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Abstract  
Collision avoidance of Arm Robot is designed for the robot to collide 
objects, collide the environment, and collide its body. Self-collision 
avoidance was successfully trained using Generative Adversarial 
Networks (GANs) and Particle Swarm Optimization (PSO). The 
Inverse Kinematics (IK) with 96K motion data was extracted as the 
dataset to train data distribution of  𝐷(𝑥) 3.6K samples and 7.2K 
samples. The proposed method GANs-PSO can solve the common 
GAN problem such as Mode Collapse or Helvetica Scenario that 
occurs when the generator 𝑮 always gets the same output point 

which mapped to different input 𝓏 values. The discriminator 𝑫 
produces the random samples' data distribution, presenting the real 
data distribution (generated by Inverse Kinematic analysis).  The 
PSO was successfully reduced the number of training epochs of the 
generator 𝑮 only with 5000 iterations. The result of our proposed 
method (GANs-PSO) with 50 particles was 5000 training epochs 
executed in 0.028ms per single prediction and 0.027474% Generator 
Mean Square Error (GMSE). 
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INTRODUCTION 

Collision risk assessment and collision 
avoidance of manipulator robot has been an 
interesting topic in autonomous robotics [1]. The 
manipulator robot is designed to simply human 
task, to reduce human error (e.g., remote 
teleoperation robot NASA's Robonaut), to carry 
out tasks that humans cannot handle it, and to 
perform in dangerous tasks [2][3]. Manipulator 
robots must work in a crowded or cluttered 
workspace, and have the ability to colliding the 
workspace, colliding its body, and colliding with 
each other [4][5]. 

Several studies to solve collision used 
Oriented Bounding Boxes (OBBs), Extended 
Oriented Bounding Boxes (EOBBs), Artificial 
Potential Field (APF) [6], Virtual Link, Path 
Planning combine with Kinematic Analysis [5][7], 
Neural Network [8], etc.  

Kinematic Analysis commonly used to 
analyze the motion of a manipulator robot. It 

converts the robot manipulator's position and 
orientation from cartesian space to joint space 
defined as Inverse Kinematics (IK). A redundant 
robot has an infinite number of IK solutions. The 
evolutionary methods have been used to solve 
the IK problem. Some way of evolutionary are 
using a feed-forward Neural Network (NN) and 
its Back Propagation (BP), Genetic Algorithm 
(GA) [9], Particle Swarm Optimization (PSO) 
[10], Firefly Algorithm (FA) [11], Quantum PSO 
(QPSO) [12], Path Planning with PSO [13], etc.  

Srisuk et al. explain the IK solution using 
Neural Network for a robotic arm in three 
dimensions. The IK-NN is defined by the 
network's optimal weight with an error rate of 5% 
[14]. Improves the network architecture utilizes a 
cycle of consistency to learn and solve the IK 
problem with a supervised or unsupervised 
manner. The motion's quantitative evaluation 
has a Mean Square Error (MSE) of 7.10% and 
8.51% using a Cycle Consistency Objective 
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approach by adversarial. This MSE value 
prevents regressing to the end-effector positions 
of the input motion [15]. IK-ANN [16], IK-ANN-
PSO [8], IK-RNN [17] was simulated for solving 
the IK problem. Still, this technique requires a lot 
of data to perform the training process and 
approximation, especially inverse kinematics 
and a robot manipulator's dynamics. To 
mapping, this problem as a serious dimensional 
problem can be processed efficiently within the 
data distribution. 

Recent research used analytical models 
embedded inside a physics-based simulation, 
instead of using the real world's data set. The 
Reinforcement learning approach has been used 
to learn a closed-loop predictive controller for a 
real robot as IK solver [18]. This approach 
requires a huge dataset as an important role in 
training neural networks to approximate the 
result. To collect real-world data, consume a lot 
of time [19]. Generative Adversarial Networks 
(GANs) introduced by Ian Good Fellow in 2014 
[20], describes how to generate additional 'fake' 
data similar to real-world data, and thereby 
enlarge the total dataset available for training 
target neural network [21, 22, 23]. Closely, Hailin 
Ren and Pinhas Ben-Tzvi [26] implements IK 
solver for 4-DOF MICO Robotic Manipulator 
using four types of GANs, namely Conditional 
GAN (CGAN), Least Square GAN (LSGAN), 
Bidirectional GAN (BiGAN) and DualGAN [27]. 
The Approaches proposed to solve IK and ID 
problems with the desired degree of accuracy 
and achieve a lower loss in the Performance and 
avoid overfitting. The training process of the 
proposed method takes 23 mins to train whole 
60.000 datasets. The generator neural network's 
execution time takes 0.17ms in a single 
prediction with the best of loss 0.91 by GANs. 

The main contributions of this paper are as 
follows: 

• Use of GANs toward learning as the IK 
solver's self-organized motion where the real-
world data generated itself in which the data 
is high dimensional inputs and distributed. 

• Experiment to compare GANs performance 
with/without PSO to test the efficiency of the 
proposed GANs-PSO that evaluated using 
different sizes of the partial dataset and 
different deviations for the generator in the 
GANs. 

• Collision avoidance dataset created with an 
IK generator function. 

• The proposed method GANs and PSO capable 
to solve the common GAN problem such as 
Mode Collapse or Helvetica Scenario that 
occurs when the generator 𝑮 always get the 
same output point though mapped to different 

input 𝓏 values. The role of PSO optimizes the 

generator 𝑮 Cost and Loss to solve the Mode 
Collapse Problem. 

