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Abstract: A new predictor–corrector filter for attitude and heading reference systems (AHRS) using
data from an orthogonal sensor combination of three accelerometers, three magnetometers and
three gyroscopes is proposed. The filter uses the predictor—corrector structure, with prediction
based on gyroscopes and independent correction steps for acceleration and magnetic field sensors.
We propose two variants of the filter: (i) one using mathematical operations of special orthogonal
group SO(3), that are accurate for nonlinear operations, for highest possible accuracy, and (ii) one
using linearization of nonlinear operations for fast evaluation. Both approaches are quaternion-based
filter realizations without redundant steps. The filters are compared to state of the art methods in this
field on data recorded using low-cost microelectromechanical systems (MEMS) sensors with ground
truth measured by the VICON optical system. Both filters achieved better accuracy than conventional
methods at lower computational cost. The recorded data with ground truth reference and the source
codes of both filters are publicly available.

Keywords: attitude estimation; complementary filter; gradient descent filter; sensor fusion

1. Introduction

Digital attitude and heading reference systems (AHRS) are an essential component of navigation
and localization systems. It is typically based on the measurements of inertial motion units consisting
of gyroscopes and accelerometers in combination with magnetometers. This combination is known as
the magnetic angular rate and gravity sensor combination (MARG) or magnetic inertial motion unit
(MIMU). The MARG combination takes advantage of a diverse direction of gravity acceleration vector
and magnetic vector field in the majority of locations on Earth (the exception being magnetic poles).
The AHRS system aims to map orientation between the object of interest (body coordinate) and the
coordinate system defined by the gravitational vector and the local dominant magnetic field vector.

Initial approaches to this problem were based on the analysis of instantaneous measurement.
A landmark paper by Grace Wahba defined the main rotational problem for spacecraft attitude [1]
in 1965. The aim is to find the right rotation matrix between two sets of vectors with the minimum
weighted square error. Many follow-up contributions focused on the efficient solution of this problem,
including the QUaternion ESTimator (QUEST) [2], the ESOQ algorithm, which solves the polynomial
characteristic equation of QUEST in one step [3], and many others [4]. Since the first solution, the AHRS
could start to grow into various fields and combine multiple sources of information. Mims and Farrell
used the IMU reference for synthetic aperture radars in the 1970s [5]. In 2000, the magnetometer was
used to obtain heading in a system without the gyroscope [6]. The combination of all three types
(MARG) was used in 2004 by Gebre-Egziabher [7].
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However, since measurements of all sensors are susceptible to disturbances, the challenge of any
fusion method is to reject these disturbances as much as possible. This is often achieved using by a
combination of different temporal characteristics of individual sensors. While a gyroscope provides
excellent information about the rapid changes of the orientation, it provides only relative changes of
orientation that are subject to slow drift varying with its lifetime and with temperature. On the other
hand, an accelerometer and magnetometer provide a direct measurement of orientation; however,
the measurement cannot be used as a reference at every instant since the accelerometer measures the
gravity acceleration vector contaminated by dynamic acceleration and the magnetometer measures the
Earth magnetic field contaminated by local magnetic anomalies and various magnetic disturbances.
This contamination is also considered a disturbance and needs to be rejected. The character of
disturbances may differ in different application scenarios. For example, dynamic accelerations of a
MARG mounted on the foot of a running man would be different to that of a MARG mounted on
an aircraft or UAV. Each sensor type is also influenced by orthogonality misalignment, cross-axis
sensitivity deviation, and amplitude and phase attenuation over frequency. Our primary application is
the human motion recognition domain [8,9] so we focus our attention on the specifics of this domain
such as dynamic acceleration disturbance.

The majority of the fusion methods follow the predictor–corrector structure, where the gyroscope
measurements are used in the prediction step and the accelerometer and magnetometer measurements
in the correction step. Various classes of design methods for these filters are used, such as the Kalman
filter approach, complementary filter, or gradient-based predictor–corrector filters. These approaches
differ in their assumptions made on the character of the disturbances.

The Kalman filter is based on stochastic filtering theory, which assumes that the disturbance
follows the Gaussian distribution of both the state evolution error and observation errors. It is a
classical approach [10] used in the human motion domain with a large number of variants, see e.g., [11]
for their comparison. Various extensions focus on different aspects of the filtering differing such
as the effect of nonlinear models that is addressed by the more computationally costly unscented
Kalman Filter [12]. However, the limiting factor of Kalman-based filters is the underlying assumption
of Gaussian distributed disturbance. This has been addressed by extensions proposing adaptive
estimates of the covariance matrices, see e.g., [13] for an excellent review. The approaches are
based on various approaches monitoring the evolution of estimation errors using fuzzy rules [13],
moving average covariance estimation [12], Markov chains [14], or segmented moving average
covariance estimators [15] to name a few examples. The performance benefit of these methods
usually comes with a significant computational price, making it unsuitable for low cost, low-power
applications. While multiple techniques decreasing computational cost of the Kalman filters exists [16],
adaptation of covariance matrices is always expensive.

