

aibj, k = 0, 1, . . . , n− 1 (6)

The operations in NTRU based system works in the truncated polynomial field R

modulo q, which means that all polynomial coefficients should be from integer set {0,

1, . . . , q− 1}. Every coefficient in the polynomial should modulo q, which is denoted

by Rq = Zq[x]/(xn − 1).

2.3.3 An example of truncated polynomial ring arithmetic

Let n = 3, q = 4 in Rq = Zq[x]/(xn − 1) and let a(x), b(x) ∈ Rq, be given as follows:

a(x) = x2 + 3 (7)

b(x) = x2 − 3x (8)

Then, addition and multiplication operations between a(x) and b(x) can be shown

as:

a(x) + b(x) = x2 + 3 + (x2 − 3x) mod q

= 2x2 − 3x+ 3 mod 4

= 2x2 + x+ 3 (9)

a(x)× b(x) = a(x)× b(x) = (x2 + 3)× (x2 − 3x) mod q mod xn − 1

= x4 − 3x3 + 3x2 − 9x mod 4 mod x3 − 1

= 3x2 + 1 (10)
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2.4 NTRUEncrypt Cryptosystem

An overview of NTRUEncrypt cryptosystem is given in this section.The cryptosystem

includes three parts: parameter selection, key generation, encryption and decryption

operation.

2.4.1 Parameter Selection

Primarily, the NTRUEncrypt system is made up of three integer parameters n, p and

q. n is a prime number to define the degree of the truncated polynomials in R. p

and q must be relatively prime where q >> p. In addition, three integer parameters

df , dg and dr are selected to determine three sets Lf , Lg and Lr, which are n − 1

degree [3]. In order to describe all three polynomial sets, we uses L(d1, d2), which

means the polynomial in L(d1, d2) has d1 coefficients equal to 1, d2 coefficients equal

to −1 and the rest coefficients equal to 0. To go a step further, we get

Lf = L(df , df − 1), Lg = L(dg, dg), Lr = L(dr, dr) (11)

A parameter generation algorithm for NTRU system was proposed in [3], which

is shown in Algorithm 2.1. It uses security level k as the input, which represents

security strength, and then outputs a parameter set of n and df . There are two

functions that are used in the algorithm. One is hybridSecurityEstimate (n, df ),

in order to estimate the minimal security over all attack strategies on the parameter

sets, another one is used to estimate the chance of decryption failure on the parameter

sets, which called decryptionFailureProb (n, df ).
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Algorithm 2.1 Parameter Generation Function for NTRUEncrypt [3]

Input: Security Level, k
Output: Parameter Set (n, df )

1: i ← 1 {The variable i is used to index the set of acceptable primes P}
2: i∗ ← 0 {This will become the first index which can achieve the required security}
3: repeat
4: n ← Pi

5: df ← [n/3] {We will try each df from [n/3] down to 1}
6: repeat
7: k1 ← hybridSecurityEstimate (n, df )
8: k2 ← log2 (decryptionFailureProb (n, df ))
9: if (k1 ≥ k and k2 < −k) then

10: (i∗, d∗f ) ← (i, df ) {Record the first acceptable index i and the value of df}
11: end if
12: df ← df−1
13: until i∗ > 0 or df < 1
14: i ← i + 1
15: until i∗ > 0
16: c∗ ← cost(Pi∗ , df )
17: while an increase in N can potentially lower the cost do do
18: n ← P〉
19: df ← d∗f {Note that when n increases the cost must be worse for all df ≥ d∗f ,

and that the decryption failure probability is decreased both by an increase in
n and a decrease in df }

20: repeat
21: k1 ← hybridSecurityEstimate(n, df )
22: c ← cost(n, df )
23: if (k1 ≥ k and c < c∗) then
24: (c∗, i∗, df )← (c, i, df ) {Record the cost improvement, corresponding i, df }
25: end if
26: df ← df − 1
27: until df ← df < 0
28: i← i+ 1
29: return (Pi∗ , d∗f )
30: end while
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Table 2.1 shows recommended parameter sets for NTRUEncrypt system, which is

provided by [4]. It can be seen that there are four security levels and each of them

has three parameter sets. The parameter q is set to 2048, which is in the form of 2n

aims to achieve a higher security level. Because two parameters p and q are relatively

prime and p << q, 3 is selected to be the smallest odd prime number as p. Note that

df and dr have the same value. Also, n is the parameter that can define the security

level of this system [3]. Then, the recommended parameter sets from Table 2.1 will

be utilized in the four proposed works’ computation.

Table 2.1: Recommended Parameters for NTRUEncrypt [1]

Security
Level

Parameter
sets

n p q df dg dr

112
ees401ep1 401 3 2048 113 133 113
ees541ep1 541 3 2048 49 180 49
ees659ep1 659 3 2048 38 219 38

128
ees449ep1 449 3 2048 134 149 134
ees613ep1 613 3 2048 55 204 55
ees761ep1 761 3 2048 42 253 42

192
ees677ep1 677 3 2048 157 225 157
ees887ep1 887 3 2048 81 259 81
ees1087ep1 1087 3 2048 63 362 63

256
ees1087ep2 1087 3 2048 120 367 120
ees1171ep1 1171 3 2048 106 390 106
ees1499ep1 1499 3 2048 79 499 79

2.4.2 Key Generation

The key generation process is given below:

Step 1: Randomly choose a polynomial f(x) from the polynomial set Lf , which is

invertible in Rq and Rp.

Step 2: Randomly choose a polynomial g(x) from the polynomial set Lg.

Step 3: Calculate fq and fp which are the inverse of polynomial f(x) mod q and f(x)

mod p.
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Step 4: Compute h(x) = p · fq(x)× g(x) mod q.

Then the public key h(x) and the corresponding private key pair (f(x), fp(x)) of the

system can be obtained.

2.4.3 Encryption

Step 1: Encode the messagem into a polynomialm(x) with coefficients from {−1, 0, 1}.

Step 2: Randomly choose a polynomials r(x) from the polynomial set Lr.

Step 3: Encrypt message by performing e(x) = h(x)×r(x)+m(x) mod q mod xn−1.

Note that e(x) is the ciphertext sent to the receiver.

2.4.4 Decryption

After receiving the encrypted message e(x) from the sender.

Step 1: Compute a(x) = f(x)× e(x) mod q.

Step 2: Shift coefficients of a(x) from [0, q − 1]to the range [−q
2
,
q

2
].

Step 3: Compute m(x) = fp(x)× a(x) mod p

Note that m(x) is the plaintext sent from the sender.

2.5 Streamlined NTRU prime system

Streamlined NTRU prime system is defined over a special algebraic structure, which is

denoted by R = Zq[x]/(xn−x−1), where n and q are prime numbers. In this notation,

Zq[x] denotes the set of polynomials modulo xn − x− 1 with integer coefficients and

taken modulo q. It can be seen that the set of R contains all the polynomials with

integer coefficients of degree up to n− 1. Arithmetic operations on Rq = Zq[x]/(xn−

x− 1) includes addition and multiplication, which are discussed in the following two

subsections.
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2.5.1 Addition

Let a(x), b(x) ∈ R be given as

a(x) = an−1x
n−1 + an−2x

n−2 + · · ·+ a0 (12)

b(x) = bn−1x
n−1 + bn−2x

n−2 + · · ·+ b0 (13)

Note that ai ∈ {0, 1, . . . , q−1} and bi ∈ {0, 1, . . . , q−1}.

Addition operation a(x) and b(x) can be performed by simply adding their coef-

ficients.

a(x) + b(x) , c(x) = cn−1x
n−1 + cn−2x

n−2 + · · ·+ c0 (14)

where

ci = ai + bi mod q, i = 0, 1, · · · , n− 1 (15)

2.5.2 Multiplication

Let a(x), b(x) ∈ R be given as in (12), (13):

a(x) · b(x) , d(x) = dn−1x
n−1 + dn−2x

n−2 + · · ·+ d0 (16)

where

dk =
∑

i,j=0,1,...,n−1
i+j mod n=k

aibj, k = 0, 1, . . . , n− 1 (17)

The operations in NTRU based system works in the truncated polynomial field R

modulo q, which means that all polynomial coefficients should be from integer set {0,

1, . . . , q− 1}. Every coefficient in the polynomial should modulo q, which is denoted

by Rq = Z[x]/(xn − x− 1).
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2.5.3 An example of truncated polynomial ring arithmetic

Let n = 3, q = 5 in Rq = Zq[x]/(xn − x − 1) and let a(x), b(x) ∈ Rq, be given as

follows:

a(x) = 3x2 + 2 (18)

b(x) = x2 − x (19)

Then, addition and multiplication operations between a(x) and b(x) can be shown

as:

a(x) + b(x) = 3x2 + 2 + (x2 − x) mod q

= 4x2 − x+ 2 mod 5

= 4x2 + 4x+ 2 (20)

a(x)× b(x) = a(x)× b(x) = (3x2 + 2)× (x2 − x) mod q mod xn − x− 1

= 3x4 − 3x3 + 2x2 − 2x mod 5 mod x3 − x− 1

= 3x+ 2 (21)

In addition, Streamlined NTRU prime cryptosystem includes totally four parts:

parameter selection, key generation, encryption, and decryption. Each part is dis-

cussed in this section in detail.

2.5.4 Parameter Selection

Basically, Streamlined NTRU prime encryption is a parameterized cryptosystem

where the truncated polynomial ring R is determined by three integer parameters
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n, q and t. n is a prime number which defines the degree of truncated polynomials

in R. Furthermore, q is a prime number and t is a positive integer, there are some

ranges between these parameters t ≥ 1, n ≥ 3t, q ≥ 32t + 1.

Table 2.2 shows a subset of recommended parameter sets for streamlined NTRU

prime encryption system, which can get from [8]. The multiple parameter sets with

three security levels for streamlined NTRU prime encryption systems are considered

to be secure to resist attacks. Note that q is a prime number to allow highly efficient

computation of the modular operation.

Table 2.2: Recommended Parameters for NTRU Prime [8]

Security
Level

Parameter
sets

n q t

112
ees541ep1 541 2297 71
ees659ep1 659 2137 66

128
ees613ep1 613 1459 45
ees761ep1 761 1619 50

192
ees677ep1 677 3251 101
ees887ep1 887 13007 295

2.5.5 Key generation

The steps of key generation are shown as follows:

Step 1: Generate a uniform randon small element g(x) = gp−1x
p−1 + · · ·+ g0 with gi

∈ {−1,0,1}, g ∈ R

3
.

