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Abstract

In this thesis, we consider the scheduling of patients in a single server medical

clinic. We present the probability distribution for the number of patients in the

system under certain settings using four di�erent methods. The four methods

used are theoretical calculations using convolution, simulation, probability gen-

erating functions, and Markov chains. Further, the best scheduling strategy is

obtained on the basis of a minimum objective function in the case of �xed inter-

val lengths (for service and interarrival times). Modi�ed simulation annealing is

used to aid in �nding the best appointment strategy in the case of variable inter-

val lengths.
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CHAPTER 1

Introduction

Outpatient clinics/departments are the main medical service providers for non-

emergency patients. These clinics have a common problem of long waiting times.

This is the primary complaint of patients in their experiences of visiting outpatient

clinics. This topic has been of great interest for many years, with publications

starting with the pioneering works of Bailey [2] and Lindley [19]. In our review of

the literature, waiting times were studied but there did not appear to be a study

on the distribution of the number of patients in the system. So, our research

considered this topic.

The number of patients in the system is de�ned as the number of patients

waiting in the queue plus the number of patients in the service. By knowing

the probability distribution for the number of patients in the system, we can

calculate the expected number of patients in the system at a particular time and

appoint more patients accordingly. It is a kind of congestion measure, given in the

literature. It could be useful for deciding appointments.

The work presented in this thesis is signi�cant for the following reasons. We

present new ways of computing the distribution of the number of patients at any

given point in time. This allows us to better understand the degree of congestion

and therefore make improvements to the system. The ultimate goal is to reduce

the waiting time of the patients and the idle time of the physician. Our simulation

of di�erent strategies indicates what strategies are best and by how much.

A search for articles on appointment scheduling for outpatient clinics was done

using the databanks of Google Scholar, Science Direct, Research Gate, using key-

words such as outpatient scheduling, appointment systems, improving patient wait-

ing time and doctor idle time, appointment scheduling in health care and many

more. The articles found were evaluated on their relevance to the topics of this

thesis.

1.1. Environmental Factors

Sometimes, scheduling techniques for medical clinics are not appropriate. The

decisions to be made while designing the appointment system of a medical clinic

are in�uenced by several factors, speci�c to the clinical environment for which the

system is designed. Problems arise due to factors such as the physician being late,
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the physician being interrupted (phone calls, etc.), patients canceling or failing to

arrive to see the doctor on the day of the appointment, emergency cases, patient

unpunctuality (patients arriving earlier or later than the scheduled appointment

time), etc. These factors are referred to as environmental factors. All these factors

are summed up in Table 1.1:

Table 1.1. Clinic environmental factors

1. Number of services
2. Number of physicians
3. Service times
4. The process of Arrivals
4.1 Unpunctuality of patients
4.2 Presence of no-shows
4.3 Presence of walk-ins
4.4 Presence of companions

5. Lateness and interruption (phone calls) of physician

1.1.1. Number of services. On the basis of the number of services, we can

divide the system into two parts:

1. Single-stage system: where the patients' queue for a single service.

2. Multi-stage system: where the patients' queue for multiple services such as

registration, pre-examination, X-ray, etc as discussed in [6] (Cayirli et al.).

Most studies in the literature model a single-stage system.

1.1.2. Number of Physicians. The two types of system are based on the

number of physicians:

1. Single-server system: a system where a single physician serves the patients.

2. Multi-server system: a system where more than one physician serve the patients.

From the literature, most studies have focused on single-server systems. The

system with multiple physicians becomes more complicated.

1.1.3. Service times. The time for which a patient is in contact with the

physician for consultation is referred to as the service or consultation time. As

mentioned by Cayirli et al. ([9]), the majority of studies in the literature use

independently and identically distributed (i.i.d) service times.
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1.1.4. The arrival process.

1.1.4.1. Unpunctuality of patients. Patient unpunctuality is common in outpa-

tient clinics. Some patients are late because they expect to wait a long time to get

service. This may result in an increase in physician idle time and extend waiting

times for other patients. This may also prolong the day's end time of the clinic

because physicians and patients may not want to reschedule for another day.

Some patients arrive early because they hope to have their doctor consultation

as soon as possible. Their usual understanding (often incorrect) is that the earlier

they arrive, the sooner they �nish. Early patients also create problems as they

contribute to congestion in the waiting room which can lead to patient dissatis-

faction and sta� morale issues (Rohleder et al., [24]). In Leiba et al. [18], it is

emphasized that accurate scheduling and low clinic waiting time are important

factors that a�ect the satisfaction of young soldiers needing medical service.

1.1.4.2. Presence of no-shows. Patient no-shows are found to be a big problem

in many health care settings, where no-show rates can vary from 3% to 80% (Rust

et al.[26]). In Sharp and Hamilton ([30]) a 12% no-show rate was reported at outpa-

tient clinics in the United Kingdom. Lack of transportation, scheduling problems,

oversleeping or forgetfulness, and lack of child care are some reasons for no-shows

(Campbell et al. [5]). Low-quality service either in terms of long wait times or

inconvenient appointment systems causes frustration among patients. They feel

that scheduling techniques should be designed from a customers' perspective.

1.1.4.3. Presence of walk-ins. Patients without any appointment fall into the

�walk-in� category. They can be regular or emergency patients. To model walk-ins,

Rising et al. ([22]) used an exponential distribution for inter-arrival times, with

the mean value changed on an hourly basis to re�ect a seasonal pattern.

1.1.4.4. Presence of companions. "Companions are those who accompany a

patient to the clinic(e.g., a patient's child, husband etc.)" according to Cayirli et

al. ([9]). The companions use the waiting room and thus one should consider this

factor while determining the appropriate size of a waiting room (Swisher et al.

([32]).

1.1.5. Lateness and interruption of physician. Two factors are related

to the physician. One is physician unpunctuality and another is interruption level

(also called gap times: (Cayirli et al, [9]). Patient waiting times are highly depen-

dent on these factors. Physician unpunctuality is referred to as the lateness for

the �rst appointment.

Apart from this, due to the variation in patients' arrival times and patients'

service times as mentioned in Noon et al. ([21]), patients have to wait even though

they have reserved appointment slots. This issue has a negative impact on patient
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satisfaction in what they experience from healthcare facilities. Often the service

time is only a few minutes, but patients have to wait for hours. The negative

e�ects of waiting on patients and the methods for making waiting more tolerable

are discussed in Katz et al. ([14]).

A well-designed appointment system can help in reducing waiting times for

patients as well as increasing the utilization of expensive personnel and equip-

ment based medical resources. Healthcare organizations can reduce waiting times

by adopting several strategies to make it easier for patients to access healthcare

services. It should be kept in mind that under perfect conditions (deterministic

physician service times, patients arriving precisely on schedule, no drop-ins, no

missing appointments, precise scheduling), the should be zero waiting time for

patients. Although the perfect conditions do not happen often, there could and

should be better approximations than currently exist.

As the demand for health care services increases, health care providers are

faced with challenges that have enhanced the popularity of Operations Research in

health care (Brailsford and Vissers, [4]). Some studies lack practical applicability

or have a set of restrictive constraints (Cayirli et al, [9], Kuiper et al. [17]).

Outpatient clinics are often considered as queueing systems, which include a unique

set of conditions that must be considered for appointment scheduling. The main

purpose of outpatient scheduling is to design an appointment technique for which

a particular measure of performance is optimized in a clinical environment. Most

studies assume that patients are scheduled on a �rst-call, �rst-appointment basis.

1.2. Summary of the thesis

The rest of the thesis is organized as follows. In Chapter 2, we give a literature

review of the existing studies on the appointment scheduling problems and the

relevant methodologies of this study. Chapter 2 also discusses the environmental

factors used in the literature to describe the environment of the clinic. In Chapter

3, we calculate the probabilities of di�erent numbers of patients at di�erent times

by theoretical calculations using convolutions of discrete random variables, for a

particular multiple-block with an initial block strategy (4222 . . . ) assuming the

probability of keeping an appointment is 0.85 (as opposed to missing an appoint-

ment). After that, we generalize the results for any number of patients at di�erent

times. Then we perform a simulation 100000 times and observe that the results are

almost the same as those of the theoretical calculations. We also give a recursive

relationship between the number of patients in the system and the number of ar-

rivals at di�erent times by the use of probability generating functions. Further, we

discuss the last calculation method using Markov chains. We write an R program
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for calculating the probabilities.

In chapter 4, we de�ne some recursive relationships between di�erent parameters

for calculating waiting times and the idle times for the strategies from the litera-

ture. We provide an objective function on the basis of the salaries of the doctor and

the patients, which is to be minimized for the best strategy. Then we compare all

the strategies on the basis of the objective function. In chapter 5, modi�ed simu-

lated annealing is discussed for �nding the best pair of a and b for variable interval

lengths and then �nd the best strategy on the basis of the minimum objective

function. Conclusions and the future questions are given in chapter 6.
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CHAPTER 2

Literature Review

Many analytical studies on scheduling propose algorithms or rules based on

queueing theory or simulation. Most of the literature focuses on designing sched-

uling techniques to minimize the expected waiting and idle times. The question

of how much waiting time is bearable by patients depends on various factors - for

instance, the environment of the waiting area, facilities in the waiting area, etc.

Huang ([12]) notes that patients arriving on time can tolerate a waiting time of

37 minutes or less and those who are late for appointments can accept a waiting

time of 63 minutes or less.

2.1. List of Performance measurements in the literature

Major performance measures used in the literature include:

1. Cost-Based Measures

2. Time-Based Measures

3. Congestion Measures

4. Fairness Measures

These measures of performance are summarized in a table given in (Cayirli et al,

[6]).

Scheduling techniques are usually determined by two components:

1) the number of patients assigned to each time block;

2) the time between two successive appointments.

Appointment systems can be divided into

a) Individual appointment systems: where each patient is given a particular ap-

pointment time;

b) Block appointment systems: where more than one patient is given the same

appointment time;

c) Mixed appointment systems: this is a combination of individual and block ap-

pointment systems (Vissers [33]).
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Figure 2.1. List of performance measurements

The �rst appointment rule was purposed by Bailey ([2]). It schedules two

patients at the start of the session and the rest individually at �xed intervals.

This rule is usually known as "Bailey's Rule." This rule was restricted to the case

when patients are punctual. Later research studies introduced multiple block rules

(White et al. [3]) and also variable-block rules with �xed intervals (Rising et al.

[22]).

Some studies have designed appointment rules with variable intervals. Ho and

Lau ([11]) designed an appointment rule that allows patients to arrive with shorter

interarrival times in the earlier part of the clinic session and larger interarrival

times later on. These rules are further enhanced in Cayirli et al. ([9]) by including

no-shows and walk-ins. Samoran et al. [27] showed that considering individual

no-show predictions may signi�cantly improve the performance of a schedule by

strategically scheduling expected no-shows.
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Vissers illustrated the use of the results in [33] with two examples. In one

example, the number of appointments was 20 with a mean consultation time of

�ve minutes and in another example, the number of appointments was 24 with a

mean consultation time of 6.5minutes. BlancoWhite and Pike [3] recommended an

appointment scheme for unpunctual patients comprised of appointment-intervals

of one-tenth of the average consultation-length, a �xed number of patients at each

appointment-time with rate equal to the service rate, and physician time less than

5 min after the �rst appointment.

According to Ho and Lau ([11]), of three environmental factors (the probability

of no-show, the coe�cient of variation of service times, and the number of patients

per clinical session) the probability of no-show is the dominant one that a�ects

performance and the choice of an appointment system. In the literature, the case

of no-shows is studied using no-show probabilities (p) that range from 5 to 30

percent. As per expectations, studies �nd that the doctor's idle time increases

and the waiting time of the patients decrease with an increasing probability of

no-shows.

