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ABSTRACT 

The increasing strain on the Earth resulting from pollution, climate change, and 

finite resources has established the development of renewable energy sourcing methods, 

such as wind, solar and geothermal energy. By reorganizing the power system structures, 

and the growth in customer demand, the development of Distributed Generation (DG) play 

a vital role in the power system planning. Furthermore, because of the inexhaustibility and 

cleanliness of the renewable DG units, they are inevitably the key to a sustainable energy 

supply infrastructure. Nevertheless, the random nature associated with the renewable DG 

units produces specific challenges that have to be addressed to accelerate the expansion of 

the renewable DG units in the distribution system.  

Firstly, a new method for the determination of the wind speed distribution based on 

hourly wind speed data is proposed. Thus, instead of using only the well-known unimodal 

distributions such as Weibull and Rayleigh, a combination of probability density functions 

(PDFs) is taken into account, considering four sets of parameters in which each set 

represents a distribution. Furthermore, this model enhances the likelihood of the estimated 

wind speed probabilities. The maximum likelihood estimation (MLE) method for finite 

mixture models through the expectation-maximization (EM) algorithm is used to estimate 

the optimal parameters of the mixture distribution. Then two types of error measurements 

assessed the performance of each unimodal and multimodal distribution. As a result, the 

mixture of Gamma (MoG) distribution returned the most accurate results.  

Secondly, the results of wind speed modeling will be used in the siting and sizing 

wind-based DG units. The methodology addresses a probabilistic generation load model 

that combines all possible operating conditions of the wind-based DG units and load levels 

with their probabilities. The objective of siting and sizing formulation is to minimize the 

annual energy losses of the system as well as keeping the system constraints such as voltage 

limits at different buses (slack and load buses) of the system, feeder capacity, discrete size 

of the DG units, maximum investment on each bus, and maximum penetration limit of DG 

units in an acceptable limit. 
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CHAPTER 1: INTRODUCTION 

1.1 Preface 

Because of the remarkable increase in customer demand in the past decade, the idea 

of developing small scale energy resources spread over the grid brought much attention. 

These small energy resources are known as distributed generators (DGs). Distributed 

generators refer to different technologies that deliver electricity at or near the demand. 

Distributed generators are capable of providing energy for a residential area as well as a 

microgrid, in which a smaller grid that can connect to the broader electricity delivery 

system like industries. By developing distributed generators, the transport of clean energy, 

reliable power, and decrease energy losses through transmission lines will be improved. 

The concept behind DGs is not newly discovered. However, based on the economic 

literature associated with the electricity market, it is a relatively new idea [1].  

Among different types of renewable distributed generators, wind power is more 

ecologically friendly versus other energy resources. Wind power will be a strong potential 

if it delivers consumers energy at a reasonable price without declining the system's 

reliability and safety. In order to take advantage of wind power and its potentials, 

particularly technical and economic challenges need to be addressed. Among all types of 

DG technologies, the power generated by wind-based distributed generators is the most 

liable. Distribution system planning is one of the most critical obstacles that the system 

planers encountered, mainly when wind-based DG units are situated in the system. Since a 

few years ago, because of the advance in technologies and changes in climate and 

economics, attention has increased in using distributed generators.  

Besides, as clean energy sources wind and solar are becoming an ideal method for 

generating power, the electricity infrastructure is adapting their technologies and strategies 

towards using these clean and unlimited resources. Nevertheless, both the radial and 

network systems operate without any generation in the distribution system or at customer 

premises. The primary reason is that, for many years, the infrastructure has been considered 

using the centralized generation despite decentralized generation. Thus, because of the 

power system's existence, the distributed generators must situate themselves in the current 

system to connect to the grid.  The development of distributed generators can impact the 
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flow of power, system reliability, and voltage at customers and utility equipment. All these 

changes in traditional planning increase the gaps and complexity of the problem that needs 

to be solved. Therefore, most of the strategies taken into action are no longer valuable. The 

randomness and uncertainty related to the renewable energy resources brought more 

difficulties that have to be met to utilize the distributed generators in the shortest period.     

1.2 Thesis objectives 

The target of this thesis is to provide a planning framework that maximizes the 

penetration level of wind-based DGs and minimizes the system losses. The methodology 

of this thesis is based on generating new stochastic modeling, combining all possible 

operating conditions of the wind-based distributed generators and load levels with their 

probabilities. Subsequently, fit this model on the stochastic planning problem.  Regarding 

the siting and sizing of the renewable DG, the primary stress of the planning problem is to 

optimally site and size the wind-based distributed generators in the distribution system to 

minimize the annual energy losses.   

1.3 Outline  

This research, classified as follows: Chapter 2, shows the literature survey of the 

past work done in stochastic modeling, and siting and sizing of distributed generators in 

the distribution system. The performance of different wind modeling versus a new mixture 

model will be considered in Chapter 3. Chapter 4 represents the optimal siting and sizing 

of wind-based DG units in the distribution system. The conclusion and a brief explanation 

of the future work will be covered in Chapter 5.  
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CHAPTER 2: LITERATURE SURVEY 

2.1 Introduction 

The government's promises to provide clean energy have led to a growth in the 

investments toward more use of renewable resources to produce clean energy with less 

pollution and environmental impacts. The growth of the installation of DG units in the 

power system has economic, environmental, social, and technical impacts. Thus, this 

increase in DGs installation has encouraged researchers to become interested in optimal 

siting and sizing of DG units at the planning stage for minimizing the impacts of DGs 

installation and increasing the benefits of these renewable technologies. Chapter 2 will be 

addressed the techniques used in literature for optimally site and size the renewable DGs 

and stochastic modeling of renewable energies such as wind and solar.  

2.2 Siting and Sizing of Distributed Generators 

In [2], the authors developed the mathematical model to minimize the system’s 

power losses, considering both equality and inequality constraints such as power balance, 

voltage deviation limit, and reactive power compensation. The IEEE 34-bus and 85-bus 

radial distribution system with all possible load changes have been picked as a case study. 

Power balance, voltage deviation limit, and reactive power compensation have been taken 

into consideration as the constraints of the proposed model. In order to estimate the power 

loss and voltage at each branch, the load flow analysis has been used. The capacitor bank's 

optimal location has been categorized based on the loss sensitivity factor and voltage 

stability index. After placement of the capacitor, by using a curve fitting technique, the 

active and reactive power loss has been obtained. Finally, the simulated results have been 

estimated with the MINLP, PGS, PSO, HS-based methods.  

The authors in [3] brought their attention to 12-bus, 15-bus, 33-bus, and 69-bus 

systems in order to generate different real and reactive power modes for wind and solar-

based DGs. The objective function of power loss reduction and voltage stability 

enhancement of radial distribution systems have been considered to be optimized. Power 

flow and voltage limit are selected as the constraints of this work. A multi-objective particle 

swarm optimization (PSO) based wind turbine generation unit (WTGU) and photovoltaic 
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(PV) array placement approach has been taken into account to minimize power losses and 

more accurate voltage profile. Additionally, a voltage stability factor has been developed 

for increasing voltage stability.  

The authors in [4] represent a new algorithm known as simulated annealing (SA) 

to optimize the size of a mixed PV/wind energy system considering battery storage. In 

order to solve the optimization problem, a heuristic approach is applied, which uses a 

stochastic gradient search for the exact solution. Furthermore, the objective function 

decided to be the minimization of the hybrid energy system's total cost. Moreover, PV size, 

wind turbine rotor swept area, and battery capacity are the decision variables, respectively. 

As a consequence, the SA algorithm returned a more satisfactory result than the response 

surface methodology (RSM).  

The inherent uncertainty of wind speed has a huge obstacle to the successful 

execution of wind-based power generation technology. [5] defined a methodology by 

incorporating wind speed uncertainty in sizing the wind-battery system and incorporating 

it by considering the chance constraint programming approach. A deterministic equivalent 

energy balance equation has been considered in order to preannounce the reliability 

demand. Besides, the energy balance equation is more likely managed by chance constraint 

in which allows time series of the entire system. They used a sequential Monte-Carlo 

simulation of the system to validate the system's reliability.  

It is inevitable that energy is the most crucial fundamental for all media, industries, 

and services across the globe. Conventional distributed generators are still supplying a 

majority of the energy to the demand. Because of the pollution produce by these old-

fashion DGs, utility companies are working on replacing the renewable DGs with the old 

method since renewable DGs are clean and more cost-effective. In [6], An independent 

hybrid solar-wind system with battery energy storage for a remote island has been 

developed. In the proposed system, the effects of the PV panel sizing, wind turbine sizing, 

and battery bank capacity on the system's reliability and economical performance were 

discussed. Finally, in order to evaluate the excellent condition of economic analysis, the 

author used a sensitivity analysis on the load consumption and renewable energy resource.  

For providing adequate capacity due to the expansion of electrical demand [7], the 

multi-objective optimization technique for the multistage distribution expansion planning 
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(MDEP) considering the three following objectives: cost of investment and operation, END 

minimization, total active power loss minimization, and voltage stability index 

enhancement. The voltage limit of the buses, power flow transmission of feeders and 

branches, and power output of DG have been taken into account as constraints of the 

objective. To obtain an optimal solution, utilizing a modified particle swarm optimization 

algorithm has been measured as well as a novel mutation technique to advance the ability 

of global search and restrain the premature convergence to local minima. 

The author in [8] developed the mixed-integer linear programming algorithm 

(MILP) to optimally allocate the type, size, and location of distributed generators in a 

distribution system. The radial distribution system's steady-state operation is built up, a 

different type of DGs, current capacity of a short circuit, and various topographies of 

distribution systems have been used. In this work, they represented MILP for optimally 

allocate the mentioned objective. The primary focus of the objective function is to 

minimize the annual investment and cost of utilization.  

On account of the stochastic nature of charging and discharging schedule for 

electric vehicles, uncertainties in generating power from renewable resources such as wind 

speed and solar energy, and the possibility of load extension in the future that can put the 

optimal siting and sizing of distributed generators (DGs) in distribution system planning in 

risk. The authors in [9], developed a mathematical model of chance-constrained 

programming (CCP) for the objective function based on minimizing the cost of investment, 

operation, maintenance, network loss, and capacity adequacy. Constraints of the power 

flow equation, the upper and lower bound of real and reactive, as well as voltage limits 

have been taken into consideration. a Monte Carlo simulation-embedded genetic-

algorithm-based approach has been applied to resolve the CCP model. The system under 

study in this work is the IEEE-37-node system.  

Due to the significant impact of the distributed generators on the stability of voltage 

margins, remarkable attention has been drawn to this section. In [10], the optimal 

placement and sizing of distributed generators is considered to maximize the voltage 

stability margins in the distributed generation system. The mixed-integer nonlinear 

programming algorithm has been developed to solve the mathematical problem. 

Constraints under study are the system voltage limits, feeders' capacity, and the DG 
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penetration level, the maximum penetration on each bus, power flow equations, and branch 

current equation. The system under examination is a rural distribution system of 41 buses.  

Locating the distributed generators need some particular methods to control the 

DG's independent outputs. [11], using the objective function of minimizing the 

computational burden and sensitive analysis to minimize the operating energy loss. 

Different constraints regarding the number of DGs to be allocated, constraint on dispatched 

wind power, power flow equations, voltage magnitude at different buses, and line loading 

have been taken into account. For picking the location of DGs precisely, a sensitivity 

analysis method has been proposed as well as an evolutionary programming technique that 

optimally locates the distributed generators. In this work, the system under study is a rural 

69-bus distribution test system.  

In [12], the objective function has been represented as the minimization of the 

power losses in the distribution system. Some of the constraints under examination are real 

and reactive power balance and limitation in variables considering active and reactive 

power, and voltage magnitude, and real power generation limits. Firstly, one of the easiest 

ways to calculate overload power is to employ sensitivity factors.  Thus, this method has 

considered to point out the best candidate busses for placing distributed generators. 

Furthermore, an evolutionary computation technique known as practice swarm 

optimization (PSO) has been used in order to decrease the search space. Finally, they used 

optimal power flow techniques in order to optimally size individual DGs. Similar to [2, 

10], they considered the 69-bus distribution test system.  

One of the proper ways to relieve the uncertainties problem caused by renewable 

distributed generators such as wind speed and solar energy is to apply energy storage. 

Properly Locating and allocating the distributed storage system has a massive effect on the 

cost reduction in this project [13], divided the work into three stages. In the first stage, they 

optimally place the storage. Secondly, they came up with the number of storage units, and 

finally, they mixed the first and second stages together. The objective function of this study 

is to minimize the sum of the generation costs of all the generators over all time periods 

and the daily investment cost in storage. They used constraints on the binary variables, 

generator output, generator minimum up and downtimes, start-up costs, ramping and 

storage, and transmission constraints. Moreover, a sensitivity analysis has been considered 
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in order to weight the impact of wind speed on the choice of storage location. The system 

under study is tested on the IEEE RTS 96. 

Because of the limitless and cleanliness of renewable energy resources, they play 

an essential role in a sustainable energy supply infrastructure. In [14], they proposed the 

methodology based on allocating different types of renewable distributed generators (DGs) 

in the distribution system to minimize energy losses without violating the system's 

constraints. A mixed-integer nonlinear programming (MINLP) method is evaluated to find 

the most optimal solution for the planning problem. The objective function is defined as 

minimizing the system's annual energy losses. Based on the results, there is a remarkable 

decrease in annual energy losses for all possible scenarios.  

Current changes in renewable energy technologies brought utilities attention to 

redevelop the distribution system infrastructures. In [1], the problem focusing on optimally 

allocating wind-based DG units in the distribution system in order to minimize annual 

energy loss. Based on the stochastic nature of the wind, they used a probabilistic generation 

load model that integrates all possible operating conditions on wind-based DG units and 

load probabilities. Similar to [14], they used mixed-integer nonlinear programming 

(MINLP), with an objective function for minimizing the system's annual energy losses. 

