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Abstract

The cyber-physical system’s security depends on the software and underlying hard-

ware. In today’s times, securing hardware is difficult because of the globalization

of the Integrated circuit’s manufacturing process. The main attack is to insert a

”backdoor” that maliciously alters the original circuit’s behaviour. Such a mali-

cious insertion is called a hardware trojan.

In this thesis, Random Forest Model was proposed for hardware trojan detection

and this research focuses on improving the detection accuracy of Random Forest

model.. The detection technique used the random forest machine learning model,

which was trained by using the power traces of the circuit behaviour. The data

required for training was obtained from an extensive database by simulating the

circuit behaviours with various input vectors. The machine learning model was

then compared with the state-of-art models in terms of accuracy in detecting

malicious hardware.

Our results show that the Random Forest classifier achieves an accuracy of 99.80

percent with a false positive rate (FPR)of 0.009 and a false negative rate (FNR)

of 0.038 when the model is created to detect hardware trojans. Furthermore, our

research shows that a trained model takes less training time and can be applied

to large and complex datasets.
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Chapter 1

Introduction

Hardware security has become a serious concern with advancements in the IoT

and autonomous and smart vehicles. The electronics parts and devices are now

used in many household items and are affecting all aspects of life.

Securing the hardware and ensuring the integrity of electronic parts is a difficult

task today due to the globalization of integrated circuits’ manufacturing flow. Due

to the increased demand for smart devices, hardware vendors outsource manufac-

turing portions of the design to un-registered and sometimes unknown third-party

vendors [1].

By outsourcing the integrated circuit manufacturing, it becomes vulnerable to

Hardware Trojans [2]. Hardware Trojans are small, simple, and stealthy; therefore,

their detection is difficult. It has become one of the most critical issues in part

production and manufacturing.

The Trojan hardware can disrupt the system operation, leak confidential infor-

mation, and decrease its reliability. Detection of Hardware Trojan using Machine

Learning (ML) is the major focus of this thesis.

1



Introduction 2

1.1 Motivation

It is important to make sure that any device connected to IoT network is secure

since it might greatly impact human lives. The security of a larger system depends

on the integrity of internal software and underlying hardware.

In general, the system’s security depends mainly on three components: the in-

formation processed, software, and underlying hardware. It should be noted that

while a software patch or update might resolve issues with the software and ap-

plication level of a system, hardware modifications cannot be performed this way.

The modification which maliciously alters the behaviour of the original system

or Hardware Trojan is done secretively to never be noticed [3] A remote system

update cannot fix a fault in the system’s hardware. Instead, the hardware has to

be replaced or accepted as a source of the fault in the system [4]. The hardware

trojan is a malicious modification of hardware, and this can take place at various

stages of hardware’s production or repair life cycle. The faulty hardware part

in a system may require a system disassembly and part replacement [3]. It can

have multiple effects, such as performance degradation, Denial of Service, leak of

classified information [2].

The first real-world detection of hardware trojan happened in a military-grade

field programmable array (FPGA) in 2012 that allowed an adversary to extract

configuration data from the chip or even permanently damage the device.

The other example of Hardware Trojan insertion is the National Security Agency

(NSA) intercepting shipments of network devices before their arrival at the des-

tination. They inserted “beacon implants” into the network devices that allowed

NSA to exploit the devices and survey the network [5]. Then one of the devices

was used in the Syrian Telecommunication Establishment network. After that,

NSA was able to track the call detail records having the billing information that

exploited the users’ identity with their geographic locations.
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In this thesis, an advanced hardware trojan detection technique is proposed and

implemented. This technique is based on a machine learning algorithm called

Random Forest Classifier [6] to detect hardware trojan. The proposed machine

learning model was more precisely trained based on the data collected from im-

plemented circuits using Hspice circuit simulations.

Securing hardware is exceptionally difficult due to the complexity of the design and

manufacturing variability, resulting in the integrated circuit’s different physical

characteristics, even among the integrated circuit coming from the same design.

The manufacturing flow of an IC follows these steps[7, 8]:

1. System Specification: System specifications are high-level requirements in-

dicating the expected capabilities of the design.

2. Design: The design stage is to produce the physical layout, and it is com-

posed of geometric representations of the circuit, which will guide the man-

ufacturing process.

3. Manufacturing: In the manufacturing stage, the design is converted into

wafers of semiconducting material. The manufacturing of IC’s takes place

at different locations.

4. Assembly and Market: The manufacturing process ends with packaging; the

IC’s are distributed to several different sectors, including transportation,

military, technology, and financial organizations.

Any participant in the manufacturing process can be an adversary who potentially

can insert a Hardware Trojan [9]. For example, a Hardware Trojan can be inserted

into the design by a computer-aided design (CAD) designer at the design stage.

CAD tools are used to perform synthesis through software, and hence Hardware

Trojan can be inserted in the system. The Hardware Trojan insertion could happen

by maliciously altered logic in the CAD tool or scripts running the tool [10].
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However, in this thesis, we do not include the modifications at this stage of the

design and assume that the CAD design is secure and trustworthy.

The common characteristics of a Hardware Trojan are reviewed here briefly [10].

1. Insertion phase: The manufacturing process consists of different phases,

mainly the specification stage, design stage, fabrication stage, testing stage

and packaging stage. The characteristic defining a hardware trojan is the

phase at which it was inserted [10].

2. Trigger: Hardware Trojans can be categorized based on the type of trigger

that activates them. There are three different types of triggers. The first

type is the “always-on” where the Hardware Trojan is awake from the very

beginning of insertion. The second is the “internal” where the Hardware

Trojan is triggered by an internal condition or signal within the design [10].

The third one is when the Hardware Trojan is triggered by an external user.

3. Payload: The different impact hardware trojan can have on the design are the

change of the circuit’s functionality, degradation of the designs’ performance,

leak of sensitive information, and denial of service [10].

4. Insertion Location: Different HTs can be characterized by the location at

which they were inserted within an integrated circuit. The possible areas

are the processor, the memory, the input or output pins, the power supply

lines within the IC, or the clock grid. Moreover, an HT can be distributed

over several locations across the places mentioned above or only in one area

[10].

5. Physical Characteristic: HTs can be differentiated based on their physical

features such as their distribution (focused or dispersed) or size, measured

in the number of gates or percentage of area occupied by HT compared to

the entire circuit size [11].
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1.1.1 Detection Methods

Detection of Hardware Trojan can be challenging because of the variety in

its sizes and locations of inset. The detection approaches can be classified

into these categories [3]: [7] the H

1. Run-Time Monitoring: It focuses on detecting Hardware Trojan after the

deployment, and it can be used for the whole lifetime of the integrated

circuit [11].

2. Design for Security: The first choice is to prevent the insertion of the Hard-

ware Trojan by having restricted and precise design steps and processes for

security in order to facilitate detection [11].

3. Activation Monitoring: After the fabrication process, the detection of the

Hardware Trojan can be divided into the destructive and non-destructive

approach. The destructive approach is to reverse engineering each layer of

the integrated circuit and validate it. The non-destructive approach consists

of three categories: the first one detects hardware trojan at the IP level.

The second one depends on targeted test patterns applied to IC to activate

the hidden hardware trojan and generate its effect to be detected [3]. The

third category measures a side-channel such as a path delay or power supply

current to expose an inserted hardware trojan.

Detection methods that are based on the side-channel analysis take place during

the post-silicon testing stage. The side-channel information is the physical pa-

rameters of the design, such as delay or power consumption, and also acts as the

unique signature of the hardware.

Most of the detection methods, however, rely on a Golden Circuit. A Golden

Circuit is considered a Trojan free design Golden Circuit [7]. The side-channel

parameters are compared with Golden Circuit’s side channel parameters [12]. This
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helps in identifying whether the circuit is secured or compromised by the hardware

trojan [3]. [13]

A modification to the original design in the manufacturing process will most prob-

ably present itself in side-channel information of the system when compared to

trojan free circuit [3].

1.2 Objective

In this thesis, a machine learning-based hardware trojan detection approach is

proposed. In this work, circuit simulations are used instead of the Golden Circuit.

The simulations are the results of the statistical runs on the circuit parameters

such as temperature, transistor corners, effects of mismatch and manufacturing

inconsistencies. The simulations are based on the Hspice transistor modelling and

are from the models developed by the TSMC manufacturing models.

Methods that are based on the Golden IC assume that they have a fabricated and

trusted IC. This assumption is not valid in most cases and cannot be guaranteed

at all. This process assumes that trojans are inserted into random ICs. It is more

viable for an attacker to insert a stealthy trojan into every fabricated integrated

circuit that passes manufacturing process and trust validations, avoiding the need

for additional expensive masks. Therefore, all samples are infected, and it is not

possible to have a trusted IC for detection uses. This raises the challenge of

detecting the Trojans in integrated circuits without relying on golden ICs.

Machine learning helps to build models to help systems learn from data. Machine

learning approaches can be divided into three categories [14] of Supervised learning

[15], Unsupervised learning [15], and Reinforcement learning [13].
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Supervised learning [14] is the one in which a model is trained with the input data

called the training dataset. The model is able to make predictions, however, it

needs to be corrected if these predictions are wrong [14].

Unsupervised learning [15] is the one in which a model makes predictions on its

own, and its input data is not labelled. For example, K-means and clustering are

the examples of unsupervised learning [14]. Since this method is not supervised,

it might result in miscategorizing the infected IC and is generally avoided in this

application.

In the reinforcement learning [13] the model learns to act through trial and error.

This learning is used in video games [7], and adaptive learning process and is not

suitable for classification problems such as separating the Infected ICs from the

Trojan free Ics.

In this work, the Random Forest Algorithm [6] is used to train our model to detect

hardware trojan. Random Forest is one of the supervised learning algorithms.

The Random Forest consists of several decision tree branches, which acts as an

ensemble method [14]. Each individual tree gives out a prediction and the tree

with the most votes becomes model’s prediction.

Because of the low correlation function developed between the branches, this model

outperforms other supervised models such as backpropagation. Decision trees are

known for variance and even a small change in the data can result in a change in

the final decision.

Moreover, it can overcome the problem of overfitting because of less correlation

with the other decision trees. It can deal well with high dimensional data.

Random forest ensures that each tree is not too correlated with behavior of other

trees. It uses these two methods:
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– Bootstrap Aggregation (Bagging): Small changes to the training set can lead

to different tree structures and decision trees are sensitive to the data. It allows

each tree to randomly sample from the dataset with replacement. This process is

known as Bagging [7].

– Feature Randomness: With the help of this method, there is more variation

among the trees in the model and results in lower correlation among trees and

more diversification

This supervised learning method is applied to detecting the Hardware Trojan on

the power traces of a 256-bit AES. Additional improvements on the data labelling

and training of the Random Forest has been carried out, which will be presented

in the later chapters.

1.3 Organization of Thesis

The thesis is organized as follows.

• In chapter 2 different trojan detection approaches have been introduced and

drawbacks of each detection techniques such as reverse engineering, side

channel analysis, logic testing and SVM based detection approaches is pro-

vided.

• Chapter 3 introduced the Random Forest Classifier algorithm. It explains

how this algorithm works and its advantages and disadvantages. It contains

the different methods applied to the random forest model to improve its accu-

racy and reduce training time. We briefly introduce features and important

hyperparameters of random forest which includes the predictive power and

model speed. Finally, we discuss working of random forest algorithm and

methods for missing values replacement for training and test set.
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• Chapter 4 introduces the fundamental technology used to create random

forest model, including data preparation, data cleaning which consists of

fill-out missing values, fixing errors and removing rows with missing values,

data normalization. Then we use train/test split and confusion matrix and

cross validation method to train the model. At last of this chapter, we apply

our proposed solution to make a comparison with published results achieved

using machine learning techniques and achieve a considerable result.

• Chapter 5 is summarized the contribution of this thesis and suggestions for

future works.



Chapter 2

Litrature Review and Background

Information

In this chapter, various types of hardware trojans and different types of detection

techniques will be reviewed. Hardware Trojans can be have been classified based

on five major attributes [16] as following:

1. Insertion Phase

2. Abstraction Level

3. Activation Mechanism

4. Functionality

5. Location of Insertion

2.1 Insertion Phase

An Integrated circuit is manufactured in various steps from specification to fab-

rication. The insertion phase can be divided further into several manufacturing

10
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stages, from when the circuit specification is proposed to when the device and

circuit are fabricated. Detecting a Trojan inserted at the design and specification

stage is almost impossible and requires that trustworthy employees and designers

[16]. This type of Trojan is not within the scope of this thesis. Instead, the Trojans

that are inserted in the foundry and manufacturing stage will be considered.

A brief introduction and review of the main insertion phases are presented here.

It should be noted that an actual manufacturing process is a complex function,

and some of the stages can be divided into further categories.

2.1.1 Specification Phase

Hardware Trojans can be inserted by altering the specification of the integrated

circuit. In many detection approaches, integrated circuits are being checked by

comparing with the Golden ICs characteristics matching the specifications [1].

When the specification itself is altered, the detection mechanism will never work

[10]. An adversary may deliberately identify weak system requirements, and as

a potential consequence, the design’s reliability could be compromised, rendering

the system vulnerable to sensitive information leaks.

2.1.2 Design Phase

The design is mapped onto the technology, and transistor sizes and specifications

will be determined during this stage. This phase is another source of Hardware

Trojan threat as pre-silicon verification might not be available for such imported

chips.

Even though the entire design is done in-house, the mere use of untrusted resources

can result in a potential security breach. It can be influenced in a harmful way by

libraries, third party IPs and regular cells [5].
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For example, untrusted instruments may add additional circuitry to the system

to insert backdoors in the system. If every design process step is outsourced, a

Trojan could be directly added to the genuine circuit’s hardware description data.