The complementary filtering [17–19] is using low- and/or high-pass filters to remove disturbances
from the measurements. The disturbance is thus modeled as any signal that does not pass through the
filter. These filters are computationally much cheaper than Kalman filters, see e.g., [20]. The tuning
of those filters is still complicated, especially in time-varying scenarios where the character of
disturbances changes.

The third principal direction of handling the disturbance is the gradient-based approach pioneered
by Madgwick [21], which is based on the assumption that valid measurement is only within a
predefined interval and anything beyond is a disturbance. While other gradient-based approaches
exist, using different update rules such as Gauss–Newton [22], the approach of [21] is unique in the
recommendation to normalize the gradient, which is a computationally cheap operation. Similar ideas
are known in machine learning as gradient clipping [23]. Its excellent empirical performance
was recently explained using the assumption of relaxed Lipschitz constant of the optimized cost
function [24].

In this paper, we follow the approach presented in [21], since it corresponds to our experience
that both accelerometer and magnetometer suffer from severe disturbances. Since these disturbances
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do not follow any predefined probability distribution, neither frequency spectrum, the limitation
of their amplitude (i.e., limit on the Lipschitz constant of the dynamical model) seems a reasonable
assumption to make. However, in [21] this assumption is applied to the difference between gyroscope
prediction and fused measurement vector that is obtained using the solution of the Wahba problem.
We conjecture that this is suboptimal since the amplitude of the disturbance affects the direction of the
correction step. Therefore, we designed a new correction step that puts a hard limit on the amplitude
of the disturbance of individual sensors. Similar ideas on the separation of the sensor influence have
been proposed for the Kalman filtering approach in [25,26], with a different assumption on the noise.
It is also related to various two-step approaches [27], however, in a more principled manner.

The contribution of our paper is as follows:

1. We propose a new gradient-based filter for AHRS with the following features: (i) the gradient
of correction from magnetometer and accelerometer are processed independently, (ii) the step
size of the gradient descent is limited by the correction function independently for each sensor,
and (iii) the correction vectors are fused using a new approximation of the correct SO(3) operation.
Separation of the correction steps from each sensor implied heavy modification of the original
filter, as visualized in Figure 1.

2. For each operation that is used in the design of the proposed filter, we analyzed the accuracy
of its implementation in the SO(3) group. We provide two approximations: (i) an accurate
approximation of the correct quaternion operation as possible, and (ii) its approximation
simplified using e.g., linearization. The proposed filter is presented in two versions: a separated
correction filter (SCF) using the accurate SO(3) operations, and a fast SCF (FSCF) that is composed
of the simplified (linearized) operations.

3. We recorded measurements of the MARG sensor mounted on an experimental platform in a
laboratory equipped with the optical tracking system VICON-460. We provide this data as
an open-source benchmark. We compare the performance of the proposed filter with selected
alternative filters and demonstrate that it has higher accuracy at a lower computational cost.

The remainder of this paper is organized as follows: Elementary operations with quaternions and
their notation is reviewed in Section 2. The proposed filter is described in detail in Section 3 including
a description of several possible approximations of the correct SO(3) operations. Experimental results
are provided in Section 4, including details of the data measurement and comparison of selected
competing filters. A conclusion from the experiments is drawn in Section 5.

Figure 1. Block diagram of the Madgwick magnetic angular rate and gravity sensor combination
(MARG) filter (left) and the proposed separated correction filter (SCF) (right). Yellow blocks denote
prediction from the gyroscope; Blue blocks denote correction from the magnetometer; Red blocks the
accelerometer correction, and Green is fusion of the correction steps and its application to the predicted
values. Detailed description of blocks of the proposed filter is provided in Section 3, namely Section 3.1
(qDot), Section 3.2 (qPred), Section 3.3 (aRef, accPred), Section 3.4 (mRef, magPred), Section 3.5
(magDev, accDev), Section 3.6 (magCor, accCor), Section 3.7 (fuseCor), and Section 3.8 (correct).
Tuning parameters of the proposed filter are λm and λa.
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2. Important Rotation Operations

In this section, the necessary rotational operations that are used in the designed filters are reviewed.
For a full treatment of the subject, see [28]. First, rotation of normalized vectors in Euclidean space is
presented, then elementary operations with quaternions are described. Unit vector a is a vector that
has unit norm ||a|| = a>a = 1, where > denotes transposition. The direct angle (DA), αa,b, between
two unit vectors, a = [ax, ay, az]>, and b = [bx, by, bz]>, is defined by

αa,b = cos−1
(

a>b
)

. (1)

The cross product of two unit vectors a and b, is defined by

cross(a, b) = [aybz − azby, azbx − axbz, axby − aybx]. (2)

The proposed filter is based on Hamilton’s quaternions. For implementation in this mathematical
group, we use a unit quaternion which is a complex number representing rotation from the source
coordinate frame f to the destination frame f ′ which can be written in vector form

q f , f ′ =
[
qw, qx, qy, qz

]
=

[
cos

θ

2
, uxi sin

θ

2
, uy j sin

θ

2
, uzk sin

θ

2

]
, (3)

where unit vector u in coordinate frame f defines rotational axis (axis around rotation has been done)
and θ the angle of rotation. The angle of rotation θ corresponds to the DA for 3D vectors.

