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Abstract

The cyber-physical system’s security depends on the software and underlying hard-
ware. In today’s times, securing hardware is difficult because of the globalization
of the Integrated circuit’s manufacturing process. The main attack is to insert a
"backdoor” that maliciously alters the original circuit’s behaviour. Such a mali-

cious insertion is called a hardware trojan.

In this thesis, Random Forest Model was proposed for hardware trojan detection
and this research focuses on improving the detection accuracy of Random Forest
model.. The detection technique used the random forest machine learning model,
which was trained by using the power traces of the circuit behaviour. The data
required for training was obtained from an extensive database by simulating the
circuit behaviours with various input vectors. The machine learning model was
then compared with the state-of-art models in terms of accuracy in detecting

malicious hardware.

Our results show that the Random Forest classifier achieves an accuracy of 99.80
percent with a false positive rate (FPR)of 0.009 and a false negative rate (FNR)
of 0.038 when the model is created to detect hardware trojans. Furthermore, our
research shows that a trained model takes less training time and can be applied

to large and complex datasets.

v



Acknowledgments

I wish to express my sincere gratitude to Dr.Mitra Mirhassani, for her patience,

motivation and immense knowledge throughout my graduate study.

I would like to thank my family members, Mom, Dad, Grandfather, Yash and
Kiran for their constant support and continuous encouragement during the time

of completing my further study.

I would like to thank my committee members, Dr. Afsaneh Edrisy and Dr.

Huapeng Wu.

I would also like to thank my colleagues at UWindsor’s Faculty of Electrical and

Computer Engineering, especially Andria Ballo, for their help and support.



Table of Contents
Declaration of Originality
Abstract
Acknowledgments
List of Figures
List of Abbreviations

1 Introduction

1.1 Motivation . . . . . . ...

1.1.1 Detection Methods . . . . . . .. .. ... ... ... ...,
1.2 Objective . . . . . .
1.3 Organization of Thesis . . . . . . .. .. ... ... ... ... ...

2 Litrature Review and Background Information

2.1 Imsertion Phase . . . . . . .. . ... . Lo
2.1.1 Specification Phase . . . . . . ... ... 0oL
2.1.2 Design Phase . . . . ... ... oo
2.1.3 Fabrication Phase . . . . . . .. .. ... L.
2.1.4 Assembly Phase . . . . . . .. ...
215 Test Phase. . . . . . .. ...

2.2 Abstraction Level . . . . . . . ..o
2.2.1 System Level . . . . . .. ...
2.2.2  Register Transfer level . . . . . .. .. ... ... ... ...
223 GateLevel . . . . . . ...
2.2.4 Transistor Level . . . . . .. .. ... 0oL

2.3 Activation Mechanism . . . . . ... ...

2.4 Effects and Payloads . . . . .. .. ... ... ... . ........

iii

iv

xi



Table of Content vii

2.5 Placement . . . . . ... 17
2.6 Hardware Trojan Detection Approaches . . . . . . . . .. ... ... 18
2.6.1 Logic Testing . . . . . . . . . ... .. 18
2.6.2 Side-Channel Analysis . . . . . .. ... ... ... ..... 18
2.6.3 Reverse Engineering . . . . .. .. .. ... ... 20
2.6.4 Trojan Scanner . . . . . . ... ... 21
2.6.5 Design for Security (DFS) Approach . . ... ... ... .. 22
2.6.6 Extreme Learning Machine (ELM): . . . ... ... ... .. 22
2.6.7 Random Forest Classifier . . . . . . .. ... ... ... ... 24
2.6.8 Why Random Forest . . . . .. .. ... .. .. ....... 24

2.7 SUMMATY . . . . .o 25
3 Random Forest Classifier Algorithm 26
3.1 Random Forest Algorithm . . . . . ... . ... ... ... ..... 26
3.1.1 Feature Importance . . . . . . . . ... ... ... ... ... 29
3.1.2 Important Hyperparameters . . . . . . . .. ... ... ... 29
3.1.3 Increasing the Predictive Power . . . . . . . ... ... ... 29
3.1.4 Increasing the Training Speed . . . . . . . . .. . ... ... 30

3.2 Working of Random Forest Algorithm . . . . . . .. ... ... ... 30
3.2.1 The out-of-bag(oob) error estimate . . ... ... ... ... 31
3.2.2  Variable Importance . . . . . ... ... ... ... 31
3.2.3  Gini Impurity Criterion . . . . ... ... .. ... ..... 32
3.24 Interactions . . . . ... ..o oL 32
3.2.5 Proximities . . . . . ... 33
3.26 Scaling . . . . ... 33
3.2.7 Prototypes . . . . . . .. 34

3.3 Missing Value Replacement for the Training Set . . . . . . . .. .. 35
3.4 Missing Value Replacement for the Test Set . . . . . ... ... .. 36
3.5 Mislabeled Cases . . . . . . .. .. ... 36



Table of Content viii

3.6 Outliers . . . . . . . .. 36
3.7 Advantages . . . . ... 37
3.8 Disadvantages . . . . . . ... 37

4 Designing Random Forest Model for Hardware Trojan Detection 39

4.1 Fundamental Technology Background . . . . . . .. ... ... ... 39
4.2 Creating the Random Forest Model . . . . . . ... ... ... ... 40
4.3 Research Methodology . . . . .. . .. ... .. ... ... ..... 41
4.3.1 Domain Understanding . . . . . . . . .. .. ... ... ... 42
4.3.2 Data Understanding . . . . . . ... ... ... ... ..., 42
4.3.3 Data Preparation . . . . . ... ... ... ... ....... 42
4.3.4 Modelling . . ... ... 42
4.3.5 Results Analysis . . . .. ... ... L 43
4.4 Data Preparation . . . . . .. ... oo oo 43
4.4.1 Data Selection . . . . . . ... 44
4.5 Data Cleaning . . . . . . . . . . .. .. 44
4.5.1 Fill-out missing values . . . . . . ... ... ... ... ... 44
4.5.2 Removing rows with missing values . . . . . .. ... .. .. 45
4.5.3 Fixing errors in the structure . . . . . . .. ... ... ... 45
4.5.4 Removing Duplicate . . . . . . .. .. ... ... ... ... 45
4.6 Data Normalization . . . . . . . . .. .. .. ... ... .. ... .. 46
4.7 Data Modeling . . . . . .. ..o 46
4.7.1 Selection of machine learning techniques . . . . . . . .. .. 46
472 Train/Test split . . . . . . .. ... A7
4.7.3 Validation Dataset . . . . . .. ... .. ... ... ... .. 47
4.7.4 Scaling the Dataset . . . . . .. . ... ... ... ...... 48
4.8 Confusion Matrix . . . . . . .. ... 48
4.9 Confusion Matrix for the Developed Model . . . . . . . . .. .. .. 49

4.10 Cross validation . . . . . . . . . . . 51



Table of Content ix
4.11 Grid Search in Random forest . . . . . . . . . . . .. .. ... ... 57
5 Conclusion 61
5.1 Summary of Contribution . . . . . . ... .. ... ... ...... 61
5.2 Future Work . . . . . . . 63
Appendix 67
Vita Auctoris 123



List of Figures

2.1  Generic model for combinational and sequential Trojan circuit [33] . 19
2.2 DIGITAL CIRCUIT [5] . . . . . . . o o o 21
2.3 ELM [B5] . . . . 23
3.1 RANDOM FOREST [35] . . . . . . . . ... . . . ... 27
3.2 RANDOM FOREST VISUALIZATION [21] . . ... ... ... .. 38
4.1 Data Science Technologies . . . . . . . . .. .. .. .. ... .... 40
4.2 VISUALIZATION [40] . . . . . . . .. ... o o . 41
4.3 Research Methodology . . . . . . ... ... ... ... ... .... 42
4.4 Data Preparation . . . . . . . ... L0 L 43
4.5 Modelling activities and output . . . . . .. .. ... . ... 47
4.6 CONFUSION MATRIX [40] . . . . . ... o o 49
4.7 k-fold cross validation . . . . . ... ... oL 53
4.8 OOB error rate vs. N esmitator . . . .. . .. ... .. ... .... 53
4.9 OOB ERROR RATE VS N ESTIMATOR . . . ... ... ... .. 54
4.10 MSE vs. the number of predictor used at each split . . . . . .. .. 55
4.11 Error rate vs. time . . . . . . . . ..o 56
4.12 Parameter tuning . . . . . . . . ..o 58



x1

HT

1C

CAD

NSA

SVM

MLP

ASIC

SPICE

PCB

GPS

FANCI

RTL

MERO

EDA

List of Abbreviations

Hardware Trojan

Integrated Circuit

Computer Aided Design

National Security Agency

Support Vector Machine

Multi-layer Perceptron

Application Specific Integrated Circuit

Simulation Program with Integrated Circuit Emphasis
Printed Circuit Board

Global Positioning System

Functional Analysis for Nearly Unused Circuit Identification
Register Transfer Level

Multiple excitation of Rare Occurrence

Electronic Design Automation



Chapter 1

Introduction

Hardware security has become a serious concern with advancements in the IoT
and autonomous and smart vehicles. The electronics parts and devices are now

used in many household items and are affecting all aspects of life.

Securing the hardware and ensuring the integrity of electronic parts is a difficult
task today due to the globalization of integrated circuits’ manufacturing flow. Due
to the increased demand for smart devices, hardware vendors outsource manufac-
turing portions of the design to un-registered and sometimes unknown third-party

vendors [1].

By outsourcing the integrated circuit manufacturing, it becomes vulnerable to
Hardware Trojans [2]. Hardware Trojans are small, simple, and stealthy; therefore,
their detection is difficult. It has become one of the most critical issues in part

production and manufacturing.

The Trojan hardware can disrupt the system operation, leak confidential infor-
mation, and decrease its reliability. Detection of Hardware Trojan using Machine

Learning (ML) is the major focus of this thesis.
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1.1 Motivation

It is important to make sure that any device connected to IoT network is secure
since it might greatly impact human lives. The security of a larger system depends

on the integrity of internal software and underlying hardware.

In general, the system’s security depends mainly on three components: the in-
formation processed, software, and underlying hardware. It should be noted that
while a software patch or update might resolve issues with the software and ap-
plication level of a system, hardware modifications cannot be performed this way:.
The modification which maliciously alters the behaviour of the original system
or Hardware Trojan is done secretively to never be noticed [3] A remote system
update cannot fix a fault in the system’s hardware. Instead, the hardware has to
be replaced or accepted as a source of the fault in the system [4]. The hardware
trojan is a malicious modification of hardware, and this can take place at various
stages of hardware’s production or repair life cycle. The faulty hardware part
in a system may require a system disassembly and part replacement [3]. It can
have multiple effects, such as performance degradation, Denial of Service, leak of

classified information [2].

The first real-world detection of hardware trojan happened in a military-grade
field programmable array (FPGA) in 2012 that allowed an adversary to extract

configuration data from the chip or even permanently damage the device.

The other example of Hardware Trojan insertion is the National Security Agency
(NSA) intercepting shipments of network devices before their arrival at the des-
tination. They inserted “beacon implants” into the network devices that allowed
NSA to exploit the devices and survey the network [5]. Then one of the devices
was used in the Syrian Telecommunication Establishment network. After that,
NSA was able to track the call detail records having the billing information that

exploited the users’ identity with their geographic locations.
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In this thesis, an advanced hardware trojan detection technique is proposed and
implemented. This technique is based on a machine learning algorithm called
Random Forest Classifier [6] to detect hardware trojan. The proposed machine
learning model was more precisely trained based on the data collected from im-

plemented circuits using Hspice circuit simulations.

Securing hardware is exceptionally difficult due to the complexity of the design and
manufacturing variability, resulting in the integrated circuit’s different physical

characteristics, even among the integrated circuit coming from the same design.

The manufacturing flow of an IC follows these steps[7, 8]:

1. System Specification: System specifications are high-level requirements in-

dicating the expected capabilities of the design.

2. Design: The design stage is to produce the physical layout, and it is com-
posed of geometric representations of the circuit, which will guide the man-

ufacturing process.

3. Manufacturing: In the manufacturing stage, the design is converted into
wafers of semiconducting material. The manufacturing of IC’s takes place

at different locations.

4. Assembly and Market: The manufacturing process ends with packaging; the
IC’s are distributed to several different sectors, including transportation,

military, technology, and financial organizations.

Any participant in the manufacturing process can be an adversary who potentially
can insert a Hardware Trojan [9]. For example, a Hardware Trojan can be inserted
into the design by a computer-aided design (CAD) designer at the design stage.
CAD tools are used to perform synthesis through software, and hence Hardware
Trojan can be inserted in the system. The Hardware Trojan insertion could happen

by maliciously altered logic in the CAD tool or scripts running the tool [10].
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However, in this thesis, we do not include the modifications at this stage of the

design and assume that the CAD design is secure and trustworthy.

The common characteristics of a Hardware Trojan are reviewed here briefly [10].

1. Insertion phase: The manufacturing process consists of different phases,
mainly the specification stage, design stage, fabrication stage, testing stage
and packaging stage. The characteristic defining a hardware trojan is the

phase at which it was inserted [10].

2. Trigger: Hardware Trojans can be categorized based on the type of trigger
that activates them. There are three different types of triggers. The first
type is the “always-on” where the Hardware Trojan is awake from the very
beginning of insertion. The second is the “internal” where the Hardware
Trojan is triggered by an internal condition or signal within the design [10].

The third one is when the Hardware Trojan is triggered by an external user.

3. Payload: The different impact hardware trojan can have on the design are the
change of the circuit’s functionality, degradation of the designs’ performance,

leak of sensitive information, and denial of service [10].

4. Insertion Location: Different HTs can be characterized by the location at
which they were inserted within an integrated circuit. The possible areas
are the processor, the memory, the input or output pins, the power supply
lines within the IC, or the clock grid. Moreover, an HT can be distributed
over several locations across the places mentioned above or only in one area

[10].

5. Physical Characteristic: HTs can be differentiated based on their physical
features such as their distribution (focused or dispersed) or size, measured
in the number of gates or percentage of area occupied by HT compared to

the entire circuit size [11].
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1.1.1 Detection Methods

Detection of Hardware Trojan can be challenging because of the variety in
its sizes and locations of inset. The detection approaches can be classified

into these categories [3]: [7] the H

1. Run-Time Monitoring: It focuses on detecting Hardware Trojan after the
deployment, and it can be used for the whole lifetime of the integrated

circuit [11].

2. Design for Security: The first choice is to prevent the insertion of the Hard-
ware Trojan by having restricted and precise design steps and processes for

security in order to facilitate detection [11].

3. Activation Monitoring: After the fabrication process, the detection of the
Hardware Trojan can be divided into the destructive and non-destructive
approach. The destructive approach is to reverse engineering each layer of
the integrated circuit and validate it. The non-destructive approach consists
of three categories: the first one detects hardware trojan at the IP level.
The second one depends on targeted test patterns applied to IC to activate
the hidden hardware trojan and generate its effect to be detected [3]. The
third category measures a side-channel such as a path delay or power supply

current to expose an inserted hardware trojan.

Detection methods that are based on the side-channel analysis take place during
the post-silicon testing stage. The side-channel information is the physical pa-
rameters of the design, such as delay or power consumption, and also acts as the

unique signature of the hardware.