2.1.3 Fabrication Phase

In this phase, wafers are manufactured using the mask derived from the design

phase. A minimal change in the mask can act as a threat to the IC. The design is

vulnerable to be modified by the addition or removal of parts of it. The circuit’s

susceptibility to fault-based assault may also be significantly increased by the

Trojans inserted at this stage [10]. Trojans inserted in the Fabrication phase are

detectable by various tests and verifications, and comparisons with the Golden IC

characteristics.

2.1.4 Assembly Phase

A printed circuit board is assembled in this step by putting various components

together. For example, a Trojan can be implemented by introducing an I/O pin

with high capacitance, leading to information leakage.

Therefore, a malicious and untrusted assembly can produce flaws in the system.

To reduce the chance of Trojan insertion, the IC is encapsulated, and packaged

[16]. This type of Trojans can be detected by proper test benches and matching

the expected system behaviour with measurement values.
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2.1.5 Test Phase

The test phase has always been used as a stage to ensure the trustworthiness of

an IC. There is no scope for Trojan insertion in this phase, but unfaithful testing

can lead to hardware trojan inserted ICs undetected [16].

However, any change in the circuit layout can alter the test set-up and its associ-

ated programs or reports to cover potential Trojan insertion. Moreover, since this

is the last step in the flow of IC design and just before the manufacturing step,

it is the last chance for original designers to detect Trojans before the stage of

deployment [11].

2.2 Abstraction Level

Hardware Trojans can be categorized by the hardware definition level when they

are inserted [5]. When an IC is designed and manufactured, it goes through dif-

ferent stages of hardware definition. The way transistors and gates are defined at

the system, and abstract level is different when the design is defined at the tran-

sistor level. These levels all take place at the design stage and can be considered

a sub-category of the design phase, as described above.

2.2.1 System Level

This is the highest level of abstract level when defining the circuit operation and

design. At this level, the system is broken into components, modules, communi-

cation protocols and data. It is interesting to note that a Trojan inserted at this

stage can be improved in the specifications of functions, protocols, and interfaces.

Any obscure requirements may be introduced by an adversary involved at the ma-

chine level to give him control of secret data flowing through the produced unit [7].
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For example, an opponent might modify the specifications of true random number

generators (TRNG) at the specification stage to make it function predictably be-

cause only the HT owner is aware of [1]. This can reduce the reliability of secure

systems based on these architectures and give away sensitive information.

2.2.2 Register Transfer level

At this level, an integrated circuit is defined in terms of its required registers and

memory blocks, input/output signals, and combinational logic. If an attacker has

access to design and changes it, it can cause serious damage because of greater

hardware control. An HT can also be a simple modification of real RT-level codes

or codes. An adversary may change the circuit’s functions to provoke significant

delays, or power consumption [11]—consequences, such if the unit is used for

a cryptographic block; it can cause failures in the authentication applications.

Attackers at the stage of design or possible HT insertion sources are untrusted

code suppliers.

2.2.3 Gate Level

In most of the research work done for Trojan detection, the Trojan circuit is

inserted by altering the gate-level netlist. In the initial netlist, the addition or

removal of one or more gates is called an HT gate-level. It is also possible to

use standard delay format files that contain device timing data [17]. Modifying,

changing timing and power constraints can be used to mask HT insertion.
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2.2.4 Transistor Level

Trojans inserted at the transistor level have the highest impact on the circuit’s

performance since these can affect and control power consumption, delay, channel

length, parasitic capacitors, wire width and lengths, to name a few.

The addition of a small number of transistors will not significantly increase the

circuit parameters such as power and delay. Furthermore, to increase critical path

delays, transistors can be inserted, causing the circuit to malfunction. At this

stage, the integrated circuit is at the manufacturing stage; hence the adversary is

in the form of untrusted resources, libraries, and templates [11].

This type of Trojan detection is the most challenging type to detect due to small

and minor changes that can be masked by the manufacturing effects. In this thesis,

this type of Trojans has been considered.

2.3 Activation Mechanism

There are Hardware Trojans that are activated only under certain conditions.

They can be classified into Time-based and physical conditions-based activation.

Some Trojans are designed to be always active and can affect the system at any

time. If a Trojan is always triggered, some system properties may be upset by its

impact on the circuit [2].

Suppose an HT stays dormant until it is active; in this case, its detection is

challenging since its disruptions in the behaviour of the circuit become less visible,

significantly obstructing its identification [18].

Trojans are likely to feature activation mechanisms for this reason. They are

used only after verification and validation phases and are triggered under certain
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conditions. There are three main types of activation-based functions; always on,

internal activation and external activation.

1. Always on: The conduct of the target circuit is always impacted by the

hardware trojan [17]. Therefore, the Trojan is composed only of the payload,

which is the added Trojan’s destructive effect.

2. Internal activation: When a particular internal condition occurs in the cir-

cuit, a Trojan is triggered. An internal counter, for example, will activate

the HT if the clock exceeds a certain value. Additionally, this type of Trojan

can be triggered by internal signal patterns or unusual conditions within the

integrated circuit [17].

3. External activation: This type of Trojans is triggered by an intruder who is

conscious of HT’s existence in the circuit and is applied from outside. For

example, a certain input pattern can be used to activate the Trojan [17].

Sophisticated trigger processes rely on very rare trigger mechanisms. This

type of Trojans can be detected by the side-channel probing o the circuit.

Since these get activated only for a rare input pattern, it is almost impossible

for users not to activate the Trojan.

2.4 Effects and Payloads

The attacker inserts Trojan with a goal to cause certain effects, which are as follows

[19]:

1. Change of Functionality: Its effect can lead to a change in functionality that

was not the purpose of the integrated circuit’s specifications. For example,

a Trojan inserted in the GPS can change the position data generated by the

GPS.
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2. Reduce Reliability: The Trojans is designed with the aim to downgrade the

performance of the circuit. It causes the device to perform poorly after

certain operations and increase system error and repeated system failures.

3. Leakage of Information: A Trojan can be inserted to only leak the confiden-

tial information and does not alter the system performance and functionality.

This type of Trojans is mostly inserted on the PCB, leading to leakage of

sensitive information [19].

4. Denial of Service: A trojan can restrict other users’ access to the system by

constantly requesting sta from the servers. This type of attack is simple and

does not require complex circuits and operations [10].

2.5 Placement

Trojans are also categorized based on the computational units’ placement within

a system [16].

1. Processor: Trojan can modify, add, or remove processor instructions, causing

it to run functions that are suspect and cause malfunctions.

2. Memory: Memory element controlled by attackers, provides them with access

to memory components, releasing confidential information and secret keys.

3. I/O: The HT-controlled pins may cause the circuit to avoid certain specific

conditions, input erroneous signals to the system, and track communications

[16].

4. Power supply: Trojans in the circuit’s power grid can control the device

voltage or current, thus increasing leakages or causing failures.
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2.6 Hardware Trojan Detection Approaches

Research work done on trojan detection techniques is categorized into several

categories. These detection techniques can detect Trojans at pre-silicon or post-

silicon stage.

With the logic testing, dedicated test patterns are generated and applied to det

ect hardware trojans. Another approach is to rely on the side-channel analysis,

where detection is done by comparing parameters such as total power, delay, or

temperature of the circuit [2].

2.6.1 Logic Testing

A logic testing approach requires the Hardware Trojan trigger nodes to be acti-

vated with appropriate test patterns. This method requires exhaustive testing and

does not have a high chance of Trojan detection. The Trojan can be hidden at a

node that is not activated by any input pattern.

Using multiple excitations of rare occurrence (MERO) method, a set of test pat-

terns is generated to reduce time and cost of detection and maximize the trojan

detection coverage [2].

Another test pattern generation approach consists of guided test patterns which

focus on small but vulnerable areas of chip where patterns show unusual activity

[2]. A tool called FANCI detects vulnerable nets through Boolean Functional

Analysis to some degree of success.

2.6.2 Side-Channel Analysis

Side-Channel Analysis is based on developing a testing scheme to capture the

overall characteristics of the integrated circuit. These characteristics are then
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Figure 2.1: Generic model for combinational and sequential Trojan circuit
[33]

compared with a baseline function and are used as a pass/fail criteria for the

manufactured circuit [12].

An effective Trojan is only triggered under rare conditions. Thus, post-fabrication

functional and structural testing conducted using a limited number of test patterns

is usually not reliable to define the trustworthiness of a fabricated IC received from

an external foundry.

Exhaustive testing, covering all possible input patterns, is also not a practical

solution for most chips because of extensive time requirements [12].

Therefore, it is expected that Trojans’ full activation followed by any observable

change at the output should be an infrequent case under usual testing schemes.
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Nonetheless, partial activation of Trojan is possible. During testing or normal

operation, the Trojan circuit may receive input patterns that activate some of

part of it for a very brief period.

The occurrence of signal transition at the Trojan gates’ input is very likely to cause

power or delay variation. Many of the Trojan detection techniques are based on

observing the possible change in the IC’s side channel behaviour due to Trojan’s

partial activation. This procedure provides a useful workaround, eliminating the

need for exhaustive testing.

One of the critical issues regarding the side-channel analysis method is the process,

environmental variation, and measurement noise [8]. These variations make it dif-

ficult to isolate the deviation of side-channel parameters caused by the Trojan,

which is usually smaller than the process and environmental variations. Never-

theless, side-channel monitoring in order to detect the Trojan is one of the most

effective methods of detecting Trojans.

2.6.3 Reverse Engineering

Reverse engineering can be performed at the chip, board, or system level. It

includes verification of a design for quality control, fault analysis, trojan detection,

and trust evaluation [13].

In terms of Trojan detection, the reverse Engineering of the circuit is the process of

examining and analyzing the chip’s internal configuration and layer by layer com-

position to detect added, and unwanted transistors or gates during the fabrication

process [16].

Reverse engineering can provide convenient tools for the identification of malicious

circuits. It is used to identify possible insertion points in circuits. However, this

method is a destructive method to detect Trojans, and requires excessive manual

effort and is very time-consuming.
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Figure 2.2: DIGITAL CIRCUIT [5]

In today’s times, digital circuit design is realized at the RTL level that models

signal flow among registers. Logical synthesis devices convert register transfer

level descriptions to gate-level netlists. Then, place and route algorithms pro-

cess the netlist and check where gates are placed and how the interconnections

are connected. During this transfer, valuable information such as module binary

information and hierarchy information is lost [20].

2.6.4 Trojan Scanner

Trojan Scanner is a newly introduced concept for the untrusted threat model.

An advanced computer algorithm is combined with supervised learning models

in order to differentiate features of the golden layout, and SEM images from the

integrated circuit under authentication [7]. The outcomes of each process are then

compared to detect any changes, which raises the flag for a potential Hardware

Trojan. These can check changes due to fabrication, defects.
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2.6.5 Design for Security (DFS) Approach

Design for Security Approach is to control the threat of trojans by introducing

changes to the design. It is similar to the built-in self-test (BIST) technique used

to detect faults in circuits [21].

Prevention is done using these two approaches:

1. Obfuscation based Approaches

2. Layout filler Approaches

Obfuscation-based approaches involve designing the system to make it difficult for

the attacker to figure out the integrated circuit structure. Hence, it becomes hard

for the adversary to insert a trojan and keep the circuit’s behaviour intact.

2.6.6 Extreme Learning Machine (ELM):

Extreme Learning Machines are feedforward neural networks. [22] that are used for

classification, regression and clustering. The ELM is a single layer neural network

with randomly generated neurons and randomly chooses input weights and hidden

units [23].

This approach analytically determines the output weights. It has the advantage of

fast learning speed and good generalization performance, along with less overfitting

problems.

ELM output is calculated by:

fL(x) =
L∑
i=0

βigi(x) =
L∑
i=0

βig(wi ∗ xj + bi), j = 1, ..., N (2.1)
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Figure 2.3: ELM [55]

where:

L is a number of hidden units

N is a number of training samples

Bi is weight vector between ith hidden layer and output

w is a weight vector between input and hidden layer

g is an activation function

b is a vias vector

x in an input vector

ELMs are not as precise as the conventional neural networks, but they can be used

to deal with issues that involve real-time network retraining.
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2.6.7 Random Forest Classifier

Random Forest Classifier is an ensemble algorithm and is a set of prediction trees

where each tree depends on independently sampled random vectors with a distri-

bution close to that of any other tree in the random forest [15].

Originally intended for machine learning, due to its high accuracy, the classifier

has gained popularity in the remote-sensing community, where it is used in remote-

sensed image classification [6].

Random Forest ensures that each tree’s behaviour is not too correlated with any

other trees’ behaviour by using the Bootstrap Aggregation concept. The Boot-

strap Aggregation (Bagging ) decisions trees are susceptible to the information

from which they are trained. Minor adjustments to the training set can lead to

dramatically different structures of the tree.

Random forest takes advantage of this by enabling each tree to sample randomly

with replacement from the dataset, resulting in numerous trees [24]. This mecha-

nism is known as bagging [16]. This method is used in this thesis for the detection

of the Trojans.

2.6.8 Why Random Forest

1. It is one of the most precise algorithms for learning. It produces a highly

specific classifier for many data sets.

2. It runs very efficiently on large datasets.

3. It can handle hundreds of input variables without variables deletion.

4. It gives an estimation of which variables are important in classification.

5. It generates an unbiased estimate of generalization error as the model build-

ing progresses.
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6. It has an efficient method of estimating missing data and preserves precision

in the absence of a significant proportion of the data [24].

2.7 Summary

In this chapter, various characteristics of the Hardware Trojan is explained. More-

over, the reason for choosing the random forest approach is provided. Random

forest works very well with high dimensional data, less overfitting due to using the

bagging method. Forest trees are fully grown, unpruned, and the feature space is

divided into smaller regions.



Chapter 3

Random Forest Classifier

Algorithm

In this chapter, the main algorithm for detecting Trojan, called Random Forest

Classification, will be reviewed.

In machine learning, a few classification algorithms learn from input data and use

it to make new observations. The data can be bi-class or multi-class.