The quaternion rotation q can be converted to the rotation matrix R using

R =

q2
w + q2

x − q2
y − q2

z 2qxqy − 2qwqz 2qxqz + 2qwqy

2qxqy + 2qwqz q2
w − q2

x + q2
y − q2

z 2qyqz − 2qwqx

2qxqz − 2qwqy 2qyqz + 2qwqx q2
w − q2

x − q2
y + q2

z

 (4)

The most important operations with quaternions are the quaternion product × and quaternion
conjugation q−1, since they define the rotation of coordinates of vector v in frame f to coordinates v′ in
frame f ′

v′ = q−1
f , f ′ × v× q f , f ′ . q−1

a,c =
[
qw,−qx,−qy,−qz

]
= qc,a. (5)

Here, v is a four-dimensional vector with the first element equal to zero followed by conventional
coordinates in 3D space. The quaternion multiplication ×,

q f , f ′′ = q f , f ′ × q f ′ , f ′′ , (6)

is the result of the product of complex numbers corresponding to vectors (3). Since qw = cos θ
2 and√

q2
x + q2

y + q2
z = sin θ

2 (3), the angle of rotation θ can be computed from a quaternion using:

θ(q) = 2arctg2(
√

q2
x + q2

y + q2
z , qw). (7)

3. Filter Implementation

The filter is designed as a modification of the Madgwick filter where we split the contribution
of each sensor to the correction. This requires a replacement of the solution of the Wahba problem.
We thus cannot fuse information in the derivative form as the original filter, and we have to use the
absolute form. Specifically, the correction step is composed of two important parts for each sensor
independently: (i) determination of distance and direction of deviation from the prediction, and (ii)
determination of the correction step size based on the shape of a correction function. The correction
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rotation is determined using a combination of the directions of deviation of individual sensors weighted
by their correction step sizes.

The proposed approach has an independent weighting of their contributions to correction.
Note that the correction parts from the accelerometer and magnetometer are almost completely
separated except the magnetic reference vector determination (more in Section 3.3). There were some
attempts to do the separation of sensor contributions in previous works, such as [26], with which we
compare our filter in the experimental part.

The proposed filter can be implemented using either quaternions or rotational matrices.
We present the majority of operations in the quaternion formulation and use the rotational matrix
in cases where it is computationally advantageous. Due to limited computing power in embedded
systems (the most common application), we present two versions of the filter. The separated correction
filter (SCF) using as accurate numerical operations, and the fast separated correction filter (FSCF) using
computationally efficient approximations of these operations. The influence of those approximations
was studied in simulations. The structure of those two variants is identical, the difference is only in
details of the implementation of individual blocks (Figure 1 right). The output of the filter is quaternion
q̂t defining rotation from the estimated coordinate frame of the sensor body to the earth coordinate
frame. Here, t is used as the index of the time step. Implementation of each block from Figure 1 (right)
is described as follows.

3.1. Dynamic Rotation Change (qDot)

Transformation of the gyroscopic rotation rate data to the small rotation difference is provided
by the dynamic rotation block (qDot). The function can also be interpreted as a transformation of
the gyroscopic measurement to the rotational quaternion. The first step is the transformation of the
gyroscopic data to Euler angles (yaw, pitch, and roll, respectively) in the body coordinate frame:α

β

γ

 = ωt dt, (8)

where dt is the sampling rate. The second step is the transformation of the Euler angles to the
quaternion by

qdot,x = sin
(α

2

)
, qdot,y = sin

(
β

2

)
, qdot,z = sin

(γ

2

)
, (9)

qdot,w =

√
1−

(
q2

dot, x + q2
dot, y + q2

dot, z

)
, (10)

where qdot is the rotation between coordinate frame of the body at time t− 1 and time t.
The Equations (9) and (10) are used in SCF. Due to small angles (fast sampling rate) it is possible

to linearize the sine functions in (9) for the use in FSCF

q̃dot = 1 +
α

2
i +

β

2
j +

γ

2
k. (11)

The impact of this approximation is negligible in real conditions.

3.2. Prediction Integration (qPred)

Prediction of the new position reference frame of the sensor based on information from the
gyroscope is obtained by rotation integration in SO(3) which is defined by quaternion multiplication (6),

qpred = q̂t−1 × qdot, (12)
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where qpred is a quaternion of rotation from the predicted frame of the body to the earth
coordinate frame.