Step 2: Generate a uniform random t-small element f(x).

Step 3: Compute public key h(x) =
g

3f
in
R

q
. (By assumption q is a prime >> 3, so

3 is invertible in
R

q
.)

Step 4: Private key is f(x) in R and
1

g
∈ R

3
.

Note that each element of Zq is traditionally encoded as [log2q] bits.
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2.5.6 Encryption

Step 1: Decode the public key h(x) and obtain h(x) ∈ Rq.

Step 2: Pick a random t-small polynomial r(x) ∈ Rq and hash r to obtain the session

key K.

Step 3: Obtain e(x) ∈ R by rounding each coefficient of (h(x) × r(x) in Rq) to the

nearest multiple of 3, and set e(x) as the ciphertext.

2.5.7 Decryption

Step 1: Obtain a(x) = 3× f(x)× e(x) mod q.

Step 2: Hash a(x) to obtain the session key K.
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3 AN OVERVIEW OF EXISTING WORKS

Since NTRUEncrypt cryptosystem was first proposed by J. Hoffstein et al. in 1996 [6],

it has become one of the most important and effective researched areas in the past

twenty years compared with other popular public-key cryptosystems, like RSA and

ECC. Streamlined NTRU prime cryptosystem was firstly invented in 2017 by Daniel

J. Bernstein et al. [8], which has not been a popularly researched area in the past

twenty years. Also, Streamlined NTRU prime is NTRU-based cryptosystem and there

is a limited amount of literature published to provide both software and hardware

implementations. In this chapter, we will review some similar existing works on

efficient implementation for both NTRU system and NTRU prime system. In order

to speed up time-efficient and area resources, several optimizations have been made

on NTRU cryptosystem in [9] [12] [13]. Meanwhile, the software implementation is

shown in [15].

The earliest published hardware implementation of NTRU system was in 2001

from D. Bailey and five others [9]. In this work, NTRUEncrypt system is im-

plemented in software running on several different constrained devices, which con-

tains which are C language, Palm Computing Platforms, Advanced RISC Machines

ARM7TDMI, et al. and in hardware, FPGA, which applied on Xilinx’s Virtex

1000EFG860 FPGA. The system used the parameter set for NTRUEncrypt, which

was (n, p, q) = (251, X + 2, 128). Two binary polynomials r(x) and m(x) can sim-

plify NTRUEncrypt’s encryption procedures in hardware. In addition, the efficiency

of the system was improved due to its parallel architecture with hardware implemen-

tation. While the steps in decryption are difficult to implement in hardware and

the system works only for light-weight security. Note that Table 3.1, 3.2, and 3.3

show implementation of FPGA results, C language, and Palm Assembly Language

respectively.
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Table 3.1: FPGA Implementation Results [9]

Encryption Cycles 259
Clock Period 19.975 ns

Clock Frequency 50.063 MHz
Encryption Time 5.174 µs

Encryption Throughput 48.52 Mbps
Slices Used 6373

Logic Resource Utilization 51 %
Approximate Gate Count 60,000

Approximate Register Gate Count 40,000
I/O Used 506

I/O Utilization 77 %

Table 3.2: NTRU Based on C Performance Results [9]

Operation MC68EX328 Intel 80386 37MHz ARM7
Key Generation 1130 msec 858 msec 80.6 msec

Encryption 47 msec 39 msec 3.25 msec
Decryption 89 msec 72 msec 6.75 msec

Table 3.3: NTRU Palm Assembly Language Performance Improvements [9]

Operation Palm C Palm Assembly/C
Key Generation 1130 msec 630 msec

Encryption 47 msec 33 msec
Decryption 89 msec 60 msec

B. Liu proposed an efficient hardware architecture and FPGA implementation for

NTRUEncrypt based on truncated polynomial ring unit [13]. In [13], the architecture

uses LFSR structure due to its compact circuitry and high speed. Then a new ar-

chitecture based on extended LFSR has been presented. During one clock cycle, the

number of clock cycles can be reduced if two consecutive zero coefficients in the input

polynomial r(x) can be processed. In order to optimize the system, a new modular

arithmetic unit is designed, which used the redundant state from polynomial r(x).

Then, an LFSR and extended LFSR based NTRUEncrypt structure can be obtained.

After that, the FPGA implementation results based on LFSR shows the architecture
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has the best performance in term of area-latency product compared with existing

works. The FPGA implementation results based on extended LFSR shows that the

product of area and latency of this architecture is the lowest compared with LFSR

based architectures. But the design based on extended LFSR uses a slightly larger

area resources compared with the implementations based on LFSR.

R. Dong proposed four new truncated multiplier architectures and used FPGA

to simulate [12]. All new multiplication architectures are based on LFSR structure.

Firstly, Multiplier I use x2-net structure based on LFSR, which scans two consecutive

coefficients in control input polynomial r(x) during one clock cycle. In Multiplier II,

three consecutive zeros in the control input polynomial r(x) can be scanned aims to

reduce the number of clock cycles. Multiplier III makes use of consecutive zeros in

control input polynomial r(x). Multiplier IV can resist certain side-channel attacks

by controlling the operations for each clock cycle. Then, the FPGA complexity com-

parison among four multipliers with the existing works shows that the performance of

Multiplier I is the best; Multiplier II has better area-latency-product, but the speed

is the second-best; Multiplier III has a faster speed and Multiplier IV has the advan-

tage to resist side-channel attacks. But Multiplier IV can be applied to only three

parameter sets due to some restrictions on the control input polynomial r(x).

D. J. Bernstein proposed streamlined NTRU Prime subject [8] to achieve the

standard goal of IND-CCA2 security suggested by NIST. Using parameter set n =

761, q = 4591 and t = 143, the author shows a non-constant time implementation

using software Sage computer-algebra system. It provides a large security margin

beyond the target security level and the advantage is that cost of multiplication in

NTRUEncrypt system is more expensive than streamlined NTRU Prime. However,

the proposed system based on streamlined NTRU prime system has the bigger public

(private) key size, and ciphertext than NTRUEncrypt cryptosystem.

An efficient Hardware/Software based on NTRUEncrypt system was proposed
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in 2018 by T. Fritzmann et al. [15]. He proposed a complete NTRUEncrypt hard-

ware and software co-design implementations on the Xilinx Zynq UltraScale+MPSoC

ZCU102 platform. Moreover, he chose the single coefficient implementation as a ref-

erence used for NTRUEncrypt HW and SW. Then the full hardware and software

implementations are presented. The encryption and decryption operations share com-

mon hardware modules in order to keep a low area cost and the required number of

used logical gates and registers is lower based on HW/SW solution compared with

only full hardware design. While for the parameter set ees401ep1, the padding scheme

takes a longer time, which is nearly 90% of the encryption time.

A constant time software and hardware implementation of the NIST round 2 post-

quantum cryptographic algorithms based on streamlined NTRU Prime was presented

in 2020 by A. Marotzke [18]. The author implements the entire KEM algorithm,

which includes key generation, encapsulation, and decapsulation using FPGA. Then

focusing on the utility resources and comparing them to existing implementations

based on streamlined NTRU prime systems, he found that his proposed design uses

fewer resources but the encryption and decryption parts spend more time. Table 3.4

shows a full comparison of all metrics with parameter set p = 761, q = 4591 and w =

246. Note that Design A represents A. Marotzke’s design; Design B is A. Marotzke’s

design without key generation or decoding; Design C is existing work without key

generation or decoding.

Table 3.4: Comparison of Design A, B and Existing Implementations [18]

Design Design A Design B Design C

Slices 1841 1261 10319

LUT 9538 6240 70066

Flip-flop 57803 6223 38144

BRAM 14 9 9

DSP 19 3 0

FMax 271 MHz 279 MHz 263 MHz

En-time 524 µs 483 µs 56.3 µs

De-time 958 µs 901 µs 53.3 µs
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4 PROPOSED LFSR BASED ARCHITECTURE

FOR NTRU PRIME

In this chapter, an architecture for NTRU Prime algorithm and its FPGA simulation

results are presented. First of all, the linear feedback shift register (LFSR) is briefly

introduced. Secondly, a proposed truncated polynomial ring multiplier for NTRU

Prime, which is called TPM-I, and an LFSR based architecture is presented. Finally,

the FPGA implementation results with different parameter sets corresponding to each

security level are given.

4.1 Linear Feedback Shift Register

An LFSR is a shift register whose feedback value is a linear function of its previous

state. In addition, It has well-known applications in (CRC) cyclic redundancy check,

cryptography and the maximal-length of an LFSR is 2n − 1, where n is the size

of registers [19]. An LFSR shown in Fig.4.1 is determined with its characteristic

polynomial f(x), which is in the form of

f(x) = xn + fn−1x
n−1 + · · ·+ f1x+ 1, (22)

where fi, i = 1, 2, · · · , n− 1 is either 0 or 1.

In Fig.4.1, ⊕ represents an adder, ⊗ refers to a multiplier and� refers to a register.

The registers are loaded with the coefficients of polynomial A(x) = (an−1, . . . , a0).

Following a shift-to-right operation, the LFSR calculates A(x) × x mod f(x) and the

results are stored in the registers, where x is the root of its characteristic polynomial

f(x).
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Fig. 4.1: Linear Feedback Shift Register [19]

4.2 Proposed Truncated Polynomial Ring Multiplier (TPM-

I)

Since the polynomial in the truncated polynomial ring used for NTRU Prime requires

to take modulo xn − x − 1, LFSR can be configurated accordingly and used to im-

plement polynomial operations in this truncated polynomial ring. The content of

registers e = (e0, e1, . . . , en−1) at clock cycle j be denoted by e(j) = (ej0, e
j
1, . . . , e

j
n−1).

Algorithm 4.1. shows the steps to perform truncated polynomial ring multiplication.

Algorithm 4.1 Multiplication in Truncated Polynomial Ring

Input: h = hn−1, . . . , h0, r = rn−1, . . . , r0
Output: e = hr = en−1, . . . , e0

1: e(0) := 0
2: for j := 1 to n do
3: for i := 0 to n− 1 do
4: e(j) := e

(j−1)
i+1modn+ hi+1modn × rj−1 mod q

5: end for
6: end for
7: return e := e(n)

Then, an LFSR based multiplication architecture in the truncated polynomial

ring is proposed and shown in Fig.4.2. It consists of n multipliers, n adders and n

registers. Each register can store dlog2qe bits.
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Fig. 4.2: Proposed Truncated Polynomial Ring Multiplier

In this proposed architecture, two inputs are polynomial h(x) and r(x), each with n

coefficients and can be shown as h(x) = (h0, h1, . . . , hn−1) and r(x) = (r0, r1, . . . , rn−1).

