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ABSTRACT 

 

Machine learning is a broad study of computer science, widely used for data analysis and 

algorithms that has the ability to learn and improve by experience through training. Supervised 

learning, Unsupervised learning, Dimensionality Reduction, Deep Learning, etc are the methods 

offered by Machine learning. These techniques are applied in fields like medical, automotive 

finance, and many more. In this thesis, Convolutional neural network (CNN) which is a part of 

deep learning techniques is applied to identify if a person is under influence of Marijuana or sober, 

using facial feature changes like redness in eyes, watery eyes, and drowsiness caused after smoking 

Marijuana. CNN is a state-of-the-art method in tasks like image classification and pattern 

recognition. CNN’s ability to learn from training the model using image dataset is a suitable 

method to be used in the problem of identifying a person’s sobriety based on facial features. The 

proposed methodology is divided into three components. Which are dataset creation, face detection 

to extract input image from real-time video, and finally, tuning and training CNN model for 

making a prediction. The purpose of this thesis is to develop a CNN model that may be helpful if 

implemented in vehicles in the future to reduce impaired driving incidents. Impaired driving is a 

major criminal cause of vehicle accidents in Canada.  Impaired driving is a serious problem that 

puts the lives of pedestrians on the road and drivers involved in impaired driving themselves in 

danger. This thesis presents how Machine Learning can be applied to predict driver’s sobriety that 

may be helpful in reducing impaired driving incidents in the future by implementing in vehicles. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Overview 

We see a lot of incidents of impaired driving in our daily life which put not only the driver’s life 

but pedestrians’ lives in danger too. Vehicle crashes involving alcohol or drugs are the leading 

criminal cause of death in Canada. Every day, on average, 4 Canadians are killed and 175 are 

injured because of impaired driving related crashes [20]. To help prevent vehicle related crashes, 

most modern vehicles are equipped with safety features like drowsiness detection, lane assist, 

brake assist, and countless other safety measurements that make driving safer by keeping the driver 

focused behind the wheel. Moreover, we will review research papers in the next chapter on 

approaches to detect drunkenness, drowsiness and driver distraction detection using Machine 

Learning techniques in an effort of reducing vehicle crash incidents. However, there are no 

research papers available on detecting Marijuana intoxication. Therefore, we are proposing this 

approach to detect Marijuana intoxication using Convolutional Neural Network. Implementing 

this approach in vehicles may be able to help in preventing a person from operating a vehicle while 

being intoxicated.  

The use of Marijuana is legal in many states and has become legal not very long ago in Canada as 

well. People may be careless and drive under influence of Marijuana since it is available easily 

now. It is dangerous to drive after smoking Marijuana because it makes your response very slow 

and makes you lose concentration. Fast response and focus while being behind the wheel are the 

most important factors to consider for safer driving. 

1.2 Statistical analysis of driving incidents  

Every day, on average, up to 4 Canadians are killed and many more are injured in alcohol and/or 

drug-related motor vehicle crashes on public roads involving at one “principal highway vehicle” 

(i.e., passenger cars, vans, trucks, and motorcycle) [19]. Every day, 29 people in the United States 

die in motor vehicle crashes that involve an alcohol-impaired driver. This is one death every 50 

minutes [20].   
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In 2014, approximately 2,297 people died because of road crashes, and out of those, around 1,273 

(55.4%) of deaths were because of driving under influence of alcohol and/or drugs [19]. 299 (13%) 

people died in crashes occurred involving individuals who were positive for alcohol, 618 (26.9%) 

of deaths in crashes occurred involving individuals who were positive for drugs and 356 deaths, 

or 15.5%, occurred in crashes involving individuals who were positive for both alcohol and drugs 

[19]. 

In 2015, police reported 72,039 impaired driving incidents [21]. That represents a rate of 201 

incidents per 100,000 population. Yukon and Saskatchewan had the highest reported impaired 

driving cases while Ontario, Quebec, and Manitoba had the lowest reported cases.  

• In 2016, 10,497 people died in alcohol-impaired driving crashes, accounting for 28% of all 

traffic-related deaths in the United States [22]. 

• Out of 1,233 traffic deaths among children ages 0 to 14 years in 2016, 214(17%) involved 

an alcohol-impaired driver [22]. 

• In 2016, more than 1 million drivers were arrested for driving under the influence of alcohol 

or narcotics [22]. 

• Drugs other than alcohol (legal and illegal) are involved in about 16% of motor vehicle 

crashes [22]. 

• Marijuana use is increasing and 13% of night-time, weekend drivers have marijuana in 

their system [22]. 

• Marijuana users were about 25% more likely to be involved in a crash than drivers with no 

evidence of marijuana use, however other factors–such as age and gender–may account for 

the increased crash risk among marijuana users [22]. 

Many vehicle manufacturers are conducting research and applying machine learning and artificial 

intelligence in their vehicles for improving the safety. One of the most popular examples would 

be Tesla Motors. It is an innovative car manufacturer known for its electric cars and its autopilot 

technology. Their camera networks analyse raw images to perform semantic segmentation, object 

detection, and monocular depth estimation. Their birds-eye-view networks take videos of road 

layout, static infrastructure, and 3D objects [33]. Their neural network learns from information 

captured from camera networks. 

Therefore, taking inspiration from current methods we are going to use the machine learning 

technique, Convolutional Neural Networks (CNN) for our approach. CNN is a state-of-the-art 

technique for image classification tasks. It can classify images as good as humans if not better. 
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The use of CNNs is becoming more and more popular in fields like medical, finance, automobiles, 

social media, etc. CNNs are widely used in computer vision technics. Though they are not widely 

explored for detecting marijuana intoxication. We will go through a literature review to explore 

some papers representing approaches using deep learning technics to deal with drunk person 

classification problems. We are using similar experiments to train a CNN model to detect a person 

who is intoxicated using marijuana.  

There are methods available to detect intoxication with 100% accuracy such as Breathalyzer for 

drunkenness detection or THC Breath Analyser. A company called Cannabix Technologies [49] 

is working with the Yost Research Group at the university of Florida to develop this breath 

analyser. But this device may be more suitable for traffic enforcement authorities and a user may 

not be in full conscious when intoxicated to use it to check if he or she is sober or not before 

driving. Therefore, something like video surveillance would be much more helpful that can 

automatically detect driver’s sobriety from facial features.   

1.3 Thesis motivation 

Even with countless safety features in modern vehicles, there are a high number of accidents 

resulting in serious injuries and deaths. If we explore in the past when vehicles were discovered, 

there were many flows and lack of safety features or barely any features at all. With time, safety 

became the number one priority, and a tremendous amount of safety improvements can be seen in 

modern vehicles. We will also see research papers in the next chapter Literature Review, that 

demonstrates Machine Learning techniques that can be used to make vehicles safer by detecting 

impaired driving. A high rate of accidents shown in following statistical analysis of driving 

incidents, adding to impaired driving detection is a useful idea to consider. 

1.4 Thesis objective 

The main objective behind this thesis is to build and train a Convolutional Neural Network to 

predict marijuana intoxicated faces. In the future, it may be helpful in implementing in vehicles so 

that it can warn or stop a person from operating the vehicle when he or she is intoxicated. For 

making this possible we will go through research papers published for detecting a drunk person or 

other similar papers like drowsiness detection using neural networks to learn how a neural network 

can be trained to deal with the problem statement. In addition to that, we will need to create a 

dataset as well which contains pictures of faces when sober and when under influence of marijuana 

because there are no known datasets available currently on this topic. In the later chapter, we will 
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be comparing our results with other research papers and some baseline classification algorithms 

trained on the same dataset to evaluate the performance of our model.   

1.5 Introduction to CNN 

Convolutional Neural Network is a class of deep learning neural networks. CNN represents a huge 

breakthrough in image recognition. They are most commonly used to analyse visual imagery and 

are frequently working behind the scenes in image classification. From Facebook tagging to 

autonomous vehicles, CNNs are present for machine learning related tasks. Image classification is 

the process of taking an input and outputting a class or a probability that the input belongs to. 

Let us take a simple example from [34] to understand neural networks. Assume that we want to 

detect a swan from a picture. For that, we need to consider features of a swan like oval-shaped 

white blob (body), round, elongated oval with orange protuberance, long white rectangular shape 

(neck) as can be seen in Figure-1 below. 

 

Figure 1: Certain Features of a Swan [34] 

Now, let us say if the detector algorithm for determining these features was to be created by a 

human, the detector would be either too general or too over-engineered. That would make the 

detector either too simple or hard to generalize. We can get an idea about what difficulties we may 

face by seeing the following picture in Figure-2 that shows various other possible scenarios of a 

swan that wood makes it complicated to detect using a simple detector. 
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Figure 2: Possible Scenarios of a Swan [34] 

What if we could learn features to detect? We need to use representation learning (or Feature 

Learning). Representation Learning is a technique that allows a system to automatically find 

relevant features [34]. Techniques for such tasks fall under two categories, Unsupervised and 

Supervised Learning. CNN is a supervised learning technique. Neural networks have the capability 

to learn from experience like neurons in human brains hence called neural networks. CNN detects 

features by relating nearby pixels of an input image by computing feature matrix using something 

called filter or kernel. A more detailed CNN’s operation is explained in Chapter 3. First, let us see 

some applications to understand in what kind of tasks Convolutional Neural Networks can be used. 

1.6 Applications of CNN 

Convolutional Neural Networks are popular in a vast variety of fields. Machine Learning and Deep 

Learning techniques are often found behind the applications where we need to compute a large 

amount of complex data and tasks like decision making. Neural Networks are designed to work 

like a human brain and can learn over experience. Some of the popular but not limited applications 

are listed below.  
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● Facial Recognition 

● Advertising 

● Analysing Documents 

● Analysing Weather Conditions 

● Image Segmentation 

● Medical 

● Automotive  

1.6.1 Facial Recognition 

In October 2016 Yin Fan et al [1] presented a video-based emotion recognition system. The core 

module of this system is a hybrid network that combines recurrent neural network (RNN) and 3D 

convolutional networks (C3D) in a late-fusion fashion. Specifically, RNN takes appearance 

features extracted by convolutional neural network (CNN) over individual video frames as input 

and encodes motion.  

Following image in Figure-3 is just a visual representation of features considered to detect a face. 

For example, algorithm will detect landmarks on a face like two eyes, nose, and mouth to identify 

a face. 

 

Figure 3: Facial Recognition [28] 

1.6.2 Advertising 

When browsing online websites, we encounter lots of ads. The ad publishers like Google and 

Yahoo sell ad zones on different web pages to advertisers who want to show their ads to users. 