Examples of a bi-class data set are identifying an object to see if it is a pen or a

scale, or for example, deciding when an email is a spam or not. Few other classi-

fication examples are speech recognition, handwriting recognition, and document

classification [25].

3.1 Random Forest Algorithm

Machine learning algorithms may be divided into three different categories: su-

pervised learning, unsupervised learning, and reinforcement learning [15].

26
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Figure 3.1: RANDOM FOREST [35]

Supervised learning is useful in cases where a particular dataset or a property

(label) is available. The algorithm is required to predict or classify new data from

a teacher/supervisor model. In cases where the task is to discover implicit asso-

ciations in a given unlabeled dataset (items are not pre-assigned), unsupervised

learning is useful[25].

Random Forest is a supervised learning algorithm. It can be used for both regres-

sion and classification [35]. It is also the algorithm that is the most versatile and

straightforward to use.

Due to its high accuracy, the classifier has gained popularity in the remote-sensing

community, where it is used in remote-sensed image classification [6].

The Random Forest classifier is a set of prediction trees where each tree depends

on randomly sampled random vectors with a distribution close to any other tree

in the set. A collection of trees comprises the forest; the more trees it has, the

more resilient the forest is.
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Random Forest generates decision trees on randomly selected data samples, gets

predictions from each tree, and decides the best solution by voting [6]. It also offers

a good indicator of the function’s value and is used in function approximation

applications.

In the process of training, the individuality of the trees is essential. Therefore, it

is crucial to define a set of unique specifications for each tree. Moreover, random

subsets of the initial training samples are used in the tree training [6]. In order to

ensure that the tree is set properly, it is required to select an optimal split from

the randomly chosen features of the unpruned tree nodes. Additionally, each tree

grows without limits and should not be pruned.

The main features of the Random Forest algorithm are:

• High level of accuracy

• works effectively on large data sets

• Can handle thousands of input variables without eliminating any variable

• Provides estimates of the degree of importance of each variables in the clas-

sification

• As the forest building progresses, it produces an internal unbiased estimate

of the generalization error.

• It has an efficient method of calculating missing data and preserves precision

when there is a significant proportion of missing data.

• It has methods for balancing errors in unbalanced data sets of class popula-

tion.

• Other data can save the created forests for future use.

• Prototypes that provide information on the relationship between the vari-

ables and the classification are computed.
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• It calculates proximities between pairs of cases that can be used to cluster,

identify outliers, or provide interesting views of the data.

• The above capabilities can be applied to unlabeled data, resulting in unmon-

itored clustering, data viewing and outlier detection.

3.1.1 Feature Importance

Another excellent quality of the Random Forest algorithm is that each function’s

relative significance on the forecast is straightforward to calculate.

Sklearn offers a great tool for this; it tests the value of a feature by examining how

impurity is reduced across all trees in the forest by the tree nodes that use that

feature [15]. After training, it calculates this score automatically for each feature

and scales the results so that the sum of all significant features is equal to one.

3.1.2 Important Hyperparameters

The Random Forest hyperparameters are used to improve the model’s predictive

ability and to make the model is trained faster [26].

3.1.3 Increasing the Predictive Power

Random Forest benefits from the hyperparameter of n-estimators, which is just

the number of trees that the algorithm creates before taking the full vote or taking

prediction averages. A higher number of trees generally increases accuracy and

makes the predictions more stable, but the estimation process is also slowed down.

Another relevant hyperparameter is the “Max” feature, which is the maximum

number of Random Forest features considered to separate the nodes. For example,
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“leaf” is one of the meaningful hyperparameters, which specifies the minimum

number of leaves required for an internal node to be broken.

3.1.4 Increasing the Training Speed

The “n” jobs hyperparameter tells the training engine how many processors it can

use. If it has a value of one, only one processor can be used for it. A value of “-1”

means that no limit exists.

The hyperparameter random state renders the performance of the model repli-

cable. The model will always produce the same results when it has a definite

random-state value, and if the same hyperparameters and training data have been

given.

Finally, there is the “oob-score” (out-of-bag-score), which is a form of random

forest cross-validation. Around one-third of the data is not used to train the

model and assess its performance. Such samples are known as out-of-bag samples.

It is quite similar to the approach of leave-one-out-cross-validation, but it goes

along with almost no additional computational pressure [6].

3.2 Working of Random Forest Algorithm

Further knowledge about how the Random Forest operates is helpful to understand

and use different choices. Two data objects created by random forests rely on most

of the options.

Around one-third of the cases are left out of the sample when the current tree’s

training is drawn by sampling with replacement. The oob data is used to achieve

an unbiased running estimation of the classification error when adding trees to

the forest. It is often used to achieve variable importance estimates. In replacing
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missing data, finding outliers, and generating illuminating low-dimensional data

views, proximities are used [26].

All data is run down the tree after it is created, and proximities are computed

for each pair of instances. If the same terminal node is occupied in two instances,

their proximity is increased by one. At the end of the race, by dividing by the

number of trees, the proximities are normalized.

3.2.1 The out-of-bag(oob) error estimate

In random forests, to achieve an unbiased estimation of the test set error, there is

no need for cross-validation or a separate test set. Internally, during the race, it’s

calculated as follows:

By using a different bootstrap sample from the original data, each tree is built

[14]. Conventionally one-third of the cases are left out of the bootstrap sample

and not included in the kth tree construction. This value is a general rule and is

not a set value.

3.2.2 Variable Importance

The oob cases are propagating down in every tree grown in the forest, the number

of votes cast for the correct Class is counted. The values of variable m in the oob

cases are now randomly permitted and placed down the tree.

Then the number of votes in variable-m-permuted oob data for the correct Class

is subtracted from the number of votes in untouched oob data. The raw value

score for variable m is the average of this number among all trees in the forest.

If the tree-to-tree score values are independent, a standard approach for calculating

the error can be used. The correlations of the error scores between trees were
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measured for several points within the data sets. In this thesis, the errors are

calculated classically; divide the raw score to get a z-score by its standard error,

and allocate a significance level to the z-score assuming normality. If the number

of variables is very high, forests with all variables can be run once [6].

3.2.3 Gini Impurity Criterion

The Gini impurity criterion for the two descendant nodes is less than the parent

node any time a division of a node is made on variable m[25]. Adding the gini,

decreases the overall trees in the forest for each individual variable and provides

a simple variable significance that is also entirely compatible with the measure of

permutation value.

3.2.4 Interactions

The concept of interaction is used if a split on one variable occurs. The implemen-

tation used is based on the gini, g(m) values for each forest tree. These are ranked

for each tree, and the absolute difference of their ranks overall trees is summed for

every two variables [6].

The hypothesis that the two variables are independent of each other, and the latter

is subtracted from the former also calculates this figure [31]. A big positive value

for the gini means a split on one variable, and vice versa inhibits a split on the

other [14]. This is an experimental technique whose findings must be treated with

caution. On only a few data sets, it has been checked.



Random Forest Classifier Algorithm 33

3.2.5 Proximities

In random woods, proximity is one o the most helpful variables for training. Ini-

tially, the proximities formed a matrix of N ×N . All of the results, both training

and oob, are propagated down the tree after a tree is grown. If the k and n cases

are in the same terminal node, their proximity will be increased by one. The

vicinity is normalized at the end by dividing it by the number of trees [26].

For large data sets, it is possible that an N × N matrix exceeds the memory

allocation of the system. In this case, a shift decreases the required memory

size to N × T , where T is the number of trees in the forest. The user is given

the option of keeping only the largest proximities to each case to speed up the

computational-intensive scaling and iterative missing value replacement.

When a test set is present, it is also possible to compute each case’s proximity

in the training set to ensure that the program can be run using the available

computational resources.

3.2.6 Scaling

A matrix of prox(n, k) is formed by the proximity between cases n and k. This

matrix is symmetrical, positive, definite, and bounded by 1, with diagonal elements

equal to 1.

It follows that 1−prox(n, k) values are square distances of dimensions not greater

than the number of cases in a Euclidean space [23].

Let prox(−, k) over the 1-st coordinate be the average of prox(n, k) and prox(n,−)

over the 2-nd coordinate to be the average of prox(n, k), and prox(−,−) over both

coordinates. The matrix is then calculated as

cv(n, k) = 0.5 × (prox(n, k) − prox(n,−) − prox(−, k) + prox(−,−)) (3.1)
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This matrix is the matrix of products of distances and is positive definite symmet-

ric.

The eigenvalues of cv matrix is λ(j) and its eigenvectors is νj(n). Then the vectors

x(n) are formed as follows:

x(n) = (
√
λ(1)ν1(n),

√
λ(2)ν2(n), ..., ) (3.2)

The idea is to approximate the vectors x(n) by the first few scaling coordinates in

metric scaling. This is achieved in random trees by extracting the largest eigenval-

ues and their corresponding eigenvectors of the matrix cv. The two-dimensional

plot of the coordinate of i-th scaling vs. j-th also offers valuable data details. The

graph of the 2-nd vs. the 1-st is generally the most useful.

Despite many of its advantages, the computational burden may be time-consuming

because of its need to calculate the eigenfunctions of an N × N matrix.[23]. To

make this approximation quicker, we suggest that nrnn be considerably smaller

than the sample size. This feature is used in the next chapter successfuly for the

training.

There are more precise methods of projecting low-dimensional distances, such as

the Roweis and Saul algorithms. But the strong performance of metric scaling,

so far, has been sufficient for most applications. Velocity is another factor; for

projecting down, metric scaling is the fastest existing algorithm. Generally, three

or four coordinates for scaling are good to give a view of the data [23].

3.2.7 Prototypes

Prototypes are a way to get a picture of how the classification applies to the vari-

ables. For the j-th Class, we find the case that has among its k nearest neighbours

the largest number of Class j instances, calculated using the proximities. For each
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vector, we find the median, 25-th percentile, and 75-th percentile among these k

instances.

The medians are the jclass prototype, and the quartiles have an approximation

of stability. The process is repeated for the second prototype. However, only the

cases are considered, which are not among the initial k, and so on [15].

Prototypes for continuous variables are standardized by subtracting the 5-th per-

centile and dividing by the gap between the 95-th and 5-th percentiles when the

query for prototypes is to be executed. The prototype is the most prevalent value

for categorical variables. All frequencies for categorical variables are provided

when we ask for prototypes to be shown on the screen or saved to a computer.

3.3 Missing Value Replacement for the Training

Set

There are two methods of replacing missing values in Random Forests. The first

method is quick. If the m-th variable is not a categorical variable, the method

calculates the median of all the values of the m-th variable in Class j, and then

replaces all missing values of the m-th variable in Class j with this value [14].

If the m-th variable is a categorical variable, the most common non-missing value

in Class j is the substitution variable. These values for replacement are called fills.

Computationally, the second way of replacing missing values is more costly but

has provided better results than the first, even with large quantities of missing

data [40]. Only in the training set does it substitute missing values. It starts by

filling in the missing values approximately and inaccurately. It then does a forest

run and measures proximity [14].
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If x(m,n) is a missing continuous value, its fill is estimated as an average over the

m-th variables’ non-missing values weighted by the proximities between the n-th

case and the case of non-missing value.

3.4 Missing Value Replacement for the Test Set

There are two distinct types of substitution when there is a test set, depending

on whether marks exist for the test set. If they do, then as substitutes, the fills

extracted from the training set are used.

If labels do not exist, class n which is the number of classes will be repeated for

each case in the test set. Class1 is considered to be the first duplicate of a case,

and Class1 fills are used to replace missing values. The 2-nd replica is believed to

be Class 2, and the fills used on it are Class2 [15].

The tree runs down this augmented test range. The one receiving the most votes

decides the Class of the original case in each set of replicates.

3.5 Mislabeled Cases

By using human judgement to assign labels, the training sets are also created[15].

This contributes to a high level of mislabeling in certain regions. Using the outlier

test, many of the mislabeled cases can be observed.

3.6 Outliers

In general, outliers are classified as cases that are excluded from the data’s main

body [40]. Outliers are cases whose proximity in the data is usually small compared
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to all other cases. An outlier in Classj is, therefore, a case whose proximity to all

other cases of Classj is minimal [26].

The average proximity to the rest of training data Classj from case n in Classj is

defined as follows:

P (n) =
∑

d(k)=j

n, k

3.7 Advantages

• Because of the number of decision trees involved in the procedure, random

forests are regarded as a highly accurate and robust system.

• The overfitting issue does not cause it to suffer. The primary explanation is

that the sum of all the forecasts is taken, which cancels the biases.

• In both classification and regression problems, the algorithm can be used.

• Missing values can also be managed by random woods. There are two ways

to deal with these: to replace continuous variables by using median values,

[25] and to compute the proximity-weighted average of missing values.

• You can obtain the relative significance of the feature, which helps to get

the most contributing features.

3.8 Disadvantages

• Random forests are slow to produce predictions because they have many

trees of choice. Whenever a forecast is made, all trees in the forest have to

make a forecast for the same feedback given and then vote on it. This whole

approach is time-consuming. [15]
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Figure 3.2: RANDOM FOREST VISUALIZATION [21]

• Compared to a decision tree, the model is hard to read, where you can easily

make a decision by following the route in the tree.

This research discussed Random Forest Classifier algorithm, how this algorithm

works and its advantages and disadvantages. It contains the different methods

applied to the random forest model to improve its accuracy and reduce training

time. We briefly introduce features and important hyperparameters of random

forest which includes the predictive power and model speed. Finally, we discuss

working of random forest algorithm and methods for missing values replacement

for training and test set.



Chapter 4

Designing Random Forest Model

for Hardware Trojan Detection

This chapter presents the research methodology information, including data un-

derstanding, data preparation, and the Random Forest classifier model. Then the

model is applied to detect hardware trojan. Then the research illustrates the result

of the model corresponding to different test sets.

4.1 Fundamental Technology Background

In this section, the fundamental software that is required throughout software im-

plementation is introduced. First, different technologies used to create the Random

Forest model and its internal architecture are introduced.

