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Abstract

Various fields, such as engineering, physics, and economics, require optimization in the

real world. Various meta-heuristic methods have gained popularity in recent decades

to solve these optimization problems; evolutionary algorithms are one of the ways to

solve these problems. This class of algorithms deal with a generation of candidate

solutions that are evolved until a stopping criterion is achieved. Researchers are

improving these algorithms’ performance by introducing new ensemble strategies to

tackle a variety of problems. This thesis focuses on creating a novel co-operative

multi-population framework to solve single and bi-objective problems based on the

hunting strategies and hierarchical structures of grey wolves. The structure of this

framework allows to overcome several defects and improves the information flow and

convergence of the search process.

The framework is evaluated using IEEE’s Congress of Evolution Congress bench-

marks for single-objective real parameter optimization (2013) and unconstrained

multi-objective optimization problems (2009). The performance is compared with

the traditional grey wolf optimization algorithms and state-of-the-art for single and

multi-objective optimization.
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Chapter 1

Introduction

1.1 Optimization

Optimization is the art of making better decisions; it is a technique of finding the best

set of solution(s) for a given objective function under given constraints or limitations

[3]. It is significant as it finds a feasible solution in a limited amount of time (or

resources). In single-objective optimization problems, the best solution based on one

objective function (minimization) [1].

Minimize f(x) x = [x1, x2, . . . , xD]

Li ≤ xi ≤ Ui, i = 1, 2, . . . , D

where D is the dimension of the problem, x is a variable in the solution space and

[Li,Ui] are boundaries of the ith dimension. An example of this kind of problem can

be finding the best value of x, for which cost is minimum.

Multi-objective problems are more complex than single-objective problems since

we deal with more than one objective function. The objective functions are repre-

1



Chapter 1. Introduction 2

sented by F(x) where-

Minimize F (x) = f1 (x) , f2 (x) , . . . , fk(x) x = [x1, x2, . . . , xD]

Li ≤ xi ≤ Ui, i = 1, 2, . . . , D

The functions f1, f2,. . . ,fk are the objective functions that need to be optimized

[2]. In case of multi-objective problems, k is usually 2 or 3, if k > 4, then the problem

is classified as a many-objective problem.

In multi-objective optimization there exists more than one optimal solutions, un-

like single-objective optimization. To compare candidate solutions, the concept of

Pareto dominance is commonly used. Consider X1 = (x11, x
1
2, . . . , x

1
D) and X2 =

(x21, x
2
2, . . . , x

2
D). According to Pareto dominance, X1 is said to be dominated by X2

if and only if:

∀i ∈ (1, 2, . . . , k) : f1(k) ≥ f2(k)

∃i ∈ (1, 2, . . . , k) : f1(k) > f2(k)

where k is the number of objective functions fi. Thus, the set of optimal solutions

(or Pareto front) is the set of non-dominated solutions, illustrated in Figure 1.1.

While there exists many dynamic optimization problems, in which there exists

dynamic variables whose values change over time, in this thesis we will be restricting

our scope to static optimization problems.

Some applications of optimization are optimizing warehouse location to minimize

shipping time, optimizing the structural design to maximize load-bearing, optimizing

the stock portfolio to maximize profits. It is evident that optimization has a wide

range of applications and is ubiquitous, hence it is an important research topic. When

it comes to solving these optimization problems there are various methods such as

linear programming, simulated annealing, evolutionary algorithms and many more.

This research focuses on evolutionary algorithms, because of their advantages, which
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Figure 1.1: Illustration of Pareto Front

are discussed in the later sections.

1.2 No-Free Lunch

In 1997, the no-free lunch (NFL) theorem was proposed in the field of mathematics

[4]. It states that if an algorithm performs excellently on a specific subset of prob-

lems, then it will surely suffer a loss of performance on another subset of problems.

Therefore, to compare the equivalence of two algorithms, their performance needs to

be averaged over all variety of problems.

Theoretically, the NFL states that it is not possible to have an algorithm efficient

for all problems. Nevertheless, in practice, recent studies have shown that free-lunches

are possible when an ensemble of strategies is used to make the algorithm more

versatile [5, 6]. Thus, a meticulously designed algorithm with a dynamic ensemble

can be considered efficient for the considered subset of problems.

1.3 Evolutionary Algorithms

As mentioned earlier, there are numerous ways to solve optimization problems, evo-

lutionary algorithm (EA) is one of them. EAs are a subset of evolutionary computa-
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tion, and have gained much popularity in recent years for meta-heuristic optimization.

These algorithms are generally inspired by biological evolution and evolve a gener-

ation of the population until the stopping criteria are achieved. The goal of these

algorithms is to find a near-optimal solution. The advantages of using EAs are, and

not limited to:

1. Robustness- They are able to deal with many solutions at once, and hence are

able to achieve near-optimal solutions in a shorter time than their traditional

counterparts, which take a long time to provide the optimal solution.

2. Easy to implement- EAs can be treated as a black-box method, and do not

require any implementation other than basic solution representation and search

operators.

3. Suitability for multi-objective problems- It is an inherent quality of EAs,

that by making little or no changes they can be used for single and multi

objective problems,

4. Parallel and Distributed- EAs can be run in parallel, and even distributed

really efficiently. Because of the fact that each individual is independently

evaluated, it is possible to distribute the task of evaluating n individuals to n

processors, and in turn save time.

A general high-level flowchart of evolutionary algorithms is shown in Figure 1.2.

The common underlying concept of this set of algorithms is - a population of an

individual is initialized and their fitness is evaluated according to an objective func-

tion. The best ones are selected, while the worst ones may be discarded, and the

next generation of the population is generated by applying various operators such as

mutation and recombination.

One of the first EA to be proposed was by John H. Holland in 1975, called genetic

algorithm [7]. The basic concept behind it is similar to that of genes in biology, a

solution is represented as a vector of real or integer values, and the gene is mutated
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Figure 1.2: Flowchart for Evolutionary Algorithms

and produces offspring population throughout the evolution. The concept is survival

of the fittest, where the more fit genes survive to the next iteration, and are chosen

to produce the offspring population. In order to also incorporate randomness in the

population, some genes are randomly mutated, and may provide to be even more

fitter than their original version.

Some other examples of evolutionary algorithms are Particle Swarm Optimization

(PSO) [8], Grey Wolf Optimization (GWO) [9], and Differential Evolution (DE) [10].

1.4 Research Motivation

This thesis was motivated while studying various optimization algorithms for complex

problems. There is a plethora of options available when it comes to evolutionary algo-

rithms for optimization problems. But most of the them are inflexible and problem-

specific. After reviewing various algorithms, we realized that grey wolf optimization

(GWO) algorithm [9] has a lot of potential due to its simplicity and initial results.

Unlike other various other algorithms, where an individual is assigned various other

attributes, in GWO only the position and fitness is calculated for each individual. We

realized the defects discovered in GWO [11] can be improved upon by improvising the

algorithm. After studying various surveys done on ensemble strategies, we were in-
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spired to employ the use of a multi-population strategy to improve the performance of

our algorithm. Thus, we inspire our multi-population structure from the hierarchical

structure of the grey wolves. Our initial results on single-objective problems showed

promising results, which led us to implement this model on multi-objective problems,

and provide better performance when compared to the state of the art models.

1.5 Hypothesis

The hypothesis for this thesis is - If we incorporate a multi-population ensemble

to the traditional grey wolf optimization algorithm then we expect to see a better

performance in terms of both convergence and time, as seen in the literature review.

Additionally, by introducing new components, namely - elite group and mutation

operator, we expect to reform the defects, studied in [11, 12].

This will be measured by comparing results on standard benchmark test suites

for single and bi-objective problems, that are provided by the IEEE’s Congress of

Evolutionary Computation (CEC); for single-objective problem we will use CEC 2013

benchmark for real parameter optimization [1], for multi-objective problem we will use

CEC 2009 benchmark for unconstrained bi-objective problems [2]. The comparison

for single-objective problem will be done by comparing the fitness of best individual

achieved from each algorithm, and with some statistical tests will be performed to

support the claim. In case of multi-objective problem, we compare the obtained

Pareto fronts, graphically and statistically using two metrics, GD and hypervolume.

1.6 Thesis Contribution

This thesis makes the following contributions:-

1. The main contribution is co-evolving dynamic multi-population framework for
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single objective and bi-objective optimization problems, inspired by the hierar-

chical structure of grey wolves in [9, 13]. The structure is analogously adopted in

our populations and allows dynamic leader selection in every generation. To the

best of our knowledge, this is the first multi-population co-evolving algorithm

that mimics the grey wolves’ pack and hunting behaviour.

2. Additionally, owing to the co-evolving and dynamic nature, the proposed frame-

work also aims to overcome the problem of getting stuck in local optima [12],

and low convergence for non-zero optima [11].

3. We also introduce two components to our novel local search algorithm - namely

elite group and mutation operator. These components are introduced in order

to work on the defects discussed, and further improve the performance of the

local search algorithm.

4. Finally, this thesis compares and studies the comparison done between various

state of the arts using IEEE’s CEC Benchmark for unconstrained single and

bi-objective problems.

1.7 Thesis Outline

The chapters of this thesis is organized in the following manner:

Chapter 1 describes the background information, motivation, and contribu-

tions of the research work.

Chapter 2 describes the literature survey in the field of EA inspired from grey

wolves, and EA that have a multi-population structure.

Chapter 3 explains the proposed framework for single objective problems,

briefly lists functions in the benchmark (CEC 2013 test suite) used, and the

results obtained.
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Chapter 4 explains the proposed framework for multi objective problems, in-

formation about the CEC 2009 test suite of unconstrained bi-objective problems

with the actual Pareto fronts, and the results achieved on the same.

Chapter 5 discusses the results obtained, and provides a discussion of the

complexity and limitations of the framework.

Chapter 6 concludes the thesis and provides the future work.



Chapter 2

Background Study

This chapter comprises related work that has inspired us to build this framework,

design the architecture, and propose it. Multi-population strategy can be divided

into two major types - Cooperative and competitive [5].

In co-operative multi-population, the populations co-evolve with a mutual flow of

information. The populations are treated equally, irrespective of their performance,

and are provided with the same types of operators. The populations usually have the

same size and can be run in parallel, thus reducing these algorithms’ time complexity.

In these algorithms, the flow of information is necessary to maintain both diversity and

convergence. The information can be exchanged in various ways, such as migrating

individuals and dynamic merging and regrouping.

