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Abstract
The aim of this study was to determine the influence of heavy metals on biological soil quality assessments in
Vaccinium myrtillus L. rhizosphere soil as well as in non-rhizosphere soil from different polluted sites. The presented
study was also conducted in order to determine any differences in the soil physicochemical and biological properties
between the Vaccinium rhizosphere soil and the non-rhizosphere soil. The content of heavy metals and their potential
bioavailability, content of macronutrients, physicochemical soil properties, activity of six soil enzymes and
microarthropod communities were determined. Soil organic matter, the levels of C, N and all the studied
macronutrients and almost all enzyme activity were significantly higher in the rhizosphere soil than in the non-
rhizosphere soil. At the most contaminated site, the content of heavy metals was also higher in the rhizosphere soil, but
their bioavailability was lower than in the non-rhizosphere soil. The β-glucosidase and urease activity in the soil
correlated most negatively with the examined metals. The levels of two enzymes were also strongly impacted by the
organic matter—the C and N levels and pH. The number of microarthropods as well as the QBS (soil biological quality
index) and FEMI (abundance-based fauna index) were higher in the rhizosphere soil. The bilberry rhizosphere soil had
stronger correlation coefficient values between the measured parameters than the non-rhizosphere soil, which suggests
that rhizosphere soil is more sensitive and could be used in the monitoring and assessment of forest ecosystems.
β-glucosidase and urease were the most sensitive indicators of the adverse impact of Cd, Zn and Pb. The FEMI index
seems to be a better indicator than the QBS for identifying differences in soil quality.
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Abbreviations
AS arylsulphatase
βG β-glucosidase
Deh dehydrogenase
AlP alkaline phosphatase
AP acid phosphatase
Ure urease
PLI pollution load index
TEI total enzyme activity index
Mw potential biochemical soil fertility index
ACR enzyme activity change ratio

QBS soil biological quality index
FEMI abundance-based fauna index

Introduction

Soils are often a sink for pollutants especially for heavy metals
in anthropogenic environments (Jiao et al. 2015; Navarrete
et al. 2017). Heavy metals in soils, which are characterized by
a high stability in the environment and are generally not bio-
degradable, can be released from terrestrial environments into
other ecosystem compartments such as groundwater, rivers,
atmosphere and other (Mmolawa et al. 2011; Mazurek et al.
2017). They can reach hazardous levels to human beings,
hence, the need for constant monitoring and regulation of their
concentrations in the soil (Karaca et al. 2010; Jia et al. 2018).
Soil physicochemical properties are not suitable for estimating
changes in environmental pollution because they change very

* Marta Kandziora-Ciupa
marta.kandziora-ciupa@us.edu.pl

1 Faculty of Natural Sciences, Ecology, Institute of Biology,
Biotechnology and Environmental Protection, University of
Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland

12
34

56
78

90
()
;,:

12
34
56
78
90
();
,:

http://crossmark.crossref.org/dialog/?doi=10.1007/s10646-021-02345-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10646-021-02345-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10646-021-02345-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10646-021-02345-1&domain=pdf
http://orcid.org/0000-0002-1254-8917
http://orcid.org/0000-0002-1254-8917
http://orcid.org/0000-0002-1254-8917
http://orcid.org/0000-0002-1254-8917
http://orcid.org/0000-0002-1254-8917
http://orcid.org/0000-0001-5073-2363
http://orcid.org/0000-0001-5073-2363
http://orcid.org/0000-0001-5073-2363
http://orcid.org/0000-0001-5073-2363
http://orcid.org/0000-0001-5073-2363
http://orcid.org/0000-0002-9071-0270
http://orcid.org/0000-0002-9071-0270
http://orcid.org/0000-0002-9071-0270
http://orcid.org/0000-0002-9071-0270
http://orcid.org/0000-0002-9071-0270
mailto:marta.kandziora-ciupa@us.edu.pl