Studies such as Wang et al. [35], Robinson et al. [23], Kaandorp et al. [13],

Kuiper et al. [17] have used a "dome rule" in which the appointment intervals are

of shorter length at the start and end of a session and increase in length towards the

middle of a session to obtain optimal scheduling. Soriano [31] proposed a Two-at-

a-Time appointment system with interval length equal to twice the average service

time.

Unpunctuality makes the analysis of appointment scheduling more compli-

cated. From their empirical study, Fetter and Thompson [10] found that approxi-

mately 81% of patients arrive early with an average of 17.2 minutes in one hospital

clinic and with an average of 18.4 minutes in another. In some studies, theoretical

distributions for patient unpunctuality have been considered using Pearson type

VII (Blanco White and Pike [3]) and normal distributions (Cayirli et al. [7]).

Some studies have taken into account patient classi�cation in the design of

appointment systems. Walter [34] �nds that the doctors' idle time in the radiology

department is improved using a grouping of inpatients and outpatients. Simulation

results by Cayirli et al. [8] note an improvement in doctors' idle time, doctors'

overtime and patients' waiting times when appointment systems utilize interval

adjustment for patient class.

There are di�erent choices of performance criteria in the literature to evaluate

appointment systems. Many studies list results in terms of mean waiting time of

patients and mean idle time of physician. Furthermore, team members involve

patients, doctors, . . . each of which attach varying importance to the di�erent

8



criteria. Some of the studies used cost-based measures in which relative weights

in terms of the cost of patients' waiting time (Cp) and cost of physician idle time

(Cd) were assigned. The waiting costs for all patients were assumed to be identical

in the literature. Some studies also included the mean overtime of physicians with

a special cost for it (Co). Thus the objective was to minimize the expected total

cost of the system given by:

Min EpTCq � EpW qCp � EpIqCd � EpOqCo

where EpW q is the mean waiting time of patients

EpIq is the mean idle time of the physician

EpOq is the mean over time of the physician

In order to estimate Cd, Keller and Laughhunn [15] divided the annual salary

of the doctor by the hours worked per year and used the minimum wage to re�ect

the cost of the patients' waiting time.

9



CHAPTER 3

Probability Distribution

Consider the simple case of multiple-block, �xed-interval scheduling model with

a special initial block. Assume that an outpatient clinic has a single server over

the course of a session. Assume that each patient has probability p of keeping

its appointment. Assume n0, n1, n2, n3, . . . patients or customers are scheduled

at times 0,d,2d,3d,. . . respectively (here d is the gap time between consecutive

scheduling times). If a patient is available, one patient is served (and leaves the

system) at the end of each time interval of length d. Let X0, X1, X2, X3, . . . be the

number of patients remaining in the system at times 0�, d�, 2d�, 3d�, . . . where

id� refers to time id� ε for small ε ¡ 0, i � 0, 1, 2, . . . .

3.1. Method 1: Theoretical calculations using convolution

For concreteness, we take n0 � 4 and n1 � n2 � n3 � � � � � 2.

Property 3.1. Given the conditions above,

(1) X0 � Binpn � 4, pq

(2) X1 has support on i � 0, 1, 2, 3, 4, 5 satisfying

P pX1 � iq � Binpn � 4 � 2, p, i � 1q for i � 5, 4, 3 where Binpn, p, iq ��
n
i

�
pip1� pqn�i

(3) X2 has a distribution on i � 0, 1, 2, ..., 6 satisfying

P pX2 � iq � Binpn � 4� 2� 2, p, i� 2q for i � 6, 5, 4

(4) X3 has a distribution on i � 0, 1, 2, . . . , 7 satisfying

P pX3 � iq � Binpn � 4� 2� 2� 2, p, i� 3q for i � 7, 6, 5.

(The other probabilities for X1, X2, X3 follow di�erent patterns.)

Proof. At time 0, patients either arrive or not (some patients might miss an

appointment for some reason). So, the possible number of arrivals is 0, 1, 2, 3, 4

and clearly X0 is binomially distributed. Thus at time 0�, X0 � Binpn � 4, pq.

At time d, we potentially add two more patients and complete service on a

patient who arrived at time 0 (if there was such a patient). Because the sum of

two independent binomial random variables Y1 � Binpn1, pq and Y2 � Binpn2, pq

is binomial Binpn1�n2, pq, the total number of arrivals by time d will be the sum

of two values, with a maximum of 4 � 2 � 6. But we have potentially decreased

10



by one customer because of service completion (if there was a customer at time 0

to service). So X1 can take integer values from 0 to 4+2-1=5. But it is possible,

for i � 0, 1, 2 that there were no arrivals at time 0 and hence no customer to serve

at that time. It is also possible for there to be 1 arrival at time 0, and for that

service to complete at time d. These two types of matching make the probabilities

P pX1 � iq more complex for i � 0, 1, 2. For Xi � 3, 4, 5, there had to be at least

one arrival at time 0. So for Xi � 3, 4, 5, the probabilities have to match binomial

probabilities P pX1 � 3q � Binpn � 6, p, i � 4q, P pX1 � 4q � Binpn � 6, p, i � 5q,

P pX1 � 5q � Binpn � 6, p, i � 6q.

At time 2d, we potentially add two more patients and complete service on a

patient who was present at time d (if there was such a patient). Because the

sum of three independent binomial random variables with a common probability

of success p is again binomial, the total number of arrivals by time 2d will be

binomial with a maximum of 4 � 2 � 2 � 8. But X2 will be reduced by up to

two patients because of service completion. So X2 can take integer values from

0 to 4 � 2 � 2 � 2 � 6. As in the X1 case, if i � 0, 1, 2, 3, the computation

of P pX2 � iq is more complex, whereas if i � 4, 5, 6, we have probabilities then

P pX2 � iq � Binpn � 8, p, i� 2q.

At time 3d, we potentially add two more patients and complete service on a

patient who was present at time 2d (if there was such a patient). Because the

sum of four independent binomial random variables with a common probability

of success p is again binomial, the total number of arrivals by time 3d will be

binomial with a maximum of 4� 2� 2� 2 � 10. But X3 will be reduced by up to

three patients because of service completion. So X3 can take integer values from

0 to 4 � 2 � 2 � 2 � 3 � 7. As in the X2 case, if i � 0, 1, 2, 3, 4, the computation

of P pX3 � iq is more complex, whereas if i � 5, 6, 7, we obtain probabilities

P pX3 � iq � Binpn � 8, p, i� 3q. �

We look at the particular case when p � 0.85.

(1) The probability of x patients at time 0� is given (using R notation) as

f0pxq � dbinompx, 4, 0.85q for x � 0, 1, 2, 3, 4

(2) At time 1d, 2 patients have appointments. Therefore, the number of

arriving patients at d follows Binp2, 0.85q. The total number of patients

at time d� includes patients from 0 and patients from d [perhaps] reduced

by one patient, who completes service at time d unless no patient arrived

at 0. Thus X1 has support t0, 1, 2, 3, 4, 5u.
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The probabilities of x patients in the system at 1d� are given by

f1p5q � dbinomp4, 4, 0.85q � dbinomp2, 2, 0.85q

� dbinomp6, 6, 0.85q

f1p4q � dbinomp4, 4, 0.85q � dbinomp1, 2, 0.85q

� dbinomp3, 4, 0.85q � dbinomp2, 2, 0.85q

� dbinomp5, 6, 0.85q

f1p3q � dbinomp4, 4, 0.85q � dbinomp0, 2, 0.85q

� dbinomp3, 4, 0.85q � dbinomp1, 2, 0.85q

� dbinomp2, 4, 0.85q � dbinomp2, 2, 0.85q

� dbinomp4, 6, 0.85q

f1p2q � dbinomp3, 4, 0.85q � dbinomp0, 2, 0.85q

� dbinomp2, 4, 0.85q � dbinomp1, 2, 0.85q

� dbinomp1, 4, 0.85q � dbinomp2, 2, 0.85q

� dbinomp0, 4, 0.85q � dbinomp2, 2, 0.85q

� dbinomp3, 6, 0.85q

� dbinomp0, 4, 0.85q � dbinomp2, 2, 0.85q

f1p1q � dbinomp2, 4, 0.85q � dbinomp0, 2, 0.85q

� dbinomp1, 4, 0.85q � dbinomp1, 2, 0.85q

� dbinomp0, 4, 0.85q � dbinomp1, 2, 0.85q

� dbinomp2, 6, 0.85q

� dbinomp0, 4, 0.85q � dbinomp2, 2, 0.85q

� dbinomp0, 4, 0.85q � dbinomp1, 2, 0.85q

f1p0q � dbinomp1, 4, 0.85q � dbinomp0, 2, 0.85q

� dbinomp0, 4, 0.85q � dbinomp0, 2, 0.85q

� dbinomp1, 6, 0.85q

� dbinomp0, 6, 0.85q

� dbinomp0, 4, 0.85q � dbinomp1, 2, 0.85q

Upon simplifying, we obtain

x 0 1 2 3 4 5
Prob. 0.00027 0.00525 0.04182 0.17618 0.39933 0.37715

Table 3.1. Probabilities for numbers of patients at 1d�
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From the above calculations it is clear that X1 follows

Binpx � 1, 6, 0.85q for x � 3, 4, 5 and for lower values of x, probabilities

have some additional terms.

(3) Similarly, at time 2d�, since we lose [up to 2] patients by time 2d, therefore

X2 has support � t0, 1, 2, 3, 4, 5, 6u.

The probabilities are given by

f2p6q � dbinomp4, 4, 0.85q � dbinomp2, 2, 0.85q � dbinomp2, 2, 0.85q

� dbinomp8, 8, 0.85q

f2p5q � dbinomp4, 4, 0.85q � dbinomp2, 2, 0.85q � dbinomp1, 2, 0.85q

� dbinomp4, 4, 0.85q � dbinomp1, 2, 0.85q � dbinomp2, 2, 0.85q

� dbinomp3, 4, 0.85q � dbinomp2, 2, 0.85q � dbinomp2, 2, 0.85q

� dbinomp7, 8, 0.85q

f2p4q � dbinomp4, 4, 0.85q � dbinomp2, 2, 0.85q � dbinomp0, 2, 0.85q

� dbinomp3, 4, 0.85q � dbinomp2, 2, 0.85q � dbinomp1, 2, 0.85q

� dbinomp3, 4, 0.85q � dbinomp1, 2, 0.85q � dbinomp2, 2, 0.85q

� dbinomp2, 4, 0.85q � dbinomp2, 2, 0.85q � dbinomp2, 2, 0.85q

� dbinomp4, 4, 0.85q � dbinomp0, 2, 0.85q � dbinomp2, 2, 0.85q

� dbinomp4, 4, 0.85q � dbinomp1, 2, 0.85q � dbinomp1, 2, 0.85q

� dbinomp6, 8, 0.85q

f2p3q � dbinomp4, 4, 0.85q � dbinomp1, 2, 0.85q � dbinomp0, 2, 0.85q

� dbinomp3, 4, 0.85q � dbinomp2, 2, 0.85q � dbinomp0, 2, 0.85q

� dbinomp3, 4, 0.85q � dbinomp1, 2, 0.85q � dbinomp1, 2, 0.85q

� dbinomp2, 4, 0.85q � dbinomp2, 2, 0.85q � dbinomp1, 2, 0.85q

� dbinomp2, 4, 0.85q � dbinomp1, 2, 0.85q � dbinomp2, 2, 0.85q

� dbinomp1, 4, 0.85q � dbinomp2, 2, 0.85q � dbinomp2, 2, 0.85q

� dbinomp3, 4, 0.85q � dbinomp0, 2, 0.85q � dbinomp2, 2, 0.85q

� dbinomp4, 4, 0.85q � dbinomp0, 2, 0.85q � dbinomp1, 2, 0.85q

� dbinomp0, 4, 0.85q � dbinomp2, 2, 0.85q � dbinomp2, 2, 0.85q

� dbinomp5, 8, 0.85q

� dbinomp0, 4, 0.85q � dbinomp2, 2, 0.85q � dbinomp2, 2, 0.85q

f2p2q � dbinomp2, 4, 0.85q � dbinomp2, 2, 0.85q � dbinomp0, 2, 0.85q

� dbinomp1, 4, 0.85q � dbinomp1, 2, 0.85q � dbinomp2, 2, 0.85q

� dbinomp2, 4, 0.85q � dbinomp1, 2, 0.85q � dbinomp1, 2, 0.85q

� dbinomp1, 4, 0.85q � dbinomp2, 2, 0.85q � dbinomp1, 2, 0.85q
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� dbinomp3, 4, 0.85q � dbinomp1, 2, 0.85q � dbinomp0, 2, 0.85q

