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ABSTRACT 

 

Metabolic rate is intricately linked to the ecology of organisms and can provide a 

framework to study the behaviour, life history, population dynamics, and trophic 

impact of a species. Acquiring measures of metabolic rate, however, has proven 

difficult for large water-breathing animals such as sharks, greatly limiting our 

understanding of the energetic lives of these highly threatened and ecologically 

important fish. The following thesis presents the first estimates of metabolic rate 

for one severly understudied and near-threatened species, the long-lived Greenland 

shark (Somniosus microcephalus). Resting and active routine metabolic rates were 

estimated through field respirometry conducted on four relatively large-bodied 

individuals (33-126 kg), including the largest individual shark studied via 

respirometry. Despite recording very low whole-animal resting metabolic rates, 

estimates were well explained by derived interspecies allometric and temperature 

scaling relationships.  Combining these results with data acquired from biologger 

deployments on free-roaming sharks allowed for the estimation of field metabolic 

rates for individuals inhabiting the Eastern Canadian Arctic. The estimated low 

energy needs of Greenland sharks in the wild translated to equally low estimates of 

prey consumpion rate at the individual level. However, when assessed at the scale 

of localized populations in two coastal fjord ecosystems and across all of Baffin 

Bay, prey consumption by Greenland sharks is assumed to play a key role in the 

top-down regulation of Arctic marine food webs, though important data 

deficiencies must be addressed before final conclusions can be drawn. 
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CHAPTER 1 

General Introduction  

The primary purpose of this thesis is to demystify the ecological role of 

Greenland sharks (Somniosus microcephalus) in the Arctic through novel insight into 

their energetics and behaviour. The following chapter will serve as a general introduction 

and provide background information on the major topics of metabolism and ecology 

discussed in detail in the subsequent data chapters. Specifically, this section will 

introduce metabolism generally, how it can be applied to ecological studies, and why it is 

important that we do so in sharks – including the particularly elusive Greenland shark.  

1.1 Metabolism 

Metabolism is the driving force of life. It fuels the persistence of organisms by 

supplying the energy they require to maintain homeostasis, reproduce, grow and engage 

with their surroundings (Metcalfe and Norin 2019). In other words, life could not exist 

without all the chemical reactions involved in metabolism. The study of metabolic 

processes is a cornerstone of biology and is essential to developing a thorough 

understanding of the many patterns observed in nature. Metabolism is closely linked to 

ecology and consequently provides a basic framework on which we can build hypotheses 

concerning the behaviour, life history and trophic role of organisms living in a particular 

ecosystem (Brown et al. 2004). Studying the speed at which metabolism occurs in an 

organism, or its metabolic rate, is often an effective way to approach ecological 

questions, as this rate has been shown to correlate with many different physiological and 

environmental variables (Brown et al. 2004). Furthermore, metabolic rate can ultimately 

be used to predict if and how organisms are able to cope with changes in the conditions 
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they experience, including most notably, those resulting from anthropogenic climate 

change (Dillon et al. 2010; Metcalfe and Norin 2019). 

Since the field’s inception, those studying metabolic ecology have focused much 

of their attention on the predictable ways in which metabolic rate scales with mass and 

temperature. In 1932, Kleiber first proposed that metabolic rate scaled with mass to the 

3/4 power across species. Since then, countless studies have provided support for and 

against this exponent; many showing that the allometry of metabolism depends on 

everything from the lifestyles of species to their habitat and phylogeny (Killen et al. 

2010). Similar scaling relationships have also been described for the effect of body 

temperature on metabolic rate (Gillooly et al. 2001). In this case, metabolic rate tends to 

increase with increasing temperature. This effect is primarily explained by basic chemical 

kinetics (Gillooly et al. 2001), which define the rate of chemical reactions (r) in part as a 

function of temperature (T) according to the Boltzmann factor: 

𝑟 ∝  𝑒−𝐸𝑎 𝑘𝑇⁄  

where (k) is a constant and (Ea) represents the activation energy of a given reaction. Since 

metabolism is the sum of reactions occurring in an organism, its rate should increase with 

a rise in body temperature (Brown et al. 2004). Most studies, however, approximate 

temperature’s effect on metabolism using Q10 values which describe the factor by which 

metabolic rate changes over a ten degree centigrade range (Gillooly et al. 2001). 

Unlike the effect of varying body temperature on an organism’s metabolism, 

changes in environmental temperature do not have ubiquitous effects on metabolic rate. 

Metabolic processes occur internally and so animals that thermoregulate physiologically 
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(i.e. endotherms) are not affected by changes in ambient temperature in the same ways as 

animals whose body temperatures vary according to their surroundings (i.e. ectotherms) 

(Peck 2002; Angilletta et al. 2010). In ectotherms, variable ambient temperatures can lead 

to large changes in body temperature, ultimately leading to highly variable metabolic 

rates (Sinclair et al. 2013). 

Though undeniably important, mass and temperature are not the only factors 

responsible for determining the metabolic rate of an animal. In fact, life costs are 

determined by the amalgamation of many physiological, behavioural and environmental 

factors (Lear et al. 2017; Metcalfe and Norin 2019). Activity, for example, is a 

particularly important contributor to an animal’s energetic costs in the wild. In general, 

metabolism scales positively with increases in activity, since movement results from 

muscle contractions which are themselves fueled by metabolic energy (Wilson et al. 

2006). However, the extent to which behaviour affects metabolism differs based on 

factors such as the biomechanical efficiency of the behaviour, the physiology of the 

animal, and its phylogeny (Gleiss et al. 2011; Cooke et al. 2016; Auer et al. 2017). 

Quantifying the energetic costs of ecologically relevant behaviours is therefore essential 

to understanding the energetics of wild animals beyond the confines of the laboratory.  

1.2 Shark Energetics 

Sharks often play important roles in global marine ecosystems (Heithaus et al. 2010), 

yet relatively little is known regarding their energetics due to the inherent logistical and 

biological challenges associated with measuring metabolic rate in these typically large 

species (Sims 2000; Carlson et al. 2004; Lawson et al. 2019). As a result of this, 

evaluating the predatory impact of most sharks on their ecosystems has mostly been 
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possible indirectly, through comparisons between healthy systems and those where 

sharks have been significantly depleted or extirpated (Stevens 2000), or qualitatively 

through assumptions based on trophic position (Hussey et al. 2015). Alternatively, 

developing an understanding of the energetic demands of sharks allows one to 

quantitatively estimate their impact on ecosystems (Semmens et al. 2013; Barnett et al. 

2017). Metabolic rate defines their energetic requirements, which can then be 

transformed into prey consumption rates using information on the composition, caloric 

value and proportion of prey types in their diet (Semmens et al. 2013). Scaled to 

population, consumption rate can be used to estimate the overall trophic impact of a 

population inhabiting a specific ecosystem (Barnett et al. 2017). 

Measuring the decline of oxygen resulting from respiration in a closed system (or 

respirometry) is widely accepted as the gold standard for estimating metabolic rate in 

fish, but can be challenging when dealing with large animals that are highly active in 

captivity (e.g. sharks; Carlson et al. 2004; Svendsen et al. 2016). Also challenging, is the 

requirement to build a respirometer capable of housing large fish and the associated high 

financial costs of doing so. To bypass these issues, some have identified methodological 

approaches that can estimate metabolism without the need for respirometry. For example, 

Sims and colleagues were able to estimate the metabolic rate of basking sharks using the 

prey density at which they cease foraging (Sims 2000). However, the use of such a 

method is restricted to filter feeders that forage optimally and is therefore not applicable 

for the majority of shark species. Furthermore, other common methods for estimating 

metabolic rate, such as the doubly labeled water method, are not effective on sharks 

(Green 2011; Treberg et al. 2016). On the other hand, methods such as electromyography 
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and accelerometry, which have been used to effectively estimate the field metabolic rate 

(FMR) of some shark species (Scalloped hammerhead (Sphyrna lewini), Lowe 2002; 

Lemon sharks (Negaprion brevirostris), Bouyoucos et al. 2018), still require calibration 

via respirometry trials (Cooke et al. 2016).  

As previously discussed, the allometric and temperature based scaling of 

metabolic rate can provide insight into the ecology of wildlife, but defining such 

relationships requires data from a wide range of body sizes and experimental 

temperatures. For sharks, these relationships have been primarily derived from 

respirometry studies involving small individuals (~0.5-10kg) and warm temperatures 

(>10°C; See Table 7.1 in Carlson et al. 2004). In fact, there are only a few recent cases in 

which larger sharks have been studied in a respirometer and even those studies used 

individuals that weighed less than 50kg (Ezcurra et al. 2012; Payne et al. 2015). For 

example, Ezcurra et al. (2012) measured the oxygen consumption of one of the largest 

shark species, the white shark (Carcharodon carcharias); however, this was performed 

using young-of-year individuals weighing a fraction of what an average adult would 

weigh (22.6-36.2kg vs ~500-1000kg; Ezcurra et al. 2012). There is a clear gap in our 

understanding of shark metabolic rates and, as such, our knowledge on the topic is 

skewed towards small or young, tropical and temperate species. Therefore, obtaining 

metabolic rate estimates for large sharks living in cold environments is needed to 

improve our understanding of shark metabolism while strengthening the predictive power 

of metabolic scaling relationships across all shark species. 
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1.3 Greenland Sharks 

Larger than all other polar fishes and inhabiting the often near-freezing waters of 

the Arctic, the Greenland shark (Somniosus microcephalus) is a unique species whose 

metabolism has yet to be studied in the lab or in the field (MacNeil et al. 2012; Edwards 

et al. 2019). Despite their slow recorded swim speeds, these sharks feed on a wide variety 

of prey, including marine mammals, fish and cephalopods. The extent to which 

Greenland sharks hunt versus scavenge is unknown, though anecdotal accounts and 

qualitative observations support the use of both foraging strategies (MacNeil et al. 2012; 

Nielsen et al. 2014). Overall, very little is currently known about the distribution, 

behaviour and ecology of this near-threatened species (IUCN 2020). Similarly, only local 

abundance estimates have been derived for Greenland sharks in certain parts of the 

Arctic, leaving their population status across most of their geographic range unknown 

(Devine et al. 2018). These slow swimming sharks are also slow to age, having an 

estimated lifespan of several centuries and a predicted size at maturity of 2.84 m for 

males and 4.19 m for females (Nielsen et al. 2020). Slow metabolic rates are frequently 

observed in species with slow life histories; and a causal link between these traits has 

even been demonstrated experimentally in some fishes (Auer et al. 2018). Given this, 

their size, and the temperatures they experience in the wild, Greenland sharks are 

predicted to have very low metabolic rates (Augustine et al. 2017; Shadwick et al. 2018).   

1.4 Study System 

The fieldwork component of this thesis took place in Scott Inlet (71°03'N 

71°21'W) and Tremblay Sound (72°18'N 81°09'W), Nunavut, both located on the North-

East coast of Baffin Island in the Eastern Canadian Arctic (Figure 1.1). These inlets are 

important fishing grounds for local communities and represent important summering 
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habitats for narwhals (Heide-Jørgensen et al. 2002; Marcoux et al. 2017). Both locations 

are a part of the larger Baffin Bay area, where commercial fisheries for Greenland halibut 

(Reinhardtius hippoglossoides) and Northern prawn (Pandalus borealis) operate. 

Greenland shark bycatch is high in the commercial offshore Greenland halibut fishery (61 

and 27 tons in sub division 0A in 2009 and 2010 respectively; DFO 2013) and could have 

a significant impact on shark populations, especially considering the increase in fishing 

effort over the last two decades (Figure 1.2; DFO 2013). However, the extent to which 

this may be affecting shark populations is not yet known because of the lack of 

comprehensive population data (Devine et al. 2018) and post release survival/mortality 

estimates following capture and release from commercial fishing gear. Even so, with an 

age at sexual maturity upwards of 1.5 centuries, as well as an 8-18 year predicted 

gestation period (Nielsen et al. 2016; Augustine et al. 2017), it is unlikely that Greenland 

shark populations are able to sustain much, if any, increased mortality resulting from 

bycatch. The importance of the Baffin Bay area to both Inuit and commercial fishers 

emphasizes the need for an improved understanding of the underlying ecology of the 

system, including the role of its largest ectothermic predator the Greenland shark. 

1.5 Objectives 

Considering the threats facing Greenland sharks and their potential importance 

with regards to top down regulation of Arctic marine food webs, there is a clear need for 

research on the ecology of this species. Since metabolism and ecology are intricately 

linked, an understanding of the energy requirements of these sharks would provide a solid 

foundation for future studies on Greenland shark ecology and would allow quantification 

of their impact as consumers in a rapidly changing ecosystem. Nevertheless, there are 
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currently no metabolic rate estimates in the literature for this species. Chapter 2 will 

focus on bridging this knowledge gap through the estimation of resting and active 

metabolic rates in this species using custom-built field respirometers. These estimates 

will then be added to those for all previously studied ectothermic species of shark and 

used to derive interspecific allometric and temperature scaling relationships for this 

threatened group of fish. Building on these results, Chapter 3 will focus on modeling the 

field metabolic rate (FMR) and prey consumption rates of Greenland sharks using 

biologged activity and temperature data. 

 

 



 

9 
 

REFERENCES/BIBLIOGRAPHY 

Angilletta MJ, Cooper BS, Schuler MS, Boyles JG. 2010. The evolution of thermal 

physiology in endotherms. Front Biosci E. 2:861–881. 

Auer SK, Dick CA, Metcalfe NB, Reznick DN. 2018. Metabolic rate evolves rapidly and 

in parallel with the pace of life history. Nat Commun. 9(1):8–13. 

doi:10.1038/s41467-017-02514-z. 

Auer SK, Killen SS, Rezende EL. 2017. Resting vs. active: a meta-analysis of the intra- 

and inter-specific associations between minimum, sustained, and maximum 

metabolic rates in vertebrates. Funct Ecol. 31(9):1728–1738. doi:10.1111/1365-

2435.12879. 

Augustine S, Lika K, Kooijman SALM. 2017. Comment on the ecophysiology of the 

Greenland shark, Somniosus microcephalus. Polar Biol. 40(12):2429–2433. 

doi:10.1007/s00300-017-2154-8. 

Barnett A, Braccini M, Dudgeon CL, Payne NL, Abrantes KG, Sheaves M, Snelling EP. 

2017. The utility of bioenergetics modelling in quantifying predation rates of 

marine apex predators: Ecological and fisheries implications. Sci Rep. 

7(1):12982. 

Bouyoucos IA, Suski CD, Mandelman JW, Brooks EJ. 2018. In situ swimming behaviors 

and oxygen consumption rates of juvenile lemon sharks (Negaprion brevirostris). 

Environ Biol Fishes. 101(5):761–773. doi:10.1007/s10641-018-0736-0. 

Brown JH, Gillooly JF, Allen AP, Savage VM, West GB. 2004. Toward a metabolic 

theory of ecology. Ecology. 85(7):1771–1789. doi:https://doi.org/10.1890/03-

9000. 

Carlson JK, Goldman KJ, Lowe CG. 2004. Metabolism, Energetic Demand, and 

Endothermy. In: Biology of sharks and their relatives. CRC Press. p. 203–224. 

Cooke SJ, Brownscombe JW, Raby GD, Broell F, Hinch SG, Clark TD, Semmens JM. 

2016. Remote bioenergetics measurements in wild fish: Opportunities and 

challenges. Comp Biochem Physiol -Part A  Mol Integr Physiol. 202:23–37. 

doi:10.1016/j.cbpa.2016.03.022. 

Devine BM, Wheeland LJ, Fisher JAD. 2018. First estimates of Greenland shark 

(Somniosus microcephalus) local abundances in Arctic waters. Sci Rep. 8(1):1–



 

10 
 

10. doi:10.1038/s41598-017-19115-x. 

DFO. 2013. Integrated Fishery Management Plan for Greenland Halibut NAFO Subarea 

0 fishery (effective 2013). Fish Ocean Canada. 

Dillon ME, Wang G, Huey RB. 2010. Global metabolic impacts of recent climate 

warming. Nature. 467(7316):704. 