 
METHOD 
System Design 

The neural network structured of the 
common GANs contains two artificial neural 
networks of the generator 𝑮 and the discriminator 
𝑫 [20][21] shown in Figure 1.  

The generator 𝑮 learns to create fake data 
by incorporating optimized feedback from the 
Discriminator [26]. The training process of the 
generator requires tighter integration than the 
discriminator training process. 

In our method shows the portion of the 
GANs that trains the generator to include [20][21]: 

• Random input (the end-effector position 
coordinated in 𝑥, 𝑦, 𝑧) distributed to the 
generator networks. 

• Sample data collected from the generator by 
exponentially increased 10n (where chosen n = 
1, 2, 3, and 4) 

• Generated data will be classified by the 
discriminator network (labelled real/fake) 

• Generator loss, which penalizes the generator 
for failing to fool the Discriminator. 

• Backpropagate through both the Discriminator 
and generator to obtain gradients and change 
only the generator weights. 

• PSO used to optimize the backpropagation 
process. 

The generator transforms the random input 
noise into a meaningful output to produce a wide 
variety of data, sampling from different places in 
the target distribution. The generator also a neural 
network needs to be trained. The neural network 
weights perform to reduce the error or loss of its 
output. The generator feeds into the discriminator 
network, and it produces the output to affect the 
next training process. Generator loss penalizes 
the generator for producing a sample that the 
discriminator network classifies as fake data 
distribution. So, this network must be included in a 
backpropagation process.  

Backpropagation adjusts each layer 
(contains weight and biases) to impact the next 
cost function. In GANs, the impact of a generator 
weight depends on the impact of the discriminator 
weights it feeds into. So, backpropagation starts at 
the output and flows back through the 
Discriminator into the generator [28]. 

The Discriminator 𝑫 is simply a classifier 
tries to distinguish real data from the data created 
by the generator [26][27]. The discriminator 
training data contains; 
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• Real data instances, in our system generated 
by inverse kinematic equation (to produce joint 
angular given by joint space/joint cartesian), 
the Discriminator labelled as a positive sample 
during the training process. 

• Fake data instances created by the generator 
network labeled as a negative sample during 
the training process. 

As shown in Figure 1, the Discriminator 
obtains two loss functions (loss function of 𝑫 and 

loss function of 𝑮). During the Discriminator is 
training, the Discriminator ignores the loss of the 
generator and uses the discriminator loss. The 
procedure during discriminator training [31]: 

• Classifies both real and fake data from the 
generator 

• The Discriminator updates its weights through 
backpropagation from the discriminator loss 
through the discriminator network. 

The objective of the Optimizer shown in 
Figure 1 to optimize both of GANs neural 
networks. Adam Optimizer used as an optimizer 
architecture for advanced gradient algorithms 
[18][26]. 
 
 

 

 
Figure 1. Network Structure of Generative Adversarial Networks 

 
Kinematics Analysis 

A manipulator robot's design is an important 
part of designing equations to assist in the 
feasibility of the manipulator robot. It is defined as 
transforming the geometrical equation to connect 
between joint spatial geometry concept and end-
effector coordinates. The forward kinematics is 
described as transforming the joint space/joint 
angle to the cartesian space/joint variable (end-
effector). Vice versa, inverse kinematics transform 
cartesian space / joint variable to joint space / joint 
angle [24] [25] as shown in Figure 2. 

 

 
Figure 2. The Schematic of a Forward Kinematics 

and Inverse Kinematics [24] 

 
Qinsheng explained Denavit-Hartenberg 

Convention is parameters related to a particular 
convention for enclosing the reference frames to 
the links of a kinematic chain/manipulator [24]. 
The DH has four parameters contain: 

• Join offset (𝑑𝑖): Offset distance among the 
common normal of the axis of 𝑗𝑜𝑖𝑛 𝑖 − 1 to 

𝑗𝑜𝑖𝑛 𝑖. Figure 3 shows that 𝑑𝑖 is the offset in a 

direction 𝑋0 𝑡𝑜 𝑋1 𝑜𝑣𝑒𝑟 𝑍1 on the other ways 
represented as 𝑋𝑖−1 𝑡𝑜 𝑋𝑖  𝑜𝑣𝑒𝑟 𝑍𝑖. 

• Join angle (𝜃𝑖): An angle measured among the 
common normal of the axis of 𝑗𝑜𝑖𝑛 𝑖 − 1 to 

𝑗𝑜𝑖𝑛 𝑖. Figure 3 shown that 𝜃𝑖 is an angle 

rotated over 𝑍1 on the other ways represented 
as an angle measured among the common 
normal of the axis 𝑋𝑖−1 𝑡𝑜 𝑋𝑖 over 𝑍𝑖. 

• Link length (𝑟𝑖): The length of the link is a 
common normal length between the axis of 
𝑗𝑜𝑖𝑛 𝑖 − 1 and 𝑗𝑜𝑖𝑛 𝑖. Figure 3 shows that 𝑟𝑖 is a 

link length measured from 𝑍1 to 𝑍2 over 𝑋2 or 
might be represented as the link length of  
𝑍𝑖−1 𝑡𝑜 𝑍𝑖 over 𝑋𝑖.  