3.3. Accelerometer Reference Vector (aRef, accPred)

We assume that the measured vectors of acceleration are normalized at the beginning of each
filter step (Sensors have to be calibrated before measurement, especially the magnetometer). By the
reference vector of the accelerometer, we define the part of the earth coordinate frame. The reference
vector can be set as

ar = [0, 0, 1]> , (13)

which represents zero rotation if the gravitational acceleration is pointing down along the ‘z’ axis of
the body reference frame.

The reference vector in the predicted body frame can be obtained by quaternion rotation via
Equation (5)

apred = q−1
pred × ar × qpred. (14)

However, for the specific choice of the reference vector (13), the same operation using rotation
matrices has a lower computational cost. Therefore, we implement (14) in block “accPred” using

apred = R>ar =

0 0 2qxqz − 2qwqy

0 0 2qyqz + 2qwqx

0 0 1− 2
(

q2
x + q2

y

)

0

0
1

 . (15)

3.4. Magnetometer Reference Vector (mRef, magPred)

The choice of the reference vector for the magnetometer is more complicated. Due to magnetic
distortions, influences by ferromagnetic materials in buildings and variation of magnetic inclination,
it is not appropriate to define the magnetic reference vector by a constant.

We follow [21], and choose the reference of the magnetometer using the predicted reference
frame. The original reference proposed in [21] comes with a significant computational cost. Therefore,
we propose to compute the reference in the body frame instead of the Earth frame. To achieve this,
we need to rotate the accelerometer to the body frame. We use the predicted value of the accelerometer
for suppression of the measurement noise. The result is a computationally cheaper alternative since its
components are already available:

mr,z = cos(ϕ̂) = apred,xmt,x + apred,ymt,y + apred,zmt,z,

mr,x = sin(ϕ̂) =
√

1−m2
r,z, (16)

mr = [mr,x, 0, mr,z]
> ,

where ϕ̂ is the estimate of the current inclination between the predicted accelerometer and
magnetometer measurement using (1). This formulation is computationally faster and the experiments
show that it has a negligible impact on the accuracy of the resulting filter.

Rotation of the reference vector to the predicted coordinate frame is obtained analogically to (15) as

mpred = R>mr =


1− 2

(
q2

y + q2
z

)
0 2qxqz − 2qwqy

2qxqy − 2qwqz 0 2qyqz + 2qwqx

2qxqz + 2qwqy 0 1− 2
(

q2
x + q2

y

)

mr,x

0
mr,z

 . (17)
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3.5. Deviation of Prediction and Measurement (magDev, accDev)

If the predicted reference frame is correct, the predicted values of the magnetometer and
accelerometer reference vectors should be close to the measured values. We quantify the deviation
of the measured vectors from the reference vectors by angle and direction. For example, for the
accelerometer, the deviation between the measured vector at and the predicted vector apred is
computed as

αa = cos−1
(

a>t apred

)
, acor =

cross
(

at, apred

)
‖cross

(
at, apred

)
‖

, (18)

where cross is defined in (2). The same operations are performed for measurements of mt and reference
vectors mr of the magnetometer, yielding angle αm and mcor. These operations are implemented by
blocks “accDev” and “magDev” in Figure 1.

3.6. Correction Step Determination (magCor, accCor)

Deviation of the measurement from the prediction is an indicator in which direction we should
rotate the predicted coordinate frame to obtain a better estimate. The key component of the filter is
the choice of the influence of the deviation on the correction of the predicted coordinate frame. In our
filter, we propose a correction in the direction of vectors acor and mcor but decrease the scale of the
correction (angles αa and αm) by a correction function, e.g.,

βa = fcor (αa, λa) , (19)

for the accelerometer deviation angle. Here, λa denotes a tuning parameter. The choice of function fcor

has a significant impact on the result. We will test three basic correction functions: (i) the linear function
βa = λaαa (intercept zero); (ii) the constant function βa = λa (Madgwick approach); and (iii) the
segmented function as a combination two previous: βa = λa,1αa, if λa,1αa < λa,2, βa = λa,2 otherwise.
The most commonly used method in other filters is the linear correction step. Parameters λa and λm

can be considered as the filter correction weights of each sensor.
Correction rotation from the accelerometer measurement can be formulated in the form of a

quaternion (3) as follows:

qa,cor =

[
cos

βa

2
, a>cor sin

βa

2

]
. (20)

Since angle βa is typically very small, we can approximate (20) by linearization

q̃a,cor =

[
1, a>cor

βa

2

]
, (21)

which is used in the simplified FSCF. Analogical equations are used for the rotation towards the
measurement of the magnetometer, qm,cor.

It is not obvious, but in his famous paper [21], Madgwick presents two filters with different
behavior. In his paper, the first filter ends by Equation (23). The correction propagated through the
gradient filter leads to a classic linear correction function. This filter is denoted Linear Madgwick.
The second filter in his paper is based on fusion by (29). The constant correction step was used in this
field for the first time. We call the second filter the Madgwick gradient filter. The comparison of the
Linear Madgwick filter with its final version is discussed in the experimental part, Section 4.3.1.