And then Publishers get paid by advertisers every time the ad display leads to some desired action 
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such as clicking the ad and redirecting to their website [35]. Deep CTR Prediction in Display 

Advertising by Junxuan Chen et al. is a good example that shows use of neural network in 

predicting click through rate (CTR). Because, in most online advertising predicting the number of 

clicks is the core task of ads allocation. 

1.6.3 Analysing Documents 

One of the examples of analysing documents is, Fast CNN-based document layout analysis [1] 

proposed by Dario Augusto Borges Oliveira from IBM research Brazil. In this paper they proposed 

a technique in which a trained CNN model will detect the layout of a document from the image of 

a document. They pre-process a document input image and segment it into its blocks of content, 

use their vertical and horizontal projection to train a CNN model for multi-class classification 

considering text, image, and table classes.    

1.6.4 Analysing Weather Conditions 

In 2016, Ziqi Zhu et al [2] proposed a method to detect extreme weather recognition using 

convolutional neural networks. The weather is affected by many factors, features that can 

accurately represent various weather characteristics are difficult to be extracted. Therefore, in this 

paper, they applied convolutional neural networks to deal with this problem. The CNN model was 

trained using ILSVRC-2012 dataset. 

1.6.5 Image Segmentation 

Let us see an example of an autonomous vehicle where vehicle will need to understand each 

moving or stationary object on the road to take certain actions in order to avoid crashes. Neural 

networks can learn patterns from input image in order to predict object classes. Therefore, neural 

networks are used for segmentation. The main deep learning architecture used for image 

processing is a Convolutional Neural Network, or specific CNN frameworks like AlexNet, VGG, 

Inception, and ResNet [35]. 

Image segmentation is demonstrated in Figure-4 where objects from an image are separated by 

using bounding boxes. 
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Figure 4: Image Segmentation [28] 

1.6.6 Medical 

CNN can also be used to diagnose various medical conditions. There are lots of research papers 

available that demonstrates use of CNN to predict cancer cells, tumour cells, determine health of 

retina and so many other examples of healthcare using machine learning. 

Let us see an example that uses CNN to predict Diabetic retinopathy. In July 2016, the United 

States Food and Drug Administration approved the use of medical device using a form of artificial 

intelligence (CNN) to detect diabetic retinopathy in diabetic adults. The diagnosis of diabetic 

retinopathy (DR) through color fundus images requires experienced clinicians to identify the 

presence and significance of many small features which, along with a complex grading system, 

makes this a difficult and time-consuming task [3]. In this paper they propose a CNN approach to 

diagnose DR from digital fundus images and accurately classifying its severity. 

1.6.7 Automotive 

Autonomous vehicles are becoming a reality and lots of investments are being made to make it 

possible in future by countless automotive manufacturers including Tesla, BMW, Audi, 

BlackBerry QNX and many more. CNN can make a huge breakthrough in autonomous vehicles. 
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Figure 5: Autonomous Vehicles [29] 

Image in Figure-5 is just a visual representation of how vehicles are sensing the objects on the road 

by sending signals. 

In June 2018, Junekyo Jhung et al proposed an end-to-end steering controller with CNN-based 

closed-loop feedback for autonomous vehicles that improves driving performance compared to 

traditional CNN-based approaches. They used DAVE-2SKY and it was able to learn to inference 

steering wheel angles for the lateral control of self-driving vehicles [4]. 
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CHAPTER 2 

LITERATURE REVIEW 

 

In this chapter, we will review other machine learning approaches to prevent impaired or distracted 

driving. Most of the modern cars have features to stop driver from being distracted. Use of machine 

learning is new trend and being adapted by many vehicle’s manufacturers. There are many research 

papers available that uses CNN for various purposes like drunk detection, drowsiness detection 

and driver distraction detection from which we will discuss some of the approaches in brief. 

Although, there is not enough research done that uses CNN to detect if a person has smoked 

marijuana by using facial features. We will be comparing our thesis approach with some papers 

discussed below like drunkenness detection and drowsiness detection which shares somewhat 

similar features when person is high on marijuana. 

2.1 Driver Behaviour Detection using CNN  

In July 2020, proposed by Mohammad Shahverdy et al, a driver behaviour detection and 

classification using deep convolutional neural networks [5]. They proposed a novel yet efficient 

approach to monitor driver behaviour to reduce vehicle accidents by addressing possible privacy 

violation by previous methods which are rely on computer vision techniques. Instead of using 

driver’s face, they are using signals generated from vehicle movement patterns. They are 

classifying the driving behaviour into five types, normal, aggressive, distracted, drowsy and drunk 

driving. In order to do that, they gathered vehicle data, including acceleration, gravity, RPM, 

speed, and throttle (the amount of accelerator pedal is pushed) [5]. The acceleration and gravity 

are gathered in three axes from a smartphone. RPM, speed, and throttle are measured by using the 

On-Board Diagnostic (OBDII) tool. They apply a time window on nine collected signals to 

distinguish the different driver behaviours. Then all windowed data are converted to the images 

by the recurrence plot technique [5]. They experimented with a different number of convolutional 

layers and filter sizes to train the model. Their paper mentions they were able to achieve an 

accuracy of 88% average.  

For our experiments, we are also altering the number of parameters of our model to find suitable 

parameters. For different problems, a CNN model cam act differently depending on the input 

images. So, there is no concrete way of figuring out the exact configuration of a model for a 
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specific problem. That is why experimenting with different numbers of layers, kernel sizes, 

altering parameters, etc can be helpful in achieving the best performance of a classification model. 

2.2 Drowsiness Detection  

In March 2020, Maryam Hashemi et al proposed CNN-based Driver Drowsiness Detection [6]. 

According to reports from World Health Organization (WHO), vehicle related accidents are one 

of the top 10 causes that lead to death in the world [36]. Therefore, they are proposing this approach 

to detect drowsiness detection in drivers to reduce such accidents. This paper presents a novel 

approach for driver drowsiness detection. The proposed methodology uses Convolutional Neural 

Networks for monitoring diver’s eye closure by focusing on two goals of real-time accuracy and 

speed. They mentioned that there is lack of dataset for such problem just like our approach, so they 

are also creating their own dataset of eye closure pictures. The first step in the process is to detect 

eye. In order to locate eyes from a frame, first need to estimate the headbox. To detect the headbox 

Viola and Jones algorithm [37] are used. Facial landmark detection used in this approach is a 

regression tree machine learning method and it was trained on the iBUG 300-W face landmark 

dataset [38]. When the landmark point of eye is reached, frame of eyes is cropped because face is 

asymmetry shape and not required or drowsiness detection, only eye is adequate to be considered. 

After cropping the eye, finally, the eye status is classified by computing distances from the most 

right and the most left point of the right and left eyes [6]. In the training process, eye is classified 

into two categories, open and closed. They introduced three potential neural networks. In which, 

one of them is a fully designed neural network (FD-NN), and others use transfer learning with 

VGG16 and VGG19 with extra designed layers (TL-VGG) [6]. For the dataset, they extended ZJU 

dataset to 4,157 images (2100 open and 2057 closed) [6]. Their TL-VGG19 method achieved 

accuracy of 95%, TL-VGG16 method achieved 95.45% accuracy and FD-NN method was able to 

achieve accuracy of 98.15%. to compute the results, they used a system with Core i7-6700K 

CPU@ 4.00GHz with 16GB RAM and NVIDIA GeForce GTX 1070Ti GPU. 

Real-time Driver Drowsiness Detection for Android Application Using Deep Neural Networks 

Techniques [17] proposed by Jabbar, R. at al. and published in 2018 is an attempt to reduce road 

crashes and related accidents using Multilayer Perceptron (MLP). They took inspiration to carry 

out this research because of the number of vehicle related accidents happening due to drowsiness 

from a study conducted by the AAA Foundation for Traffic Safety. The report showed that 23.5% 

of all automobile crashes recoded ion the United States in 2015 were because of drowsiness. For 

this research, they are using National Tsing Hua University (NTHU) Driver Drowsiness Detection 
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Dataset [19]. This dataset consists of images of 22 subjects of various ethnicities and these images 

of 22 subjects are divided into testing and training dataset. This dataset was created by recording 

various driving scenarios which simulates yawing, slow blink rate, conscious laughter, and dizzy 

dozing. They are using 18 subjects for training the model and 4 subjects for testing. First, videos 

from NTHU database us extracted followed by extracting images from video frames. Videos in 

this dataset are captured with 30 frames per second. They are extracting every frame as images. 

Next step is to detect facial landmark coordinates from the image. This task is done by using Dlib 

library’s 68-point facial landmark detector. In our approach of detecting person intoxicated by 

marijuana, we are using 5-point facial landmark detector which is faster than 68-point facial 

landmark detector. After using the landmark detector to extract coordinates, the extracted 

coordinates are then used to be given as input to Multiplayer Perceptron based Classifier with three 

hidden layers to predict if person is feeling drowsiness or not. The first step in the process is, 

extracting videos from NTHU drowsy driver detection dataset then images are extracted from 

video frames. Once the input image is obtained, landmark coordinates from images are extracted.  

These coordinates of facial features are used as input to the algorithm based on multilayer 

perceptron classifier. Finally, the algorithm can detect of person’s eye is closed or open in order 

to detect drowsiness. They were able to achieve overall accuracy of 80.92% which includes 

experiments with glasses, night without glasses, night with glasses, without glasses, and with 

sunglasses. 

In June 2018, Macro Flores, Jose Armingol and Arturo Escalera proposed Real-time drowsiness 

detection system for an intelligent vehicle [18]. To help in reducing road accidents, in this paper a 

new advanced driver assistance system (ADAS) is presented. In their study, they observed that an 

estimate of between 10% and 20% of traffic accidents are cause by drowsiness [46]. That 

motivated them to carry out research to design and to build systems able to monitor drivers and 

their level of attention while driving. They considered visual features on face when feeling drowsy 

like yawn frequency, head movement, facial expression, eye-blinking frequency, and eye-gaze 

movement [18]. Like our approach, the first step in their method is face detection. To detect face, 

their system uses VJ object detector which is useful machine learning technique for object 

detection. Three important aspects. Integral image, AdaBoost technique and cascade classifier [47] 

makes the VJ object detector an efficient object detector. Drawback of using VJ object detector is 

that it does not work appropriately when the face is not in front of the camera. To overcome this 

problem, they implemented Condensation Algorithm (CA) proposed by Isard and blake for 

tracking active contours using a stochastic approach. To solve the problem of face alignment, they 
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also implemented a tracker using a neural network in conjunction with CA that can predict the 

exact position of face in front of camera. Once the face is located, both eyes are tracked using 

expectation maximization algorithm (EM) and marked using ellipses. Final step in the approach is 

to determine the state of eyes, closed or open using Support Vector Machine (SVM). A training 

set consists of open eyes and closed eyes was built in order to train SVM. After several training 

experiments, they decided to use RBF kernel and they were able to reach the accuracy of 94%. 

