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RESUMO 

O aparelho ortodôntico fixo tipo multibandas atual não permite medir ‘in-vivo’ as forças 

e torques aplicados ao dente individual. Para um tratamento ideal e para reduzir os efeitos 

iatrogênicos, o ‘Smart Bracket’ foi desenvolvido para uma próxima geração de aparelhos 

ortodônticos fixos fornecendo ao ortodontista uma medida quantitativa sobre as forças e 

torques aplicados a cada dente ao longo da terapia. 

O presente trabalho pretende ser uma revisão narrativa da literatura tendo como objetivo 

descrever o conceito de ‘Smart Bracket’, comparando-o com os aparelhos ortodônticos 

fixos atuais. Além disso, procura analisar e resumir o seu desenvolvimento e a evolução 

dos seus vários protótipos existentes. 

A pesquisa foi realizada entre Fevereiro e Agosto de 2020 por meio do motor de busca 

B-On (entre outros), para o período temporal 2005-2020, com o objectivo de sintetizar a 

literatura sobre o sistema, identificar seus limites e, eventualmente, recomendar novos 

temas de pesquisa. Adicionalmente, artigos de revisão e livros científicos foram 

consultados a partir de 2000 para apresentar os atuais aparelhos multibandas e seus efeitos 

iatrogênicos. 

 

Palavras-chave: "Braquetes Ortodônticos"; "Torque"; "Reabsorção da Raiz"; "Tensão 

Mecânica"; "Calibração"; "Tecnologia sem Fios" e "Dispositivo de Identificação por 

Radiofrequência" 

 

  



 

 VI 

ABSTRACT 

The current multi-bracket appliances do not allow to measure ‘in-vivo’ the forces and 

torques applied to the individual tooth. For an ideal treatment and to reduce iatrogenic 

effects, the ‘Smart Bracket’ has been developed for a next generation of fixed orthodontic 

appliances providing the orthodontist with quantitative measure of the forces and torques 

applied to each tooth throughout therapy. 

The present work intends to be a narrative review of the literature aiming to describe the 

concept of ‘Smart Bracket’, comparing it with the current fixed orthodontic appliances. 

In addition, it seeks to analyze and summarize its development and the evolution of its 

various existing prototypes. 

The literature research was carried out between February and August 2020 using the 

search engine B-On (among others), for the period 2005-2020, with the aim of 

synthesizing the literature on the system, identifying its limits and, eventually, 

recommend new research topics. In addition, review articles and scientific books were 

consulted from 2000 onwards to present the current multiband devices and their 

iatrogenic effects. 

 

Keywords: "Orthodontic Brackets"; "Torque"; "Root Resorption"; "Stress, Mechanical"; 

"Calibration"; "Wireless Technology" and "Radio Frequency Identification Device". 
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I. INTRODUCTION 

The success of orthodontic treatment is not limited to obtaining a correct occlusion. The 

risks inherent in the treatment must be known to be anticipated. The orthodontist has a 

duty to preserve the dental organ and the surrounding structures (Maire and Meyer, 2014), 

for this the tooth movement should normally be atraumatic, well-directed, and efficient. 

(Lapatki et al., 2007) 

The multi-bracket appliances that are on the market lack quantitative measurement to 

determine the exact force applied to the tooth, and do not offer the orthodontist this 

possibility of controlling the force in its direction and intensity during tooth displacement. 

Hence the need for an individual system on board each bracket to measure and calculate 

the forces applied by the orthodontic wire on the tooth in all directions. 

The requirement of well-directed and adequately dimensioned forces and torques in all 

three dimensions inspired the design and the development of smart brackets since 2005 

by a team from the Department of Orthodontics, School of Dental Medicine, University 

of Freiburg, Germany; in collaboration with the Department of Microsystems 

Engineering (IMTEK), University of Freiburg, Germany. A bracket capable of measuring 

all six force and torque components exerted from the archwire via the bracket to the tooth, 

thus providing objective feedback for the orthodontist. (Bartholomeyczik et al., 2005) 

This work pretends to be a narrative review of the scientific literature and its objective is 

to describe the smart bracket concept, the main stages of its evolution over the years. 

Also, to know where are we currently with the smart bracket? and what would be the 

obstacles encountered and the solutions to be provided for the next steps to finally reach 

its commercialization? The description of fixed orthodontic appliance, its iatrogenic 

effects linked to the inadequacy application of F/T, and some notions about optimal force 

were also touched on. 