The correction function is implemented in blocks “accCor” and “magCor” in Figure 1. If we use
the constant correction step, the deviation angle is not included in the filter step. We can then save a
small amount of computing power by omitting the computation of αa and αm in Equation (18) from
the previous block.
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It is clear that for a very small angle deviation, the constant correction step will lead to
overshooting and thus to the zig–zag effect. This can be prevented by the use of the segmented
function. A comparison of the effect of the tested correction functions is provided in the experimental
part, see Section 4.3.2.

3.7. Fusion of Correction Quaternions (fuseCor)

The fusion step aims to create a single quaternion that represents a correction of the predicted
reference frame towards the measurements. In Euclidean space, this is often achieved by convex
combination. An equivalent operation in rotational space can be obtained numerically, by repetitive
application of infinitesimal steps of alternating rotations toward the first and the second measurement.
Since this is a computationally expensive operation, the most common approximation of this
operation is to apply rotational multiplication of fused quaternions [21], which corresponds to a
coarse approximation of the correct step. However, this simple approximation does not preserve
commutativity and its accuracy is quickly decreasing with increasing angles and difference in direction
of the fused quaternions.

As an alternative, we propose a simple analytical formula that approximates the numerical
solution. We propose a three-step approximation. First, create a convex combination of the vectors acor

and mcor

fcor =

(
βa

2
acor +

βm

2
mcor

)
, (22)

using weights βa and βm. Second, compute its curvature on the hypersphere

c = sinc (norm ( fcor)) , (23)

where sinc(x) = sin(x)/x is the unnormalized sinc function. Third, generate quaternion

qcor =

[√
1− f>cor fcorc2, fcorc

]
, (24)

which is the final correction quaternion. For small rotations, the curvature c is approaching one, which
allows simplifying (24) for the FSCF:

q̃cor = [1, fcor] , (25)

The accuracy of the proposed formula was tested in comparison with a numerical solution
using a billion steps for each testing rotation. The accuracy of the tested methods for two rotations
of perpendicular directions with the same value of the rotation angle is displayed in Figure 2 for
increasing value of the rotation angle.

Note that the proposed Formula (24) is accurate for the whole tested interval of the rotation angles.
The simplified formula is accurate for low values of the rotation angle but deteriorates over 30 degrees.
The commonly used method of quaternion multiplication is the least accurate in this case.
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Figure 2. Accuracy of quaternion fusion of two rotations of perpendicular directions with the same
value of the rotation angle for the quaternion multiplication (blue), the proposed method with inverse
quadrature (24) (yellow), and the simplified method (25) ignoring the curvature (red). The error is
computed as a deviation from the numerical solution with billion steps.

3.8. Application of Correction Step (Correct)

The final filter block “correct” applies the correction step to the prediction by quaternion
multiplication as

q̂t = qpred × qcor. (26)

The FSCF filter contains few approximations of the mathematically correct SO(3) operations, (11),
(21), and (25). The normalization of the estimated quaternion has to be done after each step of the filter.
This is highly recommended also for SCF because of the numeric error integration.

4. Experimental Results

A comparison of the accuracy of AHRS filters is a problematic task since each filter has different
behavior in different situations. Therefore, we prepared an experimental platform and recorded three
different datasets with different characteristics.

We evaluated the performance of the filters in two steps. First, we calculated the rotation between
the ground truth quaternion and the estimated quaternion

qdi f = qgt × q−1
est . (27)

Second, we evaluated the rotation angle of the difference θ(qdi f ) using (7) in each time step of
the experiment. Accuracy of the estimation was evaluated using two common measures, the mean
absolute error (MAE) and the root mean square error (RMSE) of the rotation angle θ(qdi f ). We used
MAE for graphical presentations since it is distinguishable for the large error range.

To minimize the potential of introducing an error in implementation, we preferred to compare
the quality of our filter with the methods published with implemented code. Therefore, we chose the
Madgwick’s complementary filter [21], the Valenti’s complementary filter [18], and the Guo’s Fast
Kalman Filter [16]. However, none of the recently published filters with independent corrections from
the magnetometer and accelerometer had available code. Therefore, we compared the methods with
our implementation of Suh’s filter [26].
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4.1. Data Acquisition

The experimental platform consisted of three perpendicular rods of lengths 36 cm to obtain
better localization accuracy (Figure 3). The platform was equipped with low-cost sensor unit BMX055
from BOSCH Sensortec and nrf24l1s unit configured to act as a wireless transceiver. The data were
captured by the second nrf24l1s unit operated as a wireless receiver connected to the Arduino UNO
where they were mixed and logged with data coming from the VICON-460 optical positioning system.
Accuracy of the positioning was studied in [29,30] confirming sub-millimeter accuracy of the position
measurements, depending on operating conditions. Since even the worst-case error of 1 mm on the
position of the rod implies a 0.16 degree error on its rotation, we considered this measurement to be
the ground truth reference for the tested filters.