Most of the detection methods, however, rely on a Golden Circuit. A Golden
Circuit is considered a Trojan free design Golden Circuit [7]. The side-channel

parameters are compared with Golden Circuit’s side channel parameters [12]. This
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helps in identifying whether the circuit is secured or compromised by the hardware

trojan [3]. [13]

A modification to the original design in the manufacturing process will most prob-
ably present itself in side-channel information of the system when compared to

trojan free circuit [3].

1.2 Objective

In this thesis, a machine learning-based hardware trojan detection approach is
proposed. In this work, circuit simulations are used instead of the Golden Circuit.
The simulations are the results of the statistical runs on the circuit parameters
such as temperature, transistor corners, effects of mismatch and manufacturing
inconsistencies. The simulations are based on the Hspice transistor modelling and

are from the models developed by the TSMC manufacturing models.

Methods that are based on the Golden IC assume that they have a fabricated and
trusted IC. This assumption is not valid in most cases and cannot be guaranteed
at all. This process assumes that trojans are inserted into random ICs. It is more
viable for an attacker to insert a stealthy trojan into every fabricated integrated
circuit that passes manufacturing process and trust validations, avoiding the need
for additional expensive masks. Therefore, all samples are infected, and it is not
possible to have a trusted IC for detection uses. This raises the challenge of

detecting the Trojans in integrated circuits without relying on golden ICs.

Machine learning helps to build models to help systems learn from data. Machine
learning approaches can be divided into three categories [14] of Supervised learning

[15], Unsupervised learning [15], and Reinforcement learning [13].
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Supervised learning [14] is the one in which a model is trained with the input data
called the training dataset. The model is able to make predictions, however, it

needs to be corrected if these predictions are wrong [14].

Unsupervised learning [15] is the one in which a model makes predictions on its
own, and its input data is not labelled. For example, K-means and clustering are
the examples of unsupervised learning [14]. Since this method is not supervised,
it might result in miscategorizing the infected IC and is generally avoided in this

application.

In the reinforcement learning [13] the model learns to act through trial and error.
This learning is used in video games [7], and adaptive learning process and is not
suitable for classification problems such as separating the Infected ICs from the

Trojan free Ics.

In this work, the Random Forest Algorithm [6] is used to train our model to detect

hardware trojan. Random Forest is one of the supervised learning algorithms.

The Random Forest consists of several decision tree branches, which acts as an
ensemble method [14]. Each individual tree gives out a prediction and the tree

with the most votes becomes model’s prediction.

Because of the low correlation function developed between the branches, this model
outperforms other supervised models such as backpropagation. Decision trees are
known for variance and even a small change in the data can result in a change in

the final decision.

Moreover, it can overcome the problem of overfitting because of less correlation

with the other decision trees. It can deal well with high dimensional data.

Random forest ensures that each tree is not too correlated with behavior of other

trees. It uses these two methods:
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— Bootstrap Aggregation (Bagging): Small changes to the training set can lead
to different tree structures and decision trees are sensitive to the data. It allows
each tree to randomly sample from the dataset with replacement. This process is

known as Bagging [7].

— Feature Randomness: With the help of this method, there is more variation
among the trees in the model and results in lower correlation among trees and

more diversification

This supervised learning method is applied to detecting the Hardware Trojan on
the power traces of a 256-bit AES. Additional improvements on the data labelling
and training of the Random Forest has been carried out, which will be presented

in the later chapters.

1.3 Organization of Thesis
The thesis is organized as follows.

e In chapter 2 different trojan detection approaches have been introduced and
drawbacks of each detection techniques such as reverse engineering, side
channel analysis, logic testing and SVM based detection approaches is pro-

vided.

e Chapter 3 introduced the Random Forest Classifier algorithm. It explains
how this algorithm works and its advantages and disadvantages. It contains
the different methods applied to the random forest model to improve its accu-
racy and reduce training time. We briefly introduce features and important
hyperparameters of random forest which includes the predictive power and
model speed. Finally, we discuss working of random forest algorithm and

methods for missing values replacement for training and test set.
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e Chapter 4 introduces the fundamental technology used to create random
forest model, including data preparation, data cleaning which consists of
fill-out missing values, fixing errors and removing rows with missing values,
data normalization. Then we use train/test split and confusion matrix and
cross validation method to train the model. At last of this chapter, we apply
our proposed solution to make a comparison with published results achieved

using machine learning techniques and achieve a considerable result.

e Chapter 5 is summarized the contribution of this thesis and suggestions for

future works.



Chapter 2

Litrature Review and Background

Information

In this chapter, various types of hardware trojans and different types of detection
techniques will be reviewed. Hardware Trojans can be have been classified based
on five major attributes [16] as following:

1. Insertion Phase

2. Abstraction Level

3. Activation Mechanism

4. Functionality

5. Location of Insertion

2.1 Insertion Phase

An Integrated circuit is manufactured in various steps from specification to fab-
rication. The insertion phase can be divided further into several manufacturing

10
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stages, from when the circuit specification is proposed to when the device and
circuit are fabricated. Detecting a Trojan inserted at the design and specification
stage is almost impossible and requires that trustworthy employees and designers
[16]. This type of Trojan is not within the scope of this thesis. Instead, the Trojans

that are inserted in the foundry and manufacturing stage will be considered.

A brief introduction and review of the main insertion phases are presented here.
It should be noted that an actual manufacturing process is a complex function,

and some of the stages can be divided into further categories.

2.1.1 Specification Phase

Hardware Trojans can be inserted by altering the specification of the integrated
circuit. In many detection approaches, integrated circuits are being checked by

comparing with the Golden ICs characteristics matching the specifications [1].

When the specification itself is altered, the detection mechanism will never work
[10]. An adversary may deliberately identify weak system requirements, and as
a potential consequence, the design’s reliability could be compromised, rendering

the system vulnerable to sensitive information leaks.

2.1.2 Design Phase

The design is mapped onto the technology, and transistor sizes and specifications
will be determined during this stage. This phase is another source of Hardware
Trojan threat as pre-silicon verification might not be available for such imported

chips.

Even though the entire design is done in-house, the mere use of untrusted resources
can result in a potential security breach. It can be influenced in a harmful way by

libraries, third party IPs and regular cells [5].
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For example, untrusted instruments may add additional circuitry to the system
to insert backdoors in the system. If every design process step is outsourced, a

Trojan could be directly added to the genuine circuit’s hardware description data.

2.1.3 Fabrication Phase

In this phase, wafers are manufactured using the mask derived from the design
phase. A minimal change in the mask can act as a threat to the IC. The design is
vulnerable to be modified by the addition or removal of parts of it. The circuit’s
susceptibility to fault-based assault may also be significantly increased by the
Trojans inserted at this stage [10]. Trojans inserted in the Fabrication phase are
detectable by various tests and verifications, and comparisons with the Golden IC

characteristics.

2.1.4 Assembly Phase

A printed circuit board is assembled in this step by putting various components
together. For example, a Trojan can be implemented by introducing an I/O pin

with high capacitance, leading to information leakage.

Therefore, a malicious and untrusted assembly can produce flaws in the system.
To reduce the chance of Trojan insertion, the IC is encapsulated, and packaged
[16]. This type of Trojans can be detected by proper test benches and matching

the expected system behaviour with measurement values.
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2.1.5 Test Phase

The test phase has always been used as a stage to ensure the trustworthiness of
an IC. There is no scope for Trojan insertion in this phase, but unfaithful testing

can lead to hardware trojan inserted ICs undetected [16].

However, any change in the circuit layout can alter the test set-up and its associ-
ated programs or reports to cover potential Trojan insertion. Moreover, since this
is the last step in the flow of IC design and just before the manufacturing step,
it is the last chance for original designers to detect Trojans before the stage of

deployment [11].

2.2 Abstraction Level

Hardware Trojans can be categorized by the hardware definition level when they
are inserted [5]. When an IC is designed and manufactured, it goes through dif-
ferent stages of hardware definition. The way transistors and gates are defined at
the system, and abstract level is different when the design is defined at the tran-
sistor level. These levels all take place at the design stage and can be considered

a sub-category of the design phase, as described above.

2.2.1 System Level

This is the highest level of abstract level when defining the circuit operation and
design. At this level, the system is broken into components, modules, communi-
cation protocols and data. It is interesting to note that a Trojan inserted at this
stage can be improved in the specifications of functions, protocols, and interfaces.
Any obscure requirements may be introduced by an adversary involved at the ma-

chine level to give him control of secret data flowing through the produced unit [7].
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For example, an opponent might modify the specifications of true random number
generators (TRNG) at the specification stage to make it function predictably be-
cause only the HT owner is aware of [1]. This can reduce the reliability of secure

systems based on these architectures and give away sensitive information.

2.2.2 Register Transfer level

At this level, an integrated circuit is defined in terms of its required registers and
memory blocks, input/output signals, and combinational logic. If an attacker has
access to design and changes it, it can cause serious damage because of greater
hardware control. An HT can also be a simple modification of real RT-level codes
or codes. An adversary may change the circuit’s functions to provoke significant
delays, or power consumption [11]—consequences, such if the unit is used for
a cryptographic block; it can cause failures in the authentication applications.
Attackers at the stage of design or possible HT insertion sources are untrusted

code suppliers.

2.2.3 Gate Level

In most of the research work done for Trojan detection, the Trojan circuit is
inserted by altering the gate-level netlist. In the initial netlist, the addition or
removal of one or more gates is called an HT gate-level. It is also possible to
use standard delay format files that contain device timing data [17]. Modifying,

changing timing and power constraints can be used to mask HT insertion.
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2.2.4 Transistor Level

Trojans inserted at the transistor level have the highest impact on the circuit’s
performance since these can affect and control power consumption, delay, channel

length, parasitic capacitors, wire width and lengths, to name a few.

The addition of a small number of transistors will not significantly increase the
circuit parameters such as power and delay. Furthermore, to increase critical path
delays, transistors can be inserted, causing the circuit to malfunction. At this
stage, the integrated circuit is at the manufacturing stage; hence the adversary is

in the form of untrusted resources, libraries, and templates [11].

This type of Trojan detection is the most challenging type to detect due to small
and minor changes that can be masked by the manufacturing effects. In this thesis,

this type of Trojans has been considered.

2.3 Activation Mechanism

There are Hardware Trojans that are activated only under certain conditions.

They can be classified into Time-based and physical conditions-based activation.

Some Trojans are designed to be always active and can affect the system at any
time. If a Trojan is always triggered, some system properties may be upset by its

impact on the circuit [2].

Suppose an HT stays dormant until it is active; in this case, its detection is
challenging since its disruptions in the behaviour of the circuit become less visible,

significantly obstructing its identification [18].

Trojans are likely to feature activation mechanisms for this reason. They are

used only after verification and validation phases and are triggered under certain
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conditions. There are three main types of activation-based functions; always on,

internal activation and external activation.

1.

Always on: The conduct of the target circuit is always impacted by the
hardware trojan [17]. Therefore, the Trojan is composed only of the payload,

which is the added Trojan’s destructive effect.

Internal activation: When a particular internal condition occurs in the cir-
cuit, a Trojan is triggered. An internal counter, for example, will activate
the HT if the clock exceeds a certain value. Additionally, this type of Trojan
can be triggered by internal signal patterns or unusual conditions within the

integrated circuit [17].

External activation: This type of Trojans is triggered by an intruder who is
conscious of HT’s existence in the circuit and is applied from outside. For
example, a certain input pattern can be used to activate the Trojan [17].
Sophisticated trigger processes rely on very rare trigger mechanisms. This
type of Trojans can be detected by the side-channel probing o the circuit.
Since these get activated only for a rare input pattern, it is almost impossible

for users not to activate the Trojan.

2.4 Effects and Payloads

The attacker inserts Trojan with a goal to cause certain effects, which are as follows

[19]:

1.

Change of Functionality: Its effect can lead to a change in functionality that
was not the purpose of the integrated circuit’s specifications. For example,
a Trojan inserted in the GPS can change the position data generated by the
GPS.
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2. Reduce Reliability: The Trojans is designed with the aim to downgrade the
performance of the circuit. It causes the device to perform poorly after

certain operations and increase system error and repeated system failures.

3. Leakage of Information: A Trojan can be inserted to only leak the confiden-
tial information and does not alter the system performance and functionality.
This type of Trojans is mostly inserted on the PCB, leading to leakage of

sensitive information [19].

4. Denial of Service: A trojan can restrict other users’ access to the system by
constantly requesting sta from the servers. This type of attack is simple and

does not require complex circuits and operations [10].

2.5 Placement

Trojans are also categorized based on the computational units’ placement within

a system [16].

1. Processor: Trojan can modify, add, or remove processor instructions, causing

it to run functions that are suspect and cause malfunctions.

2. Memory: Memory element controlled by attackers, provides them with access

to memory components, releasing confidential information and secret keys.

3. I/O: The HT-controlled pins may cause the circuit to avoid certain specific
conditions, input erroneous signals to the system, and track communications

16].

4. Power supply: Trojans in the circuit’s power grid can control the device

voltage or current, thus increasing leakages or causing failures.
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2.6 Hardware Trojan Detection Approaches

Research work done on trojan detection techniques is categorized into several
categories. These detection techniques can detect Trojans at pre-silicon or post-

silicon stage.

With the logic testing, dedicated test patterns are generated and applied to det
ect hardware trojans. Another approach is to rely on the side-channel analysis,
where detection is done by comparing parameters such as total power, delay, or

temperature of the circuit [2].

2.6.1 Logic Testing

A logic testing approach requires the Hardware Trojan trigger nodes to be acti-
vated with appropriate test patterns. This method requires exhaustive testing and
does not have a high chance of Trojan detection. The Trojan can be hidden at a

node that is not activated by any input pattern.

Using multiple excitations of rare occurrence (MERO) method, a set of test pat-
terns is generated to reduce time and cost of detection and maximize the trojan

detection coverage [2].

Another test pattern generation approach consists of guided test patterns which
focus on small but vulnerable areas of chip where patterns show unusual activity
[2]. A tool called FANCI detects vulnerable nets through Boolean Functional

Analysis to some degree of success.

2.6.2 Side-Channel Analysis

Side-Channel Analysis is based on developing a testing scheme to capture the

overall characteristics of the integrated circuit. These characteristics are then
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Sequential Trojan

FIGURE 2.1: Generic model for combinational and sequential Trojan circuit
[33]

compared with a baseline function and are used as a pass/fail criteria for the

manufactured circuit [12].

An effective Trojan is only triggered under rare conditions. Thus, post-fabrication
functional and structural testing conducted using a limited number of test patterns
is usually not reliable to define the trustworthiness of a fabricated 1C received from

an external foundry.

Exhaustive testing, covering all possible input patterns, is also not a practical

solution for most chips because of extensive time requirements [12].

Therefore, it is expected that Trojans’ full activation followed by any observable

change at the output should be an infrequent case under usual testing schemes.
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Nonetheless, partial activation of Trojan is possible. During testing or normal
operation, the Trojan circuit may receive input patterns that activate some of

part of it for a very brief period.

The occurrence of signal transition at the Trojan gates’ input is very likely to cause
power or delay variation. Many of the Trojan detection techniques are based on
observing the possible change in the IC’s side channel behaviour due to Trojan’s
partial activation. This procedure provides a useful workaround, eliminating the

need for exhaustive testing.

