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Abstract 
Oscillating jets have many practical applications in industry. The self-oscillating behavior of a jet 

can be observed when the jet emanates into a confined cavity. In this thesis, a step-by-step 

approach has been followed to investigate important aspects of self-oscillating turbulent jets. The 

first step focuses on evaluating the characteristics of self-oscillating square and round jets. The jet 

exits from a submerged round nozzle or a square nozzle with the same hydraulic diameter into a 

narrow rectangular cross-section cavity at a Reynolds number of 54,000 based on nozzle hydraulic 

diameter and average jet exit velocity. A numerical investigation of the three-dimensional self-

oscillatory fluid structures in the cavity is conducted by solving the unsteady Reynolds-Averaged 

Navier-Stokes (URANS) equations using a Reynolds stress turbulence model (RSM). Vortex 

identification using the λ2-criterion method is used to investigate the flow dynamics. The 

simulations show that the vortex rings initially have the nozzle shape near the nozzle exit and, for 

a square nozzle, axis-switching occurs at about 0.7 hydraulic diameters downstream. Furthermore, 

after impact on the walls, the vortex rings are converted into two tornado-like vortices. The decay 

rates of both types of self-oscillating jets initially show the same trend as free round and square 

jets but change significantly as the effects of oscillation and confinement begin to dominate. The 

results show that the spread and decay rates of the self-oscillating square jet are higher, while the 

self-oscillating round jet has higher turbulence intensities near the jet center. Moreover, the 

Reynolds stress profiles of both round and square self-oscillating jets are qualitatively similar and 

show two peaks on either side of the centerline, which convert to mild peaks at distances farther 

downstream. 

The second step focuses on the numerical study of self-oscillating twin jets emanating from round 

and square cross-section nozzles into a narrow rectangular cavity. The flow characteristics are 

evaluated at nozzle spacing-to-diameter ratios of 2, 3, 4 and 5 at a jet Reynolds number of 27,000. 

The effects of nozzle spacing on the frequency of oscillation, mean velocity and turbulence 

features are examined. The results indicate that increasing the spacing does not have much effect 

on the frequency of oscillations. For a spacing-to-diameter ratio up to four, the two jets merge in 

the downstream and oscillate as one. At the largest nozzle spacing, the two jets do not merge but 

oscillate separately across half of the cavity width. Furthermore, as the nozzle spacing is increased, 

the profiles of Reynolds shear stress demonstrates that the mixing increases in the inner shear layer 

region.   
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The last part of the thesis focuses on potential cooling applications of self-oscillating jets. The jet 

exits from a square cross-section nozzle at a Reynolds number of 54,000. The heated devices are 

attached externally on the front surface of the cavity. A three-dimensional numerical simulation of 

the flow is conducted by solving the URANS and energy equations with RSM to assess the thermal 

features of the flow field. The cooling performance of the self-oscillating jet is compared with the 

channel flow and the wall jet. The results show that the channel flow has the lowest heat transfer. 

The heat transfer of wall jets increases around the central region, while the heat transfer of self-

oscillating jets is higher farther from the central region. Self-oscillating jets can improve heat 

transfer over a larger area when the heated elements are in a horizontal arrangement, while the 

wall jet shows a higher performance for a vertical arrangement of elements. 
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Chapter 1.  Introduction 

1.1 Flow characteristics 
Turbulent jets have many applications in areas such as pumps, heat exchangers, combustion, fuel 

injection, flow control, drag reduction, mixing, steel casting and cooling systems. Jets can be 

categorized in several ways, such as free or confined jets. Confined jets can be further categorized 

according to the type of confinement. A brief overview of different jet types is provided in this 

section and simple schematics are shown in Fig. 1.1. 

        

(a) (b)  (c) (d) 

Fig. 1.1 Schematic of different types of jets: (a) free jet, (b) wall jet, (c) offset jet, (d) oscillating jet 

 
In a free jet, the jet flows into a large environment and the jet shear layers grow gradually as 

illustrated in Fig. 1.1(a). Shear layer growth is due to fluid entrainment and Kelvin-Helmholtz 

instabilities which creates vortex rings. The mean velocity remains constant up to the end of the 

free jet core (potential core) and the turbulence intensity is low. At maximum jet penetration, 

turbulence intensity increases and the jet centreline velocity decays. The jet maintains a fully 

developed behavior in the downstream1-3. There are some fundamental differences between free 

round and square jets. One of the most complex flow features of a square jet is axis-switching 

which is observed near the nozzle exit in non-circular jets. Vortex rings develop and rotate during 

the axis-switching process. Axis-switching tends to enhance the entrainment which increases shear 

layer expansion and spread rates1. Unlike free jets which develop in an infinite environment, 

confined jets flow into a restricted region in which the wall(s) affect the jet characteristics (see Fig. 

1.1(b,c,d)). Compared to the free jet, less fluid is entrained into the confined jet due to the 

restrictions of the confinement wall(s). Also, there are recirculation regions that occur near the 

    wall 

 
  walls 

    wall 
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confinement wall(s)4. A wall jet is confined by a wall on one side. The offset jet is a type of 

confined jet in which the nozzle is located off the wall and the jet emerges into the surrounding 

fluid in the direction parallel to the wall. The Coanda effect causes the offset jet to deflect towards 

the wall and attach to it. In the self-oscillating jet, the jet oscillates without any external devices. 

This type is attractive because it does not have any control port or feedback loop and only relies 

on the Coanda effect. The mechanism details of self-sustaining oscillating jets are investigated in 

Chapter 3. One of important applications of self-oscillating jets is in cooling systems for hot 

devices such as electronic chips. The high temperature of hot devices decreases the devices’ 

performance, and the generated heat must be convected from the hot devices to the environment. 

For example, PC processors produce a huge amount of heat and heat removal is very important for 

these electronic devices to extend their life and improve their efficiency. 

1.2 Objectives and outline of the dissertation 
The present thesis is divided to the following chapters. 

Chapter 2 contains a general review of the literature relevant to the problems which are addressed 

in the thesis. A more detailed discussion of the literature is included in subsequent chapters, which 

comprises published or submitted journal papers. Chapter 2 also deals with the numerical 

simulation of oscillating jets. The geometry set up for round and square single and twin self-

oscillating jets are explained in detail. Also, jet simulations, boundary conditions and visual 

methods for identification of vortex structures are explained.  

Chapter 3 investigates the characteristics of self-oscillating square and round jets in a confinement 

cavity. The literature review shows the lack of a comprehensive study of the oscillatory field which 

can potentially contribute to mixing and entrainment. The motivation of this section is to focus on 

the physics of the flow and thereby provide a better understanding as to how the oscillatory flow 

field may be used to control heat transfer and surface temperature uniformity in future studies. To 

this end, the self-oscillation mechanism of confined jets is studied in detail. Furthermore, the 

effects of oscillation on the behavior of flow properties such as the mean velocity, turbulent 

intensities and Reynolds shear stresses are compared with corresponding quantities in free jets. 

Chapter 4 investigates twin self-oscillating jets in a confined cavity, where the oscillations are due 

to the Coanda effect mechanism. This study focuses on the self-oscillatory flow field 

characteristics of twin oscillating jets, and the effects of nozzle spacing on the frequency and jet 
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properties. Like the single jet study in Chapter 3, the motivation of this study is to better understand 

how the flow field may be used to control heat transfer. Understanding of flow characteristics of 

twin jets provides more information to identify potential regions with higher heat transfer rates. 

To this end, twin round and square oscillating jets at various nozzle spacing are compared in terms 

of mean velocity, turbulent intensities and Reynolds shear stresses.   

Chapter 5 investigates cooling of hot devices using self-oscillating jets. An array of impingement 

jets may provide higher heat transfer compared to jets aligned parallel to a hot surface. However, 

in applications with geometry limitations, impingement jets may not be a viable solution. In this 

case, since one oscillation of the self-oscillating jet covers a wider area on the hot surface, a single 

self-oscillating jet may be a practical replacement alternative. In Chapter 5, the cooling 

performance in terms of temperature and Nusselt number are compared for self-oscillating jets, 

wall jets and channel flow. 

Chapter 6 summarizes the results and provide recommendations for future studies. 

 

References 
1. A. Ghasemi, “Near-field vortex dynamics of flows emerging from a rectangular duct,” PhD 

Thesis, University of Waterloo (2019). 

2. A.J. Yule, “Large scale structure in the mixing layer of a round jet,” J. Fluid Mech. 89, 

413-432 (1978). 

3. M. Shademan, “CFD simulation of impinging jet flows and boiling heat transfer,” PhD 

Thesis, University of Windsor (2015). 

4. J. Zhu and T.-H. Shih, “A numerical study of confined turbulent jets,” NASA Technical 

Memorandum, New Orleans, Louisiana, November (1993). 
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Chapter 2. Brief literature review and numerical modeling 

2.1 Literature review 
Since this dissertation is organized as a collection of research papers in Chapters 3, 4 and 5, 

literature that is specifically relevant to those chapters is reviewed therein.  Some related literature 

on free and confined jets is discussed in this chapter. 

2.1.1 Round and square free jets  
The simple geometry of an axisymmetric round jet has made it very attractive for a wide variety 

of industrial applications, resulting in a large body of literature on the round jet. Comprehensive 

jet studies were conducted by Wygnanski and Fiedler1, List2 and Hussein et al.3 Wygnanski and 

Fiedler1 used a hot wire to measure mean velocity and turbulence intensity  in an axisymmetric 

turbulent jet. They found that self-similarity of the longitudinal, radial and tangential fluctuations 

of a round jet occur at 40, 70 and 70 diameters downstream of the nozzle, respectively. They 

showed that the Taylor’s hypothesis is not appropriate, while convection velocity is an appropriate 

scale for temporal to spatial quantities transformation. Furthermore, using energy balance they 

demonstrated that the flow becomes self-preserving at almost three times the distance calculated 

by Sami4, which suggests that the flow in Sami’s study had not reached the self-preserving state. 

List2 reviewed previous studies to understand the mechanism of jets and plumes, especially 

interaction with environmental factors such as uniform motion of ambient fluid. Hussein et al.3 

found that the mean velocity profiles, turbulence intensities and shear stress at different axial 

locations collapse to single profiles when they are normalized by appropriate length and velocity 

scales. They showed that the far-field centerline velocity decay rate does not approach a constant 

value as observed in the far-field data of Wygnanski and Fiedler1, but attributed the difference to 

the experimental facilities and not the method of analysis. Furthermore, to explain the nature of 

turbulence in jets, such as randomness of turbulence, Hussein et al.3 used large scale structures to 

analyze the flow. These large scale structures, referred to as coherent structures, play an important 

role in heat and mass transfer and mixing processes. Dimotakis et al.5 used flow visualization to 

study the dynamic of turbulent jets. They investigated shear layer roll-up which creates vortex ring 

structures and explained the vortex ring growth. They demonstrated that the jets are dominated by 

helical or axisymmetric structures in the transition region and the far-field, and that the entrainment 

and mixing of jets are related to these kinematic structures.  
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Although based on flow quantitative data from Laser Doppler Anemometry (LDA) and hotwire 

measurements, the visualization of coherent structures by Hussein et al.3 and others were largely 

qualitative in nature. Higher resolution is obtained by Particle Image Velocimetry (PIV) images 

which provide an opportunity for quantitative analysis of jet dynamics. Adrian et al.6 discussed the 

different decomposition methods, such as Reynolds, Galilean and Large-Eddy Simulation (LES), 

to identify vortical structures and Agrawal and Prasad7 used high-pass filtering for vortex 

structures. Their results showed that for statistical analysis the Reynolds decomposition is better 

than Galilean and LES and that LES decomposition is the best method for small scale vortices 

visualization. Shinneeb et al.8 investigated the near-exit region of a free jet using proper orthogonal 

decomposition (POD) and showed the formation of vortices with alternating direction of rotation 

near the nozzle exit. The results showed that the coherent structures originate in the near-field 

region of the jet shear layer and control the jet growth rate. Also, they investigated coherent 

structures in the far-field of a free round jet and showed that the size of vortices and the circulation 

increases with distance downstream. 

Non-circular jets have a lot of advantages such as mixing enhancement, heat and mass transfer 

improvement. The near-field structures are complicated in three-dimensional developing jets due 

to the axis-switching process, which is the result of rotation of the vortex ring. Gutmark and 

Grinstein9 studied the axis-switching phenomenon and non-circular jet vortex shedding. Their 

results illustrated different flow dynamics of the jet for different nozzle shapes, which can be 

exploited to control the jet flow. They showed that axis-switching is influenced by the inlet flow 

conditions such as the momentum thickness, turbulence level and Reynolds number. They also 

demonstrated that, compared to a round jet, a non-circular jet has a larger spread rate due to higher 

entrainment which increases the mixing process. Quinn and Militzer10 investigated the near-field 

of a square jet and observed the off-center peak streamwise velocity due to axis-switching. 

Furthermore, they showed that the square jet spreads faster compared to the round jet in the near-

field with the same inlet conditions. Chua et al.11 investigated the effects on axis-switching of inlet 

boundary conditions, turbulence intensity and momentum thickness in the diagonal and spanwise 

directions. They illustrated that a high ratio of momentum thickness along the diagonal to spanwise 

direction has an adverse effect on the axis-switching process. However, a decrease in turbulence 

intensity and an increase in the ratio of nozzle hydraulic diameter to spanwise momentum 

thickness tends to produce axis-switching. Yu et al.12 investigated starting jets using Planar Laser-
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Induced Fluorescence (PLIF) and PIV. They observed the axis-switching and leapfrog processes 

at all Reynolds numbers and a leading vortex pinch-off at higher Reynolds numbers. During the 

leapfrog process, the radius of the front rings increases and the rear rings with higher velocity pass 

the front rings. Ghasemi et al.13 studied the flow, turbulence characteristics and vorticity 

distribution in the developing zone of a square jet using PIV. They demonstrated that the jet decay 

rate and spread rate of the jet are almost independent of the initial conditions such as nozzle 

geometry, turbulence intensity levels and momentum thickness at the nozzle. The spread rate of 

the square jet is about 5% lower than the round jet, and a square jet produces a thicker shear layer 

compared to the round jet. Sforza et al.14 studied turbulence properties of nine air jets with different 

nozzle shapes using PIV. Their results indicate that non-circular jets have a shorter core length 

than circular jets and a higher entrainment rate in the near-field. In the far-field, the asymptotic 

decay rate of the centreline velocity is not significantly affected by the different nozzle shapes. 

The influence of inlet flow conditions on the flow characteristics of round and square jets has been 

a topic of considerable interest. Xu et al.15 studied the effect of different inlet conditions on a 

turbulent round free jet for a smooth contraction nozzle and for a long pipe nozzle. They showed 

that velocity decay rates of pipe jets in the far-field are smaller than for contraction jets and that 

pipe jets develop into a self-preservation state more rapidly than contraction jets. Also, the results 

showed that the distance between the ring vortices in the contraction jet is larger than for the pipe 

jet in the near-field. In the near-field, the pipe jet has a thicker shear layer and higher turbulence 

intensity compared to the contraction jet. Mi et al.16 also studied the effect of inlet flow conditions 

on a turbulent free jet issuing from smooth contraction and long pipe nozzles. They observed that 

the velocity decay rate and spread rate at the centerline of the smooth contraction nozzle in both 

the near-field and far-field is larger than for the long pipe nozzle. Also, the asymptotic spreading 

rate of the contraction nozzle is larger than that of the pipe jet. Ferdman et al.17 experimentally 

studied the effects of inlet conditions on the round jet for a smooth contraction nozzle, a pipe 

nozzle and uniform flow. Uniform flow produced larger initial growth rate of turbulent intensity 

and velocity decay rate of the far-field.  

2.1.2 Confined jets 
Hussein et al.3 studied the reduction of entrainment due to confinement. They used flying and 

stationary hot-wire anemometer methods and LDA to study confined jet flow at a distance of 50 – 
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122 diameters downstream of the nozzle. They showed that the increase in confinement ratio 

hinders the turbulent flow by increasing the turbulence dissipation, decreasing the turbulence 

kinetic energy due to lower values of the eddy diffusivity, and causing a reduction in the 

entrainment of the surrounding fluid compared to a free jet. They proposed a model to determine 

the dimensions at which the confined jet acts like a free jet. 

Chua and Lua18 studied characteristics of a confined air jet from a circular nozzle and a rectangular 

nozzle with an aspect ratio of 6. They showed that the decay rate of the confined jet is almost three 

times less than that of free square and circular jets. Also, the spread rate of the confined jet is quite 

similar to that of the plane free jet but higher than the circular and square free jets. Kandakure et 

al.19 studied the effects of confinement of a jet on hydrodynamic characteristics such as 

entrainment rate, turbulent kinetic energy, turbulent viscosity, pressure profile, jet spread rate, the 

effect of enclosure diameter and effect of the presence of the draft tube. They showed that a 

decrease in the enclosure size causes an increase in the turbulent dissipation and reductions in 

turbulent viscosity values, entrainment rates and jet spread angle. Their study indicated that the jet 

decays faster when the size of the surrounding enclosure is smaller and, for a smaller draft tube, 

lower entrainment rates occur. 

2.2 Numerical modeling 
In this study, a finite volume formulation is used to solve the unsteady incompressible Navier-

Stokes equations. Unsteady Reynolds-Averaged Navier-Stokes (URANS) simulations have been 

carried out to predict the turbulent flow of self-oscillating jets issuing from round and square 

nozzles. In this section, the turbulence model and the visualization method used to analyze the 

flow are discussed in detail. The STAR-CCM+ software is used to conduct the computational fluid 

dynamics simulations. 