The recorded datasets and implementation of the SCF and FSCF are freely available (https:
//github.com/Josef4Sci/AHRS_Filter).

Figure 3. The measuring platform in the VICON laboratory.

Three experiments were performed in the laboratory to capture different scenarios that can occur
in practical applications. The first experiment was designed to contain relatively slow rotations,
whereas the second experiment was designed to contain fast rotations. In the third experiment,
the rotations are inhibited but the platform was subject to dynamic accelerations in different directions.
Datasets recorded in each experiment were synthetically connected to create three different scenarios.
The first scenario represents favorable conditions where only slow rotations are present, therefore only
the dataset from the first experiment is used. This scenario is common e.g., in indoor drone applications.
The second scenario represents more demanding conditions where both slow and fast rotations are
common, as arise e.g., in virtual reality applications. This scenario is obtained by joining datasets from
the first two experiments. The third scenario is the harshest conditions where rotations are disturbed
by abrupt accelerations from arbitrary directions, as arise in inertial motion capture systems. This is
obtained by joining data from all three experiments. Data from all three datasets are displayed in
Figure 4.

https://github.com/Josef4Sci/AHRS_Filter
https://github.com/Josef4Sci/AHRS_Filter
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Figure 4. The measured data from all three experiments. The first three rows display data from the
MARG sensor: all three axes, x, y, z, of the accelerometer, magnetometer, and gyroscope, respectively.
The measured positions of the points on the platform from the VICON system were converted to
the reference quaternion that is displayed via its vector components, w, x, y, z (3) in the bottom row.
The slow rotations occur between 0–40 s, fast rotations between 40–72 s, and dynamic accelerations
after 72 s.

4.2. Tuning of Filter Parameters

The tuning of filter parameters is essential for proper evaluation of their performance [31].
Therefore, we optimized the tuning parameters of all filters for each scenario and each performance
measure (MAE, RMSE) independently. Since the problem is nonconvex, we needed a global
optimization method. For this reason, many authors use a stochastic search, such as the particle swarm
optimization [32], which may not be easily reproducible. Therefore, we investigated deterministic
optimization methods. The conventional Nelder–Mead simplex search as implemented in Matlab was
found to be unreliable. Therefore, we designed our version of the refined grid search [33]. Specifically,
we started with an initial guess and designed a grid of values consisting of values of the initial guess
multiplied by predefined coefficients. See supplementary material for details of implementation.

4.3. Influence of the Correction Function

The idea of the correction in its basic form was proposed in [21] and elaborated in a more advanced
form in the proposed method. It was found to be a very important factor for the accuracy of different
filters as is demonstrated in this Section. To obtain fair testing conditions, parameters of all tested
filters were optimized for each test and each filter to get the best possible response. The errors of the
filters are quite noisy in raw format, therefore we present them processed by the moving average filter
with a window size of 40 samples for better readability (sampling rate about 100 Hz).
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4.3.1. Correction Function in Madgwick Filters

The basic filter presented in [21] is using the linear function and will be denoted as Linear
Madgwick. However, the main results presented in [21] are using the constant correction function
and will be denoted as Madgwick in our comparison. The difference between those two versions is
demonstrated in Figure 5 on the data from the first scenario. The version with constant correction
function outperforms the linear filter by 58%. From now on, only the filter with constant correction
function version will be used for tests.

Figure 5. Comparison of accuracy of Madgwick’s filters for two choices of the correction function on
the data from the first scenario. Parameters of all filters were tuned for the best overall performance.

4.3.2. Correction Function in SCF

Three shapes of the correction function proposed in Section 3.6 were tested: (i) the linear function,
which has only one parameter per correction sensor; (ii) the constant function with one parameter per
sensor as well; (iii) the segmented function with two parameters per correction sensor. To reduce the
number of parameters in the segmented function, we tuned a single gain of the linear part for both
sensors. This leads to a filter with three parameters for tuning.

The parameters of all correction functions were optimized for performance on scenario 3 and the
results are displayed in Figure 6. The result shows that there is almost no difference in the accuracy of
the filter with the constant correction function and its theoretically improved version, the segmented
function. Note that the error of the filter with linear correction function grows significantly between
23 and 36 s (the part of heading change, Figure 6). Another major difference is also in acceleration
disturbances. The influence of the correction function in fast rotations seems to be insignificant.
In this part, the error is dominated by a peak between 60 and 70 s, which could be caused by the
desynchronization between the reference and measured data.
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Figure 6. Accuracy of the separated correction filter (SCF) for scenario 3 and three different choices of
the correction function: Linear, constant, and segmented. Parameters of all filters were tuned for the
best overall performance.

The average error is summarized in Table 1.

Table 1. Comparison of the proposed filter with different correction function shapes.