2.3 Drunkenness Detection  

DIF- dataset of intoxicated faces fir drunk person identification proposed by Vineed Mehta et al 

[7] in May 2018 is a very similar approach to our proposed method for identifying persons 

intoxicated by use of marijuana. In this paper they are proposing an automatic bimodal non-

invasive intoxication detection. They are using Convolutional Neural Networks (CNN) and Deep 

Neural Networks (DNN) for training to compute the video and audio, respectively. A new dataset 

is proposed as well to train the model called DIF (Dataset of Perceived Intoxicated Faces for Drunk 

Person Identification). To generate the dataset, they browsed through social media and videos of 

drunk people available online. They observed that there are channels on social media websites like 

YouTube, where people record themselves in intoxicated states. They found videos of interviews, 

reviews, reaction videos, video blogs and short films. In order to search these videos from websites, 

they used keywords like drunk reactions’, ‘drunk review’, ‘drunk challenge’ etc. For our approach 

we are using the same method to search videos where people record themselves while smoking 

marijuana to build our dataset. Their dataset was built from total 78 videos in the sober category 

and 91 videos in drunk category. The sober category consists of 78 subjects and drunk category 

consists of 88 subjects. To process these videos, they are using pyannote-video library [19] and 

face detection is performed from video frames. After extracting frames, face alignment is done 

using OpenFace toolkit [1]. Next step is to use extracted images for prediction. Two pre-trained 

models on face dataset are used. VGG-face [9] and AlexNet based network trained on RAF-DB 

[7] dataset. They are using AlexNet model to extract features is because it is trained on the RAF-

DB which is a database of facial expressions. Therefore, the feature extracted from the pre-trained 

network will be more aware of the facial deformations generated due to facial expressions. During 

the experiments, they observed that VGG-face base representation gave better results than RAF-

DB based. They are also training a Lon Short Term Memory LSTM network using the audio 

features. They were able to achieve the accuracy of 78.12% for CNN model and 78.06% accuracy 
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for audio model. By combining both methods they were able to predict the drunkenness with the 

accuracy of 88.39%. 

One more paper is Drunk selfie: Intoxication Detection from Smartphone Facial Images proposed 

by Colin Willoughby et al [10] that detects person’s drunkenness based on photo taken from a 

smartphone. they observed statistics of impaired driving incidents from a website. According to 

the report from website, over 10,000 people died because of drunk driving. taking inspiration from 

the statistics they carried out this research. They also developed a prototype android app and 

implemented this method. This app can take pictures of person’s face and classify them into sober 

or drunk using their machine learning intoxication classifier. To train the model they used “3 glass 

later wine project” dataset created by Brazilian photographer Marco Alberti [17]. Photographer 

created this dataset in curiosity to see how people act after each glass of wine. So, he captured 

photos of different individuals when they were completely sober, after one glass, after two glass 

and after three glass of wine. For this experiment, 52 individuals were involved including males 

and females both. Dataset of 2,332 images was built using 212 photographed combining with 

internet photos and using augmentation. For augmentation, the imgaug python library was used. 

Image rotation, brightening, burning, changing perspective, changing contrast, and adding tint 

were the transformation operations used for expanding the image dataset. The first step is image 

pre-processing. In this part faces from the image is being detected using Histogram of Oriented 

Gradients (HOG) method. They used Dlib implementation for facial landmark detection. In our 

approach, we are using the same method to detect face from an image. Instead of using 68-point 

facial landmark detection, we are using faster 5-point facial landmark detection. After the face is 

detected, landmarks such as eyes, mouth and nose are located because they are likely to change in 

response to alcohol [12]. These landmarks are detected using the Facial Landmarking algorithm 

[36]. Once the landmarks are detected, they are used for aligning the face. Features from the images 

are now extracted like forehead redness because according to the research done by them, when 

alcohol is consumed, the face gets red especially cheeks and forehead. They compared various 

classifier types including the Linear Support Vector Classifier, Polynomial SVC, Random Forest, 

and Decision Tree Classifier. Out of these, Random Forest performed the best. They were able to 

achieve the accuracy of 81%. 

Drunk person identification using thermal infrared images proposed by G. Koukiou, G. 

Panagopoulos, and V. Anastassopoulos [17] published in July 2019 uses a similar approach of 

identifying drunk person using thermal images instead of using direct images from a normal 

camera. The infrared images used in this work were acquired by means of the Thermo Vision 
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Micron/A10 Model infrared camera of FLIR company [17]. The main reason behind using thermal 

images instead of normal images is that the physiological properties of the face depend mainly on 

its temperature, which in turn is strictly related to the distribution of the blood vessel network on 

it. [37].  

To obtain the data, they acquired pictures when persons had not consumed any alcohol. Then they 

gave 330ml of beer to each person three times for every 30 min and obtained images after 25 

minutes of each beer. In order to monitor the temperature change from the consumption of alcohol, 

20 different points of the face were selected of each person. From these points, a 20-dimensional 

feature vector was created which corresponds to a point in the 20-dimensional space. Thus, 

formatting four clusters when sober and after three beers in an interval of 30 minutes.  In order to 

examine the separability of the four clusters in the feature space, they compare the scatter of each 

cluster from the centre of the cluster. The distance between the first and last cluster was calculated 

and compared with the summation of the clusters maximum scatter. The result showed that the 

distance between the first and the fourth cluster was much larger than the summation of the clusters 

maximum scatter. Therefore, two clusters were totally separable.  

The conclusion is, they presented an approach to the problem of identifying drunk people using 

thermal images using the method based on the representation of a specific person into feature space 

and observed that as the person consumes beers, cluster of features vector moves further. For 

improving the performance and accuracy, they will be conducting more experiments in future. 

One more research paper that uses images other than direct images from normal camera is Face 

Recognition and Drunk Classification Using Infrared Face images proposed by G. Hermosilla, J. 

Luis, G. Farias, E. Vera, F. Pizarro, and M. Machuca [16] was published in Jan 2018 takes on the 

approach to identify person’s sobriety by examining changes on face after consuming alcohol 

using infrared images instead of thermal images used in the previous paper. A process called 

thermoregulation shows that a biological organism modifies its internal temperature within certain 

limits and is commanded by hypothalamus [16]. In their research studies, they found that some 

studies have shown that the thermoregulatory system can be altered depending on mood or the 

consumption of certain food [38]. Alcohol causes motor disturbances and disturbances in the 

psychic systems, resulting in abnormal behaviour on a biological level, such as dilation of blood 

vessels [39-40] and increased blood pressure. In case of human face, the temperature increases 

around nose, forehead, and eyes in response to alcohol consumption.  
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According to their research, there are large number of applications in machine learning, such as 

face recognition, facial expressions, and personal identification, computer systems, etc. but the 

problem of drunk classification is not widely studied. The problem of marijuana intoxication 

classification is not widely explored either. Therefore, experimenting and researching for this 

problem may provide useful insights and results that can be used for future studies. Only significant 

work they found was done by the University of Patras, Greece [41-42]. The aim of their study is 

to demonstrate that it is possible to classify drunk and sober person using the intensities of pixels 

located in different part of a face like forehead, nose, and mouth. Using this, a space separable 

features can be generated [16]. Only problem with this study was they had only small number of 

data created with limited subjects (8 individuals) available therefore it was not possible to ensure 

generalisation of the classifier. In order to improve accuracy and better generalisation they are 

using larger dataset called Pontificia Universidad Católica de Valparaíso-Drunk Thermal Face 

database (PUCV-DTF). In the construction of this database, 46 individuals, 40 men and 6 women 

were selected with the average age of 24 years. This test excluded people who consumed alcohol 

daily in order to to get better visual changes on face area. Procedure was carried out after all 

subjects were rested for 30 minutes to stabilise the metabolism to the temperature conditions of 

the test laboratory. Then they were given 355ml can of beer and waited for 30 minutes and then 

again given the same amount of beer and it was repeated until four beers were consumed. For 

thermal imaging, FLIR TAU 2 [43] with a resolution of 640x480 pixels, a frame rate of 30 frames 

per second, thermal sensitivity of 50mK, and a spectrum range between 7.5 and 13.5 μm was used 

[16]. Built dataset contains 250 images per subject and 50 images per subset (sober, 1 beer, 2 beers, 

3 beers and 4 beers). For feature extraction, dimensionality reduction methods were used on local 

regions of a thermal face image. They observed in [44], they were using features extracted from a 

grid of 20 points which did not have biological details on the location of the feature points. That 

is why this paper is using a different grid of 22 points which was inspired by [45]. In this method, 

points are selected at positions where there are capillaries and veins that cross the face. After 

feature extraction is completed, a feature vector of 22 dimensions is generated. Hence there are 50 

feature vectors for each of the five classes. Since there are 22 dimensions, separating them by a 

hyperplane is too complex that is why they are using Fisher linear discriminant analysis to reduce 

the dimensionality. Once the dimensionality reduction is completed using FLD, the Gaussian 

mixture model (GMM) was used to perform the classification. At the end of experiments, they 

were able to achieve the accuracy of 87% when a person has consumed at least one beer. 
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CHAPTER 3 

METHODOLOGY 

 

3.1 Flow of work 

In this chapter we will see methods and techniques used in the implementation of this thesis which 

consists of dataset creation, face detection using 5-point landmark face detection and training the 

convolutional neural network. Furthermore, experiments and results will be discussed in Chapter 

4 including comparison of results with other popular machine learning classifiers like SVM, 

Decision Trees and Random Forest.  

Our focus of this thesis is to build a CNN model that can predict images of sober faces and 

marijuana intoxicated faces. If we recall from Chapter 1, there are plethora of applications and use 

of CNN in variety of fields. For such different tasks, different configurations and parameters of a 

classification algorithm are required depending on the classification task. There is no certain way 

to tell which configuration will work the best for a given classification problem. So, to find the 

suitable parameters we need to carry out number of experiments with different parameters. 

Proposed methodology can be divided into three main parts, dataset creation, face detection and 

training the neural network (CNN model) as shown in Figure-6 below. 

 

Figure 6: Proposed Methodology 
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Dataset: Process of dataset creation and dataset augmentation. 

Face Detection: Implementation of Dlib 5-point landmark face detection. 

CNN Model: Architecture of CNN model, training and testing of the model. 