Finally, the results indicated that the proposed technique is more reliable than the method 

considering the capacity factor.  

The author in [15] highlights an upgraded multi-objective optimization algorithm 

for the generation of renewable distributed generators to provide energy for demand 

optimally. 

The primary aim of work in [16] is to comprehensively optimize the size and site 

of the distributed generation in the distribution system. So that, considering objective based 

on minimizing investment and operating costs, full payments of compensating for system 

losses during the planning period, in addition to costs associated with alternative scenarios. 

In order to accomplish an accurate planning decision, binary decision variables are applied 

in the optimization model.  

A hybrid system, including solar panels, wind turbines, diesel generators, and 

batteries, has been created to control the Pareto optimal front [17]. The objective of this 
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work is to determine the technological and economic expenses concerning cost and 

emission.  

In [18], The distributed generation is formed by single and multiple active power, 

reactive power, and a mixture of active-reactive power DG. The optimal placement and 

sizing of distributed generation solved by a multi-objective particle swarm optimization 

method in the radial distribution system. The first objective is to minimize the power losses, 

and the second is to improve the voltage profile.  

The optimal placement of the biomass-thermal and wind-based distributed 

generators (DGs) is considered in [19]. They developed their objective based on 

minimizing the waste of energy, emission, the total investment, and the cost of operation 

as well as enhancing the productivity of the voltage regulation. As the mathematical model 

developed based on the mixed-integer nonlinear problem, a genetic algorithm (GA) with 

an integrated optimal power flow (OPF) is taken into consideration.  By using the GA 

method and OPF, the optimal location of the distribution power and optimal thermal power 

generation will be handled, respectively.  

The primary goal of [20] is to increase the utility owner's benefit considering 

optimum battery energy storage system (BESS), which is combined with small wind 

turbines in the distribution network. For the purpose of minimizing annual energy loss and 

cost of energy, they formulated a multi-objective optimization based on scheduling the 

charge and discharge time of BESS. Furthermore, a genetic algorithm (GA) is considered 

to solve the problem.  

In [21], due to the advantages of the mixed renewable energy resources in 

environmental, economic, and technical aspects, the optimal sizing of the mixed renewable 

energy resources is examined. They covered several different optimization techniques in 

order to solve the sizing problem. Consequently, every single of these optimization 

techniques could have a remarkable potential to advance renewable energy systems' 

applicability. 

Authors in [22] aimed to install discrete full cell generators in a power system to 

increase the efficiency of the operation. They represented an algorithm to obtain the near-

optimal solution for locating these units and system losses on the network. Furthermore, 

resistive losses and capacity savings are the huge factors of the impacts of discrete 
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generation at the distribution level. The results represent the crucial impact of the 

placement on reducing the losses and increasing the capacity savings. Proper placement of 

the DGs can decrease the energy losses and boost the feeder voltage profile.  

In [23], the fuzzy goal programming (FGP) is developed to solve the multi-

objective DG allocation subsume the voltage characteristics of every load component and 

total capacities of DG units. 

In [24], several attempts have been accomplished in order to reconstruct the old 

network into the smart grid. To begin with, they considered solar energy over other 

renewable resources because of the availability in higher scop. This paper aims to minimize 

network power losses and raise the voltage stability considering system operation and 

security constraints in a transmission line. They optimally sized and sited the DGs by using 

the following steps. In the first step, the optimal size of DGs is decided by conducting the 

Particle Swarm Optimization (PSO), and by using a negative load approach for reverse 

power flow, the possible sites of the DGs are selected. Then they found the optimal sites 

considering Loss Sensitivity Factor (LSF) and weak bus strategy. Besides, in the second 

step, they conducted a hybrid PSOGSA algorithm to locate the DGs optimally. 

The authors in [25] used the ant lion optimization algorithm (ALOA) to locate and 

size the DG based renewable sources for different distribution systems optimally. The 

optimization planning problem is formulated to compute power losses, voltage profiles, 

and VSI. In the first step, the loss sensitivity factors (LSFs) were considered to introduce 

the most candidate buses for installing DGs. Then by using ALOA, the location and size 

of DGs were selected. Additionally, to validate the performance of the proposed algorithm, 

the obtained results are compared with other algorithms in this area.   

In [26], the authors consider a multi-objective function to locate and size DGs and 

reconfigure the distribution network. He considers the expected costs but skips the 

investment cost. An optimal evolutionary strategy based on the Pareto optimality is used 

as well as a fuzzy set theory to pick the best solution among the achieved Pareto set. Based 

on the results, the effectiveness of the proposed method has been proved.   
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2.3 Stochastic Modeling for Load and Generation 

The authors in [27] analyzed the performance of the gaussian mixture model 

(GMM) versus three well-known parametric models considering wind speed data for 6 

locations in northwest Europe. Based on the analysis, GMM is selected as the most accurate 

statistical model in different aspects, such as the percentage of improvement in mean 

absolute error (MAE) and root mean square error (RMSE), and the goodness of fit K-S 

test.  

In [28], the author analyses the mixture of two truncated normal distributions 

(MTTND) with different means and variances for each component. By using the mixture 

of two Normal distributions, they are aiming to represent a wind speed probability density 

function (PDF) in a more flexible shape. Based on the analysis, the accuracy of the 

MTTND was confirmed by comparing it with other well-known pdfs used in other works 

of literature like; weibull, rayleigh, lognormal, gamma, and inverse Gaussian and Burr. In 

order to estimate the parameters of the pdfs, the author used the least-squares non-linear 

regression method. For ensuring the accuracy of the MTTND over other pdfs, The 𝑅  for 

the goodness of fit, and a statistical error measurement (RMSE) are taken into 

consideration.  

Because of the different modes in mixture distributions, they have more accurate 

performance than the single distributions in the modeling of wind speed. Hence, reference 

[29] demonstrated the use of hierarchical mixtures of multiple distributions for the 

modeling of wind speed. For evaluating the parameters of each component of the mixture 

model, They used a nested expectation-maximization (EM) algorithm. Based on the results 

of the analysis, the proposed model performed better in comparison with the single and 

mixture distributions.  

The authors in [30] propose a non-parametric kernel density estimation (KDE) 

model for wind speed distribution. Wind speed distribution inevitably plays a fundamental 

role in wind-based distributed generation placement. One of the essential ways to stop 

over-fitting and under-fitting is to determine the model's accurate bandwidth. The paper 

approach is to use a wind speed sample-based technique to estimate the optimal bandwidth 

considering three years of wind speed data. A goodness-of-fit test and mean square root 

errors are used to assess the pdfs' performance versus histograms. Based on the final results, 
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the better productivity of the KDE model over the conventional parametric distribution 

model is clearly illustrated.  

The analysis in [31] considered the use of two-parameter Weibull distribution for 

three different sites in India. Based on the analysis, it is shown that the approximated 

method for evaluating the parameters of the weibull probability distribution could be a 

proper approach for predicting the wind speed and wind power accurately.   

Manage the conversion of wind energy, evaluate the wind energy potential, and 

place wind farms in three crucial factors that need to be assessed in the estimation of wind 

speed distribution. In [32], instead of conventional wind speed planning, a new approach 

is addressed with more reliable wind speed distribution. This approach integrates the 

bayesian model averaging (BMA) and markov chain monte carlo (MCMC) sampling 

method. They defined BMA probability density function (PDF) of the wind speed as a 

mean of the model PDFs considered in the model space weighted by their posterior 

probabilities over the sample data.   

In [33], an advanced non-parametric strategy is examined to assess the performance 

of wind speed probability distribution. The method includes bandwidth selection and 

boundary correction of kernel density estimation (KDE). For validating the proposed 

model, two goodness-of-fit tests are used. Consequently, the diffusion-based kernel density 

model (DKDM) results are compared with multimodal, weibull, and normal distributions. 

This outcome resulted in DKDM providing more accurate results, even when the wind 

speed is not present. Afterward, they concluded that a single parametric distribution was 

unable to model wind speed data in different sites adequately.    

In [34], the maximum likelihood estimation (MLE) via particle swarm optimization 

(PSO) algorithm was used to calculate the parameters of the mixture of two Weibull 

distribution, including complete and multiply censored data. They performed a simulation 

study to evaluate the capability of the MLE via the PSO algorithm, quasi-newton method, 

and an expectation-maximization (EM) algorithm with different parameter frames and 

sample sizes in both complete and deleted cases. Based on the results, they represented that 

the PSO algorithm performs better than the quasi-newton method and the EM algorithm in 

most cases in terms of bias and root mean square error. In order to indicate the performance 

of the proposed method, two numerical examples are taken into account.  
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In [35], a multivariate Kolmogorov-Smirnov (K-S) goodness-fit-test was taken into 

account. They developed Rosenblatt's transformation and an algorithm in the goodness-of-

fit test to determine the bivariate case test. Additionally, in order to simply calculate any 

dimension, an approximate test is used. Finally, to understand the accuracy of the 

multivariate test, they apply the test in a simulation scope.  

Misconception and misuse of statistical tests, confidence intervals, and statistical 

power have been denounced for years. However, the correct use of these statistics could be 

significantly effective in different criteria such as medical study, finance, physics, 

forecasting, and many other fields. In [36], The definitions of fundamental statistics that 

are more general and critical have been provided. The authors stressed how violation of 

unstated analysis formalities could conclude to small p-values. Then, a list of 25 wrong 

explanations of p-values, confidence intervals, and power has been provided to enhance 

the statistical examination.  

The author in [37] explained the evaluation of a probability density function's 

(PDF) problem and decision regarding the mode of a probability density function (PDF). 

They represented how one can build a family of approximations of the PDF and the 

consistency mode. The problem of calculating the mode of a probability density function 

and the maximum likelihood estimation problem for estimating the parameters have a bit 

of similarity with each other.  

In [38], Athaurs considered a parametric beta and a non-parametric kernel density 

estimation model, which are assessed to obtain a more reliable statistical model. 

Additionally, the use of goodness-of-fit and four statistical error measurements have been 

taken into consideration. Accordingly, they demonstrated that the hybrid model of the solar 

irradiance represents more appropriate results in terms of the percentage of improvements 

versus the beta and KDE model. Furthermore, based on hypothesis testing, the hybrid 

model is the only one that refuses to reject the null hypothesis in all cases. Four statistical 

error measurements, such as mean absolute error (MAE), root mean square error (RMSE), 

mean absolute percentage error (MAPE), and mean bias error (MBE), are used to represent 

the high performance of the hybrid model versus other distributions. Results confirm the 

accuracy of the hybrid model for solar irradiance modeling with percentage improvements 

over the beta distribution of up to 13.8% (RMSE), 11.7% (MAE), 19.3% (MAPE), and 
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72.5% (MBE). The K–S test results show that the proposed beta KDE hybrid is the only 

model for which the null hypothesis is not rejected for any of the eight data sets considered 

in this study 

2.4 Application of Genetic Algorithm in Planning 

In reference [39], they proposed a useful model to optimally find the size and site 

of the distributed generation units in the distribution system. They introduced the genetic 

algorithm (GA) to minimize total active and reactive power losses and bring the voltage 

profile to acceptable limits. Furthermore, the GA fitness function is taken into 

consideration, such as the active power losses, reactive power losses, and the cumulative 

voltage deviation variables with selecting the weight of each variable. Consequently, by 

minimizing the fitness function, the optimal solution has been accomplished.  

The author in [40] used the combination of the analytical expressions and optimal 

power flow (OPF) algorithm to locate, size, and select the best mix of different DGs types 

optimally for minimizing the energy losses in the distribution system. Based on the 

simulation, the proposed work is verified for controlling the combination of different DGs 

types. 

The use of genetic algorithm (GA) and ant colony algorithm (ACO) optimization 

techniques are represented in [41] to optimally size and site the distributed generators in 

the electrical grids. The objective function is based on the linearized model to calculate the 

active power losses of the generators. This strategy is based on a strong coupling between 

active power and power flow, taking into consideration the voltage angles with the end 

goal to exhibit the adequacy of the proposed method.  

In [42], the use of optimal placement and sizing of dispatchable DGs and shunt 

capacitors is considered. Besides, the author's objective is to decline the annual energy 

losses and improve the voltage profile. The other considerations of this work is an average 

hourly variation of load demand profile. Additionally, The sensitivity analysis and GA 

method are used in order to gain the location and size of dispatchable DGs and shunt 

capacitors, respectively. The system under study in this work is the 33 bus system.  

Since the concept of minimizing cost in energy management has always been an 

essential objective, the minimization of the emission has undoubtedly been as crucial as 
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the cost as well. In [43], the authors used a multi-objective real-time optimization for an 

islanded microgrid to solve in real-time, considering a multi-objective particle swarm 

optimization (MOPSO) algorithm is taken into consideration. Consequently, the results of 

the simulation are compared with the multi-objective genetic algorithm (GA) optimization 

package in Matlab. Based on the analysis, the proposed technique accomplished faster than 

the GA.   

In [44], to site and size FCSs and wind-based DGs a new planning model is 

developed, considering the stochastic nature of FCSs and residential EV loads, and 

renewable energy generation. Different cost and revenue components associated with FCSs 

and wind-based DGs as well as practical constraints for installing FCSs and DGs in the 

area of each bus are taken into account. The proposed problem is classified as mixed-

integer non-linear programming (MINLP) which requires a lot of time to be solved in 

deterministic method. Consequently, the genetic algorithm (GA) is considered to solve the 

proposed problem. The computational results illustrate that the proposed planning method 

is an effective way in siting and sizing FCSs and wind-based DGs while maximizing the 

profit, minimizing the energy losses, and deferring the need for DN upgrades. 