On the other hand, in a competitive multi-population strategy, the populations

compete for more resources. In one case, the populations start with equal population

size and depending on the strategy’s performance followed by each population. The

size is decreased/increased. In the other case, each operator/strategy is assigned

a small-sized indicator population and a large-size reward population. By judging

operators’ performance in the indicator population, the reward population is assigned

to different operators.

9
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Recent studies that implement a multi-population architecture prove that multi-

population architecture improves EA’s performance significantly due to an increase

in exploration ability and convergence rate [16? ].

The remaining section classifies the research based on the number of objectives in

the optimization problem- single objective and multi-objective.

2.1 Single-Objective Optimization

In [14], a memory-based multi-population genetic learning model is proposed to find

the shortest path in a dynamic graph. The strategy used to maintain multi-population

is dynamic in nature. A density-based top-down clustering is used to divide the

population into various sub-populations automatically. The number of sup-population

is also dynamic, which depends on the number of current peaks in the population.

The approach consists of two factors, the solution with high fitness value should be

a cluster center, and two cluster centers should be far from each other.

In [15], in which a heritage-dynamic cultural algorithm is proposed to solve single-

objective optimization functions. It employs a novel approach in maintaining the

multi-population. The term ”Heritage” is introduced, which implies that an individ-

ual has weighted connections with one or multiple sub-populations. Thus, the term

”Multi-Population” is dropped, as implied in the term ”Heritage”. The influence

of heritage is passed down from the predecessor individuals to their children in an

additive manner. This allows an individual to belong to multiple populations at once.

In [16], a multi-swarm cooperative particle swarm optimization (MCPSO) is pro-

posed by the authors, in which slave swarms co-evolve and return their best individu-

als. A new term is added in the velocity update equation of the master swarm, which

follows the best individual returned from the swarm populations. This research pro-

poses two models - collaborative and competitive; according to the results reported,

the competitive model performed better than the collaborative.
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Figure 2.1: Hierarchical Structure of Grey Wolves

2.1.1 Grey Wolf Optimization

Like various other swarms and biological evaluations, grey wolves (Canis lupus) and

their packs have been the source of inspiration of a subset of evolutionary algorithms.

These algorithms are mainly based on the hunting mechanism and the hierarchical

structure of grey wolves.

In a pack of grey wolves, there are 4 types of individuals - alpha α, beta β, delta δ

and omega ω [9, 13]. An alpha wolf is considered as the leader of the pack, responsible

for main decision making, and the first one to prey. The beta wolf is a subsidiary

to the alpha, and assists it in making the decisions. The lowest ranking wolves are

called omegas. And, the wolf that does not fit in any category is considered as delta

wolf. In nature, they are usually the elders, scouts or sentinels. Figure 2.1 shows the

hierarchical structure of these wolves.

Additional to the hierarchical structure, the hunting mechanism of grey wolves is

also important, which can be divided into three major steps [13] -

1. Approaching: In this step, the pack covers a lot of ground and explores the

area. This can be considered as an exploration phase in the analogy of EA.

2. Encircling: This is the second step in which many pack members, and in some

cases, all, surround the prey, trapping it so that the wolves can harass it.
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3. Attacking: The last step of the hunting mechanism is attacking the prey. After

encircling, the wolves move closer towards the prey, still surrounding the prey,

and ultimately finishing it. This step is analogous to final convergence in EA.

S. Mirjalili et al. first proposed Grey Wolf Optimization (GWO) algorithm in

2014 [9] for single-objective problems. As shown in Figure 2.2, the authors proposed a

model which states that the fittest solution for a given problem be named as alpha (α).

The second and third best solutions be called as beta (β) and delta (δ), respectively.

The rest of the population is collectively called the omega (ω) wolves. The pack is led

by α , β , δ and the ω wolves will follow them. In fact, during the evolution process,

the updating of the wolves is done in such a way that they follow the positions of the

most fit three wolves name- α , β, and δ.

After selecting the top 3 wolves based on fitness value: α , β, and δ, the position

of the population is updated in such a way that they follow these leaders.

Consider, t as the current iteration, ~Xp as the position of prey, and ~X as the

position of a grey wolf. Therefore, the displacement vector ~X(t + 1) for prey p is

given as,

~Dp = |~C. ~Xp(t)− ~X(t)|

~X(t+ 1) = ~Xp(t)− ~A. ~Dp

For every wolf in the population the new position is given by

~X(t+ 1) =
~X1 + ~X2 + ~X3

3
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Figure 2.2: Classic GWO architecture

where, ~X1, ~X2. ~X3 are the displacement vectors for p = α, β, δ respectively.

~Dα = | ~C1. ~Xα − ~X|, ~Dβ = | ~C1. ~Xβ − ~X|, ~Dδ = | ~C1. ~Xδ − ~X|

~X1 = ~Xα − ~A. ~Dα, ~X2 = ~Xβ − ~A. ~Dβ, ~X3 = ~Xδ − ~A. ~Dδ

Other studies address the use of GWO in other scientific fields. In [17], the

original GWO is modified so that it becomes a discrete process instead of continuous.

By making it a discrete process, the algorithm can be used in feature selection, where

the problem is to either choose a feature or not, which is a binary option. That

is why such modifications of GWO are known as Binary Grey Wolf Optimization

(BGWO). Various other fields such as community detection, Knapsack problems,

and some special optimization problems require binary-operated algorithms. BGWO

has been modified and adapted in various researches other than feature selection such

as community detection [18], text classification [19], and knapsack [20].

It has been discovered that GWO has a defect in which when the optimum solution
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is non-zero, the population tends to have a significant drop in convergence rate [11].

This may be because the variable that migrates the individuals during the evolution

converges to zero, but when the case is of a non-zero optimum point, it explores

randomly. This might also be the cases with other optimization algorithms [11].

Furthermore, like other evolutionary algorithms, GWO also has a problem of

getting stuck in the local optima [12]. Additionally, to the best of our knowledge, no

work introduces a multi-population strategy inspired by the grey wolves. We believe

that by incorporating co-evolving multi-population, we can tackle the defects above

and improve the exploration and exploitation abilities during the search process.

2.1.2 Evaluation Metric for Single-Objective Optimization

The metric for single-objective optimization to compare two algorithm’s performance

is the best fitness value achieved. Since there is only one objective, we can directly

compare the best individuals’ values achieved from various algorithms and see which

is better.

To incorporate the randomness of the evolutionary algorithm, the algorithm is run

for various independent runs, and then the average of the best fitness is considered.

For example, each algorithm can be run for thirty independent runs, and then the

average of best values can be compared.

Non-Parametric Tests

Non-parametric tests are conducted to compare two distributions, which may not be

presumed as normal. To better understand the distributions and compare if they are

derived from the same sample or not, we can conduct various tests. Some of these

tests are introduced below:

1. Friedman’s Test - Proposed by Milton Friedman [21], this test is a pre-hoc analy-
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sis used to detect differences in variables. If the null hypothesis is rejected, then

it means that there exists at least one treatment that is significantly different

from the rest.

2. Wilcoxon’s Test - This is a posthoc analysis that performs a pair-wise compari-

son of different distributions. It is used to measure the mean rank between two

populations and attempts to prove that the two populations are samples of the

same distribution.

3. Kruskal-Walli’s test - This pre-hoc test is usually used for consistency, and its

null hypothesis states that the variables come from the same distribution. This

test is also based on the rank system but can take more than two groups at

once.

2.2 Multi-Objective Optimization

For multi-objective problems, the state of the art methods considered are non-dominated

sorted algorithm II (NSGA-II) [22], and multi-objective evolutionary algorithm based

on decomposition (MOEAD) [23]. NSGA-II is an upgraded version of NSGA [24],

in which the population is repeatedly sorted based on their Pareto dominance, and

ranks of obtained fronts are generated. The top individuals are considered based on

this sorting. These individuals generate an offspring population using the genetic

algorithm operators such as crossover, mutation, and tournament. Another version

of this model is proposed as NSGA-III [25], which is for many-objective problems

precisely, and out of the scope of this thesis.

MOEAD is based on the decomposition of a problem into small problems and

optimizing these sub-problems simultaneously. Each sub-problem is optimized by

using the neighbouring subproblems’ information only and has shown to have a lower

complexity compared to NSGA-II. This has motivated the use of decomposition in

optimization and the application of this algorithm in many areas. The problem with
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Figure 2.3: Density of archive members decides probability for leader selection
and removal when archive overfills

MOEAD is that it requires knowledge of the problem that needs to be optimized

to divide it into subproblems in a better way. Since each sub-problem needs to be

assigned a weight, these weights need to be initialized efficiently to get better results.

There are some variants of particle swarm optimization (PSO) as well that are

used in multi-objective optimization. Multi-objective particle swarm optimization

(MOPSO) was first proposed in 2002 [26], which uses an adaptive archive, and a leader

selection based on cell density of archive members, as illustrated in figure 2.3. In 2019,

a multi-objective version of PSO was proposed using a co-evolving multi-population

structure [27]. Two different models are proposed, competitive and collaborative

model. The master population may or may not consider the best individual from the

slave population in the competitive model but always considers it in the collaborative

model.

A multi-objective model for GWO (MOGWO) was first posed in [28]. In this

paper, the authors added an archive to store all the non-dominated Pareto optimal

solutions to make the algorithm multi-objective. The authors also introduced the

concept of leader selection in the archive to select alpha, beta, and delta leaders in

the archive. The concept of leader selection is based on roulette wheel selection.

The probability of selection is inversely proportional to the cell density in which a

candidate belongs; MOPSO inspires this. This way, the leaders from sparsely dense

cells are selected, allowing more exploration of the population. The archive used in
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Figure 2.4: Classic MOGWO architecture

this research is inspired by the adaptive archive proposed in multi-objective particle

swarm optimization (MOPSO) [26]. The architecture of the traditional MOGWO is

illustrated in figure 2.4.

This work has been further modified in the literature and applied in various fields.

Hybrid MOGWO proposed in [29] modifies individuals’ encoding process and intro-

duces a crossover and mutation operator. This model is specifically designed to solve

dynamic scheduling in the welding industry. In [30], a bi-objective problem of wind

energy conversion is optimized by finding an optimal operating point of a fuzzy con-

troller to maximize the power output and alleviate the loads. Another research done

in [31] uses a modified version of MOGWO to optimize a hybrid artificial neural

network used to predict the strength of silica fume concrete.
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(a) Hypervolume (b) Generational Distance

Figure 2.5: Performance Indicators

2.2.1 Evaluation Metrics for Multi-Objective Optimization

Unlike single-objective optimization, where the best individual’s fitness can compare

the performance, multi-objective optimization problems have various metrics available

to compare the obtained Pareto fronts (set of non-dominated solutions). We will be

introducing some of these metrics that are in the scope of this thesis.