3.1.1 Image Gathering 

 

Figure 7: Dataset Creation 

Creating a dataset was the most challenging and time-consuming task. Figure-7 is highlighting the 

part we will be covering in this section. Most research papers we saw in literature review Chapter-

2, created their datasets in lab by photographing real people’s faces after experimenting with 

different amount of alcohol consumed by participants. But couple of research papers created their 

dataset by collecting images from internet which seems less resource consuming since it does not 

require a bunch of participants, alcoholic drinks (wine or beer) needed for consumption by 

participants or camera. Because of limited resources, we created our dataset by using similar 

method of acquiring images from social media platform like YouTube and google image search. 

Dataset needed to be created because there was no known dataset available which consists of 

pictures of faces intoxicated by marijuana. Approach to create dataset was inspired by method 

Yadav, D. P., and Dhall [8] used in their drunk person detection paper.  

Pictures of intoxicated people can be gathered from social media platforms like YouTube and 

Google Image Search. There are tons of youtubers who posts videos of them smoking marijuana 

in front of camera. We can take screenshots and crop images from such videos when they are 

intoxicated. From some videos we can extract picture of the same individual when they are sober 

and when intoxicated but it is not always possible to get “before” and “after” picture of the same 
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person. So, the dataset will consist of random images of faces when they are intoxicated and when 

they are sober. Figure-8 below shows a sample of what dataset looks like displaying intoxicated 

faces on top and sober faces at the bottom. 

 

Figure 8: Dataset Sample 

We went through google searches to find people’s face by using key words like marijuana, 

smoking pot, marijuana red eye etc. From YouTube, we watched several videos of people smoking 

marijuana in front of camera and captured multiple screenshots when they were sober and when 

they were intoxicated. A detailed demonstration of how images were gathered is explained later in 

Chapter-4. It is very difficult to gather thousands of images so using image augmentation was in 

order. 

3.1.2 Data Augmentation 

It may not be always possible to have access to a huge amount of data. In that case Data 

augmentation can be very useful. Limited number of images in a dataset can be a major obstacle 

in training a Convolutional Neural Network because training a classification model requires 

thousands of images. To deal with this problem, we can use a common method used in machine 

learning called Data Augmentation. Data augmentation is very useful and widely used technique 

to expand dataset whenever available dataset is not large enough.  

We can increase the size of dataset just by using simple image transformation techniques like 

rotation, random crop, flipping, altering image contrast etc. Figure-9 displayed below is an 

example of output after performing transformation techniques. We can see the original image at 

the left side of the figure and six augmented images. 
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Figure 9: Data Augmentation Sample [30] 

Following Image in Figure-10 shows a sample of augmentation performed on one of the images 

from our dataset. Where left image is the original image and six images on right side are generated 

after performing image transformations. 

 

Figure 10: Augmented Dataset Sample 
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3.1.3 Face Detection 

 

Figure 11: Face Detection 

Figure-11 is highlighting the part we will discuss in this section. In order to classify an image, first 

we need to extract image from video and locate the face from the image so it can be used as input 

of our CNN model. For face detection, we are using Dlib 5-point facial landmark detector. It is 

faster and effective compared to 68-point facial landmark detector by 10% in speed and 

significantly smaller (only 9.2MB compared to 68-point facial landmark detector’s 99.7MB). This 

algorithm is suitable for tasks like face alignment. Figure-12 shows an example of face being 

detected from a picture using 5-point facial landmark detector. 

 

Figure 12: Face Recognition in action [16] 

Davis King [12] released a public repository which contains trained model on 3 million faces.  This 

model is a ResNet network. It is essentially a version of the ResNet-34 network from the paper 

Deep Residual Learning for Image Recognition by He, Zhang, Ren, and Sun [13] with a few layers 
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removed and number of filters per layer reduced by half. Adrian Rosebrock explains how to use 

and implement faster facial landmark detection in a tutorial [14].  

Following image in Figure-13 is a screenshot of implementation of Dlib and video used is one of 

the examples of YouTube video used to extract images for dataset. Face is detected from the video 

and marked by using a green rectangle. Once the face is detected, we can simply crop the image 

inside the green rectangle and use the image as input of our classification model. 

 

Figure 13: Face detection implementation 

 

In DrunkSelfie paper proposed by Willoughby et al [11] uses Dlib with 68-point detector instead 

of 5-point detector [16] used in this thesis. 5-point detector works by locating 5 points, two eyes, 

nose and mouth on face in order to locate a face. Similarly, in the paper Real-time driver 

drowsiness detection [18] uses the same approach as Willoughby’s paper of using 68-point 

detector for face detection. 
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3.1.4 CNN Architecture 

 

Figure 14: CNN Model 

Figure-14 is highlighting the part we will be covering in this section. The Convolutional Neural 

Network (CNN) is a class of deep learning neural networks. CNNs represent a huge breakthrough 

in image recognition and classification tasks. They are commonly used to analyse visual imagery 

and are frequently working behind the scenes in image classification. Image classification is the 

process of taking an image as input and predict the class or a probability of the image as output. A 

typical Conv network consists of following layers. 

● Convolutional layers 

● Activation layers 

● Pooling layers 

● Fully connected layer 

Number of layers and types of layers in a CNN depends on the purpose of the model. For example, 

a complex model built to classify images of cat and dog may require different configuration lie 

size of filter, number of layers, etc, than a model for classifying species of flowers. Figure-15 

below is showing the architecture of the model we are using for Marijuana intoxication detection 

problem. It shows the main components like number of layers, size of input, number of nodes, and 

size of kernel/filter. We will go through each component in detail in the following section. 
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Figure 15: CNN Architecture 

Implementation of the model was done using Keras API. Keras is a high-level neural networks 

API written in Python language and capable of running on top of TensorFlow, CNTK, or Theano 

[23]. In our implementation, it is running on top of TensorFlow. Keras allows for easy and fast 

prototyping which makes it easier to build a classification model. It is packed with all the necessary 

libraries required to build a CNN model. 

Our classification problem is binary (possible output is sober or intoxicated) so we are using 

sequential model. Sequential model allows us to build a model layer by layer. As shown in the 

architecture in Figure-15, our model is made with a linear stack of layers which will process the 

input through layers successively and finally predict the class of the input image through output 

layer. First layer is Conv2D with 32 filters of size 3x3 followed by three more Conv2D layers. In 

order to activate these layers, we need to introduce activation function in each Conv layer. ReLU, 

which stands for Rectifier Linear Unit is used as activation function in our model. Immediately 

after each convolution layer there us a pooling layer present. Pooling layer is used to perform 

pooling operation on the feature map calculated by Conv layer. Pooling is performed to reduce the 

size of image to prepare it for next convolution layer. A matrix is formed after the pooling 

operation is done in the last Conv layer. This matrix needs to be converted into continuous vector. 

Which can be done using Flattening operation. As the name suggests it flattens the input i.e., 2x2 

matrix output from previous layer will be converted to single dimensional vector. After the 

flattening, comes the fully connected layer. This layer connects all the nodes from previous layer 

and the output layer. This layer will contain the number of nodes always between the number of 

input nodes and output nodes. Finally, last one is the output layer which will contain only one node 

because we are dealing with binary classification problem, there is only one possible output, sober 

or intoxicated. Let us see each layer in detail in the following section. 
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3.1.5 Input Image  

Figure-16 below is representing an RBG image which has been separated by its three colour 

channels, Red, Green, and Blue. There are different types of images available in different colour 

spaces such as HSV, CYMK, Greyscale etc. It would be computationally intensive if images reach 

higher dimensions i.e., 8K (7680x4320). The role of a ConvNet is to reduce the images into a form 

which is easier to process, without losing features which are important for better classification 

[24]. 

 

Figure 16: Input Image [24] 

3.1.6 Convolutional Layer and Kernel 

Convolutional layer is the first layer in a CNN model. The role of a Conv layer is to convolute 

through whole image pixel by pixel to generate feature map that will be used by next layers. Let 

us take an example of a simple 2D image of 5x5 size shown in Figure-17 below along with the 

kernel/filter of size 3x3. The element involved in carrying out the convolutional operation in a 

convolutional Layer is called the Kernel or Filter. 
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Image Dimensions = 5 (Height) x 5 (Width) x 1 (Number of channels), Kernel size = 3 (Height) x 3 (Width) 

Figure 17: Image Matrix and Filter Matrix [24] 

In the above demonstration, the green section resembles our 5x5x1 input image. From this grid, 

kernel or filter is used to carry out the convolution operation. In the image above, we have taken 

3x3 size filter which is represented in the right side of the image. This filter will convolve through 

all the image pixels from left to right until every pixel is covered. In the end we will get convolved 

matrix. Kernel convolution is not only used in CNNs but is also a key element of many other 

Computer Vision algorithms. Convolved matrix is calculated according to the following formula. 

 

G [m, n] = (f × h) [m, n] = ∑ ∑ 𝒉𝒌𝒋  [j, k] f [m - j, n – k (3.1) 

Where,  
f = Input image 

h = kernel / filter 
m and n = indexes of rows and columns of the result matrix 
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Figure 18:  Output 

Figure-18 above is a visual representation of operation of a convolutional layer. As shown in the 

figure, we get an output matrix that after using filter or kernel on the input image. This matrix 

represents learned features that will be fed to pooling layer to further reduce the dimensionality. 

Following images in Figure-19 shows few steps of formula (3.1) in action.  

 

Figure 19: Convolutional layer in action [24] 

As shown three steps above, kernel will keep sliding through whole image and we will get feature 

map matrix at the end of the process. Final output of first convolution is displayed in the following 

image in Figure-20. 
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Figure 20: Output Feature Map [24] 

For the simplicity, we used an image with one channel. If there are multiple channels like RGB 

image, then we will need to use the filter with same number of channels. So, for an RGB image 

which has 3 channels we need to use a filter with 3 channels. 

In case of multiple channels (e.g., RGB), the kernel has the same depth as that of the input image. 

Matrix Multiplication is performed between Kn and in stack ([K1, I1]; [K2, I2]; [K3, I3]) and all 

the results are summed with the bias to give us a squashed one-depth channel Convoluted Feature 

Output [24]. 

3.1.6 Pooling Layer 

 

Figure 21: Pooling Operation [24] 

Pooling layer works like convolutional layer, it is responsible for reducing the spatial size of the 

convolved feature matrix. Pooling layer down samples each activation map. Let us consider a 

pooling layer of size 2x2. It will slide through feature map just like a kernel would slide through 

input image. In the above Figure-21, we can see it is selecting maximum numbers from each 2x2 

window. There are two types of Pooling. Max Pooling and Average Pooling as shown in the figure 

below. 
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Figure 22: Max Pooling and Average Pooling [24] 

Figure-22 is showing two available pooing methods. As the name implies, max pooling selects the 

maximum number from the feature map while average pooling will store the average value of the 

feature map. We are using max pooling in our model because it works a little faster them average 

pooling without affecting the accuracy very much. 