Shape MAE Error (deg)

Linear 5.19
Constant 3.37

Segmented 3.37

Note that the impact of the segmented function on the error is low but tuning of the additional
parameter is hard. Therefore, the constant correction function was used in the following tests.

4.4. Comparison on Selected Application Scenarios

The performance of the tested filters was evaluated for all three scenarios defined in Section 4.1.
Parameters of all filters were tuned for each scenario independently to obtain the lowest average MAE
or RMSE. The parameters are summarized in Table A1 in Appendix A. Since the SCF and FSCF have
almost the same behavior, only the FSCF results are displayed in Figures 7–9. Since the results of Suh’s
filter [26] were significantly worse than other filters in the testing set, its estimates are displayed as
transparent for better readability of the results of other filters. Results for the first scenario with only
slow rotation are displayed in Figure 7 and summarized in Table 2. The performance of all filters is
comparable in the first half of the dataset but differs in the second where the proposed filter has the
lowest error.

Table 2. Estimation errors of tested filters for all tested scenarios. Parameters of all filters were
optimized for the best performance.

MAE [deg] RMSE [deg]

Filter Type Scenario 1 Scenario 2 Scenario 3 Scenario 1 Scenario 2 Scenario 3

Madgwick 2.66 4.63 3.90 3.48 6.61 5.91
Valenti 2.84 5.91 4.51 3.82 7.08 6.39

Suh 5.29 10.68 11.54 6.53 15.01 15.51
Guo 2.57 4.35 3.94 3.49 6.41 5.82

SCF (ours) 1.97 4.06 3.37 3.01 6.24 5.57
FSCF (ours) 1.97 4.06 3.37 3,01 6.24 5.57
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Figure 7. Error of the tested filters for data from the first scenario. Parameters of all filters were tuned
for best overall (scenario 3) performance.

The second scenario contains both slow and fast rotations. The results are summarized in Table 2
and displayed in detail in Figure 8. Note that the error during fast rotations (40–70 s) is much higher
than that for the slow rotations and is dominated by a peak between 60–70 s. This peak can be also
explained by deviation in the reference VICON data. However, since all filters have almost the same
performance in this region, it has no impact on the results of the comparison. The filters were tuned for
the best overall results in this scenario but the performance in the first part (slow rotations) is similar
to results with parameters tuned only for the first scenario.

Figure 8. Error of tested filters for data from the second scenario. Parameters of all filters were tuned
for best overall (scenario 3) performance.

The last scenario complements slow and fast rotations by a sequence of dynamic accelerations to
test robustness to disturbance. Once again, all filters were tuned for best overall performance in the
whole data set. The results are summarized in Table 2 and analyzed in detail in Figure 9. Note that
the proposed filter is significantly better than the competitors in the second part of the slow rotation
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data and in the dynamic acceleration data. In all other cases, it is comparable to the best of the
remaining filters.

Figure 9. Error of all tested filters for the data from the third scenario (top row): slow rotations (left),
fast rotations (middle), and dynamic acceleration (right). Parameters of all filters were tuned for
the best overall performance. Quaternion estimated by the fast separated correction filter (FSCF) is
displayed for illustration (bottom row).

4.5. Cross-Validation Study

The previous experiments were optimized for best performance to obtain theoretical lower bound.
In this section, we present the results of our investigation of the sensitivity of all tested methods to the
tuning of their parameters. We performed a cross-validation study, in which we trained parameters of
the methods on one part of the data and report their performance on the remaining data. Specifically,
the introduced dataset is composed of the distinct parts: (i) slow rotation 0–40 s, that form scenario 1,
(ii) fast rotations 40–72 s, and (iii) dynamic accelerations after 72 s. Since tuning of the parameter
on the dynamic acceleration would provide degenerate behavior (the correct output is always zero),
we optimize parameters of all methods only on one of the fast or slow parts and evaluate their
performance on the remaining part of the data set, Table 3. The best performance is achieved for the
proposed method, followed by the original Madgwick filter. This is an advantageous property of the
gradient clipping that is insensitive to the absolute value of the error.
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Table 3. Accuracy of the tested methods on testing data set. Parameters of all methods were trained
either on the slow or fast rotation part of the data set. Reported accuracy is measured on the testing
data, which is the remaining part of the dataset.

MAE [deg] RMSE [deg]

Filter Type Trained on Fast Trained on Slow Trained on Fast Trained on Slow

Madgwick 3.30 5.62 4.29 7.76
Valenti 4.84 13.93 5.85 15.52

Suh 24.10 34.11 42.29 48.18
Guo 3.37 6.72 4.13 8.52

SCF (ours) 3.20 5.29 3.91 7.51
FSCF (ours) 3.20 5.29 3.91 7.51

4.6. Computational Costs

The computational cost is an important factor for embedded systems containing MARG sensor
combination. Processing a real-time data flow is the most common task for AHRS filters. The speed of
filters can be compared via the number of floating-point operations in one filter step. The results for all
tested methods are listed in Table 4.