The output is the result polynomial e(x) with n coefficients, which can be given as

e(x) = (e0, e1, . . . , en−1). The registers e = (en−1, · · · , e1, e0) are initialized with 0.

After n clock cycles, the registers will store the product h(x)× r(x) mod (xn−x−1).

4.3 Proposed Arithmetic Unit

During clock cycle j, the coefficient rj of the input polynomial r(x) multiplies with

the coefficients of polynomial h(x). Since rj picks up a value from {−1, 0, 1}, this

operation can be evaluated without any integer multiplications, which means these

operations can be calculated with only addition operation with modular arithmetic.

In the proposed modular arithmetic unit, coefficient of r(x) is encoded in 2 bits as

r(1)r(0). Coefficients of h(x) and e(x), h and e, are encoded in m = dlog2qe bits. Two

input lines r, ‘11’, ‘00’ and ‘01’ are used to represent the value of ‘−1’, ‘0’ and ‘1’

for r(x) coefficient, respectively. More specifically, if rj = −1, subtraction operation

ei = ei+1 − hi mod q can be evaluated by

e
(j+1)
i = e

(j)
i+1 + hi + 1 (23)

Furthermore, Proposed Arithmetic Unit (AU) and its operations table are de-
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signed for our design, which are shown as Table 4.1 and Fig.4.3.

Table 4.1: Operations with the Modular Arithmetic Unit

Input r(r(1)r(0)) Output s
01 e + h

11 e + h + 1
00 e

Fig. 4.3: Proposed Arithmetic Unit Architecture

Algorithm 4.2 shows several steps to perform operations in hardware and the

Proposed AU architecture is shown in Fig.4.4.

Algorithm 4.2 Proposed Arithmetic Unit

Input: e = em−1, . . . , e0, h = hm−1, . . . , h0, r = r1, r0
Output: sm−1, . . . , s0

1: if r(0) = 0 then
2: (s(m−1), . . . , s(1), s(0)) = (e(m−1), . . . , e(1), e(0))
3: else
4: (h(m−1), . . . , h(1), h(0)) = (h(m−1) ⊕ r(1)), . . . , (h(1) ⊕ r(1)), (h(0) ⊕ r(1));
5: (s(m−1), . . . , s(1), s(0)) = (e(m−1), . . . , e(1), e(0)) + (hm−1), . . . , h(1), h(0)) + r(1);
6: end if
7: return s = (s(m−1), . . . , s(1), s(0))
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Fig. 4.4: Proposed Arithmetic Unit Circuit

4.4 TPM-I for NTRU Prime Encryption

Based on the proposed arithmetic unit, a multiplier for encryption in streamlined

NTRU prime system is shown. Operations in encryption part is e(x) = h(x) ×

r(x) + m(x) mod q mod xn − x − 1. h(x) is the public key, r(x) is a randomly

chosen polynomial and m(x) is the message polynomial. Note that the coefficients

of r(x) and m(x) are from {−1, 0, 1}. Then a detailed algorithm for TPM-I based

encryption is shown in Algorithm 4.3, Fig.4.5 shows the architecture for encryption,

which contains n registers and n AUs.

Algorithm 4.3 TPM-I: LFSR Based multiplication for NTRU Prime

Input: h = hn−1, . . . , h0, r = rn−1, . . . , r0,m = mn−1, . . . ,m0

Output: e = en−1, . . . , e0
1: e(0) = m
2: for j = 1 to n do
3: for i = 0 to n− 1 do
4: e(j) = e

(j−1)
i+1modn+ hi+1modn × rj−1 mod q mod xn − x− 1

5: end for
6: end for
7: return e = e(b)
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Fig. 4.5: TPM-I for NTRU Prime Encryption

This architecture contains n registers and n arithmetic units in total. The registers

e = (en−1, . . . e1, e0) are initially loaded with m = (mn−1, . . . ,m1,m0). After n clock

cycles, the architecture generates e(x) = h(x)× r(x) +m(x) mod q mod xn − x− 1.

The content of registers at cycle j, j = 0,1, . . ., n, is given in Table 4.2.
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4.5 FPGA Implementation

FPGA is an integrated circuit that can be reconfigured by a customer or a designer.

In this way, FPGA can be used as a fast hardware implementation tool and has wide

applications. In this subsection, FPGA implementations of NTRU Prime encryption

architecture based on LFSR will be presented. FPGA results are also summarized.

FPGAs are designed in a higher description language called HDL, which is a

modular programming code. Using HDL code, which includes VHDL or Verilog

makes the design process extremely fast and efficient. In our implementation, we use

Verilog HDL as our design language.

More specifically, the following tools are used for our implementation.

• Quartus II v14.1 (64-bit) Software

• ModelSim-Altera Software

Arria V 5AGXFB3H4F35I3 was chosen as the target device to provide implemen-

tation, which offers the highest bandwidth and delivers the lowest total power for

midrange applications, such as remote radio units and broadcast studio equipment.

Implementation Results of TPM-I

The simulation results for different parameter sets are shown in Table 4.3.

Table 4.3: Simulation Results for Different Parameter Sets

Security
Level

Parameter
set

#ALM #Register #Cycles FMax Latency

112
ees401ep1 6817 8826 402 274.80 MHz 1.46 µs
ees541ep1 9197 11906 542 283.93 MHz 1.91 µs
ees659ep1 11203 14502 660 282.17 MHz 2.33 µs

128
ees449ep1 7633 9882 450 280.35 MHz 1.60 µs
ees613ep1 10421 13490 614 284.50 MHz 2.15 µs
ees761ep1 12937 16746 762 281.85 MHz 2.70 µs

192
ees677ep1 11509 14678 678 274.73 MHz 2.46 µs
ees887ep1 15079 19518 888 263.99 MHz 3.36 µs
ees1087ep1 18479 23918 1088 284.26 MHz 3.82 µs

256
ees1087ep2 18479 23918 1088 284.26 MHz 3.82 µs
ees1171ep1 19907 25766 1172 241.20 MHz 4.85 µs
ees1499ep1 25483 32982 1500 225.99 MHz 6.63 µs
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For each parameter set, we mainly focus on five aspects of our proposed architec-

ture.

• #ALMs, the number of used logic elements by system.

• #Register, the number of registers.

• #Cycles, the number of clocks cycles.

• FMax, the maximum operating frequency of the system.

• Latency, required encryption time.

In our simulation, the number of registers defines how many registers will be

required in the architecture. In addition, the combination of the number of ALMs

and the number of registers will decide the area consumption. The number of clock

cycles shows how many clock cycles are required for the computation. FMax means

the maximum frequency that can be achieved during the operation, which usually

depends on the FPGA chip that we use. Latency is calculated by the number of clock

cycles divided by FMax, which reflects the time consumption for the encryption.

To the best of our knowledge, this is the first time that NTRU Prime has been im-

plemented in FPGA. In the next chapter, we will present more efficient architectures

by making significant modifications to LFSR and utilizing novel encoding techniques.
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5 THREE PROPOSED EFFICIENT MULTIPLI-

ERS FOR NTRU PRIME

In this chapter, three time-efficient multiplication architectures, called TPM-II, TPM-

III, and TPM-IV, are designed for NTRU Prime system. Their FPGA simulation

results are obtained. Note that the three proposed works are based on TPM-I, each

of them is the optimized version of the previous one.

5.1 Proposed Efficient Multiplication and its FPGA Imple-

mentation (TPM-II)

5.1.1 Proposed x2-net Architecture

x-net architecture is the core architecture in truncated polynomial ring multiplier,

which is shown in Fig.5.1 [12]. In x-net architecture, ri represents ith coefficient of

the polynomial r(x), which is the control input during clock cycle i+1. A register

content ek(k = 0, . . . , n−1) at clock cycle j is defined by e
(j)
k and (hn−1, . . ., h0) are the

corresponding coefficients of the polynomial h(x). One arithmetic unit includes one

adder, one multiplier and there are totally n arithmetic units in x-net architecture.

Note that each arithmetic unit has three inputs and one output.
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Fig. 5.1: x-net Architecture [12]

Then Fig.5.2 shows a new design of x2-net architecture which is an extension to

x-net architecture. In x2-net architecture, ri is a control input, which represents ith

coefficient of the polynomial r(x) and a new input ri−1 represents (i−1)th coefficient

of the polynomial r(x). (hn−1, . . ., h0) are the corresponding coefficients of the poly-

nomial h(x) and a register content ek(k = 0, . . . , n− 1) is defined by e
(j)
k during clock

cycle j. In addition, we can see that one arithmetic unit doubles two adders, two mul-

tipliers and there are totally n arithmetic units required in x2-net architecture. Note

that each arithmetic unit has five inputs and then we modify shift-to-right opera-

tion. We change x-net architecture multiplies with x to x2-net architecture multiplies

with x2 in one shift-to-right operation. In another word, there are two coefficients of

the polynomial r(x) can be processed during one clock cycle, which means that half

number of clock cycles can be saved.

32



Fig. 5.2: x2-net Architecture

5.1.2 Proposed Arithmetic Unit

For NTRU Prime encryption, the coefficients of input polynomial r(x) are chosen from

{−1, 0, 1}, so the multiplication h(x)×r(x) can be evaluated without any integer mul-

tiplication, which means addition and subtraction operations are performed instead

of the multiplication operations. In addition, each register can store m = dlog2qe bits,

which means that the parameter q is in the form of 2n. Fig.5.3 shows an optimized

arithmetic unit in x2-net architecture.

Fig. 5.3: Proposed Arithmetic Unit

From new design of arithmetic unit, the number of inputs is increased to four.

hi, hi−1 and ei are encoded in m = [log2q] bits and the control input ri and ri−1 are
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combined in order to get a new input riri−1, which is encoded in four bits. Output

ei−2 is encoded in m = [log2q] bits. In addition, binary representation ‘11’, ‘00’ and

‘01’ are used to represent the coefficients ‘−1’, ‘0’ and ‘1’ in r(x), respectively. Table

5.1 shows the operations supported with new arithmetic unit.