One of the critical issues regarding the side-channel analysis method is the process,
environmental variation, and measurement noise [8]. These variations make it dif-
ficult to isolate the deviation of side-channel parameters caused by the Trojan,
which is usually smaller than the process and environmental variations. Never-
theless, side-channel monitoring in order to detect the Trojan is one of the most

effective methods of detecting Trojans.

2.6.3 Reverse Engineering

Reverse engineering can be performed at the chip, board, or system level. It
includes verification of a design for quality control, fault analysis, trojan detection,

and trust evaluation [13].

In terms of Trojan detection, the reverse Engineering of the circuit is the process of
examining and analyzing the chip’s internal configuration and layer by layer com-
position to detect added, and unwanted transistors or gates during the fabrication

process [16].

Reverse engineering can provide convenient tools for the identification of malicious
circuits. It is used to identify possible insertion points in circuits. However, this
method is a destructive method to detect Trojans, and requires excessive manual

effort and is very time-consuming.
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FIGURE 2.2: DIGITAL CIRCUIT [5]

In today’s times, digital circuit design is realized at the RTL level that models
signal flow among registers. Logical synthesis devices convert register transfer
level descriptions to gate-level netlists. Then, place and route algorithms pro-
cess the netlist and check where gates are placed and how the interconnections
are connected. During this transfer, valuable information such as module binary

information and hierarchy information is lost [20].

2.6.4 Trojan Scanner

Trojan Scanner is a newly introduced concept for the untrusted threat model.
An advanced computer algorithm is combined with supervised learning models
in order to differentiate features of the golden layout, and SEM images from the
integrated circuit under authentication [7]. The outcomes of each process are then
compared to detect any changes, which raises the flag for a potential Hardware

Trojan. These can check changes due to fabrication, defects.
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2.6.5 Design for Security (DFS) Approach

Design for Security Approach is to control the threat of trojans by introducing
changes to the design. It is similar to the built-in self-test (BIST) technique used

to detect faults in circuits [21].

Prevention is done using these two approaches:

1. Obfuscation based Approaches

2. Layout filler Approaches

Obfuscation-based approaches involve designing the system to make it difficult for
the attacker to figure out the integrated circuit structure. Hence, it becomes hard

for the adversary to insert a trojan and keep the circuit’s behaviour intact.

2.6.6 Extreme Learning Machine (ELM):

Extreme Learning Machines are feedforward neural networks. [22] that are used for
classification, regression and clustering. The ELM is a single layer neural network
with randomly generated neurons and randomly chooses input weights and hidden

units [23].

This approach analytically determines the output weights. It has the advantage of
fast learning speed and good generalization performance, along with less overfitting

problems.

ELM output is calculated by:

L

L
fo(x) = Zﬁigi(x) = Zﬁig(wi xx;+b),j=1..,N (2.1)

=0
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FIGURE 2.3: ELM [55]

where:

L is a number of hidden units

N is a number of training samples

Bi is weight vector between ith hidden layer and output
w is a weight vector between input and hidden layer

g is an activation function

b is a vias vector

X in an input vector

ELMs are not as precise as the conventional neural networks, but they can be used

to deal with issues that involve real-time network retraining.
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2.6.7 Random Forest Classifier

Random Forest Classifier is an ensemble algorithm and is a set of prediction trees
where each tree depends on independently sampled random vectors with a distri-

bution close to that of any other tree in the random forest [15].

Originally intended for machine learning, due to its high accuracy, the classifier
has gained popularity in the remote-sensing community, where it is used in remote-

sensed image classification [6].

Random Forest ensures that each tree’s behaviour is not too correlated with any
other trees’ behaviour by using the Bootstrap Aggregation concept. The Boot-
strap Aggregation (Bagging ) decisions trees are susceptible to the information
from which they are trained. Minor adjustments to the training set can lead to

dramatically different structures of the tree.

Random forest takes advantage of this by enabling each tree to sample randomly
with replacement from the dataset, resulting in numerous trees [24]. This mecha-
nism is known as bagging [16]. This method is used in this thesis for the detection

of the Trojans.

2.6.8 Why Random Forest

1. It is one of the most precise algorithms for learning. It produces a highly

specific classifier for many data sets.
2. It runs very efficiently on large datasets.
3. It can handle hundreds of input variables without variables deletion.
4. Tt gives an estimation of which variables are important in classification.

5. It generates an unbiased estimate of generalization error as the model build-

ing progresses.
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6. It has an efficient method of estimating missing data and preserves precision

in the absence of a significant proportion of the data [24].

2.7 Summary

In this chapter, various characteristics of the Hardware Trojan is explained. More-
over, the reason for choosing the random forest approach is provided. Random
forest works very well with high dimensional data, less overfitting due to using the
bagging method. Forest trees are fully grown, unpruned, and the feature space is

divided into smaller regions.



Chapter 3

Random Forest Classifier

Algorithm

In this chapter, the main algorithm for detecting Trojan, called Random Forest

Classification, will be reviewed.

In machine learning, a few classification algorithms learn from input data and use

it to make new observations. The data can be bi-class or multi-class.

Examples of a bi-class data set are identifying an object to see if it is a pen or a
scale, or for example, deciding when an email is a spam or not. Few other classi-
fication examples are speech recognition, handwriting recognition, and document

classification [25].

3.1 Random Forest Algorithm

Machine learning algorithms may be divided into three different categories: su-

pervised learning, unsupervised learning, and reinforcement learning [15].

26
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FIGUure 3.1: RANDOM FOREST [35]

Supervised learning is useful in cases where a particular dataset or a property
(label) is available. The algorithm is required to predict or classify new data from
a teacher/supervisor model. In cases where the task is to discover implicit asso-
ciations in a given unlabeled dataset (items are not pre-assigned), unsupervised

learning is useful[25].

Random Forest is a supervised learning algorithm. It can be used for both regres-
sion and classification [35]. It is also the algorithm that is the most versatile and

straightforward to use.

Due to its high accuracy, the classifier has gained popularity in the remote-sensing

community, where it is used in remote-sensed image classification [6].

The Random Forest classifier is a set of prediction trees where each tree depends
on randomly sampled random vectors with a distribution close to any other tree
in the set. A collection of trees comprises the forest; the more trees it has, the

more resilient the forest is.
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Random Forest generates decision trees on randomly selected data samples, gets
predictions from each tree, and decides the best solution by voting [6]. It also offers
a good indicator of the function’s value and is used in function approximation

applications.

In the process of training, the individuality of the trees is essential. Therefore, it
is crucial to define a set of unique specifications for each tree. Moreover, random
subsets of the initial training samples are used in the tree training [6]. In order to
ensure that the tree is set properly, it is required to select an optimal split from
the randomly chosen features of the unpruned tree nodes. Additionally, each tree

grows without limits and should not be pruned.

The main features of the Random Forest algorithm are:

e High level of accuracy
e works effectively on large data sets
e Can handle thousands of input variables without eliminating any variable

e Provides estimates of the degree of importance of each variables in the clas-

sification

e As the forest building progresses, it produces an internal unbiased estimate

of the generalization error.

e [t has an efficient method of calculating missing data and preserves precision

when there is a significant proportion of missing data.

e [t has methods for balancing errors in unbalanced data sets of class popula-

tion.
e Other data can save the created forests for future use.

e Prototypes that provide information on the relationship between the vari-

ables and the classification are computed.
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e [t calculates proximities between pairs of cases that can be used to cluster,

identify outliers, or provide interesting views of the data.

e The above capabilities can be applied to unlabeled data, resulting in unmon-

itored clustering, data viewing and outlier detection.

3.1.1 Feature Importance

Another excellent quality of the Random Forest algorithm is that each function’s

relative significance on the forecast is straightforward to calculate.

Sklearn offers a great tool for this; it tests the value of a feature by examining how
impurity is reduced across all trees in the forest by the tree nodes that use that
feature [15]. After training, it calculates this score automatically for each feature

and scales the results so that the sum of all significant features is equal to one.

3.1.2 Important Hyperparameters

The Random Forest hyperparameters are used to improve the model’s predictive

ability and to make the model is trained faster [26].

3.1.3 Increasing the Predictive Power

Random Forest benefits from the hyperparameter of n-estimators, which is just
the number of trees that the algorithm creates before taking the full vote or taking
prediction averages. A higher number of trees generally increases accuracy and

makes the predictions more stable, but the estimation process is also slowed down.

Another relevant hyperparameter is the “Max” feature, which is the maximum

number of Random Forest features considered to separate the nodes. For example,
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“leat” is one of the meaningful hyperparameters, which specifies the minimum

number of leaves required for an internal node to be broken.

3.1.4 Increasing the Training Speed

The “n” jobs hyperparameter tells the training engine how many processors it can
use. If it has a value of one, only one processor can be used for it. A value of “-1”

means that no limit exists.

The hyperparameter random state renders the performance of the model repli-
cable. The model will always produce the same results when it has a definite
random-state value, and if the same hyperparameters and training data have been

given.

Finally, there is the “oob-score” (out-of-bag-score), which is a form of random
forest cross-validation. Around one-third of the data is not used to train the
model and assess its performance. Such samples are known as out-of-bag samples.
It is quite similar to the approach of leave-one-out-cross-validation, but it goes

along with almost no additional computational pressure [6].

3.2 Working of Random Forest Algorithm

Further knowledge about how the Random Forest operates is helpful to understand
and use different choices. Two data objects created by random forests rely on most

of the options.

Around one-third of the cases are left out of the sample when the current tree’s
training is drawn by sampling with replacement. The oob data is used to achieve
an unbiased running estimation of the classification error when adding trees to

the forest. It is often used to achieve variable importance estimates. In replacing
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missing data, finding outliers, and generating illuminating low-dimensional data

views, proximities are used [26].

All data is run down the tree after it is created, and proximities are computed
for each pair of instances. If the same terminal node is occupied in two instances,
their proximity is increased by one. At the end of the race, by dividing by the

number of trees, the proximities are normalized.

3.2.1 The out-of-bag(oob) error estimate

In random forests, to achieve an unbiased estimation of the test set error, there is
no need for cross-validation or a separate test set. Internally, during the race, it’s

calculated as follows:

By using a different bootstrap sample from the original data, each tree is built
[14]. Conventionally one-third of the cases are left out of the bootstrap sample
and not included in the kth tree construction. This value is a general rule and is

not a set value.

3.2.2 Variable Importance

The oob cases are propagating down in every tree grown in the forest, the number
of votes cast for the correct Class is counted. The values of variable m in the oob

cases are now randomly permitted and placed down the tree.

Then the number of votes in variable-m-permuted oob data for the correct Class
is subtracted from the number of votes in untouched oob data. The raw value

score for variable m is the average of this number among all trees in the forest.

If the tree-to-tree score values are independent, a standard approach for calculating

the error can be used. The correlations of the error scores between trees were
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measured for several points within the data sets. In this thesis, the errors are
calculated classically; divide the raw score to get a z-score by its standard error,
and allocate a significance level to the z-score assuming normality. If the number

of variables is very high, forests with all variables can be run once [6].

3.2.3 Gini Impurity Criterion

The Gini impurity criterion for the two descendant nodes is less than the parent
node any time a division of a node is made on variable m[25]. Adding the gini,
decreases the overall trees in the forest for each individual variable and provides
a simple variable significance that is also entirely compatible with the measure of

permutation value.

3.2.4 Interactions

The concept of interaction is used if a split on one variable occurs. The implemen-
tation used is based on the gini, g(m) values for each forest tree. These are ranked
for each tree, and the absolute difference of their ranks overall trees is summed for

every two variables [6].

The hypothesis that the two variables are independent of each other, and the latter
is subtracted from the former also calculates this figure [31]. A big positive value
for the gini means a split on one variable, and vice versa inhibits a split on the
other [14]. This is an experimental technique whose findings must be treated with

caution. On only a few data sets, it has been checked.
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3.2.5 Proximities

In random woods, proximity is one o the most helpful variables for training. Ini-
tially, the proximities formed a matrix of N x N. All of the results, both training
and oob, are propagated down the tree after a tree is grown. If the k and n cases
are in the same terminal node, their proximity will be increased by one. The

vicinity is normalized at the end by dividing it by the number of trees [26].

For large data sets, it is possible that an N x N matrix exceeds the memory
allocation of the system. In this case, a shift decreases the required memory
size to N x T, where T is the number of trees in the forest. The user is given
the option of keeping only the largest proximities to each case to speed up the

computational-intensive scaling and iterative missing value replacement.

When a test set is present, it is also possible to compute each case’s proximity
in the training set to ensure that the program can be run using the available

computational resources.

3.2.6 Scaling

A matrix of proz(n, k) is formed by the proximity between cases n and k. This
matrix is symmetrical, positive, definite, and bounded by 1, with diagonal elements

equal to 1.

It follows that 1 — prox(n, k) values are square distances of dimensions not greater

than the number of cases in a Euclidean space [23].

Let proxz(—, k) over the 1-st coordinate be the average of proz(n, k) and prox(n, —)
over the 2-nd coordinate to be the average of prox(n, k), and prox(—, —) over both

coordinates. The matrix is then calculated as

cv(n, k) = 0.5 x (prox(n, k) — prox(n,—) — prox(—, k) + proz(—,—)) (3.1
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This matrix is the matrix of products of distances and is positive definite symmet-

ric.

The eigenvalues of cv matrix is A(j) and its eigenvectors is v;(n). Then the vectors

x(n) are formed as follows:

z(n) = (VA(D)ri(n), VvV A2)re(n), ...,) (3.2)

The idea is to approximate the vectors x(n) by the first few scaling coordinates in
metric scaling. This is achieved in random trees by extracting the largest eigenval-
ues and their corresponding eigenvectors of the matrix cv. The two-dimensional
plot of the coordinate of i-th scaling vs. j-th also offers valuable data details. The
graph of the 2-nd vs. the 1-st is generally the most useful.

Despite many of its advantages, the computational burden may be time-consuming
because of its need to calculate the eigenfunctions of an N x N matrix.[23]. To
make this approximation quicker, we suggest that nrnn be considerably smaller
than the sample size. This feature is used in the next chapter successfuly for the

training.

There are more precise methods of projecting low-dimensional distances, such as
the Roweis and Saul algorithms. But the strong performance of metric scaling,
so far, has been sufficient for most applications. Velocity is another factor; for
projecting down, metric scaling is the fastest existing algorithm. Generally, three

or four coordinates for scaling are good to give a view of the data [23].

3.2.7 Prototypes

Prototypes are a way to get a picture of how the classification applies to the vari-
ables. For the j-th Class, we find the case that has among its k nearest neighbours

the largest number of Class j instances, calculated using the proximities. For each
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vector, we find the median, 25-th percentile, and 75-th percentile among these &

instances.

The medians are the jclass prototype, and the quartiles have an approximation
of stability. The process is repeated for the second prototype. However, only the

cases are considered, which are not among the initial k, and so on [15].

Prototypes for continuous variables are standardized by subtracting the 5-th per-
centile and dividing by the gap between the 95-th and 5-th percentiles when the
query for prototypes is to be executed. The prototype is the most prevalent value
for categorical variables. All frequencies for categorical variables are provided

when we ask for prototypes to be shown on the screen or saved to a computer.

3.3 Missing Value Replacement for the Training
Set

There are two methods of replacing missing values in Random Forests. The first
method is quick. If the m-th variable is not a categorical variable, the method
calculates the median of all the values of the m-th variable in Class j, and then

replaces all missing values of the m-th variable in Class j with this value [14].