3.1.7 ReLU 

ReLU is the abbreviation of Rectified Linear Unit. This layer applies the non-saturating activation 

function. This is the most commonly used activation function in deep learning models. 

Mathematically it can be represented using following function.  

f(x) = max (0, x) (3.2) 

ReLU effectively removes negative values from an activation map by setting them to zero and 

returns the value back if x is positive. It can be represented graphically as shown in following 

image in Figure-23. 

 

Figure 23: ReLU [24] 
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It increases the nonlinear properties of the decision function and of the overall network without 

affecting the receptive fields of the convolution layer. There are other functions as well that can 

be used to increase nonlinearity, But ReLU is often preferred to other function because it trains the 

neural network several times faster without a significant penalty to generalization accuracy. Other 

activation functions are Sigmoid, Softmax, Softplus, Softsign, Tanh, Selu, Elu, and Exponential. 

3.1.8 Fully Connected Layer 

This layer is located between output layer and all the nodes from previous layer and can have 

number of nodes in the range of number of nodes available in the previous layer and output layer. 

Figure-24 is showing an example of fully connected layer connecting nodes from input and output. 

 

Figure 24: Fully Connected Layer [31] 

After all the convolutional and pooling layers, the high-level reasoning in the neural network is 

done via fully connected layers. Neurons in a fully connected layer have connections to all 

activations in the previous layer. Fully connected layer is to learn non-linear combinations of the 

high-level features as represented by the output of the convolutional layer. The fully connected 

layer is learning a possibly non-linear function in that space [24]. 

3.1.9 Dropout Layer 

To reduce overfitting, we are using dropout layer and image augmentation. During training, 

some number of layer outputs are randomly ignored or dropped out. In effect, each update to a 

layer during training is performed with a different “view” of the configured layer. We will try to 

use different setting for this layer like dropout (0.2) and dropout (0.5) means dropping connection 

probability is 20% or 50% respectively.  
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In the paper, Realtime drowsiness detection by Jabbar, R. et al also mentions using dropout to 

prevent overfitting. Introducing dropout layer using Keras is very easy, we can specify the 

frequency to drop the connection. 

3.2 Hyper Parameters 

Hyperparameters are the variables which determines classification model’s structure (e.g., Number 

of Hidden Units) and variables which determine how the network is trained (e.g., Learning). 

Hyperparameters are set before training the model [26]. Following are some common parameters 

to tune for training the model. 

Kernel/Filter:  

A kernel or filter is a matrix which is used for carrying out convolution operation in Conv layer. 

We discussed kernel in the chapter 3 in detailed. In our case we are using a 3x3 kernel for training 

our model. Smaller filters will collect as much local information as possible, while bigger filters 

will collect more global, high-level and representative information [27]. 

 

Stride:  

It is the number of pixels you wish to skip while traversing the input horizontally and vertically 

during convolution after each element-wise multiplication of the input weights with those in the 

filter. It is used to decrease the input image size considerably as after the convolution operation 

the size shrinks to ceil((n+f-1)/s) where ’n’ is input dimensions ‘f’ is filter size and ‘s’ is stride 

length. ceil rounds off the decimal to the closet higher integer [27]. 

 

Number of Channels:  

It is the equal to the number of colour channels for the input but in later stages is equal to the 

number of filters we use for the convolution operation. The more the number of channels, more 

the number of filters used, more are the features learnt, and more is the chances to over-fit and 

vice-versa [27]. 

 

Pooling-layer Parameters:  

Pooling layer has similar parameters to convolutional layer. Just like the kernel, it will convolute 

through feature map generated after convolutional operation. In our model 2x2 size max pooling 

operation is used to reduce the dimensionality of the image. 
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3.3 Cross Validation 

We are using cross fold validation in order to reduce overfitting. K-fold cross validation is one of 

the popular methods used to evaluate machine learning models when the available data is limited 

just like in our case. Drawback to this technique is that it can be very resource intensive and time 

consuming if higher number of folds are used. In k-fold cross validation, dataset is divided into 

“k” equal parts and model is trained by switching these splits for training and testing. For example, 

in our case, we are using 3-fold cross validation. As shown in Figure-25 and Figure-26 below, 

dataset is divided into three equal splits. (In our experiments we divided data into three equal folds 

of 625 images in each fold) 

 

Figure 25: 3-fold cross validation 

 

Figure 26: 3-fold split 

When training the model one of the folds (let us say fold k) is kept for validation and other 

remaining folds are used for training the model. once the training is completed another fold (k-1) 

is kept for validation and all other folds are used for training and likewise it is repeated until every 

fold is used. At the end of 3-fold cross validation, we will get three different models. We can 

compare the results of each fold to verify if we get similar results or not.  

Advantage of using k-fold cross validation is that performance of model can be evaluated correctly 

because each time model will see differ data when being trained. Hence, the model will not be 

biased towards dataset splits.  
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CHAPTER 4 

RESULT AND EXPERIMENTS  

 

In this chapter, we will discuss about experiments and methods carried out to build and train our 

CNN model discussed in Chapter 3 and finally evaluate the performance of the model by 

comparing the results with other approaches like drunk detection and drowsiness detection that 

uses neural networks to detects a person’s sobriety. Since there are no known papers available on 

detecting intoxication caused by use of marijuana yet, we are comparing our results with research 

papers like drunk and drowsiness detection. These papers show use of neural network to classify 

images based on changes in facial features after consuming alcohol or when a person is feeling 

drowsy which resembles with facial features change after smoking marijuana (drowsy, watery and 

red eyes). Since there are no research papers available for reference, detecting intoxication caused 

by marijuana is going to be an initial and primitive approach. 

Experiments in this chapter consist of method used for gathering images to create the dataset used 

to train our model and finding suitable model parameters for optimal performance and accuracy. 

Gathering images and building our own dataset were the most challenging and extensively time-

consuming tasks. Since there are no public dataset available to use yet, we had to create our own 

dataset. We saw earlier in the literature review in Chapter 2, that most of the research papers on  

drunk and drowsiness detection developed their own dataset by photographing group of people 

[8,19,17]  and couple of them built the dataset from gathering images from social media platforms 

[9,12]. The dataset used in this thesis was built using same technique of collecting images from  

social media which is discussed in the following section in detail. 

4.1 Dataset creation 

Dataset is the most important part for training a neural network with optimal performance. To 

create our dataset, two types of images were required which are sober and intoxicated. Such images 

can be acquired from google image searches and social media platforms like YouTube where 

people may upload their videos when smoking marijuana for entertainment purposes such as what 

happens if you smoke given amount of marijuana at once, to see the reaction of a person when 

they smoke marijuana for the first time, etc. Especially the images of sober faces can be found 

easily from the internet like google image search, just by simply searching with keywords like 
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faces, human face, face closeup, etc. However, collecting images that can show facial feature 

changes like watery red eyes after smoking marijuana can be tricky and time consuming. 

Collecting images from social media is inspired by research paper [7]. If we search in the YouTube 

with queries like smoking marijuana, smoking weed, getting high, etc, we can find many videos 

of people smoking marijuana in front of camera just for fun. From these videos, we can easily take 

screenshots and crop images when person is sober and after the same person has smoked 

marijuana. Using this method, we can gather approximately 15 to 20 images belonging to both 

classes, depending on the video. In total, 150 images (75 sober and 75 intoxicated) were gathered 

from videos.  

Let us take an example, from this link [36], we can keep pausing the video at appropriate time and 

take a screenshot. The following image in Figure-27 shows a screenshot of one of the videos where 

a person can be seen experimenting with what happens before and after smoking marijuana. In the 

starting of the video (top image), person can be seen sober and can be seen intoxicated short after 

(bottom image).  

 

 

Figure 27: YouTube Video Sample [36] 

In this case we were able to get sober state and intoxicated state of the same person, but it is not 

always possible. So to increase the size of dataset, random sober and intoxicated images were 

added as well by searching queries like “after smoking marijuana”, “smoking pot”, “marijuana red 

eyes”, etc in Google search and gathered around 450 images (225 sober and 225 intoxicated)  

resulting in a total 600 images (300 sober and 300 intoxicated). This dataset is very small and not 
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sufficient to train a neural network well enough. To overcome this problem, a common dataset 

expansion technique called data augmentation was used. 

4.2 Dataset Augmentation 

Data augmentation is the most popular method used when available dataset is too small. To train 

a neural network, depending on the type of classification problem usually large amount of data is 

required to train the model well. It may not be always possible to have enough data such as in our 

case. Hence, data augmentation can be very useful technique to expand the dataset. Most common 

and easy way to increase dataset size is by using image transformation techniques. We used some 

common image transformation techniques like rotation, flipping and random cropping on our 600 

original images. At the end of the process, we were able to generate 2,750 images (1,375 sober 

and 1,375 intoxicated). Out of these 2,750 images, we kept 300 images (150 sober and 150 

intoxicated) separate so we can test our model against unseen images after training is done and 

used remaining 2,450 images (1,225 sober and 1,225 intoxicated) for training and validation of the 

model. Generally, a CNN model would require approximately 80% training data and 20% 

validation data to be trained well. Therefore, we are using 1,825 images for training and 625 

images for validation. Table-1 shown below summarizes breakdown of dataset in detail. 

Dataset summary 

Number of original sober images  300 

Number of original intoxicated images 300 

Number of original images 600 

 

Number of augmented sober images  1,375 

Number of augmented intoxicated images 1,375 

Number of total augmented images 2,750 

 

Number of images for training 1,825  

Number of images for validation 625 

Number of total training images 2,450 

 

Number of reserved images for testing 300 

Table 1: Dataset Summary 
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4.3 Confusion Matrix 

Confusion matrix can be used to measure the effectiveness of a classification model or a classifier. 

It is used to calculate performance measurements for machine learning classification tasks. 

Building a confusion matrix is very easy. Confusion matrix can be built by using correctly 

predicted values and incorrectly predicted values by a classification model, placed inside a matrix 

as shown in Figure-28 below. To build a confusion matrix, first, we need to calculate True Positive, 

False Positive, True Negative and False Negative values which are explained below.  

 

Figure 28: Confusion Matrix 

True Positive (TP) is the number of correctly predicted value of positive class i.e., correctly 

predicting intoxicated class. 