2.5 Concluding Remarks    

An apparent gap in the literature has been observed. First of all, Most of the research 

papers in stochastic modeling only used the well-known probability density functions 

(PDFs) to follow the wind speed pattern precisely. Furthermore, to minimize the annual 

energy losses in renewable distributed generators (DGs), the probabilistic generation load 

model considering Weibull and Rayleigh's probabilities was used in literature to fixes into 

the deterministic optimal power flow (OPF) equations [1]. In contrast, we applied different 

PDF’s probabilities, including unimodal and multimodal PDFs, to the planning problem to 

analyze the performance of each PDF in minimizing the annual energy losses.   
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CHAPTER 3: MODELING OF WIND-BASED RENEWABLE 

RESOURCES  

3.1 Introduction  

Due to the global severe environmental pollution problem, emissions of carbon 

dioxide and greenhouse gases produced by traditional industries (non-renewable energy 

resources), most of the attention have shifted to the utilization of new energy resources, 

which could be an ideal solution to dealing with the limitation of non-renewable energy 

and climate change. Recently, the development and utilization of renewable energy, 

including solar, geothermal, and wind energy, have drawn much attention because of 

different reasons. Controlling the emission of dangerous gases in the atmosphere, 

decreasing the cost of energy-related to the traditional energy resources, and participation 

of power producers in the electricity market system are some of the reasons for developing 

renewable energy resources in the distribution system.  

Among all other renewable energies, wind energy has had the fastest-growing 

source of electricity all around the globe. In Canada, the capacity of wind power has 

increased with a very swift slope for about 12000 megawatts from 2004 to 2018. Figure 

3.1 shows the growth of Canada's installed capacity over time, based on data from [45].  
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Figure 3.1: Canada’s installed wind power capacity 

 

Based on statistics, Ontario has the largest installed wind capacity with 40% of 

Canada's wind energy capacity,  this trend followed by Quebec, Alberta, British Columbia, 

and finally, Nova scotia, respectively. Figure 3.2 represents the wind capacity in different 

provinces in Ontario, based on data from [45].  

 

Figure 3.2: Ontario installed capacity 
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Wind energy remarkably relies on wind speed. Understanding the wind speed 

characteristic at a specified location to develop an appropriate probabilistic model that 

represents the wind speed pattern correctly is the initial step to place the renewable 

distributed generation units in the distribution system.  

There are different approaches for modeling the renewable resources in the 

distribution system. For instance, wind speed can be modeled using different time-scales 

or using a specific probability density function in a certain period. The proper selection of 

a strategy for modeling a renewable resource such as wind speed depends on the period of 

the application as well as utilizing the analytical methods, specifically the Maximum 

Likelihood Estimation (MLE), Particle Swarm Optimization (PSO), and Mont Carlo 

Simulation accomplish the application [46]. 

Accordingly, for modeling the stochastic behavior of the wind speed, several 

probability density functions are examined and compared with each other. in this chapter, 

the most well-known probability density functions (pdfs) versus a mixture of Gamma 

distribution are considered and to ensure the accuracy of the mixture model different error 

tests are used. Consequently, after assessing the performance of different distributions, the 

mixture of Gamma distribution is selected as the most accurate model for the modeling of 

wind speed. In the following section, an analysis of the factors that might significantly 

impact wind speed modeling will be examined. 

3.2 Factors Impacting Wind Speed  

For modeling the wind speed in this research, the annual wind speed data is taken 

into consideration. However, an analysis is accomplished to observe how different factors 

impact the accuracy of wind speed modeling. We need to analyze the observation to 

identify any factor that contributes to the wind speed. If we disregard them, probably the 

prediction model can be inaccurate (i.e., the total error is beyond the acceptable range). 

Therefore, before establishing any prediction model, we need to determine wind speed's 

main effects using data analytic tools. Factors are split into the following category: year, 

season, weather, temperature, and time. 
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3.2.1 Impact of year on wind speed   

We observe the wind speed in two years, 2016 and 2017. We have 8500+ 

observations each year. Based on the analysis the wind speed is not impacted by the year, 

as shown in Figure 3.3. We conducted the ANOVA test, and the p-value is 0.433646, which 

supports the finding statistically. Based on what observation in Figure 3.3, the prediction 

of the wind speed can be applied to next year.   

 

Figure 3.3: Average wind speed of years 2016 and 2017 

3.2.2 Impact of season on wind speed  

We observe the wind speed for four seasons, winter, spring, summer, and fall, in 

both years 2016 and 2017. We have 4000+ observations for each season. The season, as 

the main effect, is significant, as shown below. We conducted the ANOVA test, and the p-

value is absolute zero, which supports the finding statistically. We cannot predict precisely 

the wind speed (i.e., fitting a probability distribution to it) unless we consider the season. 

If we disregard this main effect, we, in fact, consider that as a noise (uncontrollable error), 

and this vastly increases the total error. Of course, this does not necessarily mean we can 

have a precise distribution if we consider the season, as there might be other central effects. 

Figure 3.4 shows the average wind speed in different seasons.  
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Figure 3.4: Average wind speed of different seasons 

The average wind speed in different months has been plotted. There is a clear cyclic 

trend that iterates every year. Figure 3.5 illustrates the average wind speed for each month.  

 

Figure 3.5: Average wind speed of different months 
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3.2.3 Impact of weather on wind speed      

The wind speed for the top 10 most frequently weather types are observed. For 

example, the most frequent weather is mostly cloudy, with 1600+ observations. The 

weather, as the main effect, is significant, as shown below. We conducted the ANOVA 

test, and the p-value is absolute zero, which supports the finding statistically. We cannot 

precisely predict the wind speed (i.e., fitting a probability distribution to it) unless we 

consider the weather. If we disregard this main effect, we, in fact, consider that as a noise 

(uncontrollable error), and this vastly increases the total error. Of course, this does not 

necessarily mean we can have a precise distribution if we consider that as there might be 

other central effects. The weather is different from the season in that it's prediction. 

However, we can conclude that if we predict the weather type, the prediction of wind speed 

can be more accurate. 

 

Figure 3.6: Average wind speed of different weather's type 

3.2.4 Impact of temperature on wind speed  

We plot all observations, the wind speed versus the temperature. From this scatter 

plot, the temperature is not a significant main effect. That is, Temperatures 10C and 20C 

in summer are expected to have the same impact on the wind speed. While the wind speed 
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in winter and summer with the same temperature is different. Figure 3.7 shows the wind 

speed at different temperatures. 

 

Figure 3.7: Wind speed at different temperatures 

3.2.5 Impact of time on wind speed   

We plot all observations, the wind speed versus the time in a day. From this scatter 

plot, time in a day is not a significant main effect. That is, the wind speed of day and night 

are almost similar. 
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Figure 3.8: Wind speed in different time segments 

Fitting probability distribution to the wind speed is a function of several main 

effects (like season and weather type), and we can more accurately predict the probability 

of wind speed if we consider season and weather as factors. The consideration, here, for 

example, means we develop a probability distribution for each season and weather type. 

There is no generic probability distribution for the wind speed that predicts the season and 

weather type. We can fit a probability distribution to the wind speed more precisely if we 

know the season and weather type. 

3.3 Wind Speed Stochastic Modeling  

Based on the new approximations, wind energy is the lowest-cost source of new 

electricity generations as well as being both commercially and technologically competitive. 

Wind energy is not only one of the most environmentally friendly sources of energy, but 

also it is one of the most satisfying for the requirement of energy. Nevertheless, based on 

the random nature of the wind speed, selecting an accurate wind speed model is a 

challenging problem. However, by selecting a proper probability density function (PDF) 

and applying the wind-based DGs in the distribution system, answers to this issue can be 

addressed.  
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3.3.1 Unimodal probability density functions in wind modeling 

Precisely estimating wind speed frequency distribution will be beneficial for 

predicting the wind energy potential accurately and selecting wind energy planning 

optimally [29]. To begin with, a wind speed distribution manly identifies the performance 

of the wind power system. Modeling wind speed, considering an accurate pdf, gives crucial 

parameters that uncover the characteristics of wind speed data. Based on this statement, 

using wind modeling is remarkably beneficial for the extended period planning problem. 

The four unimodal distributions (Weibull, Rayleigh, Gamma, and Johnson SB) will be 

explained, and the performance of each distribution will be measured.  

A. Weibull distribution  

Among various distributions, the Weibull probability distribution function (3.1) is 

one of the most well-known pdf to describe the stochastic behavior of the wind speed [47]. 

The  Weibull PDF’s success comes from the adjustable parameters and the flexibility in 

fitting distribution function to the estimated value with different patterns.  

 

𝑓(𝑥) =
𝑘

𝜆

𝑥

𝜆
𝑒  

 

(3.1) 
  
 
 

where 𝑘 is the shape parameter, and 𝜆 is the scale parameter of the weibull distribution. 

In the two parameters weibull distribution, the location parameter (γ) consider as 0.  

Weibull functions are customarily used to describe the random behavior of the wind 

speed in a given location over a certain period, in most cases annually. Furthermore, the 

weibull function can describe wind speed distribution for a typical hour of the year. In the 

following paragraphs, the performance of the other distributions versus weibull distribution 

will be addressed.  

B. Rayleigh distribution 

A perfect expression often used to model wind speed behavior is the Rayleigh 

probability density function (PDF). If k = 2, then we have a particular case of the Weibull 

distribution called the Rayleigh distribution [1], which distribution density (3.2) is: 
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𝑓(𝑣) =
2𝑣

ℎ
𝑒𝑥𝑝 −

𝑣

ℎ
 

 
(3.2) 
  
 
 

When the shape index 𝑘 equals 2, the pdf is called Rayleigh probability density 

function as given in (3.2), which pdf mimics most wind speed profiles. If the mean value 

of the wind speed for a site is known, then the scale index ℎ can be calculated as in (3.3) 

and (3.4). 

 

𝑣 = 𝑣𝑓(𝑣)𝑑𝑣 =
2𝑣

ℎ
exp −

𝑣

ℎ
𝑑𝑣 =

√𝜋

2
ℎ 

 
(3.3) 
  

 
 

 
𝑐 ≅ 1.128𝑣  

 
(3.4) 

  
 
 

C. Gamma distribution  

Gamma distribution is a two-parameter continuous distribution where 𝛼  is the 

shape parameter, and  𝜃  is the scale parameter. In some cases, there is different 

parameterization use. In which, the shape parameter 𝛼 and an inverse scale parameter 𝛽 =

 known as rate parameter. The density function of the Gamma distribution (3.5) is:  

 

𝑓(𝑥) =  
𝛽

𝛤(𝛼)
𝑥 𝑒  

 
 (3.5) 
  
 
 

D. Johnson SB distribution  

As stated in [48], the Johnson system of distributions is a very flexible distribution 

for every mean and standard deviation. The specific Johnson family that is considered in 

this research is the 4-parameter Johnson SB distribution, whose distribution (3.6) is:  

 

𝑧 =  𝛾 + 𝛿 ln
𝑋 − 𝜉

𝜉 + 𝜆 − 𝑋
, 𝜉 ≤ 𝑋 ≤ 𝜉 + 𝜆 , 

 
 (3.6) 
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where 𝜉 is the location parameter, 𝛿 > 0 (by convention) and 𝛾 are shape parameters, and 

the parameter 𝜆  > 0 corresponds to the range. The distribution of 𝑋 is the Johnson SB 

distribution, which is defined as follows: 

 

𝑓(𝑥) = 
√ ( )

 𝑒𝑥𝑝 −  (𝛾 + 𝛿𝑙𝑛 )  

 
 (3.7) 
  
 
 

The Johnson SB distribution is also known as the four-parameter lognormal 

distribution. Johnson SB distribution is double bounded; 𝛾 = 0 indicates symmetry. The 

corresponding limiting form ( 𝑎𝑠 𝛿 → ∞ ) is the Gaussian distribution. Johnson SB 

distribution is flexible, covers bounded distributions, as well as a wide variety of 

distributional shapes, including the gamma and beta distributions.  

3.3.2 Annual wind speed modeling for unimodal distributions 

In this model, Weibull, Rayleigh, Gamma, and Johnson Sb distributions are used 

to represent the annual wind speed distribution in the two sites under study. The historical 

data are collected from [49]. The annual mean and standard deviation of wind speed are 

calculated. Besides, the parameters of Weibull pdf (wind model 1), Rayleigh pdf (wind 

model 2), Gamma pdf (wind model 3), and Johnson SB pdf (wind model 4) are calculated. 

By using the parameters of each wind speed model, the probabilities of those distributions 

are predictable. For the modeling of the wind speed, 48 records of hourly wind speed are 

considered for each month, which means that for the whole year, 576 records are collected. 

This analysis covers two different areas in Ontario, Canada (Windsor and 

Hamilton). The parameters of the unimodal distributions are as follows:  
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Table 3.1: Parameters of the unimodal distributions 

Site 
Gamma  Rayleigh Weibull Johnson SB 

α β σ 𝒌 𝝀 γ δ 𝝀𝒐 ξ 

Windsor 2.9789 5.1101 12.1460 1.9304 17.0090 2.8935 1.6728 108.4600 
-

2.7589 
Hamilton 3.7502 5.0530 15.1200 2.0833 21.2920 0.7740 1.0274 51.7230 0.9744 

 

Using these parameters, we will estimate the p-values and two types of error 

measurements to rank the candidate distributions based on their accuracy.  The following 

sections represent the strategies used for picking the most accurate unimodal probability 

density function.  

3.3.3 Goodness-of-fit Kolmogorov-Smirnov test 

The goodness of fit test examines if a particular sample data can adequately fit a 

distribution from a specific population. In other words, the goodness of fit seeks if a 

specific data set shows the data expected to find in the observed population. In this 

research, the well-known goodness of fit test known as the Kolmogorov-Smirnov (K-S) 

test is used to assess the performance of each unimodal wind speed model. The test statistic 

(3.8) of the K-S test is given by:   

 
D = sup |F (x) − F (x)| 

 
 (3.8) 
  
 
 

where 𝐹 (𝑥)  is the cumulative distribution function (CDF) of the hypothesized 

distribution, and  𝐹 (𝑥) is the empirical distribution function (EDF) of the observed 

data. The K-S test measures the immense distance between the EDF or 𝐹 (𝑥) and the 

theoretical function 𝐹 (𝑥),  measured in a vertical direction [50]. Every individual step to 

estimate the K-S test is as follows:  

1) Developing an EDF for the particular data set 

2) Specifying a specific distribution 

3) plotting two distributions together. 

