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ABSTRACT

Several techniques are used for clustering of high-dimensional data. Tradition-

ally, clustering approaches are based on performing dimensionality reduction of high-

dimensional data followed by classical clustering such as k-means in lower dimensions.

However, this approach based on k-means does not guarantee optimality. Moreover,

the result of k-means is highly dependent on initialization of cluster centers and hence

not repeatable, while not being optimal. To overcome this drawback, an optimal

clustering approach in one dimension based on dimensionality reduction is proposed.

The one-dimensional representation of high dimensional data is obtained using Ker-

nel Principal Component Analysis. The one-dimensional representation of the data

is then clustered optimally using a dynamic programming algorithm in polynomial

time. Clusters in the one-dimensional data are obtained by minimizing the sum of

within-class variance while maximizing the sum of between-class variance. The ad-

vantage of the proposed approach is demonstrated on synthetic and real-life datasets

over standard k-means in terms of optimality and repeatability.
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CHAPTER 1

Introduction

1.1 Unsupervised Learning and Clustering

Unsupervised learning is one of the main categories in machine learning along with su-

pervised learning and reinforcement learning. In supervised learning, machine learn-

ing models are developed to perform classification or regression tasks using a training

dataset. In order to learn and tune the parameters of a machine learning model, the

training dataset is used which consists of a set of known class labels or outcomes

corresponding to the input data. Unlike supervised machine learning approaches, un-

supervised learning techniques infer previously undetected patterns from data without

considering any training dataset. Unsupervised learning approaches can be used to

discover the underlying structure of data. Also, the cost associated with collecting,

labeling and creating training datasets is avoided. The applications of unsupervised

learning techniques include clustering, anomaly detection, association mining and

latent variable models, among others.

Clustering is the task of grouping the data in such a way that objects in one

cluster are more similar to each other than those in other clusters. Similarity among

data points can be measured using one or more parameters such as distances among

data points, density of data points or based on other statistical distributions. Clus-

tering therefore can be defined as a multi-objective optimization problem. There

are different types of clustering algorithms such as connectivity based such as hier-

archical clustering, centroid-based such as k-means algorithm, density based such as

DBSCAN, graph based and others.

1



1. INTRODUCTION

1.2 k-means Clustering

k-means is one of the most widely-used clustering algorithms. It is a centroid based

clustering approach in which a cluster is identified by its centroids. It partitions data

into k clusters such that each data point belongs to the cluster with the nearest mean

or cluster centroid. Let (x1,x2,x3, ...,xn) be a set of n data points where each data

point is d-dimensional vector. Let C = {C1, C2, C3, ...Ck} represent k clusters (k ≤ n)

into which the data is to be partitioned. The k-means algorithm tries to cluster the

data such that the within-cluster variance is minimized. The objective function of

k-means can be expressed as follows:

min
k∑

i=1

∑
x∈Ci

(x− µi)
2, (1)

where vector µi is the mean of the data points in cluster Ci.

The most common form of the k-means algorithm uses an iterative approach and

is also referred to as Lloyd’s algorithm[6]. It works by alternating between two steps,

namely the assignment step and the update step. The k-means algorithm beings by

initializing k random centroids which correspond to k clusters in which the data is to

be partitioned. In the first step of the assignment, the data points are assigned to the

cluster of the nearest centroid. In the second step, the cluster centroids are updated

based on the assignment of the data points in the previous step. The assignment step

and the update step are repeated with the newly updated cluster centroids. This

iterative process continues until convergence; that is, when there are no new changes

in the assignment of data points. However, k-means may fall into a local optimum and

does not guarantee optimality. The distance function used in k-means is the squared

Euclidean distance and hence it is not suitable for clustering high dimensional data

wherein Euclidean distances do not necessarily represent the similarity between data

points. Examples of these are vertices or edges in a graph, bags of words, sets of

documents, and many others.