Generation Distance

Generational Distance (GD) [32] is one of the most used evaluation metrics that

calculate the mean distance between an obtained Pareto front to the actual Pareto

front. This metric requires knowledge about the optimal Pareto front in order to

compare the efficiency of an algorithm.

Consider a set of points obtained by an algorithm as A = {a1, a2, . . . , an} for a

problem with optimal Pareto front Z = {z1, z2, . . . , zn}, then GD is calculated by:

GD(A) =
1

|A|
(

|A|∑
i=1

d2i )
1/2 (2.1)

where di is the distance between point ai and its nearest point in Z. GD is illustrated

in figure 2.5a
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Hypervolume

Hypervolume [33] is another performance indicator that calculates the volume/area

covered by the obtained Pareto front with respect to a reference point. Unlike GD,

Hypervolume does not require knowledge about the optimal Pareto front, But due to

its complexity in the calculation, GD requires more time. Additionally, the answer

depends on the position of the reference point. The reason to use Hypervolume is that

it tells two things about a Pareto front, the spread and the closeness to the optimal

regions.

Though it does not directly compare the distance between the obtained Pareto

front and the actual Pareto front, it tells how farther a front is from the reference

point. The greater the area covered, the farther it is from the reference point. Another

note to be made for Hypervolume is that the reference point chosen must be greater

than the maximum values observed in each objective. For example, if the worse value

for f1 is 5, and for f2 is 7, then the chosen reference point r must be (x, y) where x

≥ 5 and y ≤ 7. The values of hypervolume change when the reference point is moved.

There is thus much study on choosing the best possible reference point, which is

slightly worse than the nadir point [34].

For minimization problems, greater Hypervolume means better performance. Fig-

ure 2.5b illustrates hypervolume and its calculation. In order to perform a multi-

dimensional comparison, we consider both Hypervolume and GD for comparison.



Chapter 3

Proposed Model for Single

Objective Optimization

This chapter describes the model proposed for single-objective problem in detail, the

single objective benchmark functions used, the comparisons done with the state of

the art algorithms and the traditional GWO for single objective problems.

3.1 Model Architecture

Generally, as shown in Figure. 3.1, our proposed approach can be divided into five

main steps.

1. Initialization: The population consists of n individuals which is initialized in

a randomly uniform manner in the solution space. Assume Xt = {I1, ..., In} represents

a population at the iteration t with n individuals, Ii, where 1 <= i <= n. Each

individual represents a potential solution for a given problem. Hence, the initial

population can be defined as X0 with n random individuals. We also initialize three

variables ~A, ~C, and a parameter, which are be used to migrate the individuals in

20



Chapter 3. Proposed Model for Single Objective Optimization 21

GWO as described in [9].

~A = 2a.~r1 − a and ~C = 2~r2 (3.1)

value of a is decreased linearly from 2 to 0 over the course of iterations and ~r1 and

~r2 are random vectors between [0, 1].

a = 2− i 2

Nt

(3.2)

where i is the current iteration number and Nt is the total number of iteration.

2. Evaluation and Division: In the second step, the quality and suitability of

the individuals in the population is evaluated using the objective function, f(I), and

are ranked accordingly. In case of minimization- if f(Ix) < f(Iy) then Ix is a better

than Iy.

The population is then divided into 4 fixed-size populations based on their fitness

scores, namely Alpha population (A), Beta population (B), Delta population (∆),

and Omega population (Ω). Thus, Xt = At ∪Bt ∪∆t ∪Ωt and At ∩Bt ∩∆t ∩Ωt = ∅

The initial population is divided in such a way that individuals in Alpha popula-

tion are fitter than individuals in Beta population, which are fitter than individuals

in Delta population, and so on. Alpha population is the group of individuals that

have better performance, and hence play the lead role in the optimization process,

Beta population is subordinate to the Alpha population and support them in decision

making. Additionally, Omega population is non-dominant and gives in to other pop-

ulations by following them, and Delta population includes the rest of the individuals

that dominate Omega population but submit to Alpha and Beta populations.

As a brief example to illustrate the way the populations are divided, assume we
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have a population consisting of the following eight individuals of dimension 2.

X1 = [−4, 1]; X2 = [−2, 1]; X3 = [0, 1]; X4 = [4, 2];

X5 = [0, 0.9]; X6 = [1.5, 1]; X7 = [0, 3]; X8 = [2.5, 1.5]

Now, assume the objective function is a sphere function which is x2 + y2 = 0. After

calculating the fitness values, the algorithm will sort them based on their performance.

Since this is a problem of minimization, the lesser the value of the fitness score of an

individual, the better it is.

Now, the initial population is divided into 4 populations. This is done by sorting

them according to the fitness function and assigning them population such as the

individuals in Alpha are better than the individuals in Beta, which are better than

the individuals in Delta. The remaining individuals are put in Omega popuation.

Alpha Population-{ X3, X5 } Beta Population-{ X2, X6 } Delta Population-{

X7, X8 } Omega Population-{ X1, X4 }.

Thus, this is how the populations are divided in the proposed framework. It is

to be noted that in practice, each population needs to have at least 4 individuals,

this is because in each population, there is a unique alpha, beta, delta individual;

consequently the population follow these top 3 individual according to the GWO

algorithm [9]. This process is known as ’evolving’ the population.

3. Evolving Alpha, Beta, and Delta Populations: After forming the popu-

lations, the third step consists of running the local optimization process. We propose

a modified grey wolf algorithm, which is run independently and concurrently on each

of the Alpha, Beta and Delta populations. Consequently, three best individuals will

be produced at the end of this step. We call the best one global alpha, the second one

global beta and the last one global delta. These individuals will form the elite group

and act as new global leaders for the Omega’s search process. In fact, to mitigate the
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Figure 3.1: Proposed Framework Architecture for Single Objective Problems

effects of the defect discussed in the Section 2, and avoid the population exploring

away from the optima points, we use an elite group of individuals, which records

individuals that had best accuracy in previous iteration.

In other words, guide leaders are basically the best individuals from each population-

Alpha, Beta, and Delta populations. Since we apply modified GWO in these popula-

tions, it is possible that the best individual from alpha may not be as fit as the best

individual from the beta population. Hence, these leaders will be sorted according

to their fitness scores, and then are labelled as global alpha, global beta, and global

delta.

4. Evolving Omega Population: In this step, a modified GWO is run in the
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Algorithm 1: Proposed Framework for Single Objective Optimization

Input : n : The total number of individuals in a population
Nt : Max. Number of Iteration
m: the portion/size of each population

Output: Iα : a near-optimal solution
f(Iα) : the best fitness value

1 Initializing the population(n) randomly;
2 Elite ← {Ø} ;
3 i ← 1 ;
4 while i <= Nt do
5 Sort the population based on the objective function;
6 Divide the initial population into 4 populations where top m% individuals

belong to Alpha population, next m% to Beta population and so on..;
7 Run Algorithm 2 in all populations (Alpha, Beta and Delta populations);
8 Find the best solutions of each population and add them to the Leaders

set;
9 Sort the leaders to obtain Global Alpha, Global Beta, Global Delta;

10 Run Algorithm 2 in Omega population with the guide leaders;
11 Elite ← alpha of each population;
12 population ← population ∪ Elite;
13 for all individuals do
14 if rand <= 20% then
15 Perform random mutation;
16 end

17 end
18 i++;

19 end
20 Return the Global alpha and its fitness value;

Omega population which uses the global alpha, global beta, and global delta as the

leaders to guide the search direction, hence maintaining the hierarchical structure. As

a result of this process the best individual from the Omega population is generated

and will be added to the elite group.

5. Merging and Enhancing Population: In the final step, the populations

are merged together into one global population, which is then mutated based on a

random probabilistic mutation operator. The output will be then send again to the

fitness evaluation phase and the cycle continues until the stop condition is met where

the best produced individual will be returned as the output of the algorithm. The
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reason to use the mutation operator here, is to escape from local optima during the

search process. In fact, we can interpret it in a way that, there exists some individuals

in each population which are not following the leaders completely.

The algorithm for our proposed Multi-Population Grey Wolf Optimization, Al-

gorithm 1, is a type of cooperative multi-population ensemble with information flow

using elite member, and periodic dynamic regrouping. The elite member consists of

the best individuals from each population - Alpha, Beta, Delta, and Omega.

3.1.1 Local Search Algorithm

In our thesis, we propose a search algorithm that performs a single-objective opti-

mization in a local population. This algorithm, as mentioned earlier, is inspired from

the hunting patterns seen in grey wolves. Additionally, to mitigate the effects of the

defects seen in GWO [11], an elite group and a mutation operator are incorporated

in the algorithm as well.

Furthermore, to allow a mutual information flow between population, knowledge

from other population is used to enhance the search process. This is done by intro-

ducing an optional parameter in our local search algorithm that takes guide leaders,

which are the leaders from the other populations. If the fitness of the guide leaders

is more than the best fitness in the population, then these leaders steer the search

process of the population.

This local search algorithm can be seen in 2. The mutation operator, as shown,

is a probabilistic operator that mutates a random dimension of mp percentage of the

population. The elite group consists of the best individual from the last iteration,

this is done in order to have a constant convergence of our algorithm, since GWO

converges away in case of non-zero optima [11].
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Algorithm 2: The Proposed Local Search for Single Objective Optimization

Input : Population of size n
Nt : Max Number of iteration
~Xα, ~Xβ, and ~Xδ Guide leaders (optional input)

Output: The last evolved set of population &
Xα : The best found optimal solution &
f(xα) : The best fitness value

1 Initialize a, A, and C using Equations. 3.1, and 3.2;
2 if guide leaders are given then
3 add them into the population;
4 sort the population;

5 end
6 Find the α, β, and δ individuals based on their fitness value;
7 Elite ← {Ø};
8 i ← 1;
9 while i <= Nt do

10 foreach individual ∈ Population do
11 Update individuals’ Position using GWO equations;
12 end
13 Update a, A, and C using Equations 3.1, and 3.2;
14 Evaluate fitness value of individuals;
15 Update new α, β, and δ;
16 Elite ← α;
17 population ← population ∪ Elite;
18 for all individuals do
19 if rand <= 20% then
20 Perform random mutation;
21 end

22 end
23 i++;

24 end
25 Return the population set, α, and its fitness value
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3.2 Evaluation

This section describes the evaluation done to evaluate the single-objective proposed

algorithm. The section is divided into three parts - comparison with state of the

arts, performance of proposed algorithm at different dimensions, and non-parameteric

statistical tests.