4) Estimating the most significant vertical distance between the two graphs.  
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5) Calculating the test statistic. 

6) Finding the critical value in the K-S table, and 

7) Comparing the critical value. 

A. Hypothesis testing 

The primary focus of this section is to challenge the new probability distribution 

functions (PDFs) versus the most well-known pdfs in stochastic wind modeling. Because 

of the randomness in the wind speed, it is crucial to select a pdf that can precisely follow 

the observed data set (Histogram). In other words, the closer the probability of a specific 

model to the observed data, the more accurate the model would be. The first step for 

selecting and validating a candidate model is the Kolmogorov–Smirnov (K-S) goodness-

of-fit test that has been taken into account to come to a resolution that collected data comes 

from a specific statistical model. To conclude a shred of substantial evidence, results are 

picked based on p-value (𝑝 > 0.01) analogous in strong proof that the null hypothesis is 

correct. Consequently, the data does not return remarkable results if a false null hypothesis 

is obtained at the end of the goodness-of-fit test.  

3.3.4 Average model performance  

There has been tremendous growth in the number of climate and environmental 

models over the last few decades. Attention also has risen in deciding which statistical 

strategy delivers a more appropriate and accurate approximation of the variables of interest 

[51]. Thus, error approximation for comparing model produced with different observations 

have been used in massive applications. Based on what literature commonly applied to 

their work, two types of error measurements are used to differentiate the productivity of 

the considered unimodal distribution. These two error measurements are root mean square 

error (RMSE) and mean absolute error (MAE). Both of these measures are dimensioned to 

express average model prediction error in the unit of the variable of interest [51].  

A. Root mean square error (RMSE) 

In the climate and environmental literature, primarily wind modeling, the RMSE 

and MAE are the most used error measures to check the performance of the statistical 

model. Three primary steps have to be taken in order to estimate the RMSE: The first step 
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is to estimate the total square error as the sum of discrete squared error. In fact, each 

individual error has an impact on the total error. As it is expected, the higher errors have 

more influence on the total square error than the smaller errors. In the second step, after 

obtaining the total square error, it is time to divide the total square error by 𝑛 and obtain 

mean square error (MSE) as an output. Then in the final step, the RMSE can be calculated 

as the square root of the MSE. The RMSE formulation is given by (3.9): 

 

𝑅𝑀𝑆𝐸 =  
1

𝑛
(𝑥 − 𝑥 )  

 

 
  

(3.9) 
  

 
 

where 𝑛  is the number of bins of the specific data set. 𝑥  Represents the number of 

observations, 𝑥  shows the probability of the wind speed and 𝑖 is the calculated bin from 

the data set (𝑖 = 1, … , 𝑛). 

B. Mean absolute error (MAE)  

The calculation of MAE is relatively simple. It involves summing the magnitudes 

(absolute values) of the errors to obtain the 'total error' and then dividing the total error by 

n. The MAE (3.10) is given by: 

 

𝑀𝐴𝐸 =  
1

𝑛
|𝑥 − 𝑥 | 

 
  
(3.10) 
  
 
 

where 𝑛  is the number of bins of a particular data set. 𝑥  Represents the number of 

observations, 𝑥  shows the probability of the wind speed and 𝑖 is the calculated bin from 

the data set (𝑖 = 1, … , 𝑛). 

3.3.5 Multimodal distribution (mixture distribution)  

Because of the complex wind regimes in the real world, single distributions can not 

describe the wind speed distributions comprehensively. Consequently, with different 

components (different number of distributions), we can model the wind speed distribution 

more appropriately. In this work, to investigate the effectiveness of the mixture modeling, 
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the package mixR in R is considered. This package includes the maximum likelihood 

estimation (MLE) method for finite mixture models through the expectation-maximization 

(EM) algorithm. Moreover, the bootstrap likelihood ratio test is used to select the best 

statistical model. The mixture models used in this research are a mixture of Normal (MoN), 

a mixture of Weibull (MoW), and a mixture of Gamma (MoG) probability density 

functions [52]. The general form of the finite mixture model is given by (3.11): 

 

           𝑓(𝑥;  Φ) = 𝜋 𝑓 (𝑥; 𝜃 ) 

 

 
  
(3.11) 
  
 
 

where 𝑓(𝑥;  Φ) is the probability density function (PDF) of the mixture model, 𝑓 (𝑥; 𝜃 ) is 

the pdf of the 𝑗  component of the mixture model, 𝜋  is the weight of the 𝑗  component 

and 𝜃  is the parameter of the 𝑗  component, and Φ is a vector of all the parameters of the 

mixture model. By considering the EM algorithm, the parameters of a specific mixture 

model can be estimated. 𝑛  is the number of observations that fall in the 𝑗  bin, for 𝑖 =

1, 2, … , 𝑟, and r is the total number of bins. In order to estimate the maximum likelihood of 

the finite mixture model for binned data, two types of variables are represented: x and z, in 

which x shows the value of unknown observations, and z is a vector of zeros, and one 

illustrates the component that x belongs to. The complete data log-likelihood is given by 

(3.12) [52]. 

 

𝑄 𝛷; 𝛷( ) = 𝑛 𝑧( )[𝑙𝑜𝑔 𝑓 𝑥( );  𝜃 + 𝑙𝑜𝑔 𝜋 ]  

 

 
  
(3.12) 

  
 
 

where 𝑧( ) is the expected value of 𝑧 given the estimated value of Φ and expected value 

𝑥( ) at 𝑝  iteration. In the expectation-step (E-step) of the EM algorithm, we create a 

function for the expectation of the log-likelihood evaluated using the current estimate for 

the parameters Φ. Then in the maximization-step (M-step), the parameters maximizing the 

expected log-likelihood found on the E step (calculate the expected value of the latent 

variables 𝑥 and 𝑧) will be calculated. These parameter-estimates are then used to determine 
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the distribution of the latent variables in the next E step. Then we have to repeat steps 1 

and 2 until convergence. The EM algorithm is ended by the stopping rule. Sometimes the 

M-step of the EM algorithm does not return an appropriate solution. In that case, an 

iterative approach, such as Newton-Raphson (NR) or bisection method, can be used. In the 

case of a lack of information regarding the number of components g, its value should be 

calculated using data. The following steps represent the bootstrap likelihood ratio test [52]: 

1) Φ  and Φ  show the null and alternative hypotheses, respectively. Estimate the 

observed log-likelihood ℓ(𝑥; Φ ) and ℓ(𝑥; Φ ). The likelihood ratio test statistic 

is given by: 

 
 

𝑤 = −2(ℓ 𝑥; 𝛷 − ℓ(𝑥; 𝛷 ) ) 

 
  
(3.13) 
  
 
 

2) In this step, the model produces random data similar to the original data used for 

the estimated parameters Φ . Then step number one starts over again. By doing this 

process repeatedly for B times, a vector of the simulated likelihood ratio test 

statistic will be estimated 𝑤 , … , 𝑤  . 

3) As the final step, the empirical P-value will be approximated based on the following 

formula:  

 

       𝑃 =
1

𝐵
𝐼(𝑤 ( ) > 𝑤 ) 

 
  
(3.14) 
 
 

Package mixR in R uses the bayesian information criterion (BIC) technique to 

analyze the appropriate number of components. The EM algorithm requires the number of 

mixture components 𝑔 as an a priori input. By increasing the number of components or 

parameters, the log-likelihood function can increase. However, the model's complexity will 

increase and it may cause overfitting [27].   

The BIC applies a penalty term to the log-likelihood function as the number of 

components is increasing. The BIC function is given by (3.15):  
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 𝐵𝐼𝐶 =  −2 𝑙𝑛 𝑃𝑟(𝜃 | 𝑥, 𝑔) + 𝑔 𝑙𝑛(𝑛) 

 
 (3.15) 
  
 

In this work, the BIC is unified with the EM algorithm to estimate the correct 

number of components by increasing the log-likelihood function.  

A. Expectation-maximization (EM) algorithm 

Computational-wise, the EM algorithm remarkably prevalent in statistics. While 

numerical optimization is not easy to accomplish, the implementation of two steps (E-step 

& M-step) in the EM algorithm is comfortable for various statistical problems [53]. In order 

to estimate the parameter via the EM algorithm, the following steps need to be taken:  

1. Input:  

 Wind speed data: 𝑥 = {𝑥 , 𝑥 , … , 𝑥 } 

 Number of the component in the mixture model (MoW, MoN, and MoG) 

 Initialize the set of parameters 𝜃 for a specific pdf. 

 Initialize the weight 𝜋  of each component. 

 Tolerance 𝜀. 

2. Process:  

 Expectation-step: In the E-step, by using the initialized parameters and 

weights, the expectation of the log-likelihood will be calculated.  

 Maximization-step: computes parameters maximizing the expected log-

likelihood found on the E step. 

 Repeat E-step and M-step until it converged 

3. Output  

 The optimal set of parameters (𝜃 𝑎𝑛𝑑 𝜋𝑖) 

 BIC & log-likelihood values  
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Figure 3.9: The flowchart of the EM algorithm 

 

Sometimes M-step of the EM algorithm may not have the optimal solution. If the 

M-step of the EM algorithm can not assess the optimal solution, an iterative method such 
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as Newton-Raphson (NR) or bisection can be used [52]. In which the Newton-Raphson 

(NR) is the iterative root-finding procedure to find an optimal solution [54]. 

3.3.6 Proper multimodal probability density function (PDF) in 

wind modeling  

For analyzing the performance of the mixture probability density function, three 

different mixture PDFs are analyzed. Each of the proposed mixture models is divided into 

clusters. In which each cluster represents a PDF of hourly wind speeds with different 

parameters. In this analysis, 576 hourly wind speed data have been collected for the whole 

year. The four components, Mixture of Weibull (MoW), Mixture of Normal (MoN), and 

Mixture of Gamma (MoG), are considered in this analysis. The Density function of MoW, 

MoN, and MoG are as follows:  

 

A. The mixture of Weibull distribution (MoW): 

Assuming that the wind speed is a random variable and follows MoW, the corresponding 

PDF is given in [29]:  

𝑓(𝑥;  𝛷) =  𝜋 𝑓 𝑥;  𝑘 , 𝜆 = 𝜋
𝑘

𝜆

𝑥

𝜆
𝑒

( )
 

 
(3.16) 
  
 
 

where the Φ = {𝜋1, 𝜋2, … , 𝜋𝑀, 𝑘1, 𝑘2, … , 𝑘𝑀, 𝜆1, 𝜆2, … , 𝜆𝑀} is the parameter set, 𝜋  is the 

proportion of 𝑖  component, and 𝑘  and 𝜆  are parameters to set the shape and scale of the 

𝑖  Weibull distribution.  

B. The mixture of Normal distribution (MoN): 

Assuming that the wind speed is a random variable and follows MoN, the 

corresponding PDF is expressed as follows:  

𝑓(𝑥;  𝛷) =  𝜋 𝑓 𝑥;  𝜇 , 𝜎 = 𝜋
1

𝜎√2𝜋
𝑒 ( )  

 
(3.17) 
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where the 𝛷 = {𝜋 , 𝜋 , … , 𝜋 , 𝜇 , 𝜇 , … , 𝜇 , 𝜎 , 𝜎 , … , 𝜎 } is the parameter set, 𝜋  is the 

proportion of 𝑖  component, and 𝜇  and 𝜎  are parameters to set the mean and variance of 

the 𝑖  Normal distribution.  

C. The mixture of Gamma distribution (MoG): 

Assuming that the wind speed is a random variable and follows MoG, the 

corresponding PDF is given in [29]:  

𝑓(𝑥;  𝛷) =  𝜋 𝑓 𝑥;  𝛼 , 𝜃 = 𝜋
1

𝛤(𝛼)𝜃
𝑥 𝑒  

 

 
(3.18) 
 
 

where the Φ = {𝜋 , 𝜋 , … , 𝜋 , 𝛼 , 𝛼 , … , 𝛼 , 𝜃 , 𝜃 , … , 𝜃 } is the parameter set, 𝜋  is the 

proportion of 𝑖  component, and 𝛼  and 𝜃  are parameters to set the shape and scale of the 

𝑖  Normal distribution. 

Considering both Unimodal and Multimodal PDFs, we estimate wind speed 

probabilities for the two locations under study. As the purpose of this chapter is to generate 

an accurate set of probabilities using a specific probability density function, the wind 

turbine output power and modeling of renewable resources and load data will be 

represented in Section 3.4 to clarify how different wind states are differentiated.  

3.4 Wind Turbine Output Power & Modeling of Renewable 

Resources and Load Data 

Wind turbines convert wind energy into mechanical energy, and in the final step 

into electrical energy. Wind energy is not constant, and the turbine output is proportional 

to the cube of wind speed. The generated power of the wind turbine generator (WTG) 

fluctuates. If the capacity ratio of the power source for WTG is tiny, the power source does 

not cause the frequency to fluctuate by output fluctuation. Nevertheless, if the ratio of WTG 

capacity is large, the frequency fluctuation of the power system will increase [55]. The 

rated power of the wind turbine is the maximum power allowed for the installed generator 

and the control system. The fact that the rated power must not exceed the in high winds. 

Three primary factors control the power output of the wind turbine:  
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1) Power output curve (determined by aerodynamic power efficiency, mechanical 

transmission efficiency, and converting electricity efficiency) of the chosen wind 

turbine; 

2) Wind speed distribution of the selected site; and  

3) Tower height. 