2



1. INTRODUCTION

1.3 Dimensionality Reduction

Dimensionality reduction refers to the process of transforming high-dimensional data

into a low-dimensional representation such that the new representation retains mean-

ingful properties and characteristics of the original high-dimensional dataset. In high-

dimensional spaces, machine learning algorithms often suffer from problems such as

curse of dimensionality. Also, in many cases, high-dimensional features of the data

cannot be represented using Euclidean distance and hence algorithms such k-means

clustering which are based on Euclidean distances do not perform well in high dimen-

sional spaces. There are two main types of dimensionality reduction techniques,

namely, linear dimensionality reduction techniques such as Principal Component

Analysis (PCA) and Nonlinear dimensionality reduction techniques such as Kernel

Principal Component Analysis (KPCA), Isomaps, Locally Linear Embedding (LLE),

Self-organizing maps (SOM) and so on. Linear dimensionality reduction techniques

are used to transform high dimensional data which is linearly separable into lower

dimensions. However, when high dimensional data is linearly inseparable, non-linear

dimensionality reduction techniques are used. Data is considered to lie on an em-

bedded non-linear manifold in higher dimensions which is then projected onto lower

dimensions using non-linear dimensionality techniques such as manifold learning.

1.3.1 Principal Component Analysis

PCA is a widely-used technique that performs dimensionality reduction by obtaining

orthogonal projections of high-dimensional data onto a lower-dimensional space, such

that the dispersion of the projected data in terms of the eigenvectors of the within-

class scatter is maximized. Consider a high-dimensional data set X = {x1,x2, . . . ,xN}

where xi represents a single data point in the d-dimensional Euclidean space. PCA is

a linear projection method from the d-dimensional input space to the p-dimensional

output space (p <<< d) by solving the eignevalue and eigenvector problem as follows:

Cv = λv, (2)

3



1. INTRODUCTION

where C is the covariance matrix of the centered data:

C =
1

N

N∑
i=1

(xi).(xi)
T , (3)

with λ and v being the eigenvalues and eigenvectors of C, respectively. Let W =

{v1,v2, . . . ,vp} be the matrix of the p largest eigenvalues corresponding to the largest

eigenvectors arranged into columns. The principal components Y are defined as:

Y = WTX (4)

The new principal axes capture the maximum variance, such that the data projected

on the new axes are uncorrelated. However, classical PCA does not take into ac-

count the non-linear relationships among high-dimensional input data points [5]. To

overcome this problem, kPCA, introduced in [9], is widely used to extract non-linear,

high-dimensional features. Figure 1.3.1 illustrates the concept of PCA [1].

Fig. 1.3.1: Example of principal component analysis.

1.3.2 Kernel Principal Component Analysis

Non-linearity is introduced by mapping the data from the input space RN to a feature

space F . As per Cover’s theorem, nonlinear data in the input space is more likely to

be linear after high-dimensional nonlinear mapping [4]. In kPCA, a nonlinear kernel

4



1. INTRODUCTION

function is used instead of the standard dot product, which implicitly performs PCA

in the high-dimensional space F . Therefore, kPCA is able to produce features that

capture nonlinear structures in the data more efficiently than linear PCA.

The mapping function is defined as follows:

φ : RN −→ F

xi −→ φ(xi)
(5)

and the correlation matrix in the feature space F is defined as follows:

C̃ =
1

N

N∑
i=1

φ(xi)φ(xi)
T , (6)

kPCA is based on solving the eigenvector problem in the transformed space:

C̃ṽ = λ̃ṽ, (7)

where λ̃ and ṽ are the corresponding eigenvalues and eigenvectors of C̃, respectively.

ṽ lies in the span of φ(x1), . . . , φ(xN) and is therefore a linear combination of φ(xi)

elements. It can be written as follows:

ṽ =
N∑
j=1

ajφ(xj) (8)

The kernel trick allows to find the corresponding eigenvalues and eigenvectors

without explicitly mapping the data onto space F , which may be of infinite dimension,

for example, in the RBF kernel. For this purpose, the kernel is defined as follows:

K(xi,xj) = (φ(xi)
Tφ(xj)) (9)

To extract the principal components of any point x, the image φ(x) of the point

needs to be projected onto the P obtained eigenvectors. Eigenvectors {ỹ1, . . . , ỹp, . . . , ỹP}

are the non-linear principal components in the feature space F . This can be expressed

5



1. INTRODUCTION

mathematically as follows:

ỹp = ṽT
pφ(x) =

N∑
i=1

apiK(xi,x) (10)

Fig. 1.3.2 shows the original dataset which is not linearly separable, while Fig.1.3.3

shows the result of KPCA using the radial basis function (RBF) kernel with a specific

gamma parameter. Applying k-means to the data of Figure 1.3.2 will never capture

the two groups of points accurately, while choosing the right initialization parameters,

k-means will be able to distinguish between the two groups accurately.