2.2.1 Geometry set up and flow conditions 
This thesis investigates the flow characteristics of single and twin water jets issuing from 

submerged round and square nozzles into a rectangular confinement cavity with dimensions of 

250 mm x 585 mm x 40 mm, as illustrated in Figs. 2.1 and 2.2. The submerged entry nozzle 

hydraulic diameter (d) and length are 14 mm and 95 mm, respectively, and the nozzles have a wall 

thickness of 3 mm. The fluid is assumed to be incompressible with constant properties at ambient 

temperature and the Reynolds number of the single and twin oscillating jets are 54000 and 27000, 
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respectively. The dimensions of the cavity conform to the requirements for stable oscillations20: 

that the nozzle diameter to cavity width ratio must be in the range of 0.05-0.3 and the cavity 

thickness to width ratio must be in the range of 0.1-0.5. 

             
(a) 

       
(b) 

Fig. 2.1 Cavity configuration (not to scale): (a) single round jet, (b) single square jet 
 

 

 

     
                          (a) 

 
                          (b) 

Fig. 2.2 Cavity configuration (not to scale): (a) twin round jets, (b) twin square jets 
 

 
 

2.2.2 Jet simulation    
The computational domain (i.e., confinement cavity) is discretized using a hexahedral mesh with 

6 million cells, as illustrated in Figs. 2.3 and 2.4. This cell size was determined to be adequate after 

performing simulations on several mesh sizes. For this mesh, the dimensionless distance of the 

first cell from the walls (Y+ = Yuτ/ν) is less than one, where ν is kinematic viscosity and uτ is 
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friction velocity defined as uτ = (τw/ρ)0.5, where τw is wall shear stress. Details regarding mesh 

independence are presented in Chapter 3. Figures 2.3 and 2.4 show the mesh generated for the 

single and twin jets simulations, respectively. 

 

 

                                                         

Fig. 2.3 Cross-sections of the mesh generated in a single square jet domain: (a) XZ plane, (b) XY plane 
 

 

 

                                   (a)           (b)  
Fig. 2.4 Cross-sections of the mesh generated in the twin square jets domain: (a) XZ plane, (b) XY 

plane 
 

The governing Navier-Stokes equations are discretized by the finite volume method and solved 

using the commercial software STAR-CCM+ with a second-order upwind scheme for convection 

terms and second-order time implicit scheme for time discretization. The time step is set at 0.01 

ms which ensures that the Courant number is less than one. The results are shown to be time step 

independent in Chapter 3. The SIMPLE algorithm is used for pressure-velocity coupling. The 

Sidewalls 

Nozzle exits 

Confinement 
walls 

Nozzle exit

Sidewalls Confinement 
walls 
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Reynolds-Averaged Navier-Stokes equations in tensorial notation for unsteady incompressible 

flow are21 

∂U

∂X
= 0 (1) 

                                                                                                                                                            

ρ
∂U

∂t
+ U

 ∂U

∂X
= −

∂P

∂X
+

∂

∂X
μ

∂U

∂X
− ρu′ u′ (2) 

where Ui and u  are the mean and fluctuating velocity components, respectively, P is the pressure, 

ρ is the density, μ is the dynamic viscosity and the overbar denotes time-averaged values. Using 

the Boussinesq assumption, the components of the Reynolds stress tensor are given by21 

ρu′ u′ =
2

3
ρkδ − μ

∂U

∂X
+

∂U

∂X
(3) 

where k is the turbulent kinetic energy, 𝜇t is referred to as turbulent viscosity and 𝛿ij is the 

Kronecker delta. In this study, the unsteady Elliptic Blending Reynolds Stress Model (EBRSM)21, 

which consists of transport equations for each of the stress tensor components, is used to model 

turbulence.  

The Reynolds stress equations are 

 

∂u′ u′

∂t
+ U

∂u′ u′

∂X
= P − ϵ + π −

∂u′ u′ u′

∂X
+

μ

ρ

∂ u′ u′

∂X
 

where P , ϵ  and π  are the production, dissipation and velocity–pressure gradient tensors, 

respectively.  

The production tensor  

P =  −(u′ u′  
∂U

∂X
+  u′ u′  

∂U

∂X
 ) (5) 

accounts for the kinetic energy transfer of the mean flow to the fluctuating velocity field. The 

production sustains the turbulence of the flow through the energy transfer of large scale mean 

motions to the small scale fluctuating motions22. 

Energy is transferred from larger to smaller eddies. In the smallest eddies, turbulent energy can be 

converted to internal energy due to viscous dissipation. In other words, the smallest eddies convert 
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kinetic energy to thermal energy at the molecular level. The mean rate of work which is done by 

the fluctuating strain rate against fluctuating viscous stresses is given by the dissipation tensor23 

ϵ = 2
μ

ρ
 

∂u

∂X
 
∂u

∂X
(6) 

The pressure-strain correlation 

π = −
1

ρ
 u  

∂P

∂X
+ u  

∂P

∂X
(7) 

redistributes energy among the Reynolds stresses components.  

The dissipation rate of ϵ can be computed from 

                            (ρϵu  ) =  [(μ +   )
 

 
 ] C   P   - C  ρ                   (8) 

where σ = 1 ,  C  =  1.44 and C   = 1.92. The turbulent kinetic energy is computed from the 

Reynolds stress tensor 

                                                              k= ½u′ u′                                                                       (9) 

The turbulent viscosity is defined by 

                                                          μ  = ρ C                                                                  (10) 

where C  = 0.09. 

The production, dissipation and velocity pressure-gradient balance each other. The terms (   ) 

and ( ) are the turbulent transport and viscous diffusion tensors. The diffusion of turbulent 

energy is responsible for diffusing the mean flow momentum. 

The energy conservation equation is expressed as 

ρ
∂T

∂t
+ U

 ∂T

∂X
=

∂

∂X

μ

Pr

∂T

∂X
− ρu′iθ (11) 

where T is the temperature, θ is the temperature fluctuation and Pr is the Prandtl number. Based 

on the Boussinesq assumption, the temperature fluctuation is defined as  
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ρu′iθ =  σ  
∂T

∂X
(12) 

where σ  is a turbulent Prandtl number, defined by 

σ =  
μ

α
(13) 

 where the α  is turbulent thermal diffusivity. 

2.2.3 Boundary conditions 
Steady RANS RSM with a uniform inlet flow and a pressure outlet condition at the exit is applied 

in STAR-CCM+ to provide fully developed flow in the duct. The round and square ducts exit 

conditions are mapped as an inlet condition for the simulation in the confinement cavity. The inlet 

boundary conditions are applied inside the nozzle to ensure an accurate representation of the flow 

at the exit plane. All walls of the confinement cavity are treated as no-slip boundaries and an 

outflow condition is applied at the outlet of the computational domain.  

2.2.4 Visualization methods 
Different vortex identification methods such as vorticity threshold, pressure threshold and velocity 

gradient-based methods such as Q-criterion, Δ-criteria and λ2-criterion have been developed to 

identify vortex structures in a flow field. Each method comes with its own strengths and 

weaknesses, which are highlighted below. The method of choice for the current research is the λ2-

criterion for reasons that will become apparent. 

The simplicity of the vorticity threshold method, which identifies vortex structures as regions 

where the vorticity is larger than a prescribed threshold value, makes it attractive. However, the 

threshold value is arbitrary, and this method cannot distinguish between vortical regions with 

swirling flow which is a vortex, and shear layer vorticity which is not a vortex. Furthermore, the 

maximum vorticity does not always occur at the center of the vortex area24. In the pressure 

threshold method, the vortex is defined where the static pressure is lower than a prescribed pressure 

threshold. Although this method is useful for vortex identification in turbulent boundary layer 

flow, the threshold level is arbitrary and the pressure decays with a lower rate than vorticity25. 

Also, all vortices do not show a low-pressure core, as in the case of an anticyclone weather system 

which has high pressure at the core24. 
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The Q-criterion method identifies regions where the second invariant of the velocity gradient 

tensor, Q, is positive. This second invariant is a measure of the excess rate of rotation tensor over 

the strain tensor. If the threshold of Q is set too low, large regions can be identified as vortices 

although they are not physically significant26. The Δ-criterion method determines a vortex as a 

region where the velocity gradient tensor has complex eigenvalues. This criterion considers the 

complex eigenvalues to show the region where the streamlines are closed or form a spiral 

pattern24,27. 

The λ2-criterion is especially attractive since it is derived from the requirement that the pressure 

minimum occurs at the vortex core. Jeong and Hussain28 observed that there is not a consistent 

relation between minimum pressure and vortex core due to two effects. First, unsteady straining 

creates a vortical structure without any observed pressure minimum and second, viscous effects 

eliminate minimum pressure in the vortical flow. In the λ2-criterion method, the effects of 

unsteadiness and viscosity are ignored. To formulate the problem in terms of a rate of strain tensor, 

the first step is to take the gradient of the incompressible Navier-Stokes equations. The second 

step is to decompose the resulting equation into symmetric and antisymmetric parts. The last step 

is to subtract off the vorticity transport equation, yielding the equation 

D𝐒

Dt
 −  

μ

 ρ
∇ 𝐒 + 𝐒  +  𝛀  =  − 

1

ρ
 ∇ (∇ P) (14) 

where S is the shear strain rate tensor, 𝛀 is the rotation rate tensor. The first and second terms 

represent the rate of irrotational straining and viscous effects, respectively. Ignoring unsteady and 

viscous effects reduces the Navier-Stokes equations to 

𝐒 + 𝛀  ≈ −
1

ρ
∇(∇P) (15) 

Jeong and Hussain27 showed that the pressure Hessian matrix ∇(∇P) is symmetric, the eigenvalues 

are real and the eigenvectors are orthogonal. When the pressure matrix has two positive 

eigenvalues a minimum local pressure is observed. These two positive eigenvalues of ∇(∇P) 

correspond to two negative eigenvalues of 𝐒 + 𝛀  . Therefore, 𝐒 + 𝛀  has three real eigenvalues 

λ1 ≥ λ2 ≥ λ3 where λ2 has a negative value which is used to identify minimum pressure at the vortex 

core28. Since the λ2-criterion considers pressure minima which is created due to the vertical motion, 

it is a good method to identify a vortex core. Therefore, the λ2-criterion was chosen for the 

visualization of three-dimensional structures in this work. 
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Chapter 3. Characteristics of self-oscillating jets in a confined cavity 
 

 

3.1 Summary 
Jets emanating into a confined cavity exhibit self-oscillating behavior. This study is focused on 

evaluating characteristics of oscillating square and round jets. The jet exits from a submerged 

square or round nozzle of the same hydraulic diameter into a thin rectangular cavity at Reynolds 

number of 54,000 based on nozzle hydraulic diameter and average jet exit velocity. An 

investigation of the three-dimensional self-oscillatory flow structures is conducted using the 

unsteady Reynolds-Averaged Navier-Stokes equations with the Reynolds stress turbulence model. 

Vortex identification using the λ2-criterion is used to investigate the flow dynamics. For the 

oscillating square jet, vortex rings initially have a square shape near the nozzle exit, before axis-

switching and transforming into a circular ring. Upon impact on the walls, two tornado-like 

vortices are produced. The decay rate of oscillating square and round jets initially show a trend 

traditionally noted in the corresponding free jets but changes significantly with distance from the 

nozzle as the effects of oscillation and confinement begin to dominate. Reynolds stress profiles for 

both types of jets are qualitatively similar and show two peaks on either side of the centerline, 

which convert to mild peaks farther downstream. Spread and decay rates of oscillating square jets 

are higher, while oscillating round jets have higher turbulence intensities near the jet center. 

Compared to free jets, more uniform Reynolds stresses at farther distances from the jet centerline 

in oscillating jets will enhance heat transfer over a larger area, making oscillating jets suitable in 

many cooling applications. 

Key Words: Oscillating jets, confined cavity, computational fluid dynamics 

3.2 Introduction 
Oscillating jets are used in many applications including mixing enhancement, flow control, and 

cooling systems. Thermal management is an important consideration in the cooling of electronic 

chips and can affect the cooling system's cost, design and performance. The use of multiple jets 

impinging underneath the heated surfaces has been recommended. However, geometry limitations 

can prevent the use of jet arrays. Oscillating jets can potentially provide an alternate means of 

enhancing cooling efficiency. The presence of the Coanda effect causes the jet to deflect to the 

walls and the pressure gradient between the concave and convex side of the jet leads to oscillation. 
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Furthermore, non-circular free jets have attracted considerable attention due to the axis-switching 

process, which plays an important role in increasing jet entrainment and mixing properties. Since 

cooling jets are confined by walls in many applications1, there is a need to study the characteristics 

of both circular and non-circular cross-section jets in the presence of confinement walls.   

Extensive numerical and experimental studies have been carried out to observe the near-field and 

far-field characteristics of a round jet. These include the effects of Reynolds number on the 

coherent structures2, and the effects of confinement on the flow field3. Although many studies have 

been conducted to evaluate the near-field dynamics of round jets, there are only a few studies on 

the near-field of square jets. Entrainment enhancement in square jets is mainly due to higher self-

induced velocity at the corners of the vortex rings which rotate by 45° compared to the initial 

orientation. This phenomenon is known as the axis-switching process. Quinn and Militzer4 and 

Quinn5 studied the near-field of a square free jet. In their experiments, hot-wire measurements 

indicated an off-center peak of streamwise velocity near the jet exit due to axis-switching. Their 

near-field numerical results did not match well with their experiments, possibly because of their 

coarse grid and the use of the k-ε turbulence model. Grinstein and Devore6 carried out visualization 

of the near-field of a square jet. They investigated the effects of the initial conditions such as 

momentum thickness, turbulence level and Reynolds numbers on vortex deformation and axis-

switching. Grinstein7 studied rectangular vortex ring deformation for nozzle with aspect ratios of 

1~ 4 at high Reynolds number (> 120,000). They demonstrated that only one axis-switching occurs 

at aspect ratios less than 3. However, the vortex ring bifurcates at the aspect ratio of 4. The two 

bifurcated rings reconnect farther downstream and create a larger deformed vortex, resulting in a 

second axis-switching. Chua et al.8 investigated the effects of initial boundary conditions, 

turbulence intensity, and momentum thickness in the diagonal and spanwise directions on axis-

switching. They demonstrated that a high ratio of momentum thickness along the diagonal to 

spanwise direction has an adverse effect on the axis-switching process. However, a decrease in 

turbulence intensity and an increase in the ratio of nozzle hydraulic diameter to spanwise 

momentum thickness tends to produce axis-switching. Yu et al.9 investigated starting jets at 

Reynolds numbers in the range of 2,000-5,000 using Planar Laser-Induced Fluorescence (PLIF) 

and Particle Image Velocimetry (PIV). They observed axis-switching and leapfrog processes at all 

Reynolds numbers, and a leading vortex pinch-off at higher Reynolds numbers. During the 

leapfrog process the radius of the front rings increase and the rear rings with higher velocity move 
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ahead of the front rings. Sankar et al.10 investigated the effects of confinement and axis-switching 

of a square jet at a Reynolds number of 40,000. The jet was confined by a cavity with a solid 

bottom wall and a free surface at the top. They used quadrant decomposition to analyse the flow 

field which indicated different turbulent characteristics in the bottom and top regions. They 

demonstrated that after a distance of 15 nozzle diameters, the flow loses free jet characteristics due 

to the interaction with the boundaries and Reynolds stresses indicate higher mixing properties in 

the bottom region of the cavity rather than the top. Chen and Yu11 studied rectangular jets with 

aspect ratios ranging from 1 to 3 and reported a correlation between the secondary flow and 

downstream velocity during the axis-switching. They showed that the location of axis-switching 

is not dependent on aspect ratio, while it is related to corner effects due to the entrainment process. 

Ghasemi et al.12 studied the developing region of free round and square jets using PIV at Reynolds 

number of 50,000. They showed a faster break-up of the shear layer resulting in a decreased length 

of the potential core for the square jet. Besides observing the double peak in streamwise velocity 

profiles, they also observed the formation of the secondary vorticity at the edge of the square 

nozzle and close to the centerline.  In another study dealing with square jet vortex dynamics at 

Reynolds numbers of 8,000 and 45,000, Ghasemi et al.13 used Large-Eddy Simulations (LES) to 

evaluate the axis-switching process and the influence of the pressure field on vortex ring 

deformation.  

Oscillating jets are created when the flow field is confined and the vortex rings interact with the 

walls. The characteristics of this interaction is important in the flow evolution. Several studies14-15 

have been conducted on a confined vortex ring with circular and elliptical cores that interact with 

the wall. Lim et al.16 presented the interaction of a laminar vortex ring with an inclined wall that 

created helical vortex lines. They reported a rebound process, which is essentially a vortex core 

distortion due to wall confinement. Walker et al.17 also performed a study of the interaction of a 

laminar vortex ring with confinement walls. They observed the generation of secondary and 

tertiary vortex formation near the walls. Chang et al.18 investigated the effects of confinement walls 

on elliptical vortex rings. They demonstrated vortex deformation and fluid entrainment when the 

vortex ring approaches the walls, creating two tornado-like vortices. Sooraj and Sameen19 studied 

the decay of circular vortex rings in a square confined enclosure. They showed the effects of the 

confinement ratio, which is defined as the ratio of vortex ring diameter to the confinement width 
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of the enclosure, on vortex ring deformation. They observed that the effects of non-axisymmetric 

confinements are present at Re = 1,300, while it is not visible at a lower Re = 300.  

The main mechanism influencing the oscillation of a jet is the Coanda effect. A comprehensive 

study on shear layer instabilities and the nature of oscillation in a shallow cavity by Coanda effect 

has been reported by Rockwell and Naudascher20 and Rockwell21. Gebert et al.22 conducted a two-

dimensional numerical simulation for a submerged entry circular nozzle into a rectangular cavity. 