slowly and can only be detected after many years. Therefore,
any research on pollution-induced changes in soil quality must
be based on the properties that respond rapidly to minor
changes in environmental stress (Trasar-Cepeda et al. 2008;
Tan et al. 2014). One of the suggested biological indicators is
soil enzyme activity level, which rapidly responds to any
ecosystem variation and changes in the soil, including those
that are induced by heavy metals. Because it is easily mea-
sured, it could provide a useful tool for environmental mon-
itoring (Rao et al. 2014). In addition, understanding the effects
of heavy metals on soil enzyme activity may also provide an
opportunity for an integrated assessment of soil biology (Yang
et al. 2017). Increased contents of heavy metals in soil above a
certain threshold generally adversely affect the growth, mor-
phology, and metabolism of microorganisms, which leads to a
decrease in the functional diversity of soil ecosystems (Hassan
et al. 2013). They can inhibit soil enzyme activity by inter-
acting with enzyme active sites and substrate complexes and
denaturing the enzyme protein (Vig et al. 2003; Yang et al.
2017). Soil organisms are also useful in monitoring environ-
mental changes because they provide objective metrics that
integrate physical, chemical, and biological parameters (Bla-
kely et al. 2002; Galli et al. 2014). For example, micro-
arthropods are widely seen as bioindicators (Stork and
Eggleton 1992; Paoletti 1999) and are used in the indexes of
soil quality in environmental monitoring (Yan et al. 2011).
Parissi et al. (2005) and Parisi and Menta (2008) proposed a
simplified eco-morphological index (EMI) that is based on the
types of soil microarthropods that are present and this index
was used to evaluate soil quality by generating another index
—the QBS (soil biological quality) (Yan et al. 2011). The
QBS index is based on the concept that at a higher soil quality,
the number of microarthropod groups that are well adapted to
soil habitats will be higher (Parissi et al. 2005).

From the viewpoint of microbial ecology, the rhizosphere is
a special unique hot spot in the soil where microorganisms are
considerably stimulated by the activity of the roots (Jones et al.
2004; Hisinger et al. 2006; Egamberdieva et al. 2011). The
rhizosphere is also an important site of material cycling and
energy flow (Xiao et al. 2017) and has a significant influence
on the availability or solubility of nutrients as well as on the
availability of heavy metals (Orroño et al. 2012). Because of
this, the distribution of heavy metals in rhizosphere soil is
more significant for the evaluation of the bioavailability of
heavy metals than bulk soil is (Youssef 1997).

Vaccinium myrtillus L. (bilberry) is the most frequent and
abundant dwarf shrub species in the understory of the
conifer forests in Europe and Northern Asia. As a species, it
has special significance for the development of pine and
mixed oak-pine forests undergrowth structure and is a
species that is particularly important for the regeneration of
post-agricultural forest communities. Bilberry makes a
significant contribution to the soil processes in this

community type because it is a major contributor to the
formation and accumulation of the humus layer and in the
prevention of soil erosion (Matuszkiewicz et al. 2013; Liu
et al. 2014; Kandziora-Ciupa et al. 2017). However, infor-
mation about the rhizosphere effect of Vaccinium myrtillus
L. on soil properties, activities soil enzymes and micro-
arthropod abundance, especially in heavy-metal con-
taminated soils, is still unknown. Therefore, the objectives
of this study were to (1) evaluate the differences in the
rhizosphere and non-rhizosphere soil properties from dif-
ferent contaminated stands; (2) assess the influence of heavy
metal pollution on the enzyme activity in rhizosphere and
non-rhizosphere soils; (3) compare the biological indicators
of soil quality (QBS and FEMI) based on the microarthropod
numbers in rhizosphere and non-rhizosphere soils. We
postulate that the results of this study will contribute
essential information for the monitoring and assessment of
forests soils and will provide a better understanding of the
processes that occur in rhizosphere soil that is under heavy
metal contamination.