Fig. 1.3.2: Original dataset.

1.4 Motivation

Several clustering algorithms have been used in different applications such as image

segmentation, data mining and others. k-means, for instance, is one of the most

widely used clustering algorithms. It clusters data by minimizing the total within

cluster variances based on Euclidean distances between pairs of data points. However,

with increase in the dimensionality of data, Euclidean distances between pairs of

data points approach a constant value. As a result, clustering algorithms based on

6



1. INTRODUCTION

Fig. 1.3.3: KPCA transformation using RBF kernel and γ = 10.0 as parameter.

the Euclidean norm show limited performance in case of high-dimensional data in

which points are related via complex, hidden relationships not captured by Euclidean

distances.

In order to overcome this problem, high-dimensional data is transformed onto

lower dimensional data, which then can be clustered based on the Euclidean norm or

the L2 metric. Dimensionality reduction can be performed either based on feature

selection or feature extraction. In feature selection, only a small subset of the original

features is retained by discarding other redundant or less important features at the

cost of losing some information. In case of feature extraction, a smaller number

of features are generated (extracted) from the original features by preserving the

distinguishing characteristics of the original high-dimensional data.

Most of the approaches for dimensionality reduction require many parameters,

or even hyper-parameters, which have to be tuned in tandem with the final result,

namely, the quality of the clustering. If k-means is used for clustering in combination

with different dimensionality reduction techniques, then, the entire process suffers

from the limitations of k-means such as non-repeatability of clustering results, high

dependency on initialization of cluster means and other factors. Also, the simplest

forms of finding k centers using the Euclidean distance is known to be NP-complete

[2] [3], when dealing with more than two clusters in two (or higher) dimensional data

7



1. INTRODUCTION

[7]. Thus, k-means does not guarantee optimality and may converge locally while the

clustering task is performed.

1.5 Proposed Method

In this thesis, we propose an approach for efficient clustering of high-dimensional,

complex data. The proposed clustering approach has two stages that involve dimen-

sionality reduction via kPCA, followed by optimal, one-dimensional clustering using

a dynamic programming algorithm that runs in O(n2k) time. The use of optimal,

one-dimensional clustering avoids the drawbacks associated with k-means clustering.

Also, using kernels such as RBF in k-PCA eliminates the need to tune multiple param-

eters or even hyper-parameters, thereby allowing to search a large range of values for

a single parameter. Finally, the quality of clustering is measured using the Silhouette

score.[8] The advantages of the proposed approach are demonstrated in comparison

with standard k-means clustering in terms of optimality and repeatability.

1.5.1 Contributions

The main contributions of this thesis can be summarized as follows:

• Proposed an efficient clustering approach which uses non linear dimensionality

reduction and optimal one-dimensional clustering achieving polynomial-time

complexity.

• Combined the power of Kernel Principal Component Analysis and one-dimensional

clustering using the dynamic programming approach.

• Demonstrated the advantages of the proposed one-dimensional clustering ap-

proach over standard k-means clustering using real world and synthetic datasets

in terms of time complexity, optimality and repeatability of clustering results.

• Implemented the proposed approach in Python, and developed an open-source project

that is available at https://github.com/Nachiket-Bhide/kPCA-and-Optimal_One_

8
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CHAPTER 2

Dimensionality Reduction and

Optimal One-dimensional

Thresholding

2.1 Introduction

Clustering is an unsupervised machine learning technique in which unlabelled data is

partitioned into different groups by identifying the hidden commonalities in the data.

Given a data set of n points in dimension d, the main goal of a clustering algorithm

is to partition the data into k clusters such that data points in one cluster are more

similar to each other compared to data points outside of that cluster. Several cluster-

ing algorithms have been used in different applications such as image segmentation,

data mining and others. k-Means, for instance, is one of the most widely used cluster-

ing algorithms. It clusters the data by minimizing the total within-cluster variances

based on the Euclidean distance between the pairs of data points. However, with in-

crease in the dimensionality of data, Euclidean distances between pairs of data points

approach a constant value. As a result, clustering algorithms based on the Euclidean

norm show limited performance in case of high-dimensional data wherein Euclidean

distances do not necessarily represent the similarity between data points. Examples

of these are vertices or edges in a graph, bags of words, sets of documents, and many

others.