� dbinomp3, 4, 0.85q � dbinomp0, 2, 0.85q � dbinomp1, 2, 0.85q

� dbinomp2, 4, 0.85q � dbinomp0, 2, 0.85q � dbinomp2, 2, 0.85q

� dbinomp0, 4, 0.85q � dbinomp1, 2, 0.85q � dbinomp2, 2, 0.85q

� dbinomp1, 4, 0.85q � dbinomp0, 2, 0.85q � dbinomp2, 2, 0.85q

� dbinomp4, 4, 0.85q � dbinomp0, 2, 0.85q � dbinomp0, 2, 0.85q

� dbinomp0, 4, 0.85q � dbinomp0, 2, 0.85q � dbinomp2, 2, 0.85q

� dbinomp0, 4, 0.85q � dbinomp2, 2, 0.85q � dbinomp1, 2, 0.85q

� dbinomp4, 8, 0.85q

� dbinomp0, 4, 0.85q � dbinomp2, 2, 0.85q � dbinomp2, 2, 0.85q

� dbinomp0, 4, 0.85q � dbinomp1, 2, 0.85q � dbinomp2, 2, 0.85q

� dbinomp1, 4, 0.85q � dbinomp0, 2, 0.85q � dbinomp2, 2, 0.85q

� dbinomp0, 4, 0.85q � dbinomp0, 2, 0.85q � dbinomp2, 2, 0.85q

� dbinomp0, 4, 0.85q � dbinomp2, 2, 0.85q � dbinomp1, 2, 0.85q

f2p1q � dbinomp2, 4, 0.85q � dbinomp1, 2, 0.85q � dbinomp0, 2, 0.85q

� dbinomp1, 4, 0.85q � dbinomp2, 2, 0.85q � dbinomp0, 2, 0.85q

� dbinomp1, 4, 0.85q � dbinomp0, 2, 0.85q � dbinomp1, 2, 0.85q

� dbinomp1, 4, 0.85q � dbinomp1, 2, 0.85q � dbinomp1, 2, 0.85q

� dbinomp0, 4, 0.85q � dbinomp1, 2, 0.85q � dbinomp1, 2, 0.85q

� dbinomp0, 4, 0.85q � dbinomp0, 2, 0.85q � dbinomp1, 2, 0.85q

� dbinomp3, 4, 0.85q � dbinomp0, 2, 0.85q � dbinomp0, 2, 0.85q

� dbinomp0, 4, 0.85q � dbinomp2, 2, 0.85q � dbinomp0, 2, 0.85q

� dbinomp2, 4, 0.85q � dbinomp0, 2, 0.85q � dbinomp1, 2, 0.85q

� dbinomp3, 8, .85q

� dbinomp0, 4, 0.85q � dbinomp1, 2, 0.85q � dbinomp2, 2, 0.85q

� dbinomp1, 4, 0.85q � dbinomp0, 2, 0.85q � dbinomp2, 2, 0.85q

� dbinomp0, 4, 0.85q � dbinomp2, 2, 0.85q � dbinomp1, 2, 0.85q

� dbinomp1, 4, 0.85q � dbinomp0, 2, 0.85q � dbinomp1, 2, 0.85q

� dbinomp0, 4, 0.85q � dbinomp1, 2, 0.85q � dbinomp1, 2, 0.85q

� dbinomp0, 4, 0.85q � dbinomp0, 2, 0.85q � dbinomp1, 2, 0.85q

� dbinomp0, 4, 0.85q � dbinomp2, 2, 0.85q � dbinomp0, 2, 0.85q

f2p0q � dbinomp1, 4, 0.85q � dbinomp1, 2, 0.85q � dbinomp0, 2, 0.85q

� dbinomp2, 4, 0.85q � dbinomp0, 2, 0.85q � dbinomp0, 2, 0.85q

� dbinomp0, 4, 0.85q � dbinomp1, 2, 0.85q � dbinomp0, 2, 0.85q

� dbinomp1, 4, 0.85q � dbinomp0, 2, 0.85q � dbinomp0, 2, 0.85q

� dbinomp0, 4, 0.85q � dbinomp0, 2, 0.85q � dbinomp0, 2, 0.85q
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� dbinomp2, 8, 0.85q

� dbinomp1, 8, 0.85q

� dbinomp0, 8, 0.85q

� dbinomp1, 4, 0.85q � dbinomp0, 2, 0.85q � dbinomp1, 2, 0.85q

� dbinomp0, 4, 0.85q � dbinomp1, 2, 0.85q � dbinomp1, 2, 0.85q

� dbinomp0, 4, 0.85q � dbinomp0, 2, 0.85q � dbinomp1, 2, 0.85q

� dbinomp0, 4, 0.85q � dbinomp2, 2, 0.85q � dbinomp0, 2, 0.85q

� dbinomp0, 4, 0.85q � dbinomp0, 2, 0.85q � dbinomp2, 2, 0.85q

x 0 1 2 3 4 5 6
Prob. 0.00012 0.00235 0.01862 0.08412 0.23760 0.38469 0.27249

Table 3.2. Probablity table for di�erent numbers of patients in
the system at 2d�

From above calculations, X2 � Binpx� 2, 8, 0.85q for x � 4, 5, 6 and probabil-

ities of 0, 1, 2, 3 have some extra terms to Binp8, 0.85q.

As we go further in time, the calculations of probabilities of numbers of patients

in the system become even more complicated. We see that some of the probabilities

(for high counts) take binomial values, and the probabilities for lower values are

binomial probabilities with added correction terms.

Property 3.2. Generalization of property 3.1. Given the conditions in prop-

erty 3.1,

(1) X0 � Binpn � n0, pq.

(2) X1 has support on i � 0, . . . , n0 � n1 � 1 satisfying

P pX1 � iq � Binpn � n0 � n1, p, i � 1q for upper n0 � 1 numbers where

Binpn, p, iq �
�
n
i

�
pip1� pqn�i.

(3) X2 has a distribution on i � 0, . . . , n0 � n1 � n2 � 2 satisfying

P pX2 � iq � Binpn � n0 � n1 � n2, p, i� 2q for upper n0 � 1 numbers.

(4) X3 has a distribution on i � 0, . . . , n0 � n1 � n2 � n3 � 3 satisfying

P pX3 � iq � Binpn � n0�n1�n2�n3, p, i�3q for upper n0�1 numbers.

Researchers sometimes use models with zero in�ated binomial distributions.

This is not quite what appears here. Yet we do get a modi�ed binomial type

distribution, with larger probabilities at the lower values. This type of distribution

could also appear in an inventory type model with regular increases in inventory

and regular decreases in inventory.

Because of the complications in calculations, a reasonable procedure is to simu-

late the model. This can be done with less complication than continuing the exact
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calculation. So, we now introduce a simulation algorithm to obtain our desired

probabilities.

3.2. Method 2: Simulation

Here we select p � 0.85. Our program is written in R.

set.seed(1)
v0 = c(); w1 = c(); w2 = c(); w3 = c();
for (i in 1:100000){
b0 = sum(1*(runif(4)>0.15)); v0 = c(v0,b0);
b1 = sum(1*(runif(2)>0.15)); w1 = c(w1,b1);
b2 = sum(1*(runif(2)>0.15)); w2 = c(w2,b2);
b3 = sum(1*(runif(2)>0.15)); w3 = c(w3,b3)
}
v1 = pmax(v0-1,0)+w1
v2 = pmax(v1-1,0)+w2
v3 = pmax(v2-1,0)+w3
v0; w1; w2;w3
v1; v2; v3
table(v0)
table(v1)
table(v2)
table(v3)

We present the output for tablepv1q to illustrate.

x 0 1 2 3 4 5
Obs. freq 28 508 4165 17685 39997 37617

Table 3.3. Observed frequency table at time 1d+

3.2.1. Validation of Simulation. To validate the above simulation we use

the goodness of �t test. From Table 3.3, use observed frequency. From Table 3.1,

we obtain true probabilities.

We are testing H0 : good �t to theoretical outcomes

vs H1 : poor �t.

From R, we obtain

obs = c(28,508,4165,17685,39997,37617)

p1=c(0.00027, 0.00525, 0.04182, 0.17618, 0.39933, 0.37715)

expt = 100000*p1

chisq.test(obs, p=p1)
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Output:

Chi-squared test for given probabilities

data: obs

X-squared = 1.2686, df = 5, p-value = 0.9381

From the output, p�value ¡ 0.05 so we do not reject the null hypothesis which

means the observed frequencies are consistent with the expected or theoretical

frequencies. Thus the simulation algorithm is [somewhat] validated.

We can present a description of X0, X1, X2, . . . (number of customers at times

0�, 1d�, 2d�, . . . ) in a simpler manner as follows.

Property 3.3. Let X0, X1, X2, . . . be the number of patients in the system at

times 0�, 1d�, 2d�, . . . respectively. Let Y0, Y1, Y2, . . . be the number of arrivals at

times 0, 1d, 2d, . . . respectively and X� � maxpX, 0q. Then Yi � Binpni, pq and

X0 � Y0

X1 � pX0 � 1q� � Y1

X2 � pX1 � 1q� � Y2

X3 � pX2 � 1q� � Y3

...

Xn � pXn�1 � 1q� � Yn, n � 1, 2, 3, . . .

Proof. For n � 1, 2, 3, . . . , if there were Xn�1 patients at time pn�1qd�, then

at time nd, we complete and subtract one patient (if the system is nonempty), and

add Yn patients leaving pXn�1 � 1q� � Yn at time nd�. �

Since we have a recursive relationship, involving sums of random variables, we

are working with convolutions of discrete random variables. A common tool in

such cases is the use of probability generating functions.

3.3. Method 3: Probability generating function

Recall that a probability generating function (pgf) of a discrete random vari-

able X is de�ned as

Gpzq � EpzXq �
8̧

x�0

zxppxq

where X takes values on the non-negative integers and ppxq � P pX � xq is the
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probability that the discrete variable X takes the value x. The following result is

well known.

Theorem 3.3.1. Let GXpzq and GY pzq be the probability generating functions

of two independent discrete random variables X and Y respectively. Then the pgf

of convolution W � X � Y is the product of pgf of X and pgf of Y i.e GW pzq �

GXpzqGY pzq.

Proof. Let X and Y be two independent random variables. The pgf of X�Y

is given by

GX�Y psq � EpsX�Y q

� EpsXsY q

� EpsXqEpsY q (Since X and Y are independent)

� GXpsqGY psq

Hence, GX�Y psq � GXpsqGY psq

�

Property 3.4. Let the vectors x0, x1, x2, x3 . . . be the probabilities of the

numbers of patients at times 0�, 1d�, 2d�, 3d�, . . . and y0, y1, y2, y3, . . . be the vec-

tors of the binomial probabilities of new arrivals at times 0, 1d, 2d, 3d, . . . . Let

u0, u1, u2, u3, . . . be probability vectors created from x0, x1, x2, x3, . . . by reducing

the vector length by 1 through summing the �rst 2 components. Then the pgf's of

Xi (for i � 1, 2, 3, . . . ) (numbers of remaining patients at time id�) are obtained by

multiplying pgf of Ui�1 (number of patients before new arrivals but after a service

completion at time id) with the pgf of Yi (number of arrivals at time id).