Table 5.1: Operations Performed at the Arithmetic Unit

Input riri−1(r
(i)
1 r

(i)
0 r

(i−1)
1 r

(i−1)
0 ) Output ek−2

0000 ek
0001 ek + hk mod q
0011 ek − hk mod q
0100 ek + hk−1 mod q
0101 ek + hk + hk−1 mod q
0111 ek − hk + hk−1 mod q
1100 ek − hk−1 mod q
1101 ek + hk − hk−1 mod q
1111 ek − hk − hk−1 mod q

Algorithm 5.1 performs steps of this arithmetic unit.

Algorithm 5.1 Proposed Algorithm for Arithmetic Unit

Input: e = (e
(k)
m−1, . . . , e

(k)
0 )2, r1ri−1 = (r

(i)
1 r

(i)
0 r

(i−1)
1 r

(i−1)
0 )2, hk = (h

(k)
m−1, . . . , h

(k)
0 )2,

hk−1 = (h
(k−1)
m−1 , . . . , h

(k−1)
0 )2

Output: ek−2 = (e
(k−2)
m−1 , . . . , e

(k−2)
0 )2

1: if r
(i−1)
1 r

(i−1)
0 = 00 then

2: (h
(k)
m−1 . . . h

(k)
0 ) := 0

3: else if r
(i−1)
1 r

(i−1)
0 = 11 then

4: (h
(k)
m−1 . . . h

(k)
0 ) := −(h

(k)
m−1 . . . h

(k)
0 )

5: else if r
(i)
1 r

(i)
0 = 00 then

6: (h
(k−1)
m−1 . . . h

(k−1)
0 ) := 0

7: else if r
(i)
1 r

(i)
0 = 11 then

8: (h
(k−1)
m−1 . . . h

(k−1)
0 ) := −(h

(k−1)
m−1 . . . h

(k−1)
0 )

9: end if
10: (e

(k−2)
m−1 , . . . , e

(k−2)
0 ) := (e

(k)
m−1, . . . , e

(k)
0 ) + (h

(k)
m−1, . . . , h

(k)
0 ) + (h

(k−1)
m−1 , . . . , h

(k−1)
0 )

Then the architecture for the proposed arithmetic unit is shown in Fig.5.4.
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Fig. 5.4: Proposed Arithmetic Unit Architecture

5.1.3 TPM-II for Encryption

During NTRU Prime encryption, the ciphertext is computed by e(x) = h(x)× r(x) +

m(x) mod q mod xn − x − 1. The coefficients of input r(x) and message m(x) are

randomly choosen from {−1, 0, 1}. A new multiplier computing e(x) with inputs

h(x), r(x), and m(x) based on the proposed arithmetic unit is presented.

Algorithm 5.2 shows a detailed algorithm for TPM-II encryption. Note that inputs

h(x), r(x),m(x) and output e(x) are the polynomials with n coefficients.
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Algorithm 5.2 Proposed multiplication for NTRU Prime (TPM-II)

Input: m = mn−1, . . . ,m0, r = rn−1, . . . , r0, h = hn−1, . . . , h0
Output: e = en−1, . . . , e0 = hr +m mod q mod xn − x− 1

1: e(0) := m
2: for j := 1 to (n+1

2
) do

3: for i := 0 to n− 1 do
4: if r2j−1 = 00 then
5: if r2j−2 = 00 then

6: e
(j)
i := e

(j−1)
i+2modn

7: else if r2j−2 = 01 then

8: e
(j)
i := e

(j−1)
i+2modn + hi+2modnmod q

9: else
10: e

(j)
i := e

(j−1)
i+2modn − hi+2modnmod q

11: end if
12: else if r2j−1 = 01 then
13: if r2j−2 = 00 then

14: e
(j)
i := e

(j−1)
i+2modn + hi+1modnmod q

15: else if r2j−2 = 01 then

16: e
(j)
i := e

(j−1)
i+2modn + hi+2modn + hi+1modnmod q

17: else
18: e

(j)
i := e

(j−1)
i+2modn − hi+2modn + hi+1modnmod q

19: end if
20: else
21: if r2j−2 = 00 then

22: e
(j)
i := e

(j−1)
i+2modn − hi+1modnmod q

23: else if r2j−2 = 01 then

24: e
(j)
i := e

(j−1)
i+2modn + hi+2modn − hi+1modnmod q

25: else
26: e

(j)
i := e

(j−1)
i+2modn − hi+2modn − hi+1modnmod q

27: end if
28: end if
29: end for
30: end for
31: return e := e(

n+1
2

)
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The proposed architecture for TPM-II is also given in Fig.5.5.

Fig. 5.5: TPM-II Architecture

The architecture contains n registers and n arithmetic units in total. When the

operation starts, during one clock cycle, two consecutive coefficients of the input

polynomial r(x) are scanned. As a result, the polynomial r(x) has n coefficients, we

assume rn = 0 and encode it as ‘00’. After N+1
2

clock cycles, the encryption result

will be stored in the registers e = (en−2, · · · , e0, en−1).

5.1.4 Implementation of TPM-II

The following tools are used for our implementation.

• Quartus II v14.1 (64-bit) Software

• ModelSim-Altera Software

Arria V 5AGXFB3H4F35I3 was chosen as the target device in provided imple-

mentation and we use Verilog HDL as design language.

Implementation Results

The implementation results are shown in Table 5.2.
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Table 5.2: FPGA Results for Different Parameter Sets

Security
Level

Parameter
set

#ALM #Register #Cycles FMax Latency

112
ees401ep1 11904 8826 201 239.69 MHz 0.83 µs
ees541ep1 16025 11906 271 240.91 MHz 1.12 µs
ees659ep1 19539 14502 330 242.19 MHz 1.36 µs

128
ees449ep1 13327 9882 225 256.21 MHz 0.87 µs
ees613ep1 18200 13490 307 246.97 MHz 1.24 µs
ees761ep1 22558 16746 381 234.58 MHz 1.62 µs

192
ees677ep1 19737 14678 339 248.82 MHz 1.36 µs
ees887ep1 26353 19518 444 239.01 MHz 1.85 µs
ees1087ep1 32241 23918 544 222.82 MHz 2.44 µs

256
ees1087ep2 32241 23918 544 222.82 MHz 2.44 µs
ees1171ep1 34848 25766 586 220.70 MHz 2.65 µs
ees1499ep1 48723 32982 750 209.86 MHz 3.57 µs

5.2 Proposed Multiplication and its FPGA Implementation

(TPM-III)

In this section, a time-efficient multiplication architecture is designed for NTRU Prime

system. Its FPGA simulation results are obtained. Firstly, some background of our

design is introduced. Secondly, a new arithmetic unit and a multiplier architecture,

called TPM-III are shown. Finally, FPGA implementation results with different

parameter sets in each security levels are obtained.

5.2.1 Basic Idea

From this architecture, the control input ri is encoded in two bits. Thus, it has three

states, ‘00’, ‘10’, and ‘11’. The state ‘10’ is considered as a redundant state and we

assumed that the architecture will be more efficient if using the redundant state.

According to the parameter selection, r(x) ∈ L(dr, dr) and dr is much smaller than

the parameter n. Then, there has a large number of coefficients equal to 0 in r(x)

and its results can be implemented in the proposed architecture [13].
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Especially, the proposed architecture is based on counting how many ‘0, 0, 0’

coefficient pairs in r(x) can be processed during one clock cycle. Then it is considered

that the reduction in the number of clock cycles can be achieved. Therefore, finding

out how many ‘0, 0, 0’ coefficient pairs appear consecutively in r(x) [12] is required.

The number of ‘1’ and ‘−1’ coefficients in r(x) is defined by

n1 = n−1 = dr (24)

The number of ‘0’ coefficients in r(x) can be calculated as

n0 = n− 2dr (25)

The minimum number of ‘0, 0, 0’ coefficient pairs in r(x) can be calculated as

n000max = n− 2dr/3 (26)

The maximum number of ‘0, 0, 0’ coefficient pairs in r(x) can be calculated as

n000max =


0 n1 + n−1 >

n0

2
− 1

n− 6dr/3 n1 + n−1 <
n0

2
− 1

(27)

As we can see, the number of ‘0, 0, 0’ coefficient pairs in different parameter sets

is shown in Table 5.3. For each parameter set, first of all, the column # ‘0’ is listed

in the table after calculating, which means the total number of ‘0’ coefficients. In the

column # ‘0, 0, 0’, there are three separated sub-columns Min, Max, and Avg, which

represent the minimum number of ‘0, 0, 0’ coefficient pairs, the maximum number of

‘0, 0, 0’ coefficient pairs and the average number of ‘0, 0, 0’ coefficient pairs in r(x)

respectively.
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Table 5.3: Number of ‘0, 0, 0’ Pairs in Different Parameter Sets [12]

Security level Parameter set n #”0”
#’0,0,0’

Min Max Avg

112
ees401ep1 401 175 0 58 20.30
ees541ep1 541 443 82 147 119.03
ees659ep1 659 583 143 194 170.76

128
ees449ep1 449 181 0 60 18.62
ees613ep1 613 503 94 167 135.51
ees761ep1 761 677 169 225 199.54

192
ees677ep1 677 363 0 121 57.01
ees887ep1 887 725 133 241 194.59
ees1087ep1 1087 961 236 320 281.47

256
ees1087ep2 1087 847 122 282 215.22
ees1171ep1 1171 959 178 319 258.05
ees1499ep1 1499 1341 341 447 397.53

Then the average number of clock cycles for different parameter sets are given in

Table 5.4.

Table 5.4: Average Number of Cycles for Different Parameter Sets [12]

Security level Parameter set n p #Cycles

112
ees401ep1 401 3 381
ees541ep1 541 3 422
ees659ep1 659 3 489

128
ees449ep1 449 3 431
ees613ep1 613 3 478
ees761ep1 761 3 562

192
ees677ep1 677 3 620
ees887ep1 887 3 693
ees1087ep1 1087 3 806

256
ees1087ep2 1087 3 872
ees1171ep1 1171 3 913
ees1499ep1 1499 3 1102

5.2.2 Proposed Arithmetic Unit

This arithmetic unit has three parts: inputs hi, ei and output ei−1, which are encoded

in m = dlog2qe bits. Then, ti is considered as a control input which is encoded in two
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bits. Next ek+2 is added as a new input in our arithmetic unit, which is also encoded

in m = dlog2qe bits. Fig.5.6 shows the proposed arithmetic unit.