Edwards JE, Hiltz E, Broell F, Bushnell PG, Campana SE, Christiansen JS, Devine BM, 

Gallant JJ, Hedges KJ, MacNeil MA, et al. 2019. Advancing research for the 

management of long-lived species: A case study on the Greenland shark. Front 

Mar Sci. 6. doi:https://doi.org/10.3389/fmars.2019.00087. 

Ezcurra JM, Lowe CG, Mollet HF, Ferry LA, O’Sullivan JB. 2012. Oxygen consumption 

rate of young-of-the-year white sharks, Carcharodon carcharias during transport 

to the Monterey Bay Aquarium. Glob Perspect Biol Life Hist White Shark’(Ed 

ML Domeier) pp.:17–26. 

Gillooly JF, Brown JH, West GB, Savage VM, Charnov EL. 2001. Effects of size and 

temperature on metabolic rate. Science. 293(5538):2248–2251. 

Gleiss AC, Wilson RP, Shepard ELC. 2011. Making overall dynamic body acceleration 

work: On the theory of acceleration as a proxy for energy expenditure. Methods 

Ecol Evol. 2(1):23–33. doi:10.1111/j.2041-210X.2010.00057.x. 

Green JA. 2011. The heart rate method for estimating metabolic rate: review and 

recommendations. Comp Biochem Physiol Part A Mol Integr Physiol. 

158(3):287–304. 

Heide-Jørgensen M, Dietz R, Laidre K, Richard P. 2002. Autumn movements, home 

ranges, and winter density of narwhals (Monodon monoceros) tagged in Tremblay 

Sound, Baffin Island. Polar Biol. 25(5):331–341. 

Heithaus MR, Frid A, Vaudo JJ, Worm B, Wirsing AJ. 2010. Unraveling the Ecological 

Importance of Elasmobranchs. In: Carrier JC, Musick JA, Heithaus MR, editors. 

Sharks and Their Relatives II: Biodiversity, Adaptive Physiology, and 

Conservation. CRC Press. p. 611–637. 

Hussey NE, Macneil MA, Siple MC, Popp BN, Dudley SFJ, Fisk AT. 2015. Expanded 

trophic complexity among large sharks. Food Webs. 4:1–7. 

doi:10.1016/j.fooweb.2015.04.002. 



 

11 
 

IUCN. 2020. The IUCN Red List of Threatened Species. Available at: 

http://www.iucnredlist.org/details/60213/0 

Killen SS, Atkinson D, Glazier DS. 2010. The intraspecific scaling of metabolic rate with 

body mass in fishes depends on lifestyle and temperature. Ecol Lett. 13(2):184–

193. doi:10.1111/j.1461-0248.2009.01415.x. 

Lawson CL, Halsey LG, Hays GC, Dudgeon CL, Payne NL, Bennett MB, White CR, 

Richardson AJ. 2019. Powering Ocean Giants : The Energetics of Shark and Ray 

Megafauna. Trends Ecol Evol. 34(11):1–13. doi:10.1016/j.tree.2019.07.001. 

Lear KO, Whitney NM, Brewster LR, Morris JJ, Hueter RE, Gleiss AC. 2017. 

Correlations of metabolic rate and body acceleration in three species of coastal 

sharks under contrasting temperature regimes. J Exp Biol. 220(3):397–407. 

doi:10.1242/jeb.146993. 

Lowe CG. 2002. Bioenergetics of free-ranging juvenile scalloped hammerhead sharks 

(Sphyrna lewini) in Kāne’ohe Bay, Ō’ahu, HI. J Exp Mar Bio Ecol. 278(2):141–

156. doi:https://doi.org/10.1016/S0022-0981(02)00331-3. 

MacNeil MA, McMeans BC, Hussey NE, Vecsei P, Svavarsson J, Kovacs KM, Lydersen 

C, Treble MA, Skomal GB, Ramsey M, et al. 2012. Biology of the Greenland 

shark Somniosus microcephalus. J Fish Biol. 80(5):991–1018. 

doi:10.1111/j.1095-8649.2012.03257.x. 

Marcoux M, Ferguson SH, Roy N, Bedard JM, Simard Y. 2017. Seasonal marine 

mammal occurrence detected from passive acoustic monitoring in Scott Inlet, 

Nunavut, Canada. Polar Biol. 40(5):1127–1138. doi:10.1007/s00300-016-2040-9. 

Metcalfe NB, Norin T. 2019. Ecological and evolutionary consequences of metabolic rate 

plasticity in response to environmental change. 374(1768):1–9. 

doi:10.1098/rstb.2018.0180. 

Nielsen J, Hedeholm RB, Heinemeier J, Bushnell PG, Christiansen JS, Olsen J, Ramsey 

CB, Brill RW, Simon M, Steffensen KF, et al. 2016. Eye lens radiocarbon reveals 

centuries of longevity in the Greenland shark (Somniosus microcephalus). 

Science (80- ). 353(6300):702–704. doi:10.1126/science.aaf1703. 

Nielsen J, Hedeholm RB, Lynghammar A, McClusky LM, Berland B, Steffensen JF, 

Christiansen JS. 2020. Assessing the reproductive biology of the Greenland shark 

http://www.iucnredlist.org/details/60213/0


 

12 
 

(Somniosus microcephalus). PLoS One. 15(10):e0238986. 

Nielsen J, Hedeholm RB, Simon M, Steffensen JF. 2014. Distribution and feeding 

ecology of the Greenland shark (Somniosus microcephalus) in Greenland waters. 

Polar Biol. 37(1):37–46. doi:10.1007/s00300-013-1408-3. 

Payne NL, Snelling EP, Fitzpatrick R, Seymour J, Courtney R, Barnett A, Watanabe YY, 

Sims DW, Squire L, Semmens JM. 2015. A new method for resolving uncertainty 

of energy requirements in large water breathers: the ‘mega-flume’ seagoing swim-

tunnel respirometer. Methods Ecol Evol. 6(6):668–677. doi:10.1111/2041-

210x.12358. 

Peck LS. 2002. Ecophysiology of Antarctic marine ectotherms: limits to life. In: 

Ecological Studies in the Antarctic Sea Ice Zone. Springer. p. 221–230. 

Semmens JM, Payne NL, Huveneers C, Sims DW, Bruce BD. 2013. Feeding 

requirements of white sharks may be higher than originally thought. Sci Rep. 

3:10–13. doi:10.1038/srep01471. 

Shadwick RE, Bernal D, Bushnell PG, Steffensen JF. 2018. Blood pressure in the 

Greenland shark as estimated from ventral aortic elasticity. J Exp Biol. 221(19). 

Sims DW. 2000. Can threshold foraging responses of basking sharks be used to estimate 

their metabolic rate? Mar Ecol Prog Ser. 200:289–296. doi:10.3354/meps200289. 

Sinclair BJ, Stinziano JR, Williams CM, MacMillan HA, Marshall KE, Storey KB. 2013. 

Real-time measurement of metabolic rate during freezing and thawing of the 

wood frog, Rana sylvatica: implications for overwinter energy use. J Exp Biol. 

216(2):292–302. 

Stevens J. 2000. The effects of fishing on sharks, rays, and chimaeras (chondrichthyans), 

and the implications for marine ecosystems. ICES J Mar Sci. 57(3):476–494. 

doi:10.1006/jmsc.2000.0724. 

Svendsen MBS, Bushnell PG, Steffensen JF. 2016. Design and setup of intermittent-flow 

respirometry system for aquatic organisms. J Fish Biol. 88(1):26–50. 

doi:10.1111/jfb.12797. 

Treberg JR, Killen SS, MacCormack TJ, Lamarre SG, Enders EC. 2016. Estimates of 

metabolic rate and major constituents of metabolic demand in fishes under field 

conditions: Methods, proxies, and new perspectives. Comp Biochem Physiol -Part 



 

13 
 

A  Mol Integr Physiol. 202:10–22. doi:10.1016/j.cbpa.2016.04.022. 

Wilson RP, White CR, Quintana F, Halsey LG, Liebsch N, Martin GR, Butler PJ. 2006. 

Moving towards acceleration for estimates of activity‐specific metabolic rate in 

free‐living animals: the case of the cormorant. J Anim Ecol. 75(5):1081–1090. 

 

 



 

14 
 

TABLES AND FIGURES 

Figure 1.1: Map of the greater Baffin Bay area. Red icons designate the two field 

locations (i.e. Scott Inlet [star] and Tremblay Sound [diamond]) where sharks underwent 

respirometry trials or were equipped with biologger packages between 2015 and 2019. 

Shaded regions represent NAFO fisheries management divisions for Baffin Bay. Orange 

circles represent local population density estimates of Greenland sharks in the Eastern 

Canadian Arctic (data from Devine et al. 2018). 
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Figure 1.2: Total catch is plotted over time for the two commercial fisheries operating in 

our study region (management zone 0A). The dashed vertical line represents the start of 

the Greenland halibut commercial fishery in 1996. Data was acquired from NAFO’s 21A 

database. 
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CHAPTER 2 

A First look at the metabolic rate of Greenland sharks (Somniosus microcephalus) 

in the Canadian Arctic  

 

2.1 Introduction 

Organisms inhabiting extreme environments have long been of special interest to 

ecologists, physiologists and evolutionary biologists alike (Cavicchioli et al. 2011; Riesch 

et al. 2015), particularly as these environments, including the poles, deserts and the deep 

sea are not rare, but in fact cover vast expanses of the planet (Wharton 2007). To assess 

the mechanisms facilitating life in extreme environments, the study of metabolic rate is 

regarded as a powerful tool given it combines insight into both the physiology and 

ecology of an organism (Elliott et al. 2013; Lear et al. 2020). This is based on the premise 

that the rates at which lifeforms acquire and expend energy are intricately linked to the 

abiotic and biotic conditions that constrain individual life on a daily basis (Brown et al. 

2004). In ectotherms, body mass (biotic) and environmental temperature (abiotic) are 

amongst the most studied variables known to influence metabolic rate (Clarke and 

Johnston 1999; Brown et al. 2004; Schulte 2015). Since Kleiber first published his 

seminal work linking body mass to metabolic rate (Kleiber 1932), much research has 

focused on defining this relationship within and across taxonomic boundaries (Clarke and 

Johnston 1999; Glazier 2010; Jerde et al. 2019). Although the exact extent to which 

metabolic rate changes with the mass of organisms can vary (van der Meer 2006), the 

general pattern that mass-adjusted metabolic rate decreases with increasing body mass is 

widely observed and accepted as a fundamental biological concept (Brown et al. 2004). 
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Temperature’s effect on metabolic rate, similar to that of mass, can be assessed 

across species (i.e. interspecific; Clarke and Johnston 1999), as well as within species 

(i.e. intraspecific; Luongo and Lowe 2018). While intraspecific scaling relationships can 

be useful when modeling the energetic needs of a specific animal under natural 

conditions (Lear et al. 2020), interspecific relationships are useful as a reference point for 

the comparison of species (White et al. 2011). Understanding these patterns is important 

since changes in energetic demand have been shown to systematically impact behaviour, 

life history (e.g. longevity, age at maturity, reproductive periodicity), and feeding 

requirements of individuals, which in turn affect population dynamics and ecosystem 

function (Brown et al. 2004). Furthermore, unique data for extreme-temperature adapted 

species can broaden the scope and confidence of interspecific metabolic scaling 

relationships that aid in the development of ecologically relevant bioenergetic and 

evolutionary hypotheses (Glazier 2010). For example, it has long been argued that 

species adapted to polar environments maintain relatively elevated metabolic rates to 

enable physiological processes that would otherwise be hindered by the extreme cold 

temperatures they inhabit (Krogh 1914). In other words, a polar species is expected to 

have a metabolic rate that is higher than that predicted by the interspecies scaling 

relationship for a given temperature (Messamah et al. 2017). While data from more 

recent studies contradict this theory, demonstrating that polar species are not 

metabolically cold adapted (Holeton 1974; Clarke and Johnston 1999; Steffensen 2002; 

Peck 2016), a few studies also provide support for the theory (White et al. 2011), 

indicating further investigation is needed across a wider phylogenetic range. 
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In fish, standard metabolic rate (SMR) is a fundamental measure of metabolism. It 

describes the basic energetic maintenance costs of an unfed individual at rest. For many 

species, SMR cannot be feasibly estimated under laboratory or field conditions, so resting 

routine metabolic rate (rRMR) is often used as a proxy (Chabot et al. 2016). This metric 

generally describes the same conditions as SMR, but is used when the latter’s strict 

assumptions cannot be met (e.g. if the fish exhibits minor postural fin movements during 

respirometry trials). Measuring SMR (or rRMR) poses additional challenges when 

studying sharks, as respirometry trials are expensive and logistically difficult to perform 

on large bodied individuals (Lawson et al. 2019). As such, SMR estimates for sharks are 

relatively rare and often skewed towards small species and juveniles (Lowe 2001; 

Luongo and Lowe 2018). In addition, active metabolic rates are often used to extrapolate 

SMR in obligate ram-ventilating species (Lear et al. 2020), which can lead to variable 

estimates depending on the methodology used and the range of swim speeds covered 

(Chabot et al. 2016). Recent studies have found creative ways to curtail some of these 

challenges (Payne et al. 2015; Byrnes et al. 2020), but overall, the metabolic rates of 

sharks remain relatively understudied.  

 The Greenland shark (Somniosus microcephalus) is one of the largest carnivorous 

fish species that is widely distributed across the North Atlantic and Arctic oceans, yet 

many aspects of its physiology and ecology remain a mystery including its metabolic rate 

(MacNeil et al. 2012; Edwards et al. 2019). While previous work has used dynamic 

energy budget (DEB) models to estimate certain life history characteristics in this species 

(e.g. gestation period), these have yet to be validated experimentally (Augustine et al. 

2017). Greenland sharks occur at higher latitudes than all known species of shark and, as 
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such, experience some of the coldest water temperatures on the planet (as low as -1.8 °C; 

MacNeil et al. 2012). At adult lengths reaching greater than 5 metres and with an 

estimated lifespan of 392  120 years, they are the largest fish inhabiting the Arctic and 

the oldest known vertebrate species on the planet (MacNeil et al. 2012; Nielsen et al. 

2016). Paradoxically, they are also among the slowest fish in the ocean when accounting 

for body size, with a maximum recorded swim speed of only 0.74 m·s−1 (Watanabe et al. 

2012). Despite the obvious uniqueness of Greenland sharks, their size and tendency to 

inhabit deep and remote areas of the ocean has made studying them expensive and 

logistically difficult (Edwards et al. 2019). Even so, their relatively high trophic position 

(4.2-7.7; Hussey et al. 2014) and abundance (up to 15.5 individuals per km2; Devine et al. 

2018) imply that they are important top-down regulators in Arctic food webs. In addition, 

through the scavenging of large carcasses (e.g. whale falls), Greenland sharks contribute 

to nutrient cycling which could aid in stabilizing food webs (Wilson and Wolkovich 

2011).  

 Drawing from a novel dataset comprised of oxygen consumption rates measured 

through field respirometry trials, we provide the first estimates of resting and active 

routine metabolic rate (rRMR and aRMR) for the Greenland shark. Representing an 

extreme in terms of both body size and experimental temperature, we integrate our 

estimates with those of all sharks studied to date to derive a shark-specific interspecies 

metabolic scaling relationship for mass and temperature. We then compare our metabolic 

rate estimates for Greenland sharks with the values predicted by this derived equation in 

order to test for metabolic cold adaptation in this species. As a large and slow-moving 

species inhabiting extreme low temperatures, and given that most recent work has found 
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little evidence supporting metabolic cold adaptation in polar species (Peck 2016), we 

hypothesized that Greenland sharks have predictably low metabolic rates when compared 

to all other sharks studied to date (Clarke and Johnston 1999; Lear et al. 2017; Luongo 

and Lowe 2018).  