Proof. The vectors ui (i � 0, 1, 2, 3, . . . ) essentially correspond to the random

variable pXi � 1q� so the algorithm implements property 3.2. �

The R code implementation follows. We again use p � 0.85 for our example.

library(polynom)

# probability vector number of arrivals at time 0

y_0=dbinom(0:4,4,0.85)

# probability vector at time 0+

x_0=y_0

x_0

# probability vector generated from x_0

u_0=c(x_0[1]+x_0[2],x_0[-c(1:2)])
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u_0

# probability vector at time d

y_1=dbinom(0:2,2,0.85)

y_1

# pgf of Y_1

pgf_y_1 = polynomial(y_1)

pgf_y_1

# pgf of U_0

pgf_u_0 = polynomial(u_0)

pgf_u_0

# pgf of X_1

pgf_x_1 = pgf_y_1*pgf_u_0

pgf_x_1

# probability vector at time d+

x_1 = coef(pgf_x_1)

x_1

# probability vector generated from x_1

u_1=c(x_1[1]+x_1[2],x_1[-c(1,2)])

# probability vector of number of arrivals at time d

y_2=dbinom(0:2,2,0.85)

# pgf of Y_2

pgf_y_2 = polynomial(y_2)

# pgf of U_1

pgf_u_1 = polynomial(u_1)

# pgf of X_2

pgf_x_2 = pgf_y_2*pgf_u_1

# probability vector at time 2d+

x_2 = coef(pgf_x_2)

Typical output shows

> x_0

[1] 0.00050625 0.01147500 0.09753750 0.36847500 0.52200625

> u_0

[1] 0.01198125 0.09753750 0.36847500 0.52200625

> y_1

[1] 0.0225 0.2550 0.7225

> pgf_u_0

0.01198125 + 0.0975375*x + 0.368475*x^2 + 0.5220062*x^3

> pgf_y_1

0.0225 + 0.255*x + 0.7225*x^2
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> pgf_x_1

0.0002695781 + 0.005249813*x + 0.0418192*x^2 + 0.1761771*x^3 + 0.3993348*x^4 + 0.3771495*x^5

> x_1

[1] 0.0002695781 0.0052498125 0.0418192031 0.1761771094 0.3993347812 0.3771495156

An examination of pgf_x_1 shows
°5

i�0 P pX1 � iqxi so we can read o� the prob-

abilities P pX1 � iq as the coe�cients given by x_1 in the output. It is simple to

extend this program to �nd probabilities for X1, X2, X3, X4, .... Compare this to

the complicated structure that was presented earlier when all cases were done by

hand. We note that this algorithm allows us to easily compute the probabilities of

x patients at time id� for any i. From these probabilities, we can �nd all moments

of Xi.

3.4. Method 4: Markov Chain

As in property 3.3, let X0, X1, X2, . . . be the number of patients in the system

at times 0�, 1d�, 2d�, . . . respectively where X0, X1, X2, . . . are clearly dependent.

Further, let Y0, Y1, Y2, . . . be the number of arrivals at times 0, 1d, 2d, . . . respec-

tively and these are independent of each other and of the lower indexed X's. To

�nd the probabilities of the number of patients at times 0�, 1d�, 2d�, . . . , in an-

other way than used in Chapter 3, we use Markov chains. Seneta ([28]) states that

Markov chains were introduced by Markov in 1906 [20]. A stochastic or random

process is a Markov Chain if it satis�es the Markov property. If the Markov prop-

erty/assumption (also called the memoryless property) holds, then the study of

such a random process is easier.

3.4.1. Markov Property: Informally, the Markov property assumes

P pfuture|present, pastq � P pfuture|presentq

Let X � tXn : n ¥ 0u be a random process on a countable set S. For any i, j P S

and n ¥ 0, the Markov property states

P tXn�1 � j|X0, . . . , Xnu � P tXn�1 � j|Xnu

It means at any time n, the conditional distribution of the future state Xn�1 given

present and past states i.e X0, . . . , Xn depends only on the present state (Xn).

Given the information in Xn, the information in the past states (X0, . . . , Xn�1)

is no longer needed for computation of future probabilities. In other words, the

future state Xn�1 is conditionally independent of the past X0, . . . , Xn�1 given the

present state Xn. De�ne

P tXn�1 � j|Xn � iu � pij

where pij is called the transition probability.
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3.4.2. Transition probability: The transition probability pij is the proba-

bility that the Markov chain moves from state i to state j in one step. The probabil-

ity distribution of state transitions is typically represented as a Markov chain tran-

sition matrix i.e P � ppijq. The transition probabilities satisfy
°

jPS pij � 1, i P S.

If the Markov chain has m possible states, the transition matrix will be an m�m

matrix, such that entry (i, j) is the probability of transitioning from state i to j.

3.4.3. RandomWalk: We refer the book by Serfozo ([29]) for a discussion on

random walks. Suppose that W1,W2, . . . are independent integer-valued random

variables, and

Xt � X0 �
ţ

m�1

Wm, t ¥ 1

The process Xt is a random walk on the set of integers S, where Wm is the step

size at step m. A random walk represents a quantity that changes over time such

that its increments (step sizes) are independent. Since Xt�1 � Xt�Wt�1, then for

any i, j P S and t ¥ 0,

P tXt�1 � j|X1, . . . , Xt�1, Xt � iu

� P tXt �Wt�1 � j|Xt � iu � P tWt�1 � j � iu.

Therefore, the random walk Xt is a Markov chain on the nonnegative integers S

with transition probabilities pij.

In our case, X0 � i with probability P pX0 � iq � Binpn � 4, i, p � 0.85q

and Y1, Y2, . . . are the number of arrivals at time 1d, 2d, . . . respectively where

Yt�1 � Binp2, 0.85q for t � 0, 1, 2, 3, . . . . Further, X0, X1, . . . are the number of

patients in the system at times 0�, 1d�, . . . respectively. Then Xt�1 � Xt �Wt�1

where :

Wt�1 �

$&
%
Yt�1 if Xt � 0

Yt�1 � 1 if Xt ¥ 1
(3.1)

We generate a transition matrix P of order 8�8, but truncate it to size n � n

where n ¥ 5 is large enough so that the computations of interest will not be a�ected

by the truncation. The transition probabilities are pij � P pXn�1 � j|Xn � iq. We

de�ne our initial vector to be

π0 � pP pX0 � 0q, P pX0 � 1q, P pX0 � 2q, P pX0 � 3q, P pX0 � 4q, 0, 0, 0, ...q.

Then π1 � π0P will give the probabilities for X1. Next π2 � π0P
2 will give

probabilities for X2, etc. For computational purposes, we can truncate π0, π1, ...,

and P to be n� n, where we choose n larger as the time level increases, since the

number of possible states that Xi takes will increase with the step number.
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# Initial State probabilities

p= function(n){

c(dbinom(0:4,4,0.85),rep(0,n-5))

}

# Transition probability matrix

P=function(n){

A=matrix(c(0.2550,0.0225,rep(0,n-2),0.7225),n,n);

A[1,1:3]=c(0.0225,0.2550,0.7225);A

}

P(6)

P(7)

# Probabilities at time d+

p_1=p(6)%*%P(6)

p_1

# Probabilities at time 2d+

p_2=p(7)%*%P(7)%*%P(7)

p_2

The truncated version (of length 6) of the initial probability distribution vector π0

is given by:

π0 �
�
0.00050625 0.01147500 0.09753750 0.36847500 0.52200625 0.00000000

�

The truncated versions P(6) and P(7) of 8�8 transition matrix P are given as:

P p6q �

�
���������

0.0225 0.2550 0.7225 0.0000 0.0000 0.0000

0.0225 0.2550 0.7225 0.0000 0.0000 0.0000

0.0000 0.0255 0.2550 0.7225 0.0000 0.0000

0.0000 0.0000 0.0255 0.2550 0.7225 0.0000

0.0000 0.0000 0.0000 0.0225 0.2550 0.7225

0.0000 0.0000 0.0000 0.0000 0.0225 0.2550

�
���������
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P p7q �

�
������������

0.0225 0.2550 0.7225 0.0000 0.0000 0.0000 0.0000

0.0225 0.2550 0.7225 0.0000 0.0000 0.0000 0.0000

0.0000 0.0255 0.2550 0.7225 0.0000 0.0000 0.0000

0.0000 0.0000 0.0255 0.2550 0.7225 0.0000 0.0000

0.0000 0.0000 0.0000 0.0225 0.2550 0.7225 0.0000

0.0000 0.0000 0.0000 0.0000 0.0225 0.2550 0.7225

0.0000 0.0000 0.0000 0.0000 0.0000 0.0225 0.2550

�
������������

Further, the probability vectors π1 and π2 at time 1d� and 2d� are as follows:

π1 �
�
0.00027 0.00525 0.04182 0.17618 0.39933 0.37715

�

π2 �
�
0.00012 0.00235 0.01862 0.08412 0.23760 0.38469 0.27249

�

The probability distributions of the number of patients in the system at times

1d� and 2d� obtained by using Markov chain match exactly with those calculated

theoretically in Tables 3.1 and 3.2 respectively. This shows that the Markov chain

approach is a valid and useful approach to determine the probability distribution

for the number of patients in the system at various times.
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CHAPTER 4

Appointment Strategies

To better understand the situation in the outpatient clinic, we look at a perfect

case when there is no waiting and idle time. Also, we try di�erent strategies

of appointment scheduling in the literature review given by Cayirli et al. ([6])

with di�erent assumptions and then compare results and �nd the best for our

assumptions. These strategies are given in Figure 4.1.

4.1. Parameters

Let n (n1,n2,. . . ,ni) be a vector of the number of patients arrived for their ap-

pointments at di�erent time-slots in some outpatient clinic. Let index i represents

the element number from any vector and i � 1, 2, 3, . . . , t. The arriving patients

are examined by the physician in order of their appointment times. The vector

ScT has the scheduled times for the appointments of each patient. The arrival

times of di�erent patients are given by the vector AT (AT1,AT2,. . . ,ATi) where

ATi represents the arrival time of the ith patient. Furthermore, we assume that

the physician arrival time is given by PA and the vector of the times when the

physician starts consulting patients is represented by PST. PET is referred to as

the vector of the physician end time of the service for each patient. Finally, W

is the vector of the waiting times of the patients before the start of their service

and PEmT represents the physician idle times before the start of the service of

each patient. Below is the table of the notation for the ith element from each

above-de�ned vectors.

Table 4.1. Summary of Notation

ni number of patients arrived at ith time-slot
ScTi Scheduled time of the ith patient
ATi Arrival time of the ith patient
PSTi Physician start time for the consultation of the ith patient
PETi Physician end time of the service of the ith patient
Wi Waiting time of the ith patient before the start of the service

PEmTi Physician empty time before the start of the service of the ith patient
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Figure 4.1. Di�erent strategies in the literature
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The recursive relationships between the parameters are given as:

PSTi �

$''&
''%

maxpATi,PAq, if i � 1

PSTi�1 � STi�1, if PSTi�1 � STi�1 ¡ ATi

ATi otherwise

(4.1)

PETi � PSTi � STi (4.2)

Wi � maxpPSTi � ATi, 0q (4.3)

PEmTi �

$&
%
maxpPST1 � PA, 0q, if i � 1

PSTi � PETi�1, otherwise
(4.4)

where i � 1, 2, . . . , t. These relations are used for R program given in Appendix A

to calculate the parameters.

(1) Perfect Case with �xed service time: In the perfect case everything is

perfect i.e p � 1means every patient comes for the service and is punctual.