All experiments in this project have been conducted in the following environmental

setup and parameters:

• Windows 10, Core i5 9th Gen, GTX 1650, 8GB RAM

• Python 3.5.0

• IDE Used: PyCharm Professional 2019.3

• Size of the population - 100 individuals

• Number of iterations in the proposed algorithm- 25 outer iterations and 15 local

iterations

• Number of iterations for other state-of-the-art methods - 100

• Number of independent runs - 30

All the comparisons are made based on the average and standard deviation of the

results obtained after the 30 independent runs.

For the standardized testing environment, test functions from the CEC 2013 test

suite of ’Single Objective Real-Parameter Numerical Optimization Problems’ [1] were

used. This test suite compromises of mathematical functions that have D input

dimensions and a single objective function. The test consists of three categories

of minimization functions: ”Unimodal,” ”Multimodal Function”, and ”Composite

Functions”. The bounds of search space are [-100, 100]D where D is the dimension.

For this test suite, there is a shifted global optima denoted by o = [o1, . . . , oD]T .
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M1,M2, . . . ,M10 are rotational matrix that are provided with the test suite. Λα is

the diagonal matrix with λii = α
i−1

2(D−1) . T βasy and Tosz are constants which are provided

by IEEE. The functions are summarized in Table 3.1

No. Functions Minima (Fi*)

Unimodal
Functions

1 Sphere Function -1400
2 Rotated High Conditioned Elliptic Function -1300
3 Rotated Bent Cigar Function -1200
4 Rotated Discus Function -1100
5 Different Powers Function -1000

Basic
Multimodal
Functions

6 Rotated Rosenbrock’s Function -900
7 Rotated Schaffers F7 Function -800
8 Rotated Ackley’s Function -700
9 Rotated Weierstrass Function -600
10 Rotated Griewank’s Function -500
11 Rastrigin’s Function -400
12 Rotated Rastrigin’s Function -300
13 Non-Continuous Rotated Rastrigin’s Function -200
14 Schwefel’s Function -100
15 Rotated Schwefel’s Function 100
16 Rotated Katsuura Function 200
17 Lunacek Bi Rastrigin Function 300
18 Rotated Lunacek Bi Rastrigin Function 400
19 Expanded Griewank’s plus Rosenbrock’s Function 500
20 Expanded Scaffer’s F6 Function 600

Composite
Functions

21 Composition Function 1 (n=5, Rotated) 700
22 Composition Function 2 (n=3, Unrotated) 800
23 Composition Function 3 (n=3, Rotated) 900
24 Composition Function 4 (n=3, Rotated) 1000
25 Composition Function 5 (n=3, Rotated) 1100
26 Composition Function 6 (n=5, Rotated) 1200
27 Composition Function 7 (n=5, Rotated) 1300
28 Composition Function 8 (n=5, Rotated) 1400

Table 3.1: Summary of the 28 IEEE CEC 2013 Benchmark Functions for single-
objective problems [1]

The following are the functions used:

5 UniModal Functions

Sphere Function



Chapter 3. Proposed Model for Single Objective Optimization 29

Figure 3.2: 3-D Map for UF-1 [1]

f1(x) =
∑D

i=1 z
2
i + f1∗, z = x− o

Rotated High Conditioned Elliptic

f2(x) =
∑D

i=1(106)
i−1
D−1 z2i + f2∗, z = x− o

Figure 3.3: 3-D Map for UF-2 [1]

Rotated Bent Cigar Function

f3(x) = z21 + 106
∑D

i=2 z
2
i + f3∗ z = M2T

0.5
azy(M1(x− o))

Rotated Discus Function

f4(x) = 106z21 +
∑D

i=2 z
2
i + f4∗, z = Tosz(M1(x− o))

Different Power Function
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Figure 3.4: 3-D Map for UF-3 [1]

Figure 3.5: 3-D Map for UF-4 [1]

f5(x) =

√∑D
i=1 |zi|

2+4 i−1
D−1 + f5∗, z = (x− o)

15 Basic Multimodal Functions

Rotated Rosenbrock’s Function

f6(x) =
∑D−1

i=1

(
100 (z2i − zi+1)

2
+ (zi − 1)2

)
+ f6∗

z = M1

(
2.048(x−0)

100

)
+ 1

Rotated Schaffers F7 Function

f7(x) =
(

1
D−1

∑D−1
i=1

(√
zi +
√
zi sin

2 (50z0.2i )
))2

+ f ∗7

zi =
√
y2i + y2i+1 for i = 1, . . . , D, y = Λ10M2T

0.5
asy (M1(x− o))
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Figure 3.6: 3-D Map for UF-5 [1]

Figure 3.7: 3-D Map for UF-6 [1]
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Figure 3.8: 3-D Map for UF-7 [1]

Rotated Ackley’s Function

Figure 3.9: 3-D Map for UF-8 [1]

f8(x) = −20 exp

(
−0.2

√
1
D

∑D
i=1 z

2
i

)
− exp

(
1
D

∑D
i=1 cos (2πzi)

)
+ 20 + e+ f8∗

z = Λ10M2T
0.5
asy(M1(x− o))

Rotated Weierstrass Function

f9(x) =
∑D

i=1
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ak cos

(
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)])
−D
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[
ak cos

(
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f ∗9
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Rotated Griewank’s Function
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Figure 3.10: 3-D Map for UF-9 [1]

Figure 3.11: 3-D Map for UF-10 [1]

f10(x) =
∑D

i=1
z2i

4000
−
∏D

i=1 cos
(
zi√
i

)
+ 1 + f10∗, z = Λ100M1

600(x−o)
100

Rastrigin’s Function

f11(x) =
∑D

i=1 (z2i − 10 cos (2πzi) + 10) + f11∗ z = Λ10T 0.2
asy

(
Tosz

(
5.12(x−o)

100

))
Rotated Rastrigin’s Function

f12(x) =
∑D

i=1 (z2i − 10 cos (2πzi) + 10) + f12∗

z = M1Λ
10M2T

0.2
asy

(
Tosz

(
M1

5.12(x−o)
100

))
Non-Continuous Rotated Rastrigin’s Function
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Figure 3.12: 3-D Map for UF-11 [1]

Figure 3.13: 3-D Map for UF-12 [1]

f13(x) =
∑D

i=1 (z2i − 10 cos (2πzi) + 10) + f13∗

x̂ = M1
5.12(x−o)

100
, yi =

 x̂i if |x̂i| ≤ 0.5

round (2x̂i) /2 if |x̂i| > 0.5
for i = 1, 2, . . . , D

z = M1Λ
10M2T

0.2
asy (Tosz(y))

Schwefel’s Function

f14(z) = 418.9829×D −
∑D

i=1 g (zi) + f14∗

z = Λ10
(

1000(x−o)
100

)
+ 4.209687462275036e + 002
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Figure 3.14: 3-D Map for UF-13 [1]

Figure 3.15: 3-D Map for UF-14 [1]

g (zi) =


zi sin

(
|zi|1/2

)
if |zi| ≤ 500

(500− mod (zi, 500)) sin
(√

500− mod (zi, 500) |
)
− (zi−500)2

10000D
if |zi| > 500

(mod (|zi| , 500)− 500) sin
(√

mod (|zi| , 500)− 500 |
)
− (zi+500)2

10000D
if zi < −500

Rotated Schwefel’s Function

f15(z) = 418.9829×D −
∑D

i=1 g (zi) + f15∗

z = Λ10M1

(
1000(x−o)

100

)
+ 4.209687462275036e + 002
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Figure 3.16: 3-D Map for UF-15 [1]

g (zi) =


zi sin

(
|zi|1/2

)
if |zi| ≤ 500

(500− mod (zi, 500)) sin
(√

500− mod (zi, 500) |
)

+ (zi−500)2
10000D

if |zi| > 500

(mod (|zi| , 500)− 500) sin
(√

mod (|zi| , 500)− 500 |
)

+ (zi+500)2

10000D
if zi < −500

Rotated Katsuura Function

Figure 3.17: 3-D Map for UF-16 [1]

f16(x) = 10
D2

∏D
i=1

(
1 + i

∑32
j=1

|2jzi−round(2jzi)|
2j

) 10
D12

− 10
D2 + f16∗

z = M2Λ
100
(
M1

5(x−o)
100

))
Lunacek Bi-Rastrigin Function

f17(x) = min
(∑D

i=1 (x̂i − µ0)
2 , dD + s

∑D
i=1 (| x̂i − µ1)

2
)

+10
(
D −

∑D
i=1 cos (2πẑi)

)
+
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Figure 3.18: 3-D Map for UF-17 [1]

Figure 3.19: 3-D Map for UF-18 [1]

f17∗

µ0 = 2.5, µ1 = −
√

µ20−d
s
, s = 1− 1

2
√
D+20−8.2 , d = 1

y = 10(x−o)
100

, x̂i = 2 sign (x∗i ) yi + µ0, for i = 1, 2, . . . , D

z = Λ100 (x̂− µ0)

Rotated Lunacek Bi-Rastrigin Function

f18(x) = min
(∑D

i=1 (x̂i − µ0)
2 , dD + s

∑D
i=1 (x̂i − µ1)

2
)

+10
(
D −

∑D
i=1 cos (2πεi)

)
+

f18∗

µ0 = 2.5, µ1 = −
√

µ20−d
s
, s = 1− 1

2
√
D+20−8.2 , d = 1
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Figure 3.20: 3-D Map for UF-19 [1]

y = 10(x−o)
100

, x̂i = 2 sign (y∗i ) yi + µ0, for i = 1, 2, . . . , D, z = M2Λ
100 (M1 (x̂− µ0))

Expanded Griewank’s + Rosenbrock’s Function

Basic Griewank’s Function: g1(x) =
∑D

i=1
x2i

4000
−
∏D

i=1 cos
(
xi√
i

)
+ 1

Basic Rosenbrock’s Function:

g2(x) =
∑D−1

i=1

(
100 (x2i − xi+1)