Materials and Methods: 

For the elaboration of this bibliographic review, articles were searched in different 

academic databases and search engines (B-On, Scopus, IEEE Xplore, Springer, Elsevier 
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ScienceDirect, PUBMED, Academic Search Complete) and Mendeley for the 

management of bibliographic references. 

It was also used several reference books in the area of Orthodontics and Biomechanics. 

(Contemporary orthodontics, Orthodontics – Current principles and techniques …) 

The following keywords were used in different combinations according to Medical 

Subject Headings terminology: "Orthodontic Brackets"; "Torque"; "Root Resorption"; 

"Stress, Mechanical"; "Calibration"; "Wireless Technology" and "Radio Frequency 

Identification Device". 

Most of the relevant articles were found in the Scopus database. Identified articles were 

assessed according to well-defined inclusion and exclusion criteria.  

Regarding only the Smart bracket project, inclusion criteria were used to narrow the 

search: for search, academic databases in the bioengineering field were used; publication 

date. 2005-2020; languages: English, French, Portuguese, German; only full articles. The 

following exclusion criteria were used: articles without scientific rigor; articles with only 

abstract available; unavailable articles; out of research topic. 20 articles were selected and 

studied. Priority was given to articles published between 2011 and 2020 deemed very 

relevant, but also to those published before this period deemed interesting for 

understanding its evolution and history. In addition to introduce the means of 

measurements that existed before the smart bracket and for some that still exist. The final 

selection includes 31 articles and reviews included in the period 1990 until 2020 and 4 

books.1 

II. DEVELOPMENT 

1. FIXED ORTHODONTIC APPLIANCES 

Current Multi-bracket appliances (Fig.1) are commonly used in orthodontics to correct 

malocclusion and tooth malposition. They are the most efficient technique (Proffit and 

Fields, 2000).  

 
1 See appendices for more details. 
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Figure 1 : Multi-bracket appliances, Straight-Wire technique2 

1.1 Description of components  

The component parts of a Multi-bracket appliance are: (Boileau, 2011) 

• Orthodontic brackets / Molar tube: Brackets are adhesively bonded to the to 

the vestibular or lingual surface. In the vestibular, brackets are mostly available in 

metallic or ceramic material (aesthetic). 

• Molar bands: attached to the teeth via cemented bands (most often at the molar 

level). 

• Archwires: Fixed-appliance therapy has benefited greatly from the introduction 

and evolution of innovative materials such as super-elastic and shape-memory-

archwires. As has been shown in (Fuck and Drescher, 2006), the use of even such 

advanced materials does not fully prevent the clinician from applying excessive forces 

and torques to the teeth. 

Inserted into the slot of the brackets, it performs various functions: (i) Move a tooth or 

a group of teeth e.g. Levelling and alignment (The characteristics of the arch such as 

the nature of the alloy, section of the arch ... and its deformation during insertion into 

the attachment are responsible for the force exerted on the tooth), (ii) Serve as a rail to 

guide the movement (e.g. canine recoil), and (iii) oppose movement in the anchoring 

areas. (Burstone, 2005) 

• Ligatures (elastomeric, steel ties or self-ligating) which hold the archwire at the 

bottom of the slot of the brackets. 

 
2 Photo taken by BENSMAIL Y., Hospital Robert Debré-Paris (2014). 
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• Auxiliaries (power chain, active coil, intermaxillary elastics… which also deliver 

forces to the system) 

1.2 Principle  

• In the Multi-bracket appliances, the archwire transmit information to the 

uninformed brackets, e.g., Tweed technique and for the sake of simplification of 

handling, pre-informed brackets have been manufactured (e.g., Straight-Wire 

technique). There are many different pre-information depending on the technique. 

(Kerner et al., 2011) 

• The technique is said segmented (e.g., Ricketts bioprogressive, Burstone’s) when 

several groups of teeth are individualized, and it is said continuous when all of the 

teeth of an arch are supported by the same archwire (e.g., Tweed-Merrifield technique, 

Straight-Wire technique …). In this case, the clinician encounters a more complicated 

and thus awkward scenario when forces and torques are exerted at multiple locations 

on the dental arch. As a consequence, unwanted side effects, e.g. tooth movements in 

the wrong direction or occlusal-plane canting, may easily develop. (Proffit, 2000; 

Burstone, 2005) 

2. FORCES/TORQUES APPLIED TO THE TEETH 

The applied force system induces differential mechanical tensions in the periodontal 

ligament of the tooth and consequently, enable movement of the tooth in a specific 

direction via stimulated remodelling of the alveolar bone (Reitan and Rygh, 1994). 

