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ABSTRACT 

Deep learning is commonly used to solve problems such as biomedical problems and many other problems. The most 

common architecture used to solve those problems is Convolutional Neural Network (CNN) architecture. However, CNN may 

be prone to overfitting, and the convergence may be slow. One of the methods to overcome the overfitting is batch 

normalization (BN). BN is commonly used after the convolutional layer. In this research, we proposed a further usage of BN 

in CNN architecture. BN is not only used after the convolutional layer but also used after the fully connected layer. The 

proposed architecture is tested to detect types of seizures based on EEG signals. The data used are several sessions of 

recording signals from many patients. Each recording session produces a recorded EEG signal. EEG signal in each session 

is first passed through a bandpass filter. Then 26 relevant channels are taken, cut every 2 seconds to be labeled the type of 

epileptic seizure. The truncated signal is concatenated with the truncated signal from other sessions, divided into two datasets, 

a large dataset, and a small dataset. Each dataset has four types of seizures. Each dataset is equalized using the undersampling 

technique. Each dataset is then divided into test and train data to be tested using the proposed architecture. The results show 

the proposed architecture achieves 46.54% accuracy for the large dataset and 93.33% accuracy for the small dataset. In future 

studies, the batch normalization parameter will be further investigated to reduce overfitting. 
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ABSTRAK 

Deep learning biasanya digunakan untuk memecahkan masalah seperti masalah biomedis, dan banyak masalah lainnya. 

Arsitektur yang paling umum digunakan untuk menyelesaikan masalah tersebut adalah arsitektur Convolutional Neural 

Network (CNN). Namun, CNN mungkin cenderung mengalami overfitting, dan konvergensinya mungkin lambat. Salah satu 

cara untuk mengatasi overfitting tersebut adalah batch normalization (BN). BN biasanya digunakan setelah lapisan 

konvolusional. Dalam penelitian ini, kami mengusulkan penggunaan BN lebih lanjut dalam arsitektur CNN. BN tidak hanya 

digunakan setelah lapisan konvolusional tetapi juga digunakan setelah lapisan yang terhubung sepenuhnya. Arsitektur yang 

diusulkan diuji untuk mendeteksi jenis kejang berdasarkan sinyal EEG. Data yang digunakan adalah beberapa sesi pencatatan 

sinyal dari banyak pasien. Setiap sesi perekaman menghasilkan sinyal EEG yang direkam. Sinyal EEG di setiap sesi pertama-

tama dilewatkan melalui filter bandpass. Kemudian diambil 26 saluran yang relevan, dipotong setiap 2 detik untuk diberi 

label jenis serangan epilepsi. Sinyal yang terpotong tersebut digabungkan dengan sinyal yang terpotong dari sesi lain, yang 

dibagi menjadi dua dataset, yaitu dataset besar dan dataset kecil. Setiap set data memiliki empat jenis kejang. Setiap dataset 

disamakan dengan menggunakan teknik undersampling. Setiap dataset kemudian dibagi menjadi data uji dan latih untuk diuji 

menggunakan arsitektur yang diusulkan. Hasil uji coba  menunjukkan arsitektur yang diusulkan mencapai akurasi 46.54% 

untuk dataset besar dan akurasi 92.33% untuk dataset kecil. Dalam studi selanjutnya, parameter normalisasi batch akan 

diselidiki lebih lanjut untuk mengurangi overfitting. 

    

Kata Kunci: Batch Normalization, CNN, Deep Learning, EEG, Kejang 

.  

I. INTRODUCTION 

ver the past decade, deep learning, as a sub-field of machine learning, is commonly used to solve problems 

such as computer vision, natural language processing, biomedical problems, and many other problems. 

The most common Deep Learning architecture used is Convolutional Neural Network (CNN). Other O 
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common Deep Learning architectures such as VGGnet [1] and ResNet [2] have also been commonly used, 

empowered with the ability to capture sophisticated and hierarchical features of high-dimensional data.  

The usage of deep learning in biosignal processing problems have been researched many times. Internet of 

Things-based learning optimized for seizure prediction was proposed using big EEG data [3]. Signal transforms 

use empirical mode decomposition and classification using CNN show 98.9% accuracy when classifying between 

focused and non-focused signals [4]. In the same study, 99.5% accuracy for classifying seizure and non-seizure 

records, 96.5% for classifying healthy, unfocused, and seizure records, and 95.7% for classifying healthy, focused, 

and seizure records. The CNN-based model showed the highest accuracy of 96.7% and 97.5% using the Freiburg 

and CHB-MIT databases [5]. 