2
+ (xi − 1)2

)
f19(x) = g1 (g2 (z1, z2)) + . . .+ g1 (g2 (zD−1, zD)) + g1 (g2 (zD, z1)) + f19∗

z = M1

(
5(x−o)
100

)
+ 1

Expanded Scaffer’s F6 Function

Scaffer’s F6 Function: g(x, y) = 0.5 +

(
sin2

(√
x2+y2

)
−0.5

)
(1+0.001(x2+y2))2

f20(x) = g (z1, z2) + g (z2, z3) + . . .+ g (zD−1, zD) + g (zD, z1) + f20∗

z = M2T
0.5
asy (M1(x− o))

8 Composite Functions

Eight composite functions are included in this suite, which merge properties of

the sub-functions and maintains the continuity around the minima. A general form

of a composite function f(x) is:



Chapter 3. Proposed Model for Single Objective Optimization 39

Figure 3.21: 3-D Map for UF-20 [1]

Functions
Unimodal Functions

DE PSO GWO Proposed framework
Mean Std Mean Std Mean Std Mean Std

F1 9.28E+04 8.33E+03 8.21E+03 2.14E+03 1.74E+04 4.62E+03 3.48E+03 7.86E+02
F2 5.18E+09 5.61E+08 1.67E+08 5.30E+07 2.54E+08 7.55E+07 2.97E+08 5.72E+07
F3 2.12E+17 2.34E+17 1.61E+12 1.86E+12 1.87E+12 2.76E+12 2.52E+12 4.62E+12
F4 5.04E+05 4.06E+04 2.00E+05 2.45E+04 2.38E+05 3.06E+04 1.58E+05 1.46E+04
F5 4.03E+04 5.33E+03 3.06E+03 1.25E+03 1.34E+04 5.42E+03 5.65E+02 1.94E+02

Table 3.2: Results of Proposed framework and other algorithms on unimodal
functions

f(x) =
∑n

i=1 {ωi ∗ [λigi(x)+ bias i]}+ f ∗

The exact functions and the 3-D map for each of the composite functions can be

found in [1].

3.2.1 Comparison

We conducted this experiment at 100 dimensions, with 30 runs of each algorithm.

The algorithms considered for comparison are the original GWO, PSO, and DE. For

having a fair comparison, we considered 100 iterations in other algorithms. For PSO

we used c1, c2 = 2, maximum velocity = 6, and w decreases from 0.9 to 0.6. For DE,

mutation factor is set as 0.5 and crossover factor as 0.7.

The results are provided in Table 3.2-3.4. The best value of mean is highlighted

in bold. Out of 28 functions, our proposed algorithm, performs better in 14 functions.
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Functions
Multimodal Functions

DE PSO GWO Proposed framework
Mean Std Mean Std Mean Std Mean Std

F6 1.29E+04 1.77E+03 9.92E+02 3.01E+02 1.60E+03 6.07E+02 5.74E+02 2.28E+02
F7 2.56E+05 3.02E+05 1.38E+03 2.28E+03 -1.39E+02 5.62E+02 4.96E+01 1.01E+03
F8 -6.79E+02 2.62E-02 -6.79E+02 2.42E-02 -6.79E+02 3.47E-02 -6.79E+02 2.93E-02
F9 -4.32E+02 2.53E+00 -4.62E+02 1.07E+01 -4.86E+02 7.55E+00 -4.77E+02 7.73E+00
F10 2.32E+04 1.91E+03 1.85E+03 6.08E+02 2.84E+03 4.70E+02 1.76E+03 3.32E+02
F11 1.62E+03 1.04E+02 1.05E+03 1.41E+02 4.94E+02 9.09E+01 5.78E+02 1.06E+02
F12 2.15E+03 1.30E+02 1.40E+03 1.26E+02 7.85E+02 1.56E+02 7.94E+02 1.00E+02
F13 2.29E+03 1.28E+02 1.80E+03 1.59E+02 1.12E+03 1.04E+02 9.57E+02 5.07E+01
F14 3.11E+04 6.56E+02 1.92E+04 1.21E+03 2.43E+04 5.90E+03 2.37E+04 1.92E+03
F15 3.31E+04 7.10E+02 2.30E+04 2.00E+03 2.78E+04 5.63E+03 2.56E+04 2.06E+03
F16 2.05E+02 3.51E-01 2.04+02 4.04E-01 2.05E+02 2.97E-01 2.04E+02 3.18E-01
F17 5.52E+03 3.76E+02 2.26E+03 1.97E+02 1.70E+03 1.61E+02 1.48E+03 7.32E+01
F18 5.60E+03 3.33E+02 2.55E+03 1.76E+02 2.02E+03 1.22E+02 1.64E+03 4.53E+01
F19 2.06E+06 6.05E+05 1.62E+03 5.68E+02 3.46E+04 2.43E+04 7.33E+02 7.03E+01
F20 6.50E+02 0.00E+00 6.50E+02 0.00E+00 6.50E+02 4.15E-14 6.50E+02 0.00E+00

Table 3.3: Results of Proposed framework and other algorithms on multimodal
functions

Functions
Composite Functions

DE PSO GWO Proposed framework
Mean Std Mean Std Mean Std Mean Std

F21 1.34E+04 1.02E+03 3.31E+03 8.46E+02 6.05E+03 9.34E+02 2.34E+03 8.11E+02
F22 3.26E+04 7.82E+02 2.67E+04 1.82E+03 2.78E+04 4.43E+03 2.82E+04 1.85E+03
F23 3.55E+04 5.22E+02 2.99E+04 1.91E+03 2.88E+04 3.86E+03 2.97E+04 1.78E+03
F24 1.65E+03 6.54E+00 1.66E+03 3.30E+01 1.53E+03 2.16E+01 1.54E+03 2.08E+01
F25 1.79E+03 9.65E+00 1.98E+03 5.65E+01 1.74E+03 2.56E+01 1.77E+03 2.19E+01
F26 1.92E+03 5.76E+00 1.85E+03 1.91E+01 1.80E+03 1.54E+01 1.77E+03 1.12E+02
F27 6.00E+03 4.69E+01 5.46E+03 2.64E+02 4.72E+03 1.95E+02 4.85E+03 2.22E+02
F28 2.21E+04 1.42E+03 1.68E+04 1.18E+03 1.04E+04 1.21E+03 1.17E+04 1.54E+03

Table 3.4: Results of Proposed framework and other algorithms on composite
functions



Chapter 3. Proposed Model for Single Objective Optimization 41

The results also show that the proposed framework outperforms GWO in 16 functions

and ties in one function. We also achieved competitive results over PSO and DE. In

detail, our algorithm outperforms in 3 out of 5 unimodal functions F1-F5, 10 out of

15 multimodal functions F6-F20, and 2 out of 8 composite functions F21-F28. It is

interesting that all of the functions are able to achieve the same local minima in F20

- Expanded Scaffer’s F6 Function.

Convergence graphs for the benchmark functions in Figures 3.22-3.25, compare the

convergence of our proposed framework with the other state-of-the-art algorithms in

the same objective space. From the figures, it is assuring that the proposed framework

performs with a satisfactory convergence behaviour and converges faster than the

other three algorithms in 21 out of 28 functions. This supports our assumption that

a multi-population structure allows a better exploration and faster convergence.

3.2.2 Performance at Different Dimensions

To study the effect of changing the number of dimensions, we performed this test.

Tables 3.5-3.7 shows how the performance of our algorithm changed as the number

of dimension is changed from 50 to 70, and 100. It is expected that when the number

of dimensions are increased, the performance of the algorithm reduces. The optima

of the function does not change as we change the number of dimensions [1], but

the optimization process becomes more tough due to involvement of many variables,

therefore, in this, we make direct comparisons between the values.

An interesting observation is that the unimodal functions F2, F3, and composite

functions F21 have a better result when the number of dimension is 70 as compared to

50. This is against our hypothesis of a reduction in the performance when dimensions

is increased.

Another observation is that for the multimodal functions F8, F16, and F20 , there

is not a significant difference when the number of dimension is shifted from 50 to 70,
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Figure 3.22: Convergence graphs for the functions F1-F8



Chapter 3. Proposed Model for Single Objective Optimization 43

Figure 3.23: Convergence graphs for the functions F9-F16
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Figure 3.24: Convergence graphs for the functions F17-F24
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Figure 3.25: Convergence graphs for the functions F25-F28

and ultimately 100. Thus, there is a need to further study these patterns discovered,

and analyse the benchmark functions and the process of optimization.

Unimodal Functions
Dim 50 Dim 70 Dim 100
Mean Mean Mean

F1 -8.01E+02 4.74E+02 3.48E+03
F2 6.77E+07 6.73E+07 2.97E+08
F3 3.10E+10 2.57E+10 2.52E+12
F4 6.01E+04 7.90E+04 1.58E+05
F5 -8.15E+02 -5.15E+01 5.65E+02

Table 3.5: Comparison of the Proposed Framework for different dimensions on
unimodal functions.

3.2.3 Non-Parametric Statistical Tests

First, to prove the consistency of our proposed framework we performed Kruskal-

Walli’s test on the results of running the proposed method 30 times on the benchmark
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Multimodal Functions
Dim 50 Dim 70 Dim 100
Mean Mean Mean

F6 -6.57E+02 -3.46E+02 5.74E+02
F7 -7.04E+02 -6.79E+02 4.96E+01
F8 -6.79E+02 -6.79E+02 -6.79E+02
F9 -5.49E+02 -5.25E+02 -4.77E+02
F10 3.81E+01 4.43E+02 1.76E+03
F11 -8.19E+01 1.51E+02 5.78E+02
F12 7.07E+01 3.54E+02 7.94E+02
F13 2.12E+02 4.58E+02 9.57E+02
F14 9.21E+03 1.45E+04 2.37E+04
F15 1.14E+04 1.63E+04 2.56E+04
F16 2.04E+02 2.04E+02 2.04E+02
F17 7.70E+02 1.04E+03 1.48E+03
F18 8.93E+02 1.19E+03 1.64E+03
F19 5.49E+02 5.97E+02 7.33E+02
F20 6.22E+02 6.33E+02 6.50E+02

Table 3.6: Comparison of the Proposed Framework for different dimensions on
multimodal functions.