Moreover, unexpected and unwanted tooth movement can easily result when an important 

component of the applied force-torque system is overlooked (Proffit, 2000) 

 

Figure 2 : Force and torque application to individual teeth using a multi-bracket-appliance. (adapted with 

permission from the author, Rues, 2011). 
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Figure 3 :Transfers of F/T components from an archwire to the brackets in clinical situations (adapted 

with permission from the author, Rues, 2011).3 

2.1 Optimal force:  

• Definition: It could provide the fastest speed of tooth movement without 

irreversible damage to the roots, alveolar bone and periodontal ligament. The optimal 

intensity of force should be the one that has the best yield in velocity of tooth 

displacement, ie the force is optimal when the ratio velocity/force (v/F) is maximum 

(Dorignac et al., 2008). A physiological definition according to Profitts (cit. in Dorignac 

et al., 2008) optimal force should be just sufficient to stimulate cellular activity without 

obliterating the blood vessels of the ligament. 

A precondition for directed tooth movement is a 3-D controlled application of forces and 

torques over a period of time. Moreover, efficient and atraumatic orthodontic treatment 

requires the application of forces and torques in certain magnitudes and ranges, 

respectively. Optimal F/T according to Sergl (cit. in Bartholomeyczik et al., 2006)   

depend on the kind and direction of tooth displacement and are typically between 0.1–2 

N and 1– 50 N∙mm, respectively. For Proffit,  the forces and torques are in the range of 

0.1-1.3 N and 2–15 N∙mm, respectively, initiate efficient biological processes in the 

periodontal ligament and the alveolar bone (Proffit, 2007) 

Some authors raised the question of the safety or otherwise of orthodontic appliances. 

There is, however, a consensus that the lower the force level, the less lesions there are, 

and the goal is to get as close as possible to the physiological displacement of the teeth. 

(Dorignac et al., 2008). 

 
3 The x-axis for mesio-distal direction.     
  The y-axis for apico-occlusal direction.  
  The z-axis for linguo-buccal direction.   
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Author Year F [N] 
Storey et Smith  
Reitan  
Lee  
Hixon et al.  
Jarabak et Fizzel  
Quinn et Yoshikawa  
Sergl, H.-G. 
Lee  
Kuros et al.  
Owman-Moll et al.  
Uematsu et al. 
Proffit 
Iwaski et al.  
Lee  
Hoshino-Itho et al.  
Tuncer et al.  
Perinetti et al.  
Sugiyama et al.  
Batra et al.  

1952 
1960  
1964  
1969 
1972 
1988 
1990 
1995 
1996 
1996 
1996 
2000 
2000 
2004 
2005 
2005 
2005 
2003 
2006 

1.5-2.5  
0.4-1.4  
1.5-2 
1-3  
1.05-5.7  
1-2  
0.1–2 
2.55-2.73  
0.3-1  
0.5-2  
2.5  
0.1 – 1.3 
0.18-0.50  
1 
2.5 
0.9 
2.5 
2.5 
1 

Table 1 : Value of orthodontic optimal force in humans according to the authors. 

But it remains subjective, F/T must be measured. The need for a system capable of 

measuring forces and torques seemed necessary because suboptimal, i.e., too small forces 

and torques are ineffective or may prolong the duration of the treatment. Conversely, 

excessive forces and torques may lead to periodontal damage and considerable root 

resorption. (Darendeliler et al., 2004; Becker et al., 2017)  

3. IATROGENIC EFFECTS LINKED TO THE INADEQUACY 

APPLICATION OF FORCES / TORQUES BY THE MULTI-BRACKET 

APPLIANCES 

In orthodontics, the iatrogenic effects can affect both dental and surrounding tissues, 

hence the need to inform the patient of these possible risks before starting treatment and 

to individualize and optimize each treatment. These damages are correlated with the 

magnitudes of the load therapeutically exerted on the teeth. (Proffit, 2013) 

3.1 Iatrogenic Effects On Dental Tissues 

• Root Resorptions 
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Root resorption of permanent teeth corresponds to cemento-dentin lysis; it is pathological 

and irreversible. Resorptions may appear following the application of orthodontic force. 

They are inflammatory type and often external. They most often stop after the application 

of force has stopped. All orthodontic treatments on mature teeth cause a certain amount 

of resorption. This event, which affects the maxillary incisors more, is generally clinically 

insignificant. However, it can happen that resorptions exceed 1/3 of the root length, thus 

risking having a detrimental effect on the longevity of the teeth on the dental arch. 