The doctor also starts serving patients on time and complete the service

on time. Each patient has given an individual appointment. Thus, when

all the patients and the physician are on time, there is no waiting and

idle time for patients and doctor respectively. This is the perfect case

but more unrealistic. The results for all the parameters using recursive

relationships in equations 4.1,4.2,4.3,4.4 are as follows:

n ScT AT ST PST PET W PEmT

1 0 0 7 0 7 0 0

2 7 7 7 7 14 0 0

3 14 14 7 14 21 0 0

4 21 21 7 21 28 0 0

5 28 28 7 28 35 0 0

6 35 35 7 35 42 0 0

7 42 42 7 42 49 0 0

8 49 49 7 49 56 0 0

9 56 56 7 56 63 0 0

10 63 63 7 63 70 0 0

11 70 70 7 70 77 0 0

12 77 77 7 77 84 0 0

13 84 84 7 84 91 0 0

14 91 91 7 91 98 0 0

15 98 98 7 98 105 0 0

Table 4.2. Results for Perfect case
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Figure 4.2. Perfect case with zero waiting and idle times

All the red squares in the Figure 4.2 indicate the idle times of the

doctor and blue solid circles represent the waiting times of the patients.

(2) Single Block with �xed service time: In this rule, all the patients are

appointed in only one block at the beginning of the clinic session and let

service time be 7 minutes, �xed for all patients. If all the patients arrive

in the beginning, then the results are:

n ScT AT ST PST PET W PEmT
1 0 0 7 0 7 0 0
2 0 0 7 7 14 7 0
3 0 0 7 14 21 14 0
4 0 0 7 21 28 21 0
5 0 0 7 28 35 28 0
6 0 0 7 35 42 35 0
7 0 0 7 42 49 42 0
8 0 0 7 49 56 49 0
9 0 0 7 56 63 56 0
10 0 0 7 63 70 63 0
11 0 0 7 70 77 70 0
12 0 0 7 77 84 77 0
13 0 0 7 84 91 84 0
14 0 0 7 91 98 91 0
15 0 0 7 98 105 98 0

Table 4.3. Results for Single Block strategy

27



Figure 4.3. Single block with constant service times

It can be seen from Table 4.3 and in Figure 4.3 that the idle time of

the doctor is zero because there are enough patients to serve for physician

but the waiting time of the patients is increasing dramatically as all the

patients arrive at the same single scheduled time.

4.1.1. Assumptions. We try strategies in the literature with as-

sumptions:

1. Probability of keeping an appointment (p) is 0.85. It means some of

the patients miss appointments.

2. Physician is punctual. Later we will see the results when the physician

is late.

3. Patients are unpunctual

4. Varying service times for all patients.

5. Interval length is constant. Let it be 7 mins.

6. Suppose 15 patients are appointed for each strategy.

(3) Single block with variable service time: We will analyze how the addition

of some variability in service times and arrival times a�ect the waiting

times and idle times. Consider the single block rule with variable service

time. The changes follow the same trend as in the case of �xed service

time.
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n ScT AT ST PST PET W PEmT
1 0 �4.382 6.027 0.000 6.027 4.382 0.000
2 0 �3.744 6.765 6.027 12.792 9.771 0.000
3 0 �3.234 7.739 12.792 20.531 16.026 0.000
4 0 �2.940 6.681 20.531 27.212 23.471 0.000
5 0 �2.879 6.964 27.212 34.176 30.090 0.000
6 0 �1.200 7.199 34.176 41.375 35.375 0.000
7 0 �1.159 6.987 41.375 48.362 42.534 0.000
8 0 �0.023 6.372 48.362 54.734 48.385 0.000
9 0 1.517 7.655 54.734 62.389 53.218 0.000
10 0 1.870 7.337 62.389 69.726 60.519 0.000
11 0 2.176 7.588 69.726 77.315 67.550 0.000
12 0 2.698 6.216 77.315 83.530 74.616 0.000
13 0 2.774 7.447 83.530 90.978 80.756 0.000
14 0 4.347 6.823 90.978 97.800 86.631 0.000
15 0 4.919 7.642 97.800 105.442 92.881 0.000

Table 4.4. Results for single Block strategy with some variablity

By comparing Table 4.3 and Table 4.4, we can see that by adding

some variability the waiting times of the starting half of the patients

are increased by some amount from those without any variability whereas

from 8th patient the waiting times decrease from the respective wait times

in Table 4.3. The average of the waiting times in case of no variability is

49 minutes, and the mean wait time in case of some variability is 48.414

minutes. Somehow, the waiting times are improved by adding some vari-

ability in case of single block.
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Figure 4.4. Single block with variable service times

(4) Individual block with initial block: Here 4 patients are appointed in the

beginning slot and then each patient is given a unique appointment time.

The main objective of an initial block in the starting was to keep an

inventory of patients so that the chances of doctor staying idle were min-

imized if the �rst patient arrives late or fails to show up. Suppose that

the patients are unpunctual and service times are varying for patients.
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n ScT AT ST PST PET W PEmT
1 0 �3.200 6.987 0.000 6.987 3.200 0.000
2 0 0.176 6.372 6.987 13.360 6.811 0.000
3 0 0.774 7.655 13.360 21.014 12.585 0.000
4 0 2.919 7.337 21.014 28.351 18.095 0.000
5 7 9.347 7.588 28.351 35.940 19.004 0.000
6 14 9.121 6.216 35.940 42.156 26.818 0.000
7 28 27.517 7.447 42.156 49.603 14.639 0.000
8 49 43.256 6.823 49.603 56.426 6.347 0.000
9 56 51.672 7.642 56.426 64.067 4.753 0.000
10 63 59.861 7.294 64.067 71.362 4.206 0.000
11 70 63.134 7.566 71.362 78.927 8.228 0.000
12 77 73.824 7.106 78.927 86.033 5.104 0.000
13 84 85.697 7.059 86.033 93.093 0.337 0.000
14 91 87.403 7.579 93.093 100.672 5.689 0.000
15 98 95.821 6.047 100.672 106.718 4.851 0.000

Table 4.5. Results for individual block with initial block

Figure 4.5. Individual block with initial block: 4111. . .
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From Table 4.5 and Figure 4.5, we observe that the waiting times are

increasing towards the middle. The patient number 6 waits for maximum

i.e for 26.818 minutes. All the patients after the 7th patient wait are lesser

than the patients before the 7th patient. The minimum waiting time is

0.337 minutes is for the 13th patient. Moreover, the physician is busy all

the time because the idle time of the doctor is 0 min every time. The

average waiting time for this rule is 9.378 minutes.

(5) Multiple-block: We appoint 2 patients for each appointment slot with

appointment interval kept constant i.e after every 7 minutes, 2 patients

are given the same appointment time. The results obtained for multiple

block rule are:

n ScT AT ST PST PET W PEmT
1 0 �5.234 6.765 0.000 6.765 5.234 0.000
2 0 �4.940 7.739 6.765 14.504 11.705 0.000
3 7 3.841 6.681 14.504 21.185 10.663 0.000
4 7 6.870 6.964 21.185 28.149 14.315 0.000
5 14 11.977 7.199 28.149 35.348 16.172 0.000
6 14 14.698 6.987 35.348 42.335 20.650 0.000
7 21 21.176 6.372 42.335 48.708 21.159 0.000
8 28 24.800 7.655 48.708 56.362 23.907 0.000
9 28 30.919 7.337 56.362 63.699 25.443 0.000
10 35 35.774 7.588 63.699 71.288 27.925 0.000
11 42 44.347 6.216 71.288 77.504 26.941 0.000
12 49 44.121 7.447 77.504 84.951 33.382 0.000
13 49 48.517 6.823 84.951 91.774 36.434 0.000
14 56 50.256 7.642 91.774 99.416 41.518 0.000
15 56 51.672 7.294 99.416 106.710 47.743 0.000

Table 4.6. Results for multiple block strategy
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Figure 4.6. Multiple-block: 2222. . .

As in Figure 4.6, the waiting times are increasing except for two pa-

tients. For 3rd patient waiting time is less than that for 2nd patient. This

is because the 2nd person comes earlier as compared to the arrival of the

3rd person. The 2nd person arrives 4.940 minutes before his/her sched-

uled appointment whereas the 3rd person comes 3.159 minutes. However,

the decrease in wait time from 10th patient to 11th patient is because of

missing an appointment by 1 patient scheduled at 35 minutes. The rest

of the increase in wait times is because of assigning 2 to patients for each

time-slot. The physician has enough patients to deal with. That is why

idle time of the physician is zero. The average waiting time of the patients

is 24.213 minutes.
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(6) Multiple-block with an initial block: This rule is a variation of the above

rule with an initial block. We appoint 4 patients at the beginning of the

session and each time 2 patients for the rest of the slots in the session.

As compare to the results for the previous strategy, we have an idea that

in this rule also the waiting times would increase for patients because we

have added a block of 4 patients in the beginning. The results are as:

n ScT AT ST PST PET W PEmT
1 0 �6.382 6.027 0.000 6.027 6.382 0.000
2 0 �5.234 6.765 6.027 12.792 11.261 0.000
3 0 �4.940 7.739 12.792 20.531 17.732 0.000
4 0 �0.130 6.681 20.531 27.212 20.661 0.000
5 7 3.841 6.964 27.212 34.176 23.371 0.000
6 7 7.698 7.199 34.176 41.375 26.477 0.000
7 14 11.977 6.987 41.375 48.362 29.398 0.000
8 14 14.176 6.372 48.362 54.734 34.186 0.000
9 21 23.919 7.655 54.734 62.389 30.815 0.000
10 28 24.800 7.337 62.389 69.726 37.589 0.000
11 28 28.774 7.588 69.726 77.315 40.952 0.000
12 35 37.347 6.216 77.315 83.530 39.968 0.000
13 42 37.121 7.447 83.530 90.978 46.409 0.000
14 49 43.256 6.823 90.978 97.800 47.722 0.000
15 49 48.517 7.642 97.800 105.442 49.284 0.000

Table 4.7. Results for multiple block with initial block strategy
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Figure 4.7. Multiple-block with an initial block: 4222. . .

There is also the same trend as in multiple block for waiting times of

patients. For this rule, patients wait for more than in strategy multiple

block without initial block. The mean of waiting times is 30.814 minutes.

(7) Variable block: This rule allows di�erent block sizes during the clinic

session with �xed appointment intervals. If 4 patients appoint in the �rst

slot of the session, 1 patient in the second slot and 3 patients in the third

slot and so on.
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n ScT AT ST PST PET W PEmT
1 0 �5.234 6.964 0.000 6.964 5.234 0.000
2 0 �3.159 7.199 6.964 14.163 10.123 0.000
3 0 �0.130 6.987 14.163 21.150 14.293 0.000
4 0 0.698 6.372 21.150 27.523 20.452 0.000
5 7 4.977 7.655 27.523 35.178 22.546 0.000
6 14 10.800 7.337 35.178 42.514 24.377 0.000
7 14 14.176 7.588 42.514 50.103 28.338 0.000
8 14 16.919 6.216 50.103 56.319 33.184 0.000
9 28 23.121 7.447 56.319 63.766 33.197 0.000
10 28 28.774 6.823 63.766 70.589 34.992 0.000
11 28 30.347 7.642 70.589 78.231 40.242 0.000
12 42 41.517 7.294 78.231 85.525 36.714 0.000
13 49 43.256 7.566 85.525 93.091 42.269 0.000
14 56 51.672 7.106 93.091 100.197 41.418 0.000
15 56 52.861 7.059 100.197 107.256 47.336 0.000

Table 4.8. Results for variable block strategy

Figure 4.8. Variable block: 41313. . .

36



The average wait time of patients with this strategy is 28.981 minutes.

Out of 15 patients, the maximum wait time is 47.336 minutes and it is for

the 15th patient. The waiting times are increasing most of the time.

We will try the combination of some of the above strategies from the literature.