If the m-th variable is a categorical variable, the most common non-missing value

in Class j is the substitution variable. These values for replacement are called fills.

Computationally, the second way of replacing missing values is more costly but
has provided better results than the first, even with large quantities of missing
data [40]. Only in the training set does it substitute missing values. It starts by
filling in the missing values approximately and inaccurately. It then does a forest

run and measures proximity [14].
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If z(m,n) is a missing continuous value, its fill is estimated as an average over the
m-~th variables’ non-missing values weighted by the proximities between the n-th

case and the case of non-missing value.

3.4 Missing Value Replacement for the Test Set

There are two distinct types of substitution when there is a test set, depending
on whether marks exist for the test set. If they do, then as substitutes, the fills

extracted from the training set are used.

If labels do not exist, class n which is the number of classes will be repeated for
each case in the test set. Classl is considered to be the first duplicate of a case,
and Class1 fills are used to replace missing values. The 2-nd replica is believed to

be Class 2, and the fills used on it are Class2 [15].

The tree runs down this augmented test range. The one receiving the most votes

decides the Class of the original case in each set of replicates.

3.5 Mislabeled Cases

By using human judgement to assign labels, the training sets are also created[15].
This contributes to a high level of mislabeling in certain regions. Using the outlier

test, many of the mislabeled cases can be observed.

3.6 Outliers

In general, outliers are classified as cases that are excluded from the data’s main

body [40]. Outliers are cases whose proximity in the data is usually small compared
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to all other cases. An outlier in Classj is, therefore, a case whose proximity to all

other cases of Classj is minimal [26].

The average proximity to the rest of training data Classj from case n in Classj is
defined as follows:
d(k)=j

3.7 Advantages

Because of the number of decision trees involved in the procedure, random

forests are regarded as a highly accurate and robust system.

e The overfitting issue does not cause it to suffer. The primary explanation is

that the sum of all the forecasts is taken, which cancels the biases.
e In both classification and regression problems, the algorithm can be used.

e Missing values can also be managed by random woods. There are two ways
to deal with these: to replace continuous variables by using median values,

[25] and to compute the proximity-weighted average of missing values.

e You can obtain the relative significance of the feature, which helps to get

the most contributing features.

3.8 Disadvantages

e Random forests are slow to produce predictions because they have many
trees of choice. Whenever a forecast is made, all trees in the forest have to
make a forecast for the same feedback given and then vote on it. This whole

approach is time-consuming. [15]
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e Compared to a decision tree, the model is hard to read, where you can easily

make a decision by following the route in the tree.

This research discussed Random Forest Classifier algorithm, how this algorithm
works and its advantages and disadvantages. It contains the different methods
applied to the random forest model to improve its accuracy and reduce training
time. We briefly introduce features and important hyperparameters of random
forest which includes the predictive power and model speed. Finally, we discuss
working of random forest algorithm and methods for missing values replacement

for training and test set.



Chapter 4

Designing Random Forest Model

for Hardware Trojan Detection

This chapter presents the research methodology information, including data un-
derstanding, data preparation, and the Random Forest classifier model. Then the
model is applied to detect hardware trojan. Then the research illustrates the result

of the model corresponding to different test sets.

4.1 Fundamental Technology Background

In this section, the fundamental software that is required throughout software im-
plementation is introduced. First, different technologies used to create the Random

Forest model and its internal architecture are introduced.

39
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4.2 Creating the Random Forest Model

This research has used python programming for developing the code that runs the

algorithm. Fig. 7?7 shows the logos of the used software packages.

1. Jupyter Notebook: Jupyter Notebook is a web-based open-source program
for creating and sharing documents containing live code, equations, visual-
izations and storytelling texts. This software is used in this thesis to perform
tasks such as data cleaning, data transformation, data visualization, and de-

veloping machine learning.

2. Scikit learn: It’s a library that contains several machine learning algorithms.
The Random Forest algorithm used in this work is developed using Scikit
learn [40]. Moreover, this library contains the functions for splitting the

dataset, confusion matrix, and cross-validation [15].

3. Pandas: This library is used for data manipulations and analysis. It handles

all the operations related to the data frame.

4. NumPy: Using this library, the research had performed operations such as
scaling the data and data transformation to convert the data frames into

NumPy array for the machine learning model.
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FIGURE 4.2: VISUALIZATION [40]

5. Matplotlib: Used for plotting the graphs and for data visualization. Fig. 77?7
shows a sample window from the visualization output window generated by

this package.

4.3 Research Methodology

A research method is devised in a structured manner based on CRISP-DM, a data
science methodology [8]. The research methodology and the process are described

below. Fig. 7?7 presents various stages of the research.
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4.3.1 Domain Understanding

This phase is needed to understand the domain of hardware trojan. Relevant
literature on hardware trojan detection is found in this phase. Then, the impact

of hardware trojan on cybersecurity and businesses is analyzed.

4.3.2 Data Understanding

The dataset used in this research is provided by the hardware cybersecurity team.
This phase is required to understand the content of the dataset provided. The

dataset content is explored with the use of multiple visualizations using matplotlib.

4.3.3 Data Preparation

The number of steps is needed to construct a dataset that can be used for the

creation of detection models.

4.3.4 Modelling

This process consists of selecting machine learning techniques, setting up experi-

ments, and training and testing machine learning techniques.
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4.3.5 Results Analysis

The results of the experiment are collected in this phase. The data outcome is

shown in forms of true/phase, positive/negative categories.

4.4 Data Preparation

After cleaning up our dataset, this study had to make the data set ready for
computer study, another step in data preparation. In this stage, the research has
created three functions to get the final combined data as the research has 52 CSV
files that need to be merged and then passed to Random Forest Classifier.

The function, def GetFilePath(number), was to fetch all the file paths and return
it. Next function, def GetAllData( ), was used to iterate through all of the 52
CSV files and combined the data of al csv files into a single data frame which
contains 2,599,948 rows and 2 columns i.e [2599948, 2] matrix, and returns the
data frame which contains the data of all 52 CSV files. Moreover, during this
process, the data is normalized. The data preparation mode was further devised
in a structured manner based on CRISP-DM, a data science methodology [8].
The research methodology and the process are described below, and its structure

is shown in Fig. 4.4.
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4.4.1 Data Selection

The data selection is based on the relevance of attributes for the training and
testing of different machine learning classifiers. Columns which are empty are
dropped and some which columns should not be included in the experiment are

needed for data integration process.

4.5 Data Cleaning

Machine learning requires training and feeding algorithms with data to accomplish
various computational intensive tasks. However, organizations are typically chal-
lenged to have the right data for machine learning or to clean up irrelevant and
error-prone data. In other words, most time is spent cleaning data sets or building
an error-free data set while using ML data [27]. Establishing a quality plan, filling
out missing values, eliminating rows, and reducing data size are some of the most

commonly used techniques to create a useful dataset with quality data.

4.5.1 Fill-out missing values

One of the first moves to clean the data set errors is to search for and fill in missing
values. It will categorize much of the data. It is easier to fill the missing values

based on various categories or build new categories to include the missing values.

The research can use mean and medium to correct errors if the data is numerical
or fill the mean with the missing data [8]. The average can be based on various

factors as well.

There were several missing numerical values present in this work, and to fill those

missing values, the mean value was used to fill it.
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4.5.2 Removing rows with missing values

One of the easiest things in data cleansing is the removal or deletion of rows with
missing values. This may not be the perfect move when the training data are
subject to a large number of errors. If there are considerably lower missing values,
then it is right to remove or remove missing values. You must be very confident
that information present in the other rows of training data is not included in the

data removed [25].

4.5.3 Fixing errors in the structure

Ensure there is no upper or lower case typographical defects and inconsistencies.
Go through your data collection, find and correct these errors to ensure your
training set is entirely errored free. This will allow you to achieve better results
through the functions of your computer [14]. Delete the categorization duplication

from your data list and simplify your data.

4.5.4 Removing Duplicate

Duplicates are repeated data points in your data collection. So this is a common
problem in any dataset, and if there is such a problem, then one can remove those
duplicate values from the dataset [23]. There were many redundant data in our
dataset that the study found using NaN(), .isNull() functions available in python’s
numpy library.
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4.6 Data Normalization

Normalization is a method often used in machine learning data preparation. Nor-
malization aims to change numeric column values into a common dimension in the

datasets without distorting values’ rates.

All datasets do not need Normalization for machine learning. It is required only
if features have numerous ranges [26]. Also, in this study, normalized data is used
and converted to a useable form by removing the unnecessary columns from the
datasets, which doesn’t help a machine learning model find any pattern. The
remaining columns are then converted into a dataframe that a machine learn-
ing model expects in the sklearn library. So the Normalize Data function, after

removing the unnecessary data it returns a data frame.

4.7 Data Modeling

During this phase, the dataset is used for training and testing of hardware trojan

detection. The figure shows the activity and its output in the modelling process.

4.7.1 Selection of machine learning techniques

In this section, the most promising machine learning techniques are selected. The
Random Forest, Multi-layer perceptron and Neural Networks algorithm showed
the highest performance as compared to the other machine learning algorithms in
True Positive Rate and less amount of false values (False positive rate and False-
negative rate). This research on the use of Random Forest for the detection of

hardware trojan has shown better results.
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4.7.2 Train/Test split

In order to make the final model, this study needs data on which it will feed a
machine learning model with data, and some part is required to validate the data.
Therefore, the final developed model is a machine learning model on which new

data is passed to make a prediction.

In the developed model, the training dataset is a sample of data fed into the
machine learning model to fit the model. The actual data that one uses to train
a machine learning model and the model finds the train datasets’ patterns and
learns from this data. If the quality of data and if it is pre-processed properly, the
model can learn properly [6]. The test dataset is a sample of data that provides

an unbiased result for the final model, which is fit on the training data.

4.7.3 Validation Dataset

The data sample used to provide a model evaluation that is suitable for the train-
ing data set during tuning model hyperparameters. The assessment is made more
inclusive by integrating ability in the validation dataset into the model configu-
ration. This study uses results from validation and change hyperparameters of

higher quality. The validation set, therefore, only affects a model indirectly [6].
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4.7.4 Scaling the Dataset

StandardScaler assumes that the data is usually distributed in each function and
scales it so, with a standard deviation of 1, the distribution is now centred around
0. StandardScaler eliminates the mean and values of each function/unit variance
vector. The procedure is done separately from a function point of view. The
StandardScaler can be affected by outliers (if they occur in a data set) since each

function’s empirical mean and standard deviation are calculated [6].

4.8 Confusion Matrix

There are several ways to evaluate the classificatory model’s results, but none have
been tested for a time such as the confusion matrix. It allows us to analyze how
the model worked, how it went wrong. The model’s performance can be viewed

from a holistic perspective using confusion matrix [26].

A confusion matrix is an N x N matrix for the performance evaluation of a classi-
fication model in which N is the number of target groups. In this matrix, the real
target values are compared to the machine learning model predicted. This offers
a comprehensive view of our classification model’s success and the types of errors

it makes.

Two values are there in the target variable: Positive and Negative. Columns are
the actual value of the target value. Rows are the predicted value of the target

value.
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FIGURE 4.6: CONFUSION MATRIX [40]

4.9 Confusion Matrix for the Developed Model

The matric was developed for Trojan detection. A data set of 3,000,000 samples
from an encryption algorithm was provided to investigate the application of the
trojan. The samples included the power consumption, a form of side-channel
information, from the integrated circuit. Among the data, there were circuits

with and without the Trojan circuit.

For this study, this information was provided and known to verify the effectiveness
of the developed model. However, in real-life scenarios, this might not be possible.

A trojan free or infected circuit is not easy to be operated from the rest.

The Confusion Matrix of the data set is presented Table ?7?.
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Positive | Negative

Positive | 25239 1655

Negative | 1339 751752

TABLE 4.1: Confusion Matrix

e True Positive (TP): Predicted value matches the actual value. Actual
value was positive and positive value was expected in the model. In this
work, T'P = 25,239; which means that, 25,239 Positive class data points

have been correctly classified by model.

e True Negative (TN): The value to be predicted matches the actual value.
Actual value was negative and negative value was expected in the model.
Here, TN = 751, 752; which means that, 751752 negative class data points

have been correctly classified by model.

e False Positive (FP) - Also know ad Type 1 error: The value which is
predicted is falsely predicted. Actual value was negative and positive value
was expected in the model. In our developed model, F'P = 1,655; meaning
that the model wrongly classifies 1,655 negative class data points as being

of the positive class.

e False Negative (FN) - Type 2 error: The value which is predicted is
falsely predicted. Actual value was positive and negative value was expected
in the model. For the developed model, FFN = 1,339; meaning that the
model wrongly classifies 1,339 positive class data points as being of the

negative class.

The confusion matrix provides much detail of the accuracy and result of
recognition. However, a more concise measure was also considered to evalu-

ate the model’s accuracy. These extra measures are presented next.

e Accuracy of a classifier on a given data points is the percentage of test

setups properly identified by the classifier. Below is the equation used to
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calculate the accuracy from the confusion matrix.

Accuracy = (TP +TN)/(TP+ FP+TN + FN) (4.1)

In our model, TP = 25,239, TN = 751,752, FP = 1,655, FFN = 1,339.

The accuracy for our Random Forest Classifier turned out to be

Accuracy = (25239+751752) /(25239 + 751752+ 1655+ 1339) = 99.80 (4.2)

e Precision is evaluated as T'P/(T'P + FP), where TP is the true positive
number and F'P is the false positive number. In the developed model, pre-

cision is evaluated to be equal to:

Precision = 25239/(25239 + 1655) = 93.84 (4.3)

e Recall provides information on how many of the positive cases with our

model have been correctly predicted, and is calculated as follows:

Recall = TP/(TP + FN)25239/(25239 + 1339) = 94.75  (4.4)

e F1- Score is a weighted average of the actual positive (recall) rate and

precision, and is equal to 2(precision * recall /precision + recall).

F1 — score = 2(93.84 % 94.75/93.84 + 94.75) = 2(8891.34/188.59) = 94.29
(4.5)

4.10 Cross validation

Data is divided into k sub-sets in K Fold cross validation. Now the method of

holdout is repeatedly used k times to construct a training set with one of the k
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subsets each time and the other k — 1 subsets are assembled. In all k trials the
error estimation is summed to achieve full efficacy of our model. Each data point
is used exactly once in a validation set and in a training set k — 1 times [14]. This
decreases the bias significantly as this research uses most fitting data and decreases
the variance also significantly as the bulk of data is also used in validation sets. The

sharing of training and test sets also contributes to the efficiency of the process.

For the data set, the k value must be carefully selected. A poorly selected value
for k£ could lead to a misrepresenting interpretation of the model’s ability, like a
score that has a high variance (which could differ a great deal depending on the
data used for the model), or a high bias (e.g. overestimating the model’s skills)
[28]. The value for k is selected to make each train / test group of data samples
big enough to represent the wider dataset statistically. So for our program it took
cv/k = 5. The following command was used to indicate this value: rfcValue=cross

val score(randomForestClassifier,X train,y train,cv=>5)

The first argument passed in the cross val score is the random forest classifier
model which this research have developed. The next two parameters are the
training data in which X train contains the features and y train contains the
labels. Now the main variable is cv which helps to define the value of k in k-fold
cross-validation. Once the operation is completed this, cross val score returns an
array of score of the estimator for each run of the cross validation [24]. Fig. 4.7

shows the k fold cross validation scheme.