Fig. 5.6: Proposed Arithmetic Unit

The operation with arithmetic unit is shown below as Table 5.5.

Table 5.5: Operations performed at the Arithmetic Unit

rj, rj+1, rj+2 Input ti(t
i
1t

i
0) Output ek−1

0, ×, × 00 ek
1, ×, × 01 ek + hk mod q
0, 0, 0 10 ek+2

−1, ×, × 11 ek − hk mod q

Algorithm 5.3 shows an algorithm that performs each step of this arithmetic unit

and Fig.5.7 shows the architecture for proposed arithmetic unit.
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Algorithm 5.3 Proposed Algorithm for Arithmetic Unit

Input: ek = (e
(k)
m−1, . . . , e

(k)
0 )2; ek+2 = (e

(k+2)
m−1 , . . . , e

(k+2)
0 )2;hk = (h

(k)
m−1, . . . , h

(k)
0 )2; ti =

(t
(i)
1 t

(i)
0 )2

Output: ek−1 = (e
(k−1)
m−1 , . . . , e

(k−1)
0 )2

1: if ti = t
(i)
1 t

(i)
0 = 00 then

2: (e
(k−1)
m−1 . . . e

(k−1)
0 ) := (e

(k)
m−1, . . . , e

(k)
0 )

3: else if ti = t
(i)
1 t

(i)
0 = 01 then

4: (e
(k−1)
m−1 . . . e

(k−1)
0 ) := (e

(k)
m−1, . . . , e

(k)
0 ) + (h

(k)
m−1, . . . , h

(k)
0 )

5: else if ti = t
(i)
1 t

(i)
0 = 10 then

6: (e
(k−1)
m−1 . . . e

(k−1)
0 ) := (e

(k+2)
m−1 , . . . , e

(k+2)
0 )

7: else
8: (e

(k−1)
m−1 . . . e

(k−1)
0 ) := (e

(k)
m−1, . . . , e

(k)
0 )− (h

(k)
m−1, . . . , h

(k)
0 )

9: end if

Fig. 5.7: Proposed Arithmetic Unit Architecture
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5.2.3 TPM-III for Encryption

In this chapter, a time-efficient architecture for NTRU Prime system based on a

new arithmetic unit are shown. The new architecture process three consecutive zero

coefficients in r(x) during one clock cycle. First of all, encoding r(x) = (rn−1, . . . , r0)

to obtain a new control input sequence (tu−1, . . . , t0), where each ti has two bits. If

three consecutive zero coefficients occur in r(x), ‘10’ will be encoded to define this

set and for other coefficients ‘−1’, ‘0’, ‘1’, we encode them as ‘11’, ‘00’ and ‘01’

respectively

Algorithm 5.4 and Fig.5.8 show the proposed architecture for encryption. In the

architecture, there are three inputs, which are public key h(x), message m(x), the

generated sequence (tu−1, . . . , t0), e(x) with n coefficients and one output e(x).

Algorithm 5.4 Proposed Multiplication for NTRU Prime (TPM-III)

Input: m = mn−1, . . . ,m0;h = hn−1, . . . , h0; (tu−1, . . . , t0)
Output: e = en−1, . . . , e0 = hr +m mod q mod xn − x− 1

1: e(0) := m
2: for j := 1 to u do
3: for i := 0 to n− 1 do
4: if tj−i = 00 then

5: e
(j)
i := e

(j−1)
i+1modn

6: else if tj−i = 10 then

7: e
(j)
i := e

(j−1)
i+3modn

8: else if tj−i = 01 then

9: e
(j)
i := e

(j−1)
i+1modn + hi+1modn mod q

10: else
11: e

(j)
i := e

(j−1)
i+1modn − hi+1modn mod q

12: end if
13: end for
14: end for
15: return e := e(u)
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Fig. 5.8: TPM-III Architecture

The architecture contains n registers and n AUs. The registers e = (en−1, . . . , e0)

are initially loaded with m = (mn−1, . . . ,m0). During one clock cycle, each ti

is scanned. After u clock cycles, the resulst will be stored in the registers e =

(en−1,. . . , e0).

5.2.4 Implementation of TPM-III

• Quartus II v14.1 (64-bit) Software

• ModelSim-Altera Software

Arria V 5AGXFB3H4F35I3 was chosen as the target device in provided imple-

mentation and we use Verilog HDL as design language.

Implementation Results

The implementation results are shown in Table 5.6.
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Table 5.6: FPGA Results for Different Parameter Sets

Security
Level

Parameter
set

#ALM #Register #Cycles FMax Latency

112
ees401ep1 6888 8826 381 303.12 MHz 1.25 µs
ees541ep1 9256 11906 422 304.41 MHz 1.38 µs
ees659ep1 11267 14502 489 284.74 MHZ 1.71 µs

128
ees449ep1 7731 9882 431 300.30 MHz 1.43 µs
ees613ep1 10508 13490 478 289.86 MHz 1.65 µs
ees761ep1 13023 16746 562 271.74 MHz 2.07 µs

192
ees677ep1 11566 14678 620 267.52 MHz 2.32 µs
ees887ep1 15172 19518 693 264.27 MHz 2.62 µs
ees1087ep1 18613 23918 806 257.53 MHz 3.13 µs

256
ees1087ep2 18613 23918 872 257.53 MHz 3.38 µs
ees1171ep1 19972 25766 913 232.94 MHz 3.92 µs
ees1499ep1 25595 32982 1102 245.58 MHz 4.48 µs

5.3 Proposed Multiplier and its FPGA Implementation (TPM-

IV)

In this section, a time-efficient multiplication architecture is designed for NTRU Prime

system. Firstly, our design is basically introduced. Secondly, an arithmetic unit

and a multiplier architecture, which is called TPM-IV are proposed. Finally, FPGA

implementation results with different parameter sets in each security level are shown.

5.3.1 Basic Idea

In TPM-III, the control input ti is encoded as two bits and four encoding states of

two bits are fulled used. However, In the new design, the control input ti is increased

from two bits to three bits in order to get eight encoding states.

Our proposed architecture is based on the idea that if different coefficient pairs in

r(x) can be processed during one clock cycle, aim to get if the number of clock cycles

can be reducted. Hence, we require to find out how many coefficient pairs meet a

certain requirement.
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Table 5.8 shows the detailed encoding of ti and rj represents jth coefficient in

r(x), when we encode ti, we scan each coefficient in r(x). Such encoding does not

contain one zero or two consecutive zeros coefficients in r(x), we focus on a phase-shift

value during the last scan. Firstly, the phase-shift value will be one, if the last scan

is one zero and there is no clock cycles that can be added. Secondly, if the last scan

is two consecutive zeros, the phase-shift value will be two and there is no clock cycle.

For the rest, the phase-shift value will be zero and the number of clock cycles will be

added by one.

The number of clock cycles for each parameter set can be calculated and shown

in Table 5.8. Several steps need to be followed. First of all, one hundred sets of

polynomial r(x) for each parameter set are randomly generated. Secondly, starting

to encode polynomial r(x) = (rn−1, . . . , r0) to obtain (tu−1, . . . , t0). At last, counting

the number of ti for each polynomial set, which is the number of clock cycles we are

looking for.

From Table 5.7, the number of clock cycles for all parameter sets can be get

from [12].

Table 5.7: Average Number of Cycles for Different Parameter Sets

Security level Parameter set n p #Cycles

112
ees401ep1 401 3 246
ees541ep1 541 3 196
ees659ep1 659 3 213

128
ees449ep1 449 3 286
ees613ep1 613 3 222
ees761ep1 761 3 243

192
ees677ep1 677 3 367
ees887ep1 887 3 323
ees1087ep1 1087 3 350

256
ees1087ep2 1087 3 420
ees1171ep1 1171 3 424
ees1499ep1 1499 3 473
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5.3.2 Proposed Arithmetic Unit

The new design of arithmetic unit has five inputs hk+1, ek+1, ek+2, ek+3, ek+4 and one

output ek, which are encoded in m = dlog2qe bits. ti is control input, which is encoded

in three bits. Note that there is no redundant state in the design, eight states of three

bits are fully used. Fig.5.9 and Table 5.8 show the proposed arithmetic unit and the

operation respectively.

Fig. 5.9: Proposed Arithmetic Unit

Table 5.8: Operations performed at the Arithmetic Unit

rj, rj+1, rj+2, rj+3 Input ti(t
(i)
2 t

(i)
1 t

(i)
0 ) Output ek

0, 0, 0, 0 000 ek+4

0, 0, 0, ±1 001 ek+3

0, 0, 1, × 010 ek+3 + hk+1 mod q
0, 0, −1, × 011 ek+3 − hk+1 mod q
0, 1, ×, × 100 ek+2 + hk+1 mod q

0, −1, ×, × 101 ek+2 − hk+1 mod q
1, ×, ×, × 110 ek+1 + hk+1 mod q
−1, ×, ×, × 111 ek+1 − hk+1 mod q

Algorithm 5.5 shows the algorithm for this arithmetic unit and Fig.5.10 shows the

architecture for this arithmetic unit.
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Algorithm 5.5 Proposed Algorithm for Arithmetic Unit

Input: ez = (e
(z)
m−1 . . . e

(z)
0 )2(z = k + 1 . . . k + 4);hk+1 = (h

(k+1)
m−1 , . . . , h

(k+1)
0 )2; ti =

(t
(i)
2 t

(i)
1 t

(i)
0 )2

Output: ek = (e
(k)
m−1, . . . , e

(k)
0 )2;

1: if t
(i)
2 t

(i)
1 = 00 then

2: if t
(i)
0 = 0 then

3: (e
(k)
m−1, . . . , e

(k)
0 ) := (e

(k+4)
m−1 , . . . , e

(k+4)
0 )

4: else
5: (e

(k)
m−1, . . . , e

(k)
0 ) := (e

(k+3)
m−1 , . . . , e

(k+3)
0 )

6: end if
7: else if t

(i)
0 = 1 then

8: (h
(k+1)
m−1 , . . . , h

(k+1)
0 ) := −(h

(k+1)
m−1 , . . . , h

(k+1)
0 )

9: end if
10: if t

(i)
2 t

(i)
1 = 01 then

11: (e
(k)
m−1, . . . , e

(k)
0 ) := (e

(k+3)
m−1 , . . . , e

(k+3)
0 ) + (h

(k+1)
m−1 , . . . , h

(k+1)
0 )

12: else if t
(i)
2 t

(i)
1 = 11 then

13: (e
(k)
m−1, . . . , e

(k)
0 ) := (e

(k+1)
m−1 , . . . , e

(k+1)
0 ) + (h

(k+1)
m−1 , . . . , h

(k+1)
0 )

14: else
15: (e

(k)
m−1, . . . , e

(k)
0 ) := (e

(k+2)
m−1 , . . . , e

(k+2)
0 ) + (h

(k+1)
m−1 , . . . , h

(k+1)
0 )

16: end if

Fig. 5.10: Proposed Arithmetic Unit Architecture
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5.3.3 TPM-IV for Encryption

A time-efficient architecture for NTRU Prime system based on an arithmetic unit is

proposed. In this section, the control input r(x) = (rn−1, . . . , r0) is encoded aim to

obtain t(i) = (tu−1, . . . , t0), each ti has three bits.