They demonstrated that the oscillation can be changed or stopped by manipulating the cross-flow. 

Lawson23 investigated a submerged round jet in a rectangular cavity using PIV and Laser Doppler 

Velocimetry (LDV). They showed that the frequency of oscillations is independent of cavity 

thickness, while the frequency decreases by increasing the cavity width. 

The oscillation frequency can be controlled by the Reynolds number, cavity width-to-nozzle 

diameter ratio, Lorentz forces and the use of side jets. Righolt et al.24 studied a self-oscillating 

confined square jet in a rectangular cavity using the LES  turbulence model. They showed that the 

oscillation disappears when the Reynolds number is below a critical value (Recritical = 1,600) and 

for aspect ratios larger than a critical value ((width/diameter)critical = 50). They noticed stable and 

unstable oscillation modes at different Reynolds numbers and aspect ratios. Kalter et al.25,26 

experimentally investigated the effects of Lorentz forces on the self-oscillation of a submerged 

square jet. They introduced a critical Stuart number (Nc) and showed that jet oscillation is 

independent of Reynolds number for N < Nc. Lawson et al.27 investigated using one lateral 

injection jet below and one above the primary submerged round jet and perpendicular to the main 

jet. They showed that a maximum thrust vectoring performance occurs when the side jet is located 

above the main jet (at 12% cavity width). Also, the mass ratio of the side jet to the main jet should 

be less than 25%. Bensider et al.28 numerically studied a self-oscillating submerged round jet in a 

rectangular cavity with two side injections above the main jet. The authors revealed that the main 

jet has a minimum frequency and maximum deflection when the mass ratio of side jet to main jet 

is less than 0.25. Mataoui et al.29 studied the interaction of the turbulent round jet with a cavity 

with two lateral walls and a bottom wall. They showed different flow regimes, steady, stable 

oscillation, and unstable oscillation for different nozzle exit locations in the cavity. They 

demonstrated the absence of oscillation and stable oscillation when the nozzle is close to the walls, 

and far from the walls in the core flow, respectively. In another study, Mataoui et al.30 observed a 
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linear behavior of frequency with Reynolds number and a decrease in frequency when the 

impingement distance increases in a periodic jet oscillation. 

The objective of the current study is to investigate the characteristics of oscillating jets. The 

literature review shows the lack of a comprehensive study of the oscillatory flow field which can 

potentially contribute to mixing and entrainment. The focus of this study is on the physics of the 

flow, thereby providing a better understanding of how oscillatory flow may be used to control heat 

transfer and surface temperature uniformity in applications. To this end, the self-oscillation 

mechanism of round and square jets is explored. The effects of oscillation on the behavior of flow 

properties such as the mean velocity, turbulent intensities and Reynolds shear stresses are 

compared with corresponding quantities in free jets. A better understanding of the characteristics 

of oscillating jets will help identify regions with potentially higher heat transfer rates and greater 

surface temperature uniformity due to higher jet spread. 

 

3.3. Methodology 

3.3.1 Geometry set up 
The rectangular confinement cavity illustrated in Fig. 3.1 has dimensions of 250 mm x 585 mm x 

40 mm. The jet exits from the submerged nozzle into the cavity. The submerged entry nozzle has 

a round or square shape with a hydraulic diameter d = 14 mm and length of 95 mm. The nozzle 

wall thickness is 3 mm and the fluid (water) is assumed to be incompressible with a density (ρ) of 

997 kg/m3 and dynamic viscosity (μ) of 9.7x10-4 kg/(m.s). All solid walls are assumed to be 

smooth. The cavity configuration adopted in this work is the same as Lawson et al.27 to enable a 

direct comparison for the purpose of validation. 
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    (a) 

 
                        (b) 

Fig. 3.1 Cavity configuration: (a) square jet, (b) round jet 
 

3.3.2 Jet simulation    
The computational domain (i.e. confinement cavity) is discretized using a multiblock structured 

hexahedral mesh with 6 million cells. This cell size was determined to be adequate after performing 

the simulations on several mesh sizes, as shown in Section 3 below. For the 6 million cell mesh, 

the dimensionless distance of the first cell from the walls (Y+ = Yρuτ/μ) is less than one, where uτ 

is friction velocity defined as uτ = (τw/ρ)0.5 and τw is wall shear stress. The governing Navier-Stokes 

equations are discretized by the finite volume method and solved using the commercial software 

STAR-CCM+31 with a second-order upwind scheme for convection terms and second-order 

implicit scheme for time discretization. The time step is set at 0.01 ms which ensures that the 

Courant number is less than one. The SIMPLE algorithm is used for pressure-velocity coupling. 

The Reynolds-Averaged Navier-Stokes equations in tensorial notation for unsteady 

incompressible flow are32 

 
∂U

∂X
= 0 (1) 

                                                                                                                                                            

ρ
∂U

∂t
+ U

 ∂U

∂X
= −

∂P

∂X
+

∂

∂X
μ

∂U

∂X
− ρu u (2) 

where Ui and u′are the mean and fluctuating velocity components, respectively, P is the pressure, 

and the overbar denotes time-averaged values. Using the Boussinesq assumption, the components 

of the Reynolds stress tensor are given by32 
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ρu u =
2

3
ρkδ − μ

∂U

∂X
+

∂U

∂X
(3) 

                                                                                                                              
where k is the turbulent kinetic energy, μ  is referred to as turbulent viscosity and 𝛿ij is the 

Kronecker delta. In this study, the unsteady Reynolds Stress Model (RSM)33, which consists of 

transport equations for each of the stress tensor components, is used to model turbulence.  

The Reynolds stress transport equations are 
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where the production, dissipation and velocity–pressure gradient tensors are defined as 
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∂P
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The terms of  ( ) and ( ) are the turbulent transport and viscous diffusion tensors. 

 

3.3.3. Boundary conditions 
Prior to setting up the jet simulation in the computational domain, separate simulations are carried 

out for flow in a pipe and square duct to establish the flow conditions at the origin plane shown in 

Fig. 3.1. A steady RANS RSM simulation is performed with uniform inlet flow and an outflow 

condition at the exit to produce the fully developed flow in the pipe/duct. The fully developed 

streamwise velocity is validated using the results of den Toonder and Nieuwstadt34 for a round 

pipe and Hoagland35 for a square duct, as shown in Fig. 3.2(a) and Fig. 3.3(a), respectively. Here 

Ue is the average velocity at the exit plane and the coordinate Y+ is indicated to commence at the 
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walls and extends towards the middle of the duct or pipe. Also, the mean streamwise velocity 

profile is compared to the law-of-the-wall in Figs. 3.2(b) and 3.3(b). 

 

 
  (a) 

 
 

   
                                   (b) 

Fig. 3.2 Comparison of fully developed streamwise velocity for a round pipe, with (a) 
experimental results34, (b) law-of-the-wall 

 
 

         
 (a) 

   

   
                                     (b) 

Fig. 3.3 Comparison of fully developed streamwise velocity for a square duct, with (a) experimental 
results35, (b) law-of-the-wall 

 
The square duct and pipe exit conditions are mapped as the inlet condition for the simulation in 

the confinement cavity. The inlet boundary conditions are applied inside the nozzles at 20 mm 

upstream of the exit to ensure an accurate representation of the flow at the exit plane. All smooth 

walls of the confinement cavity are treated as no-slip boundaries and an outflow condition is 

applied at the outlet of the computational domain.  
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3.3.4 Three-dimensional flow visualization 
Different vortex identification methods such as Q-criterion, λ2-criterion and Δ-criteria have been 

developed to identify vortex structures in a flow field. The λ2-criterion is especially attractive since 

it is derived from the requirement that the pressure minimum occurs at the vortex core36. In this 

analysis, λ2 is the second eigenvalue of Ω2+ S2 where S and Ω are the shear strain and rotation 

tensors, respectively, defined as: 

S =
1

2

∂U

∂X
+

∂U

∂X
(8) 

                                                                                                                                          

Ω =
1

2
 

∂U

∂X
−

∂U

∂X
. (9) 

Jeong and Hussain37 considered that the pressure minimum occurs at the vortex core. They split 

the Navier-Stokes equations into symmetric and antisymmetric parts and ignored unsteady and 

viscous effects to reduce the Navier-Stokes equations to 

 

𝐒 + 𝛀  ≈ −
1

ρ
∇(∇P) . (10) 

 
The Hessian matrix of the pressure has three eigenvalues λ1 ≥ λ2 ≥ λ3 and the local minimum 

pressure occurs where the Hessian matrix has two positive eigenvalues. These two positive 

eigenvalues correspond to two negative eigenvalues of 𝐒 + 𝛀  , whereby the λ2 must have a 

negative value.36,37  

3.4. Validation 
The present study is validated using the round jet results of Lawson et al.27 and Bensider et al.28 In 

the remainder of this paper, the tensorial notation is replaced by the conventional Cartesian 

notation, i.e., the Xi - components of velocity, Ui, are replaced by the X, Y, Z components U, V 

and W. Initially, the mean velocity of the oscillating jet is considered, and the results are compared 

with the Laser Doppler Anemometer (LDA) measurements of Lawson et al.27 The multiblock 

hexahedral mesh used in this study comprises three different regions. A fine mesh (0.2 mm) covers 

the central core region of the jet, while an intermediate mesh (1.25 mm) is used in the jet expansion 

region and a coarser mesh (2.5 mm) is used in the outer regions of the cavity. Grid independency 

was established by comparing results using 6, 10 and 16 million cells. For each of these mesh 

sizes, Fig. 3.4 depicts a comparison with data from Lawson et al.27 for the time series of the jet 



25 
 

cross-flow velocity at the downstream location (3.2d, 0, -0.9d). It can be observed that the 

oscillation is dependent on jet flow transport in the transverse direction. The Strouhal number, Std, 

based on nozzle diameter, jet frequency (f) and mean jet exit velocity is defined as: 

St = f ×
d

U
 . (11) 

 
Based on a Fast Fourier Transform (FFT) of the velocity time history, the present simulation 

predicts a stable oscillation with a dominant frequency and Strouhal number which are in good 

agreement with the experimental data of Lawson et al.27 

 
Fig. 3.4 Time series of cross-flow velocity in a round jet at point (3.2d, 0, -0.9d) 

  

The normalized mean streamwise velocity along the jet centerline and along the line X = 1.35d, Z 

= 0 are shown in Figs. 3.5(a) and 3.5(b), respectively. The results are compared with that of Lawson 

et al.27, which confirms the accuracy and grid independence of the present simulation. 

 

          
  (a) 

    
                          (b) 

Fig. 3.5 Round jet streamwise velocity profile: (a) along centreline, (b) at X =1.35d 
 

To further validate results for the round jet, normalized Reynolds stresses at point (13d, 2.9d, 0) 

are compared with the Reynolds stresses ρu′u′ and  ρv′v′ time histories of Bensider et al.28  in Fig. 
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3.6, showing satisfactory results. The differences noticed in the peak amplitudes may be attributed 

to the more refined mesh and higher order temporal discretization used in our simulations and the 

more accurate representation of the inlet flow conditions. 

 
         (a) 

 
                                 (b) 

Fig. 3.6 Perpendicular Reynolds stresses at point (13d, 2.9d, 0): (a) ρu′u′, (b) ρv′v′  
 

Additional validation was considered by comparing the results from a square jet simulation with 

the results of Kalter et al.25 To enable direct comparison, the Reynolds number and domain 

geometry were maintained the same as Kalter et al.25 The fluid used in the experiment of Kalter et 

al.25 was saltwater with constant properties. The streamwise velocity at X = 8d and X = 18d is 

compared in Fig. 3.7. Although the streamwise velocity in the present study accurately follows the 

trend in the experimental results, there is a small discrepancy in the value. The jet oscillation 

frequency evaluation of the velocity-time signal based on FFT at point (25d, 0, 0) was found to be 

in excellent agreement with the experiment. 
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             (a 

    
                              (b) 

Fig. 3.7 Mean streamwise velocity on Z = 0 for a square jet at (a) X = 8d, (b) X = 18d 

3.5 Results and discussion 

3.5.1 Instantaneous near-field vortex deformation 
It is well known that in a round jet, a vortex ring forms at the nozzle exit due to the roll-up of the 

shear layers at the edge of the jet due to Kelvin–Helmholtz instabilities. Figure 3.8 shows the 

evolution of the vortex ring in the present study for the round jet. The isosurface of λ2 is used to 

identify the vortex structures in the starting jet flow (t < 0.1 s). The value of λ2 is taken equal to -

1 to enable the identification of the major vortical structures. The isosurface is colored by the 

streamwise velocity. A front view of the vortex evolution is shown in the top row of Fig. 3.8(a) at 

dimensionless times from t* = 1 to 50, where the dimensionless time is defined as t* = Uet/(0.42d). 

The value of 0.42 is included in the non-dimensional time to support visualization at integer t* 

values and has no special significance13. The vortex ring radius and the shear layer thickness 

increase as the ring travels downstream. Eventually, the axisymmetric vortex ring becomes 

distorted and breaks down due to azimuthal instabilities, which create secondary rib vortices 

between two consecutive vortex rings as seen in the second row of Fig. 3.8(a). This process 

increases entrainment as the primary and secondary vortices interact. The vortex pattern until t* = 

10 is very similar to that noticed in previous free jet studies38 and serves to further validate the 

present simulation. As the rings move farther downstream (view at t* = 50), the distorted vortex 

ring collapses due to its interaction with the confinement wall. Figure 3.8(b) illustrates the Y = 0 

cross-section of the vortex shedding process showing the eventual break down of the vortex rings. 
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Fig. 3.8 Instantaneous vortex deformation of a round jet: (a) front and side views of λ2 = -1 isosurface 

colored by streamwise velocity, (b) vorticity contours on the plane Y = 0 
 
A similar vortex pattern for the square jet is shown in Fig. 3.9(a).  At t* = 1, the vortex ring has 

not yet deformed and has a near square shape. Small distortions of the ring are visible at t* = 2 and 

axis-switching occurs at about t* = 6, due to higher streamwise velocity at the corners of the ring 

compared to the flat sides, causing the square ring to rotate 45°. Axis-switching generates hairpin 

vortices at the corners of the ring which enhances the entrainment and mixing processes13. The 

results show that axis-switching occurs at X/d ~ 0.7 and that the wall confinements do not have 

much effect on the axis-switching location. These results are in good agreement with free square 

jet simulations of Ghasemi et al.13 who showed that axis-switching occurs at X/d = 0.65 from the 

nozzle exit plane. Figure 3.9(b) illustrates the vortex formation in the Y = 0 plane of the square 

(a) 

(b) 

Walls 
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jet, showing the growth in the shear layers, vortex ring development, wall interaction and eventual 

break down of the vortex ring. 

 
 

 
Fig. 3.9  Instantaneous vortex deformation of a square jet: (a) isosurface of λ2 colored by streamwise 

velocity, (b) vorticity contours at plane Y=0 
 
Observing a series of images, including the ones shown above, indicates that the square jet vortex 

ring attaches to the wall earlier, at about t* = 26 (t = 0.04 s), while the round jet vortex ring wall 

attachment occurs at t* = 40 (t = 0.062 s). The earlier wall attachment of the square vortex ring is 

due to vortex axis-switching which rotates the vortex ring corners and decreases the distance 

between the vortex and the walls. Unlike the round jet, the square jet creates hairpin-like (braid) 
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vortices due to the axis-switching, as illustrated in Fig. 3.9(b). The stretching and contraction of 

the vortex rings creates the hairpin-like vortices which were reported by Grinstein and Devore6. 

These braid vortices link two consecutive deformed vortex rings together as shown at times t* = 

10 and t* = 26. Eventually, as the jet develops and the vortex rings move downstream, the hairpin-

like vortices act as connectors between the deformed rings. The strong interaction of the vortex 

rings and braid vortices results in vortex ring break down which can be seen in Fig. 3.9(b) at t* = 

50. 

3.5.2 Effects of confinement on vortex deformation 
The effects of wall confinement appear as the jet penetrates farther downstream into the cavity. In 

Figs. 3.10 and 3.11, the distortion of the vortex ring using λ2 equal to -1 is shown after it collides 

with the walls, i.e., after t* = 40 for the round jet and t* = 26 for the square jet. The first row in the 

figures show the view looking into the X-Z plane (strong confinement) while the second row 

illustrates the view from the X-Y plane (less confinement side). Due to the Biot-Savart law39, as 

the vortex ring approaches the wall it creates a vortex layer on the wall. The sign of vorticity near 

the wall is opposite to that of the primary vortex ring and the interaction between the two vortices 

increases the rate of vortex decay. As the vortex ring approaches the wall, the wall vortex layer 

partially separates from the wall and a secondary vortex forms that twists around the deformed 

vortex ring. As it travels further downstream the vortex ring stretches and becomes thinner. The 

fluid near the wall entrains into the vortex ring and two tornado-like vortices are created, as seen 

in Figs. 3.10(e) and 3.11(e). During the connection process of the primary and secondary vortices, 

the vorticity direction changes from Y to Z-direction. Similar tornado-like vortices have been 

reported by Chang and Hertzberg18 at low Reynolds number. As the flow moves downstream, the 

distance between the two tornado-like vortex cores increases. There is no significant difference 

between the vortex ring deformation of the round and square jets after attaching to the confinement 

walls including the formation of the tornado-like vortices. 
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Fig. 3.10 Vortex interaction of the round jet with confinement wall at selected dimensionless times: 

(a,d) t* = 40, (b,e) t* = 45, (c,f) t* = 50  
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Fig. 3.11 Vortex interaction of square jet with confinement wall at selected dimensionless times: (a,d) 

t* = 26, (b,e) t* = 32, (c,f) t* = 40 
 

3.5.3 Oscillation mechanism 
As demonstrated above, there is little qualitative difference between the round and square jet 

vortex ring behavior once the ring strikes the confinement wall. The present simulations indicate 

that both types of jets also display a similar pattern of oscillation. As the jet oscillates in the cavity, 

it attaches to one of the side walls followed by detachment and movement towards the other wall. 