39
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Figure 4.1: Data Science Technologies

4.2 Creating the Random Forest Model

This research has used python programming for developing the code that runs the

algorithm. Fig. ?? shows the logos of the used software packages.

1. Jupyter Notebook: Jupyter Notebook is a web-based open-source program

for creating and sharing documents containing live code, equations, visual-

izations and storytelling texts. This software is used in this thesis to perform

tasks such as data cleaning, data transformation, data visualization, and de-

veloping machine learning.

2. Scikit learn: It’s a library that contains several machine learning algorithms.

The Random Forest algorithm used in this work is developed using Scikit

learn [40]. Moreover, this library contains the functions for splitting the

dataset, confusion matrix, and cross-validation [15].

3. Pandas: This library is used for data manipulations and analysis. It handles

all the operations related to the data frame.

4. NumPy: Using this library, the research had performed operations such as

scaling the data and data transformation to convert the data frames into

NumPy array for the machine learning model.
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Figure 4.2: VISUALIZATION [40]

5. Matplotlib: Used for plotting the graphs and for data visualization. Fig. ??

shows a sample window from the visualization output window generated by

this package.

4.3 Research Methodology

A research method is devised in a structured manner based on CRISP-DM, a data

science methodology [8]. The research methodology and the process are described

below. Fig. ?? presents various stages of the research.
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Figure 4.3: Research Methodology

4.3.1 Domain Understanding

This phase is needed to understand the domain of hardware trojan. Relevant

literature on hardware trojan detection is found in this phase. Then, the impact

of hardware trojan on cybersecurity and businesses is analyzed.

4.3.2 Data Understanding

The dataset used in this research is provided by the hardware cybersecurity team.

This phase is required to understand the content of the dataset provided. The

dataset content is explored with the use of multiple visualizations using matplotlib.

4.3.3 Data Preparation

The number of steps is needed to construct a dataset that can be used for the

creation of detection models.

4.3.4 Modelling

This process consists of selecting machine learning techniques, setting up experi-

ments, and training and testing machine learning techniques.
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Figure 4.4: Data Preparation

4.3.5 Results Analysis

The results of the experiment are collected in this phase. The data outcome is

shown in forms of true/phase, positive/negative categories.

4.4 Data Preparation

After cleaning up our dataset, this study had to make the data set ready for

computer study, another step in data preparation. In this stage, the research has

created three functions to get the final combined data as the research has 52 CSV

files that need to be merged and then passed to Random Forest Classifier.

The function, def GetFilePath(number), was to fetch all the file paths and return

it. Next function, def GetAllData( ), was used to iterate through all of the 52

CSV files and combined the data of al csv files into a single data frame which

contains 2, 599, 948 rows and 2 columns i.e [2599948, 2] matrix, and returns the

data frame which contains the data of all 52 CSV files. Moreover, during this

process, the data is normalized. The data preparation mode was further devised

in a structured manner based on CRISP-DM, a data science methodology [8].

The research methodology and the process are described below, and its structure

is shown in Fig. 4.4.
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4.4.1 Data Selection

The data selection is based on the relevance of attributes for the training and

testing of different machine learning classifiers. Columns which are empty are

dropped and some which columns should not be included in the experiment are

needed for data integration process.

4.5 Data Cleaning

Machine learning requires training and feeding algorithms with data to accomplish

various computational intensive tasks. However, organizations are typically chal-

lenged to have the right data for machine learning or to clean up irrelevant and

error-prone data. In other words, most time is spent cleaning data sets or building

an error-free data set while using ML data [27]. Establishing a quality plan, filling

out missing values, eliminating rows, and reducing data size are some of the most

commonly used techniques to create a useful dataset with quality data.

4.5.1 Fill-out missing values

One of the first moves to clean the data set errors is to search for and fill in missing

values. It will categorize much of the data. It is easier to fill the missing values

based on various categories or build new categories to include the missing values.

The research can use mean and medium to correct errors if the data is numerical

or fill the mean with the missing data [8]. The average can be based on various

factors as well.

There were several missing numerical values present in this work, and to fill those

missing values, the mean value was used to fill it.
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4.5.2 Removing rows with missing values

One of the easiest things in data cleansing is the removal or deletion of rows with

missing values. This may not be the perfect move when the training data are

subject to a large number of errors. If there are considerably lower missing values,

then it is right to remove or remove missing values. You must be very confident

that information present in the other rows of training data is not included in the

data removed [25].

4.5.3 Fixing errors in the structure

Ensure there is no upper or lower case typographical defects and inconsistencies.

Go through your data collection, find and correct these errors to ensure your

training set is entirely errored free. This will allow you to achieve better results

through the functions of your computer [14]. Delete the categorization duplication

from your data list and simplify your data.

4.5.4 Removing Duplicate

Duplicates are repeated data points in your data collection. So this is a common

problem in any dataset, and if there is such a problem, then one can remove those

duplicate values from the dataset [23]. There were many redundant data in our

dataset that the study found using NaN(), .isNull() functions available in python’s

numpy library.
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4.6 Data Normalization

Normalization is a method often used in machine learning data preparation. Nor-

malization aims to change numeric column values into a common dimension in the

datasets without distorting values’ rates.

All datasets do not need Normalization for machine learning. It is required only

if features have numerous ranges [26]. Also, in this study, normalized data is used

and converted to a useable form by removing the unnecessary columns from the

datasets, which doesn’t help a machine learning model find any pattern. The

remaining columns are then converted into a dataframe that a machine learn-

ing model expects in the sklearn library. So the Normalize Data function, after

removing the unnecessary data it returns a data frame.

4.7 Data Modeling

During this phase, the dataset is used for training and testing of hardware trojan

detection. The figure shows the activity and its output in the modelling process.

4.7.1 Selection of machine learning techniques

In this section, the most promising machine learning techniques are selected. The

Random Forest, Multi-layer perceptron and Neural Networks algorithm showed

the highest performance as compared to the other machine learning algorithms in

True Positive Rate and less amount of false values (False positive rate and False-

negative rate). This research on the use of Random Forest for the detection of

hardware trojan has shown better results.
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Figure 4.5: Modelling activities and output

4.7.2 Train/Test split

In order to make the final model, this study needs data on which it will feed a

machine learning model with data, and some part is required to validate the data.

Therefore, the final developed model is a machine learning model on which new

data is passed to make a prediction.

In the developed model, the training dataset is a sample of data fed into the

machine learning model to fit the model. The actual data that one uses to train

a machine learning model and the model finds the train datasets’ patterns and

learns from this data. If the quality of data and if it is pre-processed properly, the

model can learn properly [6]. The test dataset is a sample of data that provides

an unbiased result for the final model, which is fit on the training data.

4.7.3 Validation Dataset

The data sample used to provide a model evaluation that is suitable for the train-

ing data set during tuning model hyperparameters. The assessment is made more

inclusive by integrating ability in the validation dataset into the model configu-

ration. This study uses results from validation and change hyperparameters of

higher quality. The validation set, therefore, only affects a model indirectly [6].
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4.7.4 Scaling the Dataset

StandardScaler assumes that the data is usually distributed in each function and

scales it so, with a standard deviation of 1, the distribution is now centred around

0. StandardScaler eliminates the mean and values of each function/unit variance

vector. The procedure is done separately from a function point of view. The

StandardScaler can be affected by outliers (if they occur in a data set) since each

function’s empirical mean and standard deviation are calculated [6].

4.8 Confusion Matrix

There are several ways to evaluate the classificatory model’s results, but none have

been tested for a time such as the confusion matrix. It allows us to analyze how

the model worked, how it went wrong. The model’s performance can be viewed

from a holistic perspective using confusion matrix [26].

A confusion matrix is an N ×N matrix for the performance evaluation of a classi-

fication model in which N is the number of target groups. In this matrix, the real

target values are compared to the machine learning model predicted. This offers

a comprehensive view of our classification model’s success and the types of errors

it makes.

Two values are there in the target variable: Positive and Negative. Columns are

the actual value of the target value. Rows are the predicted value of the target

value.
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Figure 4.6: CONFUSION MATRIX [40]

4.9 Confusion Matrix for the Developed Model

The matric was developed for Trojan detection. A data set of 3, 000, 000 samples

from an encryption algorithm was provided to investigate the application of the

trojan. The samples included the power consumption, a form of side-channel

information, from the integrated circuit. Among the data, there were circuits

with and without the Trojan circuit.

For this study, this information was provided and known to verify the effectiveness

of the developed model. However, in real-life scenarios, this might not be possible.

A trojan free or infected circuit is not easy to be operated from the rest.

The Confusion Matrix of the data set is presented Table ??.
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Positive Negative
Positive 25239 1655
Negative 1339 751752

Table 4.1: Confusion Matrix

• True Positive (TP): Predicted value matches the actual value. Actual

value was positive and positive value was expected in the model. In this

work, TP = 25, 239; which means that, 25, 239 Positive class data points

have been correctly classified by model.

• True Negative (TN): The value to be predicted matches the actual value.

Actual value was negative and negative value was expected in the model.

Here, TN = 751, 752; which means that, 751752 negative class data points

have been correctly classified by model.

• False Positive (FP) - Also know ad Type 1 error: The value which is

predicted is falsely predicted. Actual value was negative and positive value

was expected in the model. In our developed model, FP = 1, 655; meaning

that the model wrongly classifies 1, 655 negative class data points as being

of the positive class.

• False Negative (FN) - Type 2 error: The value which is predicted is

falsely predicted. Actual value was positive and negative value was expected

in the model. For the developed model, FN = 1, 339; meaning that the

model wrongly classifies 1, 339 positive class data points as being of the

negative class.

The confusion matrix provides much detail of the accuracy and result of

recognition. However, a more concise measure was also considered to evalu-

ate the model’s accuracy. These extra measures are presented next.

• Accuracy of a classifier on a given data points is the percentage of test

setups properly identified by the classifier. Below is the equation used to
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calculate the accuracy from the confusion matrix.

Accuracy = (TP + TN)/(TP + FP + TN + FN) (4.1)

In our model, TP = 25, 239, TN = 751, 752, FP = 1, 655, FN = 1, 339.

The accuracy for our Random Forest Classifier turned out to be

Accuracy = (25239+751752)/(25239+751752+1655+1339) = 99.80 (4.2)

• Precision is evaluated as TP/(TP + FP ), where TP is the true positive

number and FP is the false positive number. In the developed model, pre-

cision is evaluated to be equal to:

Precision = 25239/(25239 + 1655) = 93.84 (4.3)

• Recall provides information on how many of the positive cases with our

model have been correctly predicted, and is calculated as follows:

Recall = TP/(TP + FN)25239/(25239 + 1339) = 94.75 (4.4)

• F1- Score is a weighted average of the actual positive (recall) rate and

precision, and is equal to 2(precision ∗ recall/precision+ recall).

F1 − score = 2(93.84 ∗ 94.75/93.84 + 94.75) = 2(8891.34/188.59) = 94.29

(4.5)

4.10 Cross validation

Data is divided into k sub-sets in K Fold cross validation. Now the method of

holdout is repeatedly used k times to construct a training set with one of the k
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subsets each time and the other k − 1 subsets are assembled. In all k trials the

error estimation is summed to achieve full efficacy of our model. Each data point

is used exactly once in a validation set and in a training set k− 1 times [14]. This

decreases the bias significantly as this research uses most fitting data and decreases

the variance also significantly as the bulk of data is also used in validation sets. The

sharing of training and test sets also contributes to the efficiency of the process.

For the data set, the k value must be carefully selected. A poorly selected value

for k could lead to a misrepresenting interpretation of the model’s ability, like a

score that has a high variance (which could differ a great deal depending on the

data used for the model), or a high bias (e.g. overestimating the model’s skills)

[28]. The value for k is selected to make each train / test group of data samples

big enough to represent the wider dataset statistically. So for our program it took

cv/k = 5. The following command was used to indicate this value: rfcValue=cross

val score(randomForestClassifier,X train,y train,cv=5)

The first argument passed in the cross val score is the random forest classifier

model which this research have developed. The next two parameters are the

training data in which X train contains the features and y train contains the

labels. Now the main variable is cv which helps to define the value of k in k-fold

cross-validation. Once the operation is completed this, cross val score returns an

array of score of the estimator for each run of the cross validation [24]. Fig. 4.7

shows the k fold cross validation scheme.

Out-of-bag (OOB) error, also called out-of-bag estimate, is a method of measuring

the prediction error of random forests, boosted decision trees, and other machine

learning models utilizing bootstrap aggregating (bagging) to sub-sample data sam-

ples used for training. In order to see how many trees are necessary in my forest,

the OOB error is plotted as the number of trees used in the forest is increased. A

new random forest on each iteration is created with increasing numbers of trees
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Figure 4.7: k-fold cross validation

Figure 4.8: OOB error rate vs. N esmitator
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Figure 4.9: OOB ERROR RATE VS N ESTIMATOR

but this is too expensive [25]. Fig. 4.8 shows the OOb error for the developed

model.

In random forests, there is no need for cross-validation or a separate test set to get

an unbiased estimate of the test set error. It is estimated internally, during the

run, as follows [21]: Each tree is constructed using a different bootstrap sample

from the original data. About one-third of the cases are left out of the bootstrap

sample and not used in the construction of the k-th tree. One out of two cases is

left out in the construction of the k-th tree down to get a classification. In this

way, a test set classification is obtained for each case in about one-third of the

trees. At the end of the run, j is the class that got most of the votes every time

case n was oob. The proportion of times that j is not equal to the true class of n

averaged over all cases is the oob error estimate. This has proven to be unbiased

in many tests [8].
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Figure 4.10: MSE vs. the number of predictor used at each split

In Fig. 4.10 the Red line is the Out of Bag Error Estimates and the Blue Line

is the Error calculated on Test Set. Both curves are quiet smooth and the error

estimates are somewhat correlated too. The Error Tends to be minimized at

around mtry = 4. On the Extreme Right Hand Side of the above Plot all possible

13 predictors at each Split are shown which is Bagging.