Material and methods

Study area

The study was performed in a middle-aged (60–80 years
old) Scots pine forest, which is mixed with birch (Betula
pendula L.), European beech (Fagus sylvatica L.) and
pedunculate oak (Quercus robur L.) that are growing on
sandy acidic soils that are located at three differently pol-
luted sites (the immediate vicinity of the “Miasteczko
Śląskie” zinc smelter (M), of the mining and metallurgical
plant in Bukowno (B) and a main road with high traffic—
Katowice–Kostuchna (K)) as well as in an unprotected
natural forest community in Kokotek (KO) (Fig. 1). The
dominant species in understory of all research areas was
Vaccinium myrtillus L. (coverage in all sampling sites was
50–60%). All the sites are located in the Śląskie or Mał-
opolskie provinces in southern Poland (in the Silesian-
Krakow highlands) and all sampling sites were homo-
geneous in terms of altitude and exposure. The research
areas are flat land located at an altitude of 200–314 m above
sea level (Table 1).

Sample collection

Soil samples were collected in May and September 2017
(Pennesi and Insom 2012). At each sampling site, ten ran-
domly selected shrubs of Vaccinium myrtillus L. were
carefully dug up from the field. The soil that was strongly
adhering to the bilberry roots, which was separated by
gently shaking by hand, was considered to be the
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rhizosphere soil (R) (Baudoin et al. 2002; Garcia et al.
2005; Ge et al. 2011). Ten samples were also collected from
areas without vegetation or with light vegetation but with-
out V. myrtillus (distances of at least 50 cm from the rhi-
zosphere of individual plants in order to avoid the influence
of rhizosphere)—for the sake of simplicity and for the needs
of this article, we will call this soil “non-rhizosphere” soil
(NR). At each study site, ten soil samples of each type of
soil (separately rhizosphere and non-rhizosphere) that had
been collected from all of the sampling sites were combined
into three composite samples and then divided into two sub-
samples: one subsample was used to determine the heavy
metal content, the second was used for the physicochemical
analysis and the third for the enzyme activity analysis. All
the measurements were done in triplicate.

At each sampling site, soil samples were additionally
collected for the study of the microarthropod community. A
total of 48 soil samples (10 cm × 10 cm × 10 cm)—rhizo-
sphere (24) and non-rhizosphere (24) was collected. The

fauna was extracted over seven days using a
Berlese–Tullgren funnel. The arthropods were preserved in
75% ethanol. The extracted specimens were counted under
a stereo microscope at a low magnification and identified to
the order level.

Soil properties

Soil pH was measured using a 1:2.5 soil to water ratio. The
organic matter content (%) was determined using the loss-
on-ignition (LOI) method by heating 5.0 g of soil at 550 °C
for seven hours following the method of Ostrowska et al.
(1991).

The soil concentration of heavy metals (Cd, Mn, Zn, Fe,
Pb) and macronutrients (K, Mg, Na, Ca, P, S) were esti-
mated in air-dried soil samples that had been sieved through
a 2 mm sieve according to Zheljazkov et al. (2008) and
Wójcik et al. (2014). The metals and macronutrients were
extracted from the samples with concentrated HNO3 (65%)

Fig. 1 Location map of sampling sites
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(acid extracted elements) or with 0.01M CaCl2 (potentially
bioavailable elements—only metals). For the HNO3-
extractable fraction, the soil samples (0.5 g) were placed in
digestion tubes, soaked overnight in 5 ml of concentrated
HNO3 at room temperature, then decomposed further on an
aluminum digestion block at 150 °C for 8 h, filtered and
diluted to 25 ml with deionized water. For the CaCl2
extraction, 5 g of soil with a 50 ml 0.01M CaCl2 solution
was mechanically shaken for 2 h at room temperature. The
levels of the metals were measured in the filtered extracts
using inductively coupled plasma-atomic emission spec-
troscopy (Spectro Analytical Instruments).

Total carbon, total nitrogen and the C/N ratio were
measured in an Elementar Vario MAX CNS Analyzer.

Assessment of heavy metal pollution

The single contamination factor (CF) was used to assess the
degree of pollution for each investigated metal:

CF ¼ Cs=Cc

where Cs (mg/kg) is the average concentration of elements
in the samples and Cc (mg/kg) is the average concentration
of the elements in the standards or control or an unpolluted
area (Boamponsem et al. 2010; Yang et al. 2016; Fang et al.
2017). The contamination levels ranged from 1 to 6 (0=
none, 1= none to moderate, 2=moderate, 3=moderate to
strong, 4= strongly polluted, 5= strong to very strong and
6= very strong) (Muller, 1969).