Out-of-bag (OOB) error, also called out-of-bag estimate, is a method of measuring
the prediction error of random forests, boosted decision trees, and other machine
learning models utilizing bootstrap aggregating (bagging) to sub-sample data sam-
ples used for training. In order to see how many trees are necessary in my forest,
the OOB error is plotted as the number of trees used in the forest is increased. A

new random forest on each iteration is created with increasing numbers of trees
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but this is too expensive [25]. Fig. 4.8 shows the OOb error for the developed

model.

In random forests, there is no need for cross-validation or a separate test set to get
an unbiased estimate of the test set error. It is estimated internally, during the
run, as follows [21]: Each tree is constructed using a different bootstrap sample
from the original data. About one-third of the cases are left out of the bootstrap
sample and not used in the construction of the k-th tree. One out of two cases is
left out in the construction of the k-th tree down to get a classification. In this
way, a test set classification is obtained for each case in about one-third of the
trees. At the end of the run, j is the class that got most of the votes every time
case n was oob. The proportion of times that j is not equal to the true class of n
averaged over all cases is the oob error estimate. This has proven to be unbiased

in many tests [8].
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FIGURE 4.10: MSE vs. the number of predictor used at each split

In Fig. 4.10 the Red line is the Out of Bag Error Estimates and the Blue Line
is the Error calculated on Test Set. Both curves are quiet smooth and the error
estimates are somewhat correlated too. The Error Tends to be minimized at
around mtry = 4. On the Extreme Right Hand Side of the above Plot all possible

13 predictors at each Split are shown which is Bagging.

There are two other parameters in Random Forest that require attention: number
of trees and minimum node size. In order to find out the value of the trees
of (ntree)in Random Forest, this research used TrainSet and ValidationSet for
training and testing, respectively. Then the OOB error rate and train error rate
with the independent test set (Va-lidationSet) error rate were compared as shown
in Fig. ?7. The plot shows that the OOB error rate follows the test set error
rate fairly and closely, when the number tress are more than 100. Therefore, the

sufficient number of tree is found around 100 [6].



Designing Random Forest Model for Hardware Trojan Detection 56

L L)

T T T T T T T T T T T Ty

ol . : QOB Error Rate
Test Error Rate
g L 1 ------- Train Error Rate []

Error Kate

FIGURE 4.11: Error rate vs. time

In addition to it, Fig. 7?7 also shows an interesting phenomenon which is the
characteristic of Random Forest; the test and OOB error rates do not increase
after the training error reaches zero. Instead they converge to their “asymptotic”

values, which is close to their minimum.

So far, we have discussed the fundamental technology used to create random forest
model, including data preparation, data cleaning which consists of fill-out missing
values, fixing errors and removing rows with missing values, data normalization.
Then this research use train/test split and confusion matrix and cross validation
method to train the model. Next, the developed solution is used to make a com-
parison with published results achieved using machine learning techniques and

achieve a considerable result.
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4.11 Grid Search in Random forest

Tuning of parameters is an important element in achieving ideal parameter values
in the machine learning algorithms. Several studies and methods for the tuning
of the parameters were successfully proposed to ensure higher accuracy in classi-

fication models.

Adjusting hyperparameters carefully and methodically can be helpful. It will im-
prove the precision of the classification model, resulting in more precise predictions

in general.

The tuning of hyperparameters is based more on experimental findings than on
theory, and therefore the best way to decide the optimal setting is to test the

output of each model using several different combinations.

Grid search enables one to do so simultaneously with many parameters to find
the best parameters for the given data. In here, several different parameters were
picked in order to have a set of values to choose from. The grid search will then
fit models into any combination of those parameter values, using cross to evaluate

each case’s output.

Output from the grid search is presented below for the top 4 models in term of

accuracy:

Model with rank: 1

Accuracy: 99.82%

Parameters: 'n_estimators’: 500, 'min_samples_leaf’: 5,
‘min_weight_fraction_leaf”: 0.1,

‘'max_depth’: 7, 'max_leaf_nodes’: 30, ‘criterion’:’gini’,

‘min_samples_split”: 15,’max_feature’:’sqrt’
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Model with rank: 2
Accuracy: 99.80%

'n_estimators’: 400, 'min_samples_leaf’: 10,

Parameters:
‘min_weight _fraction_leaf”: 0.1,
‘max_depth’: 9, 'max_leaf nodes’: 20, ‘criterion’:’gini’,

‘min_samples_split’: 20, 'max_feature’:’sqrt’

Model with rank: 3
Accuracy: 98.45%

)

Parameters: 'n_estimators’: 200, 'min_samples_leaf”: 20,
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‘min_weight_fraction_leaf”: 0.1,
‘max_depth’: 7, 'max_leaf nodes’: 20, ‘criterion’:’gini’,

‘min_samples_split’: 15, 'max_feature’:’log2’

Model with rank: 4

Accuracy: 97.79%

Parameters: 'n_estimators’: 700, 'min_samples_leaf”: 10,
‘min_weight_fraction_leaf”: 0.1,'max_depth’: 5,

‘max_leaf nodes’: 30, ‘criterion’:’gini’, 'min_samples_split’: 15, 'max_feature’:’sqrt’

So from the above 4 models, that the current approach has achieved a good accu-

racy, and is a reliable method for detecting the trojan.

From the above table, it is shown the accuracy for model 1 is the best i.e 99.82
but the training time is quite more as compared to the model 2. The accuracy
of model 2 is just 0.02 less than model 1, so the difference in accuracy is not
significant. But considering the training time in this study, it can be concluded

that model is best as it takes less time for training.
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H Approach TPR TNR  Accuracy H
SVM 83% 49% 51%
NN 81% 69% 69%
Multi-NN 8% T70% 73%
Random Forest 68%  99.7% 99%

TABLE 4.2: Accuracy Comparison [§]

Comparison results are shown in table above, which shows the classification of the
same data set among four different machine learning algorithms used to detect
hardware trojan. The term NN refers to the neural network based approach and

Multi-NN refers to the multi-middle-layer networks.

Trojans identified to be hardware trojans correctly are called true positives. TP
shows the number of true positives. Trojans which are mistakenly identified normal
are called False Negatives and F'N shows the number of false negatives. The True
Positive rate is defined by TPR = TP/TP + FN and True Negative Rate is
defined by TNR = TN/TN + F P. The accuracy is defined by (I'P+TN) /(TP +
FN+ FP+TN).

This study has applied the grid search approach that is implemented in Grid-
SearchC'V to find optimal parameters of Random Forest algorithm. Experimental
results on the Trojan dataset shows that Random Forest provides the best classifier
with the accuracy of 0.9980 compared to those of other classification algorithms
namely SVM, MLP and Neural Network. Tuning eight parameters of Random
Forest results optimal values. The results show that tuning parameter has suc-

cessfully generated the best classifier to classify a new data.
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Conclusion

In this chapter, it summarize and conclude the research of this thesis. Firstly, the
achievement of our algorithm is presented and then propose the future work in

related implementation.

5.1 Summary of Contribution

This research discussed the problem of hardware trojan detection. This research
worked on the goal how can one detect hardware trojan using Random Forest with
maximum accuracy so that a person can be sure that they are not compromising

security of the system.

This study analysed the effectiveness of this method and compared with various
existing trojan detection techniques and found out that most of these detection
techniques uses Golden Circuit which is considered as trojan free design. It is
more viable for an attacker to insert a stealthy trojan into every fabricated in-

tegrated circuit that passes manufacturing process and trust validations. This

61



Conclusion 62

process assumes that trojans are inserted into random ICs and raises the chal-
lenge of detecting trojan in ICs without relying on golden ICs. So, this study
replaced Golden Circuit with Simulations. It allows the user to draw a circuit
design and then have the computer evaluate the circuit. It intercepts text listing
describing the circuit and outputs the results of its detailed mathematical analysis
tool. After extraction of data from simulation, data was prepared and processed.
Then, Data is fed to our machine leaning pipeline to be trained and validated. ML
pipeline consists of 3 algorithms: SVM, Random Forest, Neural Network. In order
to fit the best one into the particular case, the output of each of them is studied
according to several classification metrics. Random forest was set as the most ac-
curate model as a comparison of performance between the different ML algorithms
through several metrixs, namely Confusion Matrix, and F1-Measuremethod. This
study applied the grid search that is implemented in GridSearchCV to find the
optimal paramteres of Random Forest algorithm. Using this approach, this study
tested all possible parameter values combinations and preserved the combination

through which this research got the highest accuracy.

After applying GridSearchCV this study got four models with highest accuracy
out of which modell gave accuracy of 99.82 and model2 gave accuracy of 99.80.
Furthermore, when this study focussed on the training time of modell and model2,
modell took more than one hour and model2 took 48 minutes of training time.
In terms of accuracy this study can say that modell has more accuracy than
model2, but training time is less for model2 as compared to modell. So, this
study can say that model2 will be more reliable for real-world applications. It
confirm that Random Forest is better in terms of performance and good prediction
of positive and negative samples. Results of this review show that the classifier
of the Random Forest is most appropriate for the detection of hardware trojans
With an FPR of 0.0022 and a FNR of 0.0504, the {1 score is 0.9440. Additionally,

this research provided: 1. Knowledge on which hyperparameters are important
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to detect hardware trojans. 2. Extensive analysis of influence of hyperparameters
on the performance of multiple classifiers. 3. A global cost-benefit analysis of IC

security options for businesses.

5.2 Future Work

Proposed machine learning model using Random forest algorithm effects the most
research efforts on hardware trojan detection. In this thesis, it talks about training
random forest model using simulations data of power traces collected to detect
hardware trojan. In this thesis, this research finishes the first step, and define
that proposed Random forest model modified is the better in critical path among
the other methods. In the optimization work, to make this result more persuasive,
this research will try to ensemble more algorithms to reduce error estimation using
bagging techniques and with the advancement of new technology and methods.
This will focus on improving False Negative Rates and False Positive Rates. While
random forest showed high performance, other ensemble methods can be examined
such as Gradient Boosting. So the potential work will discuss how this algorithm
can be used in a parallel distributed environment so that the training data can
be distributed over multiple instances of distributed system which can reduce
the training time implementation of the machine learning models with improved

accuracy to detect trojans.



Bibliography

1]

2]

X. Zhang and M. Tehranipoor, “Case study: Detecting hardware trojans in
third-party digital ip cores,” 2011.

M. B. S. Bhunia and S. Narasimhan, “Hardware trojan attacks: Threat anal-

ysis and countermeasures,” 2014.

M. M. Potkonjak and T.Massey, “Hardware trojan horse detection using gate-

level characterization,” 2009.

R. S.Narasimhan, D.Du, “Hardware trojan detection by multiple-parameter
side-channel analysis,” IFEFE Transactions on Computers, vol. 62, no. 11,

pp. 21832195, 2012.

S. S.Narasimhan, D.Du, “Multiple-parameter side-channel analysis: A non-
invasive hardware trojan detection approach,” IEEE International Sympo-

sium on Hardware-Oriented Security and Trust, 2010.

L. Y.Xiang and W.Zhou, “Random forest classifier for hardware trojan de-
tection,” International Symposium on Computational Intelligence and Design,

vol. 2, no. 5, pp. 134-137, 2019.

M. S.Bhunia, M.S.Hsiao and S.Narasimhan, “Hardware trojan attacks: threat
analysis and countermeasures,” vol. 102, pp. 1229-1247, IEEE, 2014.

64



Conclusion 65

8]

[17]

[18]

M. K.Hasegawa and N.Togawa, “A hardware-trojan classification method us-
ing machine learning at gate-level netlists based on trojan features,,” IEEFE In-
ternational Symposium on Hardware-Oriented Security and Trust, vol. E100-

A, no. 7, pp. 1427-1438, 2017.

A. B. Ziad, Alanwar, “Homomorphic data isolation for hardware trojan pro-
tection,” IEEE Computer Society Annual Symposium on VLSI, vol. 36, no. 2,
pp. 216222, 2015.

S. Wei and M. Potkonjak, Scalable Hardware Trojan Diagnosis. 2011.

B.Shakya, “Benchmarking of hardware trojans and maliciously affected cir-

cuits,” Hardware and Systems Security, vol. 1, no. 1, pp. 85-102, 2017.

S. S.Narasimhan, “Hardware trojan detection by multiple-parameter side-
channel analysis,” IFEEFE Transactions on Computers, vol. 62, no. 11,

pp. 2183-2195, 2012.

C.Bishop, Pattern Recognition and Machine Learning. Springer, 2006.
A.Ng, Machine Learning Course, Stanford University. Coursera, 2017.
s.-1. Blondel et al., “Machine learning in python,” 2017.

T.Reece and W.H.Robinson, “Detection of hardware trojans in third-
party intellectual property using untrusted modules,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 35, no. 3,
pp. 357-366, 2016.

E. A. Lee, “Cyber physical systems: Design challenges,” in 11th IEEE In-
ternational Symposium on Object and Component-Oriented Real-Time Dis-

tributed Computing (ISORC), IEEE, 2008.

S.Skorobogatov and C.Woods, “Breakthrough silicon scanning discovers back-

door in military chip,” 2012.



Conclusion 66

[19]

[20]

[21]

[22]

[23]

[26]

[27]

[28]

C. D.Forte and A.Srivastava, “Temperature tracking: An innovative run-time

approach for hardware trojan detection,” 2013.

D. C.Bao and A.Srivastava, “On reverse engineering-based hardware trojan
detection,” IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, 2014.

Y. A.Kulkarni and T.Mohsenin, “Adaptive real-time trojan detection frame-
work through machine learning,” in IEEFE International Symposium on Hard-

ware Oriented Security and Trust, 2016.
B. S.Bhasin, “Hardware trojan horses in cryptographic ip cores,” 2018.

W. B.Deng, X.Zhang and D.Shang, “An overview of extreme learning
machine,” International Conference on Control, Robotics and Cybernetics,

vol. 29, no. 2, pp. 189-195, 2019.
L.Breiman, Random forests,Machine learning. Springer, 2001.

M. K.Hasegawa and N.Togawa, “Designing hardware trojans and their detec-

tion based on a svm-based approach,” IEEE 12th International Conference

on ASIC (ASICON), 2017.

J.Rajendran, “Towards a comprehensive and systematic classification of hard-
ware trojans,” IEEFE Intl Symp. Circuits and Systems, vol. 16, no. 1, pp. 1871—
1874, 2010.

Y. A.Kulkarni and T.Mohsenin, “Svm-based real-time hardware trojan detec-
tion for many-core platform,” IEEFE signal processing magazine, vol. 3, no. 4,

pp. 362-367, 2016.

F. F.Martinelli and F.Mercaldo, “Evaluating convolutional neural network for
effective malware detection,” IEEFE Proceeding of Computer Science, vol. 112,

no. 1, pp. 2372-2381, 2017.