Acharya et al. [6] predicted seizures using deep CNN and achieved 88.67% accuracy in a recent study. An 

image-based EEG study using CNN showed a true positive rate of 74.0% between seizures and non-convulsive 

seizure activity [6]. Seizure prediction using intracranial and scalp EEG signals achieved 81.4% sensitivity using 

the Freiburg Hospital intracranial EEG dataset. The sensitivity metric achieved 81.2% using the Children’s 

Hospital-MIT-Scalp EEG dataset from Children’s Hospital-MIT, and 75,0% sensitivity using the American 

Epilepsy Society seizure dataset [7]. 

Tjandrasa et al. classified the EEG signals using a combination of intrinsic mode functions and power spectrum 

feature extractor, which gave a maximum of 78.6% accuracy for five classes [8]. They also classified the EEG 

dataset of healthy participants and epilepsy patients using single channel independent component analysis, power 

spectrum, and linear discriminant analysis. The study obtained a maximum accuracy of 94% for three classes [9]. 

Many proposed architectures have many kinds of layers which each layer has a different function. For example, 

LeNet-5 architecture, known as CNN, has convolutional layers, pooling layers, fully connected layers, and the 

output layer [10][11]. Other than those layers in CNN architecture, there are many layers used to enhance the CNN 

architecture. One example is the Dropout layer, which overcame overfitting, one of the CNN weaknesses [12]. The 

other example is the Batch Normalization layer. Batch Normalization (BN) allows us to use much higher learning 

rates and be less careful about initialization. It also acts as a regularizer, in some cases eliminating the need for 

Dropout. Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy 

with 14 times fewer training steps. It beats the original model by a significant margin [13]. 

In this study, we proposed a further usage of BN in CNN architecture. BN is not only used after the convolutional 

layer but also used after the fully connected layer. The proposed architecture is tested to detect types of seizures 

based on EEG signals. The data used are several sessions of recording signals from many patients. Each recording 

session produces a recorded EEG signal. EEG signal in each session is first passed through a bandpass filter. Then 

26 relevant channels are taken, then cut every 2 seconds to be labeled the type of epileptic seizure. The truncated 

signal is then concatenated with the truncated signal from other sessions, divided into two datasets, a large dataset, 

and a small dataset. Each dataset has four types of seizures. Each dataset is then equalized using the undersampling 

technique. Each dataset is then divided into test and train data to be tested using the proposed architecture. 

The paper is organized as follows: Section II describes the theory used in this research. Section III explains the 

whole method used in this research. Section IV explains the discussion from the results and the comparison to other 

scenarios used. Finally, the conclusions and future work are presented in Section V 

II. LITERATURE STUDY 

EEG has been researched since before the 20th century. Many studies on EEG started from the P300 speller 

algorithm, detecting epileptic seizures, sleep monitoring, and much other research. Several EEG studies, such as 

detection of epileptic seizures [14], sleep monitoring [15], detecting strokes [16], also detecting fatigue while 

driving [17], are some examples of recent studies. 

Several studies on detecting epileptic seizures, such as [18] and [6], also use deep learning to detect them. 

Meanwhile, research such as [19] and [20] use standard classifiers such as Support Vector Machine (SVM) and 

Artificial Neural Networks to detect epileptic seizures. 

One of the well-known deep learning architectures is CNN architecture. CNN is a deep learning classifier that 

is widely used in research. Besides being used for signal data [18], CNN is also widely used for image data [21], 

both research on medical and non-medical data. 

The BN3 architecture is a deep learning architecture in addition to the CNN architecture. This architecture itself 

first appeared in the research of Liu et al. [12]. Several studies used this architecture as a classifier in their research, 

such as [22],  [23], and [16]. The BN3 architecture itself was used for the P300 speller algorithm and glioma and 

stroke detection [16], and other things. 

A. Deep Learning 

Deep Learning is a subfield of machine learning that deals with algorithms inspired by the brain’s structure and 

the function called neural networks. The adjective “deep” in deep learning comes from the use of multiple layers 
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in the network. The main reason for using deep learning is its empirical effectiveness compared to other approaches 

[24]. 

Deep-learning architectures such as deep neural networks, recurrent neural networks, and convolutional neural 

networks have been applied to fields including computer vision, speech recognition, natural language processing, 

bioinformatics, and medical image analysis, where they have produced results comparable to and in some cases 

surpassing the human expert performance 

B. Convolutional Neural Network (CNN) 

Convolutional Neural Network (CNN) is a feedforward network proven very successful for image analysis [25]. 