Algorithm 5.6 shows the encryption part for proposed architecture. In addition,

there are three inputs and one output in this architecture, which are public key h(x),

message m(x), the generated sequence (tu−1, . . . , t0) and e(x) with n coefficients.

Algorithm 5.6 Proposed Multiplication for NTRU Prime (TPM-IV)

Input: m = mn−1, . . . ,m0;h = hn−1, . . . , h0; (tu−1, . . . , t0)
Output: e = en−1, . . . , e0 = hr +m mod q mod xn − x− 1

1: e(0) := m
2: for j := 1 to u do
3: for i := 0 to n− 1 do
4: if tj−i = 000 then

5: e
(j)
i := e

(j−1)
i+4modn

6: else if tj−i = 001 then

7: e
(j)
i := e

(j−1)
i+3modn

8: else if tj−i = 010 then

9: e
(j)
i := e

(j−1)
i+3modn + hi+1modn mod q

10: else if tj−i = 011 then

11: e
(j)
i := e

(j−1)
i+3modn − hi+1modn mod q

12: else if tj−i = 100 then

13: e
(j)
i := e

(j−1)
i+2modn + hi+1modn mod q

14: else if tj−i = 101 then

15: e
(j)
i := e

(j−1)
i+2modn − hi+1modn mod q

16: else if tj−i = 110 then

17: e
(j)
i := e

(j−1)
i+1modn + hi+1modn mod q

18: else
19: e

(j)
i := e

(j−1)
i+1modn − hi+1modn mod q

20: end if
21: end for
22: end for
23: return e := e(u)

The multiplier contains n registers and n AUs. The registers e = (en−1, . . . , e0) are

initially loaded with m = (mn−1, . . . ,m0). During one clock cycle, each ti is scanned.
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After u clock cycles, if the phase-shift value is zero, the encryption result will be stored

in the registers e = (en−1, . . . , e0). If the phase-shift value is one, the encryption result

will be stored in the registers e = (e0, en−1, . . . , e1). If the phase-shift value is two,

the encryption result will be stored in the registers e = (e1, e0, en−1, . . . , e2). The

corresponding architecture is shown in Fig.5.11.

Fig. 5.11: TPM-IV Architecture

5.3.4 Implementation of TPM-IV

The following tools are used for our implementation.

• Quartus II v14.1 (64-bit) Software

• ModelSim-Altera Software

Arria V 5AGXFB3H4F35I3 was chosen as the target device in provided imple-

mentation and we use Verilog HDL as design language.

Implementation Results

The implementation results are shown in Table 5.9.
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Table 5.9: FPGA Results for Different Parameter Sets

Security
Level

Parameter
set

#ALM #Register #Cycles FMax Latency

112
ees401ep1 9032 8826 246 259.67 MHz 0.94 µs
ees541ep1 12193 11906 196 248.14 MHz 0.78 µs
ees659ep1 14880 14502 213 221.98 MHz 0.95 µs

128
ees449ep1 10155 9882 286 247.95 MHz 1.15 µs
ees613ep1 13803 13490 222 253.87 MHz 0.87 µs
ees761ep1 17130 16746 243 235.68 MHz 1.03 µs

192
ees677ep1 15343 14678 367 237.98 MHz 1.54 µs
ees887ep1 20009 19518 323 228.05 MHz 1.41 µs
ees1087ep1 24587 23918 350 223.41 MHz 1.56 µs

256
ees1087ep2 24587 23918 420 223.41 MHz 1.87 µs
ees1171ep1 26393 25766 424 218.87 MHz 1.93 µs
ees1499ep1 33820 32982 473 221.98 MHz 2.13 µs

5.4 FPGA Results Comparison

5.4.1 Comparison among Four Proposed works

In this section, TPM-I, II, III, and IV based on NTRU Prime are compared with each

other. Please note that for each security level, only one parameter set is chosen for

comparison.

The comparison results for security level 112 are shown in Table 5.10.

Table 5.10: Security Level 112

Work
Parameter

set
#ALM #Register #Cycles FMax Latency

TPM-I ees401ep1 6817 8826 402 274.80 MHz 1.46 µs

TPM-II ees401ep1 11904 8826 201 239.69 MHz 0.83 µs

TPM-III ees401ep1 6888 8826 381 303.12 MHz 1.25 µs

TPM-IV ees401ep1 9032 8826 246 259.67 MHz 0.94 µs

It can be seen from the table that in security level 112, TPM-II has the lowest

latency and it takes advantage of the smallest number of cycles. It saves 11.7% time

compared to the second-best work, which is TPM-IV. It can be calculated by the

subtraction of TPM-IV and TPM-II divided by TPM-IV. In addition, TPM-I uses
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the least number of logical elements, which results in the smallest area consumption,

although it has the largest latency among all the proposed works.

The comparison results for security level 128 are shown in Table 5.11.

Table 5.11: Security Level 128

Work
Parameter

set
#ALM #Register #Cycles FMax Latency

TPM-I ees449ep1 7633 9882 450 280.35 MHz 1.60 µs

TPM-II ees449ep1 13327 9882 225 256.21 MHz 0.87 µs

TPM-III ees449ep1 7731 9882 431 300.30 MHz 1.43 µs

TPM-IV ees449ep1 10155 9882 286 247.95 MHz 1.15 µs

It can be seen from the table that in security level 128, TPM-II has the lowest

latency and it uses the smallest number of cycles, which saves 24.3% time compared

to the second-best work, which is TPM-IV. In addition, TPM-I takes advantage of

the least number of logical elements, although it has the largest latency among all

the proposed works.

The comparison results for security level 192 are shown in Table 5.12.

Table 5.12: Security Level 192

Work
Parameter

set
#ALM #Register #Cycles FMax Latency

TPM-I ees677ep1 11509 14678 678 274.73 MHz 2.46 µs

TPM-II ees677ep1 19737 14678 339 248.82 MHz 1.36 µs

TPM-III ees677ep1 11566 14678 620 267.52 MHz 2.32 µs

TPM-IV ees677ep1 15343 14678 367 237.98 MHz 1.54 µs

It can be seen from the table that in security level 192, TPM-II has the lowest

latency and it uses the smallest number of cycles and it saves 11.6% time compared

to the second-best work, which is TPM-IV. In addition, TPM-I takes advantage of

the least number of logical elements, although it has the largest latency among all

the proposed works.

The comparison results for security level 256 are shown in Table 5.13.

52



Table 5.13: Security Level 256

Work
Parameter

set
#ALM #Register #Cycles FMax Latency

TPM-I ees1087ep2 18479 23918 1088 284.26 MHz 3.82 µs

TPM-II ees1087ep2 32241 23918 544 222.82 MHz 2.44 µs

TPM-III ees1087ep2 18613 23918 872 257.53 MHz 3.38 µs

TPM-IV ees1087ep2 24587 23918 420 223.41 MHz 1.87 µs

It can be seen from the table that in security level 256, TPM-IV has the lowest

latency and it uses the smallest number of cycles. We found that It saves 23.3%

time compared to the second best work, which is TPM-II. It can be calculated by

the subtraction TPM-II and TPM-IV divided by TPM-II. In addition, TPM-I takes

advantage of the least number of logical elements, which includes the number of logical

gates and registers, although it takes the largest latency among all the proposed works.

5.4.2 Compare Proposed works with NTRUEncrypt

In this section, the FPGA results of proposed works are compared to those of existing

works on NTRUEncrypt. For each security level, we choose one parameter set for

comparison.

The comparison results for security level 112 are shown in Table 5.14.

Table 5.14: Security Level 112

Algorithm Work
Parameter

set
#ALM #Register #Cycles FMax Latency

NTRU [9] ees401ep1 4052 9638 401 62.95 MHz 6.37 µs

NTRU [10] ees401ep1 837 1165 3617 67.69 MHz 53.43 µs

NTRU [11] ees401ep1 15662 8838 227 55.00 MHz 4.13 µs

NTRU [13] ees401ep1 4636 8826 401 121.62 MHz 3.30 µs

NTRU [15] ees401ep1 9044 8826 349 113.67 MHz 3.07 µs

NTRU [12] ees401ep1 11871 8826 201 236.69 MHz 0.84 µs

NTRU
Prime

TPM-II ees401ep1 11904 8826 201 239.69 MHz 0.83 µs

NTRU
Prime

TPM-I ees401ep1 6817 8826 402 274.80 MHz 1.46 µs

For parameter set ees401ep1 in security level 112, it can be seen that the number
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of clock cycles of TPM-II and [12] are the least, compared to all the existing works

based on NTRUEncrypt. In addition, TPM-II for NTRU Prime system saves 1.19% of

latency time, which can be calculated by the subtraction of [12] and TPM-II divided

by [12] while using the same number of registers and a slightly higher number of

ALMs, compared to the fastest existing work for NTRUEncrypt system. Moreover,

although TPM-II and [12] performs better than TPM-I in terms of latency, TPM-I

still takes advantage of the least number of ALM and registers.

The comparison results for security level 128 are shown in Table 5.15.