False Positive (FP) is the number of incorrectly predicted value of positive class. For example, if 

the model predicts the input image as intoxicated, but the input image belongs to sober class. It is 

also known as “Type I error”. 

True Negative (TN) is the number of correctly predicted value of negative class i.e., correctly 

predicting sober class. 

False Negative (FN) is the number of incorrectly predicted value of negative class. For example, 

if the model predicts the input image as sober, but the input image belongs to intoxicated class. It 

is also known as “Type II error”. 

After obtaining the values of TP, FP, FP and FN through experiment, we can calculate performance 

measures such as Accuracy, Error Rate, False Positive Rate, False Negative Rate, True Positive 

Rate, True Negative Rate, Precision, Recall and F-Score using following formulas. 

Where: 𝑡𝑝 = 𝑇𝑃, 𝑡𝑛 = 𝑇𝑁, 𝑓𝑝 = 𝐹𝑃, 𝑓𝑛 = 𝐹𝑁   
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Accuracy: 

Accuracy is how often the model predicted the correct value. When we are building a classification 

model, we want it to be most accurate in predicting our inputs. After building the model, to make 

the decision of whether the model is good enough or not, accuracy alone is typically not enough. 

For example, if we are building a classification model that can classify terrorists and passengers 

boarding a plane. Let us say we have 100 people boarding the plane (95 passengers and 5 terrorists) 

and the model predicts 90 passengers correctly (TN), 5 passengers incorrectly (FP), all 5 terrorists 

incorrectly (FN) and 0 terrorist correctly (TP). We will still get the accuracy of 90%. But in reality, 

the model is horrible and let all 5 terrorists board the plane!  Accuracy can be calculated using 

following formula (4.1) and by multiplying it with 100, we get the accuracy in percentage.  

 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
𝑡𝑝 + 𝑡𝑛

𝑇𝑜𝑡𝑎𝑙
 

 (4.1) 

 

Error Rate:  

It is calculated as the number of all incorrect predictions divided by the total number of images 

available. The best error rate is 0.0, whereas the worst error rate is 1.0. We want our model to make 

as less mistakes as possible and want it to be closest to 0. We saw that only accuracy alone is not 

enough to decide if a model is good, only error rate alone is not enough either. If we calculate the 

error rate using passenger and terrorist classification example from above, we will get an error rate 

of 0.05 which looks too good, but we know that the model was horrible and let all 5 terrorists board 

the plane. Error rate can be calculated using following formula (4.2). 

 

𝑬𝒓𝒓𝒐𝒓 𝒓𝒂𝒕𝒆 =
𝑓𝑝 + 𝑓𝑛

𝑇𝑜𝑡𝑎𝑙
 

 (4.2) 
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False Positive Rate:  

How often a model incorrectly classifies class A (Positive class) as class B (Negative class). For 

example, if our model predicts that an input image belongs to intoxicated class when the input 

image actually belongs to sober class. Using False Positive Rate, we can measure how often our 

model is making mistake predicting intoxicated class. Lower the false positive rate, lesser the 

model is predicting the intoxicated class wrong. A good False Positive Rate should be as close as 

possible to 0. It can be calculated using following formula (4.3). 

𝑭𝒂𝒍𝒔𝒆 𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆 𝒓𝒂𝒕𝒆 =
𝑓𝑝

𝑓𝑝 + 𝑡𝑛
 

 (4.3) 

 

False Negative Rate:  

Just like False Positive Rate, False Negative Rate shows that how often a model predicts an input 

belongs to class B (Negative class) whereas it actually belongs to class A (Positive class). For 

example, if our model predicts that an input image belongs to sober class when the input image 

actually belongs to intoxicated class. Using false negative rate, we can measure how often our 

model is making mistakes predicting sober class. It can be calculated using following formula 

(4.4). 

𝑭𝒂𝒍𝒔𝒆 𝒏𝒆𝒈𝒂𝒕𝒊𝒗𝒆 𝒓𝒂𝒕𝒆 =
𝑓𝑛

𝑓𝑛 + 𝑡𝑝
 

 (4.4) 

 

True Positive Rate:  

How often a model can predict correctly the images belonging to positive class. For example, in 

our case, how often our model can predict the correct class for images belonging to intoxicated 

class. This measure can help us to understand the performance of our model for intoxicated class. 

It is also known as “Sensitivity” or “Recall”.    

Now, let us recall our example of passenger and terrorist classification boarding a plane. We show 

that only accuracy and error rate alone were not much helpful deciding if the model was good or 

not. For that we can use something called precision and recall. For our passenger and terrorist 

classification problem, our Recall value will be 0. That means our model cannot tell at all if a 

passenger boarding the plane is a terrorist or not which completely defeats the purpose of the model 

despite having 95% accuracy!    
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Recall can be calculated by using following formula (4.5). 

𝑹𝒆𝒄𝒂𝒍𝒍 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
 

 (4.5) 

 

True Negative Rate: 

How often a model can predict correctly the images belonging to negative class. For example, in 

our case, how often our model can predict the correct class for images belonging to sober class. 

This measure can help us to understand the performance of our model for sober class. It is also 

known as “Specificity”. It can be calculated by using following formula (4.6).  

 

𝑺𝒑𝒆𝒄𝒊𝒇𝒊𝒄𝒊𝒕𝒚 =
𝑡𝑛

𝑡𝑛 + 𝑓𝑝
 

 (4.6) 

 

Precision:  

Precision can be defined as the ability of a classification model to identify the proportion of data 

belonging to positive class correctly (how many are actually positive from all the positive 

predicted). i.e., our model’s ability to identify the proportion of intoxicated images correctly.  

Let us use the same example of passenger and terrorist classification and we will get precision of 

0 because we do not have any true positives (model could not identify any terrorists).  

It can be calculated using following formula (4.7). 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
 

 (4.7) 

 

Precision and Recall are frequently used as performance measures in machine learning models. In 

some situations, we can accept higher precision and lower recall or higher recall and lower 

precision depending on the classification problem.  

 



40 

 

For example, in case of passenger and terrorist classification, we really want to stop all terrorists 

from boarding the plane (high recall). Unfortunately, we cannot increase both: increasing precision 

reduces recall, and vice versa and it is called precision/recall tradeoff. 

Let us see another example from [51], if we are training a classifier that can filter safe videos for 

kids, we would prefer a classifier that may reject a few good videos (low recall) but keeps only 

safe videos (high precision). 

However, in some cases, we want to find the optimal balance between precision and recall when 

good performance in predicting both the classes is required. For example, in our case, we want to 

our model to classify both intoxicated and sober classes correctly. To find the balance between 

precision and recall, we can use something called F-Score. 

F-Score:  

F-score is the harmonic mean of Precision and Recall. It is also known as “F1-score” or “F-

measure”. It can be calculated using precision and recall value by following formula (4.8). If we 

want to create a classifier that is optimal for both classes, we want the F-score to be maximized. 

𝑭𝟏 =
2

𝑟𝑒𝑐𝑎𝑙𝑙−1 + 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛−1
= 2 ∙  

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

 

 (4.8) 

In the next section, Experiments, we will use these performance measures obtaining from 

corresponding confusion matrices to analyse results of experiments. Let us see the experiments 

performed to train our CNN model and then compare the results with other popular classification 

algorithms like SVM, Decision Trees and Random Forest trained as baseline classification models 

using the same dataset. 

4.4 Experiments 

In this section, experiments carried out to train our CNN model discussed in Chapter 3 are 

summarized. For every experiment, same dataset for training (80%) and validation (20%) were 

used with the image size of 64×64×3 (Height, Width, No. of channels). For training the model, 

1,825 images (925 sober and 925 intoxicated) were used and for validation 625 images (312 sober 

and 313 intoxicated) were used. To check the performance of our model against unseen images, 

we kept 300 images (150 sober and 150 intoxicated) separate from training and validation to check 

how the final model will perform against unseen data.  
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Experiment 1 

Experiment 1 was conducted using 3 convolutional layers with 32 kernels in each convolutional 

layer and the kernel or filter size of 3×3. These convolutional layers need to be activated in order 

to retrieve feature vector from the input image. To activate these convolutional layers, Relu 

activation function was used. There are different activation functions available to choose from i.e., 

softmax, softplus, tanth, selu, etc but the reason behind using Relu is that it works significantly 

better than most other activation functions and is often used as default activation function 

according to tutorial explained in [50].  

After each convolutional layer, a Pooling layer of 2×2 size was used. We can choose from two 

different pooing functions, Max Pooling and Average Pooling. We used Max Pooling because it 

works faster with almost no penalty in performance. Max Pooling will return maximum value from 

the matrix while Average Pooling will calculate the average of all values. Pooling layer must be 

smaller (i.e., 2×2) than the convolutional layer’s filter (i.e., 3×3), because we need to reduce the 

dimensionality of the input image. For example, if the input image is of size 5×5, the convolutional 

layer of 3×3 will give us an output of 3×3 matrix then the pooling operation done by 2×2 layer 

will further reduce the size of matrix to 2×2.  

After the convolution and pooling operations are done, we need to create a fully connected layer 

to connect the set of nodes we get after flattening and set of nodes in the output layer. Fully 

connected layer is located between the last pooling layer and the output layer, it is also called 

hidden layer. In this experiment, the fully connected layer used 128 units or nodes. The number of 

nodes in this layer should be always between the number of output nodes and the number of input 

nodes we get after convolution and pooling layers. For the activation of the fully connected layer, 

Relu was used as well.  

The Last layer is the output layer with only one node in it, because we are dealing with a binary 

classification problem, so the output is going to be either sober or intoxicated hence it will have 

only one node. Sigmoid function was used for activation of output layer because we need either 1 

or 0 output (binary classification problem).  

For experiment 1, adam optimizer was used. There are several other optimizers are available to 

use like SGD, RMSprop, Adadelta, Adagrad, Adamax, Nadam and Ftrl. To compute the loss, 

binary_crossentropy loss function was used which is suitable for binary classification problems. 

There were no dropout layers used in experiment 1. Table 6 shown below summarizes parameters 

used for experiment 1.  
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Parameters for experiment 1 

Input image size 64×64×3 (height, width, no. of channels) 

 

Number of Convolutional layers 3 

Kernel or filter size 3×3 

Number of filters 32 

Activation (Convolutional layers) Relu 

 

Number of Pooling layers 3 

Pooling size 2×2 

Pooling method Max pooling 

 

No. of nodes in Fully connected layer 128 

Activation (Fully connected layer) Relu 

 

No. of nodes in Output layer 1 

Activation (Output layer) Sigmoid 

 

Number of Dropout layers 0 

Dropout rate 0.5 

Optimizer rmsprop 

Loss function binary_crossentropy 

Number of Epochs 22 

Table 2: Parameters for experiment 1 

Graphs are often useful to understand statistics or data in visual form. In Machine Learning, we 

have something called learning curves which are basically plots that shows model fitting progress 

during the training. Learning curves are plotted using model accuracy and model loss throughout 

the training process. Learning curves can be useful to diagnose under-fitting, over-fitting or well-

fitting of the model. Accuracy is calculated in the form of percentage and shows us how accurate 

our model’s prediction is for each epoch. Loss is calculated by loss function, binary_crossentropy. 