Appendix

Python Codes

import pandas as pd

import seaborn as sb

import matplotlib.pyplot as plt

from sklearn.ensemble import RandomForestClassifier

from
from
from

from

from
from

from

sklearn.

sklearn

sklearn

sklearn.

sklearn

sklearn.

sklearn

svm import SVC

import svm

.neural_network import MLPClassifier

metrics import confusion_matrix

.preprocessing import StandardScaler, LabelEncoder

model_selection import train_test_split

.model_selection import cross_val_score

#Normalizes the data and converts 4t in the useable form

def NormalizeData(data):

data=
data=
data=

#Creating

data.drop(’Record Length’,axis=1)

data.drop(’50000’,axis=1)

data.drop(’Points’,axis=1)

and setting up new data frome

newDataFrame=pd.DataFrame ()
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newDataFrame [’Points’]=data.iloc[:,0]
newDataFrame [’Samples’]=data.iloc[:,1]

return newDataFrame

def GetFilePath (number):

return "C:\\Users\\Admin\\trace"+str (number)+"Wfm.csv"

#Combines two dataframes

def CombineData(datal,6data?2):

data2=NormalizeData(data2)

combinedData=pd.DataFrame ()

combinedData[’Points’]=datal [’Points’].append(data2[’Points’])
combinedData[’Samples’]=datal[’Samples’].append(data2[’Samples’])

return combinedData

def GetAllData ():

#The main data frame object
data=pd.DataFrame ()
data=pd.read_csv(GetFilePath (1))
data=NormalizeData(data)

for i in range(2,53):
newData=pd.read_csv(GetFilePath(i))
data=CombineData (data,newData)

return data

#trace=pd.read_csv ("C:\\Users\\Addmim\\ tracelWfm.csv")

trace=GetAllData ()
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trace=NormalizeData(trace)

bins=(0.8,1,1.1)

group_names=[’bad’,’good’]
trace[’Samples’]=pd.cut(trace[’Samples’],bins=bins)
#Should be separate from the above preprocessing code
label_quality=LabelEncoder ()
trace[’Samples’]=1label_quality.fit_transform(trace

[’Samples’])

#Separating data
X=trace.drop(’Samples’,axis=1)

y=trace[’Samples’]

#Spliting training and test data
X_train ,X_test,y_train,y_test=train_test_split

(X,y,test_size=0.3)

sc=StandardScaler ()
X_train=sc.fit_transform(X_train)

X_test=sc.transform(X_test)

#Creating a random forest classifier
rfc=RandomForestClassifier(n_estimators=200)
rfc.fit(X_train,y_train)

pred_rfc=rfc.predict(X_test)

#Lets see how our modl performed
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print (classification_report(y_test ,pred_rfc))

print (confusion_matrix(y_test,pred_rfc))

#SVM Classifier
clf=svm.SVC()
clf .fit(X_train,y_train)

pred_clf=clf.predict(X_test)

#Lets see how our modl performed
print (classification_report(y_test ,pred_clf))

print (confusion_matrix(y_test,pred_clf))

#Neural Network

mlpc=MLPClassifier (hidden_layer_sizes=
(11,11,11) ,max_iter=500)
mlpc=mlpc.fit(X_train,y_train)

pred_mlpc=mlpc.predict (X_test)

#Lets see how our model performed
print (classification_report(y_test,pred_mlpc))

print (confusion_matrix(y_test,pred_mlpc))

#Model Selection
randomForestClassifier=RandomForestClassifier
(n_estimators=200)

clf = svm.SVC(kernel=’linear’, C=1)

mlp=MLPClassifier (hidden_layer_sizes=(11,11,11)

,max_iter=500)
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rfcValue=cross_val_score(randomForestClas,

X_train,y_train,cv=5)

clfValue=cross_val_score(clf ,X_train,y_train,cv=5)

mlpValue=cross_val_score(mlp,X_train,y_train,cv=5)

#Checking which model %s how much accurate

print ("Accuracy: ",rfcValue.mean()*100)
print ("Accuracy: ",clfValue.mean()*100)
print ("Accuracy: ",mlpValue.mean ()*100)
#elm.py

from abc import ABCMeta, abstractmethod

import numpy as np

from scipy.linalg import pinv2

from
from
from
from

from

from

sklearn

sklearn.
sklearn.
sklearn.

sklearn.

.utils import as_float_array

utils.extmath import safe_sparse_dot
base import BaseEstimator, ClassifierMixin
base import RegressorMixin

preprocessing import LabelBinarizer

random_layer import RandomLayer , MLPRandomLayer

_all__ = ["ELMRegressor",

"ELMClassifier",

"GenELMRegressor",
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"GenELMClassifier"]

# BaseELM class, regressor and hidden_layer attridbutes
# and provides defaults for docstrings

class BaseELM(BaseEstimator):

__metaclass__ = ABCMeta
def __init__(self, hidden_layer, regressor):
self .regressor = regressor

self . hidden_layer = hidden_layer

@abstractmethod

def fit(self, X, y):

def predict(self, X):

class GenELMRegressor (BaseELM, RegressorMixin):

def __init__(self,
hidden_layer=MLPRandomLayer (random_state=0),
regressor=None):

super (GenELMRegressor , self).__init_

(hidden_layer , regressor)

self .coefs_ = None

self.fitted_ = False
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self .hidden_activations_ = None

def _fit_regression(self, y):

nimnn c

fit regression using pseudo-inverse
or supplied regressor

nimnn

if (self.regressor is None):

self .coefs_ = safe_sparse_dot(pinv?2

(self.hidden_activations_), y)

else:
self .regressor.fit(self.hidden_activations_, y)
self.fitted_ = True

def fit(self, X, y):
# fit random hidden layer and compute the activations
self . hidden_activations_ =

self .hidden_layer.fit_transform(X)

# solve the regression from hidden activations to outputs

self . _fit_regression(as_float_array(y, copy=True))

return self

def _get_predictions (self):
"""get predictions using internal least squares"""
if (self.regressor is None):

preds = safe_sparse_dot
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(self .hidden_activations_, self.coefs_)
else:
preds = self.regressor.predict

(self.hidden_activations_)

return preds

def predict(self, X):

nunn

Predict wvalues using the model

Parameters
X : {array-like, sparse matriz} of shape

[n_samples, n_features]

Returns

C : numpy array of shape [n_samples, n_outputs]
Predicted wvalues.

nnn

if (not self.fitted_):

raise ValueError ("ELMRegressor not fitted")

# compute htidden layer activations

self .hidden_activations_ = self.hidden_layer.transform(X)

# compute output predictions for mnew hidden activations

predictions = self._get_predictions ()
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return predictions

class GenELMClassifier (BaseELM, ClassifierMixin):
def __init__(self,

hidden_layer=MLPRandomLayer (random_state=0),
binarizer=LabelBinarizer (-1, 1),

regressor=None):

super (GenELMClassifier, self).__init__

(hidden_layer , regressor)

self .binarizer = binarizer
self .classes_ = None
self . genelm_regressor_ = GenELMRegressor

(hidden_layer , regressor)

def decision_function(self, X):

nimnn

This function return the decision function

values related class on an array of test wectors X.
Parameters

X : array-litke of shape [n_samples, n_features]

Returns
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C : array of shape [n_samples, n_classes] or [n_samples,]
Decision function wvalues related to each class, per sample.
In the two-class case, the shape is [n_samples,]

niumnn

return self.genelm_regressor_.predict (X)

def fit(self, X, y):

nunn

Fit the model using X, y as tratining data.

Parameters

X : {array-like, sparse matriz} of shape
[n_samples, n_features]

Training wvectors, where n_samples 1s the

number of samples and n_features ts the number of features.

y : array-like of shape [n_samples, n_outputs]
Target wvalues (class labels in classification, real numbers

regression)

self : object

Returns an instance of self.

niumnn

self.classes_ = np.unique(y)
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y_bin = self.binarizer.fit_transform(y)

self .genelm_regressor_.fit (X, y_bin)

return self

def predict(self, X):

""rpredict values using the model

Parameters

X : {array-like, sparse matriz} of shape

[n_samples, n_features]

Returns

C : numpy array of shape [n_samples, n_outputs]

Predicted wvalues.

niumnn

raw_predictions=self.decision_function (X)

class_pred=self.binarizer.inverse_transform(raw)

return class_predictions

# ELMRegressor with default RandomLayer

class ELMRegressor (BaseEstimator, RegressorMixin):

def __init__(self, n_hidden=20, alpha=0.5, rbf_width=1.0,

activation_func=’tanh’, activation_args=None,
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user_components=None, regressor=None, random_state=None):

self .n_hidden = n_hidden
self .alpha = alpha
self .random_state = random_state

self.activation_func = activation_func

self . activation_args = activation_args

self.user_components = user_components

self .rbf_width

rbf_width

self .regressor = regressor

self . _genelm_regressor = None

def _create_random_layer (self):

"""Pass +nit params to RandomLayer"""

return RandomLayer(n_hidden=self.n_hidden,
alpha=self.alpha, random_state=self.random_state,
activation_func=self.activation_func,
activation_args=self.activation_args,
user_components=self.user_components,

rbf_width=self.rbf_width)

def fit(self, X, y):

niumnn

Fit the model using X, y as training data.

Parameters
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X : {array-like, sparse matrixz} of shape
[n_samples, n_features]

Training vectors, where n_samples 1s the number

of samples and n_features <s the number of features.

y : array-like of shape [n_samples, n_outputs]
Target wvalues (class labels in classtification, real

numbers in regression)

Returns

self : object

Returns an instance of self.

nwnn

rhl = self._create_random_layer ()

self. _genelm_regressor = GenELMRegressor
(hidden_layer=rhl,
regressor=self.regressor)

self . _genelm_regressor.fit (X, y)

return self

def predict(self, X):

numnn

Predict wvalues using the model

Parameters

X : {array-like, sparse matriz} of shape
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[n_samples, n_features]

C : numpy array of shape [n_samples, n_outputs]
Predicted values.

nnn

if (self._genelm_regressor is None):

raise ValueError ("SimpleELMRegressor not fitted")

return self._genelm_regressor.predict (X)

class ELMClassifier (ELMRegressor):

def __init__(self, n_hidden=20, alpha=0.5, rbf_width=1.0,
activation_func=’tanh’, activation_args=None,
user_components=None, regressor=None,
binarizer=LabelBinarizer (-1, 1),

random_state=None):

super (ELMClassifier, self).__init__(n_hidden=n_hidden,
alpha=alpha,

random_state=random_state,
activation_func=activation_func,
activation_args=activation_args,
user_components=user_components,

rbf_width=rbf_width,

regressor=regressor)
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self.classes_ = None

self .binarizer = binarizer

def decision_function(self, X):

numnn

This function return the decision function wvalues

related to each class on an array of test wectors X.

Parameters

X : array-like of shape [n_samples, n_features]
Returns
C : array of shape [n_samples, n_classes] or [n_samples,]

Decision function wvalues related to each class, per sample.

In the two-class case, the shape is [n_samples,]

naumnn

return super (ELMClassifier, self).predict (X)

def fit(self, X, y):

nunn

Fit the model using X, y as tratining data.

Parameters
X : {array-like, sparse matriz} of shape

[n_samples, n_features]
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Training wvectors, where n_samples i1s the number

samples and n_features ©s the number of features.

y : array-like of shape [n_samples, n_outputs]
Target wvalues (class labels in classification, real

numbers in regression)

Returns

self : object

Returns an instance of self.

numnn

self.classes_ = np.unique(y)

y_bin = self.binarizer.fit_transform(y)

super (ELMClassifier, self).fit (X, y_bin)

return self

def predict(self, X):

nnn

Predict wvalues using the model

Parameters

X : {array-like, sparse matriz} of shape

[n_samples, n_features]
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C : numpy array of shape [n_samples, n_outputs]
Predicted wvalues.
raw_pred = self.decision_function (X)

class_pred = self.binarizer.inverse_transform(raw_pred)
return class_predictions

def score(self, X, y):

"""Force use of accuracy score since we don’t inherit

from ClassifierMizin"""

from sklearn.metrics import accuracy_score

return accuracy_score(y, self.predict(X))

#elm_notebook.py

from time import time

from sklearn.cluster import k_means

from elm import ELMRegressor, GenELMClassifier,
GenELMRegressor

from elm import ELMClassifier

from random_layer import RBFRandomLayer , GRBFRandomLayer
from random_layer import RandomLayer , MLPRandomLayer
import numpy as np

import matplotlib.pyplot as plt
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from numpy import mean,std

def make_toy ():
X = np.arange(0.25,20,0.1)

y = x*np.cos(x)+0.5*%np.sqrt(x)*np.random.randn(x.shape [0])

X x.reshape(-1,1)

y y.reshape(-1,1)

return x, y

def res_dist(x, y, e, n_runs=100, random_state=None):
x_train,x_test ,y_train= train_test_split

(x, y, test_size=0.4)

test_res = []
train_res = []
start_time = time ()

for i in range(n_runs):

e.fit(x_train, y_train)
train_res.append(e.score(x_train, y_train))
test_res.append(e.score(x_test, y_test))

if (i%(n_runs/10) == 0): print ("%d4d"%i),

print ("\nTime: %.3f secs" % (time() - start_time))

print ("Test Min: %.3f Mean: %.3f Max: %.3f SD: %.3f"

% (min(test_res), mean(test_res),
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max(test_res), std(test_res)))

print ("Train Min: %.3f Mean: %.3f Max: %.3f SD: %.3f"
% (min(train_res), mean(train_res), max(train_res
), std(train_res)))

print ()

return (train_res, test_res)

# <codecell>

from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import load_diabetes,
make_regression

from sklearn.datasets import load_iris, load_digits

stdsc = StandardScaler ()

iris = load_iris ()

irx, iry stdsc.fit_transform(iris.data), iris.target
irx_train, irx_test, iry_train, iry_test =

train_test_split (irx, iry, test_size=0.2)

digits = load_digits ()

dgx, dgy stdsc.fit_transform(digits.data/16.0),
digits.target
dgx_train, dgx_test, dgy_train, dgy_test =

train_test_split (dgx, dgy, test_size=0.2)

diabetes = load_diabetes ()
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dbx, dby = stdsc.fit_transform(diabetes.data),

diabetes.target
dbx_train, dbx_test, dby_train, dby_test =

train_test_split (dbx, dby, test_size=0.2)

mrx, mry = make_regression(n_samples=2000,
n_targets=4)
mrx_train, mrx_test, mry_train, mry_test =

train_test_split(mrx, mry, test_size=0.2)

xtoy, ytoy make_toy ()

xtoy, ytoy stdsc.fit_transform(xtoy),

stdsc.fit_transform(ytoy)

xtoy_train, xtoy_test, ytoy_train, ytoy_test =

train_test_split (xtoy, ytoy, test_size=0.2)

plt.plot(xtoy, ytoy)

# RBFRandomLayer tests

for af in RandomLayer.activation_func_names ():

print (af),
elmc = ELMClassifier(activation_func=af)
tr,ts = res_dist(irx, iry, elmc, n_runs=200,

random_state=0)

for af in RandomLayer.activation_func_names ():
print (af)

elmc = ELMClassifier(activation_func=af,
random_state=0)

tr,ts = res_dist(dgx, dgy, elmc, n_runs=100,
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random_state=0)

elmc = ELMClassifier(n_hidden=500,
activation=’multiquadric’)

tr,ts = res_dist(dgx, dgy, elmc, n_runs=100,
random_state=0)

plt.scatter (tr, ts, alpha=0.1, marker=’D’, c=’r’)

elmr = ELMRegressor (activation_func=’gaussian’,
alpha=0.0)

elmr.fit (xtoy_train, ytoy_train)

print ( elmr.score(xtoy_train, ytoy_train),
elmr.score(xtoy_test, ytoy_test))

plt.plot(xtoy, ytoy, xtoy, elmr.predict(xtoy))

from sklearn import pipeline

from sklearn.linear_model import LinearRegression
elmr = pipeline.Pipeline ([(’rhl’,