• Twist angle (𝛼𝑖): Twist of the link is an angle 
measured between the axis of 𝑗𝑜𝑖𝑛 𝑖 − 1 and 

𝑗𝑜𝑖𝑛 𝑖. Figure 3 shown that 𝛼𝑖 is an angle 

measured between 𝑍0 and  𝑍1 over 𝑋1 
(𝑍𝑖−1 𝑎𝑛𝑑 𝑍𝑖  𝑜𝑣𝑒𝑟 𝑋𝑖). 

After determining the coordinates shown in 
Figure 3, the DH parameters can be represented 
in Table 1 [24]. 

 
Table 1. The Denavit-Hartenberg Parameters 
Link-𝒏 𝜽 

(radian) 
𝒅 

(mm) 
𝜶 

(radian) 
𝒓 

(mm) 

1 𝜃1 𝑑1 𝛼1 0 
2 𝜃2 0 0 𝑟1 
3 𝜃3 0 0 𝑟2 
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Table 1 used to define the DH matrix convention 
such as 

𝑇𝑖
𝑖−1 = [

𝑐(𝜃𝑖) −𝑐(𝛼𝑖). 𝑠(𝜃𝑖) 𝑠(𝛼𝑖). 𝑠(𝜃𝑖) 𝑟𝑖 . 𝑐(𝜃𝑖)

𝑠(𝜃𝑖) 𝑐(𝛼𝑖). 𝑐(𝜃𝑖) −𝑠(𝛼𝑖). 𝑐(𝜃𝑖) 𝑟𝑖 . 𝑠(𝜃𝑖)
0 𝑠( 𝛼𝑖) 𝑐( 𝛼𝑖) 𝑑𝑖

0 0 0 1

]  (1) 

The join offset measured 𝑑𝑖 = 30𝑚𝑚, twist 

angle measured 𝛼𝑖 = 90𝑜.  The link length of joint-
1 equal to zero (0), the link length of joint-2 is 
defined as 𝑟1 measured 𝑟1 = 60𝑚𝑚, and the link 
length of joint-3 is defined as 𝑟2 measured 𝑟2 =
90𝑚𝑚. 𝑐(𝜃𝑖) denotes as 𝑐𝑜𝑠(𝜃𝑖), 𝑠(𝜃𝑖) denotes as 

𝑠𝑖𝑛(𝜃𝑖), 𝑐(𝛼𝑖) denotes as 𝑐𝑜𝑠(𝛼𝑖), and 𝑠(𝛼𝑖) 
denotes as 𝑠𝑖𝑛(𝛼𝑖). 

Transformation of among the links from 0 to 
n mathematically defined: 

𝑻𝟑
𝟎 = 𝑻𝟏

𝟎  𝑻𝟐
𝟏  𝑻𝟑

𝟐  (2) 

Equation (2) shows the connection of joint 
and links from the base frame to frame 𝑖, so the 
translation for each join can be defined by 
replacing the variables from (1) and Table 1, then 
[24]:  

 

 
Figure 3. Local Reference Coordinate of 3 DoF Manipulator in Arm Robot [24] 

 

𝑇1
0 = [

𝑐( 𝜃1) 0 𝑠( 𝜃1) 0

𝑠( 𝜃1) 0 −𝑐( 𝜃1) 0
0 1 0 𝑑1

0 0 0 1

] (3) 

𝑇2
1 = [

𝑐( 𝜃2) −𝑠( 𝜃2) 0 𝑟1𝑐( 𝜃2)
𝑠( 𝜃2) 𝑐( 𝜃2) 0 𝑟1𝑠( 𝜃2)

0 0 1 0
0 0 0 1

] 

 

(4) 

𝑇3
2 = [

𝑐( 𝜃3) −𝑠( 𝜃3) 0 𝑟2𝑐( 𝜃3)
𝑠( 𝜃3) 𝑐( 𝜃3) 0 𝑟2𝑠( 𝜃3)

0 0 1 0
0 0 0 1

] (5) 

The Forward Kinematic solution can be solved by 
multiplying (3), (4), and (5). 

A representation of learning IK is a system 
would be to generate samples of (𝑞, 𝜉), where, 𝜉 ∈
ℜ𝑚, is a vector containing the coordinates of the 
end-effector given by 

𝜉 = 𝑓(𝒒) (6) 

where 𝑓(. ) is a nonlinear direct kinematic function 

of the manipulator robot, and 𝑞 ∈ ℜ𝑛, is the vector 
containing the joint space configuration vector, 
and to learn the mapping 𝜉 → 𝑞. Refer to (2), 𝑓(𝒒) 
denotes as a Forward Kinematic solution of the 
manipulator robot in which calculating the joint 
space parameters (𝑝𝑥 , 𝑝𝑦 , 𝑝𝑧) based on its input 𝒒. 