Model loss is nothing, but prediction errors made by our model for each epoch. Both of these 

measures are plotted on a graph as shown in Figure 30.  These plotted are representing the training 
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process of Experiment-1. Blue plot represents training accuracy and loss while orange plot 

represents validation accuracy and loss. 

 

 

 

Figure 29: Accuracy and Loss for Exp1 

In Figure-29, we can see that validation accuracy is constantly below training accuracy meaning 

the model is predicting training data with higher accuracy while predicting validation data with 

lower accuracy. Also, validation loss is going higher than training loss which is a sign of 

overfitting. So, we will try to alter some parameters to see if we get better results in next 

experiment. 

After conducting Experiment-1 using parameters shown in Table-2, we get the following 

Confusion Matrix shown in Figure-31 and Table-3 below shows the values calculated from this 

Confusion Matrix. 
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n = 625 
Predicted: 

Sober 

Predicted: 

Intoxicated 
 

Actual: 

Sober 
TN = 236 FP = 91  

Actual: 

Intoxicated 
FN = 76 TP = 222   

 312 313  

Figure 30: Confusion Matrix for Exp1 

Performance Measures for Experiment 1 

Accuracy  73% 

Error Rate 0.26 

False Positive Rate 0.27 

False Negative Rate 0.25 

Precision 0.70 

Recall  0.74 

F-Score 0.71 

Table 3: Performance Measures for Exp1 

By looking at the Table-3, we can see that False Positive Rate and False Negative rates are a little 

higher. While our Precision and Recall are lower. We can try to improve them in next experiment. 

Experiment 2 

We saw in the previous experiment that the model may be overfitting means it was learning more 

features than needed. So, let us try reducing the number of nodes from 128 to 64 and adding  a 

dropout layer. Dropout layer can help the model to reduce overfitting by eliminating connections 

to random nodes. This time instead of adam, RMSprop optimizer was used but they both work the 

same for similar classification problems. All other parameters are same as the previous Experiment 

1. Table-4 shown below, summarizes parameters used in Experiment-2. 
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Parameters for experiment 2 

Input image size 64×64×3 (height, width, no. of channels) 

 

Number of Convolutional layers 3 

Kernel or filter size 3×3 

Number of filters 32 

Activation (Convolutional layers) Relu 

 

Number of Pooling layers 3 

Pooling size 2×2 

Pooling method Max pooling 

 

No. of nodes in Fully connected layer 64 

Activation (Fully connected layer) Relu 

 

No. of nodes in Output layer 1 

Activation (Output layer) Sigmoid 

 

Number of Dropout layers 1 

Dropout rate 0.5 

Optimizer Rmsprop 

Loss function binary_crossentropy 

Number of Epochs 20 

Table 4: Parameters for Experiment 2 

By the look of the learning curves below in Figure-31, it can be seen that the model is fitting better 

than the previous experiments. Training and validation accuracy are coinciding with each other. 

That means the model is predicting both accuracy and validation data with similar performance. 

But it seems like validation accuracy is still below training accuracy in the epochs between 8 and 

11 which may be a sign of overfitting. Also, the validation loss is getting higher than the training 

loss at the end of epochs.  
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Figure 31: Model Accuracy and Model Loss for exp2 

Figure-32 shows Confusion Matrix obtained from Experiment 2 and the Table-5 below shows the 

performance measures calculated from this Confusion Matrix. 

n = 625 
Predicted: 

Sober 

Predicted: 

Intoxicated 
 

Actual: 

Sober 
TN = 267 FP = 101  

Actual: 

Intoxicated 
FN = 45 TP = 212  

 312 313  

Figure 32: Confusion Matrix for Exp2 
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Performance Measures for Experiment 2 

Accuracy  76% 

Error Rate 0.23 

False Positive Rate 0.27 

False Negative Rate 0.17 

Precision 0.67 

Recall  0.82 

F-Score 0.73 

Table 5: Performance Measures for Exp2 

We can see from the Table-5, Accuracy has improved slightly while False Positive Rate stayed 

exact same. On other hand, False Negative Rate dropped from 0.25 to 0.17 that means the model 

is making less mistakes identifying sober images. Precision is reduced and Recall has increased 

that means model is identifying some of the sober images as intoxicated. Let us try to improve 

results in Experiment-3.  

Experiment 3 

In this experiment,  one more convolutional layer was added than the previous experiment. The 

number of epochs were increased as well. By increasing the number of convolutional layers we 

can give the model a chance to learn features better. All other parameters are same as Experiment 

2. Table-6 below summarizes the parameters used for this experiment. 
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Parameters for experiment 3 

Input image size 64×64×3 (height, width, no. of channels) 

 

Number of Convolutional layers 4 

Kernel or filter size 3×3 

Number if Filters in Convolutional layer 32 

Activation (Convolutional layers) Relu 

 

Number of Pooling layers 4 

Pooling size 2×2 

Pooling method Max pooling 

Pooling size 2x2 

 

No. of nodes in Fully connected layer 64 

Activation (Fully connected layer) Relu 

 

No. of nodes in Output layer 1 

Activation (Output layer) Sigmoid 

 

Number of Dropout layers 1 

Dropout rate 0.5 

Optimizer Rmsprop 

Loss function binary_crossentropy 

Number of Epochs 23 

Table 6: Parameters for Experiment 3 

We can see from the learning curves shown in Figure-33 below that the model is fitting better then 

previous experiments. We can see that the training accuracy and validation accuracy as well as 

training loss and validation loss are staying close to each other throughout the entire training 

process indicating modle is performing same on training data as well as on validation data. Since 
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everything looks good in Experiment 3, we still need to be sure. So we can use cross validation 

for this experiment. 

 

Figure 33: Accuracy and Loss for Exp3 

Unlike Experiment-1 and 2, we will generate three different Confusion Matrices because we are 

using 3-fold validation and compute performance measures for each matrix to see if we get similar 

results in each fold to make sure the model is well fitted. Following Figures-34, 35 and 36 shows 

Confusion Matrices for all three folds. During the training of each fold, three different validation 

sets (swapping out new 625 images from total data for each fold) were used. 
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n = 625 
Predicted: 

Sober 

Predicted: 

Intoxicated 
 

Actual: 

Sober 
TN = 247 FP = 77  

Actual: 

Intoxicated 
FN = 65 TP = 262  

 312 313  

Figure 34: Confusion Matrix for Fold1 

n = 625 
Predicted: 

Sober 

Predicted: 

Intoxicated 
 

Actual: 

Sober 
TN = 268 FP = 50  

Actual: 

Intoxicated 
FN = 44 TP = 263  

 312 313  

Figure 35: Confusion Matrix for Fold2 

n = 625 
Predicted: 

Sober 

Predicted: 

Intoxicated 
 

Actual: 

Sober 
TN = 265 FP = 54  

Actual: 

Intoxicated 
FN = 47 TP = 259  

 312 313  

Figure 36: Confusion Matrix for Fold3 
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Performance Measures for Experiment 3 

 Fold 1 Fold 2 Fold 3 

Accuracy  81% 84% 83% 

Error Rate 0.22 0.15 0.16 

False Positive Rate 0.23 0.18 0.16 

False Negative Rate 0.19 0.16 0.15 

Precision 0.77 0.80 0.82 

Recall  0.80 0.83 0.84 

F-Score 0.78 0.81 0.82 

Table 7: Performance Measures for Exp3 

As we can see from the Table-7 that we got almost same results for all three folds which indicates 

lower chance of overfitting. For comparison and discussion, we will use the average of all three 

folds. We achieved good accuracy of 83% and a lower error rate of 0.16. We also have low False 

Positive Rate as well as False Negative Rate that means model is not incorrectly classifying any 

of the classes more frequently. Higher Precision and Recall indicate are indication of good 

performance in predicting both classes as well as a higher F-Score shows good balance between 

Precision and Recall.  

Now that we can consider Experiment-3’s model a good model, we can finally test it against our 

reserved 300 images to see how it performs on unseen data. Confusion Matrix below in Figure-37 

was calculated by making predictions on reserved images. 

 

n = 300 
Predicted: 

Sober 

Predicted: 

Intoxicated 
 

Actual: 

Sober 
TN = 126 FP = 29  

Actual: 

Intoxicated 
FN = 24 TP = 121  

 150 150  

Figure 37: Confusion Matrix for Reserved Images 
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Performance Measures for Reserved Dataset 

Accuracy  82% 

Error Rate 0.17 

False Positive Rate 0.18 

False Negative Rate 0.16 

Precision 0.80 

Recall  0.83 

F-Score 0.81 

Table 8: Performance Measures for Reserved Images 

By looking at the results in Table-8, we can say that the model performs reasonable on unsee data 

as well with the accuracy of 82%, lower False Positive Rate and False Negative rate and higher 

Precision, Recall and F-Score. Let us compare these results with our baseline classifiers in next 

section. 

4.5 Comparison 

For comparison, we trained different classifiers like Decision Tree, SVM and Random Forest. 

These classifiers were trained using the same dataset to make the comparison fair. These classifiers 

were implemented using Scikit-learn machine learning library written in Python language.  

Unlike Convolutional Neural Network, which can take direct images as input, Scikit-learn 

classifiers cannot take direct image as input and requires two-dimensional array as input. So, we 

needed to convert each image into two-dimensional array.  

4.5.1 SVM 

Support Vector Machine abbreviated as SVM is a classification algorithm that can be used for 

regression and classification tasks. Objective of SVM is to find a hyperplane in an N-dimensional 

space that distinctly classifies the data points. We can see from the image in Figure-38 below that 

it finds an optimal hyperplane (displayed right side of the image) that can separate the data by 

using number of possible hyperplanes (displayed left side of the image) and choosing the one with 

maximum margin. Which is maximum distance from datapoints of both classes. 
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Figure 38: Hyperplanes [54] 

After training the SVM using our dataset, we could achieve the accuracy of 61% which is the 

lowest among all classifier used for experiments. 3-fold cross validation was also used for SVM. 