This process continues to occur in a repeating fashion. The attachment locations on the side walls 

of the cavity for both the round and square jets are at the same distance from the nozzle exit. The 

frequency of oscillation for both the square and round jets is about 0.19 Hz. 

For brevity, the square jet is used to elucidate the oscillation mechanism. Figure 3.12 shows the 

vorticity (ω )  contours superimposed with the velocity vectors in the XY plane (Z = 0) over a 
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half-cycle of oscillation. It is well-known that due to the Coanda effect, the jet initially attaches to 

one side or the other depending on the randomness of the flow turbulence. At t = t0, the jet is shown 

deflected to the left side wall and the velocity vectors indicate the formation of four rotating 

regions, indicated by A, B, C and D. When the jet impinges on the left side wall at t = t0, the flow 

splits and creates the counterclockwise vortex A below the impingement point (I) and clockwise 

vortex B above the impingement point. The high vorticity noted along the right shear layer 

(indicated by red) tends to feed vortex A and the one on the left (blue) feeds vortex B. The corner 

vortices C and D with opposite sense of rotation are formed due to the flow being constrained at 

the top. Figure 3.13 illustrates the corresponding pressure contours superimposed with 

streamtraces. As vortex A in the high-pressure region grows, it gets constrained by the side walls 

of the cavity and the flow tends to move upwards, which then begins to squeeze vortex D (located 

in the low-pressure region) at the top right corner of the cavity and the fluid is transported around 

the nozzle. Due to continuity considerations and confinement effect of the cavity, a downward 

flow is established at the top left corner, which washes out vortex C and vortex B is moved 

downwards towards the bottom of the cavity as seen at t = t0+ T/4. Simultaneously, as vortex A 

moves upwards into the low-pressure region, there is room for vortex B to expand, forcing the jet 

to move to the opposite side of the cavity at t = t0+ T/2. The flow fields at t = t0 and t = t0+ T/2 are 

mirror images about the cavity centerline and, during the time interval from t0+ T/2 to T, the above 

process is repeated (in reverse) to divert the jet back to the left side wall, completing one oscillation 

cycle.                                          

                            
        t = t0          t = t0 + T/4                t = t0 + T/2 

Fig. 3.12 Instantaneous velocity vectors of the oscillating square jet, superimposed on the vorticity 
contours on the plane Z = 0, during a half period (T/2)     
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          t = t0 

         
     t = t0 + T/4 

  
            t = t0 + T/2 

Fig. 3.13 Instantaneous streamtraces of the oscillating square jet, superimposed with static pressure (Pa) 
contours on the plane Z = 0, during a half period (T/2)  

3.5.4 Mean vorticity  
The vorticity fields at various downstream transverse planes from X/d = 1 to 10 are shown in Fig. 

3.14. A comparison of the vorticity field of the two types of jets indicates that there are additional 

triangle-shaped eddies (see Figs. 3.14(a, b)) at X/d = 1 in the square jet. These additional eddies 

are a result of the secondary flow that occurs inside the square duct prior to the flow existing the 

nozzle and are transported out into the jet, as seen in the zoomed view at X/d = 0.1 in Fig. 3.14(i). 

The secondary eddies are generated due to an imbalance of momentum between the core and 

corners in the internal duct flow. These eddies redistribute the excess momentum from the core 

towards the corners. As indicated earlier, following collision with the walls around X/d ~ 4, the jet 

spreads in the Y-direction. The square jet attaches to the confinement walls earlier as illustrated in 

Figs. 3.10 and 3.11. For X/d > 3, there is not much difference between the round and square 

oscillating jets. As the jets move downstream, the eddies merge and the distance between the 

counter-rotating vortex cores increases (Figs. 3.14(g, h)). 

 Round jet Square jet 
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        (a)      (b) 
 
 
X/d = 3 

      

B 

B B A 
A 

A 
D C 

C D 
D 



35 
 

 

3.5.5 Mean centerline velocity decay and jet width 
It is common practice to quantify the centreline velocity decay and jet half-width to enable 

comparison between different types of jets. To this end, the normalized centerline velocity (Uj/Ucl) 

of both oscillating square (OS) and oscillating round (OR) jets are plotted in Fig. 3.15. Here Ucl is 

the centerline mean velocity at any X/d and Uj is the centerline jet exit velocity. It has been 

previously shown that the shape of the nozzle exit velocity profile (top-hat or fully developed) 

does not have a significant effect on the decay rate of the round jet40. This result is confirmed by 

the decay rate comparison of the present simulations of free round (FR) and free square (FS) jets 

with fully developed inlet flow and the top-hat inlet flow of Tandalam et al.2 (see inset in the figure 

3.15). The centerline velocity decay of the confined oscillating and free jets for X/d < 4 is nearly 

the same and has a similar trend as the free jets of Quinn and Militzer 4 and Ghasemi et al12. The 

nozzle cross-sectional shape affects jet entrainment and the higher entrainment of square jets, in 

the region 3 < X/d < 6, is due to the interaction of the primary and secondary vortices during the 

axis-switching process. Higher entrainment reduces the length of the potential core of the square 

jet. In this work, the potential core length is defined as the distance from nozzle exit to the axial 

location where the centerline velocity is reduced to 99% of the nozzle centerline exit velocity. The 

extent of the potential core of the confined OR and OS jets are 3.8d and 3.3d, respectively. Near  

        (c)      (d) 
 
 
X/d = 8 

      
       (e)       (f) 
 
 
X/d =10 

         
       (g)       (h) 

 
 

                                                     X/d = 0.1                                    
  
                                                                                                                          (i) 
 

Fig. 3.14 Mean streamwise vorticity field at the YZ plane: (a, c, e, g) round jet, (b, d, f, h) square jet, 
(i) zoomed view near the square nozzle exit 
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X/d ~ 4, the outward growth of the outer shear layers is interrupted in the Z-direction as the jet has 

now fully expanded to the width of cavity. This results in no futher entrainment in this direction, 

however the jet continues to expand and entrain fluid in the Y-direction. Coupled with oscillations, 

this allows for entrainment and expansion of the jet, resulting in the overall increase of the 

transverse extent of the jet. For X/d > 6, Fig. 3.15 shows that the centerline velocity decay 

increases significantly in both round and square oscillating jets. The round oscillating jet decay 

rate (kd) for X/d > 6, evaluated by a linear fit to the data, shows a higher value compared to the 

oscillating square jet (Table 3.1).  

  
Fig. 3.15 The decay of centerline velocity (Jet types: OS - oscillating square, OR - oscillating round, 

FS - free square, FR - free round) 

Table 3.1. Jet decay and spread rates of round and square oscillating jets 

 Round oscillating jet Square oscillating jet Free square jet 
 3 < X/d < 6 6 < X/d < 15 3 < X/d < 6 6 < X/d < 15 6 < X/d < 15 

kd 0.17 1.5 0.21 1.3 0.16 
ks 0.23 (9 < X/d < 15) 0.26 (9 < X/d < 15) 0.11 

Figure 3.16 shows the half-width of the free square jet and round and square oscillating jets, 

normalized by the hydraulic diameter of the nozzle. The half-width is defined as the spanwise 

distance from the jet centerline to a lateral location where the mean velocity is one-half of the 

centerline streamwise velocity. As Fig. 3.16 illustrates, the square jet has a slightly larger jet width, 

especially for X/d > 6, which is due to higher entrainment. In the square jet, axis-switching in the 

near-field increases entrainment of the surrounding fluid into the jet, and mixing enhancement 

occurs. Higher entrainment increases the square jet spread rate (ks). From the data in Table 3.1, 

the spread rate of the square and round jets are 0.26 and 0.23, respectively. This is contrary to free 

round and square jets which have similar decay and spread rates as reported by Quinn and Militzer4 
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and Ghasemi et al.12. A comparison of free and oscillating jets shows that the spreading of the free 

jet and the oscillating jet is almost the same for the near-field (X/d ≤ 5). Further downstream, the 

spread increases due to jet oscillation and higher entrainment. For example, the jet width at X/d = 

15 is 2.2, 1.9 and 1.4 for the OS jet, OR jet and FS jet, respectively. These results provide evidence 

that the oscillating jet has better mixing than the free jet. 

 

 
Fig. 3.16 Jet thickness of round and square oscillating jets and free square jet 

 
Figure 3.17(a) shows the streamwise velocity of oscillating jets at various distances from the 

nozzle exit. At the nozzle exit, the velocity profile is fully developed. Over the region 0 < X/d < 

7, the peak value decreases by ~ 50% due to entrainment of the surrounding fluid. The jet 

oscillation causes the single peak to change into two milder peaks that move towards the side walls 

with increasing X/d (see X/d = 11). By X/d = 15, the peaks die out and the velocity of oscillating 

jets is closer to a uniform distribution. In the case of oscillating jets, the flow velocity near the 

walls (Y/d > 7) can either be upwards or downwards, as shown in Fig. 3.17(b). This is due to the 

formation of clockwise and counterclockwise re-circulating regions discussed above and 

illustrated in Fig. 3.12.  
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(a) 

          
                                      (b) 

Fig. 3.17 Development of mean streamwise velocities profiles: (a) oscillating and free jets, (b) 
oscillating square jet near the wall 

 
The normalized mean spanwise velocity profiles in the XY plane are shown in Fig. 3.18. The 

spanwise velocity illustrates the effects of oscillation on the jet entrainment and jet spread. The 

positive and negative spanwise velocities show outward flow away from the jet axis and inward 

flows toward the jet axis due to entrainment, respectively. At X/d = 1, the negative spanwise 

velocity for the oscillating square jet is 40% higher than for the oscillating round jet near the jet 

center (~ Y/d = 1). This higher value for the OS jet is due to axis-switching. The oscillating jets 

demonstrate only inward flow towards the jet center for 1 < X/d < 7. By X/d = 11, the amount of 

inward flow is significantly reduced, almost to zero in the OR jet. As flow proceeds downstream 

(X/d = 15) the entrainment is reduced and only outward flow occurs. Furthermore, at X/d = 15, the 

flow moves away from the core to the side walls in the XY plane and moves from the confinement 

walls to the jet centerline in the XZ plane.  

 
         (a) 

    
                                    (b) 

Fig. 3.18 Development of the profiles of the spanwise mean velocities: (a) oscillating round jet,  
(b) oscillating square jet 
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3.5.6 Turbulence intensity and Reynolds shear stress 
The streamwise turbulence intensity urms/Ue, where urms is the root mean square value of the 

streamwise velocity fluctuations, is shown at various axial locations in Fig. 3.19. Near the nozzle 

(X/d = 1, 2), two peaks in the profiles occur in the vicinity of the shear layers due to the high 

production of turbulence in these regions. The confinement walls decrease the entrainment in the 

Z-direction and the walls provide for an increase in turbulence dissipation and a decrease in 

turbulent kinetic energy. Higher urms is due to momentum transport from the spanwise and lateral 

directions to streamwise direction during jet spreading. The results show an increase in the peak 

values of turbulence intensity for OS and OR jets moving downstream until X/d ~ 7, where the 

turbulence intensity value at the centerline is highest with one peak. Beyond X/d = 7, the turbulence 

intensity decays as jet oscillations become the dominant feature of the flow. A significant 

difference between OS and OR jets is illustrated in the streamwise turbulence intensity profiles in 

the XZ plane. Unlike the round jet, axis switching of the square jet (at X/d ~ 0.7) produces a second 

peak at X/d = 1 and 2 which is indicated in Fig. 3.19(d). The OS and OR jets show the same overall 

trend and the peak values are almost the same for X/d > 11. However, for X/d < 11, the turbulence 

intensities are 20% higher for the round jet. Compared to the free jet12, oscillating jets have lower 

turbulence intensity near the center of the jet (|Y/d| < 1) and a higher value farther from the center 

(|Y/d| > 1). For instance, Figs. 3.19(a,b) show that the FS turbulence intensity near the center is 

15% higher than the OR and OS jets at X/d = 11. Farther downstream at X/d = 15, the FS turbulence 

intensities are zero for |Y/d| > 3, while the turbulence intensity values of the OS and OR jets are 

about 5%. 

      Round jet                        Square jet 

  
       (a) 

 
                              (b) 
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     (c) 

  
                             (d) 

Fig. 3.19 Streamwise turbulence intensity profiles, urms/Ue: (a) round jet in XY plane, (b) square jet in 
XY plane, (c) round jet in XZ plane, (d) square jet in XZ plane 

 
The centerline turbulence intensity values for the round and square jets are shown in Fig. 3.20, 

normalized by jet mean centerline velocity, Ucl. The turbulent intensity near the nozzle is low but 

as the jet evolves downstream the turbulence intensity increases due to higher entrainment. The 

effects of confinement and oscillation are observed farther downstream. For X/d > 4, centerline 

turbulence intensity values of both oscillating jets increase, with OR jets increasing more rapidly. 

The round and square oscillating jets shows almost the same rate of decay of turbulence intensity 

for X/d < 6, with the round nozzle producing a higher (~10%) turbulence intensity for X/d > 6. 

The centerline turbulence intensity of a free jet gradually becomes constant with an asymptotic 

value of ~0.2 as reported by Ghasemi et al.12 and Quinn and Militzer4. In contrast, the oscillating 

jet centerline turbulence intensity does not attain an asymptotic value, reaching a maximum value 

at X/d ~ 13 before decreasing.  

 
Fig. 3.20 Comparison of streamwise centerline turbulence intensities with experimental and other CFD 

data for free jets 
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The normalized Reynolds shear stress for both the square and round oscillating jets are shown on 

the Z = 0 plane in Figs. 3.21(a,b) and on the Y = 0 plane in Figs. 3.21(c,d). As illustrated, the 

maximum absolute shear stress occurs along the shear layers due to maximum velocity gradient in 

these regions and the minimum occurs at the center (Y = 0). The OS and OR jets show the same 

trend in the Reynolds shear stress distribution. The profiles show two peaks until X/d ~ 7, while 

for X/d > 7 four peaks are produced due to the oscillating motion of the jets, in contrast to the free 

jet where there are only two peaks as reported by Shinneeb et al.3 At a farther downstream distance, 

the maximum Reynolds stresses (u′v′/U   and u′w′/U ) decrease and shift toward the walls where 

it falls to zero. Eventually the peaks dissipate, and several mild peaks are observed. The highest 

value of shear stress drops from 1% near the nozzle to 0.1% at the downstream. Also, at farther 

distance from the center, |Y/d| > 3, the oscillating jet Reynolds shear stress value (u v /U ) reduces 

from 0.1% to zero at the wall where the effects of confinement suppress the Reynolds shear stress. 

Around the centerline, the shear stress shows a near linear behavior, which was also reported by 

Shinneeb et al.3 The oscillating jet increases entrainment which decreases the jet momentum, 

resulting in a lower Reynolds shear stress for OS and OR jets compared to the FS jet12 (see Fig. 

3.21(b)). 

Round jet Square jet 
 

   
       (a) 

         
(b) 
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       (c) 

        
    (d) 

Fig. 3.21 Reynolds shear stress on Z = 0 plane: (a) round jet, (b) square jet; Reynolds shear stress on Y 
= 0 plane, (c) round jet, (d) square jet  

 

3.6 Conclusions 
In this study, the unsteady Reynolds stress turbulence model is used to investigate vortex ring 

deformation and present a detailed comparison between confined round and square jets at a 

Reynolds number of 54,000. To this end, the deformation of the vortex structures was carefully 

observed at the start of the jet flow and as it impinges on the confinement walls.  Examination of 

the instantaneous vortex deformation shows that for the square jet, axis-switching occurs at 

approximately 0.7 diameters from the nozzle exit. This result is consistent with previous free 

square jet studies. For both confined jets studied herein, it is shown that the deformed ring converts 

to two tornado-like vortices and the vorticity direction changes from the confinement direction to 

the spanwise direction as the jet penetrates further into the cavity. A comparison of the oscillating 

round and square jets shows that nozzle geometry shape does not affect the impingement point of 

the jet on the side walls nor the frequency of oscillation. The oscillating round jet shows a lower 

decay rate in the region 3 < X/d < 6 and higher decay rate for 6 < X/d < 15 compared to the square 

jet. The spanwise velocity of both oscillating jets show an inward only flow in the XY plane for 

X/d = 1 to 7, and an outward flow at X/d = 15. The streamwise turbulence intensities demonstrate 

two peaks in the near-field, and a single peak at X/d = 7. Farther downstream, the turbulence 

intensity decreases due to jet oscillation and two peaks reappear. Investigation of the Reynolds 

shear stress shows the minimum values at the centerline for both oscillating jets. The results show 

that the oscillating square jet has a wider spread compared to the round jet, and both have wider 

jet spread (40% higher) than the corresponding free jets. The greater jet spread can be used to 
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achieve more surface temperature uniformity over a larger surface area in heat transfer 

applications. Comparison between free and confined oscillating jets shows the advantages of using 

oscillating jets in certain industrial applications. 