The end-effector linear velocity and angular 
velocity can be realized as formulized (7) [8] 

𝜉̇ = 𝑱�̇� (7) 

Where 𝑱 is the geometric Jacobian Matrix of the 

manipulator robot. The Jacobian 𝑱(𝒒) of a forward 
kinematics is matrix 6x3 can be expressed as: 

𝑱 =  

[
 
 
 
 
 
 

𝜕𝑥0
𝐷(𝜃1, 𝜃2, 𝜃3)

𝜕𝜃1
…

𝜕𝑧0
𝐷(𝜃1, 𝜃2, 𝜃3)

𝜕𝜃1

…
 
 

…
 
 

…
 
 

…
 
 

…
 
 

…
 
 

𝜕𝜔𝑥0
𝐷(𝜃1, 𝜃2, 𝜃3)

𝜕𝜃3
…

𝜕𝜔𝑧0
𝐷(𝜃1, 𝜃2, 𝜃3)

𝜕𝜃3 ]
 
 
 
 
 
 

 (8) 

The 𝜉̇ is the velocity of end-effector in the 
base frame defined as 

𝜉̇ = [
𝑣𝑖

0

𝜔𝑖
0] (9) 

𝑣𝑖
0 is a linear velocity from the base frame 

(�̇�0
0, �̇�0

0, �̇�0
0) to end-effector (�̇�2

0, �̇�2
0, �̇�2

0) and can be 
derived  as an angular velocity from the base 

frame (𝜔𝑥0
0 , 𝜔𝑦0

0 , 𝜔𝑧0
0 ) to frame-𝑖 (𝜔𝑥2

0 , 𝜔𝑦2
0 , 𝜔𝑧2

0 ),  

𝜉̇ =

[
 
 
 
 
 
 
�̇�𝑖

0

�̇�𝑖
0

�̇�𝑖
0

𝜔𝑥𝑖
0

𝜔𝑦𝑖
0

𝜔𝑧𝑖
0 ]
 
 
 
 
 
 

 (10) 

�̇� in the (7) is an angular parameter for each joint 
formulized as, 
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�̇� = [

�̇�1

�̇�2

�̇�3

] (11) 

These �̇� in (10) the angular joint from the 
base frame to frame-n to formalized revolute joint 

of �̇�1, meanwhile for prismatic joint defined as 
�̇�. 

Equation (7) and (10) 𝜉̇ can be replaced as 

[
 
 
 
 
 
 
�̇�𝑖

0

�̇�
𝑖

0

�̇�𝑖
0

𝜔𝑥𝑖
0

𝜔𝑦𝑖
0

𝜔𝑧𝑖
0 ]
 
 
 
 
 
 

= 𝐽 ̇. [

�̇�1

�̇�2

�̇�3

] (12) 

Thus 𝑱  has two parameters, as explained above, 
represented as: 

𝐽̇ =  [
𝐽𝑣
𝐽𝜔

] (13) 

where 𝐽𝜔, denotes as the Jacobian matrices 
calculated by the partial derivative of the forward 
kinematic solution shown in (6) for the angular 
velocity of the manipulator robot that formulized 
as,   

𝐽𝜔 = [𝑅0
0. 𝑘 𝑅1

0. 𝑘 𝑅2
0. 𝑘]  (14) 

The rotational in the base frame noticed as 

𝑅0
0, the rotational the base frame to frame 1 

noticed as 𝑅1
0, and the rotational the base frame to 

frame 2 noticed as 𝑅2
0. 𝑘 represents that the 

rotation always occurs in the z-axis then, 

𝑘 =  [
0
0
1
] (15) 

By looking (3), (4), and (5), the matrices 𝑅 
calculated as, 

𝑅0
0 = [

0

0

1

] (16) 

𝑅1
0 =  [

𝑠(𝜃1)

−𝑐(𝜃1)

0

] (17) 

𝑅2
0 =  [

𝑠(𝜃1)

−𝑐(𝜃1)

0

] (18) 

Therefore 𝐽ω formulized as [24] 

𝐽𝜔 = [
0 𝑠(𝜃1) 𝑠(𝜃1)

0 −𝑐(𝜃2) −𝑐(𝜃2)
1 0 0

] (19) 

𝐽𝑣 = [𝑅0.
0 𝑘 × (𝑂3

0 − 𝑂0
0) 𝑅1.

0𝑘 × (𝑂3
0 − 𝑂1

0) 

𝑅2.
0 𝑘 × (𝑂3

0 − 𝑂2
0) 

(20) 

Furthermore, 𝐽𝑣 denoted as the Jacobian 

matrices of the forward kinematic solution 𝑓(. ) 
shown in (6) to the linear velocity of the 
manipulator robot that formulized as, can be 
formalized as (24) where 𝑂 is the origin from the 
base frame until end-effector, by looking (3) until 
(5), matrix 𝑂 can be calculated as, 

𝑂3
0 − 𝑂0

0 = [

𝑟1𝑐(𝜃2) + 𝑟2𝑐(𝜃3)
𝑟1𝑠(𝜃2) + 𝑟2𝑠(𝜃3)

𝑑1

] (21) 

𝑂3
0 − 𝑂1

0 = [
𝑟1𝑐(𝜃2) + 𝑟2𝑐(𝜃3)

𝑟1𝑠(𝜃2) + 𝑟2𝑠(𝜃3)
0

] (22) 

𝑂3
0 − 𝑂2

0 = [
𝑟2𝑐(𝜃3)

𝑟2𝑠(𝜃3)
0

] (23) 

Equation (24) shows the initial value of 𝐽𝑣 defined. 

Furthermore, (25) is the Jacobian Matrix of 𝐽 
contains 𝐽𝜔 and 𝐽𝑣. 