We combine the variable block and individual block strategies. In this strategy,

we have appointed 4 patients for 1st slot, 1 patient for 2nd slot, 2 patients for

3rd slot and 3 patients for the 4th slot. Further, it is then followed by a single

appointment for each slot.

4.1.2. Combination of Variable block and individual block: Using the

recursive relationships from equations 4.1, 4.2, 4.3, 4.4, the results for this new

strategy are given in Table 4.9.

n ScT AT ST PST PET W PEmT
1 0 �3.159 6.681 0.000 6.681 3.159 0.000
2 0 �2.023 6.964 6.681 13.645 8.704 0.000
3 0 0.176 7.199 13.645 20.844 13.469 0.000
4 0 0.698 6.987 20.844 27.831 20.146 0.000
5 7 9.919 6.372 27.831 34.204 17.912 0.000
6 14 10.800 7.655 34.204 41.858 23.403 0.000
7 14 14.774 7.337 41.858 49.195 27.084 0.000
8 21 16.121 7.588 49.195 56.784 33.074 0.000
9 21 23.347 6.216 56.784 63.000 33.437 0.000
10 28 27.517 7.447 63.000 70.447 35.483 0.000
11 49 43.256 6.823 70.447 77.270 27.191 0.000
12 56 51.672 7.642 77.270 84.911 25.597 0.000
13 63 59.861 7.294 84.911 92.206 25.050 0.000
14 70 63.134 7.566 92.206 99.771 29.072 0.000
15 77 73.824 7.106 99.771 106.877 25.948 0.000

Table 4.9. Results for combination of variable block and individ-
ual block strategies for 15 patients
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Figure 4.9. Combination of variable and individual blocks:
412311. . .

The mean waiting time of patients in the Table 4.9 is 23.248 mins.

On comparing the average waiting times from all the above-discussed appointment

rules, 4111 . . . has minimum mean wait. We have an idea from here that it can do

best from all the mentioned strategies. Further, we de�ne the objective function

and we will decide the best rule by running simulation 100 times for each strategy.

Then decide the best strategy on the basis of the minimum value of the objective

function.

4.1.3. Objective Function: Let f be the objective function that needs to be

minimized. It is given by the sum of the weighted average of patients' waiting

times and physician idle time. The relative weights for patients' waiting time and

physician idle time are denoted by wp and wi respectively. Thus f is given as:

f � wp �meanpW q � wi �meanpPEmT q (4.5)

W is the patient waiting time

PEmT is the physician idle time
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As �gured in (Keller et al.[15]), for estimating the weight of doctor idle time,

Keller and Laughhunn divided the annual salary of the doctor by the hours worked

per year and used the minimum wage to re�ect the opportunity cost of the patients'

waiting time. In a report of Caribbean Medicine with the date June 20, 2018, they

have mentioned that according to Statistics Canada, a Canadian physician's salary

in Ontario is about $340, 000 per year. Below is the graph from this report that

shows the average Canadian physician salary by province:

Figure 4.10. Average salary of Canadian Physician by province

Moreover, in the report of Medics Domain published on October 8, 2020, the

average medical doctor salary in Canada by province is given as: Let average

PROVINCE SALARY PER MONTH SALARY PER YER
Alberta $32, 031 $384, 380
Ontario $30, 000 $360, 000
Manitoba $29, 558 $354, 705
Quebec $27, 083 $325, 000
New Brunswick $25, 177 $302, 123
Prince Edward Island $25, 424 $305, 091
Saskatchewan $24, 083 $288, 995
British Columbia $22, 750 $273, 000
New Found Land $22, 470 $269, 646
Nova Scotia $21, 614 $259, 368

Table 4.10. Average medical doctor salary in Canada by
province

working hours of the physicians in Ontario, Canada is 40 hours per week. Let the
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physician works for 48 weeks excluding vacation weeks. Therefore approximate

total working hours of a physician per year are 40 � 48 � 1920 hours. Thus, the

average hourly salary of the physician is 350, 000{1920 � $182.292. However, the

minimum wage level by jurisdiction for employees in Ontario is $14.25 per hour.

Therefore we can have an idea from here for the relative weight of physician idle

time as 182.292{14.25 � 12.79, which is approximately 13. Since the physician

decides the scheduling times so physicians could give more priority for his/her

time. Therefore let the weight for physician idle time(wi) be 15 times the weight

for patients' waiting time(wp). Therefore, wp � 14.25{60 and wi � 15� 14.25{60.

Thus from equation 4.5, our objective function is:

f � 14.25� pPW � 15�DW q{60 (4.6)

where f is the expected cost per patient in the system. The expected total cost of

the system with 15 patients is given by f� � 15� f .

4.1.4. Comparison of strategies: Let each patient has a probability of 0.85

of keeping its appointment. Let v be the vector of mean waiting times for 500 runs

of each strategy and t be the vector of mean physician idle time. We assume that

waiting patients are seen in order of their appointments. Let f be the objective

function. The results for di�erent strategies with 15 patients are given below:

strategy mean(v) mean(t) f� SD(v) SD(t)
41111 . . . 11.998 0.303 58.949 5.255 0.559
22222 . . . 23.833 0.025 86.248 3.879 0.073
42222 . . . 29.236 0.002 104.260 4.075 0.018
41313 . . . 28.049 0.003 100.074 4.013 0.018
412311 . . . 22.303 0.048 82.039 6.223 0.264
421311 . . . 23.056 0.027 83.584 6.192 0.150
431211 . . . 24.309 0.027 88.022 6.006 0.138

Table 4.11. Results for di�erent strategies after performing sim-
ulation 500 times
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Table 4.11 shows that the value of the objective function or the total cost is

minimum for an appointment rule 41111 . . . which is $58.949. For the best strat-

egy, the objective function should be minimum. However, 4222 . . . strategy has a

maximum value of objective function which is $104.260. Also, the mean waiting

time of the patients is minimum for 4111 . . . which is 11.998 minutes. Hence, after

performing simulation with 500 runs for each strategy when the physician is on

time, we conclude that 41111 . . . is the best strategy out of all the above strategies

in Table 4.11.

4.1.5. When a physician is 5 mins late: Further, suppose that the physi-

cian is 5 minutes late. With the lateness of the physician, the waiting time of the

patients' increases by some amount from the waiting times in table 4.11 whereas

the idle time of physician decreases. The results are as follow:

strategy mean(v) mean(t) f� SD(v) SD(t)
41111 . . . 17.023 0.149 68.602 5.879 0.384
22222 . . . 28.200 0.004 100.673 3.938 0.036
42222 . . . 34.829 0.000 124.078 3.752 0.000
41313 . . . 33.059 0.000 117.776 3.971 0.002
412311 . . . 28.148 0.012 100.910 6.154 0.079
421311 . . . 27.761 0.010 99.415 5.679 0.087
431211 . . . 29.138 0.010 104.344 6.093 0.098

Table 4.12. Results for di�erent strategies after performing sim-
ulation 500 times, when physician is 5 mins late

Again, from the above results, it is clear that the objective function is minimum

for strategy 41111 . . . and maximum for strategy 42222 . . . . The explanation of

the best strategy from the above table is the same as for table 4.11. Thus when

the physician is late, for our assumptions the best strategy is still 41111 . . . .
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4.1.6. Plots for the best strategy with di�erent probabilities of keep-

ing an appointment: The plots of waiting times and idle times for di�erent

probabilities are given below:

Figure 4.11. Plots for di�erent probabilities for strategy 4111

In �gure 4.11, red and blue dots represent the idle time of the physician and

waiting time of the patients respectively. The x-axis represents the patient num-

ber and the y-axis shows the time in minutes. As the probability of attending

an appointment increases, the waiting time of the patients also increases. Higher

probability means more patients come for their appointments and they have to

wait for more. On the contrary, the idle time of the doctor becomes zero, since

the doctor has enough patients to serve. In �gure 4.11, when p � 0.25 the idle

time of the doctor is large because a lot of patients miss appointments and the

physician has to wait for service whereas the waiting time of all the patients except

one is zero. When p � 0.85 most of the patients attend their appointments and

the physician needs not to wait. Hence the idle time of the doctor is zero. How-

ever, patients have to wait for more. At the beginning of the session, 4 patients

are appointment at the same time and after that, only a single patient is called.

Therefore the waiting time of the patients increases in the beginning. There is

a trade-o� between waiting times and idle times. Moreover, some patients miss

appointment and the block of 4 patients overcome the situation of missing ap-

pointments that improves the idle time of the doctor. Thus, the waiting time in

42



the middle of the session decreases. This will be the same case in other strategies

that waiting times increase with increasing probability.

4.1.7. Kernel density estimation. The kernel density estimation (KDE) is

a non-parametric method to estimate the probability density function of a random

variable. It was given by Rosenblatt et al. ([25]). For best strategy 41111 . . . , the

KDE plot for the waiting times is given in Figure 4.12. In our density plots, the

kernel function we are using is Gaussian.

Figure 4.12. Kernel density estimation for strategy 41111 with
increasing probabilities

The plot in Figure 4.12 gives the density plot for mean waiting times of the pa-

tients with increasing probabilities of keeping an appointment. In the plot N=100

i.e 100 observations and bandwidth is 0.2153. The plot with p � 0.85 has a wider

range than the other two plots and represented by magenta colour. For the blue

curve where p � 0.25, the mean of waiting times is 1.012 minutes and for the

red curve p � 0.5 and the mean is 2.542 minutes. Further, the mean for plot
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with p � 0.85 is 12.978 minutes. We can see from the curves that the mean and

the variance are becoming bigger as the probability of keeping an appointment

is increasing. Thus, the range of the waiting times increases with the increasing

probability. Similarly, we can conclude the same result for the other strategies.

Further, we will see the results for di�erent strategies with variable interval lengths.

For this, we generate a sequence (sq) that is increasing towards the middle then

it starts decreasing with a constant di�erence of 1. After that, we make some

random changes to the sequence sq to make the di�erence a variable. Let it call

newseq and add this in original sq, where newseq � a � sqb. We then �nd the

best (a, b) that minimizes the objective function in equation 4.6. All the terms

sq, newseq, a, b are taken from the R program provided in Appendix A. For this,

we will use the concept of simulation annealing. We construct a program that

performs like simulation annealing.
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CHAPTER 5

Modi�ed simulation annealing

Finding an optimal solution for certain optimization problems can be a di�cult

task, often practically impossible. This is because we need to search through an

enormous number of possible solutions to �nd the optimal one. In this case, we

have to look for something that is close enough to the optimal one.

Simulation Annealing (SA) is one of the methods for solving optimization prob-

lems. It was introduced by Kirkpatrick et al.[16] in 1982. SA algorithm was

originally inspired by the process of annealing in metalwork. Annealing involves

heating a material to a speci�ed temperature and cooling it at a very slow and

controlled rate to alter its physical properties due to the changes in its internal

structure. SA is a metaheuristic (local search algorithm) capable of escaping from

local optima.

It helps us to reach a global optimum of a given function. Unlike traditional

optimization techniques like a random walk or hill climbing it would not get stuck

at a local optimum. In SA we even accept the worse solutions, this gives the algo-

rithm the ability to jump out of any local optimum.

To minimize some function f(a, b) or �nd (a�, b�) to minimize given function

f(a, b), one numerical method is as follows:

Assume that al   a�   ah where (al, ah) is an interval and bl   b�   bh where

(bl, bh) is an interval. Let k1 and k2 be two random Bernoulli values with high

probability (0.9) of 0 and low probability (0.1) of 1. We start with a random guess

(a0, b0) and compute f�(a0, b0). After that we attempt to �nd a better solution by

making an incremental change to the current solution. Let a1 and b1 be the values

of a and b respectively after some incremental changes. Let f�1 � f�pa1, b1q and

f�0 � f�pa0, b0q. Some formulas are given as:

k1 � rbinomp1, 1, 0.1q (5.1)

k2 � rbinomp1, 1, 0.1q (5.2)
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a1 � a0 � k1 � runifp0, 1q � runifp0, 0.1q (5.3)

b1 � b0 � k2 � runifp0, 2q � runifp0, 0.1q (5.4)

If f�1   f�0 � 0.5 � f�0 � ppa1 � a0q
2 � pb1 � b0q

2 ¡ 0.03q � pi   n{2q then we accept

the new solution (a1, b1), otherwise current solution. We repeat this 100 times.