Table 5.15: Security Level 128

Algorithm Work
Parameter

set
#ALM #Register #Cycles FMax Latency

NTRU [9] ees449ep1 4523 10793 449 56.99 MHz 7.88 µs

NTRU [10] ees449ep1 837 1165 4049 67.69 MHz 59.82 µs

NTRU [11] ees449ep1 17527 9884 269 53.95 MHz 4.99 µs

NTRU [13] ees449ep1 5188 9882 449 121.69 MHz 3.69 µs

NTRU [15] ees449ep1 10124 9882 398 112.90 MHz 3.53 µs

NTRU [12] ees449ep1 13301 9882 225 244.44 MHz 0.92 µs

NTRU
Prime

TPM-II ees449ep1 13327 9882 225 256.21 MHz 0.87 µs

NTRU
Prime

TPM-I ees449ep1 7633 9882 450 280.35 MHz 1.60 µs

It can be seen that the number of clock cycles of TPM-II and [12] are the least,

compared to all the existing works on NTRUEncrypt. In addition, TPM-II based on

NTRU Prime system has the smallest latency, it can save 5.4% of latency time and

uses about the same number of registers and ALMs, compared to the fastest existing

work for NTRUEncrypt system with the parameter set ees449ep1 in security level

128. In addition, although TPM-II and [12] performs better than TPM-I in terms of

latency, TPM-I still uses the least number of logical elements, which includes ALMs

and registers.

The comparison results for security level 192 are shown in Table 5.16.
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Table 5.16: Security Level 192

Algorithm Work
Parameter

set
#ALM #Register #Cycles FMax Latency

NTRU [9] ees677ep1 6740 16266 677 60.24 MHz 11.24 µs

NTRU [10] ees677ep1 837 1165 9486 67.69 MHz 140.14 µs

NTRU [11] ees677ep1 26423 14900 269 49.74 MHz 6.37 µs

NTRU [13] ees677ep1 7810 14898 677 120.00 MHz 5.64 µs

NTRU [15] ees677ep1 15254 14898 551 106.30 MHz 5.18 µs

NTRU [12] ees677ep1 13301 14898 339 239.12 MHz 1.41 µs

NTRU
Prime

TPM-II ees677ep1 19737 14678 339 248.82 MHz 1.36 µs

NTRU
Prime

TPM-I ees677ep1 11509 14678 678 274.73 MHz 2.46 µs

It can be seen that the number of clock cycles of TPM-II and [12] are the second

least, compared to all the existing works based on NTRUEncrypt system. In addition,

TPM-II for NTRU Prime system has the smallest latency, it can save 3.5% of latency

time, while uses fewer registers and more ALMs, compared to the fastest existing

work on NTRUEncrypt system with the parameter set ees677ep1 in security level

192. In addition, TPM-I uses the least number of ALMs and registers, although

TPM-II and [12] performs better than TPM-I in terms of latency.

The comparison results for security level 256 are shown in Table 5.17.

Table 5.17: Security Level 256

Algorithm Work
Parameter

set
#ALM #Register #Cycles FMax Latency

NTRU [9] ees1087ep2 10748 26105 1087 55.53 MHz 19.85 µs

NTRU [10] ees1087ep2 837 1165 23922 67.69 MHz 353.41 µs

NTRU [11] ees1087ep2 42427 23930 276 45.75 MHz 6.03 µs

NTRU [13] ees1087ep2 12526 23918 1087 104.06 MHz 10.45 µs

NTRU [15] ees1087ep2 24480 23918 717 94.07 MHz 7.62 µs

NTRU [12] ees1087ep2 32236 23918 544 228.15 MHz 2.38 µs

NTRU
Prime

TPM-IV ees1087ep2 24587 23918 420 223.41 MHz 1.87 µs

NTRU
Prime

TPM-I ees1087ep2 18479 23918 1088 284.26 MHz 3.82 µs

It can be seen that TPM-IV on NTRU Prime system has the smallest latency,
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which can save 21.4% of latency time, compared to the fastest existing work on

NTRUEncrypt system [12] with the parameter set ees1087ep2 in security level 256.

The latency time can be calculated by the subtraction of [12] and TPM-IV divided

by [12]. In addition, TPM-I uses the least number of ALMs and registers, although

TPM-IV and [12] performs better than TPM-I in terms of latency. Note that TPM-II

also uses much less ALMs compared to [12].
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6 CONCLUSIONS AND FUTURE WORKS

6.1 Conclusions

NTRU Prime system and NTRUEncrypt system are probably the two most promis-

ing and actively researched ones among existing post-quantum cryptosystems. In

this thesis, several time-efficient multiplication architectures are proposed for NTRU

Prime system. Their FPGA implementations are also presented. To the best of our

knowledge, this is the first time that NTRU Prime system has been implemented in

FPGA.

TPM-I is architecture on NTRU Prime system and a new arithmetic unit is also

presented. The new proposed architecture takes advantage of LFSR based structure

for its compact circuitry. Our FPGA implementation has shown that the TPM-I

based on NTRU Prime makes use of the least number of logical elements, including

logical gates and registers, which means it consumes the smallest area among the

other three proposed works.

Then, TPM-II aims to implement NTRU Prime based system, which takes ad-

vantage of x2-net architecture. Multiplier scans two consecutive coefficients in the

same control input polynomial r(x) in one clock cycle and the number of clock cy-

cles is half in TPM-II. The FPGA simulation results show that TPM-II has the best

performance in terms of latency, compared to the other three proposed works. The

latency time of TPM-II can be saved 11.7%, 24.3% and 11.6%, compare to the second

lowest latency work, TPM-IV, for different parameter sets in different security levels:

ees401ep1 in 112-bit, ees449ep1 in 128-bit, ees677ep1 in 192-bit.

Next, TPM-III based on NTRU Prime has been presented, which takes advantage

of three consecutive zeros in polynomial coefficients, then recode the polynomial r(x).

Then, TPM-IV is obtained, which uses consecutive zeros in polynomial coefficients,

then recode the polynomial r(x). The FPGA implementation results show that with
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the parameter set ees1087ep2 at security level 256-bit, TPM-IV has the lowest latency

compare to the second best latency work, TPM-II.

Finally, comparing the proposed work with the best of existing work on NTRU-

Encrypt system. NTRU Prime system is different from NTRUEncrypt system in

that they use different polynomial rings. With a slightly more complicated truncated

polynomial ring, NTRU Prime system can increase the security strength. Moreover.

the proposed TPM-II can save 1.19%, 5.4%, and 3.5% of time, compared to the best

existing work published for NTRUEncrypt system in security level 112, 128 and 192,

respectively. TPM-IV can save 21.4% latency time in security level 256. In addition,

TPM-I uses the least area consumption, including the number of ALMs and registers,

compared to the best NTRUEncrypt work.

A comparison list for all IEEE recommended parameter sets is given in Appendix

A.

6.2 Future Works

Based on the research works on NTRU Prime system presented in this thesis, possible

future work can be listed as follow:

• There are now both software and FPGA implementations available for NTRU

Prime cryptosystem. It is expected that the implementation of this promising cryp-

tosystem can be extended into ASIC design.

• There is one other lattice-based system, LPRime, and only its software realiza-

tion is available in the literature. It should be interesting to see its FPGA implemen-

tation.

• There are not many published software implementation of other types of post-

quantum cryptosystem, such like hash-based cryptography, code-based cryptography.

etc. It is expected more research works be done on these systems in terms of archi-

tectures and hardware implementations.
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APPENDIX A

Here shows existing works in order to compare results among our proposed works.

Table A.1: FPGA Results for ees401ep1, Security Level 112-bit

Algorithm Work
Parameter

set
#ALM #Register #Cycles FMax Latency

NTRU [9] ees401ep1 4052 9638 401 62.95 MHz 6.37 µs

NTRU [10] ees401ep1 837 1165 3617 67.69 MHz 53.43 µs

NTRU [11] ees401ep1 15662 8838 227 55.00 MHz 4.13 µs

NTRU [13] ees401ep1 4636 8826 401 121.62 MHz 3.30 µs

NTRU [15] ees401ep1 9044 8826 349 113.67 MHz 3.07 µs

NTRU [12] ees401ep1 11861 8826 201 103.01 MHz 1.95 µs

NTRU
Prime

TPM-I ees401ep1 6817 8826 402 274.80 MHz 1.46 µs

NTRU
Prime

TPM-II ees401ep1 11904 8826 201 239.69 MHz 0.83 µs

NTRU
Prime

TPM-III ees401ep1 6888 8826 381 303.12 MHz 1.25 µs

NTRU
Prime

TPM-IV ees401ep1 9032 8826 246 259.67 MHz 0.94 µs
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Table A.2: FPGA Results for ees541ep1, Security Level 112-bit

Algorithm Work
Parameter

set
#ALM #Register #Cycles FMax Latency

NTRU [9] ees541ep1 5425 12995 541 61.50 MHz 8.80 µs

NTRU [10] ees541ep1 837 1165 5959 67.69 MHz 88.03 µs

NTRU [11] ees541ep1 21124 11918 121 52.87 MHz 2.29 µs

NTRU [13] ees541ep1 6246 11906 541 122.02 MHz 4.43 µs

NTRU [15] ees541ep1 12194 11906 349 116.14 MHz 2.94 µs

NTRU [12] ees541ep1 16091 11906 271 102.33 MHz 2.65 µs

NTRU
Prime

TPM I ees541ep1 9197 11906 542 283.93 MHz 1.91 µs

NTRU
Prime

TPM-II ees541ep1 16025 11906 271 240.91 MHz 1.12 µs

NTRU
Prime

TPM-III ees541ep1 9256 11906 422 304.41 MHz 1.38 µs

NTRU
Prime

TPM-IV ees541ep1 12193 11906 196 248.14 MHz 0.78 µs

Table A.3: FPGA Results for ees659ep1, Security Level 112-bit

Algorithm Work
Parameter

set
#ALM #Register #Cycles FMax Latency

NTRU [9] ees659ep1 6572 15832 659 59.43 MHz 11.09 µs

NTRU [10] ees659ep1 837 1165 9234 67.69 MHz 136.42 µs

NTRU [11] ees659ep1 25726 14514 107 51.08 MHz 2.09 µs

NTRU [13] ees659ep1 7603 14502 659 114.53 MHz 5.75 µs

NTRU [15] ees659ep1 14850 14502 386 106.92 MHz 3.61 µs

NTRU [12] ees659ep1 19573 14502 330 105.96 MHz 3.11 µs

NTRU
Prime

TPM-I ees659ep1 11203 14502 660 282.17 MHz 2.33 µs

NTRU
Prime

TPM-II ees659ep1 19539 14502 330 242.19 MHz 1.36 µs

NTRU
Prime

TPM-III ees659ep1 11267 14502 489 284.74 MHz 1.71 µs

NTRU
Prime

TPM-IV ees659ep1 14880 14502 213 221.98 MHz 0.95 µs
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Table A.4: FPGA Results for ees449ep1, Security Level 128-bit