Corresponding to (7), the linearity of the 
configuration Jacobian Matrix that allows solving 
the differential kinematics with an inversion of the 
following equations [8] 

�̇� =  𝑱−𝟏�̇� (24) 

Equation (24) is valid only for the manipulators 
with the same dimension of the operational space 
and the join space (𝑚 = 𝑛). When the manipulator 

is redundant (𝑚 > 𝑛), the Jacobian Matrix has 
more columns than rows, and infinite number 
solutions exist for (7). 
 
Generative Adversarial Network (GAN) 

GANs can be utilized to produce new data 
in a limited situation. These data, sometimes be 
difficult and expensive and time-consuming to 
generate. The new data has to be realistic enough 
that whatever insights obtained from the 
generated data still applies to real data.  

GANs was introduced in 2014 by 
Goodfellow et al. [30, 31, 32]. The original GANs 
can learn a generator to capture the distribution of 
real data by introducing an adversarial 
discriminator that evolves to discriminate between 
the actual data and the fake.  GANs series widely 
proposed for a wide variety of problems.  Figure 1 
shows the original network structure of GANs.  
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Figure 4. The Flowchart of Generative Adversarial Networks Modules 

 
In the original formulation, GANs includes a 

generator 𝑮 and a discriminator 𝑫 [21]. Figure 4 
shows the Self-Collision Avoidance System of 
Arm Robot's flowchart using GANs and PSO 
[26][34]. 

The adversarial framework is 
straightforward to implement when the models are 
both multilayers perceptron (MLP) but in this paper 
use the more than two layers of hidden layer called 
Artificial Neural Networks (ANNs). 

 

 

(25) 

 
The generator 𝑮 learn the data distribution 

𝑝𝑔 over real data 𝒙, the data distribution of 𝑮 

defined as input noise variables 𝑝𝓏(𝒵), where 𝓏 ∈
𝒵 is independent and identically distributed 

samples from a known prior 𝑝𝓏, to points in the 

space of real data 𝓧. In this system variable 𝓏 
notice three parameters required as an input of the 
inverse kinematic equation (𝑝𝑥, 𝑝𝑦 , 𝑝𝑧). This 𝑮  

represents a mapping data space as 𝐺(𝓏; 𝜃𝑔), 

where 𝑮 is a differentiable function represented by 

an ANNs with parameters 𝜃𝑔.  

This 𝐺(𝓏; 𝜃𝑔) is ANNs calculated consists of 

Feed-Forward step and Backpropagation step, 
formulized as [34, 35, 36]; 

𝑦𝑗 = 𝑓(𝑛𝑒𝑡) then 𝑛𝑒𝑡 =  ∑ 𝜔𝑖𝑗𝑥𝑖 − 𝜃𝑗
𝑛
𝑖=1  (26) 

where 𝑦𝑗 does weight give the network values 𝜔𝑖𝑗  

and threshold unit 𝜃𝑗. This 𝑓(. ) is the activation 

function used to transform the incoming values 
from the previous layer to the successive layer. 𝑦𝑗 

represent the values from the input layer to the 
hidden layer 𝑦𝑖, hidden layer to next hidden layer 

𝑦ℎ, and last hidden layer to output layer 𝑦𝑜 [35][36]. 
The gradient descent required to calculated 

and minimize the error between observed data 

𝑦𝑜 and the desired data 𝑡𝑘. A measure of the error 
between both observed data 𝑦𝑜 and the desired 

data 𝑡𝑘 is 

𝐸 =
1

2
∑(𝑡𝑘 − 𝑦𝑜)

2

𝑚

𝑘=1

 (27) 

Equation (27) represents the first step of 
backpropagation step, which the weights of the 
network changed each iteration of the training 
process [35][36]. The weights need to be updated 
each iteration by finding the values of the 
derivative of 𝐸 in (27), which were given by  

△ 𝜔𝑗𝑖 = −𝛾
𝜕𝐸

𝜕𝜔𝑗𝑖

= 𝛾𝛿𝑗𝑦𝑖 (28) 

where the error 𝛿𝑗 is given as: 

𝛿𝑗 = 𝑓′(𝑦�̅�)(𝑡𝑘 − 𝑦𝑜) (29) 

𝑓′ is the derivative of the activation function 𝑓(. ) 
and 𝛾 is called learning rate. So, the weights 
updated when the input-hidden error calculated by 
[34]: 

𝛿𝑗 = 𝑓′(𝑦�̅�) ∑𝜔𝑗𝑖𝛿𝑗

𝑛

𝑖=1

 (30) 
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The second ANNs 𝐷(𝑥; 𝜃𝑑) in which 𝐷(𝑥) 
represents the probability that 𝑥 came from the 

data rather than 𝑝𝑔. By training the discriminator 𝑫 

to maximize the probability of assigning the correct 
label to training examples and samples from the 
generator 𝑮.  