Composite Functions
Dim 50 Dim 70 Dim 100
Mean Mean Mean

F21 1.93E+03 1.26E+03 2.34E+03
F22 1.17E+04 1.73E+04 2.82E+04
F23 1.30E+04 1.85E+04 2.97E+04
F24 1.33E+03 1.39E+03 1.54E+03
F25 1.49E+03 1.56E+03 1.77E+03
F26 1.49E+03 1.52E+03 1.77E+03
F27 2.96E+03 3.56E+03 4.85E+03
F28 2.48E+03 5.24E+03 1.17E+04

Table 3.7: Comparison of the Proposed Framework for different dimensions on
composite functions.

functions. The null hypothesis (H0) states that all treatments come from the same

distribution. This is tested at a significance level of 0.1. If the test suggests that null

hypothesis is rejected, then that means one of the treatments are more significant

than the rest. The distribution of the test statistics generated is approximated by

Chi-square distribution. The results for this test came out as H = 0.1766, and p-

value = 0.99999. From the results, p-value is > 0.1, therefore, the Kruskal-Walli’s

test failed to reject the null hypothesis H0. Hence, we can state that our results
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after 30 independent runs came from the same normal distribution and our algorithm

performed consistently.

Friedman Test Result H=7.81 p=7.74E-10
Wilcoxon Test Result

Proposed
DE PSO GWO
H = -2.35, H = -1.12, H = 0.76,
p = 0.009 p = 0.13 p = 0.22

Table 3.8: Non-Parameteric Test Analysis

Next, we performed Friedman test to ascertain the statistical significance of the

proposed algorithm. This test is a non-parametric test that provides a measure of

the difference between multiple methods. The null hypothesis considered states that

there is no significant difference between the results at a significance level of 0.1. After

performing the test, we found the value of p < 0.1 (Table 3.8). Therefore, from this,

we conclude that the null hypothesis is rejected and at least one set of significant

results exists.

To do a pairwise comparison test, we performed the Wilcoxon test. The null

hypothesis for this test is that the two sets of results have the same distribution. If

the null hypothesis is rejected, then the p-value will be < 0.1, as the significance level

of 0.1%. From the results in table 3.8, we understand that our algorithm provided a

significant result only in one case.



Chapter 4

Proposed Model for

Multi-Objective Optimization

This section will first explain the search process and the model architecture, along

with the additional components such as elitism and mutation, followed by the evalu-

ation done on IEEE CEC 2009 benchmark for multi-objective problems.

4.1 Model Architecture

The model is inspired by the hierarchy observed in grey wolves [13, 28], and mimics

the leader structure with a dynamic multi-population design. A dynamic set of local

leaders is maintained for each population, which is analogous to the leader selection

observed in the traditional version of MOGWO [28]. A solution has more chances

of being selected as a leader if it belongs to the archive’s sparsely dense grid space.

Broadly, our model, as shown in Figure 4.1, can be divided into five steps:

1. Initialization of Population and Adaptive Archives: First, a popula-

tion of size N is initialized in a random uniform manner according to the bounds

48
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Figure 4.1: Proposed Framework Architecture for Multi-objective Optimization

specified by the function. The population Pt represents the population at time t

with individuals {i1, i2, . . . , iN}. Hence, P0 is the initial population with n random

population.

Additionally, a global archive AG and four local archives for each population -

Aα, Aβ, Aδ, Aω, are also initialized. The global archive is of a maximum capacity

nA, while the local archives are all of the same size - nA/4. These adaptive archives

are inspired from multi-objective particle swarm optimization (MOPSO) [26] and

MOGWO [28]. A candidate individual may or may not be added based on the

following conditions:-
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1. If at least one member of the archive dominates the candidate individual; then

the candidate solution is not added to the archive.

2. If the candidate individual dominates one or more archive members, then the

dominated members are removed, and the incoming candidate individual is

added.

3. If the candidate solution does not dominate any archive member and is not

dominated by any member either, then two situations may arise. In the first

situation, the archive still has space for one or more members, so the candidate

solution is added to the archive. In the second situation, when the archive is

full, one archive member is removed using a roulette wheel selection, where the

probability of a member being removed is directly proportional to the density

of the grid to which the member belongs.

This adaptive archive allows a diverse Pareto front since the non-dominated solu-

tions are included based on individuals’ grid density. Due to the nature of this archive,

the selection of the leader is also performed based on the grid density. This is done by

assigning a probability of selection to the archive members based on the density of the

cell they belong to, as shown in Figure 2.3. This way, more leaders are selected from

less dense cells, and hence the diversity of solution is improved. Another step done

to improve the diversity of solutions is when the archive overflows. The solutions in

crowded regions have more chance of being removed than from non-crowded regions.

Leader Selection: Probability of selection from ith region P (leaderi) ∝ 1
Ni

where

Ni is the number of obtained Pareto optimal solutions in the region.

Extra Element Removal : Probability of being selected for removal from ith region

P (removali) ∝ Ni where Ni is the number of obtained Pareto optimal solutions in

the region1.

2. Fitness Evaluation: In this step, the individuals are evaluated based on

the objective function. After the evaluation, the global archive is updated, and the
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new non-dominated solutions are added, if any are seen. After this, the population

is divided into 4 fixed-size populations namely - Alpha population (A), Beta popula-

tion (B), Delta population(∆), and Omega population(Ω). As discussed earlier, this

structure is analogous to the hierarchy observed in grey wolves [9, 13].

Therefore, the population is divided so that the individuals in Alpha are better

than individuals in Beta, which are better than individuals in Delta, and ultimately

Delta individuals are better than the individuals in Omega.

Since this is a multi-objective problem, individuals need to be ranked based on the

problem’s different objectives, in our case, bi-objective problems. Since the total size

of the initial population is N , the size of Alpha, Beta, Delta, and Omega population

is N/4.

Initially, the Alpha population is assigned N/8 top individuals according to each

objective (N/8 + N/8 = N/4). The remaining individuals are then sorted again,

and N/8 top individuals from each objective are assigned to Beta. This is repeated

until the Omega population. In the end, we have four populations, each with N/4

individuals. Hence, Pt = At ∪ Bt ∪∆t ∪ Ωt and At ∩ Bt ∩∆t ∩ Ωt = ∅

This way, the Alpha population plays a leading role in optimization, supported by

Beta. Delta population is a subordinate to Beta, and finally, the Omega population

contains the least fit individuals of each objective. This way, the Omega population

submits to the top 3 leader populations.

By allowing this division of population dynamic and repeated at every iteration,

it is possible to have individuals migrate from one population to another when the

fitness values change over time.

3. Leader Populations Evolution: In this step, the leader populations - A, B,

and ∆, are evolved. For the local search process, as done in this step and the next,

we propose a local search algorithm. This local search algorithm is designed in such a

way that it evolves a local population independently. After evolving the populations
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Algorithm 3: Proposed Framework for Multi-Objective Optimization

Input : n : The total number of individuals in a population
Nt : Max. Number of Iteration
nA : Maximum size of archive

Output: A archive with non-dominated solutions
1 Initializing the population randomly between the bounds;
2 Elite ← {Ø} ;
3 i ← 1 ;
4 while i <= Nt do
5 Sort and divide the populations based on the fitness values where each

population gets n/4 individuals;
6 Run algorithm 4 in the top populations (Alpha, Beta and Delta

populations);
7 Obtain the α leaders of each population and add them to the leaders set;
8 Elite ← Top 3 Leaders from archive;
9 Run algorithm 4 in Omega population with the obtained leaders;

10 Population ← population ∪ elite;
11 Merge the obtained local archives with the global archive;
12 while size(archive)>nA do
13 remove an element based on probability of removal;
14 end
15 for all individuals do
16 if rand <= 30% then
17 mutate random dimension;
18 end

19 end
20 i++;

21 end
22 Return archive ;

for a set number of iterations, it returns the evolved population, the local archive,

and a leader selected from the archive. Since the populations are independent, this

step can be done in parallel for each population and save time.

When the three populations, Alpha, Beta, and Delta, are evolved, they return

three leaders from each population. This set of leaders is known as global lead-

ers. Since each population co-evolves independently, not all of these leaders may be

non-dominating to each other. Even though we divide the population so that the

individuals in Alpha are better than the individuals in Beta and Delta, the leader

obtained from Delta may dominate the leader obtained from Alpha. This is because
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each population searches in its own solution space and may have better fitness after

their positions are updated.

4. Omega Population Evolution: The next step is to evolve the Omega

population. As discussed earlier, the population structure is inspired by the hierarchy

seen in grey wolves, in which pack follows the leader wolves [9, 13, 28]. To preserve

this structure, we evolve the Omega population so that the population follows the

leader populations; this is done by introducing the global leaders, obtained in the last

step, in this population.

Our proposed local search algorithm can introduce the global leaders by taking

an optimal parameter of the leaders. When the global leaders are provided, as in the

Omega population, the global leaders are added to this population’s local archive. If

these leaders are non-dominated in the Omega population, they stay in the archive

and guide the local search process.

5. Merging Populations and Archives: In this step, the four evolved popula-

tions obtained are merged, and the local archives are merged into the global archive.

The non-dominated solutions that have been found by each local population are com-

pared and stored in the global archive. The merged population is then mutated using

a random probabilistic operator; this helps in escaping local optima, in some cases,

and improve the exploration ability of the framework.

The algorithm for the proposed framework can be seen in Algorithm 3, which

illustrates the dynamic co-evolution and the use of elite groups.

4.1.1 Local Multi-Objective Optimization Algorithm

The local optimization algorithm used for multi-objective optimization is explained in

this part. The grey wolves’ pack and behaviour inspired the proposed local search al-

gorithm [28]. Additionally, it introduces a probabilistic mutation operator to improve

the diversity of solutions, and for better convergence, an elite group of individuals
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is also added. This is done to improve the convergence for non-zero optimal values,

which is considered a defect in GWO [11].

The algorithm can allow mutual information flow between populations by using the

guide leaders’ parameter, which are individuals from other populations that migrate

to the omega population. These leaders can lead the omega population based on their

fitness values compared to the population, similar to the guide leaders explained in

Chapter 3. The algorithm for this local search is illustrated in Algorithm 4.

Algorithm 4: The Proposed Local Search for Multi-Objective Optimization

Input : n, nA/4 : Size of local population, and local archive
Nt : Number of local iteration
~iα, ~iβ, and ~iδ Guide leaders (optional)

Output: The last evolved set of population &
iα : local leader & Ap Local archive

1 Initializing the local archive;
2 if leaders are given then
3 check for non domination and update archive;
4 end
5 Find the α, β, and δ individuals based on probability of selection;
6 Elite ← {Ø};
7 i ← 1;
8 while i <= Nt do
9 foreach individual ∈ Population do

10 Update individuals’ Position using GWO equations;
11 end
12 Evaluate the fitness value of individuals;
13 Update local archive with non-dominated individuals;
14 while size(archive)>nA/4 do
15 remove element based on probability of removal;
16 end
17 Update new α, β, and δ ;
18 Elite ← α;
19 Population ← population ∪ Elite;
20 i++;

21 end
22 Return the population, α, and local archive
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4.1.2 Additional Components

There are two additional components that we have incorporated in our framework-

elite groups and mutation operators. These components are the same as the one

introduced in Chapter 3. The multi-objective framework’s difference is that the way

the elite members are selected uses the same leader selection as seen in [26, 28]. As

stated earlier, the probability of an element being selected from a region depends on

the region’s crowdedness. The goal is to select a leader from a less crowded region to

improve the diversity of solutions. This has been explained in Section 2.2.