In order to overcome this problem, high-dimensional data is transformed onto

11



2. DIMENSIONALITY REDUCTION AND OPTIMAL ONE-DIMENSIONAL THRESHOLDING

lower dimensional data, which then can be clustered based on Euclidean norm or Lp

metrics. Dimensionality reduction can be performed either based on feature selection

or feature extraction. In feature selection, only a small subset of original features

is retained by discarding other redundant or less important features at the cost of

losing some information. In case of feature extraction, smaller number of features

are generated (extracted) from the original features by preserving the distinguishing

characteristics of original high-dimensional data.

High dimensional data can be visualized as a set of data points lying on an embed-

ded non-linear manifold within the higher-dimensional space. Techniques such as Ker-

nel Principal Component Analysis (kPCA), Spectral Clustering [11], Autoencoders,

Self-organizing maps [14], isometric mapping (Isomap) [17] and other metric and non-

metric techniques have been used to perform non-linear dimensionality reduction. In

[2], E. Banjamali et al. have proposed a fast spectral clustering approach based on au-

toencoders and landmarks which reduces the time complexity of traditional spectral

clustering. In [16], S.Tasoulis et al. have proposed an approach which uses Isomap

to recursively embed subsets of high-dimensional data in one dimension followed by

hierarchical clustering based on binary partitioning. In [12], P. Nousil et al. have

proposed an approach for clustering high dimensional data wherein autoencoder is

used for dimensionality reduction and the resulting low dimensional representation

of the data is clustered using the k-means algorithm. Most of these approaches for

dimensionality reduction require many parameters, or even hyper-parameters, which

have to be tuned in tandem with the final result, namely the quality of the clustering.

If k-means is used for clustering in combination with different dimensionality reduc-

tion techniques, then, the entire process suffers from the limitations of k-means such

as non-repeatability of clustering results, high dependency on initialization of cluster

means and others. Also, the simplest forms of finding k centers is NP-complete in Eu-

clidean space even if number of clusters (k) is two [1] [3] or when dealing with more

than two clusters in two dimensional data [8]. Thus, k-means does not guarantee

optimality and may converge locally during clustering.

In this thesis, we propose an approach for efficient clustering of high-dimensional,

12



2. DIMENSIONALITY REDUCTION AND OPTIMAL ONE-DIMENSIONAL THRESHOLDING

complex data. The main goal is achieved in two stages that involve dimensionality

reduction via kPCA, followed by optimal, one-dimensional clustering using dynamic

programming in O(n2k) time. The use of optimal one-dimensional clustering using

dynamic programming avoids the drawbacks associated with k-means based cluster-

ing. Also, using kernels such as Radial Basis Function (RBF) in k-PCA eliminates

the need to tune multiple parameters or even hyper-parameters, thereby allowing to

search a large range of values for a single parameter such as γ in RBF. Finally, the

quality of clustering is measured using the Silhouette score. The advantages of the

proposed approach are demonstrated in comparison with standard k-means clustering

in terms of optimality and repeatability.

2.2 Proposed Method

Efficient clustering of high-dimensional data is achieved by the proposed approach,

which combines two main stages involving dimensionality reduction followed by op-

timal one-dimensional clustering.

High-dimensional data can be visualized as a set of data points lying on a non-

linear manifold in a high-dimensional space. In the first stage, kPCA is used to

perform dimensionality reduction and transform high-dimensional data onto its one-

dimensional representation. In the next stage, the output of the previous stage, i.e.,

the one-dimensional representation of the original data is then clustered using an

optimal one-dimensional clustering algorithm in O(n2k) time, where n is the total

number of data points and k is the number of clusters. These two stages are further

discussed in detail in the following subsections.