2.2 Results 

2.2.1 Respirometry 

Using two large custom-built field respirometers, we measured the metabolic 

oxygen consumption rates of four Greenland sharks with individuals reaching body 

masses exceeding those used in previous studies on other fish (33-126 kg; Table 2.1). The 

largest of these individuals, held in a 16,570 L swimming pool in the high Arctic 

(Tremblay Sound, Nunavut), had an estimated mass that was more than double that of the 

largest shark previously studied in a respirometer (Previous record = 47.7 kg; Payne et al. 

2015). Both resting and active routine metabolic rate (rRMR and aRMR) were estimated 

for this individual at an experimental temperature of 3.8 °C. Average  mass-adjusted 

rRMR across measurement intervals for this shark was 23.07 ± 4.62 (SD) mgO2h-1kg-0.84, 

while aRMR during an approximate twenty-minute period when the shark swam 

volitionally with a constant tailbeat frequency (TBF) of 0.18 Hz was 30.96 mgO2h-1kg-

0.84. Of the three individuals studied using a smaller rectangular respirometer aboard the 

MV Kiviuq II the following year (Scott Inlet, Nunavut), two were inactive for extended 

periods providing estimates of rRMR of 22.29 ± 2.90 and 17.23 ± 0.90 (SD) mgO2h-1kg-

0.84, at 4.9-5.1 °C. The third individual remained active throughout the trial yielding an 

aRMR estimate of 40.46 ± 2.17 (SD) mgO2h-1kg-0.84, at 4.9 °C; however, this individual’s 

movement was inhibited by the holding tank, so we excluded it from further analysis. 
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2.2.2 Metabolic Scaling in Sharks 

From previous experimental studies, we extracted rRMR and SMR estimates for 

eighteen shark species spanning nine families (SI Table 2.1). These experimental studies 

were conducted on animals ranging in size from <0.5 to 12.4 kg and in experimental 

temperatures from 6.5 to 32.5 °C. Combining estimates with our rRMR results for 

Greenland sharks, we derived interspecific mass and temperature scaling coefficients for 

whole-animal metabolic rate via multiple regression analysis with each species weighted 

evenly (adjusted R2 = 0.761, n = 34, p < 0.0001; Figure 2.1). The resulting mass 

coefficient translates to an allometric scaling exponent of 0.84, whose 95% confidence 

intervals (0.67-1.01) include the range of values published for global teleost fish (0.70-

0.89; Clarke and Johnston 1999; Killen et al. 2010; Jerde et al. 2019). The coefficient 

describing the effect of temperature on log10 metabolic rate (0.035) can be approximated 

by an overall interspecific Q10 of 2.23 across a ~29 °C temperature range (3.8-32.5 °C). 

This interspecific Q10 is within the wide range of intraspecific values derived for 

individual shark species (1.34-2.99; full Q10 list provided in SI Table 2.2), and its 95% 

confidence intervals include both the overall interspecific Q10 and median intraspecific 

Q10 values derived for teleost fish (1.83 and 2.40; Clarke and Johnston 1999). 

Additionally, we found that the rRMR estimates for the Greenland sharks studied here 

were all within the confidence intervals predicted by our overall interspecies metabolic 

scaling model. 

2.3 Discussion 

Our whole-animal rRMR results for Greenland sharks indicate that these fish have 

very low energetic needs. However, the rRMR of examined Greenland sharks is well 
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within the 95% confidence intervals predicted by our interspecific metabolic scaling 

relationship for mass and temperature across sharks. As such, our findings suggest that 

Greenland sharks are not metabolically cold adapted. While these results present a 

preliminary look at the metabolic ecology of this species, further investigation into the 

effect of mass and temperature on metabolic rate across individual Greenland sharks is 

required to accurately predict the dynamics of metabolic rate for this species in the wild. 

The analysis of resting metabolic rate across shark species provided an allometric 

scaling exponent that was comparable to those derived for teleost species (0.70-0.89; 

Clarke and Johnston 1999; Killen et al. 2010; Jerde et al. 2019). Due to the limited 

number of studies reporting respirometer derived SMR or rRMR estimates for sharks, 

and variability in the methods used to acquire these estimates (Lear et al. 2018), we could 

not be as stringent with our study selection criteria as those used in previous analyses of 

teleosts. Nevertheless, our results identify that allometric scaling of metabolic rate in 

sharks across a large mass spectrum falls within the range of values for teleost fish 

examined at a global scale. However, scaling exponents for individual shark species, 

similar to teleost fish, will likely differ from the interspecific value according to lifestyle 

(e.g. pelagic vs. benthic), metabolic level, and swimming style of the species in question 

(Killen et al. 2010). These factors vary immensely across shark species and can likely 

explain some of the variation observed around our interspecies scaling relationship. For 

example, the nurse shark (Ginglymostoma cirratum) has the lowest mass and temperature 

adjusted SMR among studied shark species because it is adapted to a relatively inactive 

lifestyle (Whitney et al. 2016). So far, only two studies have assessed intraspecific 

metabolic allometry in sharks, both of which yielded similar scaling exponents to our 
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overall interspecific value of 0.84 (0.86 for lesser spotted dogfish [Scyliorhinus canicula], 

Sims 1996; 0.80 for zebra sharks [Stegostoma fasciatum], Payne et al. 2015). 

 Allometric scaling of metabolic rate is often used to estimate the energy 

requirements of large sharks (e.g. white shark [Carcharodon carcharis]; Semmens et al. 

2013), yet most respirometry is conducted on small species (Giacomin et al. 2017), or 

juveniles of large species which could have metabolic rates that differ from their adult 

counterparts (Lowe 2002; Ezcurra et al. 2012). When extrapolating the metabolic rates of 

large individuals using estimates derived for individuals that are order(s) of magnitude 

smaller, minor differences among commonly used scaling exponents can lead to large 

discrepancies in estimated results (Payne et al. 2015; Lawson et al. 2019). For example, 

extrapolated metabolic rates for whale sharks weighing 5000 kg varied by a factor of 6.5 

depending on the scaling exponent used (Payne et al. 2015). This example, albeit 

extreme, emphasizes the need for metabolic rate data for large-bodied sharks, thus 

reducing the need for extrapolation. In the absence of such information, studies 

attempting to model the energetics of wild sharks typically rely on interspecific scaling 

equations or those borrowed from other species (Semmens et al. 2013; Barnett et al. 

2017; Watanabe et al. 2019), which undoubtedly increases the uncertainty surrounding 

estimates.  

As with mass, the effect of temperature on metabolic rate is known to vary across 

species (SI Table 2.2). Several studies have addressed temperature dependent 

intraspecific scaling of metabolic rate in sharks, with metabolic Q10 estimates ranging 

from 1.34 in scalloped hammerhead sharks (Sphyrna lewini, Lowe 2001) to 2.99 in nurse 

sharks (Ginglymostoma cirratum, Lear et al. 2017). Due to our limited sample size and 
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narrow range of experimental temperatures across respirometry trials, we could not 

address intraspecific scaling in Greenland sharks. However, the addition of metabolic 

oxygen consumption data for this cold-living species to the pooled data for all studied 

sharks, allowed for the assessment of how metabolic rate scales with temperature 

interspecifically across this diverse group of cartilaginous fish. We report that the across-

shark Q10 of 2.23 is slightly higher than that derived for teleost fish (Q10 = 1.83) across a 

similar range of temperatures (Clarke and Johnston 1999). This could mean that, overall, 

the metabolic rates of sharks are more sensitive to temperature than those across teleost 

fish; however, the broad confidence intervals surrounding our Q10 estimate (1.74-2.85) 

include the value published for teleost fish, suggesting this small difference may not 

represent a real evolutionary difference between both groups of fish. 

Conducting field respirometry trials on Greenland sharks in remote regions of the 

Arctic presents many logistical and methodological challenges. While the results of the 

present study provide novel insight into the metabolism of a large Arctic shark, several 

caveats must be acknowledged. Notably, short acclimation periods (2.5 hours) prior to 

conducting respirometry trials could have led to inflated rRMR estimates arising from 

stress/recovery costs (Chabot et al. 2016). Additionally, we were unable to confirm if 

individuals were in a post-absorptive state, consequently specific dynamic action (SDA) 

could have increased the rate of oxygen uptake in our experimental animals if they were 

actively digesting a meal at the time of study (Secor 2009; Chabot et al. 2016). Though 

important to consider, fasting a large polar ectotherm such as the Greenland shark could 

take weeks and would not have been feasible under field conditions. Even if the rRMR 

estimates provided here represent an over-estimate of the true SMR of Greenland sharks, 
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we found no indication that Greenland sharks are metabolically cold-adapted. Given the 

methodological caveats outlined above, their true SMR might actually be lower than 

expected for a species inhabiting the extreme cold waters of the Arctic. The latter point 

would seem feasible given their longevity and proclivity for deep-sea environments, both 

of which have been linked to reduced metabolic rates in other fish (Drazen and Seibel 

2007; Auer et al. 2018). 

 Despite having a seemingly unremarkable mass and temperature adjusted 

metabolic rate in comparison to other sharks, it is important to consider the implications 

of the extremely low whole-animal metabolic rates measured here at ecologically 

relevant experimental temperatures, as it relates to the ecological role of Greenland 

sharks in the Arctic. With such low energetic needs, Greenland sharks may be capable of 

surviving extended periods of time without feeding following the consumption of energy 

rich prey (Edwards et al. 2019). For example, assuming an assimilation efficiency of 73% 

(Brett and Groves 1979), and that 1 mol O2 is equal to 434 kJ (Widdows 1987), the 

aRMR of the 126 kg shark studied in the Tremblay Sound respirometer would translate to 

a daily caloric requirement of only 192 kcal.  If we further assume Greenland sharks can 

store energy in their tissues or as undigested food in their gut (Armstrong and Schindler 

2011), the consumption of a whole juvenile seal weighing 25 kg could theoretically allow 

the shark to survive >365 days without subsequent feeding events (caloric value of ringed 

seal taken from Stirling and McEwan 1975). This preliminary estimate accepts that 

aRMR measured at a specific activity level and temperature is not necessarily 

representative of the individual’s field metabolic rate but serves to contextualize its low 

metabolic rate in ecological terms.  
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Furthermore, the consumption of large meals by Greenland sharks combined with 

their slow metabolism could facilitate life in resource scarce environments, such as the 

Arctic, and allow this species to maximize the use of seasonally abundant or migratory 

prey such as marine mammals. This is further supported by evidence that a fish’s 

tendency to exhibit hyperphagia increases dramatically at cold temperatures (Furey et al. 

2016). However, the mechanisms driving the feeding and digestive physiology of wild 

free roaming animals remain largely unknown and understudied, making it difficult for 

ecologists to explain or predict feeding behaviour in the wild. As such, energetic models 

for animals under natural conditions require significant assumptions (Armstrong and 

Schindler 2011). Further study of the digestive physiology and field metabolism of 

Greenland sharks is necessary to increase our understanding of hyperphagia and feeding 

frequency in this highly vulnerable species.  

 Among the world’s largest fish and inhabiting some of the deepest and coldest 

waters on the planet, the long-lived Greenland shark provides a unique model to study 

animal physiology under extreme conditions. Despite this, our results suggest the 

Greenland shark’s resting metabolic rate is unremarkable when the effects of temperature 

and mass are accounted for, but further investigation is needed to uncover how metabolic 

rate scales within the species. The logistics of measuring the metabolic rates of large 

sharks continues to prevent the widespread application of standardized respirometry 

practices commonly used to assess the metabolism of small fish. Despite this, we show 

that interspecific metabolic scaling with mass and temperature across sharks yields 

similar scaling coefficients as those derived for teleost fish, even with the inclusion of 

data for sharks at much larger body sizes than previously studied. As the use of metabolic 
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data in ecological modeling grows in popularity, there is a pressing need to improve our 

understanding of the dynamics of metabolic rate within and across shark species. 

2.4 Methods 

2.4.1 Respirometry 

To estimate the metabolic demands of Greenland sharks, respirometry trials were 

conducted on temporarily captive wild sharks (see SI appendix for details on all fishing 

and fieldwork protocols). We built two types of respirometer for this study (Figure 2.2). 

The first was a 16570 L circular static respirometer in Tremblay Sound that allowed the 

measurement of the routine oxygen consumption rate of a shark at rest and while 

swimming volitionally (i.e. rRMR and aRMR). The second was a smaller (600-910 L) 

rectangular tank in which we were able to measure the rRMR of sharks aboard a 

commercial fishing vessel (MV Kiviuq II) in Scott Inlet. Submersible pumps were used 

to homogenize dissolved oxygen levels in both respirometers during trials and plastic 

drop sheeting was used to seal the water surface area to prevent gas exchange with air. 

Due to the logistical challenges of conducting respirometry trials on large animals in the 

field and the assumed slow digestion rate of Greenland sharks at low temperatures, we 

could not starve individuals ahead of measuring their oxygen consumption rates. As such, 

we refer to our estimates as routine metabolic rate instead of true standard or active 

metabolic rate according to Chabot et al. (2016). 

 In both experimental setups, trials for each shark began after an acclimation 

period of 2.5 hours at the same water temperatures recorded during the trials themselves 

(i.e. 3.7-3.8 °C in Tremblay Sound and 4.9-5.1 °C in Scott Inlet). Three to five 60-minute 

trials were run intermittently for each shark in Scott Inlet (individual trial estimates 
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available in SI Table 2.3), with twenty-minute intervals between each trial to replenish 

dissolved oxygen levels in the tank. Due to the large volume of the Tremblay Sound 

respirometer, dissolved oxygen levels remained high (>95% original concentration) so 

only one depletion was performed. Timed notes were taken to track behavioural changes 

of individuals (i.e. swimming, resting, rolling) throughout each trial in both setups, 

allowing the selection of periods of continuous rest to estimate rRMR and periods of 

sustained swimming to estimate active routine metabolic rate (i.e. aRMR). Background 

respiration rates were measured daily (immediately following shark trials) and 

subsequently used to correct the slopes observed during Greenland shark trials. Dissolved 

oxygen concentrations were measured every ten seconds using an HQ40d meter and two 

LDO101 probes (HACH).  

All trials conducted in the Scott Inlet respirometer setup resulted in dissolved 

oxygen depletions with high R2 values (> 0.95). The R2 values for the individual studied 

in the Tremblay Sound respirometer were lower (0.67-0.93), despite depletions being 

linear (i.e. residuals were evenly scattered around fitted line). This was a result of the 

large volume of water in the respirometer, the very slow rate of oxygen uptake by the 

shark, and the level of sensitivity of the dissolved oxygen probe over short sampling 

intervals. Dissolved oxygen levels decreased at a rate that was too slow to be sensed 

every ten seconds by our probes, leading to greater spread in the raw data and the lower 

observed R2 values over the short measurement periods when the shark maintained 

continuous resting or swimming behaviour (roughly 20-60 mins). While using a smaller 

respirometer would have improved the R2 value, it would have also impeded the shark’s 

ability to swim, leading to inflated metabolic rate estimates. 
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2.4.2 Calculating Oxygen Consumption Rate 

Raw oxygen depletion data was used to estimate mass adjusted metabolic oxygen 

consumption (MO2) according to the following equation: 

MO2 = (V x △O2) / (△t x m0.84) 

where (V) is the volume of water in the respirometer (total volume – estimated volume of 

the shark;  Svendsen et al. 2016), (m) is the body mass of the shark adjusted using the 

interspecies allometric scaling exponent derived here (0.84), and (△O2) is the change in 

oxygen concentration over time (△t)(Clark et al. 2013). Shark mass was either measured 

directly for smaller sharks (n = 2 individuals) or estimated using  a published Fork length 

(FL)-Body mass relationship for larger individuals (n = 2; 

m = 1.109 × 10−6 × FL3.41990; Leclerc et al. 2012). The slope of each oxygen depletion 

trial was adjusted using the slope of a blank trial of equal duration (i.e. slope[with shark present] 

- slope[with shark absent]). In doing so, we accounted for any background respiration occurring 

in the unfiltered seawater used in the respirometers.  