RandomLayer (activation_func=’multiquadric’)),
(’1r’, LinearRegression(fit_intercept=False))])
elmr.fit(xtoy_train, ytoy_train)

print (elmr.score(xtoy_train, ytoy_train),
elmr.score(xtoy_test, ytoy_test))

plt.plot(xtoy, ytoy, xtoy, elmr.predict(xtoy))

rhl = RandomLayer (n_hidden=200, alpha=1.0)
elmr = GenELMRegressor (hidden_layer=rhl)
tr, ts = res_dist(mrx, mry, elmr, n_runs=200, )

plt.scatter(tr, ts, alpha=0.1, marker=’D’, c=’r’)
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rhl = RBFRandomLayer (n_hidden=15, rbf_width=0.8)
elmr = GenELMRegressor (hidden_layer=rhl)
elmr.fit (xtoy_train, ytoy_train)

print ( elmr.score(xtoy_train, ytoy_train),
elmr.score(xtoy_test, ytoy_test))

plt.plot(xtoy, ytoy, xtoy, elmr.predict(xtoy))

nh = 15
(ctrs, _, _) = k_means(xtoy_train, nh)
unit_rs = np.ones(nh)

#rhl = RBFRandomLayer (n_hidden=nh,
activation_func=’inv_multiquadric’)

#rhl

RBFRandomLayer (n_hidden=nh,
centers=ctrs, radii=unit_rs)

rhl = GRBFRandomLayer (n_hidden=nh,

grbf_lambda=.0001, centers=ctrs)

elmr = GenELMRegressor (hidden_layer=rhl)
elmr.fit(xtoy_train, ytoy_train)

print (elmr.score(xtoy_train, ytoy_train),
elmr.score(xtoy_test, ytoy_test))

plt.plot(xtoy, ytoy, xtoy, elmr.predict(xtoy))

rbf_rhl RBFRandomLayer (n_hidden=100,
random_state=0, rbf_width=0.01)
elmc_rbf = GenELMClassifier(hidden_layer=rbf_rhl)

elmc_rbf.fit (dgx_train, dgy_train)
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print (elmc_rbf.score(dgx_train, dgy_train),

elmc_rbf.score(dgx_test, dgy_test))

def powtanh_xfer (activations, power=1.0):

return pow(np.tanh(activations), power)

tanh_rhl = MLPRandomLayer (n_hidden=100,
activation_func=powtanh_xfer,
activation_args={’power’:3.0})

elmc_tanh = GenELMClassifier(hidden_layer=tanh_rhl)
elmc_tanh.fit(dgx_train, dgy_train)

print (elmc_tanh.score(dgx_train, dgy_train),

elmc_tanh.score(dgx_test, dgy_test))

rbf _rhl = RBFRandomLayer (n_hidden=100, rbf_width=0.01)
tr, ts = res_dist(dgx, dgy,
GenELMClassifier (hidden_layer=rbf_rhl),

n_runs=100, random_state=0)

plt.hist(ts), plt.hist(tr)

print ()

from sklearn.svm import SVR

from sklearn.ensemble import RandomForestRegressor

tr, ts = res_dist (dbx, dby,

RandomForestRegressor (n_estimators=15),
n_runs=100, random_state=0)

plt.hist(tr), plt.hist(ts)

print ()



rhl = RBFRandomLayer (n_hidden=15, rbf_width=0.1)

tr,ts = res_dist (dbx, dby,

GenELMRegressor (rhl), n_runs=100,
random_state=0)

plt.hist(tr), plt.hist(ts)

print ()

elmc = ELMClassifier(n_hidden=1000,
activation_func=’gaussian’, alpha=0.0, random_state=0)
elmc.fit(dgx_train, dgy_train)

print (elmc.score(dgx_train, dgy_train),

elmc.score(dgx_test, dgy_test))

elmc = ELMClassifier(n_hidden=500,
activation_func=’hardlim’, alpha=1.0, random_state=0)
elmc.fit (dgx_train, dgy_train)

print (elmc.score(dgx_train, dgy_train),

elmc.score(dgx_test, dgy_test))

elmr = ELMRegressor (random_state=0)
elmr.fit(xtoy_train, ytoy_train)

print (elmr.score(xtoy_train, ytoy_train),
elmr.score(xtoy_test, ytoy_test))

plt.plot(xtoy, ytoy, xtoy, elmr.predict(xtoy))

elmr = ELMRegressor (activation_func=’inv_tribas’)

elmr.fit(xtoy_train, ytoy_train)
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print (elmr.score(xtoy_train, ytoy_train),
elmr.score(xtoy_test, ytoy_test))

plt.plot(xtoy, ytoy, xtoy, elmr.predict(xtoy))

#random_layer.py

from abc import ABCMeta, abstractmethod

from math import sqrt

import numpy as np
import scipy.sparse as sp
from scipy.spatial.distance import cdist

from scipy.spatial import pdist, squareform

from sklearn.metrics import pairwise_distances
from sklearn.utils import check_random_state,

check_array

from sklearn.utils.extmath import safe_sparse_dot

from sklearn.base import BaseEstimator, TransformerMixin

__all__ = [’RandomLayer’,
’MLPRandomLayer’,
>’RBFRandomLayer’,
>GRBFRandomLayer’,

]

class BaseRandomLayer (BaseEstimator, TransformerMixin):

"""Abstract Base Class for random layers"""
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__metaclass__ = ABCMeta
_internal_activation_funcs = dict ()
@classmethod

def activation_func_names(cls):

""rGet list of internal activation function names"""

return cls._internal_activation_funcs.keys ()

# take n_hidden and random_state, intt compomnents_

# anput_activations_
def __init__(self, n_hidden=20, random_state=0,

activation_func=None,activation_args=None):

self .n_hidden = n_hidden

self .random_state = random_state

self.activation_func = activation_func

self.activation_args = activation_args

self.components_ = dict ()

self . input_activations_ = None

# keyword args for internally defined funcs

self . _extra_args = dict ()

@abstractmethod
def _generate_components(self, X):

"""Generate components of htdden layer given X"""

and
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@abstractmethod
def _compute_input_activations(self, X):

""r"Compute input activations given X"""

# compute input activations and pass them

# through the hidden layer transfer functions
# to compute the transform

def _compute_hidden_activations(self, X):

""Compute hidden activations given X"'""

self._compute_input_activations (X)

acts = self.input_activations_

if (callable(self.activation_func)):

args_dict = self.activation_args if

(self .activation_args)

else {}

X_new = self.activation_func(acts, **xargs_dict)
else:

func_name = self.activation_func

func = self._internal_activation_funcs[func_name]
X_new = func(acts, **self._extra_args)

return X_new

# perform fit by generating random components based

# on the input array
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def fit(self, X, y=None):

X = check_array (X)

self . _generate_components (X)

return self

# perform transformation by compute_hidden_activations
# (which will mnormally call compute_input_activations)
def transform(self, X, y=None):

X = check_array (X)

if (self.components_ is None):

raise ValueError (’No components initialized’)

return self._compute_hidden_activations (X)

class RandomLayer (BaseRandomLayer):

# triangular activation function

_tribas = (lambda x: np.clip(1.0 - np.fabs(x), 0.0, 1.0))

# inverse triangular activation function

_inv_tribas = (lambda x: np.clip(np.fabs(x), 0.0, 1.0))

# sigmoid activation function

_sigmoid = (lambda x: 1.0/(1.0 + np.exp(-x)))

# hard limit activation function
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_hardlim

_softlim (lambda x: np.clip(x, 0.0, 1.0))
# gaussian RBF

_gaussian = (lambda x: np.exp(-pow(x, 2.0)))

# multiquadric RBF
_multiquadric = (lambda x:

np.sqrt (1.0 + pow(x, 2.0)))

# inverse multiquadric RBF
_inv_multiquadric = (lambda x:

1.0/(np.sqrt (1.0 + pow(x, 2.0))))

# internal activation function table
_internal_activation_funcs = {’sine’: np.sin,

’tanh’: np.tanh,

’tribas’: _tribas,

’inv_tribas’: _inv_tribas,

’sigmoid’: _sigmoid,

’softlim’: _softlim,

hardlim’: _hardlim,

’gaussian’: _gaussian,

’multiquadric’: _multiquadric,
’inv_multiquadric’: _inv_multiquadric,
b

def __init__(self, n_hidden=20, alpha=0.5,

(lambda x: np.array(x > 0.0, dtype=float))



activation_func=’tanh’, activation_args=None,
user_components=None, rbf_width=1.0):

super (RandomLayer , self).__init__(n_hidden=n_hidden,

random_state=random_state,
activation_func=activation_func,

activation_args=activation_args)

if (isinstance (self.activation_func, str)):
func_names = self._internal_activation_funcs.keys()
if (self.activation_func not in func_names):
msg = "unknown activation function ’%s’" % self.act

raise ValueError (msg)

self.alpha = alpha
self .rbf_width = rbf_width

self.user_components = user_components

self._use_mlp_input = (self.alpha != 0.0)

self. _use_rbf_input (self.alpha != 1.0)
def _get_user_components (self, key):
"""Look for given user component'"""

try:

return self.user_components [key]

except (TypeError, KeyError):

return None

def _compute_radii(self):
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"nnGenerate RBF radit """

# use supplied radii i1f present

radii = self._get_user_components(’radii’)

# compute radid

if (radii is None):

centers = self.components_[’centers’]
n_centers = centers.shape [0]

max_dist = np.max(pairwise_distances(centers))
radii = np.ones(n_centers) x

max_dist/sqrt (2.0 * n_centers)

self.components_[’radii’] = radii

def _compute_centers(self, X, sparse, rs):

"rirGenerate RBF centers"""

# use supplied centers if present

centers = self._get_user_components(’centers’)

# use points taken uniformly from the bounding
# hyperrectangle
if (centers is None):

n_features = X.shape[1]

if (sparse):

fxr = xrange(n_features)
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cols = [X.getcol(i) for i in fxr]

min_dtype = X.dtype.type(1.0e10)
sp_min = lambda col: np.minimum(min_dtype,
np.min(col.data))

min_Xs = np.array(map(sp_min, cols))

max_dtype = X.dtype.type(-1.0e10)
sp_max = lambda col: np.maximum(max_dtype,

np .max(col.data))

max_Xs = np.array(map(sp_max, cols))

else:

min_Xs = X.min(axis=0)

max_Xs = X.max(axis=0)

spans = max_Xs - min_Xs

ctrs_size = (self.n_hidden, n_features)
centers = min_Xs + spans * rs.uniform(0.0,

1.0, ctrs_size)

self.components_[’centers’] = centers

def _compute_biases(self, rs):

rrrGenerate MLP biases """

# use supplied biases <f present
biases = self._get_user_components(’biases’)
if (biases is None):

b_size = self.n_hidden
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biases = rs.normal(size=b_size)

self.components_[’biases’] = biases

def _compute_weights(self, X, rs):
"""Generate MLP weights"""

# use supplied weights 1f present
weights = self._get_user_components (’weights’)
if (weights is None):

n_features = X.shape[1]

hw_size = (n_features, self.n_hidden)
weights = rs.normal (size=hw_size)
self.components_[’weights’] = weights

def _generate_components(self, X):

"""Generate compomnents of htidden layer given X"""

rs = check_random_state(self.random_state)
if (self._use_mlp_input):
self._compute_biases (rs)

self . _compute_weights (X, rs)
if (self._use_rbf_input):
self . _compute_centers (X, sp.issparse(X), rs)

self . _compute_radii ()

def _compute_input_activations (self, X):
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"""Compute input activations given X"""

n_samples = X.shape [0]

mlp_acts = np.zeros((n_samples, self.n_hidden))

if (self._use_mlp_input):

b = self.components_[’biases’]

w = self.components_[’weights’]

mlp_acts = self.alpha * (safe_sparse_dot(X, w) + Db)
rbf_acts = np.zeros((n_samples, self.n_hidden))

if (self._use_rbf_input):

radii = self.components_[’radii’]

centers = self.components_[’centers’]

scale = self.rbf_width * (1.0 - self.alpha)

rbf_acts = scale * cdist (X, centers)/radii

self . input_activations_ = mlp_acts + rbf_acts

class MLPRandomLayer (RandomLayer):

"""Wrapper for RandomLayer with alpha

to 1.0 for MLP activations only"""

def __init__(self, n_hidden=20, random_state=None,

activation_func=’tanh’, activation_args=None,

weights=None, biases=None):

user_components = {’weights’: weights, ’biases’: biases}
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super (MLPRandomLayer , self).__init__(n_hidden=n_hidden,
random_state=random_state,
activation_func=activation_func,
activation_args=activation_args,
user_components=user_components,

alpha=1.0)

class RBFRandomLayer (RandomLayer):
"""Wrapper for RandomLayer with alpha

to 0.0 for RBF activations only"""

def __init__(self, n_hidden=20, random_state=None,
activation_func=’gaussian’, activation_args=None,

centers=None, radii=None, rbf_width=1.0):

user_components = {’centers’: centers,
’radii’: radii}

super (RBFRandomLayer , self).__init__

(n_hidden=n_hidden,

random_state=random_state,

activation_func=activation_func,

activation_args=activation_args,

user_components=user_components,

rbf_width=rbf_width,

alpha=0.0)

class GRBFRandomLayer (RBFRandomLayer):
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_grbf = (lambda acts, taus:

np.exp(np.exp(-pow(acts, taus))))

_internal_activation_funcs = {’grbf’: _grbf}

def __init__(self, n_hidden=20, grbf_lambda=0.001,

centers=None, radii=None, random_state=None):

super (GRBFRandomLayer , self).__init__
(n_hidden=n_hidden,
activation_func=’grbf’,
centers=centers, radii=radii,

random_state=random_state)

self .grbf_lambda = grbf_lambda

self .dN_vals = None
self .dF_vals = None
self.tau_vals = None

def _compute_centers(self, X, sparse, rs):
"""Generate centers, them compute tau, dF

and dN wvals"""

super (GRBFRandomLayer , self)._compute_centers

(X, sparse, rs)

centers = self.components_[’centers’]

sorted_distances = np.sort(squareform(pdist(centers)))
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self .dF_vals

sorted_distances[:, -1]

self .dN_vals sorted_distances[:, 1]1/100.0

#self.dN_vals = 0.0002 * np.ones(self.dF_vals.shape)

tauNum = np.log(np.log(self.grbf_lambda) /
np.log(1.0 - self.grbf_lambda))

tauDenom = np.log(self.dF_vals/self.dN_vals)

self.tau_vals = tauNum/tauDenom

self . _extra_args[’taus’] = self.tau_vals

# get radii according to ref [1]

def _compute_radii(self):

"rrGenerate radii """

denom = pow(-np.log(self.grbf_lambda),

1.0/self.tau_vals)

self.components_[’radii’] = self.dF_vals/denom

#random_layer.py

from abc import ABCMeta, abstractmethod

from math import sqrt

import numpy as np
import scipy.sparse as sp
from scipy.spatial.distance import cdist,

pdist, squareform
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from sklearn.metrics import pairwise_distances
from sklearn.utils import check_random_state,

check_array

from sklearn.utils.extmath import safe_sparse_dot

from sklearn.base import BaseEstimator,

TransformerMixin

__all__ = [’RandomLayer’,
>’MLPRandomLayer’,
’RBFRandomLayer’,
’GRBFRandomLayer’,

]

class BaseRandomLayer (BaseEstimator,
TransformerMixin):