 

Nomenclature  

d Nozzle diameter  

f Frequency  

FS Free square  

OR Oscillating round  

OS Oscillating square  

P Pressure  

Pij Production tensor  

t Time (s)  

T Period of oscillations (s)  

S Strain tensor  

Std Strouhal number  

Ue Nozzle exit average velocity (m s−1)  

Ucl Jet centerline velocity (m s−1)  

Uj  Maximum value of Ucl (m s−1)  

U, V, W Mean velocity (m s−1)  

u , v , w  Velocity fluctuations (m s−1)  

urms Streamwise rms value (m s−1)  

vrms Spanwise rms value (m s−1)  

wrms Confined direction (Z) rms value (m s−1)  

X, Y, Z Cartesian coordinates  

Y+ Wall normal distance  

δ  Kronecker delta  

ϵ  Dissipation tensor  

π  Velocity–pressure gradient tensor  

𝜌 

μ 

Density 

Dynamic viscosity 

 

Ω Rotational tensor  

μ  Turbulent viscosity  
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𝜔 Vorticity  

λ1, λ2, λ3          Eigenvalues of -(S2 + Ω2)  
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Chapter 4. Characteristics of self-oscillating twin jets 
 

4.1 Summary 
This study is focused on the behaviour of self-oscillating twin jets emanating from round and 

square cross-section nozzles into a narrow cavity. Computational fluid dynamics simulations are 

carried out in a confined rectangular cavity using the Reynolds stress turbulence model. Flow field 

characteristics are evaluated at nozzle spacing-to-diameter ratios (S/d) of 2, 3, 4, 5, at a jet 

Reynolds number of 27,000 based on nozzle exit velocity and diameter (d). Effects of nozzle 

spacing on the frequency of oscillation, mean velocity, vortex structure and turbulence features are 

examined. For S/d up to four, the two jets merge downstream and oscillate as an equivalent single 

jet. At larger spacing, the two jets do not merge but oscillate separately between the sidewalls and 

cavity centerline. Comparison of round and square twin jets demonstrates that the nozzle shape 

does not significantly affect the jet decay. The turbulence intensity of twin jets shows higher values 

at the center of the cavity for S/d < 5, and around the centerline of each jet for S/d = 5. With 

increasing nozzle spacing, the Reynolds shear stress demonstrates that mixing increases in the 

inner shear layer region and the Reynolds shear stress values for S/d < 5 are lower than for S/d = 

5. Twin oscillating jets produce higher spread and turbulence intensity over a wider area which 

may be beneficial for cooling of hot devices in industrial applications. 

4.2 Introduction 
Multiple jet flow configurations can be found in many applications including cooling, heating, air 

conditioning, water and wastewater treatment. The interaction between two or more jets creates a 

complicated flow field. A simple twin jet configuration is comprised of two parallel jets issuing 

from nozzles with the same diameter (d) and at a specified spacing (S) between them. The general 

features of twin free jets are illustrated schematically in Fig. 4.1. During the initial jet expansion 

phase, the inner shear layers spread towards each other and merge at what is known as the merging 

point (Xmp). The region between the nozzle exit and the merging point is defined as the converging 

region. Following merging, the two jets continue to spread and are completely intertwined beyond 

the combining point (Xcp), creating a single jet. The region between the merging and combining 

points is referred to as the merging region, and the combined region starts downstream of Xcp, as 

shown in Fig. 4.1. 
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                        Fig. 4.1 Schematic of twin free jets configuration (adapted from Laban et al.11) 
 

Many researchers have carried out experimental investigations and, to a lesser extent, numerical 

simulations on non-oscillating submerged twin jets, but only a few have considered self-oscillating 

twin jets. Some of the studies related to the present research are summarized in Table 4.1, including 

some of the key contributions to the characterization the flow fields for plane, round and non-

circular jet configurations. 

Table 4.1 Summary of literature on twin jets 

Author Technique Re Jet type S/d Xmp/d 

Tanaka 1, 2 HWA 4300 - 9000 Plane 8.5 - 25 ∙  5.06(S/d) 0.27 for S/d < 16 
∙  0.68(S/d) for S/d ≥ 16 

Lin & Sheu 3 HWA 4000 - 9000 Plane 30, 40 ∙  18.7+0.48(S/d) for S/d >30 

Anderson & Spall 4 
HWA, 
CFD 

6000 Plane 9, 13, 18 ∙  ~ 10,14,18 

Nasr & Lai 5 LDA 8300 - 19800 Plane 4.25 ∙  ~ 4 

Lee & Hassan 6 PIV 4,900 Plane 3 
∙  0.07(S/d)3.25 for S/d < 3 
∙  1.15(S/d) - 0.23 for 
                    3 ≤ S/d < 10 

Zang & New 7 PIV 3300 Plane 1.5, 2, 3 
∙  < 2 for S/d = 1.5 
∙  ~ 3 for S/d = 2 
∙  > 4 and < 6 for S/d = 3 

Okamoto & Yagita 8 Pitot tube 2300 Round 5, 8 ∙  ~ 4, 12.4 

Harima et al. 9,10 HWA 25000 Round 2, 4, 8 ∙  ~ 2, 9, 19 

Laban et al. 11 PIV 10000 Round 3-7 ∙  ~ 5 - 18 

Naseri Oskouie et al. 12 PIV 10000 Rectangular 2-7 ∙  ~ 1.5 - 11 
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Essel & Tachie 13 PIV 5000 Round offset 
2; Offset 

distance = 
1d, 2d, 4d 

∙  ~ 2 

Rahman & Tachie 14 PIV 2000 -12000 Round offset 
2.6; Offset 

distance = 2d 
∙  ~ 1.1 - 1.6 

Greco et al. 15, 16 PIV 6700 OR 1.1, 3, 5 ∙  not reported 

HWA: Hot wire anemometry, CFD: Computational Fluid Dynamics, LDA: Laser Doppler anemometry, PIV: 
Particle image velocimetry, OR: Oscillating round, OS: Oscillating square 

 

Tanaka1 examined the structure of the twin plane jets, focusing on the converging and merging 

regions to show the effects of nozzle spacing ratio (S/d, see Fig. 4.1) on velocity and static pressure 

at different Reynolds numbers. The author demonstrated that stagnation occurs at Xmp and there is 

a linear relationship between the nozzle spacing and the merging point distance from the nozzle 

exit for S/d ≥16. In another study, Tanaka2 investigated the effects of nozzle spacing ratio, focusing 

on the combined region (X/d ~ 30-100). The results indicated that the Reynolds number does not 

have much effect on the symmetry line maximum pressure point and the maximum value of the 

mean streamwise velocity. The comparison of single and twin jets showed a higher decay rate for 

the twin jets, and the decay rate difference increased in the combined region at higher nozzle 

spacings. The results revealed that the velocity profiles of the combined jet are similar at various 

nozzle spacings. Furthermore, the spread of the combined jet is linear and increases at higher 

nozzle spacing with a higher rate compared to a single jet. Lin and Sheu3 studied two plane parallel 

air jets at large nozzle spacings (S/d = 30, 40). They demonstrated that the nozzle spacing and 

merging point location have a linear correlation which is in agreement with the results of Tanaka1. 

Furthermore, their results illustrated that the centerline velocity decay is proportional to (S/d)0.5 in 

the combined region, which is also consistent with Tanaka2. They also showed that the velocity 

decay occurs at a lower rate in the combined region compared to the converging region. The outer 

shear layer spread rates of twin jets are greater than the inner shear layer, facilitated by a higher 

entrainment of external fluid. Also, the spread rate in the converging region increases more rapidly 

compared to that in the combined region. Anderson and Spall4 investigated plane twin jets 

experimentally and numerically. The experiments were conducted using a hot-wire anemometer 

and the Reynolds stress and k-ε turbulence models were used for the numerical simulations. Their 

simulations accurately predicted the location of the merging and combining points but showed a 

narrower jet width compared to the experimental results. This difference may be due to sensitivity 
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of the simulation to inlet boundary conditions which affects the entrainment into the jet. Nasr and 

Lai5 experimentally investigated the effects of Reynolds number on the mean flow properties of 

twin plane jets at S/d = 4.25. They determined a critical Reynolds number (Recritical) beyond which 

the mean streamwise velocity distribution does not depend on Re. The results showed that at Re = 

Recritical the velocity of the single jet at the centerline has a higher value compared to that of the 

twin jets before the combining point. However, after the combining point the centerline velocity 

of the twin jets is higher. They also demonstrated that the turbulent intensity peak value is smaller 

in the inner shear layer compared to the outer shear layer. Lee and Hassan6 investigated the flow 

field around the merging point of twin parallel plane jets and proposed a non-linear correlation 

between Xmp and nozzle spacing ratio for S/d < 3, and a linear correlation for S/d ≥ 3. Their results 

showed that the converging region length is 1.15 times the nozzle spacing for S/d ≥ 3. They used 

proper orthogonal decomposition (POD) to analyze the vortex structure in the converging region 

near the merging point. Using time-resolved PIV at low Reynolds number, Zang and New7 

observed an oscillatory counter-rotating flow, like that behind a bluff body, in the inner shear layer 

region. They also found that an increase of the nozzle spacing leads to a twin jet dominant 

frequency that is closer to that of a single jet. 

Using free round jets, Okamoto and Yagita8 established that after the streamwise distance of X/d 

= 17.5 for S/d = 5 and X/d = 20 for S/d = 8, the twin-jet configuration centerline velocity decayed 

at a higher rate (~ 22%) compared to a single jet. Using a velocity threshold of 10% of the 

centerline velocity to define the spread of the twin jets, they showed that the spread rate of the twin 

jets is higher than a single jet in the inner shear layer region and lower at the outer shear layer 

region. Harima et al.9,10 also confirmed that the locations of merging and combining points increase 

linearly as a function of nozzle spacing. Also, the merging of the jets, which occurs earlier at lower 

nozzle spacing, causes a higher mean velocity and turbulent intensity at the symmetry line. Their 

results demonstrated that there is no dependency of the centerline streamwise turbulent intensity 

peaks on S/d. Furthermore, entrainment is reduced at lower nozzle spacing, resulting in a lower 

decay rate in the combined region. Laban et al.11 used PIV to carry out a comprehensive study on 

the effects of nozzle spacing on velocity and high-order turbulence characteristics of single and 

twin round jets for 3 ≤ S/d ≤ 7 and Reynolds number of 10,000. They reported that a decrease in 

the nozzle spacing increases the growth of the inner shear layers and the turbulence intensity at the 

symmetry plane. As expected, at the lower nozzle spacing, the velocity decay rate of the jet core 
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decreased due to lower entrainment in the inner shear layer region. Their comparison of single and 

twin jets turbulence characteristics demonstrated that the decay and spread rates of the single and 

twin jets were nearly the same. Furthermore, the turbulence intensity along the centerline of twin 

jets increased to an asymptotic value which was higher than the single jet value. Naseri Oskouie et 

al.12 studied the characteristics of twin rectangular jets (at a low aspect ratio of 2) at various nozzle 

spacing ratios (2 ≤ S/d ≤ 7) and confirmed the linear correlation between merging and combining 

point locations and nozzle spacing. Their results demonstrated that increasing the nozzle spacing 

increases the decay and spread rates and decreases the distance between the combining point and 

the location where the Reynolds shear stress is self-similar. Their comparison of round and 

rectangular nozzles showed earlier converging and combining points for the rectangular nozzles. 

Essel and Tachie13 studied the effects of an offset ratio and confinement (free surface or solid wall) 

on the flow features. The twin jets were confined only on one side, while the opposite side was 

maintained at a distance far from the jets. Their results showed that decreasing the offset ratio 

increased the combining point distance. They reported that this distance was longer when the flow 

was confined by a wall compared to a free surface confinement. Furthermore, the turbulence 

intensity and Reynolds stresses were dampened more near the wall confinement and the turbulence 

intensity increased at the lower offset ratio. Rahman and Tachie14 investigated the effects of Re on 

flow characteristics of single and twin round jets with a free surface using PIV measurements with 

Reynolds number between 2,000 - 12,000. They showed that the Reynolds number does not have 

much effect on the merging point location, but that the free surface attachment length of both single 

and twin jets was more sensitive for Re < 3,900 and independent at higher Re values  

There are a limited number of studies on oscillating twin jets. Greco et al.15,16 studied the flow 

field of twin round synthetic oscillating jets having a phase shift of 180°. At S/d = 1.1, due to 

higher interaction between the two jets, a double vortex ring was visualized which generated higher 

axial velocity and lower jet width. Also, they found that twin jets with S/d = 3 and 5 show the same 

behavior as a single jet and the twin synthetic jets behave like two separated synthetic jets. 

As seen from above, most previous research deals with either free or plane jets. The current study 

is the first CFD study of twin self-oscillating jets in a confined cavity. Although some experimental 

research on free and semi-confined twin jets and oscillating synthetic jets has been reported in the 

literature, there is a lack of understanding of the flow characteristics of self-oscillating twin jets in 

a confined cavity, wherein the oscillations are self-driven by the Coanda effect17-18. The motivation 
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of this study is to evaluate the influence of geometry and flow parameters which are critical to 

identifying potential regions with higher heat transfer rates that can be exploited in industrial 

applications. These parameters include nozzle shape, spacing between the nozzles, growth and 

transport of vortices in the cavity and turbulence characteristics in terms of turbulence intensities 

and Reynolds shear stresses. This study is an extension of our previous work on single self-

oscillating jets18. 

4.3 Numerical modelling and methodology 
The present study involves the use of two identical jets simultaneously flowing into a narrow 

rectangular cavity. The cavity confines the jets which interacts with two close walls (referred to as 

confinement walls) and two sidewalls which are farther apart, as illustrated in Fig. 4.2.  The cavity 

has dimensions 250 mm x 585 mm x 40 mm. Both round (Fig. 4.2(a)) and square cross-section 

(Fig. 4.2(b)) nozzles are used, which protrude 95 mm into the cavity and have a hydraulic diameter 

d = 14 mm and a wall thickness of 3 mm. These dimensions are identical to those in the 

experimental work of Lawson et al.19 and were chosen to facilitate validation of the numerical 

model. The spacing (S) separating the twin nozzles is varied from 2d to 5d. The fluid (water) is 

assumed to be incompressible with a density (ρ) of 997 kg/m3 and dynamic viscosity (μ) of                 

9.7x10-4 kg/(m.s). All solid walls are assumed to be smooth.   

 

(a) 
(b) 

Fig. 4.2 Cavity configurations (not to scale): (a) twin round jets, (b) twin square jets 
 

 

The turbulent flow in the cavity is modeled using the Reynolds-Averaged Navier-Stokes (RANS) 

equations governing unsteady incompressible flow, expressed in tensorial notation as20 

Confinement 
walls 
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where i, j = 1, 2, 3, Xi are the Cartesian coordinates X, Y, Z, t is the time, Ui and u  are the mean 

and fluctuating velocity components, respectively, P is the pressure, ρ is the density, μ is the 

dynamic viscosity and the overbar denotes time-averaged values. Using the Boussinesq 

assumption, the components of the Reynolds stress tensor are given by21 
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where k is the turbulent kinetic energy, μt is referred to as turbulent viscosity and 𝛿ij is the 

Kronecker delta. Based on previous validations18,22, the turbulence is modeled using the unsteady 

Elliptic Blending Reynolds Stress Model (EBRSM)21, which consists of transport equations for 

each of the stress tensor components. The Reynolds stress equations are 
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The terms  (   ) and ( ) are the turbulent transport and viscous diffusion tensors, 

respectively. 

The governing equations (1), (2) and (4) are discretized by the finite volume method and solved 

using the commercial software STAR-CCM+23 with a second-order upwind scheme for convection 

terms and a second-order implicit scheme for time discretization. The SIMPLE algorithm is used 

for pressure-velocity coupling. 

All walls of the confinement cavity are treated as no-slip boundaries and an outflow condition is 

applied at the outlet of the computational domain. To ensure fully developed flow conditions at 

the entrance to the cavity, separate RANS simulations were conducted for the turbulent flow in a 

round pipe and a square duct with hydraulic diameter d = 14 mm. The resulting fully developed 

nozzle exit profiles were mapped as inlet conditions for the simulations in the confinement cavity 

and applied inside the nozzle at 70 mm from the exit to allow for the possibility of some backflow 

into the nozzle. The Reynolds number for these simulations was 27,000 based on the nozzle 

hydraulic diameter, giving the average exit velocity Ue = 1.875 m/s. 

The computational domain (i.e., confinement cavity) is discretized using a hexahedral mesh. The 

domain and mesh in two vertical cross-sections through the nozzles are illustrated in Fig. 4.3. The 

multiblock hexahedral mesh used in this study is comprised of three different regions. A fine mesh 

(0.4 mm) covers the central core region of the jet, while an intermediate mesh (1.6 mm) is used in 

the jet expansion region and a coarser mesh (2.4 mm) is used in the outer regions of the cavity. An 

adequate cell size was determined by performing the simulations on several mesh sizes for the case 

S/d = 2. Several time steps were also considered to ensure time accuracy and numerical stability. 