2.4.3 Interspecies Comparison of rRMR in Sharks and Relative to Global Teleosts 

We conducted a literature search and compiled mean SMR and rRMR estimates 

for all shark species previously studied via respirometry, excluding data for endothermic 

species (SI Table 2.1). Due to the logistic challenges of measuring metabolic rate in 

large-bodied sharks, most of these experiments were conducted on juveniles. We 

estimated the relative contributions of log10-mass and temperature on the log10-metabolic 

rate (whole-animal estimates) of sharks using multiple regression analysis. To avoid 

statistical imbalances arising from some species being overrepresented in the data (i.e. 
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multiple studies on one species and/or multiple estimates derived at different 

temperatures or masses), data were weighted by species (weight = 1/number of points for 

a given species). Whereas previous meta-analyses on teleost fish have dealt with this 

issue by selecting a single representative study for each species in the regression (Clarke 

and Johnston 1999; Killen et al. 2010), we opted to use weighted points to avoid having 

to omit studies from the already limited number published for sharks (further details 

available in SI appendix). The model output provided coefficients “a” and “b” describing 

the contribution of log10-mass and temperature to log10 whole-animal SMR/rRMR such 

that: 

Log10 SMR = b(Log10 Mass) + a(Temperature) 

Where “b” represents the interspecies allometric scaling exponent for sharks (i.e. SMR 

Massb) and where “a” can be used to derive an overall Q10 value by calculating metabolic 

rates (R1 and R2) at both temperature extremes in our data set (T1 and T2) using the 

equation above and holding mass constant, then subsequently plugging these values into 

the Q10 equation below: 

𝑄10 =  (
𝑅2

𝑅1
)

10/(𝑇2−𝑇1)

 

For visualization purposes, we plotted the effect of temperature and mass on 

metabolic rate separately (Figure 2.1). We also extracted high and low allometric scaling 

exponents from published meta-analyses on teleost fish, as well as intraspecific Q10 

values for sharks, to use as reference points when assessing our interspecific values. 
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TABLES AND FIGURES 

Table 2.1: Summarized data for Greenland sharks (Somniosus microcephalus) that 

underwent respirometry trials in Tremblay Sound and Scott Inlet, Nunavut, Canada 

(n=4). Reported study temperatures represent the mean recorded temperature throughout 

the trials. 

a Mass estimated from Leclerc’s 2012 equation using fork-length (FL). 
b Movement was restricted by wall of respirometer. 

  

       Mean Mass-adjusted Metabolic Rate (mgO2 h-1 kg-.084) 

Shark 
ID 

Sex 
FL 

(cm) 
Mass 
(kg) 

Date Location 
Study 
Temp 
(℃) 

rRMR  ± SD aRMR ±  SD 
TBF 
(Hz) 

Respirometer 

1 M 227 126a 2018-09-01 
Tremblay 

Sound 
3.8 23.07 ± 4.62 30.96 ± NA 0.18 Circular 

2 F 163 40.8a 2019-09-20 Scott Inlet 4.9 22.29 ± 2.90 - - - - Rectangular 

3 F 172 52.4 2019-09-21 Scott Inlet 4.9 - - - 40.46 ± 2.17 0.23b Rectangular 

4 F 155 33.4 2019-09-21 Scott Inlet 5.1 17.23  ± 0.90 -  - - - Rectangular 

mean -  63.1 - - 4.7 20.86  ± 3.17 -   - - - 
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Figure 2.1: Comparison of literature derived whole-animal SMR and rRMR estimates for 

eighteen ectothermic shark species from nine families (MO2 units = log10 [mgO2 h-1]).  

Each black point represents the study-specific mean whole-animal MO2 provided for a 

species at a specific experimental temperature and mass. Red points represent rRMR 

estimates for the Greenland shark (Somniosus microcephalus). Panel (A) depicts log10-

transformed SMR and rRMR estimates (adjusted to a standard mass of 10 kg) against 

experimental temperature. The black line represents the SMR of a shark species predicted 

using the interspecies Q10 value derived from our multiple regression analysis, while the 

blue lines represent the maximum and minimum Q10 values observed for specific shark 

species (Ginglymostoma cirratum and Sphyrna lewini respectively). Panel (B) depicts 

log10-transformed SMR and rRMR estimates (adjusted to a standard temperature of 10 

°C) against the log10-transformed mean mass of sharks used in each study. The black line 

represents the SMR of a shark species predicted using the interspecies allometric scaling 

exponent derived from our multiple regression analysis, while the blue lines encompass 

the range of predicted SMR values calculated with commonly used allometric scaling 

exponents derived for global teleost fish in previous meta-analyses (see Methods). 
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Figure 2.2: Photographs of the two respirometers used in this study. Panel A depicts the 

large “circular” type respirometer used in Tremblay Sound in 2018 (Photo by Eric Ste-

Marie). Panel B depicts the smaller “rectangular” type respirometer used in Scott Inlet in 

2019 (Photo of E. Ste-Marie taken by Jena Edwards and used with permission).  

  

A B 
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SUPPLEMENTARY INFORMATION 

Fishing & Data collection 

In Tremblay Sound in 2018-2019, Greenland sharks were captured using 

longlines composed of 6-10 hooks spaced ten metres apart baited with char, seal or 

narwhal donated by Inuit from subsistence fishing/hunting. Lines were set for 3-8 hours 

and subsequently pulled to the surface by hand. In Scott Inlet sharks were captured using 

longlines composed of 50 hooks set for 12 hours baited with squid. Lines were pulled 

using a motorized winch aboard the MV Kiviuq II. Sharks were not tagged, measured or 

sampled until after the trials took place to avoid unnecessary stress. Instead, individuals 

were immediately transferred into the respirometer following capture and allowed to 

acclimate to their surroundings. Only healthy sharks were used in respirometry trials (i.e. 

No visible injuries and responsive to a nose touch or tail pinch). In Tremblay Sound 

(2018), we fished for respirometry sharks nearshore to avoid having to tow animals more 

than two hundred metres to where our large circular field-respirometer was set up on the 

beach. Once at the beach, our team used an Extra-Large Shark Carrier (121 Animal 

Handling Products Ltd, Derbyshire, UK) to rapidly transfer the shark from the fjord to the 

respirometer (~30 seconds air exposure). A similar protocol was used to release the shark 

following experimentation. In Scott Inlet (2019), sharks were transferred directly from 

the longline to our rectangular respirometer aboard the MV Kiviuq II. Following 

experimentation, sharks were lowered back into the fjord using a makeshift sling.  
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Interspecies Metabolic Scaling Model 

We conducted multiple regression analysis using the “lm” (linear model) function 

in R (version 3.5.2). Since neither mass nor temperature scales linearly with metabolic 

rate, metabolic rate and mass data were log transformed. Since some species of shark 

were represented by several data points (i.e. multiple studies per species or multiple 

estimates at different masses or temperatures), the regression analysis was balanced using 

the weights argument, with weights for each data point set to the inverse of the total 

number of data points for that species. Typical weighted regressions also incorporate the 

variance or standard deviation associated with data points in the model. These values, 

however, were not available for all species/experiments due to a lack of standardized 

reporting practices in respirometry studies on sharks. The variance or standard deviation 

for each study was therefore not included in the regression analysis. Furthermore, most 

studies only provided a mean mass-specific SMR estimate across individuals of varying 

mass, without providing the mean mass of individuals used in their study (SI Table 2.1). 

In such cases, we assumed that the mean mass of individuals was the midpoint between 

the max and min masses used in the study (a range of masses was always provided when 

the mean was not). Additionally, three studies provided mass-adjusted values instead of 

mass-specific estimates. In such cases, we converted the estimate into the mass-specific 

equivalent for an individual of average mass. Whole animal metabolic rates were then 

estimated by multiplying mass-specific metabolic rate by the average mass of an 

individual used in the study. This undoubtedly increased the error surrounding our model; 

however, most studies covered a relatively narrow range of masses (~2 kg range on 

average) which likely limited its overall influence on the output of our analysis covering 

a range of approximately 126 kg. 
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S.I. Table 2.1: Literature derived mass-specific SMR (or rRMR) estimates for sharks. 

Ref Species Temp (C) 
Mass 
avg. 
(kg) 

Mass Range 

(kg) 
N 

MO2 

(mgO2kg-1h-1) 

SD SE Methodb 

Carlson et al. 
1999 

Carcharhinus 
acronotus 

28 1 0.45-3.51 10 239.8   extrapolated 

Lear et al. 2020 
Carcharhinus 

leucas 
19.7 5 3-7 9 101.4c   extrapolated 

Lear et al. 2020 
Carcharhinus 

leucas 
32.5 5 3-7 9 304.1c   extrapolated 

Lear et al. 2017 
Carcharhinus 

limbatus 
29.4 1.25a 1.03-1.47 7 246   extrapolated 

Bouyoucos et 
al. 2018 

Carcharhinus 
melanopterus 

29.66 1.08  8 100.92 11.3  real 

DiSanto & 
Bennett 2011 

Chiloscyllium 
plagiosum 

24 0.6  7 227.8c 
 14.8 real 

Fournier 1996 
Ginglymostoma 

cirratum 
23 2.65a 1.3-4 5 106   real 

Whitney et al. 

2016 

Ginglymostoma 

cirratum 
22.5 8.37 5-12.4 5 26.7c 8  real 

Lear et al. 2017 
Ginglymostoma 

cirratum 
23.9 8.31a 5.5-11.12 8 34.8 6  real 

Lear et al. 2017 
Ginglymostoma 

cirratum 
29.3 10.1a 7.8-12.4 8 62.9 8  real 

Whitney et al. 
2016 

Ginglymostoma 
cirratum 

29 8.99 5.6-12.4 6 44.1c 17  real 

Luongo and 
Lowe 2018 

Heterodontus 
francisci 

14 0.7225 0.44-0.94 4 30.6  3.4 real 

Luongo and 
Lowe 2018 

Heterodontus 
francisci 

16 0.61 0.41-0.94 10 33.9  2.3 real 

Luongo and 
Lowe 2018 

Heterodontus 
francisci 

20 0.59 0.41-0.94 9 44.9  2.4 real 

Luongo and 
Lowe 2018 

Heterodontus 
francisci 

22 0.7 0.44-0.94 3 57.9  2.7 real 

Molina et al. 

2020 

Heterodontus 

portusjacksoni 
17 1.9 1-4.3 5 116.6c  20.4 real 

Molina et al. 
2020 

Mustelus 
antarcticus 

17 4.35 0.9-10.6 13 103.74c  61.9 real 

Bouyoucos et 
al. 2018 

Negaprion 
acutidens 

29.29 1.55  3 139.95 12.07  real 

Lear et al. 2017 
Negaprion 
brevirostris 

20.6 2.77a 2.07-3.46 20 64.1 16  real 

Bushnell et al. Negaprion 
22 1.05a 0.8-1.3 13 125  5.68 real 
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1989 brevirostris 

Scharold and 
Gruber 1991 

Negaprion 
brevirostris 

25 1.39 1.11-1.61 7 152.6  7.3 extrapolated 

Lear et al. 2017 
Negaprion 
brevirostris 

29.5 2.35a 1.74-2.95 16 168.5 23  real 

Sims 1996 
Scyliorhinus 

canicula 
15 0.466a 0.0029-0.929 33 42.67   real 

Piiper et al. 

1977 

Scyliorhinus 

stellaris 
25 2.5a 

 12 92   real 

Ste Marie et al 
(Present) 

Somniosus 
microcephalus 

4.86 40.77  1 12.3   real 

Ste Marie et al 
(Present) 

Somniosus 
microcephalus 

5.08 33.4  1 9.83   real 

Ste Marie et al 
(Present) 

Somniosus 
microcephalus 

3.8 126  1 10.63   real 

Lowe 2001 Sphyrna lewini 26 0.69 0.506-0.927 17 189 15  extrapolated 

Carlson 2000 Sphyrna tiburo 25 1.1a 0.8-1.4 12 156   extrapolated 

Carlson and 
Parsons 2003 

Sphyrna tiburo 28 1  8 173.4  11.3 paralyzed 

Brett and 
Blackburn 1978 

Squalus 
acanthias 

10 2.06 1.87-2.4 18 32.4  2.6 real 

Hanson and 
Johansen 1970 

Squalus 
suckleyi 

6.5 2.05a 1.6-2.5 9 30.95 8.37  real 

Hanson and 

Johansen 1970 

Squalus 

suckleyi 
10 3.25a 2.16-4.3 9 25.62 3.3  real 

Scharold et al. 
1989 

Triakis 
semifasciata 

16 4a 2.2-5.8 5 105.3  35.6 extrapolated 

a Only a mass range was provided by the source, so this value represents the midpoint between the maximum and 

minimum mass instead of a true average. 

b Method refers to whether the SMR value quoted in the original paper was a direct product of respirometry on a shark 

that was volitionally at rest (i.e. real), or if it was derived by extrapolating estimates measured while the shark was 

active to a swim speed of zero (i.e. extrapolated). One study conducted respirometry on chemically immobilized sharks 

(i.e. paralyzed) 

c MO2 estimate was presented in original paper as mass-adjusted value. The value presented here was converted into a 

mass-specific value using the same allometric scaling exponent used by the paper. 
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S.I. Table 2.2: Literature derived Q10 values for sharks. If multiple values were provided 

in the original study, only those calculated over an ecologically relevant temperature 

range are presented here. 

Paper Shark Q10 Temp range (°C) 

Lear et al. 2020 Carcharhinus leucas 1.88 19.7-32.5 

Lear et al. 2017 Carcharhinus limbatus 2.67 21.6-29.4 

Dowd et al. 2006 Carcharhinus plumbeus 2.5 24-28 

Tullis and Baillie 2005 Chiloscyllium plagiosum 2.7 15-30 

Whitney et al. 2016 Ginglymostoma cirratum 2.42 23-30 

Lear et al. 2017 Ginglymostoma cirratum 2.99 23.9-29.3 

Luongo and Lowe. 2018 Heterodontus francisci 2.01 14-22 

Lear et al. 2017 Negaprion brevirostrus 2.96 20.6-29.5 

Butler and Taylor 1975 Scyliorhinus canicula 2.1 7-17 

Lowe 2001 Sphyrna lewini 1.34 21-29 

Carlson and Parsons 1999 Sphyrna tiburo 2.34 20-30 

Giacomin et al. 2017 Squalus acanthias 2.59 7.5-12 

Miklos et al. 2003 Triakis semifasciata 2.51 12-24 
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S.I. Table 2.3: Individual trial estimates (mass-adjusted) for the Greenland sharks studied 

via respirometry. rRMR estimates are presented in white and aRMR estimates are in blue. 

Red estimates are for trials where the shark exhibited sporadic movement throughout the 

trial making it impossible to estimate true rRMR or aRMR. Durations for each 

measurement interval are provided in minutes (min). 

 

  Trial Estimates (mgO2kg-1h-0.84) 

Shark 

ID 
Respirometer 

1  2  3  4  5 

MO2 min R2  MO2 min R2  MO2 min R2  MO2 min R2  MO2 min R2 

1 Circular 26.01 30 0.790  30.96 20 0.757  16.26 40 0.673  25.89 60 0.935  24.10 33 0.760 

2 Rectangular 24.97 29 0.994  19.22 30 0.955  33.27 60 0.997  31.29 60 0.999  22.67 15 0.975 

3 Rectangular 38.32 60 0.994  42.66 60 0.999  40.38 60 0.999         

4 Rectangular 16.00 60 0.996  17.25 60 0.998  18.12 60 0.998  17.57 60 0.999     



 

46 
 

S.I. REFERENCES/BIBLIOGRAPHY 

Bouyoucos IA, Weideli OC, Planes S, Simpfendorfer CA, Rummer JL. 2018. Dead tired: 

evaluating the physiological status and survival of neonatal reef sharks under 

stress. Conserv Physiol. 6(1):coy053. 

Brett JR, Blackburn JM. 1978. Metabolic rate and energy expenditure of the spiny 

dogfish, Squalus acanthias. J Fish Board Canada. 35(6):816–821. 