2.2.1 Kernel Principal Component Analysis

PCA is a widely used technique that performs dimensionality reduction by obtain-

ing orthogonal projections of high-dimensional data onto a lower-dimensional lin-

ear space, such that the dispersion of the projected data in terms of the eigenvec-

tors of the within-class scatter is maximized. Consider a high-dimensional data set

13
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X = {x1,x2, . . . ,xN} where xi represents a single data point in the d-dimensional Eu-

clidean space. PCA is a linear projection method from the d-dimensional input space

to the p-dimensional output space (p <<< d) by solving eignevalue and eigenvector

problem as follows:

Cv = λv, (1)

where C is the covariance matrix of the centered data:

C =
1

N

N∑
i=1

(xi).(xi)
T , (2)

where λ and v are the eignevalues and eigenvectors of C, respectively. Let W =

{v1,v2, . . . ,vp} be the matrix of p corresponding to the largest eigenvectors stacked

in columns. The principal components Y are defined as:

Y = WTX (3)

The new principal axes capture the maximum variance, such that data projected on

the new axes are uncorrelated. However, classical PCA does not take into account the

non-linear relationships among high-dimensional input data points [6]. To overcome

this problem, kPCA introduced in [15] is widely used to extract non-linear features.

Non-linearity is introduced by mapping data from the input space RN to a feature

space F . As per Cover’s theorem, nonlinear data structure in the input space is more

likely to be linear after high-dimensional nonlinear mapping [5]. In kPCA, a nonlinear

kernel function is used instead of the standard dot product, which implicitly performs

PCA in the high-dimensional space F . Therefore, kPCA is able to produce features

that capture nonlinear structure in the data more efficiently than linear PCA.

The mapping function is given as follows:

φ : RN −→ F

xi −→ φ(xi)
(4)

14
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The correlation Matrix in the feature space F is defined as follows:

C̃ =
1

N

N∑
i=1

φ(xi)φ(xi)
T , (5)

kPCA is based on solving the eigenvector problem in the transformed space:

C̃ṽ = λ̃ṽ, (6)

where λ̃ and ṽ are eigenvalues and eigenvectors of C̃ respectively. ṽ lies in the span

of φ(x1), . . . , φ(xN) and is therefore a linear combination of φ(xi) elements. It can be

written as follows:

ṽ =
N∑
j=1

ajφ(xj) (7)

The kernel function is defined as follows:

K(xi,xj) = (φ(xi)
Tφ(xj)) (8)

To extract the principal components of any point x, the image φ(x) of the point

needs to be projected onto the P obtained eigenvectors. Eigenvectors {ỹ1, . . . , ỹp, . . . , ỹP}

are the non-linear principal components in feature space F . This can be expressed

mathematically as follows:

ỹp = ṽT
pφ(x) =

N∑
i=1

apiK(xi,x) (9)

2.2.2 Optimal One-dimensional Clustering

The output of the previous stage is a one-dimensional representation of the original

high-dimensional data obtained by performing dimensionality reduction using kPCA.

In this second stage, one-dimensional points are optimally clustered using the dynamic

programming approach in O(n2k) time, where n represents the total number of data

points to be clustered in k clusters[18]. Let {x1, x2, . . . , xn} be an array of length n+1

representing the one-dimensional output of kPCA sorted in ascending order, where
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the array points are indexed at positions starting from [1, 2, . . . , n]. The main goal of

clustering can be defined as the task of assigning the elements of a one-dimensional

array into k clusters in such a way that the sum of squares of the within-cluster

distances from each element to its corresponding cluster mean is minimized. More

formally, the clustering objective function can be expressed as follows:

Ψ = min

k∑
j=1

n∑
i=1

ωij(xi − µj)
2, (10)

where ωij = 1 if xi belongs to cluster j; otherwise, ωij = 0 and µj is the mean of

cluster j.

This problem can be formulated as the task of partitioning n data points into k

clusters by using k + 1 thresholds [13]. The threshold set T is defined as an ordered

set T = {t0, t1, ...tk}, where t0 is set by default at the starting position 0 in the array

and tk is set by default on the last data point xn at position n in the array. Therefore,

for partitioning the data into k clusters, the remaining k−1 thresholds need to be set.

The data points in interval (tj, tj+1] represent a single cluster, where 0 ≤ j ≤ k − 1.

In terms of thresholds, the objective function in (10) is expressed as follows:

Ψk(n) = min
k∑

j=1

ψ(tj−1, tj], 1 ≤ t1 < t2... < tk−1 < n (11)

where ψ is the cost of setting threshold and

ψ(tj−1, tj] =
∑
i

(xi − µ)2 ∀xi ∈ (tj−1, tj], (12)

and µ is the mean of all points in the interval (tj−1, tj].