Algorithm Work
Parameter

set
#ALM #Register #Cycles FMax Latency

NTRU [9] ees449ep1 4523 10793 449 56.99 MHz 7.88 µs

NTRU [10] ees449ep1 837 1165 4049 67.69 MHz 59.82 µs

NTRU [11] ees449ep1 17527 9884 269 53.95 MHz 4.99 µs

NTRU [13] ees449ep1 5188 9882 449 121.69 MHz 3.69 µs

NTRU [15] ees449ep1 10124 9882 398 112.90 MHz 3.53 µs

NTRU [12] ees449ep1 13296 9882 225 105.24 MHz 2.14 µs

NTRU
Prime

TPM-I ees449ep1 7633 9882 450 280.35 MHz 1.60 µs

NTRU
Prime

TPM-II ees449ep1 13327 9882 225 256.21 MHz 0.87 µs

NTRU
Prime

TPM-III ees449ep1 7731 9882 431 300.30 MHz 1.43 µs

NTRU
Prime

TPM-IV ees449ep1 10155 9882 286 247.95 MHz 1.15 µs

Table A.5: FPGA Results for ees613ep1, Security Level 128-bit

Algorithm Work
Parameter

set
#ALM #Register #Cycles FMax Latency

NTRU [9] ees613ep1 6124 14730 613 61.62 MHz 9.95 µs

NTRU [10] ees613ep1 837 1165 7977 67.69 MHz 117.85 µs

NTRU [11] ees613ep1 23931 13502 135 50.92 MHz 2.65 µs

NTRU [13] ees613ep1 7075 13490 613 115.12 MHz 5.32 µs

NTRU [15] ees613ep1 13814 13490 387 111.08 MHz 3.48 µs

NTRU [12] ees613ep1 18201 13490 307 104.60 MHz 2.93 µs

NTRU
Prime

TPM-I ees613ep1 10421 13490 614 284.50 MHz 2.15 µs

NTRU
Prime

TPM-II ees613ep1 18170 13490 307 229.31 MHz 1.33 µs

NTRU
Prime

TPM-III ees613ep1 10508 13490 478 289.86 MHz 1.65 µs

NTRU
Prime

TPM-IV ees613ep1 13803 13490 222 253.87 MHz 0.87 µs
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Table A.6: FPGA Results for ees761ep1, Security Level 128-bit

Algorithm Work
Parameter

set
#ALM #Register #Cycles FMax Latency

NTRU [9] ees761ep1 7571 18282 761 59.53 MHz 12.78 µs

NTRU [10] ees761ep1 837 1165 12184 67.69 MHz 180.0 µs

NTRU [11] ees761ep1 29707 16758 120 49.61 MHz 2.42 µs

NTRU [13] ees761ep1 8776 16746 761 110.92 MHz 6.86 µs

NTRU [15] ees761ep1 17144 16746 443 109.14 MHz 4.06 µs

NTRU [12] ees761ep1 22459 16746 381 103.33 MHz 3.69 µs

NTRU
Prime

TPM-I ees761ep1 12937 16746 762 281.85 MHz 2.70 µs

NTRU
Prime

TPM-II ees761ep1 22558 16746 381 234.58 MHz 1.62 µs

NTRU
Prime

TPM-III ees761ep1 13023 16746 562 271.74 MHz 2.07 µs

NTRU
Prime

TPM-IV ees761ep1 17130 16746 243 235.68 MHz 1.03 µs

Table A.7: FPGA Results for ees677ep1, Security Level 192-bit

Algorithm Work
Parameter

set
#ALM #Register #Cycles FMax Latency

NTRU [9] ees677ep1 6740 16266 677 60.24 MHz 11.24 µs

NTRU [10] ees677ep1 837 1165 9486 67.69 MHz 140.14 µs

NTRU [11] ees677ep1 26423 14900 269 49.74 MHz 6.37 µs

NTRU [13] ees677ep1 7810 14898 677 120.00 MHz 5.64 µs

NTRU [15] ees677ep1 15254 14898 551 106.30 MHz 5.18 µs

NTRU [12] ees677ep1 20042 14898 339 106.90 MHz 3.17 µs

NTRU
Prime

TPM-I ees677ep1 11509 14678 678 274.73 MHz 2.46 µs

NTRU
Prime

TPM-II ees677ep1 19737 14678 339 248.82 MHz 1.36 µs

NTRU
Prime

TPM-III ees677ep1 11566 14678 620 267.52 MHz 2.32 µs

NTRU
Prime

TPM-IV ees677ep1 15343 14678 367 237.98 MHz 1.54 µs
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Table A.8: FPGA Results for ees887ep1, Security Level 192-bit

Algorithm Work
Parameter

set
#ALM #Register #Cycles FMax Latency

NTRU [9] ees887ep1 8788 21305 887 60.12 MHz 14.75 µs

NTRU [10] ees887ep1 837 1165 15974 67.69 MHz 235.99 µs

NTRU [11] ees887ep1 34622 19503 198 47.70 MHz 4.15 µs

NTRU [13] ees887ep1 10226 19518 887 106.24 MHz 8.35 µs

NTRU [15] ees887ep1 19980 19518 562 99.98 MHz 5.62 µs

NTRU [12] ees887ep1 26295 19518 444 103.68 MHz 4.28 µs

NTRU
Prime

TPM-I ees887ep1 15079 19518 888 263.99 MHz 3.36 µs

NTRU
Prime

TPM-II ees887ep1 26353 19518 444 239.01 MHz 1.85 µs

NTRU
Prime

TPM-III ees887ep1 15172 19518 693 264.27 MHz 2.62 µs

NTRU
Prime

TPM-IV ees887ep1 20009 19518 323 228.05 MHz 1.41 µs

Table A.9: FPGA Results for ees1087ep1, Security Level 192-bit

Algorithm Work
Parameter

set
#ALM #Register #Cycles FMax Latency

NTRU [9] ees1087ep1 10748 26105 1087 55.53 MHz 19.58 µs

NTRU [10] ees1087ep1 837 1165 23922 67.69 MHz 353.41 µs

NTRU [11] ees1087ep1 42427 23930 177 47.19 MHz 3.75 µs

NTRU [13] ees1087ep1 12526 23918 1087 104.06 MHz 10.45 µs

NTRU [15] ees1087ep1 24480 23918 637 94.07 MHz 6.77 µs

NTRU [12] ees1087ep1 32241 23918 544 96.43 MHz 5.64 µs

NTRU
Prime

TPM-I ees1087ep1 18479 23918 1088 284.26 MHz 3.82 µs

NTRU
Prime

TPM-II ees1087ep1 32241 23918 544 222.82 MHz 2.44 µs

NTRU
Prime

TPM-III ees1087ep1 18613 23918 806 257.53 MHz 3.13 µs

NTRU
Prime

TPM-IV ees1087ep1 24587 23918 350 223.41 MHz 1.56 µs
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Table A.10: FPGA Results for ees1087ep2, Security Level 256-bit

Algorithm Work
Parameter

set
#ALM #Register #Cycles FMax Latency

NTRU [9] ees1087ep2 10748 26105 1087 55.53 MHz 19.58 µs

NTRU [10] ees1087ep2 837 1165 23922 67.69 MHz 353.41 µs

NTRU [11] ees1087ep2 42427 23930 276 45.75 MHz 6.03 µs

NTRU [13] ees1087ep2 12526 23918 1087 104.06 MHz 10.45 µs

NTRU [15] ees1087ep2 24480 23918 717 94.07 MHz 7.62 µs

NTRU [12] ees1087ep2 32241 23918 544 96.43 MHz 5.64 µs

NTRU
Prime

TPM-I ees1087ep2 18479 23918 1088 284.26 MHz 3.82 µs

NTRU
Prime

TPM-II ees1087ep2 32241 23918 544 222.82 MHz 2.44 µs

NTRU
Prime

TPM-III ees1087ep2 18613 23918 872 257.53 MHz 3.38 µs

NTRU
Prime

TPM-IV ees1087ep2 24587 23918 420 223.41 MHz 1.87 µs

Table A.11: FPGA Results for ees1171ep1, Security Level 256-bit

Algorithm Work
Parameter

set
#ALM #Register #Cycles FMax Latency

NTRU [9] ees1171ep1 11568 28121 1171 59.28 MHz 19.75 µs

NTRU [10] ees1171ep1 837 1165 28112 67.69 MHz 415.31 µs

NTRU [11] ees1171ep1 45703 25778 261 44.60 MHz 5.85 µs

NTRU [13] ees1171ep1 13491 25766 1171 108.31 MHz 10.81 µs

NTRU [15] ees1171ep1 26370 25766 740 93.48 MHz 7.92 µs

NTRU [12] ees1171ep1 34648 25766 586 99.50 MHz 5.89 µs

NTRU
Prime

TPM-I ees1171ep1 19907 25766 1172 241.20 MHz 4.85 µs

NTRU
Prime

TPM-II ees1171ep1 34848 25766 586 220.70 MHz 2.65 µs

NTRU
Prime

TPM-III ees1171ep1 19972 25766 913 232.94 MHz 3.92 µs

NTRU
Prime

TPM-IV ees1171ep1 26393 25766 424 218.87 MHz 1.93 µs
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Table A.12: FPGA Results for ees1499ep1, Security Level 256-bit

Algorithm Work
Parameter

set
#ALM #Register #Cycles FMax Latency

NTRU [9] ees1499ep1 14755 35989 1499 51.87 MHz 28.90 µs

NTRU [10] ees1499ep1 837 1165 44978 67.69 MHz 664.47 µs

NTRU [11] ees1499ep1 58507 32994 228 42.95 MHz 5.31 µs

NTRU [13] ees1499ep1 17263 32982 1499 103.68 MHz 14.46 µs

NTRU [15] ees1499ep1 33750 32982 866 96.99 MHz 8.93 µs

NTRU [12] ees1499ep1 48719 32982 750 82.73 MHz 9.07 µs

NTRU
Prime

TPM-I ees1499ep1 25483 32982 1500 225.99 MHz 6.63 µs

NTRU
Prime

TPM-II ees1499ep1 48723 32982 750 209.86 MHz 3.57 µs

NTRU
Prime

TPM-III ees1499ep1 25595 32982 1102 245.58 MHz 4.48 µs

NTRU
Prime

TPM-IV ees1499ep1 33820 32982 473 221.98 MHz 2.13 µs
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