CNN consists of one or more convolutional layers and is then followed by one or more interconnected layers as in 

a standard multi-layer neural network. CNN architecture is designed to take advantage of the 2D structure of the 

input image (or other 2D input such as a signal image). 

Since 2006, many methods have been developed to overcome the difficulties encountered in training deep CNNs. 

Most notably, Krizhevsky et al. proposed a classic CNN architecture. They showed significant improvements upon 

previous methods on the image classification task. The overall architecture of their method, i.e., AlexNet [26], is 

similar to LeNet-5 but with a deeper structure. With the success of AlexNet, many works have been proposed to 

improve its performance. Among them, four representative works are ZFNet [27], VGGNet [1], GoogleNet [28], 

and ResNet [2]. From the architectures’ evolution, a typical trend is that the networks are getting deeper, e.g., 

ResNet, which won ILSVRC 2015, is about 20 times deeper than AlexNet and eight times deeper than VGGNet. 

The network can better approximate the target function with increased nonlinearity and get better feature 

representations by increasing depth. However, it also increases the network’s complexity, making the network more 

difficult to optimize and easier to get overfitting. Along this way, various methods have been proposed to deal with 

these problems in various aspects. 

C. Batch Normalization 

Batch Normalization is a technique for training very deep neural networks that standardize each mini-batch 

layer’s inputs. Batch Normalization has the effect of stabilizing the learning process and dramatically reducing the 

number of training epochs required to train deep networks. 

Simply adding Batch Normalization to a network does not take full advantage of our method. To do so, we further 

changed the network and its training parameters, as follows:  

Increase the learning rate. Each training iteration will be slower due to extra normalization calculations and 

additional parameters when carrying out the learning process. However, the overall training process went much 

faster. 

 Remove Dropout. Batch Normalization fulfills some of the same goals as Dropout. Remove Dropout speeds up 

training without increasing overfitting. 

 Reduce L2 weight regularization. Batch Normalization improves the accuracy of the held-out validation data.  

Accelerate the learning rate decay. In training Inception, the learning rate was decayed exponentially. Because 

our network trains faster than Inception, we lower the learning rate six times faster.  

Shuffle training examples more thoroughly. The within-shard shuffled training data prevents the same examples 

from always appearing in a mini-batch together. The training data led to about 1% improvements in the validation 

accuracy.   

Reduce the photometric distortions. Because batch-normalized networks train faster and observe each training 

example fewer times, we let the trainer focus on more “real” images by distorting them less. 

A batch normalization normalizes its inputs xi by calculating the mean μB and variance σB
2 over a mini-batch and 

each input channel. Then, it calculates the normalized activations as 

𝑥𝑖 =
𝑥𝑖−𝜇𝐵

√𝜎𝐵
2+∈

                    (1) 

Where ∈ improves numerical stability when the mini-batch variance is very small. To allow for the possibility that 

inputs with zero mean and unit variance are not optimal for the layer that follows the batch normalization layer, the 

batch normalization layer further shifts and scales the activations as 

𝑦𝑖 = 𝛾𝑥𝑖 + 𝛽                     (2) 

The offset β and scale factor γ (Offset and Scale properties) are learnable parameters updated during network 

training. 

III. METHODOLOGY 

This research was completed through several main stages: preprocessing, splitting and balancing data, proposed 

architecture, training process, and testing process. The research methodology is shown in Fig. 1. The proposed 

architecture is tested with a dataset. This research data is data derived from the free dataset belonging to TUH 
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(Temple University Hospital). The dataset is named The TUH EEG Seizure Corpus version 1.5. This dataset is 

recorded using the International 10-20 Electrode System featuring Modified Combinatorial Nomenclature (MCN), 

shown in Fig. 2, with a majority sampling rate of 250 Hz. The set consisting of 343 sessions were seizure sessions. 

There are eight classes in this dataset, namely simple partial seizures (SP), complex partial seizures (CP), focal 

nonspecific seizures (FN), generalized non-specific seizures (GN), absence seizures (AB), tonic seizures (TN), 

tonic-clonic seizures (TC), and non-seizures (NS). Each recording session produces a recorded EEG signal. Fig. 3 

describes the example of the recorded EEG signal. The x-axis describes the time, and the y-axis describes the 

signal’s amplitude. 