"""Abstract Base Class for random layers"""

__metaclass__ = ABCMeta
_internal_activation_funcs = dict ()
@classmethod

def activation_func_names(cls):

""hGet list of internal activation function names"""

return cls._internal_activation_funcs.keys ()

# take n_hidden and random_state, init compomnents_

# input_activations_
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def __init__(self, n_hidden=20, random_state=0,
activation_func=None,

activation_args=None):

self.n_hidden = n_hidden
self . random_state = random_state

self.activation_func = activation_func

self.activation_args = activation_args

self.components_ = dict ()

self . input_activations_ = None

# keyword args for internally defined funcs

self . _extra_args = dict ()

@abstractmethod
def _generate_components(self, X):

"""Generate compomnents of htidden layer given X"""

@abstractmethod
def _compute_input_activations (self, X):

"""Compute input activations given X"""

# compute input activations and pass them

# through the hidden layer transfer functions
# to compute the transform

def _compute_hidden_activations(self, X):

"""Compute hidden activations given X"""
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self._compute_input_activations (X)

acts = self.input_activations_

if (callable(self.activation_func)):

args_dict = self.activation_args if

(self.activation_args) else {}

X_new = self.activation_func(acts, **xargs_dict)
else:

func_name = self.activation_func

func = self._internal_activation_funcs[func_name]
X_new = func(acts, **self._extra_args)

return X_new

# perform fit by generating random components based

# on the input array

def fit(self, X, y=None):

X = check_array (X)

self . _generate_components (X)

return self

def transform(self, X, y=None):

X = check_array (X)

if (self.components_ is None):
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raise ValueError (’No components initialized?’)

return self._compute_hidden_activations (X)

class RandomLayer (BaseRandomLayer):
# triangular activation function
_tribas = (lambda x: np.clip(1.0 -
np.fabs(x), 0.0, 1.0))

# inverse triangular activation function
_inv_tribas = (lambda x: np.clip

(np.fabs(x), 0.0, 1.0))

# sigmoid activation function

_sigmoid = (lambda x: 1.0/(1.0 + np.exp(-x)))

# hard limit activation function

_hardlim (lambda x: np.array(x > 0.0, dtype=float))

_softlim (lambda x: np.clip(x, 0.0, 1.0))

# gaussian RBF

_gaussian = (lambda x: np.exp(-pow(x, 2.0)))

# multiquadric RBF
_multiquadric = (lambda x:

np.sqrt (1.0 + pow(x, 2.0)))
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# inverse multiquadric RBF
_inv_multiquadric = (lambda x:

1.0/(np.sqrt (1.0 + pow(x, 2.0))))

# internal activation function table
_internal_activation_funcs = {’sine’: np.sin,

’tanh’: np.tanh,

’tribas’: _tribas,

’inv_tribas’: _inv_tribas,

’sigmoid’: _sigmoid,

’softlim’: _softlim,

hardlim’: _hardlim,

’gaussian’: _gaussian,

’multiquadric’: _multiquadric,
’inv_multiquadric’: _inv_multiquadric,
b

def __init__(self, n_hidden=20, alpha=0.5,
activation_func=’tanh’, activation_args=None,

user_components=None, rbf_width=1.0):

super (RandomLayer , self).__init__(n_hidden=n_hidden,
random_state=random_state,
activation_func=activation_func,

activation_args=activation_args)

if (isinstance (self.activation_func, str)):
func_names = self._internal_activation_funcs.keys()

if (self.activation_func not in func_names):
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msg = "unknown activation function ’%s’"

raise ValueError (msg)

self .alpha = alpha

self .rbf_width = rbf_width

self .user_components = user_components
self._use_mlp_input = (self.alpha != 0.0)
self. _use_rbf_input = (self.alpha != 1.0)

def _get_user_components(self, key):
"""Look for given wuser component”"""
try:

return self.user_components [key]
except (TypeError, KeyError):

return None

def _compute_radii(self):

tnnGenerate RBF radit """

# use supplied radii 1f present

radii = self._get_user_components(’radii’)

# compute radii
if (radii is None):

centers = self.components_[’centers’]

n_centers = centers.shape[0]

max_dist = np.max(pairwise_distances(centers))
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radii = np.ones(n_centers) x

max_dist/sqrt (2.0 * n_centers)

self.components_[’radii’] = radii

def _compute_centers(self, X, sparse, rs):

rrrGenerate RBF centers"""

# use supplied centers if present

centers = self._get_user_components(’centers’)

# use points taken uniformly from the bounding

# hyperrectangle
if (centers is None):

n_features = X.shape[1]

if (sparse):
fxr = xrange(n_features)

cols = [X.getcol(i) for i in fxr]

min_dtype = X.dtype.type(1.0e10)
sp_min = lambda col: np.minimum(min_dtype,
np.min(col.data))

min_Xs = np.array(map(sp_min, cols))

max_dtype = X.dtype.type(-1.0e10)
sp_max = lambda col: np.maximum(max_dtype,
np .max(col.data))

max_Xs = np.array(map(sp_max, cols))
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else:

min_Xs = X.min(axis=0)

max_Xs = X.max(axis=0)

spans = max_Xs - min_Xs

ctrs_size = (self.n_hidden, n_features)

centers = min_Xs + spans * rs.uniform(0.0, 1.0,

ctrs_size)

self.components_[’centers’] = centers

def _compute_biases(self, rs):

rrrGenerate MLP biases """

# use supplied biases t1f present
biases = self._get_user_components(’biases’)

if (biases is None):

b_size = self.n_hidden
biases = rs.normal(size=b_size)
self.components_[’biases’] = biases

def _compute_weights(self, X, rs):

"""Generate MLP weights"""

# use supplied weights if present
weights = self._get_user_components (’weights’)
if (weights is None):

n_features = X.shape[1]
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hw_size = (n_features, self.n_hidden)
weights = rs.normal (size=hw_size)
self.components_[’weights’] = weights

def _generate_components(self, X):

"""Generate components of htdden layer given X"""

rs = check_random_state(self.random_state)
if (self._use_mlp_input):
self._compute_biases(rs)

self . _compute_weights (X, rs)
if (self._use_rbf_input):
self._compute_centers (X, sp.issparse(X), rs)

self . _compute_radii ()

def _compute_input_activations(self, X):

"""Compute input activations given X"""

n_samples = X.shape [0]

mlp_acts = np.zeros((n_samples, self.n_hidden))

if (self._use_mlp_input):

b = self.components_[’biases’]

w = self.components_[’weights’]

mlp_acts = self.alpha * (safe_sparse_dot(X, w) + Db)
rbf_acts = np.zeros((n_samples, self.n_hidden))
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if (self._use_rbf_input):

radii = self.components_[’radii’]

centers = self.components_[’centers’]

scale = self.rbf_width * (1.0 - self.alpha)

rbf_acts = scale * cdist (X, centers)/radii

self . input_activations_ = mlp_acts + rbf_acts

class MLPRandomLayer (RandomLayer):
"""Wrapper for RandomLayer with alpha

nimnn

to 1.0 for MLP activations only

def __init__(self, n_hidden=20,
random_state=None,
activation_func=’tanh’, activation_args=None,

weights=None, biases=None):

user_components = {’weights’: weights,
’biases’: biases}

super (MLPRandomLayer , self).__init__
(n_hidden=n_hidden,
random_state=random_state,
activation_func=activation_func,
activation_args=activation_args,
user_components=user_components,

alpha=1.0)
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class RBFRandomLayer (RandomLayer):
"""Wrapper for RandomLayer with alpha
to 0.0 for RBF activations only"""

def __init__(self, n_hidden=20, random_state=None,
activation_func=’gaussian’, activation_args=None,

centers=None, radii=None, rbf_width=1.0):

user_components = {’centers’: centers,
’radii’: radii}

super (RBFRandomLayer , self).__init__

(n_hidden=n_hidden,

random_state=random_state,

activation_func=activation_func,

activation_args=activation_args,

user_components=user_components,

rbf_width=rbf_width,

alpha=0.0)

class GRBFRandomLayer (RBFRandomLayer):

_grbf = (lambda acts, taus:

np.exp(np.exp(-pow(acts, taus))))

_internal_activation_funcs = {’grbf’: _grbf}

def __init__(self, n_hidden=20,
grbf _lambda=0.001,
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centers=None, radii=None, random_state=None):

super (GRBFRandomLayer , self).__init_

(n_hidden=n_hidden,
activation_func=’grbf’,
centers=centers, radii=radii,

random_state=random_state)

self .grbf_lambda = grbf_lambda

self .dN_vals = None
self .dF_vals = None
self.tau_vals = None

def _compute_centers(self, X, sparse, rs):
"""Generate centers,compute tau, dF and

dN ’UG,ZS"""

super (GRBFRandomLayer ,self). _compute_centers

(X, sparse, rs)

centers = self.components_[’centers’]
sorted_distances = np.sort(squareform

(pdist (centers)))

self .dF_vals sorted_distances[:, -1]

self.dN_vals sorted_distances[:, 1]1/100.0

#self.dN_vals = 0.0002 * np.ones(self.dF_vals.shape)

tauNum = np.log(np.log(self.grbf_lambda) /
np.log(1.0 - self.grbf_lambda))
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tauDenom = np.log(self.dF_vals/self.dN_vals)

self.tau_vals = tauNum/tauDenom

self . _extra_args[’taus’] = self.tau_vals

# get radii according to ref [1]

def _compute_radii(self):

rtrrGenerate radit """

denom = pow(-np.log(self.grbf_lambda),

1.0/self.tau_vals)

self.components_[’radii’] = self.dF_vals/denom

#plot_elm_comparison.py
print __doc__
import numpy as np

import pylab as pl

from matplotlib.colors import ListedColormap

from sklearn.datasets import make_classification

from sklearn.datasets import make_moons, make_circles
from sklearn.preprocessing import StandardScaler

from sklearn.cross_validation import train_test_split

from sklearn.linear_model import LogisticRegression

from elm import GenELMClassifier
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from random_layer import RBFRandomLayer,

MLPRandomLayer

def get_data_bounds(X):

h = .02 # step size in the mesh

x_min, x_max = X[:, 0] min() - .5, X[:, 0] .max() +
y_min, y_max = X[:, 1] .min() - .5, X[:, 1] . max() +
XX, yy = np.meshgrid(np.arange(x_min, x_max, h),

np.arange(y_min, y_max, h))

return (x_min, x_max, y_min, y_max, XX, yy)

def plot_data(ax, X_train, y_train, X_test, y_test
, XX, yy):

cm = ListedColormap ([’#FF0000°’, °’#0000FF’])
# Plot the training points
ax.scatter(X_train[:, 0], X_train[:, 1],
c=y_train, cmap=cm)

# and testing points

ax.scatter(X_test[:, 0], X_test[:, 1],
c=y_test, alpha=0.6)

ax.set_xlim(xx.min(), xx.max())
ax.set_ylim(yy.min(), yy.max())
ax.set_xticks (())

ax.set_yticks (())

.5
.5
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def plot_contour(ax, X_train, y_train, X_test, y_test
, XX, Yy, Z):

cm = pl.cm.RdBu

cm_bright = ListedColormap ([’#FF0000°’, ’#O0000FF’])

ax.contourf (xx, yy, Z, cmap=cm, alpha=.8)

# Plot also the training points

ax.scatter (X_train[:, 0], X_train[:, 1], c=y_train,
cmap=cm_bright)

# and testing points

ax.scatter (X_test[:, 0], X_test[:, 1], c=y_test,

cmap=cm_bright, alpha=0.6)

ax.set_xlim(xx.min(), xx.max())
ax.set_ylim(yy.min(), yy.max())
ax.set_xticks (())

ax.set_yticks (())

ax.set_title(name)

ax.text(xx.max() - 0.3, yy.min() + 0.3,
(*%h.2f° % score)

.1lstrip(’0°),

size=13, horizontalalignment=’right’)

def make_datasets ():
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return [make_moons(n_samples=200, noise=0.3),
make_circles(n_samples=200, noise=0.2, factor=0.5),

make_linearly_separable ()]

def make_classifiers():

names = ["ELM(10,tanh)", "ELM(10,tanh,LR)",
"ELM (10, sinsq)",

"ELM (10, tribas)", "ELM(hardlim)",

"ELM (20, rbf (0.1))"]

# pass user defined transfer func
sinsq = (lambda x: np.power(np.sin(x), 2.0))
srhl_sinsq = MLPRandomLayer (n_hidden=nh,

activation_func=sinsq)

# use internal transfer funcs
srhl_tanh = MLPRandomLayer (n_hidden=nh,

activation_func=’tanh’)

srhl_tribas = MLPRandomLayer (n_hidden=nh,

activation_func=’tribas’)

srhl_hardlim = MLPRandomLayer (n_hidden=nh,

activation_func=’hardlim’)
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# use gaussian RBF
srhl_rbf = RBFRandomLayer (n_hidden=nh*2,
rbf_width=0.1)

log_reg = LogisticRegression()

classifiers = [GenELMClassifier (hidden_layer=srhl_tanh),
GenELMClassifier (hidden_layer=srhl_tanh,
regressor=log_reg),

GenELMClassifier (hidden_layer=srhl_sinsq),
GenELMClassifier (hidden_layer=srhl_tribas),
GenELMClassifier (hidden_layer=srhl_hardlim),

GenELMClassifier (hidden_layer=srhl_rbf)]

return names, classifiers

def make_linearly_separable():

X, y = make_classification(n_samples=200,
n_features=2, n_redundant=0,
n_informative=2, random_state=1,
n_clusters_per_class=1)

rng = np.random.RandomState (2)

X += 2 x rng.uniform(size=X.shape)

return (X, y)

HAHRARBRBARBARRABRRBRBRABRABRRRRRRARRRBRRBRRRABRABRRRRRRARRARRRRH

datasets = make_datasets ()
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names, classifiers = make_classifiers ()

i=1

figure = pl.figure(figsize=(18, 9))

# 2terate over datasets

for ds in datasets:

# preprocess dataset, split into training and test part
X, y = ds

X = StandardScaler ().fit_transform(X)

X_train, X_test, y_train, y_test = train_test_split(X, vy,
test_size=.4,

random_state=0)

x_min, x_max, y_min, y_max, xx, yy = get_data_bounds (X)

# plot dataset first
ax = pl.subplot(len(datasets), len(classifiers) + 1, i)

plot_data(ax, X_train, y_train, X_test, y_test, xx, yy)

# iterate over classtifiers

for name, clf in zip(names, classifiers):

ax = pl.subplot(len(datasets), len(classifiers) + 1, i)
clf .fit(X_train, y_train)

score = clf.score(X_test, y_test)

# Plot the decision boundary. For that, we will asign
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# point in the mesh [z_min, m_maz]z[y_min, y_maz].

Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])

# Put the result into a color plot

Z = Z.reshape(xx.shape)

plot_contour (ax, X_train, y_train, X_test, y_test, xx,

yy, Z)

figure.subplots_adjust (left=.02, right=.98)
pl.show ()
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