The grid and time step independence were established by comparing results using 6, 9 and 14 

million cells, and time steps of 0.1 ms, 0.05 ms and 0.01 ms. Based on Figs. 4.4 and 4.5 shown for 

the twin square oscillating jet, a mesh size of 6 million cells and time step size of 0.05 ms were 

selected for subsequent simulations. In these figures, U is the streamwise velocity, Ue is the 

average nozzle exit velocity and t∗ = t × f is a nondimensional time, where f is the oscillating jet 

frequency. For the 6 million cell mesh, the dimensionless distance of the first cell from the walls 

(Y+ = Yuτρ/μ) is less than one, where uτ is friction velocity defined as uτ = (τw/ρ)0.5and τw is wall 

shear stress. The time step of 0.05 ms ensures that the Courant number is less than one 
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                                  (a)  (b) 

Fig. 4.3 Cross-sections of the mesh in the twin square jets domain: (a) XZ plane, (b) XY plane 
 

      

Fig. 4.4(a) Time series of streamwise velocity in a 
square jet at point (14.0d, 0.0, 0.0) 

Fig. 4.4(b) Nondimensional streamwise velocity 
along the symmetry line 

 
Fig.4.5 Non-dimensional streamwise turbulence intensity at X = 5d 

 

The validation was carried out based on the guidelines recommended by the American Institute of 

Aeronautics and Astronautics (AIAA) for validation of CFD results24. The CFD results must be 

validated with several benchmark cases to ensure that the physics of the flow field is properly 

captured. As a first step, the fully developed flow at the nozzle exit was validated with 

experimental results of den Toonder and Nieuwstadt25 for pipe flow and Hoagland26 for a square 
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duct flow. In the second step, the CFD results were validated with the experimental data of Lawson 

et al.19 as reported in our earlier study on single round and square confined oscillating jets18. The 

predicted streamwise velocity along the centerline and at the streamwise distance of X =1.35d 

showed good agreement with the results of Lawson et al.19 The third step involved validation of 

turbulence characteristics. Since Lawson et al.19 did not report turbulence intensity measurements, 

the simulation results were compared with that of Bensider et al.22 for streamwise and spanwise 

turbulence intensities. Comparison of the Reynolds stresses ρu′u′ and ρv′v′, which are computed 

as primary quantities in RSM, demonstrated satisfactory agreement. Additional validation was 

considered by comparing the results for a square jet simulation with the experimental results of 

Kalter et al.27 The jet oscillation frequency evaluation of the velocity-time signal based on FFT at 

point (25.0d, 0.0, 0.0) was found to be in excellent agreement with the experiment. Furthermore, 

the CFD results for the streamwise velocity at two different streamwise distance (X = 8d and X = 

18d) accurately followed the trend of the experimental results (for more details see18).  For brevity, 

the validation results are not repeated here. 

4.4 Results and discussion 
In this section, the effects of nozzle spacing on the velocity, vortex structures, turbulence 

characteristics and oscillation frequency are discussed for both the oscillating round (OR) and 

oscillating square (OS) twin jets. 

4.4.1. Oscillation mechanism of single and twin jets 
The left column in Figure 4.6 shows the flow fields when the single and twin square jets are in 

their maximum left position at some time t = t0 during the oscillation process. The flow fields are 

shown in the maximum right position (right column) of the jet(s) at t = t0 + T/2, where T is the 

period of oscillation. One should note that the values of t0 and T (see Table 2) are case dependent. 

For a single nozzle (Figs. 4.6(a,b)), the jet initially attaches to one sidewall of the cavity due to the 

Coanda effect. As illustrated in Mosavati et al.18, the interaction between the flow features in the 

cavity generates self-sustained oscillation of the jet. In the case of twin jets with a small spacing, 

entrainment between the two jets creates a low-pressure region between them, resulting in 

deflection towards each other2. As illustrated in Figs. 4.6(c,d) for S/d = 2, the pair of jets merge 

and the oscillation mechanism is similar to that of a single jet. This aspect is better described in 

Fig. 4.7, which shows the Z-component of the instantaneous vorticity field with arrows 
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superimposed to indicate direction of flow. In Fig. 4.7(a), at time t = t0, the combined jet is 

deflected to the left sidewall and three rotating regions are formed (labeled as A, B and C). As the 

jet impinges on the left sidewall, a large counterclockwise vortex (A) below the impingement point 

(I) and a clockwise vortex (B) above the impingement point are generated. The high vorticity along 

the right shear layer (indicated in red) feeds vortex A and the one on the left (blue) feeds vortex B. 

The corner vortex (C) is formed at the left top corner as the flow is constrained by the top wall. 

Following impingement on the left wall, the jets commence their movement towards the right wall. 

The mechanics of this process is similar to that reported earlier for a single oscillating jet18. The 

motion of the shear layers towards the right, combined with the physical constraints imposed by 

the cavity walls, cause vortex A to be squeezed and become smaller (Fig. 4.7(b)). Simultaneously, 

the flow in the right-half of the cavity is directed upwards which washes out vortex C. As vortex 

A moves upwards (Fig. 4.7(c)) the flow near the top end is mostly directed to the left, with a small 

portion directed to the right forming a new vortex C' in the top right corner. A major portion of the 

flow is directed downwards along the left-hand side of the cavity, facilitating the growth of vortex 

B as it is transported downwards. Eventually, vortex B occupies most of the bottom half of the 

cavity and the jet impinges on the right wall at time t = t0+ T/2, as shown in Fig. 4.6(d) and Fig. 

4.7.  Following impingement on the right wall and due to the prevailing pressure difference, the 

jets begin their motion towards the left wall. Twin jets with spacing S/d = 3 and 4 also merge and 

exhibit the same oscillatory behavior described above. 

For the higher nozzle spacing (S/d = 5), the two jets shown in Fig. 4.6(e) oscillate separately 

without merging. Unlike smaller values of S/d, the jets travel away from each other and eventually 

the left jet impinges (indicated by I) on the left wall, and simultaneously the right jet impinges on 

the right wall. At one-half of the oscillation period (Fig. 4.6(f)), the jets approach the middle of 

the cavity. A more complete evolution of the flow is presented in Fig. 4.8, which shows the 

instantaneous vorticity field on the plane Z = 0 over a typical oscillating period. As shown in Fig. 

4.8(a), at t = t0, three vortical regions (A, B, C) are formed on each side of the cavity symmetry 

plane (Y = 0). Vortices B are formed due to the roll up of the two outer shear layers, while vortices 

A are fed by the inner shear layers. The two A vortices, rotating in opposite directions, push fluid 

upwards in the region of the symmetry line, while the jets direct fluid downwards. Consequently, 

a saddle point (S) is formed at the symmetry line in the vicinity of X/d = 16. Due to the space 

available in the bottom half of the cavity, vortices A entrain fluid and grow in size, while the 
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growth of vortices B are restricted by the side walls. Furthermore, near the side walls in the vicinity 

2 < X/d < 4, high shear regions (red and blue regions) develop between the counter-rotating 

vortices B and C, which feed the growth of vortices C. On impingement, the inner shear layers 

begin their journey towards the middle of the cavity. At t = t0 + T/8 (Fig. 4.8(b)), the inner shear 

layers penetrate further into the cavity and stretch the vortices A vertically, which results in 

pushing more fluid upwards between the two jets causing the saddle point to move upwards (~ X/d 

= 4). As vortices A continue to stretch vertically and grow in size, they push more fluid upwards 

between the two jets and the saddle point gradually disappears (Figs. 4.8(c) and 4.8(d)). This 

upward flow between the two jets is confined by the top wall and feeds into vortices C. One can 

note that from t = t0 to t = t0 + 3T/8, the jets move inwards towards each other. The growth of 

vortices C pushes vortices B downward as the inner shear layers move closer to the symmetry 

plane. Vortices A occupy the space between X/d = 20 and the outlet. At t = t0 + 4T/8 (Fig. 4.8(e)), 

the inner shear layers get close to each other and begin the process of pushing away from each 

other towards the side walls. In the next few instances, vortices A become smaller and smaller as 

they are pushed towards the outlet (t = t0 + 6T/8, Fig. 4.8(g)). As the inner shear layers approach 

the side walls, they once again begin to role up and form new vortices (denoted as A′) rotating in 

opposite directions. When t = t0 + T (Fig. 4.8(i)), the inner shear layers again impinge on the side 

walls and the flow features are similar to that noted at t = t0 (Fig. 4.8(a)). The oscillations continue 

with the movement of the jets towards the center of the cavity. It is clear from Fig. 4.7 that at lower 

values of S/d, the outer shear layers cause the dominant vortices to be formed, whereas in Fig. 4.8, 

the dominant vortices are associated with the inner shear layer at larger jet spacing. 

             t = t0                   t = t0 + T/2 

            (a)                        (b) 

Single jet Ι Ι
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            (c)                          (d) 

             (e)                          (f) 

 
Fig. 4.6 Instantaneous streamwise velocity contours at times t0 (left column) and t0 + T/2 (half-period; 

right column): (a,b) single OS jet, (c,d) twin OS jets at S/d = 2, (e,f) twin OS jets at S/d = 5  
 

                                    

t = t0      t = t0 + T/4         t = t0 + T/2 

Fig. 4.7 Instantaneous velocity vectors of the OS twin jet (S/d = 2), superimposed on the vorticity 
contours on the plane Z = 0, during a half period (T/2) 
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                      (a) t = t0  (b) t = t0 + T/8             (c) t = t0 + 2T/8 

                

             (d) t = t0 + 3T/8            (e) t = t0 + 4T/8        (f) t = t0 + 5T/8 
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                 (g) t = t0 + 6T/8      (h) t = t0 + 7T/8      (i) t = t0 + T 

 

Fig. 4.8 Instantaneous velocity vectors of the OS twin jet (S/d = 5), superimposed on the vorticity 
contours on the plane Z = 0, during a period (T); (a – i) correspond to time increments of T/8 

 

4.4.2 Effects of jet spacing on jet frequency 
The frequency of jet oscillation has an important role in influencing the jet characteristics. The 

frequency of oscillations was evaluated from Fast Fourier Transform (FFT) of the time series of 

the jet crossflow velocity at the downstream location (13.0d, 2.9d, 0.0). The Strouhal number, Stw, 

based on cavity width W of 250 mm, jet frequency (f) and average jet exit velocity (Ue) is defined 

as: 

St = f ×  (8) 

and shown in Table 2. The results show that the frequency is not significantly affected by changes 

in the jet spacing when the nozzles are relatively close together and the value of Stw is about 25 % 

higher than that of the single oscillating jet. However, as seen in Figs. 4.6(e,f), when S/d = 5, the 

two jets oscillate separately between the wall and center of the cavity, without merging. Hence, 

the Strouhal number for this case should be based on the half-width (W/2) and has a value of 0.014 

which is higher than the single jet and slightly lower than the twin merged jets. The square jets 

have a slightly larger (~ 6 %) Stw than the oscillating round jets for S/d < 3. It should be noted that 

in heat transfer applications, twin jets with a higher nozzle spacing (S/d = 5) can remove heat from 
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hot devices simultaneously on both sides of the cavity, potentially providing for a more uniform 

cooling.  

Table 4.2. Effect of nozzle spacing on the frequency of oscillating round and square twin jets 

 Spacing ratio  Stw 
OR jet OS jet 

Single jet18 - 0.012 0.012 
 

Twin jets 
S/d = 2 0.015 0.016 
S/d = 3 0.015 0.016 
S/d = 4 0.015 0.015 
S/d = 5 0.014 0.014 

 

4.4.3 Mean velocity decay  
Figure 4.9(a,b) shows the evolution of the streamwise mean velocity along the symmetry line for 

twin round and square jets at different jet spacing (S/d). One may recall from Fig. 4.1 that the 

symmetry line refers to the centerline of the cavity, which is located between the two nozzles. To 

enable direct comparison with the results of earlier studies, Umax at the center of the nozzle exit is 

used as the normalizing variable. Results from Mosavati et. al18 for a single oscillating jet, Laban 

et al.11 and Naseri Oskouie et al.12 for free twin jets are also shown to facilitate discussion.  

As seen from Fig. 4.9(a), for a single oscillating round jet, the symmetry line mean velocity, which 

is also the mean velocity along the nozzle axis, is nearly constant for X/d < 4 and can be related 

to the traditional potential core region seen in jets. For X/d > 4, the results indicate a significant 

jet decay. As noted in our previous study18, the growth of the outer shear layers is interrupted in 

the Z-direction in the vicinity of X/d = 4 as the jet has by then fully expanded to the confinement 

walls of the cavity. It should also be noted that the annular shear layers emanting from the nozzle 

are now converted to inner and outer shear layers travelling through a rectangular cross-section 

and with different capacities to entrain external fluid. Coupled with oscillations, the expansion 

charactertistics are different from free jets18. 

In both Figs. 4.9(a) and 4.9(b), the present twin jet results show that the symmetry line mean 

velocity variation is quite different from that of both single OR and OS jets, and twin free jets. The 

twin oscillating jets display two local peaks, one of which is nearly independent of S/d and located 

at X/d ~ 2. With increasing S/d, the second peak decreases in magnitude but is located farther from 

the nozzle exit.  For non-oscillating twin free jets, the results of Laban et al.11 and Naseri Oskouie 
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et al.12 do not indicate the occurrence of the first peak noted in our study. Furthermore, in the twin 

free jet studies of Laban et al.11 and Naseri Oskouie et al.12, in the vicinity of X/D ~ 0, the symmetry 

line velocity results start at zero, whereas for the present flow configuration, the symmetry line 

velocity is influenced by the interaction seen in Fig. 4.7 that keeps the fluid flowing around the 

nozzles, and up and down inside the cavity as demonstrated earlier. 

Meslem et al.28 have suggested that for twin free jets, the merging point can be determined by the 

location where the cavity symmetry line velocity Usym is 10% of the jet centerline velocity. Laban 

et al.11 have also identified their merging point using this definition. However, in twin oscillating 

jets this definition may not be appropriate as the flow physics involves other aspects due to the 

oscillation and high degree of confinement. A detailed evaluation of the streamwise velocity 

distribution through the flow cross-section reveals that although there is interaction between the 

jets, the flow field is quite complex and determination of a definitive merging point is not possible. 

Figure 4.9(c) shows the variation of Usym with X/d at three time instances within the same period 

of oscillation for S/d = 4. Each curve in the graph refers to a different position of the jets within 

the cavity. The curve at t = tA corresponds to the jets being in the extreme right position, the curve 

at t = tA + T/8 corresponds to a position between the symmetry line and the right cavity wall and 

the curve at t = tA + T/4 corresponds to the jets being in the mid-cavity region. It is clear that at 

each position of the jets within the cavity, the distributions are quite distinct. The three distributions 

show the two peaks, though the first peak is located farther into the cavity when the jet is positioned 

at the extreme right. Since the instantaneous distribution varies significantly, it may not be 

meaningful to evaluate a mean merging point for oscillating twin jets. 

  

(a)  

  

 (b) 
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(c) 

Fig. 4.9 Streamwise velocity profiles of twin jets at the symmetry line: Mean velocity (a) round twin 
jets, (b) square twin jets; (c) Instantaneous velocity for round twin jets at S/d = 4 

 

Figure 4.10(a) shows the mean streamwise velocity of twin oscillating round jets at various 

distances from the nozzle exit for S/d = 2. The velocity distribution is symmetric and one half of 

the jet is shown. Over the region 0 < X/d < 7, the peak jet velocity decreases by ~ 40% due to 

entrainment of the surrounding fluid. As the jets begin to interact, they can still be individually 

identified, but the peaks shift towards the line of symmetry as seen at X/d = 5 and X/d = 7. At X/d 

= 9, the two jets appear to combine and behave like a single jet, with a single peak at the line of 

symmetry. For convenience, the concept of an “equivalent single jet” is introduced when two jets 

behave like a single jet. Farther downstream, for 11 < X/d < 13, the equivalent single jet velocity 

decays and the maximum velocity at the symmetry line decreases by ~ 45%. As the flow proceeds 

downstream, the jet oscillation causes the single peak to change into two milder peaks that move 

towards the sidewalls at X/d = 15. These trends are also observed at nozzle spacings of S/d = 3 

and 4. At the larger nozzle spacing, S/d = 5, the two jets can be identified individually. As shown 

in Fig. 4.10(b), peaks in the velocity profiles for each jet are observed at the nozzle centerline at 

all downstream distances in the range 1 < X/d < 15, and the peak value decays as the flow proceeds 

downstream.  

Figure 4.11 shows the mean streamwise velocity of twin oscillating round and square jets at various 

distances from the nozzle for S/d = 2 and 3, and the trend is similar at S/d = 4. Beyond X/d  = 11 

these twin jets behave as an equivalent single jet. For 11 < X/d < 15, the percent of centerline 

velocity decay of equivalent round jets are ~ 64%, 54% and 46% for S/d = 2, 3 and 4, respectively. 
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Also, the percent of centerline velocity decay of square jets are ~ 42%, 31% and 25% for S/d = 2, 

3 and 4, respectively. The results show that the equivalent single round jets decay faster than the 

square jets. Moreover, for 11 < X/d < 15, the percent of centerline velocity decay of a round jet is 

55% for S/d = 5 (Fig. 4.10(b)), which is lower than for S/d = 2 due to the difference in the 

oscillation characteristics. At S/d = 5, the two jets behave as two single oscillating jets18. The trend 

of velocity decay for the round and square oscillating jets are similar at S/d = 5. Furthermore, for 

11 < X/d < 15, the percent of centerline velocity decay of the single oscillating18 jets are ~ 53% 

and 56% for the round and square jets, respectively.  

  
(a) (b) 

Fig. 4.10 Mean streamwise velocity of twin oscillating round jets: (a) S/d = 2 (b) S/d = 5 

 

                   
Fig. 4.11 Mean streamwise velocity of oscillating twin round and square jets: (a) S/d = 2, (b) S/d = 3 

 

In turbulent jets, decay and spread rates are important, and a higher rate of jet decay and spread 

improves jet mixing due to higher entrainment with the surrounding fluid. However, as seen from 

the above discussion, the flow physics of the oscillating jets is complex. As illustrated in Fig. 
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4.9(c), the symmetry line velocity of the jets changes during the oscillation and the decay and 

spread rates are not straight-forward calculations. The time-averaged results help to understand the 

trends and provide a qualitative comparison with traditional free jets.   