A. Preprocessing 

The recorded EEG was first passed through a bandpass filter with a cut-off frequency of 0.5-44 Hz and a sample 

rate of 250 Hz to attenuate the noise. EEG signals in each session passed this filter. Then 26 relevant channels are 

taken, then cut every 2 seconds to be labeled the type of epileptic seizure. The relevant channels taken are the first 

26 channels. Channel 27 and channels after that consisted mostly of blank signals, which can reduce the 

performance. The truncated signal is then concatenated with the truncated signal from other sessions. Details of the 

number of the concatenated truncated signals can be seen in Table I. 

B. Splitting and balancing 

The concatenated truncated signal is divided into two datasets, a large dataset, and a small dataset. The large 

dataset is a dataset that has an initial class with a sample of more than 10000 data, and the small dataset is a dataset 

consisting of the rest of the classes. Each dataset has four types of seizures. Each dataset then equalized using the 

undersampling technique. Each class in each dataset is already equalized, so each dataset's class bias should not 

happen. The big dataset consisted of NS, SP, CP, and GN types of seizures. The small dataset consisted of FN, AB, 

TN, and TC types of seizures. The number of data in the small dataset and big dataset after undersampling can be 

seen in Tables II and III. Each dataset is divided into test and train data to be tested using the proposed architecture 

with the configuration of 60% training data and 40% testing data. 

 

 
 

Fig. 1. Research methodology. 
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TABLE I 

DETAILS OF THE NUMBER OF DATA IN DATASETS. 

Class Number of data in the dataset 

NS 301171 

SP 25784 

CP 14215 

FN 926 

GN 17579 

AB 284 

TN 254 

TC 1824 

 

 
Fig. 2. The International 10–20 Electrode System Featuring Modified Combinatorial Nomenclature (MCN) [29]. 

 

 
Fig. 3. Input signal from dataset. 

 

 

C. Proposed architecture 

The input data are the signals from the preprocessed data that are converted as if into a 2D-image. Since the input 

data are images, and CNN is a prominent architecture to process images, CNN-based architecture is used in this 

research.  
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TABLE II 

NUMBER OF DATA IN THE BIG DATASET. 

Class Number of data before undersampling Number of data after undersampling 

NS 301171 14215 

SP 25784 14215 

CP 14215 14215 

GN 17579 14215 

 
TABLE III 

NUMBER OF DATA IN THE SMALL DATASET. 

Class Number of data before undersampling Number of data after undersampling 

FN 926 254 

AB 284 254 

TN 254 254 

TC 1824 254 

 

The proposed architecture used in this research, as seen in Fig. 4, is divided into three sections, the extraction 

layer after the input layer, the training layer, and the classification layer before the output layer. The extraction 

layer consists of the Batch Normalization layer, Convolutional layer, ReLU layer, Batch Normalization layer, Max 

Pooling layer, another Convolutional layer, ReLu layer, Batch Normalization layer, and Max Pooling layer. The 

extraction layer will extract the features needed from the input layer, classified in the next layer. In this section, the 

weights that will be trained are at both the Convolutional layer. 

The training layer consists of a Fully Connected Layer, Batch Normalization layer, Dropout layer, another Fully 

Connected Layer, Batch Normalization layer,  and Dropout layer. The training layer will weight the features 

collected from the extraction layer. In this section, the weight that will be trained are at both the Fully Connected 

layer. The final section is that the classification layer consists of a Fully Connected Layer and Softmax layer. This 

section classifies the input images into the output classes. Configuration for the proposed architecture is described 

in the next section. 

D. Training Process 

The training process aims to create the model to be used in the testing process. The process to train the proposed 

architecture model is from input data to the extraction layer to the training layer, the classification layer, and the 

output classes. All the processes in training created a model to be tested in the testing process.  The layer 

configuration of the proposed architecture is as follows: the input layer is 2D-matrix with 26 × 500 in size, the 

Convolutional Layer has a filter size of 4 × 4 with eight filters each layer, Max Pooling Layer has 2 × 2 pool size, 

Dropout Layer has a probability of 0.2, first fully connected layer has 32 output size, the second fully connected 

layer has 16 output size. 

Meanwhile, this research’s training options are using adam optimizer. With an initial learning rate of 10-3, and 

for every 100 epoch, the learning rate becomes ten times smaller. The training model is finished when the loss is 

reached less than 0.1. 

E. Testing Process 

The trained model is tested, and then the performance is compared to other models in the scenario. The scenario 

used in the research can be seen in Table IV. The performance metric used to compare architecture is accuracy, 

precision, and recall. Calculation of accuracy, precision, and recall was defined using the confusion matrix. Fig. 5 

Described the confusion matrix. Accuracy, precision, and recall can be calculated using Equations (3), (4), and (5), 

respectively. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                       (3) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                        (4) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
                       (5) 

 
TABLE IV 

COMPARISON OF ARCHITECTURE’S SCENARIO. 