Additionally, the archives used are adaptive and have a maximum size, which is

an input to the algorithm. Generally, the maximum archive size is the same as the

size of the initial population. In our framework, we have one global archive, and each

local population is assigned one archive.

4.2 Evaluation

In this section, we perform the evaluation of our algorithm under various experiments.

First, we compare our model with the state of the art algorithms for multi-objective

problems - NSGA II [22], and MOEAD [23]. We also compare our proposed framework

with MOGWO [28]. The comparison is made in two settings; in the first setting, the

comparison is made with 500 iterations of each state of the art algorithms to keep the

evaluations fair; in the second setting, the computation time is kept similar. Then

the performance of the proposed framework is studied under various settings.

These algorithms are run on an Intel Core i5-9300H processor with 8GB RAM,

implemented on Python 3.5. The comparison is made by running the experiments

ten independent times on each function, the average of which is used for the results.

The test environment used for the comparisons is the IEEE Congress on Evolution-

ary Computation’s (CEC) 2009 test suite for unconstrained multi-objective problems
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Figure 4.2: Illustration of Pareto front and Pareto Set for UF1 [2]

[2]. The suite consists of seven unconstrained problems that are bi-objective in nature.

Each problem has its own search space and a different optimal Pareto front. The test

environment suggested a dimension of 30 for the contest. The optimal Pareto fronts

of the benchmarks are:

UF1, UF2, UF3- Continuous Pareto front represented by f2 = 1−
√
f1.

UF4- It has a continuous Pareto front represented by the equation f2 = 1− f 2
1 .

UF5- The Pareto front in this case has 2N+1 points, the points are represented

as ( i
2N
, 1− i

2N
) for i = 1, 2, . . . , 2N for CEC 2009 contest, N = 10.

UF6- The Pareto front consists of one isolated point, (0, 1), and N disconnected

points f2 = 1− f1, where f1 ∈
⋃N
i=1[

2i−1
2N

, 2i
2N

].

UF7- The Pareto front in this case is continuous and represented by f2 = 1−f1.
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Figure 4.3: Illustration of Pareto front and Pareto Set for UF2 [2]

4.2.1 Performance Indicators

The performance indicators used for comparison are generational distance (GD)[33]

and hypervolume [32].

For minimization problems, a greater hypervolume and a lower GD means better

performance. These indicators are explained in Chapter 1.

4.2.2 Comparison under Fair Evaluation

This comparison was made to compare the overall performance of the algorithms. In

order to allow a fair comparison, the number of iterations for the state of the art

methods was considered relatively higher since, in our proposed framework, we have

inner loops. The parameters considered are:-

1. Main iteration for the proposed framework: 50 with 15 local iterations

2. Iteration for NSGA-II, MOEAD, and MOGWO: 500

3. Population Size: 100
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Figure 4.4: Illustration of Pareto front and Pareto Set for UF3 [2]

4. Maximum size of archive: 100

Table 4.1 compares the values of hypervolume, GD, and computation time for this

setting. Additionally, the fronts obtained from each algorithm are also compared,

in figures 4.9-4.15, from one of the ten runs for each function. The black solid line

represents the actual Pareto front for each problem.

In UF1, similar fronts are observed in the case of MOEAD and NSGA-II; the GD

values for them are significantly higher than the proposed framework and MOGWO.

MOGWO has the best values of hypervolume and GD in this case. It is to be noted

that though the proposed framework gave only 1.15% less hypervolume and 26%

more GD, the time taken is almost one-third of the time taken by MOGWO. This

emphasizes the time-optimality trade-off, which is again of importance. In Figure

4.9, it is evident that the solutions provided by the proposed framework are optimal,

and it provides competitive performance.

In the second problem, H-MPGWO has better hypervolume than MOGWO only,

and the best value for GD, which is achieved in less than one-third of the time. The

value of GD for MOGWO is the same since it provides a very short region of the

solution near the front, which in turn gives a better average distance from the actual
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Figure 4.5: Illustration of Pareto front and Pareto Set for UF4 [2]

Pareto front. The solutions obtained from the proposed framework are much close to

the actual Pareto front but are not as spread as NSGA-II and MOEAD. Thus, the

proposed framework delivered the most optimal solutions, but not a wide variety of

solutions, which can be observed in Figure 4.10.

In UF3, NSGA-II and MOEAD seem to have given a wide variety of solutions, but

all of them are non-optimal when compared to the solutions obtained from MOGWO

and the proposed framework. Though the proposed framework has a 6.4% decrease in

the hypervolume than MOGWO, it still provides a notably better GD, which means

that the average solution from the obtained set of solutions is closer to the actual

Pareto front; this can be seen in Figure 4.11.

In UF4, MOEAD achieved the best hypervolume value but the least optimal solu-

tions, which is evident in the figure 4.12 as well as the table 4.1. The proposed frame-

work has hypervolume better than MOGWO only, and GD is better than MOGWO

as well as MOEAD. Although, the GD of the proposed framework is 10.8% less than

NSGA-II, it took significantly less time (62.5% decrease) as well. Figure 4.12 shows

the obtained Pareto fronts for UF4, and it is evident that MOEAD provides a really

well spread Pareto front.
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Figure 4.6: Illustration of Pareto front and Pareto Set for UF5 [2]

The value of GD is best for the proposed framework in UF5, with NSGA-II being

at second place with a difference of almost 0.03. Figure 4.13 shows that the traditional

MOGWO was able to get non-optimal solutions; on the other hand, the solutions from

NSGA-II spread over a wide range of space and are optima. Hence it has the highest

hypervolume for this function. For the proposed framework, the average obtained

solution can be seen, in Figure 4.6, to be very close to the actual Pareto front.

The proposed framework performed better than both NSGA-II and MOEAD in

UF6 and worse than MOGWO, where hypervolume is 0.7% less, and GD is 9.6% more

than. The performance did not change significantly while it takes approximately twice

the time in the case of MOGWO. In Figure 4.14, it can be seen that the traditional

MOGWO has slightly better and more optimal solutions towards the bottom side of

the front.

For the last problem, UF7, the proposed framework was able to achieve better

values of hypervolume and GD than MOGWO and MOEAD, while NSGA-II outper-

forms the proposed framework for both metrics, by a margin of 3.04%, 26.28% for

hypervolume and GD, respectively. In figure 4.15, it is evident that in UF7, MOEAD

has the least optimal solutions, while NSGA-II has the widest front obtained.
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Figure 4.7: Illustration of Pareto front and Pareto Set for UF6 [2]

In this set of comparisons, the proposed framework only ran for 50 iterations in the

outer loop, hence it took the least time in all tests. The following set of comparison

was performed in order to have the time for each algorithm in the same range.

4.2.3 Comparison with Similar Computation Time

This comparison was done to evaluate performance of the algorithms when they are

run for similar time scale. The parameters for this comparison are:

1. Main iteration for proposed framework: 50 with 15 local iterations

2. Iteration for NSGA-II, MOEAD: 100

3. Iteration for MOGWO: 200

4. Population Size: 100

5. Maximum size of archive: 100

Table 4.2 shows the comparison while keeping the processing time on a similar

scale. Two metrics, as discussed earlier, are used to perform the comparison of the
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Figure 4.8: Illustration of Pareto front and Pareto Set for UF7 [2]

Figure 4.9: Comparison under Fair Evaluation-UF1

Pareto front based on its spread (hypervolume) and closeness to the actual front

(GD). It is noted that since hypervolume depends on a reference point, the value

of this metric changes from the previous table since the reference point is changed

according to the performance of other candidate solutions. Figures 4.16-4.22 compares

the obtained Pareto front for one of the ten runs for each algorithm to visualize and

compare the fronts.

In UF1, the proposed framework provided four regions of the non-dominated solu-

tion, which are considerably close to the actual Pareto front, as illustrated in Figure
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H-MPGWO MOGWO NSGAII MOEAD

UF1
Hypervolume 8.38 8.48 8.45 8.03
GD 0.04 0.03 0.09 0.30
Time (s) 12.85 35.07 164.95 287.08

UF2
Hypervolume 7.31 6.96 8.48 8.30
GD 0.01 0.01 0.06 0.16
Time (s) 44.76 160.01 125.31 345.46

UF3
Hypervolume 14.37 15.36 14.16 13.63
GD 0.18 0.23 0.44 0.41
Time (s) 16.42 39.74 117.69 383.85

UF4
Hypervolume 2.69 2.65 3.04 3.11
GD 0.07 0.12 0.06 0.12
Time (s) 29.22 127.72 80.36 295.63

UF5
Hypervolume 28.17 28.03 31.67 29.77
GD 0.89 1.21 0.91 1.56
Time (s) 10.36 21.27 136.26 268.17

UF6
Hypervolume 32.68 32.92 32.06 30.28
GD 0.39 0.35 0.55 0.69
Time (s) 10.88 21.11 146.33 240.32

UF7
Hypervolume 14.26 14.04 14.71 13.45
GD 0.02 0.03 0.01 0.23
Time (s) 19.0497 71.73 114.24 283.41

Table 4.1: Comparison between proposed framework(50 iterations) and state of
the art methods ran for 500 iterations

4.16. At the same time, the solutions provided by NSGA-II and MOEAD are widely

spread and comparatively farther from the actual Pareto front. This shows that if we

only consider hypervolume, it is not fair since it is clear that the proposed framework

has much more optimal solutions.

For UF2, NSGA-II and MOEAD achieved a wide range of solutions; that is why

in table 4.2 the hypervolumes are considerably higher than the proposed framework.

In the case of MOGWO, the solutions existed in only one small concentrated region,

as seen in Figure 4.17; this defeats the purpose of having a Pareto front since there is

shallow diversity in the solutions. But judging the performance just on the basis of

hypervolume is not enough; in the figure, the proposed framework has a good spread

of the solutions, as well as the solutions obtained, are much closer to the Pareto front

than the ones obtained by NSGA-II and MOEAD.
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Figure 4.10: Comparison under Fair Evaluation-UF2

Figure 4.11: Comparison under Fair Evaluation-UF3

A similar trend could be seen in the plot for UF3, where the solutions obtained

by the proposed framework completely dominate the solutions obtained by other

approaches, despite not having the best hypervolume. Figure 4.18 shows that the

spread of the solutions obtained by the proposed framework is competitive and not

concentrated in one region, which may have defeated the purpose of having an optimal

front.