There are two other parameters in Random Forest that require attention: number

of trees and minimum node size. In order to find out the value of the trees

of (ntree)in Random Forest, this research used TrainSet and ValidationSet for

training and testing, respectively. Then the OOB error rate and train error rate

with the independent test set (Va-lidationSet) error rate were compared as shown

in Fig. ??. The plot shows that the OOB error rate follows the test set error

rate fairly and closely, when the number tress are more than 100. Therefore, the

sufficient number of tree is found around 100 [6].
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Figure 4.11: Error rate vs. time

In addition to it, Fig. ?? also shows an interesting phenomenon which is the

characteristic of Random Forest; the test and OOB error rates do not increase

after the training error reaches zero. Instead they converge to their “asymptotic”

values, which is close to their minimum.

So far, we have discussed the fundamental technology used to create random forest

model, including data preparation, data cleaning which consists of fill-out missing

values, fixing errors and removing rows with missing values, data normalization.

Then this research use train/test split and confusion matrix and cross validation

method to train the model. Next, the developed solution is used to make a com-

parison with published results achieved using machine learning techniques and

achieve a considerable result.
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4.11 Grid Search in Random forest

Tuning of parameters is an important element in achieving ideal parameter values

in the machine learning algorithms. Several studies and methods for the tuning

of the parameters were successfully proposed to ensure higher accuracy in classi-

fication models.

Adjusting hyperparameters carefully and methodically can be helpful. It will im-

prove the precision of the classification model, resulting in more precise predictions

in general.

The tuning of hyperparameters is based more on experimental findings than on

theory, and therefore the best way to decide the optimal setting is to test the

output of each model using several different combinations.

Grid search enables one to do so simultaneously with many parameters to find

the best parameters for the given data. In here, several different parameters were

picked in order to have a set of values to choose from. The grid search will then

fit models into any combination of those parameter values, using cross to evaluate

each case’s output.

Output from the grid search is presented below for the top 4 models in term of

accuracy:

Model with rank: 1

Accuracy: 99.82%

Parameters: ’n estimators’: 500, ’min samples leaf’: 5,

’min weight fraction leaf’: 0.1,

’max depth’: 7, ’max leaf nodes’: 30, ‘criterion’:’gini’,

’min samples split’: 15,’max feature’:’sqrt’
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Figure 4.12: Parameter tuning

Model with rank: 2

Accuracy: 99.80%

Parameters: ’n estimators’: 400, ’min samples leaf’: 10,

’min weight fraction leaf’: 0.1,

’max depth’: 9, ’max leaf nodes’: 20, ‘criterion’:’gini’,

’min samples split’: 20, ’max feature’:’sqrt’

Model with rank: 3

Accuracy: 98.45%

Parameters: ’n estimators’: 200, ’min samples leaf’: 20,
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’min weight fraction leaf’: 0.1,

’max depth’: 7, ’max leaf nodes’: 20, ‘criterion’:’gini’,

’min samples split’: 15, ’max feature’:’log2’

Model with rank: 4

Accuracy: 97.79%

Parameters: ’n estimators’: 700, ’min samples leaf’: 10,

’min weight fraction leaf’: 0.1,’max depth’: 5,

’max leaf nodes’: 30, ‘criterion’:’gini’, ’min samples split’: 15, ’max feature’:’sqrt’

So from the above 4 models, that the current approach has achieved a good accu-

racy, and is a reliable method for detecting the trojan.

From the above table, it is shown the accuracy for model 1 is the best i.e 99.82

but the training time is quite more as compared to the model 2. The accuracy

of model 2 is just 0.02 less than model 1, so the difference in accuracy is not

significant. But considering the training time in this study, it can be concluded

that model is best as it takes less time for training.
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Approach TPR TNR Accuracy

SVM 83% 49% 51%
NN 81% 69% 69%
Multi-NN 85% 70% 73%
Random Forest 68% 99.7% 99%

Table 4.2: Accuracy Comparison [8]

Comparison results are shown in table above, which shows the classification of the

same data set among four different machine learning algorithms used to detect

hardware trojan. The term NN refers to the neural network based approach and

Multi-NN refers to the multi-middle-layer networks.

Trojans identified to be hardware trojans correctly are called true positives. TP

shows the number of true positives. Trojans which are mistakenly identified normal

are called False Negatives and FN shows the number of false negatives. The True

Positive rate is defined by TPR = TP/TP + FN and True Negative Rate is

defined by TNR = TN/TN +FP . The accuracy is defined by (TP +TN)/(TP +

FN + FP + TN).

This study has applied the grid search approach that is implemented in Grid-

SearchCV to find optimal parameters of Random Forest algorithm. Experimental

results on the Trojan dataset shows that Random Forest provides the best classifier

with the accuracy of 0.9980 compared to those of other classification algorithms

namely SVM, MLP and Neural Network. Tuning eight parameters of Random

Forest results optimal values. The results show that tuning parameter has suc-

cessfully generated the best classifier to classify a new data.



Chapter 5

Conclusion

In this chapter, it summarize and conclude the research of this thesis. Firstly, the

achievement of our algorithm is presented and then propose the future work in

related implementation.

5.1 Summary of Contribution

This research discussed the problem of hardware trojan detection. This research

worked on the goal how can one detect hardware trojan using Random Forest with

maximum accuracy so that a person can be sure that they are not compromising

security of the system.

This study analysed the effectiveness of this method and compared with various

existing trojan detection techniques and found out that most of these detection

techniques uses Golden Circuit which is considered as trojan free design. It is

more viable for an attacker to insert a stealthy trojan into every fabricated in-

tegrated circuit that passes manufacturing process and trust validations. This

61
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process assumes that trojans are inserted into random ICs and raises the chal-

lenge of detecting trojan in ICs without relying on golden ICs. So, this study

replaced Golden Circuit with Simulations. It allows the user to draw a circuit

design and then have the computer evaluate the circuit. It intercepts text listing

describing the circuit and outputs the results of its detailed mathematical analysis

tool. After extraction of data from simulation, data was prepared and processed.

Then, Data is fed to our machine leaning pipeline to be trained and validated. ML

pipeline consists of 3 algorithms: SVM, Random Forest, Neural Network. In order

to fit the best one into the particular case, the output of each of them is studied

according to several classification metrics. Random forest was set as the most ac-

curate model as a comparison of performance between the different ML algorithms

through several metrixs, namely Confusion Matrix, and F1-Measuremethod. This

study applied the grid search that is implemented in GridSearchCV to find the

optimal paramteres of Random Forest algorithm. Using this approach, this study

tested all possible parameter values combinations and preserved the combination

through which this research got the highest accuracy.

After applying GridSearchCV this study got four models with highest accuracy

out of which model1 gave accuracy of 99.82 and model2 gave accuracy of 99.80.

Furthermore, when this study focussed on the training time of model1 and model2,

model1 took more than one hour and model2 took 48 minutes of training time.

In terms of accuracy this study can say that model1 has more accuracy than

model2, but training time is less for model2 as compared to model1. So, this

study can say that model2 will be more reliable for real-world applications. It

confirm that Random Forest is better in terms of performance and good prediction

of positive and negative samples. Results of this review show that the classifier

of the Random Forest is most appropriate for the detection of hardware trojans

With an FPR of 0.0022 and a FNR of 0.0504, the f1 score is 0.9440. Additionally,

this research provided: 1. Knowledge on which hyperparameters are important
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to detect hardware trojans. 2. Extensive analysis of influence of hyperparameters

on the performance of multiple classifiers. 3. A global cost-benefit analysis of IC

security options for businesses.

5.2 Future Work

Proposed machine learning model using Random forest algorithm effects the most

research efforts on hardware trojan detection. In this thesis, it talks about training

random forest model using simulations data of power traces collected to detect

hardware trojan. In this thesis, this research finishes the first step, and define

that proposed Random forest model modified is the better in critical path among

the other methods. In the optimization work, to make this result more persuasive,

this research will try to ensemble more algorithms to reduce error estimation using

bagging techniques and with the advancement of new technology and methods.

This will focus on improving False Negative Rates and False Positive Rates. While

random forest showed high performance, other ensemble methods can be examined

such as Gradient Boosting. So the potential work will discuss how this algorithm

can be used in a parallel distributed environment so that the training data can

be distributed over multiple instances of distributed system which can reduce

the training time implementation of the machine learning models with improved

accuracy to detect trojans.
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Appendix

Python Codes

import pandas as pd

import seaborn as sb

import matplotlib.pyplot as plt

from sklearn.ensemble import RandomForestClassifier

from sklearn.svm import SVC

from sklearn import svm

from sklearn.neural_network import MLPClassifier

from sklearn.metrics import confusion_matrix

from sklearn.preprocessing import StandardScaler , LabelEncoder

from sklearn.model_selection import train_test_split

from sklearn.model_selection import cross_val_score

#Normalizes the data and converts it in the useable form

def NormalizeData(data):

data=data.drop(’Record Length ’,axis =1)

data=data.drop(’50000’,axis =1)

data=data.drop(’Points ’,axis =1)

#Creating and setting up new data frome

newDataFrame=pd.DataFrame ()
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newDataFrame[’Points ’]=data.iloc [:,0]

newDataFrame[’Samples ’]=data.iloc [:,1]

return newDataFrame

def GetFilePath(number ):

return "C:\\ Users\\Admin \\trace"+ str (number )+"Wfm.csv"

#Combines two dataframes

def CombineData(data1 ,data2):

data2=NormalizeData(data2)

combinedData=pd.DataFrame ()

combinedData[’Points ’]= data1[’Points ’]. append(data2[’Points ’])

combinedData[’Samples ’]=data1[’Samples ’]. append(data2[’Samples ’])

return combinedData

def GetAllData ():

#The main data frame object

data=pd.DataFrame ()

data=pd.read_csv(GetFilePath (1))

data=NormalizeData(data)

for i in range(2 ,53):

newData=pd.read_csv(GetFilePath(i))

data=CombineData(data ,newData)

return data

#trace=pd.read_csv("C:\\Users\\Admim\\trace1Wfm.csv")

trace=GetAllData ()
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trace=NormalizeData(trace)

bins =(0.8 ,1 ,1.1)

group_names =[’bad’,’good’]

trace[’Samples ’]=pd.cut(trace[’Samples ’],bins=bins)

#Should be separate from the above preprocessing code

label_quality=LabelEncoder ()

trace[’Samples ’]= label_quality.fit_transform(trace

[’Samples ’])

#Separating data

X=trace.drop(’Samples ’,axis =1)

y=trace[’Samples ’]

#Spliting training and test data

X_train ,X_test ,y_train ,y_test=train_test_split

(X,y,test_size =0.3)

sc=StandardScaler ()

X_train=sc.fit_transform(X_train)

X_test=sc.transform(X_test)

#Creating a random forest classifier

rfc=RandomForestClassifier(n_estimators =200)

rfc.fit(X_train ,y_train)

pred_rfc=rfc.predict(X_test)

#Lets see how our modl performed
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print (classification_report(y_test ,pred_rfc ))

print (confusion_matrix(y_test ,pred_rfc ))

#SVM Classifier

clf=svm.SVC()

clf.fit(X_train ,y_train)

pred_clf=clf.predict(X_test)

#Lets see how our modl performed

print (classification_report(y_test ,pred_clf ))

print (confusion_matrix(y_test ,pred_clf ))

#Neural Network

mlpc=MLPClassifier(hidden_layer_sizes=

(11,11,11), max_iter =500)

mlpc=mlpc.fit(X_train ,y_train)

pred_mlpc=mlpc.predict(X_test)

#Lets see how our model performed

print (classification_report(y_test ,pred_mlpc ))

print (confusion_matrix(y_test ,pred_mlpc ))

#Model Selection

randomForestClassifier=RandomForestClassifier

(n_estimators =200)

clf = svm.SVC(kernel=’linear ’, C=1)

mlp=MLPClassifier(hidden_layer_sizes =(11 ,11 ,11)

,max_iter =500)
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rfcValue=cross_val_score(randomForestClas ,

X_train ,y_train ,cv=5)

clfValue=cross_val_score(clf ,X_train ,y_train ,cv=5)

mlpValue=cross_val_score(mlp ,X_train ,y_train ,cv=5)

#Checking which model is how much accurate

print ("Accuracy: ",rfcValue.mean ()*100)

print ("Accuracy: ",clfValue.mean ()*100)

print ("Accuracy: ",mlpValue.mean ()*100)

#elm.py

from abc import ABCMeta , abstractmethod

import numpy as np

from scipy.linalg import pinv2

from sklearn.utils import as_float_array

from sklearn.utils.extmath import safe_sparse_dot

from sklearn.base import BaseEstimator , ClassifierMixin

from sklearn.base import RegressorMixin

from sklearn.preprocessing import LabelBinarizer

from random_layer import RandomLayer , MLPRandomLayer

__all__ = ["ELMRegressor",

"ELMClassifier",

"GenELMRegressor",
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"GenELMClassifier"]

# BaseELM class , regressor and hidden_layer attributes

# and provides defaults for docstrings

c la s s BaseELM(BaseEstimator ):

__metaclass__ = ABCMeta

def __init__(self , hidden_layer , regressor ):

self.regressor = regressor

self.hidden_layer = hidden_layer

@abstractmethod

def fit(self , X, y):

def predict(self , X):

c la s s GenELMRegressor(BaseELM , RegressorMixin ):

def __init__(self ,

hidden_layer=MLPRandomLayer(random_state =0),

regressor=None):

super(GenELMRegressor , self). __init__

(hidden_layer , regressor)

self.coefs_ = None

self.fitted_ = False
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self.hidden_activations_ = None

def _fit_regression(self , y):

"""c

fit regression using pseudo -inverse

or supplied regressor

"""

i f (self.regressor i s None):

self.coefs_ = safe_sparse_dot(pinv2

(self.hidden_activations_), y)

e l se :

self.regressor.fit(self.hidden_activations_ , y)

self.fitted_ = True

def fit(self , X, y):

# fit random hidden layer and compute the activations

self.hidden_activations_ =

self.hidden_layer.fit_transform(X)

# solve the regression from hidden activations to outputs

self._fit_regression(as_float_array(y, copy=True))

return self

def _get_predictions(self):

"""get predictions using internal least squares"""

i f (self.regressor i s None):

preds = safe_sparse_dot
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(self.hidden_activations_ , self.coefs_)

e l se :

preds = self.regressor.predict

(self.hidden_activations_)

return preds

def predict(self , X):

"""

Predict values using the model

Parameters

----------

X : {array -like , sparse matrix} of shape

[n_samples , n_features]

Returns

-------

C : numpy array of shape [n_samples , n_outputs]

Predicted values.