For efficient clustering, a combination of optimal thresholds should be found in

such a way that it minimizes the objective function (11). The most straightforward

method to obtain optimal thresholds is the brute force approach in which the objective

function (11) is evaluated for all possible combinations of thresholds and a threshold

set T is selected for which the objective function is minimum. However, the major
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drawback of brute force approach is that it is computationally expensive and requires

an exhaustive search of all possible threshold values resulting in an exponential time

complexity of O(nk−1), where n is the number of data points and k− 1 is the number

of thresholds to be set.

Using dynamic programming, optimal thresholds can be found in O(n2k) time

complexity. Based on this approach, the objective function as defined in (11) can be

broken down into smaller sub-problems, where each sub-problem can be defined as

the task of finding optimal thresholds that partition the array in interval [1, l] into m

clusters, where l ≤ n and m ≤ k. The objective function of the sub-problem is given

by:

Ψ∗m(l) = min
m∑
j=1

ψ(tj−1, tj], 1 ≤ t1 < t2... < tm−1 < l (13)

By setting m = k and l = n, Equation (13) minimizes the overall problem and is equal

to Equation (11). Based on the objective function of the sub-problem, the following

recurrence is obtained:

Ψ∗m(l) = min
m−1∑
j=1

ψ(tj−1, tj + ψ(tm−1, l] (14)

Ψ∗m(l) = min Ψ∗m−1(tm−1) + ψ(tm−1, l] (15)

Based on the above recurrence relation, it is clear that if the thresholds of sub-problem

Ψ∗m−1(tm−1) are not set to optimal so as to minimize the sub-problem objective func-

tion. Then, the overall objective function can never be minimized with non optimal

sub-problem thresholds. The base case of the above recursive relation when m = 1 is

given as follows:

Ψ∗m(l) =

minΨ∗m−1(tm−1) + ψ(tm−1, l]), if m > 1.

ψ(0, l] if m = 1.

(16)

The task of finding the thresholds can be better understood with the help of the

trellis structure as depicted in Figure 2.2.1.
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1 2 3 4 5 6 7 8

1

2

3

4

stage m

start

end

position i in sorted array of data points

Ψ∗
1(1)Ψ∗

1(2)Ψ∗
1(3)Ψ∗

1(4)Ψ∗
1(5)

Ψ∗
2(2)Ψ∗

2(3)Ψ∗
2(4)Ψ∗

2(5)Ψ∗
2(6)

Ψ∗
3(3)Ψ∗

3(4)Ψ∗
3(5)Ψ∗

3(6)Ψ∗
3(7)

Ψ∗
4(8)

Fig. 2.2.1: An example of a trellis structure for partitioning n = 8 data points into
k = 4 clusters.

The x axis represents the index number i in the sorted array of n data points,

where i = 1, . . . , n. The y axis represents stage m of the algorithm. For partitioning

n data points into k clusters, threshold t0 is set by default at index position i = 0 in

the array, and threshold tk is set by default on the last index position i = n in the

array. At each stage m for m = 1, . . . , k− 1, threshold tm is set at index position i in

the array. The goal is to find the path connecting start and end which minimizes the

objective function as defined in Equation (16) for m = k and l = n. Each node in the

trellis structure represents the value of the objective function for each sub-problem

Ψ∗m(l) as defined in Equation (13) and a back-pointer ptr∗m(l), which points to the

position of the best node it comes from. At every node, the best node to come from

and the resulting optimal cost are evaluated. The best path is stored in the node by

setting a back-pointer and setting the value of node to the optimal cost accumulated

so far.

Algorithm 1 describes the process of setting optimal thresholds using the dynamic

programming approach. In the first stage, the trellis structure is initialized by com-

puting the cost function for placing the thresholds at different indices in the array.

Nodes in stages 1 < m < k are processed and the optimal path to each node is eval-

uated. Finally, backtracking is used to find all the thresholds. Algorithm 2 describes

the function used to find the best path for each node. For each node in trellis struc-
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ture, the function checks each possible node to come from and returns the optimal

cost and the best position to set thresholds for that node [10].

Algorithm 2.2.1 Optimal 1D Clustering.