The provided data related to the wind turbines are the rated power, cut-in speed, 

rated speed, and cut-out speed. From these statements, the power output curve and output 

power at any wind speed can be estimated. Figure 3.10 illustrates the power output curve, 

including cut-in speed, rated speed, and cut-out speed.   

Figure 3.10: Wind turbine power curve 

 

In the first region, when the wind speed is less than a threshold minimum, known 

as the cut-in speed, the power output is zero. In the second region between the cut-in and 

the rated speed, there is a rapid growth of power produced. In the third region, a constant 

(rated) output power is produced until the cut-out speed is attained. Beyond 25 m/s wind 

speed (region 4), the turbine is taken out of operation to protect its components from high 

winds; hence it produces zero power in this region. 
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In Chapter 4, In order to combine the output of the wind-based DGs as a multi-state 

variable in the planning formulation, the continuous probability density functions (Weibull, 

Johnson SB, MoW, MoN, and MoG) have been divided into states in which the wind speed 

is considered in the particular limits. This analysis is applied to the Windsor region as a 

case study. Table 3.2 represents the selected wind speed states:  

Table 3.2: Selected wind speed states 

Wind speed state (w) Wind speed limit (m/s) 

1 

2 

. 

. 

. 
 

Final state 

0-1 

1-2 

. 

. 

. 
 

𝑣 − 1 𝑡𝑜 𝑣  

 

The probability of each state 𝑃(𝐺 ) is calculated considering (3.19):  

 
 

𝑃(𝐺 ) = 𝑓(𝑣)𝑑𝑣 

 
  
 
(3.19) 
  
 

where 𝑣  and 𝑣  are the speed limits of state 𝑤. The wind turbine output power that 

corresponds to each state is estimated, considering the wind turbine power curve 

parameters, as calculated by: 

  
 

 

𝑃 (𝑣) = 

0, 

𝑃 ×
(𝑣 − 𝑣 )

(𝑣 − 𝑣 )
, 

𝑃 , 

0, 

0 ≤ 𝑣 ≤ 𝑣  

𝑣 ≤ 𝑣 ≤ 𝑣  

𝑣 ≤ 𝑣 ≤ 𝑣  

𝑣 ≤ 𝑣  

 

(3.20) 
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where 𝑣 , 𝑣  and 𝑣  are the cut-in speed, rated speed, and cut-off speed of the wind 

turbine, respectively. For the sake of simplicity, the average value of each state is utilized 

to calculate the output power of that state [1]. The capacity factor (CF) of any wind turbine 

can be estimated by (3.21). 

𝐶𝐹 =
𝑃

𝑃
 

(3.21) 
  

 

3.5 Load Modeling  

In order to make a proper decision for the planning problem, the system peak load 

will be assumed to follow the hourly load shape of the IEEE-RTS [56]. Based on this 

statement, the load will be divided into ten levels considering a clustering technique and 

utilizing the central centroid sorting process used in [51, 52]. The ten equivalent load levels 

(states), with different probabilities 𝑃(𝐿 ), provide an acceptable trade-off between the 

accuracy and the rapid numerical evaluation [1].  

3.5.1 Combined generation load model 

The PDFs for the wind and load powers are merged to generate a combined 

generation load model. Similar to [1], the wind states and load states are considered to be 

uncorrelated. If a weak correlation exists between wind speed and load, the results will not 

be affected. Otherwise, the results will be affected because of the correlation's rule, either 

it is positive or negative. When there is a negative and a positive correlation between wind 

speed and load, the optimal penetration of DGs will be lower and higher than the value 

calculated based on the assumption in [1], respectively.  
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Table 3.3: Load model 

State # % Peak  Probability (%)  
1 1  0.01  

2 0.853  0.056  

3 0.774  0.1057  

4 0.713  0.1654 

5 0.65  0.1654 

6 0.585  0.163 

7 0.51  0.163 

8 0.451  0.0912  

9 0.406  0.0473 

10 0.351  0.033  

 

The combination of wind-based DG and load probabilities is given by (3.22): 

 
 

𝑃 𝐶 = 𝑃 (𝐺) × 𝑃 (𝐿) 
 

 
  
(3.22) 
  
 

The complete generation load model is given by (3.23): 

 
 

𝑅 = [ 𝐶 , 𝑃 𝐶 : 𝑔 = 1: 𝑁] 

 
  
(3.23) 
  
 

where 𝑚 is a set of all available turbines in the market, where each turbine has its power 

performance curve; 𝑅  is the entire annual generation load model of m turbines; 𝐶  is 

combinations of the wind output power states, a matrix of 𝑚 + 1 columns that includes all 

possible corresponding to the available turbines, and the load states (i.e. columns from 1 to 

m represent the output power of the available m turbines as a fraction of the rated power of 

each turbine, whereas column 𝑚 + 1 represents the different load levels); 𝑃(𝐶 ) is a one-

column matrix representing the probability corresponding to matrix 𝐶; and 𝑁 is the total 

number of states in model 𝑅, which is equal to the product of the wind speed states and the 

load states. 
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3.6 Computational Results   

This section is divided into three parts. In the first part, the results of the unimodal 

distributions, including p-value, RMSE, and MAE are represented. Then, the Multimodal 

results are clarified that mixture distribution is the most accurate model in all aspects. In 

the third part, the best models from both unimodal and multimodal distributions are picked 

to compare versus each other. After selecting the best model based on the proposed 

statistical techniques, the wind states and combination wind and load state probabilities 

will be represented lastly.   

3.6.1 Results of unimodality 

The p-values obtaining from the K-S test for each unimodal distribution are given 

in Table 3.4: 

Table 3.4: P-value of the Unimodal pdf 

Site Gamma  Rayleigh Weibull  Johnson SB 
Windsor 0.09067 0.00106 0.01144 0.09187 
Hamilton 0.02981 0.06584 0.02466 0.37956 

 

Based on the hypothesis testing among the unimodal distributions, it is evident that 

every distribution except Rayleigh indicates weak evidence against the null hypothesis, 

which means every distribution except Rayleigh has a P-value greater than 0.01. Then 

RMSE and MAE are considered to check the accuracy of each PDF. Based on the results 

in Table 3.5, Johnson SB has the lowest RMSE among other well-known unimodal 

distributions in wind speed modeling. 

Table 3.5: Root mean square error of Unimodal pdfs 

Site Gamma Rayleigh Weibull Johnson SB 
Windsor 0.00804 0.00903 0.00872 0.00799 
Hamilton 0.00870 0.00836 0.00857 0.00780 

 

Figure 3.11 represents the RMSE of the unimodal distributions in the Windsor 

region. In the unimodality, Johnson SB, Gamma, Weibull, and Rayleigh distributions are 

ranked based on lower to higher RMSE, respectively.  
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Figure 3.11: RMSE of Unimodal pdfs in Windsor 

Figure 3.12 represents the RMSE of the unimodal distributions in the Hamilton 

region. In the unimodality,  Johnson SB, Rayleigh, Weibull, and Gamma distributions are 

ranked based on lower to higher RMSE, respectively.  

 

Figure 3.12: RMSE of Unimodal pdfs in Hamilton 

Based on the results in Table 3.6, Johnson SB has the lowest MAE among other 

well-known unimodal distributions in wind speed modeling. 

 

 

Gamma

Rayleigh

Weibull

Johnson SB

0.00740

0.00760

0.00780

0.00800

0.00820

0.00840

0.00860

0.00880

0.00900

0.00920

1 2 3 4

R
M

SE

PDF

Gamma

Rayleigh

Weibull

Johnson SB

0.00720

0.00740

0.00760

0.00780

0.00800

0.00820

0.00840

0.00860

0.00880

1 2 3 4

R
M

SE

PDF



 

41 
 

Table 3.6: Mean absolute error of Unimodal pdfs 

Site Gamma  Rayleigh Weibull  Johnson SB 
Windsor 0.00518 0.00572 0.00552 0.00516 
Hamilton 0.00654 0.00620 0.00628 0.00585 

 

Figure 3.13 represents the MAE of the unimodal distributions in the Windsor 

region. In the unimodality, Johnson SB, Gamma, Weibull, and Rayleigh distributions are 

ranked based on lower to higher MAE, respectively.  

 

Figure 3.14 represents the MAE of the unimodal distributions in the Hamilton 

region. In the unimodality, Johnson SB, Rayleigh, Weibull, and Gamma distributions are 

ranked based on lower to higher MAE, respectively.  
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Figure 3.13: MAE of Unimodal pdfs in Windsor 
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Comparing the distribution’s RMSE and MAE, Johnson SB demonstrates more 

accurate results.  

As Figure 3.15 demonstrates, the Johnson SB distribution has a slightly better PDF, 

visually.  It means that the estimated probabilities considering the Johnson SB distribution 

are closer to the observed probabilities than the other distributions. 

 

Figure 3.15: Pdfs of unimodal distributions in Windsor 
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are closer to the observed probabilities than the other distributions because of the lower 

error in RMSE and MAE. 

 

Figure 3.16: Pdfs of unimodal distributions in Hamilton 

Based on the different statistical tests such as the goodness of fit test and two types 

of error measurements we can confidently conclude that the Johnson SB distribution is 

very proper in the modeling wind speed in all aspects in comparison with a well-known 

distribution such as Weibull, which is repeatedly used in literature.  

3.6.2 Results of multimodality 

Tables 3.7 and 3.8 illustrate the results of BIC and log-likelihood regarding a 

different number of components. Based on the analysis, the four components of mixture 

distributions are taken into consideration as the optimal mixture model because the log-

likelihood of the four components distribution is larger than other scenarios.  

Table 3.7: BIC & Log-likelihood of mixture distributions with different # of parameters 

Windsor 1 Comp  2 Comp  3 Comp 4 Comp  
Gamma, Log-Likelihood  -1978.717 -1978.07 -1977.742 -1971.19 
Gamma, BIC 3970.128 3987.878 4006.262 4012.202 
Normal, Log-Likelihood  -2048.679 -1992.953 -1981.845 -1977.737 
Normal, BIC 4110.054 4017.643 4014.469 4025.296 
Weibull, Log-Likelihood  -1985.597 -1979.361 -1976.445 -1974.19 
Weibull, BIC 3983.889 3990.459 4003.67 4018.2 

0

0.01

0.02

0.03

0.04

0.05

0.06

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

D
en

si
ty

Wind speed (m/s)

Gamma

Rayleigh

Weibull

Johnson SB



 

44 
 

Table 3.8: BIC & Log-likelihood of mixture distributions with different # of parameters 

Hamilton  1 Comp  2 Comp 3 Comp 4 Comp 
Gamma, Log-Likelihood  -2087.709 -2077.264 -2075.169 -2073.65 
Gamma, BIC 4188.123 4186.29 4201.16 4217.18 
Normal, Log-Likelihood  -2120.806 -2081.98 -2076.489 -2076.15 
Normal, BIC 4254.317 4195.724 4203.798 4222.18 
Weibull, Log-Likelihood  -2084.307 -2076.477 -2074.981 -2074.593 
Weibull, BIC 4181.32 4184.716 4200.783 4219.064 

 

Using the simulation in R, the optimal parameters and weights of the MoW 

distribution, as well as the number of the iteration, are represented in Tables 3.9:  

Table 3.9: Parameters and weights of MoW distributions  

Windsor  comp1  comp2 comp3 comp4 
𝝅𝒊 0.597019 0.336274 0.059702 0.007005 
𝒌𝒊 2.490784 3.987939 8.056641 160.0008 
𝝀𝒊 10.89286 22.03286 34.69444 51.79767 
EM iterations 500 
Hamilton comp1  comp2  comp3 comp4 
𝝅𝒊 0.513365 0.335622 0.149274 0.001739 
𝒌𝒊 2.627759 5.097876 7.658252 160.0008 
𝝀𝒊 12.68394 24.45766 36.1803 49.3872 
EM iterations 500 

 

Table 3.10 shows the optimal parameters and weights and the number of iteration 
of the MoN distribution. 

Table 3.10: Parameters and weights of MoN distributions 

Windsor comp1 comp2 comp3 comp4 
𝝅𝒊 0.623315 0.285651 0.083654 0.00738 
𝝁𝒊 9.516896 20.35534 31.89631 50.73769 
𝝈𝒊 3.908009 3.908009 3.908009 3.908009 
EM iterations 236 
Hamilton comp1 comp2 comp3 comp4 
𝝅𝒊 0.403646 0.436466 0.149074 0.010814 
𝝁𝒊 9.725939 20.89811 33.76235 38.18064 
𝝈𝒊 3.593326 5.182815 4.866548 7.043399 
EM iterations 500 
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Table 3.11 shows the optimal parameters and weights and the number of iteration 
of the MoG distribution. 

Table 3.11: Parameters and weights of MoG distributions 

Windsor comp1  comp2 comp3 comp4 
𝝅𝒊 0.09584 0.433713 0.464291 0.006157 
𝜶𝒊 6.365918 10.1588 8.950586 320.0004 
𝜽𝒊 0.613894 0.981825 2.366035 0.159431 
EM iterations 500 

  
Hamilton comp1  comp2 comp3 comp4 
𝝅𝒊 0.556488 0.08774 0.204782 0.15099 
𝜶𝒊 4.418604 320.0004 59.37661 53.75205 
𝜽𝒊 2.721127 0.054354 0.414624 0.647341 
EM iterations 247 

 

Using the parameters of the mixture model, we will be able to estimate each model's 

probabilities and two types of error measurements. The results, including p-value, root 

mean square error (RMSE), and mean absolute error (MAE), are evaluated as follows: 

Table 3.12 demonstrates the p-value of the multimodal distributions. 