"""

i f (not self.fitted_ ):

ra i se ValueError("ELMRegressor not fitted")

# compute hidden layer activations

self.hidden_activations_ = self.hidden_layer.transform(X)

# compute output predictions for new hidden activations

predictions = self._get_predictions ()
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return predictions

c la s s GenELMClassifier(BaseELM , ClassifierMixin ):

def __init__(self ,

hidden_layer=MLPRandomLayer(random_state =0),

binarizer=LabelBinarizer (-1, 1),

regressor=None):

super(GenELMClassifier , self). __init__

(hidden_layer , regressor)

self.binarizer = binarizer

self.classes_ = None

self.genelm_regressor_ = GenELMRegressor

(hidden_layer , regressor)

def decision_function(self , X):

"""

This function return the decision function

values related class on an array of test vectors X.

Parameters

----------

X : array -like of shape [n_samples , n_features]

Returns
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-------

C : array of shape [n_samples , n_classes] or [n_samples ,]

Decision function values related to each class , per sample.

In the two -class case , the shape is [n_samples ,]

"""

return self.genelm_regressor_.predict(X)

def fit(self , X, y):

"""

Fit the model using X, y as training data.

Parameters

----------

X : {array -like , sparse matrix} of shape

[n_samples , n_features]

Training vectors , where n_samples is the

number of samples and n_features is the number of features.

y : array -like of shape [n_samples , n_outputs]

Target values (class labels in classification , real numbers

regression)

Returns

-------

self : object

Returns an instance of self.

"""

self.classes_ = np.unique(y)
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y_bin = self.binarizer.fit_transform(y)

self.genelm_regressor_.fit(X, y_bin)

return self

def predict(self , X):

"""Predict values using the model

Parameters

----------

X : {array -like , sparse matrix} of shape

[n_samples , n_features]

Returns

-------

C : numpy array of shape [n_samples , n_outputs]

Predicted values.

"""

raw_predictions=self.decision_function(X)

class_pred=self.binarizer.inverse_transform(raw)

return class_predictions

# ELMRegressor with default RandomLayer

c la s s ELMRegressor(BaseEstimator , RegressorMixin ):

def __init__(self , n_hidden =20, alpha =0.5, rbf_width =1.0,

activation_func=’tanh’, activation_args=None ,
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user_components=None , regressor=None , random_state=None):

self.n_hidden = n_hidden

self.alpha = alpha

self.random_state = random_state

self.activation_func = activation_func

self.activation_args = activation_args

self.user_components = user_components

self.rbf_width = rbf_width

self.regressor = regressor

self._genelm_regressor = None

def _create_random_layer(self):

"""Pass init params to RandomLayer"""

return RandomLayer(n_hidden=self.n_hidden ,

alpha=self.alpha , random_state=self.random_state ,

activation_func=self.activation_func ,

activation_args=self.activation_args ,

user_components=self.user_components ,

rbf_width=self.rbf_width)

def fit(self , X, y):

"""

Fit the model using X, y as training data.

Parameters

----------
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X : {array -like , sparse matrix} of shape

[n_samples , n_features]

Training vectors , where n_samples is the number

of samples and n_features is the number of features.

y : array -like of shape [n_samples , n_outputs]

Target values (class labels in classification , real

numbers in regression)

Returns

-------

self : object

Returns an instance of self.

"""

rhl = self._create_random_layer ()

self._genelm_regressor = GenELMRegressor

(hidden_layer=rhl ,

regressor=self.regressor)

self._genelm_regressor.fit(X, y)

return self

def predict(self , X):

"""

Predict values using the model

Parameters

----------

X : {array -like , sparse matrix} of shape
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[n_samples , n_features]

Returns

-------

C : numpy array of shape [n_samples , n_outputs]

Predicted values.

"""

i f (self._genelm_regressor i s None):

ra i se ValueError("SimpleELMRegressor not fitted")

return self._genelm_regressor.predict(X)

c la s s ELMClassifier(ELMRegressor ):

def __init__(self , n_hidden =20, alpha =0.5, rbf_width =1.0,

activation_func=’tanh’, activation_args=None ,

user_components=None , regressor=None ,

binarizer=LabelBinarizer (-1, 1),

random_state=None):

super(ELMClassifier , self). __init__(n_hidden=n_hidden ,

alpha=alpha ,

random_state=random_state ,

activation_func=activation_func ,

activation_args=activation_args ,

user_components=user_components ,

rbf_width=rbf_width ,

regressor=regressor)
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self.classes_ = None

self.binarizer = binarizer

def decision_function(self , X):

"""

This function return the decision function values

related to each class on an array of test vectors X.

Parameters

----------

X : array -like of shape [n_samples , n_features]

Returns

-------

C : array of shape [n_samples , n_classes] or [n_samples ,]

Decision function values related to each class , per sample.

In the two -class case , the shape is [n_samples ,]

"""

return super(ELMClassifier , self). predict(X)

def fit(self , X, y):

"""

Fit the model using X, y as training data.

Parameters

----------

X : {array -like , sparse matrix} of shape

[n_samples , n_features]
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Training vectors , where n_samples is the number

samples and n_features is the number of features.

y : array -like of shape [n_samples , n_outputs]

Target values (class labels in classification , real

numbers in regression)

Returns

-------

self : object

Returns an instance of self.

"""

self.classes_ = np.unique(y)

y_bin = self.binarizer.fit_transform(y)

super(ELMClassifier , self).fit(X, y_bin)

return self

def predict(self , X):

"""

Predict values using the model

Parameters

----------

X : {array -like , sparse matrix} of shape

[n_samples , n_features]
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Returns

-------

C : numpy array of shape [n_samples , n_outputs]

Predicted values.

"""

raw_pred = self.decision_function(X)

class_pred = self.binarizer.inverse_transform(raw_pred)

return class_predictions

def score(self , X, y):

"""Force use of accuracy score since we don’t inherit

from ClassifierMixin"""

from sklearn.metrics import accuracy_score

return accuracy_score(y, self.predict(X))

#elm_notebook.py

from time import time

from sklearn.cluster import k_means

from elm import ELMRegressor , GenELMClassifier ,

GenELMRegressor

from elm import ELMClassifier

from random_layer import RBFRandomLayer , GRBFRandomLayer

from random_layer import RandomLayer , MLPRandomLayer

import numpy as np

import matplotlib.pyplot as plt
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from numpy import mean ,std

def make_toy ():

x = np.arange (0.25 ,20 ,0.1)

y = x*np.cos(x)+0.5* np.sqrt(x)*np.random.randn(x.shape [0])

x = x.reshape (-1,1)

y = y.reshape (-1,1)

return x, y

def res_dist(x, y, e, n_runs =100, random_state=None):

x_train ,x_test ,y_train= train_test_split

(x, y, test_size =0.4)

test_res = []

train_res = []

start_time = time()

for i in range(n_runs ):

e.fit(x_train , y_train)

train_res.append(e.score(x_train , y_train ))

test_res.append(e.score(x_test , y_test ))

i f (i%( n_runs /10) == 0): print ("%d"%i),

print ("\nTime: %.3f secs" % (time() - start_time ))

print ("Test Min: %.3f Mean: %.3f Max: %.3f SD: %.3f"

% (min(test_res), mean(test_res),
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max(test_res), std(test_res )))

print ("Train Min: %.3f Mean: %.3f Max: %.3f SD: %.3f"

% (min(train_res), mean(train_res), max(train_res

), std(train_res )))

print ()

return (train_res , test_res)

# <codecell >

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

from sklearn.datasets import load_diabetes ,

make_regression

from sklearn.datasets import load_iris , load_digits

stdsc = StandardScaler ()

iris = load_iris ()

irx , iry = stdsc.fit_transform(iris.data), iris.target

irx_train , irx_test , iry_train , iry_test =

train_test_split(irx , iry , test_size =0.2)

digits = load_digits ()

dgx , dgy = stdsc.fit_transform(digits.data /16.0) ,

digits.target

dgx_train , dgx_test , dgy_train , dgy_test =

train_test_split(dgx , dgy , test_size =0.2)

diabetes = load_diabetes ()
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dbx , dby = stdsc.fit_transform(diabetes.data),

diabetes.target

dbx_train , dbx_test , dby_train , dby_test =

train_test_split(dbx , dby , test_size =0.2)

mrx , mry = make_regression(n_samples =2000,

n_targets =4)

mrx_train , mrx_test , mry_train , mry_test =

train_test_split(mrx , mry , test_size =0.2)

xtoy , ytoy = make_toy ()

xtoy , ytoy = stdsc.fit_transform(xtoy),

stdsc.fit_transform(ytoy)

xtoy_train , xtoy_test , ytoy_train , ytoy_test =

train_test_split(xtoy , ytoy , test_size =0.2)

plt.plot(xtoy , ytoy)

# RBFRandomLayer tests

for af in RandomLayer.activation_func_names ():

print (af),

elmc = ELMClassifier(activation_func=af)

tr ,ts = res_dist(irx , iry , elmc , n_runs =200,

random_state =0)

for af in RandomLayer.activation_func_names ():

print (af)

elmc = ELMClassifier(activation_func=af ,

random_state =0)

tr ,ts = res_dist(dgx , dgy , elmc , n_runs =100,
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random_state =0)

elmc = ELMClassifier(n_hidden =500,

activation=’multiquadric ’)

tr ,ts = res_dist(dgx , dgy , elmc , n_runs =100,

random_state =0)

plt.scatter(tr, ts, alpha =0.1, marker=’D’, c=’r’)

elmr = ELMRegressor(activation_func=’gaussian ’,

alpha =0.0)

elmr.fit(xtoy_train , ytoy_train)

print ( elmr.score(xtoy_train , ytoy_train),

elmr.score(xtoy_test , ytoy_test ))

plt.plot(xtoy , ytoy , xtoy , elmr.predict(xtoy))

from sklearn import pipeline

from sklearn.linear_model import LinearRegression

elmr = pipeline.Pipeline ([(’rhl’,

RandomLayer(activation_func=’multiquadric ’)),

(’lr’, LinearRegression(fit_intercept=False ))])

elmr.fit(xtoy_train , ytoy_train)

print (elmr.score(xtoy_train , ytoy_train),

elmr.score(xtoy_test , ytoy_test ))

plt.plot(xtoy , ytoy , xtoy , elmr.predict(xtoy))

rhl = RandomLayer(n_hidden =200, alpha =1.0)

elmr = GenELMRegressor(hidden_layer=rhl)

tr , ts = res_dist(mrx , mry , elmr , n_runs =200, )

plt.scatter(tr, ts, alpha =0.1, marker=’D’, c=’r’)
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rhl = RBFRandomLayer(n_hidden =15, rbf_width =0.8)

elmr = GenELMRegressor(hidden_layer=rhl)

elmr.fit(xtoy_train , ytoy_train)

print ( elmr.score(xtoy_train , ytoy_train),

elmr.score(xtoy_test , ytoy_test ))

plt.plot(xtoy , ytoy , xtoy , elmr.predict(xtoy))

nh = 15

(ctrs , _, _) = k_means(xtoy_train , nh)

unit_rs = np.ones(nh)

#rhl = RBFRandomLayer(n_hidden=nh,

activation_func=’inv_multiquadric ’)

#rhl = RBFRandomLayer(n_hidden=nh,

centers=ctrs , radii=unit_rs)

rhl = GRBFRandomLayer(n_hidden=nh,

grbf_lambda =.0001 , centers=ctrs)

elmr = GenELMRegressor(hidden_layer=rhl)

elmr.fit(xtoy_train , ytoy_train)

print (elmr.score(xtoy_train , ytoy_train),

elmr.score(xtoy_test , ytoy_test ))

plt.plot(xtoy , ytoy , xtoy , elmr.predict(xtoy))

rbf_rhl = RBFRandomLayer(n_hidden =100,

random_state =0, rbf_width =0.01)

elmc_rbf = GenELMClassifier(hidden_layer=rbf_rhl)

elmc_rbf.fit(dgx_train , dgy_train)
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print (elmc_rbf.score(dgx_train , dgy_train),

elmc_rbf.score(dgx_test , dgy_test ))

def powtanh_xfer(activations , power =1.0):

return pow(np.tanh(activations), power)

tanh_rhl = MLPRandomLayer(n_hidden =100,

activation_func=powtanh_xfer ,

activation_args ={’power’:3.0})

elmc_tanh = GenELMClassifier(hidden_layer=tanh_rhl)

elmc_tanh.fit(dgx_train , dgy_train)

print (elmc_tanh.score(dgx_train , dgy_train),

elmc_tanh.score(dgx_test , dgy_test ))

rbf_rhl = RBFRandomLayer(n_hidden =100, rbf_width =0.01)

tr , ts = res_dist(dgx , dgy ,

GenELMClassifier(hidden_layer=rbf_rhl),

n_runs =100, random_state =0)

plt.hist(ts), plt.hist(tr)

print ()

from sklearn.svm import SVR

from sklearn.ensemble import RandomForestRegressor

tr , ts = res_dist(dbx , dby ,

RandomForestRegressor(n_estimators =15),

n_runs =100, random_state =0)

plt.hist(tr), plt.hist(ts)

print ()
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rhl = RBFRandomLayer(n_hidden =15, rbf_width =0.1)

tr ,ts = res_dist(dbx , dby ,

GenELMRegressor(rhl), n_runs =100,

random_state =0)

plt.hist(tr), plt.hist(ts)

print ()

elmc = ELMClassifier(n_hidden =1000,

activation_func=’gaussian ’, alpha =0.0, random_state =0)

elmc.fit(dgx_train , dgy_train)

print (elmc.score(dgx_train , dgy_train),

elmc.score(dgx_test , dgy_test ))

elmc = ELMClassifier(n_hidden =500,

activation_func=’hardlim ’, alpha =1.0, random_state =0)

elmc.fit(dgx_train , dgy_train)

print (elmc.score(dgx_train , dgy_train),

elmc.score(dgx_test , dgy_test ))

elmr = ELMRegressor(random_state =0)

elmr.fit(xtoy_train , ytoy_train)

print (elmr.score(xtoy_train , ytoy_train),

elmr.score(xtoy_test , ytoy_test ))

plt.plot(xtoy , ytoy , xtoy , elmr.predict(xtoy))

elmr = ELMRegressor(activation_func=’inv_tribas ’)

elmr.fit(xtoy_train , ytoy_train)
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print (elmr.score(xtoy_train , ytoy_train),

elmr.score(xtoy_test , ytoy_test ))

plt.plot(xtoy , ytoy , xtoy , elmr.predict(xtoy))