5.0.1. Why bad results. For positive support of random uniform variables,

we got increasing value of the expected total cost of the system which we call bad

results. These are given in Table 5.1

new f� (in $) a0 b0
82.144 0.500 0.500
81.236 0.513 0.542
76.694 0.550 0.551
82.914 0.647 0.558
2008.684 0.647 0.558

...
90.395 0.731 0.657
94.702 0.788 0.717
525.426 0.788 0.717

...
173.273 0.991 0.911
168.374 0.991 0.911
191.527 0.991 0.911
183.408 0.991 0.911
189.878 0.991 0.911
213.718 0.991 0.911

Table 5.1. Bad results

From the table 5.1, we can see that the value for the objective function in

equation 4.6 is becoming bigger most of the time. These are bad results since we

want to minimize the objective function but the value of the objective function is

becoming large with increasing iterations. This situation arises because we choose

the positive support for randomly generated numbers in equations 4.6, 5.1, 5.2,

5.3. When the value of a0 and b0 is updated, it is always bigger than the previous

values of a0 and b0 as some positive number is added every time. In our case, I am

trying to �nd the value of a and b in a � sqb where sq is an increasing decreasing

sequence to minimize the objective function f. As b0 becomes greater than 1 and

b0 is power then elements in sq becomes large. This means my interval length

becomes bigger than for the previous iteration and idle time for the doctor might
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increase. Thus the value of my objective function increases with increasing itera-

tions.

We allow some negative support for the random variables in a1 and b1 in equa-

tions 5.3, 5.4. The remaining procedure is the same as de�ned in the beginning,

keeping a1 positive as a1 is the multiple in the newseq and interval length cannot

be negative.

a1 � maxpa0 � k1 � runifp1,�1, 1q � runifp1,�0.1, 0.1q, 0.1q (5.5)

b1 � b0 � k2 � runifp1,�1, 1q � runifp1,�0.1, 0.1q (5.6)

For di�erent strategies, the minimum value of the objective function obtained

by performing simulation annealing 100 times and their corresponding a0 and b0

are given in Table 5.2.

strategy minpf�0 q a0 b0
41111 . . . 73.940 1.072 0.010
22222 . . . 64.196 1.983 0.990
42222 . . . 91.435 1.111 1.671
41313 . . . 73.829 3.388 0.747
412311 . . . 99.529 0.969 0.785
421311 . . . 97.620 1.636 0.529
431211 . . . 102.746 0.703 1.044

Table 5.2. Best a0 and b0 for di�erent strategies

Further, we will decide the best out of all the above appointment strategies

with varying interval lengths by performing simulation 500 times for each strategy

for optimal a0 and b0. Then the strategy with a minimum objective function will

be the best one. We �nd the mean waiting time for each of 15 patients and try to

plot them to �gure out the results and conclusions.

(1) Individual block with an initial block(41111 . . . ): The results for mean

waiting time for each patient and mean idle time of the physician before

the start of the service of each patient are given in Table 5.3.
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Patient number mean wait time mean idle time
1 4.628 0.022
2 9.182 0.000
3 14.200 0.000
4 19.671 0.002
5 24.400 0.002
6 26.916 0.030
7 27.376 0.078
8 27.093 0.293
9 25.318 0.347
10 22.851 0.436
11 19.709 0.602
12 17.172 0.660
13 16.525 0.841
14 16.523 0.567
15 18.168 0.290

Table 5.3. Mean waiting time for each patient and mean idle
times of physician for 4111 . . .

Figure 5.1. Mean waiting and idle time plot for 4111 . . .
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It can be seen from Table 5.4 that the patient number 7 has a maxi-

mum mean waiting time of 27.376 mins and the physician mean idle time

is 0.078 mins before the 7th patient, whereas the 1st patient wait on an

average for only 4.628 mins. Furthermore, in Figure 5.1 the mean waiting

times for patients increase till the 7th patient and then it starts decreasing

up to the 14th patient. It again increases for the 15th patient and becomes

18.168 mins. The average waiting times set a dome-shaped trend. Apart

from this, the mean idle time of the doctor is less than 1 min every time.

The mean of mean waiting times is 19.315 mins and the mean of mean

idle time is 0.278 mins. The value of the objective function is $83.667.

(2) Multiple-block(2222 . . . ): Table 5.4 gives the average waiting time for an

individual patient and average idle time for the physician.

Patient number mean wait time mean idle time
1 3.351 0.214
2 7.325 0.014
3 13.440 0.000
4 16.556 0.008
5 19.616 0.040
6 21.373 0.064
7 21.730 0.155
8 21.905 0.109
9 20.550 0.306
10 19.344 0.273
11 17.641 0.407
12 16.841 0.470
13 17.094 0.348
14 18.057 0.186
15 20.391 0.038

Table 5.4. Mean waiting time for each patient and mean idle
times of physician for 2222 . . .
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Figure 5.2. Mean waiting and idle time plot for 2222 . . .

For strategy 2222 . . . with variable interval length, the mean waiting

times are less, relative to those for strategy 4111 . . . . Here, the 8th pa-

tient waits a maximum of 21.905 mins. The trend for waiting times is

the same as that for individuals with an initial block strategy. The aver-

age idle time of the physician is less up to the �rst 7 patients in strategy

4111 . . . and, from the 8th patient, the idle time of the doctor is less for

2222 . . . . The average of waiting times for each patient is 17.014 mins

and the mean of mean idle times is 0.175 mins. The objective function is

$69.99 for this strategy which is less than that of 4111 . . . . Thus, out of

these two strategies discussed so far, 2222 . . . is much better than 4111 . . . .

(3) Multiple-block with an initial block(4222 . . . ): For results of this strategy,

I refer Table 5.5.
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Patient number mean wait time mean idle time
1 4.813 0.025
2 9.476 0.000
3 14.405 0.000
4 20.374 0.000
5 26.572 0.001
6 29.593 0.000
7 31.556 0.144
8 32.237 0.153
9 30.849 0.185
10 27.975 0.782
11 23.819 1.000
12 20.264 1.254
13 19.028 1.078
14 18.782 1.062
15 20.683 0.374

Table 5.5. Mean waiting time for each patient and mean idle
times of physician for 4222 . . .

Figure 5.3. Mean waiting and idle time plot for 4222 . . .

51



From Table 5.5, on average the 8th patient wait maximum i.e for

32.237 mins. The waiting times increase towards the middle and become

maximum then followed by a decreasing trend. Same as in the above 2

strategies discussed the waiting time for the 15th patient again increases.

The mean idle time of the physician increases towards the end till the 14th

patient. The objective function has a value of $100.058 which is bigger

than in the previous two strategies.

(4) Variable block(41313 . . . ): The mean waiting time for each patient and

mean idle time of the physician before the start of the service of each

patient are given in Table 5.6.

Patient number mean wait time mean idle time
1 4.563 0.039
2 9.155 0.000
3 13.829 0.000
4 18.253 0.000
5 21.587 0.026
6 23.975 0.000
7 25.977 0.055
8 25.269 0.140
9 23.740 0.295
10 23.004 0.415
11 22.107 0.325
12 19.160 0.458
13 18.498 0.430
14 20.119 0.230
15 21.321 0.143

Table 5.6. Mean waiting time for each patient and mean idle
times of physician for 41313 . . .
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Figure 5.4. Mean waiting and idle time plot for 41313 . . .

In this strategy, the 7th patient has a maximum mean wait time of

25.977 mins. Again for this strategy, the mean wait times form a dome-

shape curve. The curve for mean idle times is almost a straight line about

0 min. For the 15th patient, the mean wait time increases in each of the

above strategies. Here, the objective function takes values of $78.113.

(5) Combination of Variable block and individual block(412311 . . . ): The

mean waiting time for each patient and mean idle time of the physician

before the start of the service of each patient are given in Table 5.7.
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Patient number mean wait time mean idle time
1 4.607 0.022
2 9.210 0.000
3 14.150 0.000
4 19.954 0.000
5 25.951 0.000
6 29.952 0.000
7 33.743 0.070
8 37.371 0.167
9 38.817 0.238
10 38.348 0.376
11 34.670 0.604
12 29.926 0.630
13 25.812 0.659
14 23.067 0.695
15 23.170 0.572

Table 5.7. Mean waiting time for each patient and mean idle
times of physician for 412311 . . .

Figure 5.5. Mean waiting and idle time plot for 412311 . . .
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In Table 5.7, the maximum mean wait is of 38.817 mins which is for

the 9th patient. The value of the total cost is $106.695 which is the max-

imum till now. It means this strategy doesn't do much better when the

interval length is variable. The red line in the plot represents the mean

idle time of the physician. For this strategy, the maximum mean idle time

is 0.695 mins which is before the service of the 14th patient.

The results for strategies 421311 . . . and 431211 . . . are almost same

as that for 412311 . . . . These results are given in Table 5.8 and Table 5.9.

(6) Combination of Variable block and individual block(421311 . . . ): The

Patient number mean wait time mean idle time
1 4.616 0.038
2 9.331 0.000
3 14.582 0.000
4 20.242 0.000
5 26.414 0.000
6 29.713 0.000
7 33.065 0.000
8 36.066 0.040
9 37.352 0.156
10 36.095 0.183
11 32.056 0.519
12 27.295 0.841
13 23.026 1.127
14 20.518 0.855
15 19.683 0.780

Table 5.8. Mean waiting time for each patient and mean idle
times of physician for 421311 . . .

objective function has a value of $104.058. The 9th patient has a maxi-

mum mean waiting time of 37.352 mins. The maximum mean idle time

is 1.127 mins before the start of the service of the 13th patient.
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Figure 5.6. Mean waiting and idle time plot for 421311 . . .

(7) Combination of Variable block and individual block(431211 . . . ): The

mean waiting time for each patient and mean idle time of the physician

before the start of the service of each patient are given in Table 5.9.
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Patient number mean wait time mean idle time
1 4.730 0.033
2 9.494 0.000
3 14.677 0.000
4 21.364 0.000
5 28.867 0.000
6 33.178 0.000
7 37.296 0.000
8 40.307 0.006
9 41.553 0.068
10 40.121 0.220
11 36.045 0.525
12 30.513 0.799
13 25.733 0.901
14 22.545 1.052
15 22.340 0.542

Table 5.9. Mean waiting time for each patient and mean idle
times of physician for 431211 . . .

Figure 5.7. Mean waiting and idle time plot for 431211 . . .

Out of all the strategies discussed above this strategy has big mean

waiting times. The maximum value of the mean wait time is 41.553 mins

for the 9th patient. The reason behind this big number is that in the
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beginning 3 time-slots, a block of 4, then 3 followed by 2 patients are

appointed respectively. Due to this, the waiting times are much bigger

than other strategies. The maximum mean idle time is 1.052 mins before

the service of 14th patients. The total cost is $111.851

Figure 5.8 gives the curves of mean waiting times for all the above-mentioned

strategies. In terms of mean waiting times, from all the curves in Figure 5.8 the

Figure 5.8. Mean waiting time plot for all strategies

curve with the blue colour is the best. It means each patient in the multiple-

block strategy waits a minimum as compare to all other strategies plotted. The

pink curve has the maximum waiting times for patients that implies the strategy

431211 . . . is worst in terms of waiting times. Since each patient has large waiting

times. Moreover, the orange and brown curves are approximately the same that

represent the combination of variable and individual blocks strategies 421311 . . .

and 412311 . . . respectively. The mean waiting time of the 15th patient is less

than the 14th patient only in strategy 421311 . . . whereas in all other strategies it

is bigger than 14th patient.