Architecture Extraction Layer Training Layer Total Layer 

Proposed Architecture With Batch Normalization With Batch Normalization 19 

Architecture A With Batch Normalization Without Batch Normalization 17 

Architecture B Without Batch Normalization With Batch Normalization 16 

Architecture C Without Batch Normalization Without Batch Normalization 14 
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Fig. 4. Proposed architecture. 

 

 

 
Fig. 5. Confusion matrix. 

 

IV. RESULTS AND DISCUSSION 

Fig. 6 is one of the examples of data after the preprocessing. The signal data is converted as if it is an image to 

be trained in the proposed architecture. The training dataset and testing dataset are trained in each architecture in 

this research scenario. So there are eight models in this research to be tested. The testing process gives the accuracy, 

precision, and recall of each class. The precision and recall of each class are then summed and divided so that the 

averaged precision and recall can be calculated. Table V shows that the proposed architecture excels in all the big 

and small datasets’ research metrics. The proposed architecture’s model gave 6.9% better accuracy than 

Architecture A’s model, 4.9% better accuracy than Architecture B’s model, and gave 3.9% better accuracy than 

Architecture C’s model in the small dataset. For the big dataset, the accuracy metric proposed architecture’s model 

gave 6.2% better accuracy than Architecture A’s model, 6.2% better accuracy than Architecture B’s model. The 

proposed architecture even has 19.1% better accuracy than Architecture C’s model. 
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Fig. 6. Preprocessed data. 

 
TABLE V 

PERFORMANCE OF THE PROPOSED ARCHITECTURE COMPARED TO OTHER ARCHITECTURE. 

Dataset Architecture Accuracy(%) Averaged Precision(%) Averaged Recall(%) 

Small Proposed Architecture 92.327 92.325 92.625 

Small Architecture A 85.396 85.4 85.025 

Small Architecture B 87.376 87.375 88.3 

Small Architecture C 88.366 88.35 88.65 

Big Proposed Architecture 46.535 46.38 47.6 

Big Architecture A 40.296 40.3 40.025 

Big Architecture B 44.926 44.95 46.05 

Big Architecture C 27.383 27.375 27.475 

 

The proposed architecture’s model has 6.9%, 4.9%, and 3.9% better than Architecture A, B, and C’s model in 

the small dataset’s precision metric. For the big dataset, the proposed architecture’s model has 6%, 1.4%, and 19% 

better precision than Architecture A, B, and C’s model. The same with the recall metric, in the small dataset, the 

proposed architecture’s model gave 7.6%, 4.3%, and 3.9% better recall than Architecture A, B, and C’s model. The 

proposed architecture’s model has 7.5%, 1.5%, and 20.1% better recall in the big dataset in the big dataset than 

Architecture A, B, and C’s model. Architecture C has the second-best performance in the small dataset, followed 

by Architecture B, and the worst is Architecture A. But for the big dataset, Architecture C has the worst 

performance, and followed by Architecture A, and then Architecture B, 

From the results, we can see that the Batch Normalization layer usage in both the extraction and training layers 

can produce the highest performance. It produced better results than usage in one of the layers only and without 

the Batch Normalization layer. The Batch Normalization layer usage makes the training model less susceptible to 

overfitting, especially in the large dataset. In the small dataset, the Batch Normalization layer utilization does not 

significantly affect performance; in some cases, it can reduce performance, although it makes the training process 

faster.  

All the architectures used in this research failed to have more than 50% accuracy, averaged precision, and 

averaged recall for the big dataset. The small dataset results contradicted it, with each metric having more than 

85% for each architecture. One of the reasons is because the big dataset is from many people. So that from the same 

type of seizure, there are some kinds of differences in the signal recorded. The differences are not that big for a 

small dataset. Because the undersampling technique used in this research is randomly picked, so the undersampling 

technique also contributed to the big dataset’s low matric results. The other reason is that the parameter used in the 

architecture in this research is not fined tuned. The parameter also contributed to why the model is too overfitting 

to the big dataset’s train data. 

V. CONCLUSION 

We can conclude from this research that the proposed architecture has better performance than the other 

architecture tested. Although it failed to reach more than 80% performance in the big dataset, the proposed 
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architecture improved the existing deep learning architecture. In future research, each layer’s parameter should be 

tuned, especially the batch normalization layer. Also, use the better undersampling method that reduces the 

randomness that causes the difference between signals from the same type. 
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