4.4.4. Turbulence characteristics and Reynolds shear stress 
The streamwise turbulence intensity urms/Ue for twin round jets at various axial locations for S/d = 

2 and 5 are shown in Figs. 4.12(a,b). The streamwise turbulence intensity is symmetric and one 

half of the jet is shown. Figure 4.12(a) shows that near the nozzle exit (X/d = 1), the turbulence 

intensity profiles exhibit four peaks (two for each jet) in the vicinity of the shear layers due to the 

high production of turbulence in these regions. During expansion of the jets, the outer shear layers 

shift inwards and, at X/d = 9 the inner shear layer has disappeared and the equivalent single jet is 

formed. Furthermore, the turbulence intensity at the center of the cavity (Y = 0) increases 

gradually. At X/d = 11 and X/d = 13, the turbulence intensity has one peak at the center.  The 

turbulence intensity is maximum at X/d = 11 which decreases by 25% at X/d = 13. Farther 

downstream, at X/d = 15, the turbulence intensity at the center decays by 30% and one peak 

converts to two mild peaks due to jet oscillation. Twin jets with larger nozzle spacing (S/d = 3 and 

4) behave similar to the S/d = 2 case. Figure 4.12(b) illustrates that twin jets at S/d = 5 behave like 

two separate jets with four peaks (two peaks at the shear layers of each jet) for X/d < 9. Moreover, 

the maximum turbulence intensity at the centerline of each jet increases until X/d = 9, where one 

peak is observed on each side. Further downstream the turbulence intensity decays gradually. The 

flow oscillation patterns for S/d = 2 and S/d = 5 are different. Twin jets have a higher turbulence 

intensity at the center of the cavity for S/d = 2, 3 ,4, and around the centerline of each jet when S/d 

= 5, which can be exploited in different industrial applications. Furthermore, the results in Fig 

4.12(a) demonstrate that the maximum turbulence intensity at the center of cavity for a single jet18 

is 20% higher than the maximum for twin jets at S/d = 2. 
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 (a)  (b) 
Fig. 4.12 Mean streamwise turbulence intensity of oscillating twin round jets: (a) S/d = 2, (b) S/d = 5  

The normalized Reynolds shear stress (u′v′/U ) of twin round jets are shown on the Z = 0 plane 

for S/d = 2 in Fig. 4.13(a). The normalized Reynolds shear stress is symmetric and one half of the 

jet is shown. The larger spatial extension of the outer shear layer compared to the inner shear layer 

promotes greater mixing in the outer region. When the two jets spread, the spanwise development 

of the jets is inhibited by the presence of the neighboring jet, and the jets cannot develop freely, 

leading to greater development of the outer shear layer compare to the inner shear layer. Increasing 

nozzle spacing decreases the interaction between the jets, allowing the jets to develop more in the 

spanwise direction, increasing the size of the inner shear layer as illustrated in Fig. 4.13(b). The 

profiles in Fig. 4.13(a) show four peaks (two peaks for each jet) for 1 < X/d < 5 and, moving 

downstream at X/d = 9, the equivalent single jet shows one peak at each side. Furthermore, the 

Reynolds shear stress peak values move towards the symmetry line as shown for X/d = 1 to 9. 

Further downstream, for 9 < X/d ≤ 15, the Reynolds stress dissipates and the maximum value 

decreases. At S/d = 5, Fig. 4.13(b) demonstrates that the flow oscillation trend is like a single18 

oscillating jet and the Reynolds shear stress values are higher than for S/d < 5 due to higher 

entrainment of the inner shear layer. 
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 (a)  (b) 

Fig. 4.13 Mean Reynolds shear stress of oscillating twin round jets: (a) S/d = 2, (b) S/d = 5 
 

4.5 Conclusions 
The unsteady Reynolds stress turbulence model is used to investigate twin self-oscillating round 

and square jets in a rectangular cavity at a Reynolds number of 27,000. The effects of nozzle 

spacing-to-diameter ratio (S/d) on the jet velocity, vortex structure, turbulence characteristics and 

oscillation frequency are studied. It is observed that the twin oscillating jets merge for low S/d and 

the oscillation frequency is not significantly affected by increasing the nozzle spacing. However, 

for nozzle spacing ratios S/d = 5, the two jets do not merge but oscillate separately between the 

sidewalls and center of the cavity.  

The oscillation of the jets is due to the formation of vortices that expand, elongate and contract. 

For small S/d, the jets merge into an equivalent single jet. As these vortices move inside the cavity, 

fluid is pushed upward and downward along the sidewalls, deflecting the jet. The twin jets do not 

merge for larger S/d and, although the vortices continuously deform, they do not travel within the 

cavity, causing each jet to oscillate between the respective sidewall and the cavity centerline. 

Investigation of the streamwise turbulence intensity of twin oscillating jets at different distances 

from the nozzle exit revealed that at small S/d the turbulence intensity profiles have four peaks in 

the vicinity of the shear layers. After jet expansion, the inner shear layers disappear and an 

equivalent single jet is formed. Farther downstream, the turbulence intensity at the center decays 

and two mild peaks are observed. Moreover, the twin jets have a higher turbulence intensity at the 

centerline of the cavity for S/d < 5, and the turbulence intensity is higher around the centerline of 

each jet when S/d = 5. 
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The Reynolds shear stress profiles of twin jets demonstrated that for S/d = 5, the flow oscillation 

trend is like two single oscillating jets. Furthermore, the Reynolds shear stress profiles for S/d < 5 

show lower values compared to S/d = 5 due to the lower entrainment of the inner shear layer of 

S/d < 5. These results show that twin oscillating jets provide higher spread and turbulence intensity 

over a wider area which may be beneficial for cooling of hot devices in industrial applications. 
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Nomenclature  
d Nozzle diameter  

f Frequency  

k Turbulent kinetic energy (m2 s−2)  

OR Oscillating round  

OS Oscillating square  

P Pressure  

Pij Production tensor  

Stw Strouhal number  

t Time (s)  

T Period of oscillations (s)  

U Streamwise mean velocity (m s−1)  

Ue Nozzle exit average velocity (m s−1)  

Usym Symmetry line velocity (m s-1)  

Umax  Maximum velocity at nozzle exit (m s−1)  

u , v  Velocity fluctuations (m s−1)  

urms Streamwise rms velocity value (m s−1)  

W Cavity width  
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X, Y, Z Cartesian coordinates  

Xmp Merging point of twin jets  

Xcp Combining point of twin jets  

Y+ Wall normal distance  

δ  Kronecker delta  

ϵ  Dissipation tensor  

π  Velocity–pressure gradient tensor  

𝜌 
μ 

Density 
Dynamic viscosity 

 

μ  Turbulent viscosity  

ω  Z-component of vorticity  
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Chapter 5. Use of self-oscillating jets in cooling applications 
 

5.1 Summary 
In the present computational study, a preliminary assessment of self-oscillating jets for use in 

cooling applications is investigated. The jet exits from a square nozzle into a narrow rectangular 

cavity at a Reynolds number of 54,000 based on nozzle hydraulic diameter and average jet exit 

velocity. The heated devices, such as electronic chips, are located externally on the front surface 

of the cavity. A three-dimensional numerical simulation of the flow is conducted by solving the 

unsteady Reynolds-Averaged Navier-Stokes (URANS) and energy equations to assess the thermal 

features of the flow field. The turbulence is modeled using RSM. Furthermore, the cooling 

performance of a self-oscillating jet is compared with that of a wall jet and a channel flow for the 

same flow conditions and the same arrangements of the hot devices. To this end, the cooling 

efficacy of two different arrangements of heated devices is evaluated. The self-oscillating jet 

provides a higher heat transfer for heated blocks which are located farther from the central region, 

while the wall jet improves heat transfer around the central region. Self-oscillating jets can improve 

heat transfer over a larger area when the heated devices are aligned orthogonal to the axis of the 

nozzle. On a Nusselt number (Nu) comparative basis, the channel flow provides the least desirable 

heat transfer performance. 

  

5.2 Introduction 
Jets are used in many engineering heat transfer applications. Some potential applications include 

turbine blade surface cooling, oil jet cooling to prevent piston overheating, drying of paper or 

textiles, and cooling of electronic components. Jets provide a mechanism to improve heat transfer 

from the hot surfaces during the cooling process. Many cooling systems use impinging jets1. In 

some applications, an unsteady oscillating jet can be used, especially when there are geometry 

constraints. Many studies have been reported for cooling systems using channel flow or jets. Some 

of the relevant studies are summarized in Table 5.1. 

 

 

 



75 
 

Table 5.1. Summary of literature review 

Author Flow type Technique Condition Schematic of geometry 

Xu et al. 2 Channel flow CFD 
 

ReL = UL/𝜗 = 104 -
1.5×105 

H/L = 0.125 to 1 

 

Tou et al. 3 Channel flow Experimental ReL = 3000 - 84000 

Tso et al. 4 Channel flow 
 

Experimental ReL = 600 - 8000 
H/L = 0.5, 0.7, 1 

Amon et al. 5 Oscillating flow 
(Communicating 

channels) 
 

Experimental ReH = 3/4 (UeH/𝜗) = 
100 - 400 
L/H = 2-6 
L1/H = 0.2 
 

 
 

Valencia 6 Oscillating flow 
(Communicating 

channels) 

Experimental/
CFD 

ReH = UeH/𝜗 = 100 -
400 
L1/H = 0.5 

Iachachene       
et al. 7 

Self-oscillating 
impinging jet 

CFD Red = Ued/𝜗 = 4000 - 
8000 
 

 
Behera et al.8 Pulsing 

impinging jet 
 

CFD  Red = 5000 - 8500 
 h/d = 5,7,9  

 

Zhou et al. 9 Pulsing 
impinging jet 

Experimental Red = 7500 
h/d = 6 
 

Xu et al. 10 Pulsing 
impinging jet 

CFD Red = 3000 - 8000 
h/d = 3, 5, 8 

Park et al. 11 Sweeping 
impinging jet 

Experimental Red = 3600 - 15000 
Lower h/d (h/d = 1 - 2) 

Hossain et al. 12 Sweeping 
impinging jet 

CFD Red = 10000 - 35000 
h/d = 3 - 8 

           

Hossain et al. 13 Sweeping 
impinging jet 

 

Experimental h/d = 3 - 6  
A/R = 0.5 - 1 
S/d = 4, 6 

ṁ = 0.1 - 4 g/s 

              
   
 
 
 
 

*CFD: Computational study, H: Channel width, L: Heat source length, U: Channel average velocity, Ue: Nozzle average 
velocity, L1/H: Blockage ratio, h/d: Stand-off distance ratio, A/R: Aspect ratio, P/d: Jet spacing ratio, ṁ: Mass flow rate 

Flow Hot surfaces 

Hot surfaces 

Flow 
Hot surfaces 

Flow 

Hot surface 

Hot surface 

R = 10d , 20d and ∞  

Hot surface 

R = 105 mm  
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Xu et al.2 conducted a numerical investigation of two-dimensional forced convection heat transfer 

between two walls, for the case in which discrete heat sources (electronic chips) were installed on 

one wall. The authors studied the effects of flow channel orientation and the ratio of the channel 

height to the heated block length on the heat transfer for two working fluids, water and Fluorinert™ 

Electronic Liquid (FC-72). Their results showed that the orientation of the channel did not have a 

significant effect on the cooling of the hot devices. Moreover, it was determined that water cooling 

performance was better than FC-72. Tou et al.3 investigated four hot blocks in a line for a single-

phase heat transfer with FC-72 as a working fluid. The authors studied two configurations of 

protruding and flush-mounted blocks. The results indicated that heat transfer from the protruding 

blocks was greater than the flush-mounted blocks. Moreover, the heat transfer difference between 

the two configurations increased at higher Reynolds numbers. Tso et al.4 conducted an 

experimental study of forced convection heat transfer for four in-line hot blocks, which were 

located on a wall of a vertical rectangular channel. The results indicated that the effect of the 

channel height on the Nusselt number was weak, while the effect of Reynolds number on the 

Nusselt number was strong.  

The use of an oscillating jet has attracted much attention for heat transfer enhancement. To 

compare heat transfer performance, Amon et al.5 carried out numerical and experimental 

investigations exploring the use of communicating channels as a mechanism to improve heat 

transfer. Rectangular bars were installed in a line at the center of the channel. It was concluded 

that use of the communicating channels with an interrupted surface increased the heat transfer 

compared with the plane channel. Communication between surfaces in the channel improved heat 

transfer by enhancing the mixing due to vortex generation in the transverse direction. In another 

study with similar geometry, Valencia6 numerically investigated the flow structure with mounted 

transverse vortex generators in the channel at a higher blockage ratio. The author showed that the 

heat transfer rate increased significantly due to the self-sustained oscillations. Iachachene et al.7 

investigated the heat transfer in a cavity with a self-oscillating jet using the URANS k-ω model. 

It was determined that the cooling of walls of the cavity occurred simultaneously. The authors 

proposed a Nusselt number correlation based on nozzle-to-bottom wall distance and Reynolds 

number.  
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Furthermore, improving cooling performance using impinging jet heat transfer has been 

undertaken with pulsating oscillating jets. Behera et al.8 studied the effects of flow pulsation on 

heat transfer using the URANS k-ε model. It was concluded that the Nusselt number had a high 

value at a jet-to-plate spacing ratio of h/d = 7 compared to h/d = 5 and 9. The heat transfer was 

enhanced for pulsating square and sine wave jets compared to the steady jet. They illustrated that 

the pulsed impinging jet increased the heat transfer in the wall jet region by 35% and 10% for 

square and sine wave jets, respectively. An experimental study was carried out by Zhou et al.9 to 

investigate the effects of unsteady jet impingement with sinusoidal and rectangular shape signal 

pulsations on smooth and non-smooth surfaces. With sinusoidal and rectangular pulsations, the 

average Nusselt number of the smooth surface increased up to 10% and 40%, respectively. 

Furthermore, sinusoidal pulsations decreased heat transfer of non-smooth surface, while 

rectangular pulsations increased the heat transfer of non-smooth surface significantly. Xu et al.10 

conducted a two-dimensional numerical study of heat transfer under a pulsating turbulent slot 

impinging air jet using the Reynolds stress model (RSM). The intermittent pulsating jet showed a 

significant effect on the heat transfer rates. It was determined that the effects of intermittent 

pulsation were related to larger vortices, and higher entrainment and mixing, which were generated 

by flow instabilities. 

Fluidic oscillators have also been used to generate sweeping jets for heat transfer enhancement in 

cooling systems. Park et al.11 carried out an experiment to investigate the heat transfer of a 

sweeping air jet impinging on a flat wall at various Reynolds numbers (3600 - 15000) and low 

values of h/d (= 1 to 2). They observed two divided regions, and showed that the maximum Nu 

occurred at Y/d < 1, and the value of Nu decreased at Y/d > 1, where Y is the transverse distance 

from the impinging point. The results showed that heat transfer increased with increasing Reynolds 

number and decreasing h/d. At a farther distance from the center, the lateral velocity was reduced, 

which resulted in a decreasing heat transfer rate. Hossain et al.12 investigated the effect of concave 

curvature on heat transfer by a sweeping air jet impingement using URANS SST k-ω at h/d in the 

range 3 - 8 and Red in the range 10000 - 35000. It was concluded that heat transfer augmentation 

increases with Reynolds number and decreases with jet-to-wall spacing for both sweeping and 

steady jet impingement. Furthermore, the results indicated that heat transfer deteriorated for highly 

curved surfaces, and heat transfer performance was enhanced for moderate curvature. In another 

study13, the authors carried out an experimental investigation of cylinder turbine blades cooling 



78 
 

using an array of sweeping jets for which h/d = 3 - 6, jet aspect ratio (AR = 0.5 - 1), jet spacing 

(S/d = 4, 6). It was concluded that the maximum sweeping jets cooling performance occurred at 

low h/d, high aspect ratio and low S/d. 

The flow characteristics of self-oscillating jets have been investigated in our previous work14 and 

also reported in Chapter 3. The results showed that the oscillatory flow can potentially contribute 

to mixing and entrainment. The self-oscillating jet showed a complete mixing within a short 

distance from the nozzle, and a higher jet spread compared to non-oscillating jets. The main focus 

of this chapter is to extend our previous work14 to investigate the cooling performance of 

oscillating flow. While most of the previous studies were conducted on impinging jet cooling 

systems, this study is focused on self-oscillating jet cooling systems. To this end, the cooling 

performance of an unsteady self-oscillating jet, wall jet and channel flow with vertical and 

horizontal arrangements of heated blocks are compared in terms of temperature and Nusselt 

number.  