In the fourth problem, the trend followed for the proposed framework, but for

MOEAD were widespread but not of the best quality, In table 4.2, the GD of the

proposed framework is the best, and hence the solutions obtained were much better,
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Figure 4.12: Comparison under Fair Evaluation-UF4

Figure 4.13: Comparison under Fair Evaluation-UF5

as reflected in Figure 4.19. NSGA-II and MOEAD obtained better hypervolume, but

the GD is significantly worse than the proposed framework since the solutions are

farther from the actual Pareto front.

In UF5 and UF6, the proposed framework had achieved the best values for hyper-

volume and GD compared to other algorithms. This is supported in the plots 4.20,

4.21 shown as well. The proposed framework solutions are the nearest to the Pareto

front and more spread than the other algorithms. Figure 4.20, MOEAD solutions

are not even visible in the scale shown and fall outside of it. While in Figure 4.22,

the traditional MOGWO framework and the proposed framework seem to have a
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Figure 4.14: Comparison under Fair Evaluation-UF6

Figure 4.15: Comparison under Fair Evaluation-UF7

competitive performance, followed by NSGA slightly close to the actual Pareto front.

In UF7, the solutions received from MOEAD were comparatively farther from

the Pareto front and hence had the worst GD value. The solutions provided by the

proposed framework and MOGWO have a competitive comparison and are relatively

close. Nevertheless, as seen in the table 4.2, the GD value of the proposed framework

is almost half of the GD value of MOGWO.
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Function Metric H-MPGWO MOGWO NSGAII MOEAD

UF1
Hypervolume 15.33 15.25 15.01 13.54
GD 0.04 0.03 0.35 0.68

UF2
Hypervolume 7.30 6.85 8.01 7.85
GD 0.01 0.01 0.33 0.36

UF3
Hypervolume 23.07 24.00 21.28 19.71
GD 0.17 0.30 0.77 0.77

UF4
Hypervolume 2.69 2.62 3.09 2.98
GD 0.07 0.09 0.10 0.17

UF5
Hypervolume 53.72 50.50 49.28 43.75
GD 0.89 1.34 2.29 3.13

UF6
Hypervolume 218.02 216.28 207.03 196.45
GD 0.39 0.41 1.68 2.62

UF7
Hypervolume 14.26 14.33 15.04 12.83
GD 0.02 0.03 0.29 0.73

Table 4.2: Comparison between proposed framework and state of the art meth-
ods; proposed framework is run for 50 iterations, MOGWO for 200 framework, and

NSGA-II and MOEAD run for 100 iterations

4.2.4 Self-Comparison with Different Parameters

This comparison was performed to study the effects of various parameters on a 100

size population. The following settings were considered for this experiment:-

1. S1: The first setting is the baseline where the proposed framework was running

for 50 iterations. This is the same setting we used in all our comparisons done

prior.

2. S2: In this setting, the proposed framework runs for the same 50 iterations

but without the elite component. This is done to show the effect of removing

elitism.

3. S3: The third setting has 100 iterations and the same number of iterations in

local populations (15).

4. S4: In the last setting, the proposed framework for 50 iterations with 30 inner

iterations and in each local population.
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Figure 4.16: Comparison under Similar Time-UF1

Figure 4.17: Comparison under Similar Time-UF2

The results are listed in Table 4.3, which shows the values of hypervolume and

GD for each setting.

According to the results, the removal of the elite component in S2 increases the

value of GD in all test cases except UF3 and UF5, where a decrease of 0.0041 and

0.0319, respectively, is observed. Hence, an elite component in the proposed frame-

work allows a better convergence in most cases. Additionally, we see that the hy-

pervolume does not change significantly in most cases. An increase or decrease can

be because the removal of the elite group causes the population to explore instead of

converging towards the optimal solutions, which may give a higher spread of solutions
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Figure 4.18: Comparison under Similar Time-UF3

Figure 4.19: Comparison under Similar Time-UF4

but less optimal ones.

When increasing the number of iterations of the proposed framework, as done

in S3, it is expected to obtain a better set of solutions, which can be seen as both

hypervolume and GD have improved from S1 to S3. An exception can be seen in

UF2, where even though the hypervolume improves, GD’s value is also increased

significantly, which means the average solution was less optimal in this case. This

may be due to a significant number of solutions farther from the actual Pareto front

than the closer ones.
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Figure 4.20: Comparison under Similar Time-UF5

Figure 4.21: Comparison under Similar Time-UF6

A similar trend is seen from S1 to S4, where the local iterations in each population

are increased. The exception is again UF2, where the hypervolume increases. How-

ever, GD’s value worsens by a small margin, which can mean that though it provides

a broader range of solutions, the average distance of these solutions from the actual

Pareto front is also increased for this case. However, for the rest of the cases, it is seen

that the obtained front is either more spread than those seen in S1, or the solutions

are more closer to the obtained front and equally spread.
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Figure 4.22: Comparison under Similar Time-UF7

Problem Metric S1 S2 S3 S4

UF1
Hypervolume 3.43 3.43 3.45 3.43
GD 0.04 0.04 0.03 0.03

UF2
Hypervolume 7.31 7.46 7.36 7.32
GD 0.01 0.01 0.02 0.01

UF3
Hypervolume 7.67 7.57 7.71 7.62
GD 0.18 0.17 0.14 0.10

UF4
Hypervolume 2.69 2.84 2.79 2.77
GD 0.07 0.07 0.06 0.06

UF5
Hypervolume 18.40 16.67 19.23 19.19
GD 0.89 0.85 0.61 0.81

UF6
Hypervolume 2.31 2.12 2.30 2.34
GD 0.39 0.46 0.39 0.36

UF7
Hypervolume 2.70 3.04 2.86 2.93
GD 0.02 0.03 0.02 0.01

Table 4.3: Comparison for proposed framework at different settings
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Discussion

The results observed in Chapters 3 and 4 strongly indicate the superiority of the pro-

posed frameworks over the traditional GWO. By introducing a co-operative multi-

population structure, we can see an improvement in the overall performance because

of the increase in flexibility and the independent local search performed by the four

equal-sized populations. By using standard benchmarks provided by IEEE’s Congress

of Evolution Computation, the comparisons are made against not only the tradi-

tional grey wolf algorithms (GWO [9], and MOGWO [28]), but also state of the art

approaches for single-objective and multi-objective problems.

We have also attempted to resolve and mitigate the poor performance caused by

the inherent defects in GWO’s evolution process [11]. This again supports our claim

using the proposed framework, which has a co-evolving multi-population framework

and is equipped with a mutation operator and elitism. These defects are covered for,

and the performance is ultimately improved.

We also observe how individuals may have travelled from one population to an-

other during the populations’ regrouping. When we merge the populations, there may

be an individual whose fitness may have changed drastically during the evolution and

consequently were forced to change their population. For example, an individual in

the Beta population became much more fit and ended up in the Alpha population.
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An Alpha population individual may have strayed farther away from its position and

is now a part of the Delta population.

Another way we migrate individuals externally is by using the guide/external

leaders, as discussed. These leaders are the best individuals from Alpha, Beta, and

Delta populations that take the spot of leaders in the Omega Population, depending

on their comparative fitness values. This way, we allow a mutual-flow of information,

an essential component of a co-operative multi-population structure.

Our proposed framework has some assumptions and limitations that we would like

to discuss. The first being that we assume our problems to be static. We also assume

that the problems are minimization problems, though there is no change in the frame-

work in maximization problems. The framework has a limitation that it only caters to

many-objective problems. The population division considers sorting the individuals

based on their fitness and selecting a certain number of top individuals concerning

each fitness function. Another limitation is that though parallelism can be imple-

mented, it can not be utterly parallel since the omega population needs to wait for

external leaders from the rest of the population. After careful analysis of the proposed

algorithm, the proposed algorithm’s time complexity is O (M.N.log (N) +MN2) for

M objectives and N is the size of each population. Since we have limited maximum-

sized archives, we do not expect the memory usage to be an issue for many individuals

or objectives.



Chapter 6

Conclusion and Future Work

In this chapter, we will conclude our thesis and discuss future work that will be

done. The first section concludes the thesis, discusses the results briefly and discusses

whether the hypothesis was satisfied. The second section discusses the future work

that will be done to cover the limitations and increase the work scope.

6.1 Conclusion and Future Work

To conclude our thesis, we introduced two novel multi-population frameworks for

single and bi-objective optimization problems with a co-evolving structure and a

hierarchy as observed in grey wolves. These frameworks consist of four populations

- Alpha, Beta, Delta, and Omega; in the order of quality of solutions they contain.

Each population performs an independent local search using a dedicated local search

algorithm. Additionally, the search can learn from other populations using guide

leaders, which are external individuals. To satisfy the pack structure, we designed

the Alpha, Beta, and Delta populations to send a leader, which guides the search

process performed in the Omega population. These populations search independently

for some iterations, share their information by merging, and ultimately are regrouped

into the four populations. This goes on until our defined stopping criteria is achieved.
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The multi-objective problems are generally more complex than single-objective

problems, which has been explained in Chapter 1. To handle this complexity in these

problems, we incorporated archives in the framework for multi-objective problems.

These archives are used to store Pareto optimal solutions that have been discovered

throughout the search process. We introduced a global archive and local archive for

each population, with fixed size and a density-based leader selection mechanism [26].

Our hypothesis has been tested by performing a comparison of various bench-

marks that are provided by IEEE’s CEC. The performance was compared with the

traditional GWO and MOGWO and the state of the art methods for single and

multi-objective problems. Various self-comparisons of the proposed framework were

also performed at different parameters. The results support our claim of the sig-

nificant improvement in performance accuracy and convergence rates, depicted by

employing various performance metrics.

For our future works, we will aim to develop a more dynamic and versatile frame-

work by incorporating an ensemble of mutation operators that will be used based on

their reward values. This work will be carried forward to develop a framework for

many-objective problems, with three or more objectives and dynamic optimization

problems. We also target to incorporate constraints into our framework and evolve

the population using a sophisticated constraint handling system. We will also target

to have a dynamic hyper-parameter optimization, in order to have a dynamically

self-optimizing framework.
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