Bushnell PG, Lutz PL, Gruber SH. 1989. The metabolic rate of an active, tropical 

elasmobranch, the lemon shark (Negaprion brevirostris). Exp Biol. 48(2). 

Butler PJ, Taylor EW. 1975. The effect of progressive hypoxia on respiration in the 

dogfish (Scyliorhinus canicula) at different seasonal temperatures. J Exp Biol. 

63(1):117–130. 

Carlson JK, Parsons GR. 1999. Seasonal differences in routine oxygen consumption rates 

of the bonnethead shark. J Fish Biol. 55(4):876–879. 

Carlson JK, Palmer CL, Parsons GR. 1999. Oxygen consumption rate and swimming 

efficiency of the blacknose shark, Carcharhinus acronotus. Copeia 1999:34–39. 

Carlson JK, Parsons GR. 2003. Respiratory and hematological responses of the 

bonnethead shark, Sphyrna tiburo, to acute changes in dissolved oxygen. J Exp 

Mar Bio Ecol. 294(1):15–26. 

Carlson JK. 2000. The physiological ecology of the bonnethead shark, Sphyrna tiburo, 

blacknose shark, Carcharhinus acronotus, and Florida smoothhound shark, 

Mustelus norrisi: Effects of dissolved oxygen and temperature [Dissertation]. 

Oxford: University of Mississippi. 

Clark TD, Sandblom E, Jutfelt F. 2013. Aerobic scope measurements of fishes in an era 

of climate change: respirometry, relevance and recommendations. J Exp Biol. 

216(15):2771–2782. doi:10.1242/jeb.084251. 



 

47 
 

Di Santo V, Bennett WA. 2011. Effect of rapid temperature change on resting routine 

metabolic rates of two benthic elasmobranchs. Fish Physiol Biochem. 37(4):929–

934. 

Dowd W, Brill RW, Bushnell PG, Musick JA. 2006. Standard and routine metabolic rates 

of juvenile sandbar sharks (Carcharhinus plumbeus), including the effects of body 

mass and acute temperature change. Fish Bull. 104: 323-331 

Fournier RW. 1996. The metabolic rates of two species of benthic elasmobranchs, nurse 

sharks & southern stingrays [MSc thesis]. Hempstead: Hofstra University. 29p. 

Giacomin M, Schulte PM, Wood CM. 2017. Differential Effects of Temperature on 

Oxygen Consumption and Branchial Fluxes of Urea, Ammonia, and Water in the 

Dogfish Shark (Squalus acanthias suckleyi). Physiol Biochem Zool. 90(6):627–

637. doi:10.1086/694296. 

Hanson D, Johansen K. 1970. Relationship of gill ventilation and perfusion in Pacific 

dogfish, Squalus suckleyi. J Fish Board Canada. 27(3):551–564. 

Lear KO, Morgan DL, Whitty JM, Whitney NM, Byrnes EE, Beatty SJ, Gleiss AC. 2020. 

Divergent field metabolic rates highlight the challenges of increasing 

temperatures and energy limitation in aquatic ectotherms. Oecologia. 193:311–

323. doi: https://doi.org/10.1007/s00442-020-04669-x 

Lear KO, Whitney NM, Brewster LR, Morris JJ, Hueter RE, Gleiss AC. 2017. 

Correlations of metabolic rate and body acceleration in three species of coastal 

sharks under contrasting temperature regimes. J Exp Biol. 220(3):397–407. 

doi:10.1242/jeb.146993. 

Leclerc L-ME, Lydersen C, Haug T, Bachmann L, Fisk AT, Kovacs KM. 2012. A 

missing piece in the Arctic food web puzzle? Stomach contents of Greenland 

sharks sampled in Svalbard, Norway. Polar Biol. 35(8):1197–1208. 

Lowe C. 2001. Metabolic rates of juvenile scalloped hammerhead sharks (Sphyrna 

lewini). Mar Biol. 139(3):447–453. 



 

48 
 

Luongo SM, Lowe CG. 2018. Seasonally acclimated metabolic Q10 of the California 

horn shark, Heterodontus francisci. J Exp Mar Bio Ecol. 503(March):129–135. 

doi:10.1016/j.jembe.2018.02.006. 

Miklos P, Katzman SM, Cech JJ. 2003. Effect of temperature on oxygen consumption of 

the leopard shark, Triakis semifasciata. Environ Biol Fishes. 66(1):15–18. 

doi:10.1023/A:1023287123495. 

Molina JM, Finotto L, Walker TI, Reina RD. 2020. The effect of gillnet capture on the 

metabolic rate of two shark species with contrasting lifestyles. J Exp Mar Bio 

Ecol. 526:151354. 

Piiper J, Meyer M, Worth H, Willmer H. 1977. Respiration and circulation during 

swimming activity in the dogfish Scyliorhinus stellaris. Respir Physiol. 30(1–

2):221–239. 

Scharold J, Lai NC, Lowell WR, Graham JB. 1989. Metabolic rate, heart rate, and 

tailbeat frequency during sustained swimming in the leopard shark Triakis 

semifasciata. Exp Biol. 48(4):223–230. 

Scharold J, Gruber SH. 1991. Telemetered heart rate as a measure of metabolic rate in the 

lemon shark, Negaprion brevirostris. Copeia.:942–953.Sims DW. 1996. The 

effect of body size on the standard metabolic rate of the lesser spotted dogfish. J 

Fish Biol. 48(3):542–544. 

Sims DW. 1996. The effect of body size on the standard metabolic rate of the lesser 

spotted dogfish. J Fish Biol. 48(3):542–544. 

Tullis A, Baillie M. 2005. The metabolic and biochemical responses of tropical 

whitespotted bamboo shark Chiloscyllium plagiosum to alterations in 

environmental temperature. J Fish Biol. 67(4):950–968. 

Whitney NM, Lear KO, Gaskins LC, Gleiss AC. 2016. The effects of temperature and 

swimming speed on the metabolic rate of the nurse shark (Ginglymostoma 



 

49 
 

cirratum, Bonaterre). J Exp Mar Bio Ecol. 477:40–46. 

doi:10.1016/j.jembe.2015.12.009. 

  



 

50 
 

CHAPTER 3 

Modeling the Field Metabolic Rate and Prey Consumption Rate of Greenland 

Sharks (Somniosus microcephalus) Using Archival Biologgers 

 

3.1 Introduction 

All lifeforms consume energy in one form or another, but the quantity required by 

each individual, population or species varies tremendously across the tree of life. Studies 

of metabolism have shown that the energy requirements of animals are influenced — 

often predictably — by their behaviour (e.g. variable activity costs in seabirds; Elliott et 

al. 2013), physiology (e.g. stress metabolism in fish; Nadler et al. 2016), and environment 

(e.g. thermoregulatory costs in mammals; Maloney et al. 1999). As such, a holistic 

estimate of the energy utilization of wildlife in the context of their ecosystem, referred to 

as field metabolic rate (FMR), can be very informative of their ecology and fitness 

(Treberg et al. 2016).  

Several methodologies have been employed to estimate FMR in wildlife; 

however, no single technique is universally effective, creating gaps in the data available 

for certain species (Butler et al. 2004; Treberg et al. 2016). While heartrate telemetry and 

the doubly labeled water method have proven useful for the estimation of FMR in 

terrestrial species (Speakman 1997; Green 2011), these techniques are often less effective 

or completely ineffective when applied to fish (Treberg et al. 2016). Consequently, many 

studies addressing field metabolism in fish have relied on other methods such as 

measuring carbon isotopes in excised otoliths (Chung et al. 2019), or developing models 

using acceleration data from fish equipped with biologger packages (Metcalfe et al. 

2016). FMR can be divided into three basic subunits of metabolism: standard metabolic 
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rate (SMR), specific dynamic action (SDA), and activity metabolism (Chung et al. 2019). 

While previously derived estimates of SMR and SDA can be incorporated into FMR 

models with reasonable accuracy, activity’s contribution is particularly variable and 

requires knowledge of the mechanical work undergone by an animal’s muscle tissues 

while behaving normally in the wild (Wilson et al. 2006). Directly measuring the muscle 

contractions of wild fish is not feasible and so proxies, such as acceleration data recorded 

on biologgers, can be used to derive activity metrics such as overall dynamic body 

acceleration (ODBA) and tailbeat frequency (TBF) which have been shown to correlate 

with energy expenditure in many fishes (Ohlberger et al. 2007; Bouyoucos et al. 2017; 

Karissa O Lear et al. 2017).  

In order to accurately model FMR in fish, the effect of environmental temperature 

on metabolic rate must be accounted for, as this is one of the principal drivers of 

metabolic rate in ectotherms (Treberg et al. 2016; Lear et al. 2020). Wild fish often 

experience environmental temperatures that vary spatially (e.g. deep vs shallow; Thums 

et al. 2013), or temporally (e.g. summer vs winter;  Luongo and Lowe 2018), and these 

differences will generally lead to changes in body temperature which in turn lead to 

changes in FMR (Lear et al. 2020). Due to the inherent difficulties associated with 

recording body temperature in free-roaming fish, most studies rely on ambient 

temperature as a proxy for body temperature, but this can lead to errors when estimating 

instantaneous FMR in species who behaviourally thermoregulate (Watanabe et al. 2019a; 

Lear et al. 2020). For example, some sharks maintain relatively stable body temperatures 

throughout the day despite experiencing highly variable external temperatures by 

exhibiting a “yo-yo” style of diving where they cycle between warmer surface waters and 
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colder deep waters (Andrzejaczek et al. 2018). In such cases, ambient temperature may 

lead to an over- or underestimate of FMR at any given time (i.e. instantaneous FMR), but 

can still be useful at estimating the time-averaged FMR of an individual over a longer 

period (i.e. hours or days). 

Taken a step further, FMR can be used with diet information to estimate prey 

consumption rates, which allow for the quantitative assessment of trophic interactions 

within ecosystems where direct measures of prey consumption are often impossible 

(Nagy 1987). The oceans represent one such place. In fact, the inaccessibility of most 

marine species during the majority of their lives makes observation-based consumption 

rates unfeasible, leaving modelled estimates as the best alternative. 

Analyses of prey consumption rates can be particularly useful when deciphering 

the ecological role of a species in the context of the surrounding food web. The consumer 

links between predators and prey drive community dynamics and, when disturbed, can 

lead to cascading effects throughout the ecosystem (Heithaus et al. 2008). For example, 

the collapse of Atlantic cod (Gadus morhua) populations in the Northwest Atlantic led to 

a large-scale restructuring of the local marine community with effects persisting decades 

later (Frank et al. 2005). Developing an understanding of the prey consumption rates of 

predators helps quantify their role in a given ecosystem and ultimately informs 

conservation initiatives through improved ecological predictions (Baum and Worm 

2009). Even so, acquiring reliable population-level estimates of prey consumption can be 

challenging when data for species of interest are limited (Grubbs et al. 2016). 

Furthermore, even when data are abundant, they may not be representative of the entire 

population or time frame being studied (Hewitt et al. 2007). For example, many polar 
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species undergo large migrations or experience dramatic seasonal shifts in their habitats, 

yet data are often collected in the summer because of the lack of year-round accessibility. 

Consequently, ecological predictions based on these data alone provide an incomplete 

view of annual ecosystem dynamics. 

The estimation of prey consumption rates has become an important tool used to 

elucidate the ecological impact of marine predators, including sharks whose global 

numbers are declining rapidly due to overfishing (Williams et al. 2004; Worm et al. 2013; 

Mourier et al. 2016). That being said, bioenergetics, population and behavioural data for 

sharks is often limited, making their ecological role as predators difficult to ascertain 

(Hammerschlag 2019; Lawson et al. 2019). As a result of this data deficiency, many 

studies have relied on modeled data or data derived from related species when estimating 

the FMR and predation rate of sharks (Semmens et al. 2013; Barnett et al. 2017). This 

increases the uncertainty surrounding estimates, but can still be useful when addressing 

conservation and management objectives (Barnett et al. 2017). Aside from their direct 

effects on prey populations, there is also mounting evidence that sharks influence their 

ecosystems through non-lethal behavioural and physiological effects on prey species 

(Heithaus et al. 2007; Guttridge et al. 2012; Hammerschlag et al. 2017). As such, 

studying both direct and indirect effects of sharks on their surrounding communities 

should be a priority. 

 Very little is currently known about the ecological role of Greenland sharks 

(Somniosus microcephalus), yet their size, abundance and trophic position indicate that 

they could serve as important top-down regulators of Arctic food webs (MacNeil et al. 

2012; Hussey et al. 2014). To date, no FMR or prey consumption rate estimates exist for 
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Greenland sharks, largely due to the lack of metabolic and behavioural data for the 

species. Recent respirometer derived estimates of resting and active metabolic rate for 

Greenland sharks inhabiting Baffin Bay, Nunavut, provide a foundation on which we can 

now begin exploring the FMR and prey consumption rate of this species (Ste-Marie et al. 

2020). Consumer linkages to locally and commercially important species makes studying 

their role as predators essential to the proper management of Arctic ecosystems (Tyrrell 

et al. 2011). Quantifying the consumption of prey species such as Greenland halibut 

(Reinhardtius hippoglossoides), for example, could subsequently be used to inform 

population models used for the management of fisheries targeting this species. 

 In the present chapter, I will integrate the resting and active metabolic rates 

presented in Chapter 2 of my thesis with biologged acceleration and temperature data in 

order to model the FMR of Greenland sharks tagged in the coastal fjord systems of Baffin 

Island, Nunavut. I will then integrate these FMR estimates with published diet data to 

estimate the prey consumption rates of this Arctic predator. The basic consumption 

model will take into account the energetic needs of individuals in the wild, the 

composition of their diet and the caloric value of each diet item. Building from this, local 

abundance estimates and population demographics will be used to assess the ecosystem 

level impact of Greenland sharks. Given their generally lethargic lifestyles, we expect 

individual sharks to have relatively low field metabolic rates and that this will translate 

into low prey consumption needs. However, their high abundance in certain parts of the 

Arctic suggest that local populations of Greenland sharks may play an important role as 

consumers in Arctic marine ecosystems. 
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3.2 Methods 

3.2.1 Fishing and Tagging 

Sharks were captured in Scott Inlet and Tremblay Sound, Nunavut, using baited 

longlines. In 2015 and 2016, longlines made up of 50 hooks baited with squid were set 

for 12 hours and subsequently pulled to the surface using a winch system aboard the MV 

Kiviuq II. In 2017-2019, longlines baited with donated seal, char or narwhal were set for 

3-8 hours and then pulled to the surface by hand. Once a shark was at the surface in either 

location, it was restrained alongside a small zodiac using straps, measured, tissue samples 

taken, and biologger packages attached. Sharks were initially inverted to expose their 

ventral side and to facilitate surgical implantation of an acoustic tag into the peritoneal 

cavity (V16, 69-Hz, Vemco Ltd, Nova Scotia, Canada). Following tag implantation, 

blood and fin samples were taken for genetics and stable isotope analysis; these 

procedures provided data independent from this study. Measurements were taken for both 

total and fork length (TL and FL), as well as inner and outer clasper length if the shark 

was a male. Sharks were then righted and equipped with an archival biologger package 

(Figure 3.1), attached to the head region using a cable tie release system (Little 

Leonardo). Following all tagging procedures, restraining straps were removed and sharks 

were released. After 1-4 days (i.e. a predetermined time frame set within the Little 

Leonardo cable tie release system), the cable tie broke allowing the biologger package to 

float to the surface. The biologger package was then retrieved using satellite (SPOT, 

Wildlife Computers Inc.) and VHF radio tags (F2000 series, Advanced Telemetry 

Systems Inc.). 
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3.2.2 Biologging Data 

Activity and temperature data were recorded in wild free-swimming Greenland 

sharks using animal-borne biologger packages. Activity was monitored through the use of 

triaxial accelerometers (DTAG-3, Johnson and Tyack 2003; Sonar tag, Goulet et al. 

2019; PD3GT, Little Leonardo; Maritime bioLoggers) that recorded at frequencies of at 

least 16 Hz. Ambient temperature (external) was recorded for all tagged sharks (n=30), 

while body temperature (internal) was also recorded for a small subset of sharks (n = 2) 

in 2018 and 2019 (LAT1810, Lotek). 