 

5.3 Geometry and numerical procedure 
The computational domain (i.e. confinement cavity) was discretized using a hexahedral mesh with 

7 million cells for the self-oscillating and wall jets and 6 million cells for the channel flow. The 

cell sizes were determined to be adequate after performing a mesh dependency study for the 

channel flow and self-oscillating jet. For this mesh, the dimensionless distance of the first cell from 

the walls (Y+ = Yuτ/ν) is less than one, where ν is kinematic viscosity and uτ is friction velocity 

defined as uτ = (τw/ρ)0.5, where τw is the wall shear stress. Moreover, the detailed analysis of the 

mesh dependency study has been investigated in our previous work14 on self-oscillating jets and it 

is not repeated here for brevity. An example of the channel flow mesh independence is presented 

in a forthcoming section. The governing Navier-Stokes equations were discretized by the finite 

volume method and solved using the commercial software STAR-CCM+15 with a second-order 

upwind scheme for convection terms and second-order time implicit scheme for time 

discretization. The time step was set at 0.01 ms, which ensured that the Courant number is less 

than one. The SIMPLE algorithm was used for pressure-velocity coupling. The Reynolds-

Averaged Navier-Stokes equations for unsteady incompressible flow in the tensorial notation are16 

∂U

∂X
= 0 (1) 
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ρ
∂Ui

∂t
+ Uj

 ∂Ui

∂Xj
= −

∂P

∂Xi
+

∂

∂Xj
μ

∂Ui

∂Xj
− ρu′iu′j

(2) 

 

where Ui and u  are the mean and fluctuating velocity components, respectively, P is the pressure, 

ρ is the density, μ is the dynamic viscosity and the overbar denotes time-averaged values. Using 

the Boussinesq assumption, the components of the Reynolds stress tensor are given by 

ρu′ u′ = ρkδ − μ + (3)                     

where k is the turbulent kinetic energy, 𝜇t is referred to as turbulent viscosity and 𝛿ij is the 

Kronecker delta. In this study, the unsteady Elliptic Blending Reynolds Stress Model (EBRSM)17, 

which consists of transport equations for each of the stress tensor components, was used to model 

turbulence. The energy conservation equation is expressed as 

ρ
∂T

∂t
+ U

 ∂T

∂X
=

∂

∂X

μ

Pr

∂T

∂X
− ρu′iθ (4) 

where T is the temperature, θ is the temperature fluctuation and Pr = μ/ρα is the Prandtl number, 

where α is the thermal diffusivity. Based on the Boussinesq assumption, the temperature 

fluctuation is defined as  

ρui
′θ =  σ  

∂T

∂X
(5) 

where σ  is the turbulent Prandtl number, defined by the following equation: 
 

σ =  
μ

α
(6) 

 Here, α  is the turbulent thermal diffusivity. 

 

For the investigation of cooling systems, hot blocks can be considered as electronic chips which 

are arranged in both vertical and horizontal arrangements as illustrated in Fig. 5.1.  

In the case of the jets, a separate simulation was conducted for the turbulent flow in the square 

nozzle with hydraulic diameter d = 14 mm to produce fully developed flow conditions at the nozzle 
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exit. The inlet boundary conditions were applied inside the nozzle at 20 mm from the exit to ensure 

an accurate representation of the flow at the exit location. For the channel flow, the results of a 

separate simulation for fully developed flow was applied at the inlet. All walls of the confinement 

cavities had no-slip conditions and an outflow condition was applied at the outlet of the 

computational domain.  

   

 (a)  (b) (c)  

   

(d) (e) (f) 

Fig. 5.1 Schematic of the cavity with hot blocks: (a, d) channel flow, (b, e) self-oscillating jet, (c, f) 
wall jet. Hot block arrangements: (a, b, c) vertical, (d, e, f) horizontal. (Not to scale) 

For both arrangements, four in-line hot devices were located on the front surface of the cavity. 

Each device had a dimension of 40 mm x 40 mm. The distance between the heated blocks was 10 

mm, and the hot block heat flux was 105 W/m2. Block number 1 was located at X/d = 2.6 and X/d 

= 6.2 for the vertical and horizontal arrangements, respectively. In the case of the jets, the 

coordinate system origin was located at the nozzle exit. However, the coordinate system for the 

channel flow was located 95 mm below the inlet (Fig. 5.1). The flow properties, as summarized in 

Table 5.2, were the same for both the vertical and horizontal arrangements. The fluid (water) was 

1 

3 

2 

4 

1 

2 

3 

4 

1 

2 

3 

4 

1 2 4 3 1 2 3 4 

1 2 3 4 
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assumed to be incompressible with a density of 997 kg/m3 and dynamic viscosity of 9.7x10-4 

kg/(m.s). All solid walls were assumed to be smooth. 

 

Table 5.2. Flow parameters of channel flow, wall jet and self-oscillating jet 

Channel flow Wall jet Self-oscillating jet 

Re  U  
(m/s) 

Inlet mass flow 
rate (kg/s) 

Red U 
(m/s) 

Inlet mass flow 
rate (kg/s) 

Red U 
(m/s) 

Inlet mass flow 
rate (kg/s) 

5200 0.0735 0.7328 54000 3.75 0.7328 54000 3.75 0.7328 

 

5.4 Validation 
In this section, the two-dimensional forced convection heat transfer results for four in-line hot 

blocks with flush-mounted design in the channel flow are compared with the results of Xu et al.2. 

The geometry is shown in Fig. 5.2, where the first discrete heat source was located at a distance of 

3L from the channel entrance, and the channel exit was located at a distance of 5L from the last 

heat source, with L = 12.7 mm. The inlet condition was a fully developed flow that was created in 

a separate simulation and the results were mapped to the main simulation inlet. The Reynolds 

numbers for water and FC-72 are 104 and 105, respectively, with an inlet temperature of 30℃ and 

heat flux of q  = 105 W/m2.  

 

Fig. 5.2 Schematic of four in-line hot blocks (adapted from Xu et al.2) (Not to scale) 
 

To investigate grid independency, 0.5, 1.0, 2.5 and 4.5 million cells were used to compare the 

predicted wall temperature distribution on the surface of the hot blocks. The results show that the 

temperature distribution did not change with increasing cell numbers, as illustrated in Fig. 5.3. 
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Fig. 5.3 Effect of grid size on the wall temperature distribution (ReL = 104) 
 

The temperature distribution on the wall with the hot blocks, for both water and FC-72, is shown 

in Fig. 5.4. The results show that the block number (i.e., their in-line position) does not have much 

effect on the wall temperature distribution, which is in good agreement with the results of Xu et 

al.2 

  

Fig. 5.4 Wall temperature distributions for four in-line heat sources: (a) water at ReL = 104, b) FC-72 at 
ReL = 105 

As a means of further demonstrating validation, the numerical results using FC-72 as the coolant 

and the experimental results of Gersey and Mudawar18 are shown in Fig. 5.5. The wall temperature 

distributions for the four hot blocks over a range of Reynolds number of 104 - 105 are shown in this 

figure. Gersey and Mudawar18 found that there was a single correlation for the heat transfer 

coefficient. The present results are in good agreement with that of Gersey and Mudawar18.  
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11 

 Fig. 5.5 Comparison of simulation and experimental heat transfer of the hot blocks 

5.5 Results 
In this section, the thermal features of flow in terms of temperature and Nusselt number are 

discussed. The results of the self-oscillating jet, the channel flow, and the wall jet simulations are 

compared for both vertical and horizontal arrangements of the heated elements. The time-averaged 

results are for 10 oscillation cycles after the oscillations have stabilized. 

The comparison of the time-averaged temperature field of the four heated blocks are shown in Fig. 

5.6 for the same mass flow rate of the fluid. The self-oscillating jet (Fig. 5.6(a)) provides a lower 

temperature on the hot blocks compared to the channel flow, albeit slightly higher than that in the 

case of the wall jet flow. It should be noted that the wall jet is 10 mm closer to the wall on which 

the blocks are located. Further, the wall jet is concentrated in the region of the heated blocks.  
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                  (a)                        (b) 
      

                 (c) 

 
Fig. 5.6 Temperature distribution of hot blocks: (a) self-oscillating jet, (b) wall jet, (c) channel flow 

The time-averaged temperature field of the four heated blocks in a horizontal configuration are 

shown in Fig. 5.7. From this figure it is clear that the self-oscillating jet provides for the least 

temperatures on all blocks and is marginally better than that seen in the wall jet flow even for 

the middle two blocks. Clearly, the performance of the self-oscillating jet is superior to that seen 

in the channel flow.  

                                        (a)  
                                       

   (b) 
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                                      (c)  
 

Fig. 5.7 Temperature field of hot blocks: (a) self-oscillating jet, (b) wall jet, (c) channel flow 
 

The surface-averaged Nusselt number, which depends on the time, is calculated from 

Nu  (t) =  (q L)/[(T(t) − T )K  ]                                                         (7) 

where q  = 105 W/m2 is the heat flux, L = 40 mm is the length of each block, T = 25℃ is the 

inlet temperature and K  is the fluid thermal conductivity. 

To examine the effect of jet location on the overall flow and heat transfer process, the instantaneous 

surface-averaged Nusselt number distribution on the hot blocks in a horizontal arrangement of 

heaters is shown in Fig. 5.8. This figure indicates that the surface-averaged Nusselt number of the 

wall jet and channel flow (Fig. 5.8(b,c)) does not change significantly over time while, for the self-

oscillating jet, it varies at different locations. The instantaneous surface-averaged Nusselt number 

of the self-oscillating jet varies periodically with time. A maximum peak of Nuav for the second 

hot block corresponds to a minimum value for the Nuav for the third hot block and vice versa. 

Furthermore, the shape of the instantaneous signals are symmetrical due to the flapping motion of 

the jet.   

   
(a) (b) (c) 

Fig. 5.8 The surface-averaged Nusselt number variation of hot blocks in horizontal arrangement of 
heaters: (a) self-oscillating jet, (b) wall jet, (c) channel flow   
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Figure 5.9 shows the double-averaged (i.e., space and time-averaged) Nusselt number (Nu) for hot 

blocks. The channel flow shows a nearly constant Nusselt number for the horizontal and vertical 

arrangements. In the case of horizontal arrangement, the oscillating jet shows a higher Nusselt 

number, which illustrates the higher heat transfer due to the oscillation motion and mixing flow. 

However, in the case of vertical arrangement the wall jet shows a higher Nusselt number due to 

the higher momentum of flow. The above results clearly indicate the usefulness of self-oscillating 

jets for the cooling of hot blocks. 

  (a)  (b) 

Fig. 5.9 Double-averaged Nusselt number of hot blocks: (a) vertical arrangement, (b) horizontal 
arrangement 

5.6 Conclusions 
In this chapter, an unsteady Reynolds stress turbulence model is used to investigate the cooling 

performance of self-oscillating jets at a Reynolds number of 54,000. The cooling performance of 

the self-oscillating jet is compared to the wall jet and channel flow in terms of Nusselt number for 

vertical and horizontal arrangements of hot devices (electronic chips). The results indicated that 

the channel flow has a lower Nusselt number due to the lower flow momentum. Furthermore, the 

wall jet showed a higher Nusselt number compared to the self-oscillating jet in the case where the 

initial jet axes are in-line with the arrangement of the blocks. For this arrangement, the wall jet is 

in closer proximity to the heated blocks than the self-oscillating jet. The self-oscillating jet 

increased heat transfer on a wider surface especially when the hot devices were located in a 

horizontal arrangement. Given the diverse nature of practical applications, detailed investigations 

need to be carried out for higher heat flux at the block surface and for other geometrical 

arrangements. 
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Nomenclature  
 
   
 

 

d Nozzle hydraulic diameter (m)  

dh Channel hydraulic diameter (m)  

h Jet-to-wall spacing (m)  

K  Fluid thermal conductivity (W/m.K)  

L Block length (m)  

ṁ Mass flow rate (g/s)  

Nu  Surface-averaged Nusselt number  

Nu Double-averaged Nusselt number  

Pr Prandtl number  

q  Heat flux (W/m2)  

ReL Reynolds number based on length of hot block (= ρUL/µ)  

t Time (s)  

T Temperature (K)  

U Streamwise mean velocity (m s−1)  

Ue Nozzle exit average velocity (m s−1)  

u  Velocity fluctuations (m s−1)  

X, Y, Z Cartesian coordinates  

Y+ Wall normal distance  

α Thermal diffusivity (m2/s)  

α  Turbulent thermal diffusivity (m2/s)  

δ  Kronecker delta  

ρ 

μ 

Density (kg/m3) 

Dynamic viscosity (kg/m.s) 

 

μ  Turbulent viscosity (kg/m.s)  

θ Temperature fluctuation (K)  

σ   Turbulent Prandtl number  
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Chapter 6. Conclusions and recommendations 
 

The overall objective of this study was to analyze the unsteady self-oscillatory jet flow in a cavity. 

The CFD simulations were conducted using the unsteady Reynolds-Averaged Navier-Stokes 

(URANS) equations with the Reynolds Stress Model (RSM) for turbulence. The study consisted 

of three sections: 

 1) Flow characteristics of single self-oscillating jet in a cavity using round and square nozzles 

2) Twin self-oscillating jet characteristics  

3) Cooling of hot devices using self-oscillating jets  

6.1 Conclusions 
A review of the literature revealed the lack of a comprehensive study on self-oscillatory jet flow 

field characteristics which can potentially contribute to the mixing and entrainment of fluid in a 

confined cavity. This study focused on the physics of the self-oscillatory jet to evaluate the flow 

characteristics which can be used for heat transfer enhancement. The effects of the oscillation on 

the behavior of flow properties were studied in terms of mean velocity, turbulence intensities and 

Reynolds shear stresses for both round and square self-oscillating confined jets and free jets. 

Identification of high turbulence intensity regions may be useful in applications to achieve higher 

heat transfer. Moreover, the unsteady Reynolds stress turbulence model was used to investigate 

the vortex ring deformation of confined oscillating round and square jets at a Reynolds number of 

54,000. To this end, the vortex deformation in the jet was examined when the vortex ring impinges 

on the confinement walls. The results for the instantaneous vortex deformation showed that for the 

square jet, axis-switching occurred at approximately 0.7 diameters from the nozzle exit. 

Furthermore, it was shown that the deformed rings convert to two tornado-like vortices as they 

travel downstream. After creation of these tornado-like vortices, the vorticity direction changes 

from the confinement direction to the spanwise direction. A comparison of the oscillating round 

and square jets illustrated that nozzle geometry shape did not have a significant effect on the 

impingement point of the jet on the side walls, nor on the frequency of oscillation. The results 

demonstrated that the decay rate of the oscillating round jet was lower in the region 3 < X/d < 6 

and higher for 6 < X/d < 15 compared to the square jet, where X is the streamwise distance from 

the nozzle exit and d is the nozzle hydraulic diameter. The streamwise turbulence intensity showed 
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two peaks in the near-field, which were converted to a single peak at X/d ≈ 7. Moving downstream 

decreased the turbulence intensity and two peaks reappeared. The results showed that the 

oscillating square jet had a wider spread compared to the round jet. Furthermore, the self-

oscillating jet had wider spread (40% higher) compared to the free jet, suggesting that the self-

oscillating jet can be used to achieve more surface temperature uniformity in heat transfer 

applications.  

The flow characteristics of twin self-oscillating jets were also studied. The majority of previous 

twin jet studies dealt with twin free jets, twin synthetic jets and twin sweeping jets. The present 

study investigated twin self-oscillating jets in a confined cavity when the jet oscillations are due 

to the Coanda effect. This study focused on the self-oscillatory flow field characteristics of twin 

jets for the region 1 < X/d < 15, and the effects of nozzle spacing (S/d = 2, 3, 4, 5) on the frequency 

and other jet properties. URANS with RSM was used to investigate the flow of twin self-oscillating 

jets in a rectangular cavity for Reynolds number of 27,000. The effects of nozzle spacing on the 

jet mean velocity, turbulent characteristics and oscillation frequency were studied. The results 

showed that increasing the jet spacing did not significantly affect the frequency of the twin jets. 

However, after S/d ≈ 5, the two jets did not merge, but oscillated between the sidewalls and center 

of the cavity, separately. When the nozzle spacing increases, the two jets are closer to the side 

walls and entrainment between the jets and sidewalls decreases. At higher nozzle spacing (S/d ≥

 5), the two jets attach to the walls instead of merging and the two jets oscillate separately in 

opposite directions across half of the cavity width. The streamwise turbulence intensity of twin 

self-oscillating jets illustrated that at small S/d the turbulence intensity profiles showed four peaks 

in the vicinity of the shear layers. Moving downstream, the turbulence intensity at the center 

decayed and two mild peaks were observed. The turbulence intensity of twin jets was higher at the 

centerline of the cavity and around the centerline of each jet for S/d < 5 and for S/d = 5, 

respectively. Furthermore, the Reynolds shear stress profiles at S/d = 5 showed higher values 

compared to S/d < 5. These higher values are due to the lower entrainment of the inner shear layer 

when S/d < 5. The results showed that the spread and turbulence intensity over a wide region of 

twin self-oscillating jets are higher, resulting in the potential for a higher heat transfer. 

Finally, the characteristics of self-oscillating jets have been investigated to assess their cooling 

performance. Horizontal and vertical arrangements of heated elements were considered. The 
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cooling performance in terms of Nusselt number were compared for self-oscillating jets, wall jets 

and channel flow. The results demonstrated that the channel flow had a lower Nusselt number for 

both vertical and horizontal arrangements of hot blocks. The wall jet produced a higher Nusselt 

number in a vertical arrangement compared to the oscillating jet due to the higher momentum and 

turbulence intensity of the wall jet. Furthermore, the self-oscillating jet increased heat transfer on 

a wider surface and is a viable option for the cooling of heated elements, especially when the 

electronic chips are located in a horizontal arrangement. 

6.2 Recommendations 
In this study, the URANS with RSM turbulence model was found to be accurate enough to capture 

the flow physics of the self-oscillatory jet flow. Although other turbulence models such as LES, 

DES and IDDES are expensive, these models can be used instead of the URANS models. In LES, 

DES and IDDES turbulent models, the influence of turbulence on the generation, transfer and 

breakdown of vortical structures can be captured with higher accuracy. These turbulent models 

should provide more information on vortex structures breakup in the oscillating flow, resulting in 

a better understanding of the flow characteristics. Furthermore, the λ2-criterion was used to capture 

the vortex dynamics. It could be informative to use other criteria to capture the vortex dynamics 

of the oscillatory jet flow.  

From an applications perspective, the cooling of hot devices using twin self-oscillating jets could 

be investigated. The oscillating jets cover larger regions compared to free jets which potentially 

improves the cooling performance. Confined self-oscillating twin jet parameters such as nozzle 

size and location, nozzle spacing and flow rate can be optimized to yield maximum cooling 

efficiency.  
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