Table 3.12: P-value of the Multimodal pdfs 

Site MoN MoW MoG 
Windsor 0 0.02000 0.78 
Hamilton 0 0.01000 0.01 

 

Based on the hypothesis testing among the multimodal distributions, it is evident 

that every distribution except MoN indicates weak evidence against the null hypothesis, 

which means every distribution except MoN has a P-value greater than 0.01. then RMSE 

and MAE are considered to check the accuracy of each PDF. Based on the results in Table 

3.13, MoG has the lowest RMSE and MAE among other well-known multimodal 

distributions used in this research. 

Table 3.13: Root mean square error of Multimodal pdfs 

Site MoN MoW MoG 
Windsor 0.007637 0.007701 0.007296 
Hamilton 0.007582 0.007556 0.006679 
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Figure 3.17 represents the RMSE of the multimodal distributions in the Windsor 

region. In the multimodality, MoG, MoN, and MoW distributions are ranked based on 

lower to higher RMSE, respectively.  

 

Figure 3.17: RMSE of Multimodal pdfs in Windsor 

Figure 3.18 represents the RMSE of the multimodal distributions in the Hamilton 

region. In the multimodality, MoG, MoW, and MoN distributions are ranked based on 

lower to higher RMSE, respectively.  

 

Figure 3.18: RMSE of Multimodal pdfs in Hamilton 
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Based on the results in Table 3.14, MoG has the lowest MAE among other well-

known multimodal distributions in wind speed modeling. 

Table 3.14: Mean absolute error of Multimodal pdfs 

Site MoN MoW MoG 
Windsor 0.004988 0.005011 0.004972 
Hamilton 0.005418 0.005412 0.004837 

 

Figure 3.19 represents the MAE of the multimodal distributions in the Windsor 

region. In the multimodality, MoG, MoN, and MoW distributions are ranked based on 

lower to higher MAE, respectively.  

 

Figure 3.19: MAE of Multimodal pdfs in Windsor  
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Figure 3.20: MAE of Multimodal pdfs in Hamilton 

Comparing the distribution’s RMSE and MAE, MoG demonstrates more accurate 

results. As Figure 3.21 demonstrates, the MoG distribution has a more accurate PDF, 

visually. It means that the estimated probabilities considering the MoG distribution are 

closer to the observed probabilities than the other distributions. 

 

Figure 3.21: Pdfs of Multimodal distributions in Windsor 
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visually. It means that the estimated probabilities considering the MoG distribution are 

closer to the observed probabilities than the other distributions because of the lower error 

in RMSE and MAE.  

MoN MoW

MoG

0.0045

0.0046

0.0047

0.0048

0.0049

0.005

0.0051

0.0052

0.0053

0.0054

0.0055

1 2 3

M
A

E

PDF

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55

D
en

si
ty

 

Wind speed (m/s)

MoW

MoN

MoG



 

49 
 

 

Figure 3.22: Pdfs of Multimodal distributions in Hamilton 

3.6.3 Best candidate distributions  

Based on the results, the Johnson Sb is selected as the most accurate unimodal 

distribution. On the other hand, the MoG is selected from the multimodal distribution as 

the best multimodal distribution. Table 3.15 demonstrates the RMSE for MoG and Johnson 

SB distributions. Based on the computational results in Table 3.15, We can confidently 

conclude that the MoG represents the most accurate wind speed model in terms of RMSE. 

Table 3.15: RMSE of two candidate distributions 

Site Johnson SB MoG 
Windsor 0.00799 0.007296 
Hamilton 0.00780 0.006679 

 

Figure 3.23 represents the RMSE of the Johnson SB and MoG distributions in the 

Windsor region. Results demonstrate the better performance of the MoG versus Johnson 

SB distribution.  
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Figure 3.23: RMSE of candidate pdfs in Windsor 

Figure 3.24 represents the RMSE of the Johnson SB and MoG distributions in the 

Hamilton region. Results demonstrate the better performance of the MoG versus Johnson 

SB distribution.  

 

Figure 3.24: RMSE of candidate pdfs in Hamilton 
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SB distributions. Based on the computational results in Table 3.16, We can confidently 

conclude that the MoG represents the most accurate wind speed model in terms of MAE. 

    Table 3.16: MAE of two candidate distributions 

Site Johnson SB MoG 
Windsor 0.00516 0.004972 
Hamilton 0.00585 0.004837 

 

Figure 3.25 represents the MAE of the Johnson SB and MoG distributions in the 

Windsor region. Results demonstrate the better performance of the MoG versus Johnson 

SB distribution.  

 

Figure 3.25: MAE of candidate pdfs in Windsor 

Figure 3.26 represents the MAE of the Johnson SB and MoG distributions in the 

Hamilton region. Results demonstrate the better performance of the MoG versus Johnson 
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Figure 3.26: MAE of candidate pdfs in Hamilton 

Comparing the distributions RMSE and MAE, MoG demonstrates more accurate 

results. As Figure 3.27 demonstrates, the MoG distribution has a more accurate PDF, 

visually.  It means that the estimated probabilities considering the MoG distribution are 

closer to the observed probabilities than the other distributions. 

 

Figure 3.27: Pdfs of candidate distributions in Windsor 
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As Figure 3.28 demonstrates, the MoG distribution has a more accurate PDF, 

visually.  It means that the estimated probabilities considering the MoG distribution are 

closer to the observed probabilities than the other distributions because of the lower error 

in RMSE and MAE. 

 

Figure 3.28: Pdfs of candidate distributions in Hamilton 
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SB distribution. Furthermore, the percentage of peak power generated for each state is 

given.   

Table 3.17: The wind state probabilities of Johnson SB distribution 

Wind speed range  Johnson SB  % of peak power generated  

0-4 0.04965 0 
4-5 0.03128 54.9824 
5-6 0.03842 164.9472 
6-7 0.04422 219.9296 
7-8 0.0485 384.8768 
8-9 0.05126 494.8416 

9-10 0.05263 604.8064 
10-11 0.05281 714.7712 
11-12 0.052 824.736 
12-13 0.05042 934.7008 
13-14 0.04827 1044.6656 
14-25 0.34603 1100 

25-INF 0.13451 0 
 

Table 3.18 demonstrates the wind state probabilities of the Weibull distribution. 

Wind speed range shows the wind speed between a particular range used to estimate each 

state's probability. For every individual state, there is a probability evaluated using Weibull 

distribution. Furthermore, the percentage of peak power generated for each state is given.   

Table 3.18: The wind state probabilities of Weibull distribution 

Wind speed range Weibull  % of peak power generated  

0-4 0.05934 0 
4-5 0.03048 54.9824 
5-6 0.03542 164.9472 
6-7 0.03964 219.9296 
7-8 0.04309 384.8768 
8-9 0.04577 494.8416 

9-10 0.04767 604.8064 
10-11 0.04883 714.7712 
11-12 0.04927 824.736 
12-13 0.04905 934.7008 
13-14 0.04824 1044.6656 
14-25 0.38115 1100 

25-INF 0.12205 0 
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Table 3.19 demonstrates the wind state probabilities of the MoW distribution. Wind 

speed range shows the wind speed between a particular range used to estimate each state's 

probability. For every individual state, there is a probability evaluated using MoW 

distribution. Furthermore, the percentage of peak power generated for each state is given.   

Table 3.19: The wind state probabilities of MoW distribution 

Wind speed range MoW  % of peak power generated  

0-4 0.04773269 0 
4-5 0.03325095 54.9824 
5-6 0.04200385 164.9472 
6-7 0.04947644 219.9296 
7-8 0.05506471 384.8768 
8-9 0.05839305 494.8416 

9-10 0.05805954 604.8064 
10-11 0.05814849 714.7712 
11-12 0.05519651 824.736 
12-13 0.05105974 934.7008 
13-14 0.046382 1044.6656 
14-25 0.31745926 1100 

25-INF 0.12777277 0 
 

Table 3.20 demonstrates the wind state probabilities of the MoN distribution. Wind 

speed range shows the wind speed between a particular range used to estimate each state's 

probability. For every individual state, there is a probability evaluated using MoN 

distribution. Furthermore, the percentage of peak power generated for each state is given.   

Table 3.20: The wind state probabilities of MoN distribution 

Wind speed range MoN  % of peak power generated  
0-4 0.04495796 0 
4-5 0.02805424 54.9824 
5-6 0.0376305 164.9472 
6-7 0.0483385 219.9296 
7-8 0.05580299 384.8768 
8-9 0.0617395 494.8416 

9-10 0.06416761 604.8064 
10-11 0.062806 714.7712 
11-12 0.05817748 824.736 
12-13 0.05147829 934.7008 
13-14 0.04423611 1044.6656 
14-25 0.31977455 1100 

25-INF 0.12283627 0 
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Table 3.21 demonstrates the wind state probabilities of the MoG distribution. Wind 

speed range shows the wind speed between a particular range used to estimate each state's 

probability. For every individual state, there is a probability evaluated using MoG 

distribution. Furthermore, the percentage of peak power generated for each state is given. 

Table 3.21: The wind state probabilities of MoG distribution 

Wind speed range MoG  % of peak power generated  

0-4 0.05865764 0 
4-5 0.03000198 54.9824 
5-6 0.03449242 164.9472 
6-7 0.0439791 219.9296 
7-8 0.05441987 384.8768 
8-9 0.06143488 494.8416 

9-10 0.06318297 604.8064 
10-11 0.06033005 714.7712 
11-12 0.05478325 824.736 
12-13 0.04849029 934.7008 
13-14 0.04279699 1044.6656 
14-25 0.31732506 1100 

25-INF 0.1301055 0 
 

After estimating wind state probabilities, we can evaluate the combination of wind 

and load state probabilities. Table 3.22 demonstrates the combination of the wind and load 

state probabilities of the Johnson SB probability density function (PDF). Wind states and 

Johnson SB show the percentage of peak power generated and the wind state probabilities, 

respectively. The load state probabilities are assumed to be constant so that the combination 

of wind and load states is expressed by multiplying the probabilities of Johnson SB PDF 

with load probabilities.   
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Table 3.22: The combination of wind and load state probabilities of Johnson SB distribution 

Wind states  
Johnson 

SB  
Load 

probabilities  
Combined probabilities 

wind and load  
0 0.13451 0.01 0.0013451 

1100 0.34603 0.01 0.0034603 
1044.6656 0.04827 0.01 0.0004827 
934.7008 0.05042 0.01 0.0005042 
824.736 0.052 0.01 0.00052 

714.7712 0.05281 0.01 0.0005281 
604.8064 0.05263 0.01 0.0005263 
494.8416 0.05126 0.01 0.0005126 
384.8768 0.0485 0.01 0.000485 
219.9296 0.04422 0.01 0.0004422 
164.9472 0.03842 0.01 0.0003842 
54.9824 0.03128 0.01 0.0003128 

0 0.04965 0.01 0.0004965 
 

Table 3.23 demonstrates the combination of the wind and load state probabilities 

of the Weibull probability density function (PDF). Wind states and Weibull show the 

percentage of peak power generated and the wind state probabilities, respectively. The load 

state probabilities are assumed to be constant so that the combination of wind and load 

states is expressed by multiplying the probabilities of Weibull PDF with load probabilities. 

Table 3.23: The combination of wind and load state probabilities of Weibull distribution 

Wind states  Weibull  
Load 

probabilities  
Combined probabilities 

wind and load  
0 0.12205 0.01 0.0012205 

1100 0.38115 0.01 0.0038115 
1044.6656 0.04824 0.01 0.0004824 
934.7008 0.04905 0.01 0.0004905 
824.736 0.04927 0.01 0.0004927 

714.7712 0.04883 0.01 0.0004883 
604.8064 0.04767 0.01 0.0004767 
494.8416 0.04577 0.01 0.0004577 
384.8768 0.04309 0.01 0.0004309 
219.9296 0.03964 0.01 0.0003964 
164.9472 0.03542 0.01 0.0003542 
54.9824 0.03048 0.01 0.0003048 

0 0.05934 0.01 0.0005934 
 

Table 3.24 demonstrates the combination of the wind and load state probabilities 

of the MoW probability density function (PDF). Wind states and MoW show the 
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percentage of peak power generated and the wind state probabilities, respectively. The load 

state probabilities are assumed to be constant so that the combination of wind and load 

states is expressed by multiplying the probabilities of MoW PDF with load probabilities.   

Table 3.24: The combination of wind and load state probabilities of MoW distribution 

Wind states  MoW  
Load 

probabilities  
Combined probabilities 

wind and load  
0 0.12777277 0.01 0.001277728 

1100 0.31745926 0.01 0.003174593 
1044.6656 0.046382 0.01 0.00046382 
934.7008 0.05105974 0.01 0.000510597 
824.736 0.05519651 0.01 0.000551965 

714.7712 0.05814849 0.01 0.000581485 
604.8064 0.05805954 0.01 0.000580595 
494.8416 0.05839305 0.01 0.00058393 
384.8768 0.05506471 0.01 0.000550647 
219.9296 0.04947644 0.01 0.000494764 
164.9472 0.04200385 0.01 0.000420038 
54.9824 0.03325095 0.01 0.000332509 

0 0.04773269 0.01 0.000477327 
 

Table 3.25 demonstrates the combination of the wind and load state probabilities 

of the MoN probability density function (PDF). Wind states and MoN show the percentage 

of peak power generated and the wind state probabilities, respectively. the combination of 

wind and load states is expressed by multiplying the probabilities of MoN PDF with load.   