 Acceleration and temperature data were processed using the Ethographer 

extension (Sakamoto et al. 2009) available for Igor Pro (WaveMetrics Inc., Lake 

Oswego, OR, USA). Prior to conducting analyses, the first ten hours of each deployment 

were cut from the data to account for post-release recovery (Watanabe et al. 

unpublished). TBF was derived from raw acceleration in the lateral (or sway) axis using 

continuous wavelet transformation (Sakamoto et al. 2009). TBF was chosen over other 

common activity metrics such as ODBA and swim speed because it could be derived for 

all accelerometer tagged sharks (unlike swim speed), and because it was the metric used 

to record activity levels in our recent study measuring oxygen consumption rates in 

Greenland sharks through respirometry (Ste Marie et al. 2020). TBF has also been shown 

to be an effective predictor of metabolic rate in in other shark species (e.g. lemon sharks 

[Negaprion brevirostris], Bouyoucos et al. 2017). 

3.2.3 Modeling FMR 

Following the processing of biologged activity and ambient/body temperature 

data, we constructed a model to estimate FMR for each tagged Greenland shark using 

metabolic scaling relationships for mass, temperature and activity:  
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𝐹𝑀𝑅 = 20.22 × 𝑇𝐵𝐹 + [(𝑟𝑅𝑀𝑅 × 𝑀0.84) × 𝑄10

𝑇2−𝑇1
10 ] 

Respirometer derived estimates of resting routine metabolic rate (rRMR) were first scaled 

according to the mass (M) of each individual shark using our derived interspecific 

allometric scaling exponent (0.84; Ste-Marie et al. 2020). Following this, rRMR was 

scaled according to recorded body/ambient temperature data (T2) using the interspecific 

Q10 for sharks of 2.23 (Ste-Marie et al. 2020) and an initial temperature (T1) representing 

the experimental temperature at which rRMR was measured. Because no intraspecific Q10 

value has been derived for Greenland sharks, and because of the wide range of Q10 values 

observed across shark species, we created two additional model variants using the 

maximum and minimum Q10 values published for shark species (2.99 for nurse sharks 

[Ginglymostoma cirratum], Lear et al. 2017; 1.34 for Great hammerhead sharks [Sphyrna 

lewini], Lowe 2001).  

Once the effect of mass and temperature were accounted for, TBF was used to 

scale each estimate according to that individual’s biologged activity levels. Rather than 

adopting an activity-level equation for a different species from a previous study, the 

effect of TBF on oxygen consumption rate for Greenland sharks was approximated using 

the slope (20.22) of an interpolated line connecting the active routine metabolic rate 

(aRMR, at TBF=0.18) of the individual studied in the Tremblay Sound respirometer to its 

rRMR (i.e. its oxygen consumption rate at TBF= 0). Though more rigorous activity cost 

equations have been derived for other shark species, we opted to use our value derived 

from limited Greenland shark data because of the highly variable effect of activity on the 

energetics of different species (Lear et al. 2017). Moreover, the shark used to derive our 

activity scaling slope was closer in body size (~126 kg) to the wild sharks whose FMRs 
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we are estimating. This latter point is important considering our methods do not account 

for possible effects of body mass on the slope of the relationship between oxygen 

consumption and TBF.  

 For the individuals whose internal body temperatures were biologged, we plotted 

instantaneous FMR over the course of each deployment, and calculated overall time-

averaged estimates using both body and ambient temperature data. Since metabolic rate 

does not change instantly according to the behaviour and environment of an animal, a 

one-minute smoothing window (i.e. rolling mean) was applied to the instantaneous FMR 

data in order to assure our estimates were physiologically plausible (Williams et al. 2014; 

Watanabe et al. 2019a). For the individuals whose internal body temperatures were not 

biologged, we calculated only a single time-averaged estimate of FMR using ambient 

temperature data. While differences between ambient and body temperature at any given 

moment could lead to an erroneous instantaneous FMR estimate, over time, averages of 

both types of temperature are likely similar. 

In order to extend our short-term FMR estimates (period of days) to encompass a 

year in the life of a Greenland shark, we used pop-off archival satellite tags (mk10 and 

miniPAT, Wildlife Computers) that measured ambient temperature and depth every ten 

minutes for a 365 day period. A similar method as above was employed to estimate long-

term (1-year) FMR in these sharks; however, since the tags did not record acceleration, 

we used the average TBF observed across all accelerometer tagged individuals as the 

activity component of our estimates. Since activity levels could have varied seasonally 

with temperature, we calculated vertical velocity (i.e. change in depth per unit time) as a 

proxy for activity and performed a linear mixed effect model to test whether activity was 



 

59 
 

influenced by temperature throughout the year (with individual sharks as a random 

effect).  

In Microsoft Excel, Short-term FMR estimates derived from biologger 

deployments in Scott Inlet and Tremblay Sound were compared with each other using 

unpaired t-tests. Similarly, short-term FMR estimates were compared with long-term 

estimates. Finally, differences between FMR estimates derived using the three Q10 

variants were assessed using paired t-tests. A Shapiro-Wilk normality test was initially 

conducted for each sample group; all of which demonstrated normal distributions.  

 

3.2.4 Modeling Prey Consumption Rates 

To estimate prey consumption rates for Greenland sharks, we integrated our FMR 

estimates with published stomach content data from studies conducted on Greenland 

sharks in the Canadian Arctic. Specifically, we extracted information regarding the types 

of prey consumed, their contribution to the shark’s overall diet and their caloric value 

(S.I. Table 3.1). Focal prey species were selected based on their importance to the diet of 

Greenland sharks and/or their importance to commercial fisheries and Northern 

indigenous communities as a resource for hunting and fishing. The following formula 

was used to estimate the mass of a specific prey type (Px) consumed daily by a shark: 

𝑃𝑥 =
𝐸 × 𝑝𝐷𝑖𝑒𝑡

𝑈𝑥
 

Where E represents the number of kilocalories required daily by an individual shark, Ux 

represents the caloric density (kcal/g) of the prey species, and pDiet represents the 

proportional contribution of the prey species to the overall diet of a shark.  



 

60 
 

 Before calculating Px, we converted our short- and long-term FMR estimates from 

units of oxygen consumption to units of energy expenditure using a conversion ratio of 1 

mol O2 per 103.73 kilocalories (Widdows 1987). We then adjusted these estimates to 

account for incomplete assimilation of consumed prey by sharks using an assimilation 

efficiency of 73% which is commonly applied in bioenergetics studies on fish (Brett and 

Groves 1979). The resulting value was taken to represent the energy requirements (E) of 

a shark in the above equation. The proportional contributions of different prey items to 

the overall energy requirements of individual sharks could not be measured directly in the 

wild. As such, frequency of occurrence (%F), extracted from previous stomach content 

studies, was used as a proxy in our prey consumption model. This diet metric represents 

the fraction of non-empty stomachs in which a certain prey item is found. While other 

metrics such as percent weight and percent number have also been used in previous 

studies attempting to model prey consumption rates in fish (Barnett et al. 2017), no such 

values have been published for Greenland sharks living in Canadian waters and diets vary 

regionally in this species. While %F is generally assumed to correspond well with pDiet, 

the two can differ under certain conditions. For example, if all sampled predators in a 

study are found with a specific prey item in their stomachs, the %F for this type of prey 

would be 100% regardless of whether it is found in small amounts and does not 

contribute a large portion of ingested calories.  

 In order to scale from individual consumption rate estimates to population level 

estimates, we incorporated local abundance and demographic data into our basic 

consumption model. Together, these two layers of additional data permit the estimation 

of the total biomass of sharks in local ecosystems and, subsequently, their prey demands 
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at the ecosystem level. Local abundance estimates were taken from recent work by 

Devine et al. (2018). The authors modeled local abundance (# of individuals per km2) 

using data derived from baited remote underwater video systems deployed in five regions 

surrounding the northern tip of Baffin Island. We used these values to estimate local 

Greenland shark populations in Tremblay Sound, Scott Inlet (localized ecosystems) and 

Baffin Bay (large-scale ecosystem) by multiplying them by the areas (A) of each region. 

Since sharks of different masses require different amounts of food, we used five years of 

catch data (n=177) from Tremblay Sound and Scott Inlet to estimate the size structure of 

Greenland shark populations in the region and estimate the average energy needs of a 

shark in these systems (Eavg). Mass-adjusted FMR could then be scaled according to the 

total biomass of sharks and used to estimate the energy requirements of the localized and 

large-scale ecosystem populations (Epop) such that:  

𝐸𝑝𝑜𝑝 = 𝐿𝑜𝑐𝑎𝑙 𝐴𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒 × 𝐴 × 𝐸𝑎𝑣𝑔 

 Since Greenland sharks spend only part of the summer and autumn months in the 

coastal inlets of Baffin Island (Edwards et al., in review), we used the mean mass-

adjusted FMR, derived from our short-term biologger deployments in Tremblay Sound 

and Scott Inlet, to estimate the energy requirements (Epop) of sharks in those systems. 

When estimating the population level consumption rate of sharks across all of Baffin 

Bay, we instead used the mean mass-adjusted FMR derived from our long-term (1-year) 

biologger deployments. Only FMR estimates derived using the interspecific Q10 of 2.23 

were used in our prey consumption model. Epop values were then substituted for E in the 

prey consumption rate equation. 
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3.3 Results 

3.3.1 Field Metabolic Rate 

Over five years we equipped 30 Greenland sharks in Tremblay Sound (2017-

2019) and Scott Inlet (2015 and 2016), Nunavut, during the late summer (August-

September) with recoverable archival biologging packages that recorded triaxial 

acceleration and temperature for periods ranging from 12-106 hours (mean= 49.5 ± 27.6 

[SD] hours). When using the interspecific Q10 of 2.23 derived for sharks, mean mass-

adjusted FMR was estimated to be 21.67±2.30 mgO2h-1kg-0.84 across all tagged Greenland 

sharks over the deployment period (Table 3.1). Using a maximum Q10 of 2.99 

(Ginglymostoma cirratum; Lear et al. 2017), mean mass-adjusted FMR decreased slightly 

to 19.89±2.63 mgO2h-1kg-0.84 (paired t-test, p<0.01, n=30). Additionally, when using the 

lowest Q10 of 1.34 (Sphyrna lewini; Lowe 2001), mean mass-adjusted FMR estimates 

increased significantly to 25.49±1.66 mgO2h-1kg-0.84 (p<0.01, n=30). FMR estimates did 

not vary significantly between Greenland sharks sampled in Tremblay Sound and Scott 

Inlet (Figure 3.2; two-tailed t-test with unequal variance, p>0.05, n=21 and 9 

respectively).  However, there was a greater spread in the results for Tremblay Sound, 

with both the maximum and minimum FMR estimate recorded for individual sharks in 

the system ranging from 16.93 to 31.36 mgO2h-1kg-0.84). 

 As expected, estimates of time-averaged mass-adjusted FMR were very similar 

when using ambient temperature in lieu of body temperature for the two individuals in 

which both were recorded simultaneously. Shark 20 had a time-averaged FMR of 22.24 

mgO2h-1kg-0.84 when using body temperature and 22.72 mgO2h-1kg-0.84 when using 

ambient temperature as a proxy. Similarly, shark 27 had a time-averaged FMR of 19.54 
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mgO2h-1kg-0.84 when using body temperature and 19.78 mgO2h-1kg-0.84 when using 

ambient temperature. Instantaneous FMR (estimated using body temperature) is plotted 

over time for these individuals (Figure 3.3). Short periods of elevated FMR can be 

observed in both individuals, corresponding with bursts of high activity (TBF; Figure 

3.3).  

Year-long FMR estimates were calculated for six sharks equipped with PSATs in 

2013-2015 in Scott Inlet (Table 3.2). The average FMR of these individuals was 

25.48±0.47 mgO2h-1kg-0.84 (at Q10=2.23), representing a roughly 18% increase over the 

short-term estimates presented above for individuals tagged with accelerometer packages 

(Figure 3.2; two-tailed t-test with unequal variance, p<0.01, n=30 [short-term] and n=6 

[long-term]). This increase in FMR resulted from the high temperatures experienced by 

sharks during the winter and spring months (Figure 3.4A). Average winter temperatures 

of greater than 4ºC were observed in all six sharks indicating that they must have left the 

cold-water coastal fjord systems of Baffin Island in late autumn. However, the pop-off 

locations of three sharks indicate that they returned to these areas the following year 

(Figure 3.4B). As with the short-term accelerometer derived FMR estimates, varying Q10 

in our FMR model for long-term satellite tagged individuals significantly affected 

average FMR (paired t-tests, p<0.05). The results of a linear mixed effect model 

suggested no influence of temperature on activity levels throughout the year when using 

vertical speed as a proxy for activity (p=0.681; Figure 3.5).  

3.3.2 Prey Consumption Rate 

 Across all 177 Greenland sharks captured in Scott Inlet and Tremblay Sound over 

the last five years (mean mass = 224 ± 99 kg, range = 29-692kg), the energy requirements 



 

64 
 

of individuals were estimated on average to be 214.6 ± 80.3 kcal/day during their time 

inside these coastal inlet ecosystems, and 252.3 ± 94.5 kcal/day for the whole year. Local 

populations of sharks were calculated using the maximum and minimum abundance 

density estimates provided for Greenland sharks in the region by Devine et al. (i.e. 0.4-

15.5 sharks per km2, 2018). Combined with upper and lower pDiet (%F) estimates for 

each prey type, population-level consumption rates varied widely because of the 

uncertainty surrounding population estimates (Table 3.3). For example, consumption rate 

estimates of ringed seal ranged from 0.88-161.78 kg/day in Tremblay Sound, 1.51-278.49 

kg/day in Scott Inlet, and 1,375.20-253,504.01 kg/day across all of Baffin Bay. Narwhal 

consumption was predicted to range from 0.36-13.76 kg/day in Tremblay Sound, 0.61-

23.68 kg/day in Scott Inlet, and 556.37-21,559.26 kg/day in Baffin Bay. Finally, the 

population-level consumption rate of Greenland halibut was predicted to be 30.85-

1,631.70 kg/day in Scott Inlet, and 28,083.84 – 1,485,284.92 kg/day in Baffin Bay. 

 

3.4 Discussion 

3.4.1 Field Metabolic Rate 

In the absence of a method to directly measure FMR in fish (Treberg et al. 2016), 

modelled estimates such as those presented in this chapter can provide important insight 

into the lives of little understood species such as the Greenland shark. The use of 

acceleration biologging to model the FMR of fish is a relatively new technique (Metcalfe 

et al. 2016), with only a handful of studies applying this approach to sharks (e.g. 

Watanabe et al. 2019a; Lear et al. 2020). Our first estimates for Greenland sharks add to 

this growing area of research through the inclusion of a large and lethargic cold-water 

species. Given its polar habitat and low activity levels in the wild, it is no surprise that we 
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estimated such low FMRs for this species; much lower than those estimated for the 

endothermic white shark (Watanabe et al. 2019a), or the warm-water dwelling bull shark 

(Lear et al. 2020). These FMR estimates for Greenland sharks also allowed for a 

preliminary assessment of their consumer role in Arctic ecosystems, though uncertainty 

surrounding some of the model inputs led to highly variable estimates. 

Maintaining a low FMR could be beneficial to Greenland sharks inhabiting areas 

of the Arctic where prey are scarce, allowing them to survive extended periods of time 

between feeding events while avoiding competition with endothermic predators such as 

orcas which require much more food to fuel their rapid metabolisms (Furey et al. 2016; 

Grady et al. 2019). There has been much debate in the literature over the feeding 

behaviour of Greenland sharks in the wild, with anecdotal evidence suggesting they rely 

on both scavenging and active predation (MacNeil et al. 2012). However, many argue the 

latter method is unlikely to be commonplace given these sharks are slow moving 

ectotherms feeding on large and often warm blooded prey capable of reaching much 

higher swim speeds than the sharks themselves (Watanabe et al. 2012). A slow field 

metabolism could justify a low predation efficiency in Greenland sharks pursuing large 

energy-rich prey (Norberg 1977). For example, a single successful predation on a seal 

could provide sufficient energy to fuel an individual shark for several months (Ste-Marie 

et al. 2020).  