#random_layer.py

from abc import ABCMeta , abstractmethod

from math import sqrt

import numpy as np

import scipy.sparse as sp

from scipy.spatial.distance import cdist

from scipy.spatial import pdist , squareform

from sklearn.metrics import pairwise_distances

from sklearn.utils import check_random_state ,

check_array

from sklearn.utils.extmath import safe_sparse_dot

from sklearn.base import BaseEstimator , TransformerMixin

__all__ = [’RandomLayer ’,

’MLPRandomLayer ’,

’RBFRandomLayer ’,

’GRBFRandomLayer ’,

]

c la s s BaseRandomLayer(BaseEstimator , TransformerMixin ):

"""Abstract Base Class for random layers"""
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__metaclass__ = ABCMeta

_internal_activation_funcs = dict ()

@classmethod

def activation_func_names(cls):

"""Get list of internal activation function names"""

return cls._internal_activation_funcs.keys()

# take n_hidden and random_state , init components_ and

# input_activations_

def __init__(self , n_hidden =20, random_state =0,

activation_func=None ,activation_args=None):

self.n_hidden = n_hidden

self.random_state = random_state

self.activation_func = activation_func

self.activation_args = activation_args

self.components_ = dict ()

self.input_activations_ = None

# keyword args for internally defined funcs

self._extra_args = dict ()

@abstractmethod

def _generate_components(self , X):

"""Generate components of hidden layer given X"""
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@abstractmethod

def _compute_input_activations(self , X):

"""Compute input activations given X"""

# compute input activations and pass them

# through the hidden layer transfer functions

# to compute the transform

def _compute_hidden_activations(self , X):

"""Compute hidden activations given X"""

self._compute_input_activations(X)

acts = self.input_activations_

i f ( ca l l ab l e (self.activation_func )):

args_dict = self.activation_args i f

(self.activation_args)

e l se {}

X_new = self.activation_func(acts , ** args_dict)

e l se :

func_name = self.activation_func

func = self._internal_activation_funcs[func_name]

X_new = func(acts , **self._extra_args)

return X_new

# perform fit by generating random components based

# on the input array
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def fit(self , X, y=None):

X = check_array(X)

self._generate_components(X)

return self

# perform transformation by compute_hidden_activations

# (which will normally call compute_input_activations)

def transform(self , X, y=None):

X = check_array(X)

i f (self.components_ i s None):

ra i se ValueError(’No components initialized ’)

return self._compute_hidden_activations(X)

c la s s RandomLayer(BaseRandomLayer ):

# triangular activation function

_tribas = (lambda x: np.clip (1.0 - np.fabs(x), 0.0, 1.0))

# inverse triangular activation function

_inv_tribas = (lambda x: np.clip(np.fabs(x), 0.0, 1.0))

# sigmoid activation function

_sigmoid = (lambda x: 1.0/(1.0 + np.exp(-x)))

# hard limit activation function
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_hardlim = (lambda x: np.array(x > 0.0, dtype= f l oa t ))

_softlim = (lambda x: np.clip(x, 0.0, 1.0))

# gaussian RBF

_gaussian = (lambda x: np.exp(-pow(x, 2.0)))

# multiquadric RBF

_multiquadric = (lambda x:

np.sqrt (1.0 + pow(x, 2.0)))

# inverse multiquadric RBF

_inv_multiquadric = (lambda x:

1.0/(np.sqrt (1.0 + pow(x, 2.0))))

# internal activation function table

_internal_activation_funcs = {’sine’: np.sin ,

’tanh’: np.tanh ,

’tribas ’: _tribas ,

’inv_tribas ’: _inv_tribas ,

’sigmoid ’: _sigmoid ,

’softlim ’: _softlim ,

’hardlim ’: _hardlim ,

’gaussian ’: _gaussian ,

’multiquadric ’: _multiquadric ,

’inv_multiquadric ’: _inv_multiquadric ,

}

def __init__(self , n_hidden =20, alpha =0.5,
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activation_func=’tanh’, activation_args=None ,

user_components=None , rbf_width =1.0):

super(RandomLayer , self). __init__(n_hidden=n_hidden ,

random_state=random_state ,

activation_func=activation_func ,

activation_args=activation_args)

i f ( i s instance (self.activation_func , str )):

func_names = self._internal_activation_funcs.keys()

i f (self.activation_func not in func_names ):

msg = "unknown activation function ’%s’" % self.act

ra i se ValueError(msg)

self.alpha = alpha

self.rbf_width = rbf_width

self.user_components = user_components

self._use_mlp_input = (self.alpha != 0.0)

self._use_rbf_input = (self.alpha != 1.0)

def _get_user_components(self , key):

"""Look for given user component"""

try:

return self.user_components[key]

except (TypeError , KeyError ):

return None

def _compute_radii(self):
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"""Generate RBF radii"""

# use supplied radii if present

radii = self._get_user_components(’radii’)

# compute radii

i f (radii i s None):

centers = self.components_[’centers ’]

n_centers = centers.shape [0]

max_dist = np.max(pairwise_distances(centers ))

radii = np.ones(n_centers) *

max_dist/sqrt (2.0 * n_centers)

self.components_[’radii’] = radii

def _compute_centers(self , X, sparse , rs):

"""Generate RBF centers"""

# use supplied centers if present

centers = self._get_user_components(’centers ’)

# use points taken uniformly from the bounding

# hyperrectangle

i f (centers i s None):

n_features = X.shape [1]

i f (sparse ):

fxr = xrange(n_features)
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cols = [X.getcol(i) for i in fxr]

min_dtype = X.dtype.type(1.0 e10)

sp_min = lambda col: np.minimum(min_dtype ,

np.min(col.data))

min_Xs = np.array(map(sp_min , cols))

max_dtype = X.dtype.type(-1.0e10)

sp_max = lambda col: np.maximum(max_dtype ,

np.max(col.data))

max_Xs = np.array(map(sp_max , cols))

e l se :

min_Xs = X.min(axis =0)

max_Xs = X.max(axis =0)

spans = max_Xs - min_Xs

ctrs_size = (self.n_hidden , n_features)

centers = min_Xs + spans * rs.uniform (0.0,

1.0, ctrs_size)

self.components_[’centers ’] = centers

def _compute_biases(self , rs):

"""Generate MLP biases"""

# use supplied biases if present

biases = self._get_user_components(’biases ’)

i f (biases i s None):

b_size = self.n_hidden
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biases = rs.normal(size=b_size)

self.components_[’biases ’] = biases

def _compute_weights(self , X, rs):

"""Generate MLP weights"""

# use supplied weights if present

weights = self._get_user_components(’weights ’)

i f (weights i s None):

n_features = X.shape [1]

hw_size = (n_features , self.n_hidden)

weights = rs.normal(size=hw_size)

self.components_[’weights ’] = weights

def _generate_components(self , X):

"""Generate components of hidden layer given X"""

rs = check_random_state(self.random_state)

i f (self._use_mlp_input ):

self._compute_biases(rs)

self._compute_weights(X, rs)

i f (self._use_rbf_input ):

self._compute_centers(X, sp.issparse(X), rs)

self._compute_radii ()

def _compute_input_activations(self , X):
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"""Compute input activations given X"""

n_samples = X.shape [0]

mlp_acts = np.zeros((n_samples , self.n_hidden ))

i f (self._use_mlp_input ):

b = self.components_[’biases ’]

w = self.components_[’weights ’]

mlp_acts = self.alpha * (safe_sparse_dot(X, w) + b)

rbf_acts = np.zeros((n_samples , self.n_hidden ))

i f (self._use_rbf_input ):

radii = self.components_[’radii’]

centers = self.components_[’centers ’]

scale = self.rbf_width * (1.0 - self.alpha)

rbf_acts = scale * cdist(X, centers )/ radii

self.input_activations_ = mlp_acts + rbf_acts

c la s s MLPRandomLayer(RandomLayer ):

"""Wrapper for RandomLayer with alpha

to 1.0 for MLP activations only"""

def __init__(self , n_hidden =20, random_state=None ,

activation_func=’tanh’, activation_args=None ,

weights=None , biases=None):

user_components = {’weights ’: weights , ’biases ’: biases}
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super(MLPRandomLayer , self). __init__(n_hidden=n_hidden ,

random_state=random_state ,

activation_func=activation_func ,

activation_args=activation_args ,

user_components=user_components ,

alpha =1.0)

c la s s RBFRandomLayer(RandomLayer ):

"""Wrapper for RandomLayer with alpha

to 0.0 for RBF activations only"""

def __init__(self , n_hidden =20, random_state=None ,

activation_func=’gaussian ’, activation_args=None ,

centers=None , radii=None , rbf_width =1.0):

user_components = {’centers ’: centers ,

’radii’: radii}

super(RBFRandomLayer , self). __init__

(n_hidden=n_hidden ,

random_state=random_state ,

activation_func=activation_func ,

activation_args=activation_args ,

user_components=user_components ,

rbf_width=rbf_width ,

alpha =0.0)

c la s s GRBFRandomLayer(RBFRandomLayer ):
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_grbf = (lambda acts , taus:

np.exp(np.exp(-pow(acts , taus ))))

_internal_activation_funcs = {’grbf’: _grbf}

def __init__(self , n_hidden =20, grbf_lambda =0.001 ,

centers=None , radii=None , random_state=None):

super(GRBFRandomLayer , self). __init__

(n_hidden=n_hidden ,

activation_func=’grbf’,

centers=centers , radii=radii ,

random_state=random_state)

self.grbf_lambda = grbf_lambda

self.dN_vals = None

self.dF_vals = None

self.tau_vals = None

def _compute_centers(self , X, sparse , rs):

"""Generate centers , then compute tau , dF

and dN vals"""

super(GRBFRandomLayer , self). _compute_centers

(X, sparse , rs)

centers = self.components_[’centers ’]

sorted_distances = np.sort(squareform(pdist(centers )))
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self.dF_vals = sorted_distances [:, -1]

self.dN_vals = sorted_distances [:, 1]/100.0

#self.dN_vals = 0.0002 * np.ones(self.dF_vals.shape)

tauNum = np.log(np.log(self.grbf_lambda) /

np.log (1.0 - self.grbf_lambda ))

tauDenom = np.log(self.dF_vals/self.dN_vals)

self.tau_vals = tauNum/tauDenom

self._extra_args[’taus’] = self.tau_vals

# get radii according to ref [1]

def _compute_radii(self):

"""Generate radii"""

denom = pow(-np.log(self.grbf_lambda),

1.0/ self.tau_vals)

self.components_[’radii’] = self.dF_vals/denom

#random_layer.py

from abc import ABCMeta , abstractmethod

from math import sqrt

import numpy as np

import scipy.sparse as sp

from scipy.spatial.distance import cdist ,

pdist , squareform
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from sklearn.metrics import pairwise_distances

from sklearn.utils import check_random_state ,

check_array

from sklearn.utils.extmath import safe_sparse_dot

from sklearn.base import BaseEstimator ,

TransformerMixin

__all__ = [’RandomLayer ’,

’MLPRandomLayer ’,

’RBFRandomLayer ’,

’GRBFRandomLayer ’,

]

c la s s BaseRandomLayer(BaseEstimator ,

TransformerMixin ):

"""Abstract Base Class for random layers"""

__metaclass__ = ABCMeta

_internal_activation_funcs = dict ()

@classmethod

def activation_func_names(cls):

"""Get list of internal activation function names"""

return cls._internal_activation_funcs.keys()

# take n_hidden and random_state , init components_ and

# input_activations_
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def __init__(self , n_hidden =20, random_state =0,

activation_func=None ,

activation_args=None):

self.n_hidden = n_hidden

self.random_state = random_state

self.activation_func = activation_func

self.activation_args = activation_args

self.components_ = dict ()

self.input_activations_ = None

# keyword args for internally defined funcs

self._extra_args = dict ()

@abstractmethod

def _generate_components(self , X):

"""Generate components of hidden layer given X"""

@abstractmethod

def _compute_input_activations(self , X):

"""Compute input activations given X"""

# compute input activations and pass them

# through the hidden layer transfer functions

# to compute the transform

def _compute_hidden_activations(self , X):

"""Compute hidden activations given X"""
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self._compute_input_activations(X)

acts = self.input_activations_

i f ( ca l l ab l e (self.activation_func )):

args_dict = self.activation_args i f

(self.activation_args) e l se {}

X_new = self.activation_func(acts , ** args_dict)

e l se :

func_name = self.activation_func

func = self._internal_activation_funcs[func_name]