Table 3.25: The combination of wind and load state probabilities of MoN distribution 

Wind states  MoN 
Load 

probabilities  
Combined probabilities 

wind and load  
0 0.12283627 0.01 0.001228363 

1100 0.31977455 0.01 0.003197746 
1044.6656 0.04423611 0.01 0.000442361 
934.7008 0.05147829 0.01 0.000514783 
824.736 0.05817748 0.01 0.000581775 

714.7712 0.062806 0.01 0.00062806 
604.8064 0.06416761 0.01 0.000641676 
494.8416 0.0617395 0.01 0.000617395 
384.8768 0.05580299 0.01 0.00055803 
219.9296 0.0483385 0.01 0.000483385 
164.9472 0.0376305 0.01 0.000376305 
54.9824 0.02805424 0.01 0.000280542 

0 0.04495796 0.01 0.00044958 
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Table 3.26 demonstrates the combination of the wind and load state probabilities 

of the MoG probability density function (PDF). Wind states and MoG show the percentage 

of peak power generated and the wind state probabilities, respectively. The load state 

probabilities are assumed to be constant so that the combination of wind and load states is 

expressed by multiplying the probabilities of MoG PDF with load probabilities. 

Table 3.26: The combination of wind and load state probabilities of MoG distribution 

Wind states  MoG  
Load 

probabilities  
Combined probabilities 

wind and load  
0 0.1301055 0.01 0.001301055 

1100 0.31732506 0.01 0.003173251 
1044.6656 0.04279699 0.01 0.00042797 
934.7008 0.04849029 0.01 0.000484903 
824.736 0.05478325 0.01 0.000547832 

714.7712 0.06033005 0.01 0.000603301 
604.8064 0.06318297 0.01 0.00063183 
494.8416 0.06143488 0.01 0.000614349 
384.8768 0.05441987 0.01 0.000544199 
219.9296 0.0439791 0.01 0.000439791 
164.9472 0.03449242 0.01 0.000344924 
54.9824 0.03000198 0.01 0.00030002 

0 0.05865764 0.01 0.000586576 
 

3.8 Discussion 

In Chapter 3, different approaches for modeling the random behavior of wind speed 

are presented. In modeling wind speed, both unimodal and multimodal distributions, 

including Weibull, Rayleigh, Gamma, Johnson SB, MoW, MoN, and MoG, are considered. 

Different techniques are used to evaluate the probabilities of unimodal and multimodal 

distributions, including the goodness of fit K-S test and maximum likelihood estimation 

(MLE) method via the expectation-maximization (EM) algorithm to evaluate the optimal 

parameters, respectively. The most important advantage of using multimodal distributions 

is high flexibility in fitiing to the the random data, which is highly applicable in wind speed 

modeling. Based on the investigation, the mixture of Gamma (MoG) distribution is selected 

as the most accurate statistical model for modeling the annual hourly wind speed profile.  
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CHAPTER 4: AN APPLICATION OF THE PROPOSED 

MIXTURE MODEL IN THE PLANNING OF DISTRIBUTION 

SYSTEMS  

4.1 Introduction  

It is utterly inevitable that renewable energy resources are a critical part of 

supplying sustainable energy since it is non-polluting and limitless. One of the cleanest and 

the most available renewable energy is wind energy, which will be used in this work. The 

inaccurate siting and sizing of wind-based DG units in the distribution system can have a 

negative impact on system performance. Some of these negative impacts can occur on the 

acceptable voltage limit, the capacity of the distribution feeder, and the logical amount of 

the reverse power flow. Based on these statements, an appropriate allocation of renewable 

DG units in the distribution system is one of the most influential aspects of siting and sizing 

the DG units. 

This chapter takes an in-depth look into the optimal allocation of the wind-based 

DG units in distribution generation so that it minimizes the annual energy losses. The 

methodology is based on a stochastic generation load model that combines all possible 

operating conditions of wind-based renewable DG units via probabilities and then adapting 

the stochastic model in the planning problem. A mixed-integer nonlinear programming 

(MINLP) approach is used to formulate the planning problem, with an objective function 

that minimizes the system's annual energy losses. The constraints, including the voltage 

limits, the feeder's capacity, the maximum penetration limit, and the discrete size of the 

available DG units, are used. This proposed methodology is applied to a typical rural 

distribution system with different scenarios, including all possible combinations of 

renewable DG units [1]. 

This chapter is ordered as follows: The first Section 4.1 explains the introduction 

to the optimal siting and sizing of the renewable DG units in the distribution system. The 

next four sections represent the planning problem objective, site matching, the planning 

problem formulation, and the case study, respectively. In Section 4.6, the data regarding 

load data will be explained. The wind speed and wind turbine data will be covered in 



 

61 
 

Section 4.7. Finally, in Section 4.8 and 4.9, optimal allocation of wind-based DGs using 

genetic algorithm (GA) and the planning problem computational results will be 

represented.  

4.2 Planning Problem Objective 

Because of the environmental concerns and fuel cost uncertainties related to the use 

of conventional energy sources, attention has been concentrated on implementing 

renewable DG units in distribution systems. Therefore, in Canada, based on Ontario's 

Standard Offer Program (SOP), local distribution companies (LDCs) are required to 

receive a given percentage of customer-owned wind-based DG units in their system. 

Consequently, LDCs can use the proposed strategy to select the allocations that would 

maximize benefits [46].  

In general, the benefits of maximization in any common planning problem means 

minimizing cost while maintaining the performance of the system within acceptable limits. 

Costs include the following [1]:  

Capital cost: Is the cost of the wind turbine’s installation in the distribution system. 

Based on the assumption, the wind-based DGs' capital cost is the customer's responsibility 

because they are the smaller LDCs that buy their power from larger LDCs.  

Running cost (operation and maintenance cost): Similar to the capital cost, 

operation, and maintenance are the pure responsibilities of the consumers.  

Cost of unserved energy due to interruption: Based on the current practice of 

deploying DG units in distribution systems, this cost shows the impact of renewable DG 

units on the reliability of such distribution systems. In this regard, the following should be 

noted:  

1. A distribution network is fed from a transmission network, and when the 

connection to the transmission system is lost, i.e., the distribution network is 

islanded, all DG units are required to shut down for loss-of-main protection. So, 

DGs cannot improve the reliability of the supply [59].  

2. If islanding is allowed, the system can not rely solely on renewable DG units to 

supply the island's load. Renewable DG units are characterized by high random 
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power fluctuation levels that result in power mismatch issues, causing stability 

problems for the system voltage and frequency [60].  

3. In opposition, renewable DG units have the prospective to recover the distribution 

system supply adequacy by increasing the amount of generated power in the 

system. Moreover, renewable DG units can correspondingly improve the system's 

reliability from the viewpoint of relieving substation transformers and main 

feeders during peak load periods. This relief may spread the usable lifetime of the 

transformer and decrease the probability of premature failure by reason of 

overloading. On the other hand, these possible improvements in reliability and 

capability do not depend on the DG units' location on the feeders and are 

consequently outside the scope of this research. Thus, for the purposes of this 

study, it is assumed that the location of renewable DG units on a given feeder has 

no direct influence on the reliability of the distribution system [46].  

Feeder power losses: Network losses are a vital element through the planning 

horizon for the following reasons: 

1. While DG units may unload lines and reduce losses if they are improperly allocated, 

the reverse power flows from larger DG units can give rise to excessive losses and 

overheat feeders.  

2. Minimizing system power losses can positively impact relieving the feeders, 

reducing the voltage drop, and improving the voltage profile other environmental 

and economic benefits.  

Hence, based on these considerations, the proposed planning problem's objective 

is, for all possible operating conditions, to minimize the annual energy losses of the system 

without violating the system constraints. 

4.3 Site Matching 

Every individual step for choosing the optimum wind turbine for a particular 

location will be the selection which is based on the capacity factor (CF) of the available 

wind turbines. The ratio between the average output power and the rated power needs to 

be considered for calculating the capacity factor. The hourly average output power of a 

wind turbine is a summation of the power generated at all feasible states for this hour 
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multiplied by the corresponding probability of each state. As soon as the average output 

power is estimated for each time slot, the average output power is calculated for the 

ordinary day in each season. Therefore, the annual average output power [46]. 

Based on the work in [46], the optimal wind turbine is picked based on the higher 

CF measures value. On the other hand, it is undeniable that choosing the candidate wind 

turbine’s location by considering the highest CF value may not produce optimal loss 

minimization from a planning standpoint. Occasionally applying the highest CF limits the 

search area to a multiple of picked wind turbine rating. 

4.4 Planning Problem Formulation  

The planning problem formulation developed in [1] is considered. However, a 

different approach is used to solve the proposed probabilistic formulation. Several PDFs 

are evaluated and compared in the proposed probabilistic generation load model and 

separately will be fixed into the deterministic optimal power flow (OPF) equations to 

analyze the performance of each PDF in annual energy loss minimization.  Therefore, for 

each state, there is an active/reactive power flow equation. In other words, the number of 

states is equal to the number of active/reactive power flow equations. To calculate and then 

weight the energy losses, we need the probability of each state happening in the whole 

year. Although, the penetration of each state changes based on the generation load model. 

Thus, optimally locating and sizing the DG units will minimize the total energy losses 

without violating the system constraints.  

In order to control the optimum allocation of the wind-based DG units, six scenarios 

are dictated.  

1. In the first scenario, no DG units are connected to the system (base case).  

2. The proposed planning problem is formulated based on the wind-based DG units 

resulted from Johnson SB distribution.  

3. The proposed planning problem is formulated based on the wind-based DG units 

resulted from Weibull distribution.  

4. The proposed planning problem is formulated based on the wind-based DG units 

resulted from a mixture of Normal (MoN) distribution.  
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5. The proposed planning problem is formulated based on the wind-based DG units 

resulted from a mixture of Weibull (MoW) distribution.  

6. The proposed planning problem is formulated based on the wind-based DG units 

resulted from a mixture of Gamma (MoG) distribution.  

The output power from DG units in Scenarios 2 to 6 depending on the wind 

probabilities.  

4.4.1 Objective function  

The objective function is considered to minimize the annual energy losses in the 

distribution system for all probable combinations of load and wind-based DG output 

power. Equation (4.1) represents the proposed objective function of the planning problem. 

The planning problem is formulated as a mixed-integer nonlinear programming (MINLP) 

on the Matlab environment considering the Genetic Algorithm (GA) toolbox.  

 

𝑚𝑖𝑛 𝑝 × 𝑝(𝑐 ) × 8760 

 

 
  
(4.1) 
  
 

where 𝑃  is the total power losses in the system during state g, and 𝑝(𝑐 )  is the 

combination of the wind and load state probabilities.  

4.4.2 Constraints  

A. Power flow equations: 

 
𝑃 + ∑ 𝐶(𝑔, 𝑡) × 𝑃

,
- 𝐶(𝑔, 𝑚 + 1) × 𝑃 = ∑ 𝑉 , ×

𝑉 , × 𝑌 ×cos (𝜃 +𝛿 , − 𝛿 , ),  ∀𝑖 
 
 

 
 (4.2) 
  
 

 
𝑄 − 𝐶(𝑔, 𝑚 + 1) × 𝑄  = − ∑ 𝑉 , × 𝑉 , × 𝑌 ×sin 

(𝜃 +𝛿 , − 𝛿 , ),  ∀𝑖 
 

 
 (4.3) 
  
 

where 𝑃
,
 is the rated power of the 𝑡th wind-based DG connected at bus 𝑖; 𝑃 ,  is the 

substation active power injected at bus 𝑖; 𝑄 ,  is the substation reactive power injected at 



 

65 
 

bus 𝑖; 𝑃  is the peak active load at bus 𝑖; 𝑄  is the peak reactive load at bus 𝑖; 𝑉 ,  is the 

voltage at bus 𝑖 during state 𝑔; and 𝑛 is the total number of buses in the system. 

B. Power losses constraints:  

 
𝑃 = 0.5 × ∑ ∑ 𝐺 × [(𝑉 , ) + (𝑉 , ) − 2 × 𝑉 , ×

𝑉 , × 𝑐𝑜𝑠 (𝛿 , − 𝛿 , )],  ∀𝑖 
 

 
 (4.4) 
  
 

The power loss constraint in (4.4) estimates the power losses in the system caused 

by transmission through electric conductors where the parameter 𝐺  represents the 

conductance in each branch [1].  

C. Branch current equation: 

 

𝐼 , = |𝑌 |*[ 𝑉 , + 𝑉 , − 2 ∗ 𝑉 , ∗ 𝑉 , ∗ 𝑐𝑜𝑠 (𝛿 , − 𝛿 , )]   
∀𝑔, 𝑖, 𝑗 

 

 
 (4.5) 
  
 

The feeder constraint estimates the current flowing through the conductors between 

each pair of buses 𝑖 and 𝑗 in each state [1].  

D. Slack bus voltage and angle (assumed to be bus one)  

 
𝑉 , = 1.025      &       𝛿 , = 0.0 

 

 
 (4.6) 
  
 

E. Voltage limits at load buses 

 
𝑉 ≤ 𝑉 , ≤ 𝑉          ∀𝑖 ∉ 𝑠𝑢𝑏𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝑏𝑢𝑠 

 

 
 (4.7)  
 

The voltage limits guarantee that the voltages remain within acceptable limits 

(0.95 ≤ 𝑉 ≤ 1.05) to keep appliances connected to the grid safe from damage [1].  

F. Feeder capacity limits: 

 
0 ≤ 𝐼 , ≤ 𝐼                 ∀𝑖, 𝑗, 𝑔 

 
 (4.8) 
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It keeps electrical conductors like transmission and distribution lines harmless from 

overheating [1]. 

G. Discrete size of wind-based DG  

 
          𝑃

,
= 𝑎 , × 𝑃     ∀𝑖 ∈ 𝐵    𝑡 ∈ 𝑚 

 
 (4.9) 
  
 

where 𝑎 ,  is the integer variable; 𝑃  is the one-column matrix of length 𝑚 includes all 

ratings of the available wind turbines; and 𝐵 is the set of candidate buses to connect DGs. 

H. Maximum penetration on each bus: 

 

𝑃
,

≤  𝑃     ∀𝑖 

 
 
(4.10) 
  
 

where, 𝑃  is the maximum allowable megawatt (MW) at each bus, which is limited to 

10 MW; This is based on the current practice in LDC Ontario, Canada [1].   

I. Maximum penetration of DG units in the system: The maximum penetration limit will 

be calculated based on the wind-based DG's average penetration. 