(Samadet and Bacon, 2007) 

Regular radiographic monitoring such as retro-alveolar radiographs, (at least the incisors) 

before treatment, then 6-9 months after the start of treatment, then every 9 months is 

recommended. When resorption appears, the patient must be informed and it is 

recommended to make an "orthodontic rest" of 2 to 3 months, maintaining the passive 

archwires. (Maire and Meyer, 2014) 

By ruling out biological risk factors which have no relation to our subject and that are 

besides difficult to modify (systemic, anatomical, traumatic and functional...). There are 

mechanical risk factors:  

           - Applied force (intensity and rhythm) : heavy and continuous forces are the 

least favourable therefore those which create more root resorption (Samadet and Bacon, 

2007; Dorignac et al., 2008; Maire and Meyer, 2014). Thus light continuous forces are 

preferable to heavy forces for more physiologic dentofacial orthopaedics.(Utreja, 2018) 

           - Type of movement: ingression, the “Jiggling” movement, root straightening. 

           - Duration of treatment: the longer the treatment, the greater the risk 

           - Others: such as the placement of included teeth, orthognathic surgery. 

• Root bends (Dilaceration): orthodontic displacement of immature teeth can 

cause the appearance of curved root. 

• Pulp involvement: pulp reactions during orthodontic treatment are minimal. 

Cases of necrosis have been reported, but most often involve teeth that have suffered 

previous trauma. However, heavy and continuous orthodontic forces could cause this type 



A glimpse into the future with Orthodontics’ Smart Brackets 
 

8 

of complication by abrupt movement of the apex, causing rupture of the neurovascular 

bundle.(Maire and Meyer, 2014) 

3.2 Iatrogenic Effects On Periodontal Tissues 

• Mobility and dental pain : there is a direct relationship between the intensity of 

the forces and that of dental mobility and that of pain. (Proffit, 2013) 

• Gingival recession: orthodontics can favour the appearance of gingival 

recessions when the teeth are far from their bony support by the non-control of 

movements and forces among others (mandibular incisors most affected). 

• Alveolysis: in the presence of weakened periodontium or unstabilized 

periodontitis, orthodontic treatment may create dehiscence and fenestration by moving 

the teeth away from their bone support. The orthodontist must be even more vigilant in 

ensuring anchorages, limiting forces and dental movements. 

4. BASIC NOTIONS IN MICRO/NANO-ELECTRONICS (MNE) 

Before describing the system, it is judicious to recall some basic physics definitions 

and/or principles on how applied forces can be measured by a sensor and transferred. 

• Stress: is defined as the average force per unit area that some particle of a body 

exerts on an adjacent particle, across an imaginary surface that separates them. It can also 

be interpreted as the amount of internal resistance force of the deformed material. 

• Strain: is a normalized measure of deformation representing the displacement 

between particles in the body relative to a reference length.  

• The piezoelectric effect is the property of certain materials to become electrically 

polarized under the external action of mechanical stress and vice-versa. Some 

piezoelectric materials: Quartz, synthetic ceramics, Topaz... 

• The piezo-resistive effect consists of the modification of the electrical resistivity 

of a material when it is subjected to external mechanical stress. Some piezo-resistive 

materials: germanium, polycrystal or amorphous silicon. 

• Piezo-resistive stress sensor is a device that measures the mechanical stress. An 

external mechanical deformation (elongation or a shortening) causes a change in electrical 

resistance of the material and measuring that electrical resistance variation one can extract 

information about the amount of mechanical stress being applied. Silicon material is 
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generally used to make piezo-resistive stress sensor devices, same as used in the 

electronic circuits industry. The base of a piezo-resistive electronic chip is a crystalline 

silicon disc less than a millimetre thick, also called a silicon wafer. The use of these 

microelectronics materials allows good integration of the stress-strain sensors with the 

rest of electronic CMOS circuits. 

• CMOS: Complementary metal–oxide–semiconductor, is a type of metal–oxide–

semiconductor field-effect transistor (MOSFET) fabrication process used in current 

electronic circuits to process mathematical logic functions. CMOS technology is used for 

constructing integrated circuit (IC) chips and also used for analog circuits such as image 

sensors (CMOS sensors), data converters, RF circuits. (Gieschke et al., 2009) 

• Piezo-resistive Stress Sensors in CMOS Technology:  

- Sensors for In-Plane Stress: Field effect transistor (FET) with four electric contacts, 

also called piezo-FET, are ideally suited for the detection of in-plane mechanical stress 

components in integrated chips with larger sensor arrays since they offer sufficient 

sensitivity, can be operated in a switched current mode for the reduction of non- 

mechanical contributions to the sensor signal and can be set to a high-impedance state 

using the electronic gate electrode. (Gieschke and Paul, 2010; Lemke, Baskaran and Paul, 