Table 4. The computational cost for each filter in terms of floating-point operations.

Filter Type Filter FLOPs

Madgwick 287
Valenti 244

Suh 352
Guo ≈1000
SCF 179

FSCF 160

The computational time of the Madgwick-type filters can be further reduced using implementation
tricks techniques of [8] or the simplification of the problem [34]. While [8] achieves almost identical
accuracy as [21], the simplification presented in [34] has a negative impact on accuracy, in our case 57%
increase in MAE over [21] in scenario 3.

We propose a simplification of the magnetic reference in Section 3.4. This simplification allowed
for the reduction of the computational cost of SCF and FSCS with negligible impact on accuracy.
Replacing the proposed magnetic reference by the original reference of [21] lead to a 0.1% improvement
of MAE on Scenario 3 of our experiments.

4.7. Summary of the Experimental Part

The benefit of using correct mathematical operations in SO(3) was found to have a negligible
impact on the filter performance. Specifically, the improvement of the proposed method for quaternion
fusion over the quaternion multiplication (Figure 2) was 0.3‰ for the method ignoring rotational
curvature and 0.4‰ for the method with inverse curvature. However, it may become more important
in applications with lower sampling frequency.

A more important factor in filter performance is the choice of the correction function, as studied in
Section 4.3.2. The constant correction step was found to be a good choice for standard applications with
MARG sensor combination. Methods that use the correction function (such as the constant correction
step) are also less sensitive to tuning parameters and perform well in cross-validation study.

However, the main contribution to the good performance of the proposed filter is the application
of the correction function independently to data from accelerometer and magnetometer before their
fusion. In our tests, the optimal weight of the magnetometer was approximately 10 times smaller than
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the weight of the accelerometer. This indicates that filters with common weight for both accelerometer
and magnetometer are sub-optimal in real applications.

The proposed filters were found to be more accurate than any of its competitors in all tests.
Specifically, the mean absolute error of the proposed filter was 77% of the second-best filter in scenario 1
(slow rotations), 93% of the second-best in scenario 2 (slow and fast rotations), and 86% in scenario 3
(slow and fast rotations, and dynamic acceleration).

The biggest advantage of the proposed filter is in its accuracy for slower rotations and dynamic
accelerations. Nevertheless, the improvement for faster rotations is also significant.

5. Conclusions

A novel predictor—corrector AHRS filter using separate correction steps for magnetometer and
accelerometer (SCF) and its faster version (FSCF) is proposed. Both filters have lower computational
cost than other well-known methods in this field. Although both filters have simple structures, it was
demonstrated that they are more accurate than their competitors. The most visible improvement was
on a scenario with slow rotations (77% mean absolute error of the second-best filter) but it improves
on the dynamic acceleration as well as fast rotations. The key difference from previous approaches is
the application of correction function independently to data from accelerometer and magnetometer
before their fusing. This opens possibilities for future research, e.g., on-line adaptation of the weights.
We also provide our testing dataset for open access for better reproducibility of our results.
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Appendix A. Experimental Details

In this section, we provide details of the experimental setting. Final values of the filter parameters
obtained by optimization are summarized in Table A1.

Table A1. Review of optimizes parameters for all tested filters, optimization criteria (the mean absolute
error (MAE) and the root mean square error (RMSE)), and test scenarios.

MAE

Filter Type Parameter Scenario 1 Scenario 2 Scenario 3

Madgwick β 0.0092 0.0101 0.0155
Valenti [µacc, µmag] [0.0076; −2 ×10−4] [0.0056; 0.0028] [0.0024; 0]

Suh [rg, ra, rm] [11.56; 1.39 ×10−19; 0.0057] [0.1548; 5.19 × 10 −10; 3.84 ×10−6] [0.0756; 1.75 ×10−16; 1.57 ×10−7]
Guo (Σgyr = 1) [Σacc, Σmag] [0.247; 368.4] [0.405; 553.1] [4.108; 513.3]
SCF and FSCF [λa, λm] [0.0028; 0.0001] [0.0021; 0.0001] [0.0016; 0.0001]

RMSE

Scenario 1 Scenario 2 Scenario 3

Madgwick β 0.0113 0.0160 0.0170
Valenti [µacc, µmag] [0.009; −2 × 10 −4] [0.0027; 1.4 ×10−5] [0.0026; 0]

Suh [rg, ra, rm] [1.009; 5.3 ×10−5; 26 ×10−4] [2.125; 2.7 ×10−4; 9.4 ×10−5] [5.058; 2.1 ×10−4; 1.3 ×10−5]
Guo (Σgyr = 1) [Σacc, Σmag] [0.3726; 162.4] [0.873; 484.4] [3.377; 511.3]
SCF and FSCF [λa, λm] [0.0028; 0.0001] [0.0014; 0.0001] [0.0013; 0.0001]
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