- - - - Stage 1- - - -
for l← 1 to n− k + 1 do

Ψ∗1(l)← l(0, l]
ptr∗1(l)← 0

end for
- - - - Stage 2- - - -
for m← 2 to k − 1 do

for l← m to n− k +m do
(Ψmin, ptr)← findoptimalpath(m, l)
Ψ∗m(l)← Ψmin

ptr∗m(l)← ptr
end for

end for
- - - - Stage 3- - - -
(Ψmin, ptr)← findoptimalpath(k, n)
Ψ∗k(n)← Ψmin

ptr∗k(n)← ptr
- - - - Backtracking- - - -
l← n
for m← k to 2 do
tm−1 = l← ptr∗m(l)

end for

2.2.3 Hungarian Algorithm

After each round of dimensionality reduction followed by one dimensional clustering,

the data points belonging to the class having the highest cluster purity are removed.

In order to achieve this, it is necessary to identify which cluster represents which class

label. However, since data points belonging to different class labels might be spread

across different clusters, it becomes necessary to assign class labels to resulting clusters

in such a way that the total cost of assigning class labels to clusters is minimized.

The objective of this linear assignment problem is to assign k class labels to k clusters

such that the total cost of assignment is minimized. Mathematically, this can be
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Algorithm 2.2.2 findoptimalpath(m, l)

Ψmin ←∞
for i← m− 1 to l − 1 do

Ψtemp ← Ψ∗m − 1(i) + ψ(i, l]
if Ψtemp < Ψmin then

Ψmin ← Ψtemp

ptr ← i
end if

end for
return (Ψmin, ptr)

expressed as [4]:

min

k∑
i=1

k∑
j=1

cij, (17)

where cij is the cost of assigning class label i to cluster j and it is defined as:

cij =
|cluster(j)| − nj

i∑k
j=1 |cluster(j)|

, (18)

where |cluster(j)| is the number of data points in cluster j and nj
i represents number

of data points belonging to class i which are present in cluster j. In matrix form, the

cost matrix can be represented as Ckxk = [cij]. The final assignment of class label i to

cluster j which satisfies the objective function as defined in equation (17) is obtained

using the Hungarian algorithm [7] which involves several row and column operations

on cost matrix C.

2.3 Results and Discussion

For testing the proposed clustering approach, a real-life dataset of English letters

and a synthetic dataset of randomly generated half-moons is used. High dimensional

data is transformed into one dimensional representation, which is then clustered in

polynomial time using the dynamic programming algorithm as explained in Section

2.2.

To evaluate the performance of proposed approach, the silhouette score is used.
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The silhouette score is a metric used to measure how similar a data point is to its

own cluster compared to other clusters. It is calculated using the mean intra-cluster

distance, a, and the mean nearest-cluster distance, b, for each data point. The mean

nearest cluster distance is the distance between a sample data point and the nearest

cluster of which that sample data point is not a member. The distances used here

is the Euclidean distance. The values of the silhouette score range from −1 to +1,

where a value of +1 indicates that the clusters are nicely separated, whereas negative

values indicate that the data points have been assigned to the wrong cluster.

Silhouette Score =
(b− a)

max(a, b)
(19)

2.3.1 Experimental Setup

For testing the proposed clustering approach, labelled datasets are used. The class

to which each data point belongs to is known. In the first stage, a high-dimensional

dataset is transformed into a one-dimensional representation using kPCA. The kernel

function used in kPCA is the Radial Basis Function (RBF). The RBF kernel is defined

as:

K(xi,xj) = exp(−γ||xi − xj||2), (20)

where xi and xi are input vectors, γ = σ−2 is a parameter that depends on the

variance, σ2. The RBF projects vectors into an infinite-dimensional space. However,

the RBF kernel represents similarity between a pair of vectors as a decaying function of

the distance between the vectors without the need to perform an infinite-dimensional

mapping. The closer the vectors are to each other, the smaller the value of ||xi− xj||

is. This function is of the form of a bell-shaped curve. The parameter γ sets the

width or spread of the bell-shaped curve. The larger the value of γ, the narrower

the bell-shaped curve is. In the second stage, the one-dimensional representation of

the data is clustered in polynomial time using the dynamic programming algorithm

explained in Section 2.2.2. The class labels are assigned to the resulting clusters

using the Hungarian algorithm as explained in Section 2.2.3. After each round of
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dimensionality reduction followed by clustering, the data points belonging to the class

which was the easiest to cluster are removed from the dataset. In the next round,

the remaining high-dimensional data points are transformed to points in the one-

dimensional space and then clustered. This process is repeated until the clustering of

the data points belonging to the remaining two classes is performed.