2012) 

- Piezo-resistive sensors for out-of-plane shear stress are realized in CMOS technology 

using silicon substrates (silicon wafer), by exploiting the shear piezo-resistive effect. A 

setup comprising a silicon bridge with SU-8 posts induce well defined and homogeneous 

vertical shear stress in the chip surface. (Baumann et al., 2009; Lemke et al., 2009, 2013) 

5. BEFORE SMART BRACKETS 

5.1 Measurement ex-vivo 

– Orthodontic SIMulator (OSIM) : In-vitro measurement devices using 

macroscopic, cable-connected electric force sensors (Badawi et al., 2009) . Although 

this device is fully functional, it is relatively bulky with a very high cost, thus is not 

practical to use in clinic making it unsuitable for broad application as an orthodontic 

research and didactic tool.(Becker et al., 2017) 
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5.2 Measurement in-vivo 

– Spring balances: For measuring tensile and compressive forces applied by rubber 

bands and springs, on only one direction, and with a lack of measurement precision. 

– 3D measurement system : only one apparatus (Rosarius et al., 1996; Friedrich et al., 

1998) has been developed and described in the literature that permits the measurement 

of F/T exerted during fixed appliance therapy to be 3D monitored in-situ. The complex 

configuration of this measuring system (consisting of separable brackets and an extra-

orally supported FMT) is responsible for several significant limitations hampering 

clinical application: (i) the long time needed for fixation and adjustment, (ii) the 

impossibility for force-torque measurements to be determined simultaneously at several 

teeth, (iii) the limited measurement accuracy associated with the limited rigidity of the 

sensor system itself and its support by the movable and resilient facial skin.(iv) 

measurement bias is relatively high, and the unknown amount of friction between the 

wire and bracket is often not taken into account. 

– Elastomeric tactile sensor: In previous attempts to apply miniaturized sensors to 

orthodontic brackets a capacitive-type elastomeric tactile sensor to measure the force for 

the application of orthodontics, but only a single force component has been measured. 

(Tseng, Yang and Pan, 2004) 

6. SMART BRACKETS CONCEPT 

The principle of the smart bracket concept is the combination of an orthodontic bracket 

with an integrated microelectronic chip equipped with multiple piezoresistive stress 

sensors. In addition, the measurement information is transmitted wirelessly to the 

computer screen reader, that the orthodontist place near each tooth during an examination. 

In this way, an objective feedback is provided to the orthodontist.(Bartholomeyczik et al., 

2005) 

- All six force and torque components exerted from the archwire establish mechanical 

stress distributions in bracket. 

- By exploiting the piezo-resistive effect in silicon, stress in the plane of a sensor chip 

inside the bracket is measured by microsensors (Lapatki and Paul, 2007) 
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- Force and torques externally applied to the bracket are extracted and calculated from 

measured stress values. (Rues et al., 2011) 

  

Figure 4 : Smart Bracket Concept4  

7. TELEMETRIC SMART BRACKET 

7.1.  System Overview (2020 Version): 

-The CMOS chip comprises 32 piezo-FET devices. 

-The 32 sensors are consecutively connected to the readout unit by a 5-bit multiplexer 

(MUX). 

- Variable-gain differential operational amplifier block, plus a 10-bit analog-to-digital 

converter (ADC) performs the sensor readout. 

- Telemetric wireless interface  working at 13.56 MHz with the sensor data being 

transmitted to an external unit at  data rate of 27.1 kbit/s. (Kuhl et al., 2013) 

- For inductive coupling, a planar spiral-shaped microcoil based on copper electroplating 

on glass substrates has been developed. 

- The assembly of chip and coil (Fig.5) has an area of 2×2.7 mm2 connected via flip-chip 

bonding. It meets the given dimensional volume stress criteria of only 2×2.8×1 mm3. 

- The electrical interconnection to the CMOS chip was realized by stud-bump-assisted 

flip-chip bonding followed by an underfill with a biocompatible epoxy. 

 
4 The TSB system including a standard bracket slot component, a microcoil for telemetric operation via an 
inductive link, connected to and powering a CMOS sensor chip. RU : for Receiver/transmitter coil : Energy 
transmission into bracket, Data transmission to orthodontist (3D F/T). 
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- The circuit is implemented in the 0.35µm CMOS  

 
 

Figure 5 : Schematic cross-section of TSB assembly attached to a tooth and standard bracket. 