The values of objective function for all strategies are given in Table 5.10.
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strategy f�0 pin$q
41111 . . . 83.667
22222 . . . 69.990
42222 . . . 100.058
41313 . . . 78.113
412311 . . . 106.695
421311 . . . 104.058
431211 . . . 111.851

Table 5.10. Objective function i.e total cost for di�erent strate-
gies

In above table, the minimum value of the objective function is $69.99 for strat-

egy 2222 . . . and maximum for strategy 431211 . . . which is $111.851. Thus on the

basis of minimum total cost of the system, multiple-block strategy with 2 patients

for each block is the best under our assumptions for 15 patients.

The best strategy depends on the probability of missing an appointment. It can

be di�erent for di�erent assumptions and di�erent probabilities.

When physician is 5 mins late, the results for di�erent strategies and the plots are

given as:

Figure 5.9. Plot of mean waiting time for each patient for all
strategies, when physician is late

The results are similar to the case when physician is on time. With the lateness

of the physician, the wait time increases for the patients. However, the idle times

of the physician get lower. On comparing the red curve for strategy 411 . . . and

the blue curve for strategy 222 . . . in Figure 5.9, the mean waiting times for �rst

10 patients are less for the blue curve than in the red curve whereas for last �ve

patients the mean waits increase for blue curve and decrease for red curve. It
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seems blue curve is much better than red one. But this is not the �nal decision

as these curves are only for mean waiting times. Each patient except the 15th

patient waits maximum in the strategy 431211 . . . , the pink curve in the plot. The

strategies 412311 . . . and 421311 . . . perform almost the same represent by brown

and orange curves respectively.

strategy f�0 (in $)
41111 . . . 97.065
22222 . . . 80.130
42222 . . . 108.405
41313 . . . 103.635
412311 . . . 112.965
421311 . . . 110.160
431211 . . . 117.570

Table 5.11. Objective function for di�erent strategies, when
physician is 5 mins late

The objective function has minimum value of $80.130 for the strategy 222 . . .

and maximum for the strategy 431211 . . . which is $117.570. We can see in Table

5.11 that out of the individual block with initial block strategy (411 . . . ) and the

multiple block strategy 222 . . . , the second one performs better. In the case of the

physician being late, on the basis of the minimum value of the objective function,

the multiple block strategy 222 . . . is the best out of all the mentioned strategies.
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CHAPTER 6

Conclusions and Future Questions

6.1. Conclusions

In this thesis, we gave the probability distribution of the number of patients
or customers in the system by four di�erent methods. Firstly, by theoretical cal-
culations using convolutions of discrete random variables, secondly by perform-
ing simulation followed by third method using probability generating functions
and the last method is Markov chains. We analyse that, if n0, n1, n2, . . . pa-
tients are scheduled at times 0, 1d, 2d, . . . respectively with probability of keep-
ing an appointment p and X0, X1, X2, . . . are the number of patients remaining
in the system at times 0�, 1d�, 2d� . . . respectively then X0 � Binpn0, pq and
P pXi � xq � Binp

°ni

n�n0
n, p, x� iq for upper n0� 1 numbers from the support of

the random variables, where i � 1, 2, 3 . . . .
Furthermore, we conclude that if the probability of missing an appointment is
0.15, then in the case of the physician being either punctual or 5 mins late, the
individual block with an initial block strategy (4111 . . . ) is the best strategy on
the basis of the minimum value of the total expected cost of the system, providing
patients are unpunctual, �xed interval lengths and service times are varying for
di�erent patients.
Moreover, in the case of variable interval lengths under the same assumptions as
in the case of �xed interval lengths, the multiple-block strategy (222 . . . ) performs
best out of all the discussed strategies. Thus, in case of physician being punctual,
one can use scheduling times (in mins) as,

> sct

[1] 0.000000 2.983000 8.921605 17.805606 29.628404 44.385105 62.071820

[8] 76.828522 88.651320 97.535321 103.473926 106.456926

for the best strategy 222 . . . where everytime 2 patients are given the same sched-

uling time. In case of physician being 5 mins late, the best pair is (1.915, 1.062).

6.2. Future research

How good is our objective function? is the future question.

In this thesis, we have not considered the priority for the patients in the system.

Some patients may have higher priorities than others, because their conditions

may be more serious or they have special time constraints or they may be more

important in some sense. If we consider priorities in our analysis the solution will

be considerably more complex.

The initial system that was considered in this thesis had deterministic interarrival
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times, with batch arrivals and deterministic service times. But since the batch size

could be zero, this e�ectively means that the interarrival times are geometrically

distributed. Since the deterministic service times can be represented by a discrete

time Phase (PH) distribution, the system can be viewed as a special case of a

discrete time GeorXs{PH{1 queueing system (Alfa [1]). A deeper study of this

would be a subject of future research.

In this thesis, we always assumed there would be 15 customers who completed

service. However, because patients miss appointments the actual number of cus-

tomers served per session may vary. So we may wish to study the total number of

customers served per session and how this a�ects our objective function.
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Appendix A

Codes and Programs

This section shows the R programming code and commands used in the study:

# Individual block rule with initial block

library(ggplot2)

library(dplyr)

library(tidyr)

# n is a vector of number of patients arrived at different time-slots

n=rbinom(1,4,0.85)

while(sum(n)<=15){

n=c(n,rbinom(1,1,0.85))

}

# AT is the vector of arrival times of the patients

AT=rep(-2,n[1])

for ( i in 1:(length(n)-1)){AT=c(AT, rep(-2+7*i,n[i+1]))}

u = -5+10*runif(n[1])

for (i in 1:(length(n)-1)){u=c(u,-5+10*runif(n[i+1]))}

D = data.frame(u,AT)

D = D[order(D$AT,D$u),]

D

AT = AT+(D$u)

AT=AT[1:15]

# ScT is the vector of the scheduling times of the patients

ScT=rep(0,n[1])

for ( i in 1:(length(n)-1)){ScT=c(ScT, rep(0+7*i,n[i+1]))}

ScT=ScT[1:15]

# ST is the vector of service times for 15 patients

ST = 6+2*runif(length(AT))

ST=ST[1:15]

# PA is the physician arrival time

PA=0

# PST is the vector of physician start times of the service

pst = function(i){

if (i==1) return(pst=max(AT[1],PA))
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else if( pst(i-1)+ST[i-1]>AT[i]) return(pst=pst(i-1)+ST[i-1])

else return(pst = AT[i])

}

PST=sapply(1:length(AT), pst)

PST=PST[1:15]

# PET is the vector of the physician end times of the service

pet = function(i){

pet=pst(i) + ST[i]

return(pet)

}

PET=sapply(1:length(AT), pet)

PET=PET[1:15]

# W is the vector of the waiting times of the patients

w = function(i){

w=max(pst(i) - AT[i],0)

return(w)

}

W=sapply(1:length(AT), w)

W=W[1:15]

# PEmT is the vector of empty time of the physician before startig the service of a patient

pemt = function(i){

if (i==1) return(pemt = max(pst(1)-PA,0))

else return(pst(i) - pet(i-1))

}

PEmT=sapply(1:length(AT), pemt)

PEmT=PEmT[1:15]

x=1:15

df=round(data.frame(x, ScT, AT, ST,PST,PET,W,PEmT),3)

df %>% select(c(x,W,PEmT)) %>% pivot_longer(-x) %>%

ggplot(aes(x=x,y=value, color=name,shape=name,group=name,fill=name))+

geom_step(color='black',show.legend = F)+

geom_point(size=2)+

theme(axis.text.x = element_text( vjust = 0.5),

legend.position = "bottom",

axis.line = element_line(),

panel.grid.major = element_blank(),

panel.grid.minor = element_blank(),

panel.background = element_blank(),

panel.border = element_blank())+

ylab("Time(in minutes)")+

scale_x_continuous("Patient number", labels = x, breaks = x)+

scale_color_manual('Time',values=c('red','blue'),

labels = c("Idle time","Waiting time"))+
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scale_shape_manual('Time',values=c(21,21),

labels = c("Idle time","Waiting time"))+

scale_fill_manual('Time',values=c('transparent','blue'),

labels = c("Idle time","Waiting time"))

##############################################################################

#Strategy 411...

func = function(a,b){

L = list()

l = list()

for (i in 1:100) {

#nitr is iteration number

nitr=i

n=rbinom(1,4,0.85)

while(sum(n)<=15){

n=c(n,rbinom(1,1,0.85))

}

s_1 = seq(from=1, to=as.integer((length(n))/2), by=1)

s_2 = seq(from=as.integer((length(n))/2)+1, to=1, by=-1)

sq = c(s_1,s_2)

new_seq = a*sq^(b)

s = sq+new_seq

c = which(n!=0)

#Scheduling times

sct=c(0,cumsum(s))

ScT=rep(sct[c],n[c])

ScT=ScT[1:15]

#Arrival times

AT = function(i){

if(i==1) return(AT =-2)

else return(AT(i-1)+s[i-1])

}

AT=sapply(1:length(n),AT)

AT=rep(AT[c],n[c])

u = -5+10*runif(n[1])

for (i in 1:(length(n)-1)){u=c(u,-5+10*runif(n[i+1]))}

D = data.frame(u,AT)

D = D[order(D$AT,D$u),]

AT = AT+(D$u)

AT=AT[1:15]

#Service times

ST = 6+2*runif(length(AT))

ST=ST[1:15]

#Physician arrival time
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PA=0

#Physician start time

pst = function(i){

if (i==1) return(pst=max(AT[1],PA))

else if( pst(i-1)+ST[i-1]>AT[i]) return(pst=pst(i-1)+ST[i-1])

else return(pst = AT[i])

}

PST=sapply(1:length(AT), pst)

PST=PST[1:15]

#Physician end time

pet = function(i){

pet=pst(i) + ST[i]

return(pet)

}

PET=sapply(1:length(AT), pet)

PET=PET[1:15]

#Waiting times of the patients

w = function(i){

w=max(pst(i) - AT[i],0)

return(w)

}

W1=sapply(1:length(AT), w)

W1=W1[1:15]

L[[nitr]] = W1

#Physician empty time

pemt = function(i){

if (i==1) return(pemt = max(pst(1)-PA,0))

else return(pst(i) - pet(i-1))

}

PEmT=sapply(1:length(AT), pemt)

PEmT=PEmT[1:15]

l[[nitr]] = PEmT

}

v = matrix(unlist(L), nrow = length(W1), ncol = nitr)

t = matrix(unlist(l), nrow = length(PEmT), ncol = nitr)

# Vector of mean wait times for each patient

M =rowMeans(v)

# Vector of mean idle time for physician before each patient

m =rowMeans(t)

PW=mean(M)

DW=mean(m)
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#Objective function

f=function(PW,DW){

f=14.25*15*(PW+15*DW)/60

}

f(PW,DW)

}

#Modified Simulation Annealing

g=function(func,a0,b0,n){

for (i in 1:n) {

k1=rbinom(1,1,0.1)

k2=rbinom(1,1,0.1)

a1=max(a0+k1*runif(1,-1,1)+runif(1,-0.1,0.1),0.1)

b1=b0+k2*runif(1,-1,1)+runif(1,-0.1,0.1)

f_1=func(a1,b1)

f_0=func(a0,b0)

if(f_1<f_0+.05*f_0*((a1-a0)^2+(b1-b0)^2>.03)*(i<n/2)){

a0=a1

b0=b1

print(round(c(f_1,a0,b0),3))

}

else{

print(round(c(f_0,a0,b0),3))

}

}

}

g(func,0.5,0.5,100)
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