It gave the precision of 0.68 and the recall of 0.61 whereas the f1-score of 0.56 which is closest to 

worst f1-score (worst f1-score is 0.5). 

4.5.2 Decision Trees 

Decision Trees are another Machine Learning algorithms that can be used for tasks like 

classification and regression. They are fundamental components of Random Forest Classifier. 

They can be used to classify complex data. Let us take an example from [52] on Iris dataset. 

Following image in Figure-39 represents a Decision Tree structure and values represented in flow 

chart are from Iris dataset. 

 

Figure 39: Decision Tree [53] 

Suppose we want to classify an iris flower. The classifier starts from root node (depth 0) checking 

the flower’s petal width, if it is smaller than 2.45 cm. If it is, then it will move down to the root’s 
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left child node (depth 1, left) which does not have any child. So, it will not go further and predict 

that the image belongs to class setosa. If the flower’s petal length is greater than 2.45 then it will 

move down to root’s right node (depth 1, right). Since this node is not a leaf node, it will check 

further if petal width is smaller than 1.75 cm. If it is, then the flower will be predicted as versicolor. 

If not, then it will be predicted as virginica.  

Decision tree was able to achieve the accuracy of 72% a little less than CNN which was able to 

achieve the accuracy of 82%. Accuracy was calculated using 3 cross fold validation to ensure there 

is no overfitting. Decision tree gave us the precision of 0.76 and recall of 0.72. If we compare it to 

CNN, we can see that CNN achieved better precision and recall of 0.80 and 0.82, respectively. The 

f1-score of Decision tree is 0.71 while CNN achieved f1-score of 0.80.  

4.5.3 Random Forest 

 Random Forest is an ensemble of Decision Trees. Ensemble means, using multiple learning 

algorithms to obtain better performance. As the name implies, Random Forest consists of large 

number of decision trees. Each individual tree will predict and output the class of an input. After 

each individual tree has performed prediction, final output will be the highest number of predicted 

class. Let us assume that we have nine decision trees as shown in Figure-40. We can see that out 

of nine individual trees, six of them predicted that the class of an input is “1”. So final prediction 

will become “1”. 

 

Figure 40: Random Forest [55] 

Random Forest was able to achieve the accuracy of 77% which is the highest accuracy out of all 

three base line classifiers we used and closest to CNN which achieved 83% of accuracy. Random 
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Forest gave us the precision and the recall of 0.79 and f1 score of 0.78. Following Table-7 is 

summarizing performance measures of all classification algorithms used for experiments. 

Classifier Precision Recall f1-score Accuracy 

SVM 0.63 0.56 0.49 56% 

Decision Tree 0.66 0.65 0.65 65% 

Random Forest 0.73 0.72 0.71 72% 

CNN 0.80 0.83 0.81 82% 

Table 9: Comparing of Classifiers 

It can be seen from the Table-9 that the CNN performed best with 82% accuracy among all 

classifiers and the SVM performed the worst with only 61% accuracy. Performance measures for 

SVM, Decision Tree, Random Forest and CNN displayed in Table-9 were calculated using 

reserved dataset split (300 unseen images).  

As we discussed earlier, there are no research papers available currently on detecting intoxication 

caused by use of marijuana. However, there are many research papers available on drunk detection 

and drowsiness detection which are somewhat related because they also work based on the facial 

feature changes. So, we decided to compare accuracy with those research papers as well. 

Table-10 below summarizes name of research papers used for comparison, list of methods used, 

brief description of tasks and accuracies from different approaches and compares with our 

approach.  
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Definition Method Task Accuracy 

Intoxication Identification 

Using Thermal Imaging 

[16] 

 

Uses CNN, Infrared 

Images to train 

 

Classify drunk and 

sober 

 

~80% 

 

Drunk Classification 

Using Infrared Face 

Images [15] 

Fisher linear 

discriminant 

Classify drunk and 

sober 

 

~87% 

Drunk Selfie Detection 

[12] 

Android app that 

uses deep learning 

model 

Classify drunk and 

sober 

 

~81% 

Real-time Driver 

Drowsiness Detection for 

Android Application 

Using Deep Neural 

Networks Techniques [17] 

 

Uses (MLP) 

 

Detect drowsiness 

 

~79% 

 

Marijuana Intoxication 

Detection  

Uses CNN Classify 

intoxicated by 

marijuana and 

sober 

~83% 

Table 10: Comparison with Literature Review 

In the paper Intoxication Identification Using Thermal Imaging [16], a dataset of 4100 images was 

created by photographing 41 people. In their approach they experimented with two different neural 

networks by training different regions of face and observed high convergence success mainly on 

the area of the forehead. Accuracy rate of 80% was achieved by testing the trained models on five 

different individuals.   

In Drunk Classification Using Infrared Face Images [17], a dataset created with the help of 46 

individuals was used consists of 250 images per subject and 50 images per subset (five subsets: 

“Sober”, “1 Beer”, “2 Beer”, “3 Beer” and “4 Beers”). Accuracy of 87% was obtained by reducing 
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dimensionality of data by using the Fisher Linear Discriminant Analysis and then using the 

Gaussian mixture model to perform classification. 

Drunk Selfie Detection [12] shares more similarities with our approach of marijuana intoxication 

detection because it uses normal images unlike infrared and thermal images and also has a very 

small dataset. In this approach, they used a dataset of 212 images created by photographing 53 

different people when they are sober and after they consumed one, two and three glasses of wine. 

Such a small dataset is not sufficient to train a model, so they augmented existing images by 

blurring, changing lighting, saturation and using tint to match with images they observed from 

searching images of bar and parties from the internet. After augmentation, they generated 2,332 

images. They were able to classify images with the accuracy of 81% using Random Forest 

Classifier.  

In Real-time driver drowsiness detection [17], they are using National Tsing Hua University 

(NTHU) Driver Drowsiness Detection Dataset. It contains recorded videos of subjects recorded in 

a variety of simulated driving scenarios like yawning, slow blink rate, conscious laughter, and 

dizzy dozing. From this dataset, they took 22 subjects for training and testing. The classification 

model used in this approach is based on Multilayer Perceptron Classifier with three hidden layers. 

The input layer has 136 nodes, and the number of neurons is 100. All three hidden layers have 10 

neurons each as well as dropout layer with 20% rate is used between each layer to reduce 

overfitting. The last layer has 2 neurons (for “Drowsy” and “Non drowsy”) with softmax function 

which predicts the class of input image. 
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4.6 Tools  

A brief description of tools like IDE for writing and implementing code, API to implement 

machine learning libraries and programming language used in the development of this thesis are 

listed in Table-11 shown below. 

Tools 

IDE Spyder 3.3.5 from Anaconda Navigator 

API Keras: The Python Deep Learning Library 

API Scikit Learn  

Programming Language Python 3.7 

Other Software ImageBatch, Adobe Photoshop 

Table 11: Tools 

4.6.1 IDE (Integrated Development Environment)   

There are countless IDEs available for coding and implementation for different programming 

languages. An IDE enables programmers to write programs easily with the help of inbuild common 

libraries and autocomplete functions. For the implementation of this thesis, Spyder 3.3.5 available 

in Anaconda Navigator was used. 

4.6.2 API (Application Programming Interface) 

Keras machine learning library written in Python language was used to implement libraries 

required to create our convolutional neural network. Keras makes it easy to implement deep neural 

networks with the help of wide collection of machine learning libraries. It can run on top of 

TensorFlow, Microsoft Cognitive Toolkit, R, or Theano in our case, it is running on top of 

TensorFlow in the implementation of this thesis. 

For implementing baseline classifiers (SVM, Decision Trees and Random Forest) Scikit Learn 

library also written in Python language. 

4.6.3 Other Software 

For image augmentation and pre-processing images like cropping, converting image formats and 

resizing, a software called ImageBatch was used which is based on LibGD and EasyBMP graphic 

libraries [48]. Adobe Photoshop was used to create and edit some of the figures. 
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

 

5.1 Conclusion 

We have proposed a method to detect if a vehicle driver is under influence of Marijuana or not 

using convolutional neural network to help reducing vehicle accidents happening because of 

impaired driving. We took the inspiration from research papers published on drunk detection and 

drowsiness detection using deep neural networks and built a Convolutional Neural Network 

(CNN) by experimenting with different number of layers, filter sizes and tuning various 

hyperparameters. We also created a dataset by gathering imagers of sober faces as well as faces 

intoxicated by marijuana to train our model. We used image augmentation techniques like image 

transformation (rotating, flipping, cropping, etc.) to expand the dataset. At the end of experiments, 

we were able to achieve the accuracy of 82% when testing on unseen images kept aside for testing 

other than images used in training and validation.  

Following are some highlights of contribution of this thesis. 

● Demonstrated how to locate faces from video using Dlib implementation. 

● Demonstrated versatility of neural networks.  

● Built and trained a CNN model that can predict marijuana intoxicated face. 

● Built Dataset of Marijuana intoxicated faces and sober faces’ images. 

5.2 Future Work 

This is an initiate approach to detect marijuana intoxicated face using convolutional neural 

network. Hence there was limited amount of information available and no public dataset was 

available to train the model. Because of the lack of dataset, model is generalized on current dataset 

which has limited numbers of images. For this model to be implemented in practice, we will need 

to carryout experiments with real human faces such as by photographing participating individuals 

when they are sober and photographing them after they have given marijuana to smoke just like 

some of the research papers [8, 19, 17] discussed in literature review who created their own dataset.  
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Model may not perform correctly if the subject is wearing sunglasses, because it is based on 

redness of eye caused by smoking marijuana. To overcome this problem, we may need to consider 

other features like driver head movement, driver’s response time, driving style, etc. In the paper, 

“Driver behaviour detection and classification” [5], use of different driving style is considered to 

detect driver’s sobriety. This similar approach can be implemented in future along with our model 

to improve the accuracy.  

Privacy is a big concern these days since everything is being online and personal information such 

as names, photos, addresses, etc are shared with countless third-party service providers. Since we 

are extracting images from driver’s video, we may need to consider encrypting these videos to 

protect privacy of drivers. 

In the future, using thermal or infrared pictures can be used to carryout experiments to see if it 

increases the accuracy. Use of thermal images to detect drunk person can be seen in the paper 

proposed by Koukiou, G. et al [16]. And use of infrared images is present in the paper proposed 

by Hermosilla, G. et al [17]. 

In one of the papers, we saw in literature review, face recognition and drunk classification using 

infrared face images [16] shows that the thermoregulatory system can be altered depending on 

moods and consumption of certain foods. Similarly, monitoring the change in temperature after 

smoking marijuana can be useful and can be considered to improve the performance of our model. 
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