Further indirect evidence for active predation can be found in the acceleration 

profiles presented for Greenland sharks here. Several short bursts (~2-6 minutes) of rapid 

swimming can be observed in the TBF plots for individuals tagged in Tremblay Sound 

(Figure 3.3), where thousands of narwhal spend their summer/autumn each year (Heide-
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Jørgensen et al. 2002). These spikes in activity could be the result of an attempted 

predation by the shark, but such patterns in the acceleration profiles of individuals will 

require validation using secondary data sources before definitive conclusions can be 

drawn (e.g. video, Watanabe et al. 2019b). Regardless of whether Greenland sharks are 

opportunistically pursuing live prey, scavenging is likely a major contributor to the diet 

of Greenland sharks whose powerful olfactory systems can guide them over long 

distances in search of carcasses from whale falls whether natural or as a result of 

subsistence hunts (Yopak et al. 2019).  

 While our modelled FMR estimates represent an important step towards 

understanding the true metabolic cost of life for these iconic Arctic predators, several 

assumptions must be acknowledged. Firstly, our model did not explicitly incorporate 

energetic costs associated with specific dynamic action (SDA), despite the fact that 

digestion can be a major contributor to the overall metabolic demands of wild fish 

(Fitzgibbon et al. 2007; Jordan and Steffensen 2007). Because of the limited respirometry 

data available for Greenland sharks (Ste-Marie et al. 2020), our FMR models were based 

on the resting metabolic rates of unfasted sharks. These resting metabolic rates could 

have included some of the costs associated with SDA and are therefore an overestimate 

of true SMR for this species. As such, we opted not to include SDA as an explicit 

parameter in our model, similar to the methods employed in a recent study by Lear et al. 

(2020) to estimate the FMR of bull sharks.  

Another important assumption made by our model was that interspecific 

relationships predicting the scaling of metabolic rate with mass and temperature can serve 

as proxies for the unknown effects of these variables within Greenland sharks. While 
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intraspecific Q10 values are known to vary extensively across shark species (1.34-2.99, 

Lowe 2001; Lear et al. 2017), the limited research to date addressing intraspecific 

metabolic allometry in sharks has yielded a relatively narrow range of scaling exponents 

(0.80-0.86, Sims 1996; Payne et al. 2015) that encompass our estimated interspecific 

value of 0.84 (Ste-Marie et al. 2020). Consequently, we used the interspecific allometric 

scaling exponent of 0.84 in our FMR model and created three model variants using the 

interspecific Q10, as well as the maximum and minimum Q10 values published for sharks 

to account for the uncertainty surrounding our estimates. While we observed a significant 

difference between FMR estimates calculated using all three Q10 values, the estimate 

derived using the interspecific Q10 of 2.23 is likely the closest to reality. In the current 

literature, all but one species of shark studied at ecologically relevant ambient 

temperatures have demonstrated metabolic Q10 values of greater than two, including a 

coordinal cousin of Greenland sharks: the spiny dogfish (Squalus acanthias) which was 

found to have a  Q10 that is similar to the interspecific value for sharks of 2.23 (i.e. 

Q10=2.59; Giacomin et al. 2017).  

Most of the FMR estimates presented in this chapter were derived using 

biologged ambient temperature instead of body temperature, yet time-averaged estimates 

were nearly identical in the individuals where both were recorded simultaneously. This 

finding, although based on a small sample of sharks, suggests that time averaged FMR 

can be accurately modeled using ambient temperature in this species and lends credibility 

to our estimates for the twenty-eight sharks in which body temperature was not recorded. 

While ambient temperature cannot be directly used to estimate instantaneous FMR since 

an animal’s size and the thermal conductance of its tissues delay the transfer of heat 
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between its body and its surroundings (Carey et al. 1982; Vogel 2005), knowledge of the 

relationship between these two measures of temperature could eventually allow us to 

estimate body temperature from ambient temperature in Greenland sharks. 

Instantaneous FMR estimates over time can be used to estimate the energetic 

investments of an individual towards specific activities (Williams et al. 2014; Watanabe 

et al. 2019a). For example, if Greenland sharks are using bursts of elevated swim speed to 

pursue prey (as discussed above), then it is possible to estimate the relative cost of these 

predation attempts using the instantaneous FMR estimates derived over that period. 

Ultimately, this information could be used to assess the energetic trade-offs associated 

with different foraging strategies in this species (Williams et al. 2014). In other words: 

Does the energy reward offered by the successful capture of a prey item outweigh the 

costs associated with its pursuit and previous failed pursuits? For this question to be 

answered, the identification of prey captures using acceleration data would need to be 

validated for Greenland sharks. Previous studies on other marine taxa have validated prey 

capture acceleration signatures using animal-borne cameras alongside acceleration 

biologgers (Watanabe and Takahashi 2013), but stomach temperature tags may also be 

effective at corroborating assumed prey captures by sharks (Jorgensen et al. 2015).  

Estimates of FMR based on long-term behavioural and environmental datasets are 

essential to developing an accurate understanding of a species’ energetics (Cooke et al. 

2016). The biologged data used in many studies to model FMR in fish is often collected 

over short time periods consisting of days or weeks instead of years (e.g. Brodie et al. 

2016). These snapshots can be useful when describing the role of a species in a specific 

habitat or ecological context but can lead to the over- or underestimation of energy 
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requirements for species that migrate and/or who undergo large seasonal shifts in their 

habitat (e.g. Sinclair et al. 2013). This is the case for many Arctic species, including the 

Greenland shark which is known to move long distances and occupy a range of habitats 

varying in depth, temperature, and prey availability, among other factors (MacNeil et al. 

2012; Hussey et al. 2018).  

Our short-term FMR estimates were based on data collected in two coastal fjord 

systems during the ice-free Arctic summers of 2015-2019. The conditions experienced by 

the sharks while in these fjords differs from those experienced by the sharks outside of 

these areas. This was evident when assessing the temperature profiles of sharks equipped 

with satellite tags for an entire year (Figure 3.4). Many sharks overwintered in waters that 

were several degrees warmer than the summer temperatures experienced in Scott Inlet 

and Tremblay Sound, resulting in yearly FMRs that were approximately 18% higher than 

our short-term estimates. In reality, we might expect a larger discrepancy between these 

estimates had we also been able to measure activity over the course of the year. Activity 

levels generally increase with temperature in ectothermic fish (Payne et al. 2016), thus 

higher winter temperatures could have been accompanied by a higher average TBF. 

However, vertical velocity (calculated from biologged depth data) remained relatively 

constant throughout the year and across temperatures indicating average activity levels 

may not have changed significantly (Gleiss et al. 2013). Nevertheless, the higher 

energetic demands predicted for Greenland sharks overwintering in warm waters has 

implications for their prey consumption rate and ultimately their overall impact on Arctic 

food webs.  
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3.4.2 Prey Consumption Rate 

We estimated that an average shark weighing 224 kg requires approximately 215 

kilocalories per day when inhabiting the coastal inlets of Baffin Island, or 252 kcal/day 

over the course of a full year in the Baffin Bay region. This is equivalent to only 164-

192g of halibut, 61-71g of seal, or 86-101g of narwhal. Considering that a typical halibut 

weighs approximately one kilogram, A Greenland shark could theoretically survive 5 or 6 

days without feeding after consuming a single fish. That number increases dramatically 

when considering the energy that would be provided by the consumption of a large meal 

of energy dense prey such as seal or narwhal. For example, a 25kg meal of narwhal could 

provide enough energy to fuel a shark for 248-291 days and the same amount of seal 

could fuel a shark for 351-412 days. This further supports the idea that opportunistic 

binge feeding by Greenland sharks on either live or dead marine mammal prey could 

allow them to inhabit regions of the Arctic where preferred prey is only available 

seasonally (Armstrong and Schindler 2011; Furey et al. 2016), encountered sporadically, 

or where successful predation events are rare. It is important to note, however, that we 

lack knowledge as to what extent Greenland sharks are able to store energy in their 

tissues or as undigested food in their stomachs. Furthermore, our estimated energy 

requirements for this species do not take into account energy investment into growth or 

reproduction, both of which could increase the FMR values presented here (Barnett et al. 

2017; Nielsen et al. 2020). In support of the reliability of the presented FMR estimates, 

available data in the literature for Greenland sharks suggests they have an incredibly slow 

growth rate (~0.5 cm/year, Hansen 1963), while sharks inhabiting Scott Inlet and 

Tremblay Sound are mostly sexually immature and thus should not incur high 

reproductive costs (Nielsen et al. 2020).  
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 Using the limited diet and population (size/demographics) data available for 

Greenland sharks, we extrapolated individual-level energy requirements to estimate 

localized population-level prey consumption of ringed seal, narwhal and halibut. 

However, due to the high degree of uncertainty surrounding abundance estimates and the 

range of published %F values for each focal prey species, consumption rate estimates 

were highly variable (two orders of magnitude between upper and lower estimates). This 

large discrepancy echoes the need for improved population data across the entire 

geographic range of Greenland sharks, as well as more extensive diet data for sharks 

inhabiting Canadian waters, and particularly coastal inlet systems such as Tremblay 

Sound and Scott Inlet (MacNeil et al. 2012; Edwards et al. 2019).  

All three stomach content papers used to determine the proportional contribution 

of prey items to the diets of Greenland sharks used data collected from Cumberland 

Sound, a large inlet of Baffin Island to the south of Scott Inlet and Tremblay Sound (Fisk 

et al. 2002; McMeans et al. 2012; McMeans et al. 2015). While Cumberland Sound may 

share many of the same prey resources as nearby coastal systems of Baffin Island, there 

are a few key differences that could influence the relative importance of prey items 

within these systems. For example, though the stomach contents of sharks in Cumberland 

Sound point to a high reliance on halibut and a low reliance on narwhal, Greenland 

halibut are not present in the immediate vicinity of Tremblay sound (though they do 

occur in neighbouring Eclipse Sound) and there is a large seasonal population of narwhal 

(Heide-Jørgensen et al. 2002). This may indicate that sharks in Tremblay Sound rely on 

narwhal to a greater extent than what we predicted here. As noted above, however, more 

stomach content data across diverse coastal environments of the Canadian Arctic will be 
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necessary in order to improve the accuracy of prey consumption estimates at these 

locations (Edwards et al. 2019). 

While we covered a wide range of potential population estimates in our 

consumption rate models for Tremblay Sound, Scott Inlet and Baffin Bay, not all 

possibilities are equally likely. The literature derived abundance estimates used to 

estimate populations in all three systems were based on data collected in coastal regions 

of Baffin Bay where Greenland sharks are known to aggregate during the ice-free Arctic 

summer (July-September, Edwards et al, in review; Devine et al. 2018). Sharks may be 

much more dispersed during the winter after they leave the coastal inlet ecosystems and 

move into Baffin Bay (Edwards et al, in review). As such, we speculate that our lower 

prey consumption rate estimates for the Baffin Bay region are likely closer to reality. 

Additionally, abundance estimates were highly variable between the locations assessed in 

Devine et al.’s study, indicating a preference by sharks for certain areas (2018). 

Estimating prey consumption rates for sharks in areas where local abundance is known 

would drastically reduce the uncertainty surrounding estimates. Therefore, acquiring 

better population data for Greenland sharks throughout Baffin Bay should be a research 

priority going forward (MacNeil et al. 2012; Devine et al. 2018; Edwards et al. 2019). 

The prey consumption rates estimated here for Greenland sharks, though coarse, 

provide a preliminary examination of the ecological role of Greenland sharks in Arctic 

ecosystems. These results can be used to improve our understanding of the food web 

dynamics in arctic marine ecosystems (Myers et al. 2007; Darnis et al. 2012; Coll et al. 

2013). To date, most food web models have ignored Greenland sharks despite the fact 

that, as the largest ectothermic consumer in the Arctic, they may play a unique role as 
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regulators of lower trophic levels (Darnis et al. 2012; Hussey et al. 2014). Greenland 

sharks also make-up a large proportion of the bycatch in growing commercial fisheries 

for Greenland Halibut (Davis et al. 2013; DFO 2013). Understanding their role in arctic 

ecosystems is therefore essential to the proper management of fisheries and to 

maintaining a healthy population of sharks moving forward (Edwards et al. 2019). 

Predation rates by Greenland sharks can also be used to improve natural mortality 

estimates in stock assessment models for Greenland halibut, as models that incorporate 

predation mortality tend to be better predictors of the population dynamics of targeted 

fish (Tyrrell et al. 2011).  

3.4.3 Conclusion 

Overall, our assessment of the field metabolism and prey consumption rates of 

Greenland sharks inhabiting the Eastern Canadian Arctic has provided novel insight into 

the ecology of this species. Their predicted low metabolic demands in the wild suggest 

that individuals require very little food to sustain themselves, but population level 

estimates indicate that they could play a significant role as consumers in Arctic food 

webs. However, further research is needed into the population dynamics and diet of local 

populations of Greenland sharks before definitive conclusions can be drawn. These 

simple prey consumption estimates also fail to differentiate between active predation and 

scavenging, which could significantly affect how we perceive the ecological role of these 

sharks. Regardless, climate change is affecting both the physical environment and 

biological communities of the Arctic, emphasizing the importance of continued long-term 

monitoring of the behaviour and energetics of Greenland sharks.  
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TABLES AND FIGURES 

Table 3.1: Summarized FMR estimates for individual Greenland sharks (Somniosus 

microcephalus) equipped with accelerometers and temperature tags in Tremblay Sound 

and Scott Inlet, Nunavut, Canada (n=30). 

ID Location Sex FL TL Mass Year   
Mass adjusted FMR 

(mgO2h-1kg-0.84) 

Length 

(hours) 

TBF 

(Hz) 

Temp 

(°C) 

              Q10= 2.23 2.99 1.34       

1 Scott Inlet M 241 256 155 2015  21.34 19.74 24.57 22.3 0.13 0.9 

2 Scott Inlet F 278 300 253 2015  22.24 20.55 25.80 16.9 0.15 0.3 

3 Scott Inlet M 215 222 105 2015  20.74 19.13 23.99 38.2 0.12 0.9 

4 Scott Inlet F 310 330 367 2015  22.76 21.11 26.12 38.9 0.14 0.7 

5 Scott Inlet M 280 300 259 2015  21.97 20.33 25.30 101 0.14 0.8 

6 Scott Inlet M 294 312 305 2016  23.67 22.07 26.95 106 0.16 0.8 

7 Scott Inlet M 269 286 226 2016  23.12 21.50 26.41 106 0.16 0.8 

8 Scott Inlet M 153 163 33.1 2016  23.09 21.55 26.19 44.6 0.21 1.1 

9 Scott Inlet M 210 223 96.8 2016  23.37 21.79 26.56 23.7 0.19 1.0 

10 Tremblay F 273 292 238 2017  20.66 18.60 25.23 45.9 0.16 -1.3 

11 Tremblay M 284 313 272 2017  21.32 19.32 25.68 68.0 0.16 -0.9 

12 Tremblay M 277 290 250 2017  20.62 18.54 25.20 70.6 0.16 -1.3 

13 Tremblay M 269 286 226 2017  19.60 17.57 24.06 85.9 0.13 -1.1 

14 Tremblay M 295 320 310 2017  19.89 17.95 24.05 86.1 0.12 -0.6 

15 Tremblay F 251 265 179 2017  21.73 19.78 25.94 62.9 0.17 -0.7 

16 Tremblay M 260 276 201 2018  21.25 19.39 25.21 28.3 0.15 -0.2 

17 Tremblay M 257 279 194 2018  20.77 18.68 25.43 32.5 0.17 -1.5 

18 Tremblay F 294 320 307 2018  16.93 14.87 21.45 31.7 0.08 -1.2 

19 Tremblay F 231 238 134 2018  20.32 18.30 24.72 57.3 0.16 -0.9 

20a Tremblay M 279 288 256 2018  22.72 21.01 26.26 83.3 0.16 0.5 
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21 Tremblay M 247 257 169 2018  22.11 20.17 26.28 61.1 0.18 -0.6 

22 Tremblay F 305 322 348 2019  21.58 19.67 25.67 42.4 0.15 -0.4 

23 Tremblay M 285 305 276 2019  20.84 18.93 24.94 41.7 0.14 -0.4 

24 Tremblay F 280 305 259 2019  21.05 19.21 24.95 29.6 0.14 -0.2 

25 Tremblay M 246 270 167 2019  20.14 18.20 24.34 33.1 0.14 -0.6 

26 Tremblay M 271 285 232 2019  20.71 18.65 25.22 12.2 0.16 -1.2 

27a Tremblay F 229 248 130 2019  19.78 17.77 24.15 39.3 0.15 -0.9 

28 Tremblay M 261 281 204 2019  22.74 21.16 25.97 38.8 0.15 0.8 

29 Tremblay M 280 297 259 2019  21.76 19.87 25.79 37.3 0.16 -0.4 

30 Tremblay M 295 324 310 2019   31.36 31.21 32.20 14.6 0.24 3.0 

Mean - - 264 282 224 -   21.67 19.89 25.49 50.0 0.15 -0.1 

a Individual for which we used body temperature instead of ambient temperature in our FMR model   
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Table 3.2: Summarized FMR estimates for individual Greenland sharks (Somniosus 

microcephalus) tagged with long-term pop up archival satellite tags (PSATs - depth and 

temperature time series data) in Tremblay Sound and Scott Inlet, Nunavut, Canada (n=6). 