X_new = func(acts , **self._extra_args)

return X_new

# perform fit by generating random components based

# on the input array

def fit(self , X, y=None):

X = check_array(X)

self._generate_components(X)

return self

def transform(self , X, y=None):

X = check_array(X)

i f (self.components_ i s None):
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ra i se ValueError(’No components initialized ’)

return self._compute_hidden_activations(X)

c la s s RandomLayer(BaseRandomLayer ):

# triangular activation function

_tribas = (lambda x: np.clip (1.0 -

np.fabs(x), 0.0, 1.0))

# inverse triangular activation function

_inv_tribas = (lambda x: np.clip

(np.fabs(x), 0.0, 1.0))

# sigmoid activation function

_sigmoid = (lambda x: 1.0/(1.0 + np.exp(-x)))

# hard limit activation function

_hardlim = (lambda x: np.array(x > 0.0, dtype= f l oa t ))

_softlim = (lambda x: np.clip(x, 0.0, 1.0))

# gaussian RBF

_gaussian = (lambda x: np.exp(-pow(x, 2.0)))

# multiquadric RBF

_multiquadric = (lambda x:

np.sqrt (1.0 + pow(x, 2.0)))
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# inverse multiquadric RBF

_inv_multiquadric = (lambda x:

1.0/(np.sqrt (1.0 + pow(x, 2.0))))

# internal activation function table

_internal_activation_funcs = {’sine’: np.sin ,

’tanh’: np.tanh ,

’tribas ’: _tribas ,

’inv_tribas ’: _inv_tribas ,

’sigmoid ’: _sigmoid ,

’softlim ’: _softlim ,

’hardlim ’: _hardlim ,

’gaussian ’: _gaussian ,

’multiquadric ’: _multiquadric ,

’inv_multiquadric ’: _inv_multiquadric ,

}

def __init__(self , n_hidden =20, alpha =0.5,

activation_func=’tanh’, activation_args=None ,

user_components=None , rbf_width =1.0):

super(RandomLayer , self). __init__(n_hidden=n_hidden ,

random_state=random_state ,

activation_func=activation_func ,

activation_args=activation_args)

i f ( i s instance (self.activation_func , str )):

func_names = self._internal_activation_funcs.keys()

i f (self.activation_func not in func_names ):
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msg = "unknown activation function ’%s’"

ra i se ValueError(msg)

self.alpha = alpha

self.rbf_width = rbf_width

self.user_components = user_components

self._use_mlp_input = (self.alpha != 0.0)

self._use_rbf_input = (self.alpha != 1.0)

def _get_user_components(self , key):

"""Look for given user component"""

try:

return self.user_components[key]

except (TypeError , KeyError ):

return None

def _compute_radii(self):

"""Generate RBF radii"""

# use supplied radii if present

radii = self._get_user_components(’radii’)

# compute radii

i f (radii i s None):

centers = self.components_[’centers ’]

n_centers = centers.shape [0]

max_dist = np.max(pairwise_distances(centers ))
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radii = np.ones(n_centers) *

max_dist/sqrt (2.0 * n_centers)

self.components_[’radii’] = radii

def _compute_centers(self , X, sparse , rs):

"""Generate RBF centers"""

# use supplied centers if present

centers = self._get_user_components(’centers ’)

# use points taken uniformly from the bounding

# hyperrectangle

i f (centers i s None):

n_features = X.shape [1]

i f (sparse ):

fxr = xrange(n_features)

cols = [X.getcol(i) for i in fxr]

min_dtype = X.dtype.type(1.0 e10)

sp_min = lambda col: np.minimum(min_dtype ,

np.min(col.data))

min_Xs = np.array(map(sp_min , cols))

max_dtype = X.dtype.type(-1.0e10)

sp_max = lambda col: np.maximum(max_dtype ,

np.max(col.data))

max_Xs = np.array(map(sp_max , cols))
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e l se :

min_Xs = X.min(axis =0)

max_Xs = X.max(axis =0)

spans = max_Xs - min_Xs

ctrs_size = (self.n_hidden , n_features)

centers = min_Xs + spans * rs.uniform (0.0, 1.0,

ctrs_size)

self.components_[’centers ’] = centers

def _compute_biases(self , rs):

"""Generate MLP biases"""

# use supplied biases if present

biases = self._get_user_components(’biases ’)

i f (biases i s None):

b_size = self.n_hidden

biases = rs.normal(size=b_size)

self.components_[’biases ’] = biases

def _compute_weights(self , X, rs):

"""Generate MLP weights"""

# use supplied weights if present

weights = self._get_user_components(’weights ’)

i f (weights i s None):

n_features = X.shape [1]
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hw_size = (n_features , self.n_hidden)

weights = rs.normal(size=hw_size)

self.components_[’weights ’] = weights

def _generate_components(self , X):

"""Generate components of hidden layer given X"""

rs = check_random_state(self.random_state)

i f (self._use_mlp_input ):

self._compute_biases(rs)

self._compute_weights(X, rs)

i f (self._use_rbf_input ):

self._compute_centers(X, sp.issparse(X), rs)

self._compute_radii ()

def _compute_input_activations(self , X):

"""Compute input activations given X"""

n_samples = X.shape [0]

mlp_acts = np.zeros((n_samples , self.n_hidden ))

i f (self._use_mlp_input ):

b = self.components_[’biases ’]

w = self.components_[’weights ’]

mlp_acts = self.alpha * (safe_sparse_dot(X, w) + b)

rbf_acts = np.zeros((n_samples , self.n_hidden ))
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i f (self._use_rbf_input ):

radii = self.components_[’radii’]

centers = self.components_[’centers ’]

scale = self.rbf_width * (1.0 - self.alpha)

rbf_acts = scale * cdist(X, centers )/ radii

self.input_activations_ = mlp_acts + rbf_acts

c la s s MLPRandomLayer(RandomLayer ):

"""Wrapper for RandomLayer with alpha

to 1.0 for MLP activations only"""

def __init__(self , n_hidden =20,

random_state=None ,

activation_func=’tanh’, activation_args=None ,

weights=None , biases=None):

user_components = {’weights ’: weights ,

’biases ’: biases}

super(MLPRandomLayer , self). __init__

(n_hidden=n_hidden ,

random_state=random_state ,

activation_func=activation_func ,

activation_args=activation_args ,

user_components=user_components ,

alpha =1.0)
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c la s s RBFRandomLayer(RandomLayer ):

"""Wrapper for RandomLayer with alpha

to 0.0 for RBF activations only"""

def __init__(self , n_hidden =20, random_state=None ,

activation_func=’gaussian ’, activation_args=None ,

centers=None , radii=None , rbf_width =1.0):

user_components = {’centers ’: centers ,

’radii’: radii}

super(RBFRandomLayer , self). __init__

(n_hidden=n_hidden ,

random_state=random_state ,

activation_func=activation_func ,

activation_args=activation_args ,

user_components=user_components ,

rbf_width=rbf_width ,

alpha =0.0)

c la s s GRBFRandomLayer(RBFRandomLayer ):

_grbf = (lambda acts , taus:

np.exp(np.exp(-pow(acts , taus ))))

_internal_activation_funcs = {’grbf’: _grbf}

def __init__(self , n_hidden =20,

grbf_lambda =0.001 ,
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centers=None , radii=None , random_state=None):

super(GRBFRandomLayer , self). __init__

(n_hidden=n_hidden ,

activation_func=’grbf’,

centers=centers , radii=radii ,

random_state=random_state)

self.grbf_lambda = grbf_lambda

self.dN_vals = None

self.dF_vals = None

self.tau_vals = None

def _compute_centers(self , X, sparse , rs):

"""Generate centers ,compute tau , dF and

dN vals"""

super(GRBFRandomLayer ,self). _compute_centers

(X, sparse , rs)

centers = self.components_[’centers ’]

sorted_distances = np.sort(squareform

(pdist(centers )))

self.dF_vals = sorted_distances [:, -1]

self.dN_vals = sorted_distances [:, 1]/100.0

#self.dN_vals = 0.0002 * np.ones(self.dF_vals.shape)

tauNum = np.log(np.log(self.grbf_lambda) /

np.log (1.0 - self.grbf_lambda ))
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tauDenom = np.log(self.dF_vals/self.dN_vals)

self.tau_vals = tauNum/tauDenom

self._extra_args[’taus’] = self.tau_vals

# get radii according to ref [1]

def _compute_radii(self):

"""Generate radii"""

denom = pow(-np.log(self.grbf_lambda),

1.0/ self.tau_vals)

self.components_[’radii’] = self.dF_vals/denom

#plot_elm_comparison.py

print __doc__

import numpy as np

import pylab as pl

from matplotlib.colors import ListedColormap

from sklearn.datasets import make_classification

from sklearn.datasets import make_moons , make_circles

from sklearn.preprocessing import StandardScaler

from sklearn.cross_validation import train_test_split

from sklearn.linear_model import LogisticRegression

from elm import GenELMClassifier
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from random_layer import RBFRandomLayer ,

MLPRandomLayer

def get_data_bounds(X):

h = .02 # step size in the mesh

x_min , x_max = X[:, 0].min() - .5, X[:, 0].max() + .5

y_min , y_max = X[:, 1].min() - .5, X[:, 1].max() + .5

xx , yy = np.meshgrid(np.arange(x_min , x_max , h),

np.arange(y_min , y_max , h))

return (x_min , x_max , y_min , y_max , xx, yy)

def plot_data(ax , X_train , y_train , X_test , y_test

, xx, yy):

cm = ListedColormap ([’#FF0000 ’, ’#0000FF’])

# Plot the training points

ax.scatter(X_train[:, 0], X_train[:, 1],

c=y_train , cmap=cm)

# and testing points

ax.scatter(X_test[:, 0], X_test[:, 1],

c=y_test , alpha =0.6)

ax.set_xlim(xx.min(), xx.max())

ax.set_ylim(yy.min(), yy.max())

ax.set_xticks (())

ax.set_yticks (())



118

def plot_contour(ax, X_train , y_train , X_test , y_test

, xx, yy, Z):

cm = pl.cm.RdBu

cm_bright = ListedColormap ([’#FF0000 ’, ’#0000 FF’])

ax.contourf(xx , yy , Z, cmap=cm , alpha =.8)

# Plot also the training points

ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train ,

cmap=cm_bright)

# and testing points

ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test ,

cmap=cm_bright , alpha =0.6)

ax.set_xlim(xx.min(), xx.max())

ax.set_ylim(yy.min(), yy.max())

ax.set_xticks (())

ax.set_yticks (())

ax.set_title(name)

ax.text(xx.max() - 0.3, yy.min() + 0.3,

(’%.2f’ % score)

.lstrip(’0’),

size=13, horizontalalignment=’right ’)

def make_datasets ():
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return [make_moons(n_samples =200, noise =0.3),

make_circles(n_samples =200, noise =0.2, factor =0.5),

make_linearly_separable ()]

def make_classifiers ():

names = ["ELM(10,tanh)", "ELM(10,tanh ,LR)",

"ELM(10, sinsq)",

"ELM(10, tribas)", "ELM(hardlim)",

"ELM(20,rbf (0.1))"]

nh = 10

# pass user defined transfer func

sinsq = (lambda x: np.power(np.sin(x), 2.0))

srhl_sinsq = MLPRandomLayer(n_hidden=nh,

activation_func=sinsq)

# use internal transfer funcs

srhl_tanh = MLPRandomLayer(n_hidden=nh,

activation_func=’tanh’)

srhl_tribas = MLPRandomLayer(n_hidden=nh ,

activation_func=’tribas ’)

srhl_hardlim = MLPRandomLayer(n_hidden=nh ,

activation_func=’hardlim ’)
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# use gaussian RBF

srhl_rbf = RBFRandomLayer(n_hidden=nh*2,

rbf_width =0.1)

log_reg = LogisticRegression ()

classifiers = [GenELMClassifier(hidden_layer=srhl_tanh),

GenELMClassifier(hidden_layer=srhl_tanh ,

regressor=log_reg),

GenELMClassifier(hidden_layer=srhl_sinsq),

GenELMClassifier(hidden_layer=srhl_tribas),

GenELMClassifier(hidden_layer=srhl_hardlim),

GenELMClassifier(hidden_layer=srhl_rbf )]

return names , classifiers

def make_linearly_separable ():

X, y = make_classification(n_samples =200,

n_features =2, n_redundant =0,

n_informative =2, random_state =1,

n_clusters_per_class =1)

rng = np.random.RandomState (2)

X += 2 * rng.uniform(size=X.shape)

return (X, y)

#################################################################

datasets = make_datasets ()
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names , classifiers = make_classifiers ()

i = 1

figure = pl.figure(figsize =(18, 9))

# iterate over datasets

for ds in datasets:

# preprocess dataset , split into training and test part

X, y = ds

X = StandardScaler (). fit_transform(X)

X_train , X_test , y_train , y_test = train_test_split(X, y,

test_size =.4,

random_state =0)

x_min , x_max , y_min , y_max , xx, yy = get_data_bounds(X)

# plot dataset first

ax = pl.subplot( len(datasets), len(classifiers) + 1, i)

plot_data(ax , X_train , y_train , X_test , y_test , xx, yy)

i += 1

# iterate over classifiers

for name , clf in zip (names , classifiers ):

ax = pl.subplot( len(datasets), len(classifiers) + 1, i)

clf.fit(X_train , y_train)

score = clf.score(X_test , y_test)

# Plot the decision boundary. For that , we will asign
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# point in the mesh [x_min , m_max]x[y_min , y_max].

Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel ()])

# Put the result into a color plot

Z = Z.reshape(xx.shape)

plot_contour(ax, X_train , y_train , X_test , y_test , xx,

yy , Z)

i += 1

figure.subplots_adjust(left =.02, right =.98)

pl.show()
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