2.3.2 Real-life Dataset

The real-life dataset used contains 20, 000 samples of the 26 letters of the English

alphabet. Each sample is the 16 dimensional encoding, and there 26 different class

labels corresponding to 26 letters of the English alphabet. The results are shown in

the plot Figs. (2.3.1) and (2.3.2).

Fig. 2.3.1: k-means 1D vs Optimal One dimensional Clustering.

2.3.3 Synthetic Dataset

A synthetic dataset was generated by creating half moon pairs, each of which is

displaced by a random distance and rotated by a random angle. There are 25 pairs of

half-moons, thereby creating 50 clusters corresponding to 50 individual half-moons.

The total size of the dataset is 10, 000. The sample dataset generated is shown in

Fig. (2.3.3). The results are shown in Figs. (2.3.4) and (2.3.5).
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Fig. 2.3.2: k-means 2D vs Optimal One dimensional Clustering.

Fig. 2.3.3: Synthetic Dataset.

2.3.4 Discussion

The proposed clustering approach is tested on real-life and synthetic datasets. The

performance of clustering is measured using the Silhouette score and the results are

plotted as depicted in the previous sections. The advantage of the proposed approach

is demonstrated by comparing its performance with that of the standard k-means

clustering algorithm.

The plots show the Silhouette score of clusters obtained by using the proposed

pipeline approach and by the k-means algorithm. It can be observed that as the

number of clusters increases, the silhouette score of k-means decreases whereas the
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Fig. 2.3.4: k-means 1D vs Optimal One dimensional Clustering.

Fig. 2.3.5: k-means 2D vs Optimal One dimensional Clustering.

performance of the proposed optimal clustering approach increases. It has been shown

that the k-center problem, in its simplest form of the problem solved by k-means, is

NP-complete in Euclidean spaces even in dimension two. The time complexity of the

k-means algorithm is O(qknp), where q is the number of iterations, k is the number

of clusters, n is size of the dataset and p is dimensionality [9]. k-Means on its own

is heavily dependent on the initial cluster centers and the number of iterations, and

hence it is neither repeatable nor optimal. In contrast to k-means, the proposed

clustering approach does not depend on random initializations of cluster centers and

hence its results are repeatable. Also, unlike k-means which may become stuck in
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a local optimum, the proposed clustering approach guarantees optimal clustering in

one dimension with O(kn2) time complexity.
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CHAPTER 3

Conclusion and Future Work

3.1 Conclusion

In this thesis, we have proposed an approach for clustering high- dimensional data by

combining the power of non-linear dimensionality reduction using kPCA and optimal

one dimensional clustering using dynamic programming. The proposed clustering

approach reduces the number of parameters in dimensionality reduction and thereby

facilitates the task of searching a large range of values for a single kernel parameter.

Also, by combining dimensionality reduction with optimal one-dimensional clustering,

the drawbacks associated with k-means based clustering approaches are resolved.

3.1.1 Contributions

The main contributions of this thesis can be summarized as follows:

• Proposed an efficient clustering approach which uses non linear dimensionality

reduction and optimal one-dimensional clustering achieving polynomial-time

complexity.

• Combined the power of Kernel Principal Component Analysis and one-dimensional

clustering using the dynamic programming approach.

• Demonstrated the advantages of the proposed one-dimensional clustering ap-

proach over standard k-means clustering using real world and synthetic datasets

in terms of time complexity, optimality and repeatability of clustering results.
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• Implemented the proposed approach in Python, and developed an open-source project

that is available at https://github.com/Nachiket-Bhide/kPCA-and-Optimal_One_

Dimensional_Clustering

3.2 Future Work

This thesis work can be further extended as follows:

• The proposed approach can be extended to other non-linear dimensionality re-

duction techniques apart from kPCA such as Isomaps, Laplacian Eigenmaps(LLE),

or Locally Linear Embedding (LLE), just to mention a few.

• In case of parametric kernels, optimal values of the parameters need to be

searched over a large range of possible values. To avoid this, non-parametric

kernels can be used.

• The polynomial-time complexity of the one-dimensional thresholding based

clustering could be further improved to a faster algorithm, yielding a wider

range of parameters to consider, and subsequently improving the clustering.
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