To calculate the overall level of soil pollution across the
sampling sites, the pollution load index (PLI) was deter-
mined (Bhuiyan et al. 2010, Yang et al. 2016; Fang et al.
2017):

PLI ¼ ðCf 1 � Cf 2 � Cf 3 � ¼ :� CfnÞ1=n

where Cf is the metal contamination factor and n is the
number of samples that were analyzed in this study. Four
pollution levels were defined: no pollution (PLI < 1),
moderate pollution (1 < PLI < 2), heavy pollution
(2 < PLI < 3) and extremely heavy pollution (PLI > 3)

(Liu et al. 2013; Yang et al. 2016; Fang et al. 2017).
The PLI for each site’s overall pollution level was also
calculated (Table 5).

Soil enzyme activity

The activity of six enzymes (arylsulfatase (AS),
β-glucosidase (βG), dehydrogenase (Deh), alkaline (AlP),
acid (AP) phosphatase and urease (Ure)) were determined.
Fresh soil samples (rhizosphere and non-rhizosphere) from
all four sites were sieved through a 2-mm sieve and stored
in plastic zip bags at 4 °C. The substrate, incubation time,
unit, and references of all the enzyme activities that were
measured are listed in Table 2.

To assess the total level of soil enzyme activity, the TEI
(total enzyme activity index) was calculated:

TEI ¼
XXi

Xι

where Xi is the activity of soil enzyme i and Xi is the mean
activity of enzyme i in all the samples (Tan et al. 2014;
Fang et al. 2017).

The potential biochemical soil fertility index (Mw), which
is based on the enzymatic activity and carbon content
(Wyszkowska and Wyszkowski 2003), were calculated as
follows:

Mw ¼ ðUre10�1 þ Dehþ AlPþ APÞ%C

where Ure is urease activity, Deh is dehydrogenase activity,
AlP is alkaline phosphatase activity and AP is acid
phosphatase activity.

To compare the effects of the heavy metals between the
contaminated soils, the enzyme activity change ratio (ACR)
was calculated (Xian et al. 2015; Gucwa-Przepióra et al.
2016):

ACR ¼ Ah � Acð Þ=Ac � 100%

where Ah and Ac are the enzyme activity of polluted (M, B
and K) and control (KO) soils, respectively.

Table 1 Study sites

Abbreviation Sites GPS

Latitude Longitude

M Nearest vicinity of zinc smelter “Miasteczko Śląskie” in Miasteczko Śląskie (activities
since 1968)

50°31′22.655″N 18°56′8.699″E

B The nearest vicinity of ZGH “Boleslaw” Mining and Metallurgical Plant in Bukowno
(activities since 1955)

50°15′55.6″N 19°26′34.64″E

K Katowice–Kostuchna province. vicinity of the main road. with high traffic 50°11′42.75″N 19°0′26.363″E

KO Unprotected natural forest community in Kokotek—province of Lubliniec (control site) 50°36′21.287″N 18°42′59.806″E
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Biological indices

The soil biological quality index (QBS) was evaluated as
reported by Parissi et al. (2005). The QBS considers the soil
microarthropods, which are invertebrates that belong to the
microarthropoda phylum that range in size between 0.2 and
2 mm (mesofauna). This QBS index classifies soil micro-
arthropods based on their morphological characteristics,
assigning each to a microarthropod group by different
weights, which are represented by a different score, thereby
defining the Ecomorphological indices (EMI) and the
microarthropod groups presented in Parissi et al. (2005).
The QBS is calculated as the sum of the EMI values in each
soil type (Menta et al. 2018).

Soil quality was also estimated using the abundance-
based (number of individuals) fauna index (FEMI), which is
based on the ecomorphological indices (EMI). This indi-
cator, which was proposed by Yan et al. (2012), is based on
the presence/absence of microarthropod groups and the
abundance of individuals in those groups.