7.2. System Components: 

- Sensor Elements : The distribution of sensitive sensors on the chip surface is not done 

randomly, but according to FEA simulation. (Kuhl et al., 2013; Becker, Lapatki and Paul, 

2018). In all previous versions, there were two types of sensors for measuring two 

different stress components (M. Kuhl et al., 2011; Handwerker et al., 2012). The in-plane 

shear stress therefore is measured by an NMOS type sensor rotated by 45º with respect 

to, while the PMOS type is oriented parallel to the coordinate system and is sensitive to 

the difference of in-plane normal stresses. The CMOS chip in its 2020-year version, 

comprises 32 piezo-FET devices distributed on the surface of the chip and contains only 

PMOS-FET stress sensors primarily sensitive to the in-plane normal stress difference 

and has additional test pads along the shorter side which are used as contact pads for the 

wire-bonded microcoil.(Hafner et al., 2020) 

- External Unit and Wireless Interface: The power and data transfer were performed 

using a telemetric link based on inductive coupling at a carrier frequency of 13.56 MHz 

and a data rate of 27.1 kbit/s. 

• Microcoil: For telemetric coupling, in the last prototype of year 2020, the novelty 

is the replacing the planar microcoil with a helical wire-bonded microcoil to extend the 

transmission distance. This planar spiral-shaped microcoil was realized by a planar wafer-

level process based on copper electroplating on glass substrates. Using an automatic wire-

bonder, the microcoil is wound around an SU-8 post attached to the CMOS sensor wafer 

without compromising his functionality. These microcoils with a diameter of 1.9 mm and 

a maximum height of 500 μm are fabricated in a multilayer winding process. 

• The Reader Unit : The telemetrically extracted sensor data are demodulated, 

digitized and decoded by the reader unit, which is connected to a graphical user interface 

(Hafner et al., 2017). A compact RU which maximizes the transferable power while 

simplifying the electronic equipment was designed. Consisting of a standard 
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microcontroller, a commercially available RFID chip and a reader antenna (an air coil 

with an inner diameter of 6 mm). 

7.3.  Calibration And Telemetry Result: 

- 6DOF Force/Torque Measurements (Hafner, Lapatki and Paul, 2018; Hafner et al., 

2020) 

Calibration Fx 
(mN) 

Fy 
(mN) 

Fz 
(mN) 

Tx 
(N.mm) 

Ty 
(N.mm) 

Tz 
(N.mm) 

2018-year: 3500 random 
load cases 

36 55 57 0.137 0.140 0.057 

2020-year: 200 load cases 45 48 106 0.192 0.275 0.141 

Table 2 : RMS deviations between extracted and applied values found in each F/T component from the 

in-vitro experiments carried out in 2018 & 2020 with a real smart bracket. 

- Telemetry: 
 
The targeted resonance frequency was 13.56 MHz in agreement with the ISM-band 

reserved for medical RFID systems. Microcoils with 23 turns showed resonance 

frequencies close to the expected value of 13.56 MHz with a resonance peak at 13.8 MHz.  

- The transmission distance: The maximum distance coil-to-coil is 5 mm.  

-The minimal transferred power to keep the system in operation is 17 mW. The system 

achieves a power consumption of 1.75 mW for the stress evaluation. 

III. DISCUSSION 

A system technique for complete dental monitoring of F/T applied to individual teeth 

offers attractive perspectives in several fields. In the near future, the “Smart bracket”: 

- May allow dental clinical research to define better orthodontic brackets, archwires, and 

develop gentler, and less painful methods of application through the objective feedback 

provided to the clinician.(Bartholomeyczik et al., 2006) 

- Could be highly useful tools for fundamental biomechanical research, e.g. in verifying 

biomechanical theories (Lapatki et al., 2007), and objective F/T monitoring during 

experimental studies on tooth movement. This could considerably improve 
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biomechanical research through large-scale experimental simulation of therapeutic 

situations. 

- Could be highly useful tools for biological research to validate exactly the optimal force 

/ torque interval for all types of biomechanical movement 

- Could also prove to be a valuable feedback tool in the education and orthodontic 

training. In this manner, the experience that the clinician needs to move teeth efficiently 

and with fewer side-effects could be acquired interactively and with objective control. 

(Lapatki and Paul, 2007) Start commercialization of smart typodont i.e., typodont with 

smart brackets on all individual teeth, to be applied in fundamental research and 

orthodontic training seems a very good start. 