 

𝐶𝐹 × 𝑃
,

≤ 𝑥 × 𝑃  

 
 
(4.11) 
  
 

 

where 𝑥 is the maximum penetration limit that will be 30% of the peak load. 

4.5 Case Study 

This section shows collected wind speed data used for analyzing different PDFs, 

and wind turbine data for the system under study. 

4.5.1 System under study 

Figure 4.1 illustrates the usual rural distribution system with a peak load of 16.18 

MVA. To deliver energy to the rural area, the substation at bus one is considered [1]. There 
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are candidate buses to connect to the DG units based on the wind pattern and land 

accessibility in the following set B:{ 19, 23, 33, 35, 37, 38, 39, 40 }. Besides, based on the 

local distribution company's recent decision in Ontario, Canada, the maximum permissible 

MW at each bus is restricted to 10 MW, and the maximum penetration limit is 30% of the 

peak load [1].   

 

Figure 4.1: System understudy 

4.6 Load Data 

Table 4.1 represents the probabilistic load model, including the percentage of peak 

load and probability for each state.  
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Table 4.1: Probabilistic load model 

State # % Peak 
Probability 

(%) 
1 1 0.01 
2 0.853 0.056 
3 0.774 0.1057 
4 0.713 0.1654 
5 0.65 0.1654 
6 0.585 0.163 
7 0.51 0.163 
8 0.451 0.0912 
9 0.406 0.0473 

10 0.351 0.033 
 

4.7 Wind Speed and Wind Turbine Data 

Based on the data gathered from [49], the minimum, mean, and maximum wind 

speeds are 1 m/s, 15.22 m/s, and 55 m/s, respectively. Furthermore, based on the 

assumption, only one size of wind turbine is available. The wind turbine data, including 

rated power, cut-in speed, nominal speed, and cut-off speed, are 1.1 MW, 4 m/s, 14 m/s, 

and 25 m/s, respectively.  

Using the wind turbine data, the probabilistic wind output power model and CF are 

calculated. The value of the CF is estimated to be around 22.09%. Based on the analysis, 

the most appropriate probabilistic model designed for the wind speed modeling in this work 

is the Mixture of Gamma (MoG) probability density function. Tables 4.2 and 4.3 represent 

the wind speed and wind power probabilities.   

 

 

 

 

 



 

69 
 

Table 4.2: Wind speed probabilities 

Wind speed limits, m/s Probability 
0-4 0.058657642 
4-5 0.030001983 
5-6 0.034492422 
6-7 0.043979099 
7-8 0.054419874 
8-9 0.061434879 

9-10 0.063182968 
10-11 0.060330052 
11-12 0.054783246 
12-13 0.048490289 
13-14 0.042796988 
14-25 0.317325058 
> 25 0.1301055 

 

Based on the power curve parameters of the available wind turbine (Figure 3. 10) 

in Chapter 3, some states are merged together; for instance, wind speed states from 1 m/s 

to 4 m/s are gathered in one single state. In terms of the number of wind states, 12 states 

are taken into account, similar to Table 4.2. The last state, which is state 13, shows the 

wind speed greater than the cut-out wind speed; therefore, no electrical energy will be 

generated from the wind turbine. Table 4.3 represents the combination of the wind and load 

model, respectively.  
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Table 4.3: Wind power probabilities 

Wind 
states 

Wind 
Prob 

% of 
Load 
states 

Probabilities 
Combined probabilities wind and 

load 

0 0.1301055 1 0.01 0.001301055 

1100 0.31732506 1 0.01 0.003173251 

1044.6656 0.04279699 1 0.01 0.00042797 

934.7008 0.04849029 1 0.01 0.000484903 

824.736 0.05478325 1 0.01 0.000547832 

714.7712 0.06033005 1 0.01 0.000603301 

604.8064 0.06318297 1 0.01 0.00063183 

494.8416 0.06143488 1 0.01 0.000614349 

384.8768 0.05441987 1 0.01 0.000544199 

219.9296 0.0439791 1 0.01 0.000439791 

164.9472 0.03449242 1 0.01 0.000344924 

54.9824 0.03000198 1 0.01 0.00030002 

0 0.05865764 1 0.01 0.000586576 

 

Combining the 12 states of wind and 10 states of load, we have 120 states in total.   

4.8 Optimal Allocation of Wind-based DGs Using Genetic 
Algorithm (GA) 

The Genetic Algorithm (GA) is a metaheuristic search algorithm motivated by 

natural selection in living organization populations. The GA aims to maintain a population 

of solutions to a problem as individuals' programmed information gradually progresses 

[61]. The GA encompasses three different search segments starting by creating an initial 

population, evaluating a fitness function, and producing a new population [62]:  

The GA begins with generating the initial population (chromosomes) randomly in 

which each individual will be weighted through a fitness function. Based on the fitness 

value, individual generations are repeated or removed. Then, all the calculated solutions 

that satisfy the constraints are listed and compared. The solution with the lowest value is 
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compared with the base case. If the selected solution is lower than the base case, then it 

will be considered as the optimum solution for the proposed location of DGs. Then GA 

repeats similar steps to assess the next suggested locations. By comparing all solutions, the 

best locations can be selected. By applying the GA operators, more generations will be 

created [39].  

The Genetic Algorithm (GA) is designed by three Operators: 

 Crossover: the individuals are structured randomly in pairs so that they have their 

location together. In that way, each pair of individuals produce a new pair.  

 Mutation: In this step, some individuals are changed randomly to measure the 

research space's other area (points).  

 Selection: After the crossover and mutation steps, the individuals will be estimated. 

Moreover, for being inserted in a new population, the greater probability will be 

given to better individuals based on a probabilistic rule.   

The problem at hand is a mixed-integer non-linear programming (MINLP). 

Therefore, no exact optimal solutions are guaranteed. Moreover, it is computationally 

intractable. The genetic algorithm (GA) is utilized to solve larger instances of this planning 

problem. Genetic algorithm (GA) can provide a sub-optimal solution when its parameters 

are tuned properly. In comparison with other meta-heuristic techniques in terms of solution 

error and performance time, GA is represented more appropriate performance [44]. The 

mathematical model in the planning is solved considering the GA toolbox in Matlab. The 

Matpower power flow simulation toolbox is run within the GA runs and generations to 

solve for the optimal location and number of DGs, and the energy losses in the distribution 

system. 

Figure 4.2 presents the formation of a chromosome’s 8 variables. The flowchart in 

Figure 4.3 depicts the logical flow of the code developed in Matlab using the GA solver. It 

shows how the mathematical model is applied and how it is combined with the solution 

algorithm to provide the results.  
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Figure 4.2: The chromosome of the eight decision variables 

 

Before GA starts simulating, several data sets are required. Those data sets are 

consist of the information related to the distribution network under study, the stochastic 

components of the combination of the wind and load. Moreover, the constraints consist of 

the power flow constraints and the wind power distributed generation. In step two, all 

stochastic components and all 120 states associated with the combination of those states' 

probabilities are taken into action. The initial values of the decision variables, such as the 

location and number of wind-based DGs is set in step three.  

In step four, the power flow starts simulating with the initial values set in step three 

to approximate the current set up. In step five, a series of estimations utilize based on the 

computational results of the simulation. The voltage of the buses and current through lines 

are saved in matrices. The reactive and active power of each candidate bus is calculated, 

and also the candidate locations are recorded. Even the transmission losses are taken into 

account. As the final step, the total generated power from the wind-based DGs is calculated. 

For each scenario, steps 4 and 5 are repeated 120 times.  

In step seven, the objective function is estimated using the gathered data from the 

120 states and each scenario's probability. The outcome would be the minimized losses 

over the entire planning problem. If the simulation does not meet the termination criteria, 

the decision variables will be adjusted using crossover and mutation rules before step 4 

starts over.  
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Figure 4.3: Adopted hybridize solution approach 

4.9 Computational Results  

This section analyzes all six scenarios to determine the optimum allocation of wind-

based DG units that minimize the system energy losses. The scenario with the estimated 

loss closer to the actual loss is selected as the most accurate probability modeling. The 

accurate estimation of wind probability is an essential tool in the planning of the system. 

The primary purpose of this research is to demonstrate the major difference in results when 

using a single PDFs versus the newly developed mixture PDFs. Results reveal that using 

probabilities of MoG in Scenario 6, have a significant improvement in the annual energy 

losses than other scenarios. In other words, MoG is selected as the most accurate model 

with a closer estimated loss to its actual loss. Additionally, the actual annual energy losses 
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of the system are estimated to validate the proposed planning technique. The actual annual 

energy loss can be calculated for each scenario separately. Table 4.4 shows all 6 scenario’s 

estimated and actual losses.  

Table 4.4: Losses and installed wind DGs for each scenario 

PDF model 
# of wind 

DGs 
Estimated 

Loss 
Actual Loss Installed DGs 

- 0 1177.3 1175.9 
DG=[0 0 0 0 0 0 0 

0] 

Johnson 5 743.46 763.99 
DG=[3 1 0 0 0 0 1 

0] 

Wiebull 5 737.8 763.99 
DG=[3 1 0 0 0 0 1 

0] 

MoWiebull 5 743.5 763.88 
DG=[3 1 0 0 0 0 0 

1] 

MoNormal 5 734.67 763.99 
DG=[3 1 0 0 0 0 1 

0] 

MoGamma 5 745.55 763.88 
DG=[3 1 0 0 0 0 0 

1] 
 

4.10 Discussion  

In this chapter, a probabilistic planning technique is proposed to optimally allocate 

wind-based DG units into the distribution system to minimize the annual energy losses. 

Specifically, this technique is based on generating a stochastic generation-load model that 

contains all possible operating conditions; hence, this model can be accommodated into a 

deterministic optimal power flow (OPF) formulation. The random behavior of wind speed 

is modeled utilizing various distributions (i.e., Gamma, Weibull, Rayleigh, Johnson SB, 

MoN, MoW, and MoG), respectively. The optimization problem is formulated as mixed-

integer non-linear programming (MINLP) under the Matlab environment using the GA 

toolbox. The system’s technical constraints include the voltage limits, the DG's discrete 

size, and the maximum penetration limit of the DG units. Different scenarios are considered 

in the proposed planning technique. Based on the results obtained, we can observe that the 

most energy loss reduction was obtained in the last scenario (scenario 6).  
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CHAPTER 5: CONCLUSION AND FUTURE WORK  

5.1 Conclusion 

The stochastic modeling of the wind speed (i.e., comparing the performance of 

different PDFs versus each other) and optimal allocation of wind-based DG units in the 

distribution system considering the most accurate PDF from the probabilistic wind 

modeling, are the two primary objectives in this thesis.   

The thesis starts with comparing various unimodal probability density functions 

(PDFs) using the goodness-of-fit K-S test to model the wind speed. The proposed strategy 

utilized one-year of wind speed data collected from [49]. In the second step, two well-

known error measurement techniques MAE and RMSE are introduced to find the most 

accurate PDF over other statistical models. In the third step, for modeling of wind speed 

more accurately, the maximum likelihood estimation (MLE) method for finite mixture 

modeling via the Expectation-Maximization (EM) algorithm is introduced. The results 

from the proposed model compared to the rest of the well-known distributions represented 

that the proposed MoG distribution provides a better fit for the actual data in terms of two 

types of error measurements. Thus, the MoG distribution should be a new alternative when 

compared to unimodal distributions such as Weibull, Rayleigh, Gamma, or Johnson SB. 

Besides, the MoG PDF represents the wind probabilities that provide accurate estimated 

loss when compared to the actual loss during the planning stages. In conclusion, MoG pdf 

provides more accurate probabilities for use in stochastic programs and so should be used 

instead of unimodal PDFs. 

5.2 Future Work 

As the future work,  one interesting direction in the molding of wind speed is to 

analyze the factors impacting the wind speed such as year, season  ،weather, temperature, 

and time. We need to analyze the observation to identify any factor that contributes to the 

wind speed. Analyzing the different factors of wind speed, we can understand which factors 

have high fluctuations. For instance, high differences in average wind speed in different 

seasons demonstrate that if we disregard this main effect, we consider that as an 

uncontrollable error, which can remarkably increase the total error. By considering factors 
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such as season in case of fluctuations, we can evaluate both unimodal and multimodal 

probability density functions based on the influential factors. So there is a high chance to 

have a more precise wind model if we consider the wind speed factors. Applying these new 

pdfs to the planning problem might be effective in minimizing the energy losses of 

renewable Distributed generators (DGs). Another interesting direction is to optimally site 

and size the mixed renewable (DGs) in the distribution system using multimodal 

distributions, evaluated based on the influential factors on wind speed.  
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APPENDIX A: DISTRIBUTION SYSTEM DATA 

Table A- 1: 41-BUS SYSTEM REAL AND REACTIVE LOADS AT EACH BUS 

Bus No. Pd Qd Bus No. Pd Qd 
1 0 0 22 47.5 15.61 
2 0 0 23 9.5 3.12 
3 0 0 24 0 0 
4 6413.46 2108 25 289.75 95.24 
5 0 0 26 0 0 
6 903.06 511.79 27 152 49.96 
7 0 0 28 0 0 
8 3187.25 1047.6 29 0 0 
9 0 0 30 194.75 64.01 

10 576 507.98 31 517.75 170.18 
11 0 0 32 0 0 
12 0 0 33 0 0 
13 19 0 34 204.25 67.13 
14 346.75 113.97 35 0 0 
15 0 0 36 80.75 26.54 
16 0 0 37 104.5 34.34 
17 0 0 38 0 0 
18 0 0 39 0 0 
19 0 0 40 0 0 
20 0 0 41 1000 320 
21 0 0    
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