That could be determined if a sample 𝑥 ∈ 𝒳 

is from the real dataset 𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥) or generated 

from the generator 𝑮, 𝑥~𝐺; 𝓏~𝑝𝓏. The training 

criterion of the discriminator 𝑫, given any 

generator 𝑮 expressed as, 

𝑉(𝐷, 𝐺) =  𝐸𝑥~𝑃𝑑𝑎𝑡𝑎(𝑥)[𝑙𝑜𝑔𝐷(𝑥)] 

+ 𝐸𝓏~𝑃𝓏(𝓏)[log (1 − 𝐷(𝐺(𝓏)))] 
(31) 

Thus, the training process is to optimize the 
discriminator 𝑫 to assign correct labels to both the 
real dataset and the noise sample from the 
generator 𝑮, and simultaneously train the 
generator 𝑮 to minimize, 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒(log (1 − 𝐷(𝐺(𝓏)))) (32) 

When the generator 𝑮 was unable to assign a 

label data as data distribution of 𝓏~𝑝𝓏, in this case, 

log (1 − 𝐷(𝐺(𝓏))) saturates. Rather than training 

the generator G to minimize shown in (30), the 
generator G can be maximized to provides the 
stronger gradients early in learning, formulized as:  

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒(log (𝐷(𝐺(𝓏)))) (33) 

Furthermore, minimax objective for both 
generator 𝑮 and the discriminator 𝑫 is formulated 
as follows [18, 20, 21, 26, 30, 32], 

𝑚𝑖𝑛
𝐺

 
𝑚𝑎𝑥
𝐷

 𝑉(𝐷, 𝐺) =  𝐸𝑥~𝑃𝑑𝑎𝑡𝑎(𝑥)[𝑙𝑜𝑔𝐷(𝑥)] 

+ 𝐸𝓏~𝑃𝓏(𝓏)[log (1 − 𝐷(𝐺(𝓏)))] 
(34) 

where, 𝐷(. ) denotes the discriminator 𝑫 network's 
output, 𝐺(. ) denotes the generator 𝑮 network's 

output, and 𝐸[. ] denotes the network expectation.  

The generator 𝑮 implicitly defines a 

probability distribution 𝑝𝑔 as the distribution of the 

samples 𝐺(𝓏) obtained when 𝓏~𝑝𝓏.  A minibatch 

stochastic gradient descent training of GAN. A 
hyperparameter of 𝑘 is the composer variables 
used to compute the generator loss and the 
discriminator loss 𝑫 [31].  

 
Algorithm 1 
for number of training iterations do 

for 𝑘 step do 

• Sample minibatch of 𝑚 noise sample {𝓏(1), … , 𝓏(𝑚)} 
from noise prior  𝑝𝑔(𝓏). 𝓏 is noticed as the joint space 

in the end-effector provided by random values. So, 𝓏  

defines as an input (𝑝𝑥, 𝑝𝑦 , 𝑝𝑧). 

• Sample minibatch of 𝑚 examples {𝑥(1), … , 𝑥(𝑚)} from 

data generating distribution 𝑝𝑑𝑎𝑡𝑎(𝑥). 𝑥 is noticed as 
the joint space in end-effector provided by inverse 

kinematic equations. So, 𝑥  defines as an input 

(𝑝𝑥 , 𝑝𝑦, 𝑝𝑧). 

• Update the Discriminator by ascending its stochastic 
gradient [20]: 

 
end for 

• Sample minibatch of 𝑚 noise samples {𝓏(1), … , 𝓏(𝑚)} 
from noise 𝑝𝑔(𝒵). 𝓏  denotes as an input (𝑝𝑥 , 𝑝𝑦 , 𝑝𝑧). 

• Update the generator D by descending its stochastic 
gradient [20]: 

 
end for 
 
The gradient-based updates can use any standard 
gradient-based learning rule. 
 
Particle Swarm Optimization (PSO) 

The global optimum solution of the swarm 
particle defines as initial fitness value denotes by 
𝑥. The swarm consists of 𝑛-particles travelling into 
𝑛-dimensional search space with the epoch 𝑡. 
During each epoch, 𝑝 particle produces a unique 

position vector 𝑥. The const function also 

calculated by each particle 𝑝 which consider as 

the local best fitness (𝑝𝑘
𝑏𝑒𝑠𝑡) to find the best fitness 

called global best fitness (𝑔𝑘
𝑏𝑒𝑠𝑡) of the swarm. The 

vectors and velocities both formulated: 

vk+1
t = vk

t + 𝑐𝑝(𝑝𝑘
𝑏𝑒𝑠𝑡 − 𝑥𝑘

𝑡)

+ 𝑐𝑔(𝑔𝑘
𝑏𝑒𝑠𝑡 − 𝑥𝑘

𝑡) 

 

(35) 
 

𝑥k+1
t = 𝑥k

t + vk+1
t  (36) 

𝑥k
t  and vk

t  are the position vector and velocity 

vector of epoch 𝑡. 𝑐𝑝 and 𝑐𝑔 in (27) shows the 

coefficient factor that adjusts the particles' weights 

[33][34]. vk
t  is velocity vector formulized the fitness 

of backpropagation process in Artificial Neural 
Networks (ANNs). PSO was successfully 
integrated with ANNs training process to optimize 
the architecture of the network. This Algorithm (2) 
shows that PSO determines the optimized values 
of the ANNs learning rate 𝛾 and the number of 

nodes 𝑗 in ANNs hidden layer architecture [35][36]. 
 

Algorithm 2 
Initialize 𝑥𝑘

𝑡  swarms, velocity vector (vk
t ), local (𝑝𝑘

𝑏𝑒𝑠𝑡) and global 

(𝑔𝑘
𝑏𝑒𝑠𝑡) best positions. 

for number of iterations 𝑡 do 

for number of swarms 𝑥𝑘
𝑡  do 

calculate 𝐺(𝓏; 𝜃𝑔) (26) until (30) 

evaluate fitness in (29) 

update 𝑝𝑘
𝑏𝑒𝑠𝑡 

end for 

update 𝑔𝑘
𝑏𝑒𝑠𝑡 

update vk+1
t  

update 𝑥k+1
t  

end for 

find best solution of 𝑔𝑘
𝑏𝑒𝑠𝑡 

validation 𝑟𝑅𝑀𝑆𝐸 in (30) 
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Proposed Method 
Referring to (31), 𝑊(𝐺(𝓏)) denotes as an 

Objective Function that optimized by PSO 
(explained in Algorithm 2).   