- The most attractive perspective is related to the method's potential for clinical 

application. to individualize the treatments because each clinical case is a unique case, 

and we cannot simulate all the possible cases during the training of orthodontists. It also 

makes it possible to reduce the radiographic monitoring of the teeth for the risk of root 

resorption, and therefore to irradiate the patient less. 

- However, in all the published studies on the ‘Smart Bracket’, the F/T measured by the 

chip during calibration came only from the archwire, it would be interesting to also 

measure the forces applied by the auxiliaries, such as elastic chain, or spring. 

And what about the forces this time, interdental, not measured by the system? And which 

are the result of the complexity of the Multi-bracket appliances which assembles several 

teeth (Burstone, 2005) and acts like a person pushing wooden crates. In this case the stress 

must be measured from the enamel because the force does not apply to the bracket. 

- Also, without battery and memory embedded in the bracket, it would be impossible to 

save the data in order to follow the F/T duration curve. This is important for the 

orthodontist to know exactly how often the intensity of force decreases between the two 

clinical appointments. This will guide the clinician to use one archwire rather than another 

or to substitute an auxiliary for another. (e.g., spring instead of the elastic chain, which in 

a humid and hot environment like the mouth, the elastomer loses a large part of its elastic 

properties). The work of Kutbee et al. (2017) are interesting on the use of biocompatible 

micro-battery in the mouth for therapeutic purposes. 
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- For clinical application relying on in-vivo measurements on patients, wireless 

measurement is mandatory, but telemetric data and energy transmission was shown at 

single-bracket level (Hafner et al., 2020), it would be interesting to know if the 

transmission range is affected or not when several brackets are next to each other. 

- The use of smart brackets in a sectoral manner, i.e., on a few teeth only proves a 

complicated task for the orthodontist if applicable, who should compensate with the 

composite or the bending of the archwire the difference in thickness that exists with 

conventional brackets. Also, this thickness of the smart bracket increased by the thickness 

of the chip, will it meet the aesthetic criteria of patients who are becoming more and more 

demanding? 

- For the exclusively clinical part may not be a priority at the moment for researchers, has 

the bracket debonding phase, been thought out and anticipated ? because the goal would 

be to remove the bracket without breaking the chip and without any risk of removing the 

enamel with it, especially when it comes to a ceramic bracket.(Aknin and Molle, 2005) 

IV. CONCLUSION 

The development research project ‘Smart Bracket’ once concluded according to his initial 

main objectives and marketed will undoubtedly change orthodontic practice in the good 

direction, opening a new way of working, but above all a new chapter to be exploited still 

blank and little known in the field of orthodontics. 

But for now, some pieces of the puzzle are still missing, to hope to have the final prototype 

in the coming years, researchers must overcome the obstacles encountered and face the 

real challenge which consists of combining multiple functions in a single miniature chip, 

a function of precise measuring F/T components from archwire and auxiliaries applied to 

brackets, a telemetry reserved for the medical sector sufficient enough to transmit the 

data, and all in an orthodontic bracket that meets the requirements aesthetics of patients. 

Will the ‘Smart Bracket’ see the “light of day” for a clinical application or rather have a 

biomechanical, biological research role, and/or an educational tool in orthodontic 

training? The future will tell us … But for my part, I will remain very optimistic about its 

achievement through access to information and to this world fully connected. Ideas can 

come from other fields! 
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VI. APPENDICES 

1. Inclusion & Exclusion: 

Number of selected 
articles by chapter 

Inclusion and exclusion 
criteria 

References 

Fixed orthodontic 
appliances  
& 
 F/T applied to the 
teeth 
 
(3) 

- Elsevier ScienceDirect, 
PUBMED  
- English, French 
- 2000 – 2020 
- Most relevant articles 
were selected 

(Fuck and Drescher, 2006; Dorignac et al., 
2008; Kerner et al., 2011) 
 
 

Iatrogenic effects 
 
(4) 
 

- Elsevier ScienceDirect, 
PUBMED 
- English, French 
- 2000 – 2020 
- Most relevant articles 
were selected 

(Sauveur and Mesbah, 2003; Samadet and 
Bacon, 2007; Elhaddaoui et al., 2016; 
Utreja, 2018) 
 
 

Before Smart bracket 
 
(4) 
 

- English, French, German 
- 1990 – 2020 
- Scopus, PUBMED. 