ID Sex TL FL Mass Year Days   
Mass adjusted FMR 

(mgO2h-1kg-0.84) 

Temp 

(°C) 

              Q10= 2.23 1.34 2.99   

31 F 186 174 51.4 2013 366 

 

24.92 25.99 24.42 3.4 

32 F 150 141 24.7 2013 366 

 

25.84 25.98 25.80 4.5 

33 M 146 137 22.5 2013 364 

 

25.49 25.79 25.36 4.3 

34 M 234 219 113 2014 366 

 

25.48 26.70 24.89 3.2 

35 F 193 181 58.4 2014 364 

 

24.99 26.10 24.45 3.4 

36 M 300 281 264 2015 355   26.12 27.57 25.36 3.1 

Mean - 202 189 88.9 - 364   25.48 26.35 25.05 3.6 
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Table 3.3: Population level prey consumption estimates for Greenland sharks in two 

coastal fjord systems (Tremblay Sound and Scott Inlet, Nunavut), and across all of Baffin 

Bay, Nunavut. Consumption rates are presented as the mass of prey consumed daily by 

the entire population of Greenland sharks using the minimum population estimate (left) 

and the maximum (right). Additionally, estimates are provided using the minimum (top) 

and maximum (bottom) pDiet values derived from published stomach content studies on 

Greenland sharks. 

aGreenland halibut are not present in Tremblay Sound, so consumption estimates for this prey 

species were excluded. 

 

Location 
Area 

(km2) 
Population 

Greenland Halibut   Ringed Seal   Narwhal 

pDiet 

(%) 

Mass consumed 

(kg/day) 
  

pDiet 

(%F) 

Mass consumed 

(kg/day) 
  

pDiet 

(%) 

Mass consumed 

(kg/day) 

Tremblay 

Sounda 
517 207-8,014 - - -  7.0 0.88 34.01   0.02 0.36 13.76 

   - - -  33.3 4.17 161.78  - - - 

Scott 

Inlet 
890 356-13,795 52.9 30.85 1195.52  7.0 1.51 58.54  0.02 0.61 23.68 

   72.2 42.11 1631.70  33.3 7.19 278.49  - - - 

Baffin 

Bay 
689000 

275,600-

10,679,500 
52.9 28083.84 1088248.92  7.0 1375.20 53289.13  0.02 556.37 21559.26 

      72.2 38329.93 1485284.92   33.3 6542.04 253504.01   - - - 



 

88 
 

 

Figure 3.1: Photo depicting the placement of a biologger package on the superior dorsal 

region of a shark.  
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Figure 3.2: Comparison of mass-adjusted FMR for individual Greenland sharks tagged 

with short-term biologger packages in Scott Inlet (n=9) and Tremblay Sound (n=21), 

Nunavut, as well as sharks tagged in Scott Inlet with long-term pop up archival satellite 

tags (PSATs i.e. 1-year, n=6). Only sharks tagged with long-term satellite tags had FMRs 

that were significantly different from the other cohorts (p<0.05).

A A B 
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Figure 3.3: The above plots depict instantaneous FMR estimates for the two individual 

sharks whose body temperatures were recorded alongside triaxial acceleration by 

biologger packages. FMR traces are presented below the traces for acceleration derived 

tailbeat frequency (TBF) and body temperature. 

  

Shark ID = 20 

Shark ID = 27 
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Figure 3.4: The top panel depicts ambient temperature recorded by individual sharks 

(n=6) equipped with pop up archival satellite tags (PSATs) for a year. The lower panel is 

a map showing the tagging location (black arrow) and pop-off locations of all six 

individuals. Locations were not transmitted by the tags during the course of each 

deployment, so only initial (tagging) and final (tag pop-off) locations are known. 
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Figure 3.5: Vertical velocity against ambient temperature for the individual sharks (n=6) 

equipped with pop-up archival satellite tags (PSATs) in Scott Inlet, Nunavut, for one year 

deployments. 
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SUPPLEMENTARY INFORMATION 

SI Table 3.1: Proportional contributions of narwhal, ringed seal and Greenland halibut to 

the diet of Greenland sharks sampled in previous stomach content studies in Cumberland 

Sound, Nunavut, Canada. The caloric densities used to estimate prey consumption rates 

for each prey species are also provided. 

 

  

Species 
Common 

name 

pDiet (%F)   Caloric Density 

McMeans et 

al. 2015 

McMeans et 

al. 2012 

Fisk et 

al. 2002 
  kcal/g Source 

Reinhardtius 

hippoglossoides 

Greenland 

Halibut 
52.9 72.2 71  1.31 

Lawson et al. 

1998 

Pusa hispida Ringed seal 29.4 33.3 7  3.54 
Stirling and 

McEwan 1975 

Monodon 

monoceros 
Narwhal 2 - -  2.5 

Lefort et al. 

2020 
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CHAPTER 4 

General Discussion 

4.1 Summary 

As the largest ectotherm in the Arctic and the oldest living vertebrate species on 

the planet, the Greenland shark is undeniably unique. However, many aspects of its 

behaviour, physiology and ecological role in Arctic ecosystems remain shrouded in 

mystery. Because metabolism relates to virtually all aspects of an organism’s biology 

(either directly or indirectly; Brown et al. 2004), this thesis’ exploration of metabolic rate 

in Greenland sharks lays the groundwork for testing a broad range of ecological 

hypotheses through the lens of energetics.  

 Determining the basic maintenance costs needed for an individual to remain alive 

is at the core of most animal energetics studies (Chabot et al. 2016). Referred to as 

standard metabolic rate in ectotherms, it forms the basis for the comparison of other 

common measures of metabolism; all of which, by definition, are themselves inclusive of 

SMR (e.g. FMR, maximum metabolic rate, routine metabolic rate, etc.; Chung et al. 

2019). In chapter 2, we estimated the metabolic rates of resting Greenland sharks for the 

first time using custom-built field respirometers. We also estimated active metabolic rate 

in one individual while it swam at a known tailbeat frequency. This allowed us to 

construct a rudimentary activity-cost equation which was ultimately used to estimate 

activity’s contribution to the field metabolic rates of tagged individuals in Chapter 3. 

By using relatively large-bodied individuals in our respirometry trials, we more 

than doubled the previous size record for respirometry in sharks (Payne et al. 2015). In 

doing so, we were able to combine our resting metabolic rate data for Greenland sharks 
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with those published for other species in order to derive an interspecific scaling 

relationship for mass and temperature across sharks. The resulting coefficients describing 

the links between mass and temperature were found to be quite similar to those derived 

for teleost fish. Additionally, we found that the Greenland sharks studied in our 

respirometers did not have mass and temperature adjusted metabolic rates that were 

unique when compared to other shark species, though our resting estimates (recorded 

under difficult field conditions) could be overestimating SMR for the species. Finally, 

since the resting metabolic rates of Greenland sharks measured at ecologically relevant 

temperatures were not higher than expected, we suggested that metabolic cold adaptation 

has not led to higher metabolic rates in this species. 

In Chapter 3, we modeled the FMR of Greenland sharks equipped with biologger 

packages recording activity and temperature. Our models used metabolic scaling 

relationships to transform our respirometer-derived resting metabolic rates into FMR. 

Because of their frigid habitats and slow cruising speeds, Greenland sharks were 

predicted to have particularly low FMRs. Due to seasonal differences in the habitat use of 

individuals, short-term estimates derived for sharks inhabiting the coastal inlets of Baffin 

Island differed from our long-term (1-year) estimates encompassing both their time in the 

inlets and their time in the greater Baffin Bay area. These FMR estimates were then 

combined with literature data describing the diet and abundance of Greenland sharks in 

the Arctic in order to estimate their prey consumption rates of culturally and 

commercially relevant species. Given their limited energy requirements, individual 

Greenland sharks were predicted to consume very little prey. However, local populations 

of sharks could represent an important consumer link in Arctic marine ecosystems, but 
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further research into the population dynamics and regional diets of Greenland sharks is 

needed to increase the accuracy of our estimates and to reduce the uncertainty 

surrounding them. 

4.2 Implications and Future Directions 

The economy of life functions through the exchange of energy within an 

ecosystem. Energy – usually from the sun – is captured, transformed, expended and 

traded up the food chain, allowing all organisms from plankton to whales to survive and 

interact on our planet. Understanding the flow of energy through ecosystems allows us to 

better grasp the dynamics of food webs and ultimately predict how they may be affected 

by environmental or community level changes (O’Connor et al. 2009; Ullah et al. 2018). 

However, in order to understand energy flow at the food web level, one must first 

understand it at the species level (O’Connor 2009). While this thesis does not provide a 

complete assessment of the energetics of Greenland sharks, it does provide key estimates 

of both resting and field metabolic rate for the species, allowing for an initial description 

of its consumer role in several regions of the Canadian Arctic.  

As climate change warms the Arctic and the loss of sea ice continues to allow for 

the expansion of commercial fisheries (Christiansen et al. 2014), bridging the knowledge 

gaps in our understanding of Greenland shark metabolic ecology is an important way by 

which we can inform the conservation and management of Northern marine ecosystems 

(Edwards et al. 2019). With this goal in mind, research efforts should be focused on 

improving and refining the metabolic rate estimates presented here, deriving additional 

measures of metabolism, and finally linking these to other aspects of Greenland shark 



 

98 
 

biology in order to predict how climate change and commercial fisheries may impact 

Greenland shark populations moving forward.  

The field respirometry protocols employed to estimate metabolic rate in this thesis 

did not allow for the estimation of a true SMR for Greenland sharks. Instead, the short 

acclimation periods (~2.5 hours) and lack of pre-trial fasting meant that we could only 

estimate resting routine metabolic rate as a proxy for SMR. While it may not be feasible 

to fast a Greenland shark under field conditions for the entirety of its gastric evacuation 

time (i.e. assuring it is in a post-absorptive state; Chabot et al. 2016), future studies could 

accelerate the process through stomach flushing prior to conducting respirometry trials. 

This would shorten the overall duration of captivity and lower the probability that SMR 

estimates include digestive costs (Sandblom et al. 2012). Assuming good weather, it may 

also be possible to reduce the energetic cost of stress during trials by allowing sharks to 

acclimate to the respirometer for longer periods (e.g. 24 hours) prior to estimating SMR 

(Chabot et al. 2016). Measuring oxygen consumption throughout the acclimation period 

could also provide insight into the stress metabolism of the species (Schreck et al. 2016). 

Finally, while the estimates presented here for Greenland sharks cover a much larger 

range of body masses than any other previous study on fish, the small sample size and 

lack of temperature variation during respirometry trials prevented the derivation of 

intraspecific scaling relationships for mass and temperature for this species. As such, 

acquiring additional data points would greatly benefit our understanding of the dynamics 

of metabolism in Greenland sharks. 

In addition to deriving intraspecific relationships for mass and temperature’s 

effect on metabolic rate in Greenland sharks, future studies should focus on improving 
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the relationship between activity and metabolic rate, as this would improve the accuracy 

of the FMR estimates (and prey consumption rates) presented in Chapter 3. Ideally, 

individual sharks would undergo respirometry trials in which they swam for prolonged 

periods at various swim speeds, allowing for the derivation of a relationship between 

activity level and metabolic rate. While using a circular static respirometer would provide 

a more realistic activity-cost relationship than a flume-style respirometer where 

swimming is forced (Lear et al. 2018), recording oxygen consumption over a range of 

volitional swim speeds is not always possible since many species have a 

preferred/optimal cruising speed and only deviate from it in short bursts (Whitney et al. 

2016; Lear et al. 2018). One possible solution would be to equip the sharks with 

accelerometers during respirometry trials and then correlate dynamic body acceleration 

with oxygen consumption (Lear et al. 2017). This calibration could then be used when 

estimating FMR in tagged sharks in the wild.  

SMR and FMR are not the only ecologically valuable measures of metabolism. 

Aerobic scope (i.e. the difference between maximum and minimum metabolic rate) is 

also a useful metric for predicting the resilience of species faced with different climate 

change scenarios (Clark et al. 2013). Measuring aerobic scope at various temperatures 

can help identify under which conditions it is optimized, and ultimately, the likelihood 

that a species will thrive or not in a changing environment (Clark et al. 2013). For 

example, the temperature at which aerobic scope is optimized was proposed as a 

physiological explanation for why two cooccurring species of salmon in British 

Columbia were being differentially affected by climate change, and why one seemed to 

have a competitive advantage over the other (Clark et al. 2011). As climate change is 
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expected to disproportionately increase temperatures in the Arctic relative to the global 

average (Johannessen et al. 2004), estimating aerobic scope for polar species such as 

Greenland sharks could provide valuable insight regarding their ability to cope with these 

changes while strengthening predictions about shifting food webs.  

While metabolism can be very informative on its own, it is also useful when 

assessed in the context of other important biological processes such as reproduction. 

Relatives of the Greenland shark invest huge amounts of energy into reproduction 

(Nielsen et al. 2020), with gravid females often carrying ova weighing 7.5-22% of their 

total body mass (Yano 1995; Clarke et al. 2001). Sharks must therefore divest a large 

proportion of energy from their own metabolism towards the production of ova 

(Harshman and Zera 2007). However, reproduction can also lead to increases in energetic 

demand that are not directly related to ova production (Angilletta and Sears 2000). 

Therefore, assessing the metabolic rates of both gravid and non-gravid Greenland sharks 

would greatly improve our understanding of the energetics and consumer impact of these 

sharks in Arctic ecosystems. While previously unknown, recent research by Nielsen et al. 

determined the size at maturity of both male and female Greenland sharks (2020). Future 

studies could therefore measure the metabolic rates of both sexually mature and immature 

sharks, allowing for the estimation of reproductive costs in this species. 

4.3 Conclusion 

As a slow yet highly mobile species inhabiting one of the most rapidly changing 

ecosystems on the planet, Greenland sharks are increasingly the focus of research 

initiatives within the broad fields of ecology, physiology and conservation biology. While 

recent work on the species has shed light on several longstanding mysteries regarding 
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their biology (diet and trophic position [McMeans et al. 2013; Hussey et al. 2014], 

contaminant loads [Fisk et al. 2002], life history parameters [Nielsen et al. 2016; Nielsen 

et al. 2020], and movements [Edwards et al., in review]), a majority of questions remain 

unanswered. It is the author’s hope that the research presented in this thesis will provide a 

valuable basis for the continuing study of Greenland shark metabolism. 
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