𝑉(𝐷, 𝐺) =  𝐸𝑥~𝑃𝑑𝑎𝑡𝑎(𝑥)[𝑙𝑜𝑔𝐷(𝑥)] +  

    𝐸𝓏~𝑃𝓏(𝓏)[log (1 − 𝐷(𝑊(𝐺(𝓏)))]       (37) 

The training objective of the generator 𝑮 

and the discriminator 𝑫 expressed as a loss 
function obtained: 

𝐺𝑙𝑜𝑠𝑠 = 𝐸𝓏~𝑃𝓏
[log∏ 𝐺(𝓏)𝑖

𝑛
𝑖=1 . 𝐷(𝑊(𝐺(𝓏))]      (38) 

 
𝐷𝑙𝑜𝑠𝑠 = −𝐸𝑥~𝑃𝑑𝑎𝑡𝑎(𝑥)[𝑙𝑜𝑔𝐷(𝑥)] −  

               𝐸𝓏~𝑃𝓏(𝓏)[log (1 − 𝐷(𝑊(𝐺(𝓏)))]         (39) 

where 𝑛 denotes the number of the trajectory 

points generated by the generator 𝑮, 𝐺(𝓏)𝑖 

denotes the probability occur of the 𝑖-th trajectory 

point, and ∏ 𝐺(𝓏)𝑖
𝑛
𝑖=1  denotes the probability occur 

of the generator output.  
 

Table 2. Hyperparameter for neural networks and 
PSO [26] 

Parameters Choices 
Selected 

Parameters 

Number of 
Layers 

[3,4,5,6,7,8] 3 

Number of 
Neurons in 
Hidden Layers 

[2𝑛] where 𝑛 =
2, 3,… , 10   

26 

Activation 
Functions 

['ReLU', 
'Sigmoid', 'TanH', 

'Leaky ReLu'] 
'Leaky ReLu' 

Activation 
Functions Rate 

[0.1. 0.2, …. 1.0] 0.1 

Acceleration 
Coefficients 
(𝑐𝑝;  𝑐𝑔) 

[1.0, 1.001, …, 2] (0.5;0.9) 

 
Table 2 shows the hyperparameter selected in this 
approach. The number of layers denotes that the 
architecture of the generator 𝑮 and the 

discriminator 𝑫 both are ANNs.  
  
RESULTS AND DISCUSSION 

The proposed approach was applied to 
avoiding collision of Arm Robot three degree of 
freedom (3 DoF). The datasets generated by 
inverse kinematic equation explained in (16). It is 
generated 7200 motion points to produce the joint 
space (𝑝𝑥 , 𝑝𝑦 , 𝑝𝑧) and joint angular (𝑞1, 𝑞2, 𝑞3). 

Figure 5 shows that the data distribution of 
real data 𝐷(𝑥) were used 3600 samples and 7200 
samples. The batch noise of data distribution 𝐺(𝓏) 
generated using the same size with the data 
distribution of real data 𝐷(𝑥). 

 

 
Figure 5. Data Distribution of Real Data 𝐷(𝑥) 

 
Training 

The training process was performed using 
Intel(R) Core© i5-6300HQ CPU@2.30GHz, 12GB 
RAM and NVIDIA GeForce GTX 960M. The 
training process followed the hyperparameter [18] 

shown in Table 2. The training performance was 
captured in Figure 6, that means of our process 
time.  

 
Figure 6. Training Generator 𝐺 and Discriminator 

𝐷 Performance 
 

GANs has 15.26 minutes for 20000 
iterations. GANs-PSO with 50 particles has 63.17 
minutes for 20000 training epochs. And, GANs-
PSO with 100 particles has 149.78 minutes for 
20000 training epochs. This Testing represents 
that our approach takes a lot of time than common 
GANs, because of generates 50 particles of 𝐺(𝑥) 
and 100 particles of 𝐺(𝑥) per data sample. 

Figure 7 shows the data distribution of noise 
data 𝐺(𝓏) to match the data distribution of real 

data 𝐷(𝑥). A centroid distribution data shows the 
gap between real data distribution and noise data 
distribution in two cases before and after the 
generator 𝐺(. ) performed. Follows by the time 
process in Figure 6, the approaches tested in 1000 
until 20000 training epochs. 
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Figure 7. (a) Centroid of distribution data 𝐺(𝓏) 

and 𝐷(𝑥), (b) Centroid of GANs in 5000 training 
epochs, (c) Centroid of GANs-PSO 50 particles in 
5000 training epochs, and (d) Centroid of GANs-

PSO 100 particles in 5000 training epochs 

  
The centroid of data distribution 𝐺(𝓏) and 

𝐷(𝑥) was successfully captured. GANs-PSO with 
50 particles trained in 5000 training epochs was 
performed 𝐺(𝓏) to approximate the real data 𝐷(𝑥). 
The centroid generated real data 𝐺(𝑥) should be 
matched the centroid real data 𝐷(𝑥) shown in 
Figure 7.  