1996 : (Rosarius et al., 1996) 
1998 : (Friedrich et al., 1998) 
2004 : (Tseng, Yang and Pan, 2004) 
2009 : (Badawi et al., 2009) 

 
Basic notions in MNE 
& 
Articles related to 
smart bracket project 
of IMTEK 
 
(27) 

- English, French, German, 
Portuguese 
 
- 2005 – 2020 
- B-On, Scopus, IEEE 
Xplore, Springer, Elsevier 
ScienceDirect, Academic 
Search Complete 
 
- Only articles that discuss 
the smart bracket project 
were selected. 
 
- Full articles 

2005 : 3 (J. Bartholomeyczik, Doelle, et al., 
2005; J. Bartholomeyczik, Haefner, et al., 
2005; Julian Bartholomeyczik et al., 2005) 
2006 : 1 (Bartholomeyczik et al., 2006) 
2007 : 4 (Gieschke et al., 2007; Lapatki and 
Paul, 2007; Lapatki et al., 2007; Suster et 
al., 2007) 
2009 : 3 (Baumann et al., 2009; Gieschke et 
al., 2009; Lemke et al., 2009) 
2010 : 1 (Gieschke and Paul, 2010) 
2011 : 3 (M. Kuhl et al., 2011; Matthias 
Kuhl et al., 2011; Rues et al., 2011) 
2012 : 3 (Handwerker et al., 2012; Lemke, 
Baskaran and Paul, 2012; Paul, 2012) 
2013 : 2 (Kuhl et al., 2013; Lemke et al., 
2013) 
2017  : 3 (Becker and Paul, 2017; Becker et 
al., 2017; Hafner et al., 2017) 
2018 : 2 (Becker, Lapatki and Paul, 2018; 
Hafner, Lapatki and Paul, 2018) 
2019 : 1 (Berger et al., 2019) 
2020 :1 (Hafner et al., 2020) 

Articles related to 
measurement of 
orthodontic force 
in other ongoing 
studies 
 
(4) 

- English, French 
- 2005 – 2020 
- Scopus, IEEE Xplore 
- These articles interested 
me in my research. 

(Lin et al., 2011; Fercec et al., 2012; Shi et 
al., 2012; Kutbee et al., 2017) 

 

Tab 1 : Inclusion & Exclusion criteria 

 



A glimpse into the future with Orthodontics’ Smart Brackets 
 

19 

2. Optimal force 

Type of displacement  Force [gf] 
Version 
Translation 
Root straightening (torque) 
Rotation 
Egression 
Ingression 

50-75 gf 
100-150 gf  
75-125 gf  
50-75 gf  
50-75 gf  
15-25 gf  

 

Tab 2 : Estimation of the forces to be used according to the type of displacement desired, adapted from  

(Dorignac et al., 2008).5 

This table highlights two concepts: 

• On the one hand, the notion of light force since no force exerted is greater than 

150 gf = 1.47 N 

• On the other hand it shows that the optimal force to be developed varies according to 

the mechanical tension surface following the different types of movements. 

It is therefore the concept of mechanical tension that prevails in the biomechanics of 

dental displacement. 

Ensures optimal rate of movement : Optimal mechanical tension à Maximal tooth 

velocity  

3. Evolution of smart bracket 

 

Fig. 1 : Evolution of smart bracket 

 

 
5 The gram-force (gf) is a metric unit of force, and is equal to a mass of one gram multiplied by the 
standard acceleration due to gravity on Earth, that is 1 gf = 0.0098067 N 
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4. Evolution of chip 

 

Fig. 2 : Evolution of chip (macrograph) 

 

 
 

Fig. 3 : Evolution  of stress sensor chip (micrograph) 

 
                                   Chip 
         Year          Characteristic 

Number  
of stress 
sensors 

 
Sensor type 

2005 3 CMOS piezoresistive stress sensors with 4 contacts 
2006 32 CMOS piezoresistive stress sensors with 8 contacts 
2007 32 CMOS piezoresistive stress sensors with 8 contacts 
2007 10 CMOS piezoresistive stress sensors with 8 contacts 
2009 32 Piezo- FET : 32 NMOS / 32 PMOS 
2010 32 Piezo- FET : 14 p-type, 10 n-type, and 8 vertical 

shear stress sensor (σzz r) 
2011 24 Piezo- FET : 10 NMOS and 14 PMOS 
2012 32 Piezo- FET :16 NMOS and 16 PMOS  

2013-2018 24 Piezo- FET :10 NMOS 14 PMOS  
2020 32 Piezo- FET : 32 PMOS 

 

Tab 3 : Characteristic of chips by year 
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5. Telemetric operation / Evolution of Microcoil (micrograph) 
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VII. ANNEXES 

PERMISSION FOR USE OF FIGURES 2 AND 3 
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