The training process of GANs-PSO with 50 
particles trained in 5000 training epochs was 
estimated 19 minutes. Figure 6 was transformed 
in 2D, representing the motion path of the 
generator result in Figure 8. The motion path was 
obtained by inputting various random numbers to 
𝐺 network as 𝐺(𝓏). The Arm Robot moved to a 
predefined position to caption the motion path, as 
shown in Figure 8. 

The PSO has optimized the generator loss 
𝐺𝐿𝑜𝑠𝑠 by minimizing the cost function formulized in 
(38) and shown in Figure 9. 

The Initial G Loss is calculated 
1.215757084 after the end of the process (the num 
of the epoch multiplying with the num of the 
particles) 𝐺𝐿𝑜𝑠𝑠 optimized is 1.32417093. Figure 9 
also shows the minimax term GANs maximize 
generator 𝑮 and minimize discriminator 𝑫 (see 
(34)). 

 
 

 
Figure 8. The Extraction of Figure 7, GANs-PSO 

50 particles in 5000 training epochs 

 

 
Figure 9. The Optimization of 𝐺𝐿𝑜𝑠𝑠 

Figure 10 represents the generation of the 
data distribution of the generator 𝑮 to reach the 

minimax expectation of 𝑥~𝐺; 𝓏~𝑝𝓏. It represents 

the four motions of the robot, and it takes 5000 
iterations and 50 particles. 

Figure 11 represents the generation of the 
data distribution of the generator 𝑮 to reach the 

minimax expectation of 𝑥~𝐺; 𝓏~𝑝𝓏. Figure 11 also 

represents joint values in which contains the join 
value of theta 1, theta 2, and theta 3 and 
represents join velocities which contains 𝐽𝑣1, 𝐽𝑣2, 
and 𝐽𝑣3. 

 
Testing Generator Network 

Figure 12 shows the testing performance of 
our approach. The prediction of the proposed path 
tested in 1000 until 20000 training epochs. 
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Figure 10. Minimax Expectation of x~G; z~pz 
(a) Motion-1, (b) Motion-2, (c) Motion-3, and  

(d) Motion-4 
 
The generator 𝐺 predict with the minimum 

value reached 0.0270 milliseconds, and the 
maximum value reached 0.0284 milliseconds. The 

processing load decreased if compared to the 
training load. 

Each training process includes 1000 until 
20000 training epochs, and each training epoch 
covers all the training dataset. At the end of each 
training epoch, the validation dataset is used to 
evaluate the well-trained neural network's 
Performance on the unseen dataset selected for 
training, which is relatively smaller than the test 
dataset. To test the overall Performance and the 
generalization of the well-trained neural network 
using the limited dataset, the test dataset was 
used to estimate its overall Performance over the 
whole actuation space.  

Figure 13 show the Performance of GANs-
PSO in predicting the proposed position and the 
predictive position. To see the comparison 
between the proposed method (GANs-PSO) and 
the conventional method (GANs) shown in Table 
3. Our satisfied iterations selected in 5000 epochs 
comparing GANs and GANs-PSO the time 
estimation of the training process was counted in 
Table 3. Our proposed method GANs-PSO 
calculated the 𝐺𝑅𝑀𝑆𝐸  was tested 0.027475%. 

 
Table 3. Performance of the proposed method 

 Training 

Method Time Epoch 
GANs 6.43 minutes 5000 
GANs-PSO 19.17 minutes 5000 

Testing 

Method 𝑮𝑹𝑴𝑺𝑬 
GANs 6.402591% 
GANs-PSO 0.027475% 

 

 
Figure 11. Joint Values: (a) Joint-1, (b) Joint-2, and (c) Joint-3,  

Joint Velocity: (d) Joint-1, (e) Joint-2, and (f) Joint-3, 
 

 



p-ISSN: 0-0 e-ISSN: 0-0 

 

Z. Iklima et al., Self-Collision Avoidance of Arm Robot using Generative Adversarial … 151 

 

 
Figure 12. Testing Generator Performance 

 

 
Figure 13. The GMSE Tested 

 
CONCLUSION 

This paper presented a hybrid method of 
Generative Adversarial Networks (GANs) and 
Particle Swarm Optimization (PSO) for Arm Robot 
three degree of freedom (3 DoF). The real data 
distribution 𝐷(𝑥) was generated by Inverse 
Kinematic equation to produce the joint space 
(𝑝𝑥, 𝑝𝑦 , 𝑝𝑧) and joint angular (𝑞1, 𝑞2, 𝑞3). The noise 

data distribution 𝐺(𝓏) was presented as the joint 

space 𝐺(𝑝𝑥 , 𝑝𝑦 , 𝑝𝑧). The PSO optimized the 

Performance of the generator 𝐺, in the case to 
avoid the occurrence of the mode collapse. Mode 
collapse occurs when the generator is unable to 
generate output as data distribution 𝑥~𝐺; 𝓏~𝑝𝓏. 

Therefore, PSO reduced the number of iterations 
differentially from conventional. The selected 
approach was GANs-PSO with 50 particles in 
5000 training epochs, the training process of each 
proposed method takes around 19.17 minutes to 
train the whole 7200 datasets. The neural 
generator network's execution time takes around 
0.028ms to perform a single prediction with the 
GMSE revealed 0.027475%. 
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