FEMI ¼ S0
S
�
PS0

i¼1
di0
dimax

� EMIi
� �

PS
i¼1 EMIið Þ

where S is the number of microarthropod groups at all of the
sites in the study region S0 is the number of microarthropod
groups at one site in the study regiond i0 is the abundance of
microarthropod group idimax is the maximum abundance of
microarthropod group i in all of the sites in the study area
and EMIi is the ecomorphological index of microarthropod
group i.

Keys used to the taxonomical identification: Identification
key (a): https://www.zoology.ubc.ca/~srivast/mites/index.
html; ver.1.0 Identification key (b): https://keyserver.
lucidcentral.org/key-server/player.jsp?keyId=56 and Insom,
La Terza (2012).

Statistical analysis

The data concerning enzyme activity, metal content and
other soil properties were checked for the normality and
homogeneity of variance. When there was a normal dis-
tribution and variance homogeneity, the data was analyzed
by ANOVA and the treatments were treated as the inde-
pendent variables. Significant statistical differences of all of
the variables were established using the Tukey’s test
(ANOVA; Statistica 10 package). The heat maps, which are
based on Pearson’s correlation coefficients and show the
correlation between enzyme activity and soil characteristics,
were generated using HEMI software (Heat Map Illustra-
tion, Version 1.0) (Deng et al. 2014). CANOCO 4.5 was
used to perform the Principal Component Analysis, which
assessed the similarities and relationships between the soilTa
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properties and soil enzyme activity in the studied areas.
PCA analysis was performed without data rotation.

Results

Soil properties, macronutrient concentrations,
heavy metal content and bioavailability in the soil
samples

All of the investigated soils were acidic. The lowest soil pH
value was observed at site KO while the highest was
observed at site M. There was a no difference in pH between
the rhizosphere and non-rhizosphere soils (Table 3). Statis-
tically significant differences between the rhizosphere and
non-rhizosphere soils were found in the amount of organic
matter (OM), carbon and nitrogen content with higher con-
tents recorded in the rhizosphere soil samples. The amount
of organic matter ranged from 6.6% at site M (non-rhizo-
sphere soil) to 68.6% at site KO (rhizosphere soil) (Table 3).
The total concentrations of C and N and the C/N ratio dif-
fered slightly between the sampling sites (Table 3).

No significant differences were found in the K, Mg, Na,
Ca, P and S levels between sampling sites. We observed
statistically significant higher macronutrient concentrations
(p < 0.05) in the rhizosphere soil than in the non-
rhizosphere soil at all of the sampling sites (Table 4).

There were statistically significant differences in the
content of the studied metals (HNO3 extracted and CaCl2
extracted) between the polluted and control sites. Addi-
tionally, there was a clear difference in the concentrations of
metals between the rhizosphere and non-rhizosphere soil
samples (Tables 5 and 6).

A particularly high PLI index was found at site M where
the levels of heavy metals (HNO3 extracted and CaCl2
extracted) were statistically significantly higher in the rhi-
zosphere than in the non-rhizosphere soil samples (p <
0.05). Generally, the highest levels of Cd, Mn, Zn and Pb
(HNO3 extracted) were observed at site M in the rhizo-
sphere soil samples. The highest levels (CaCl2 extracted) of
Cd and Zn were also observed at site M in the rhizosphere
soil samples and for Pb in the non-rhizosphere soils samples
(Tables 5 and 6).

The following descending order of the potential bioa-
vailability (determined as the percentages of CaCl2 extrac-
ted metals in relation to the HNO3 extracted metals)
(Aydinalp and Katkat 2004; Orroño and Alavado 2009) was
found among the heavy metals: Cd > Zn >Mn > Pb > Fe in
both the rhizosphere and non-rhizosphere soils samples. At
site M, despite having the highest heavy metal concentra-
tions in the rhizosphere soil samples, their potential bioa-
vailability was significantly lower than in the non-
rhizosphere soil samples. At the other sampling sites, in
most cases, the heavy metal potential bioavailability was

Table 3 The physicochemical
properties of soil samples (mean
values ± SD, n= 3)

pH OM % C % N % C/N

M V R 5.4 ± 0.01a* 17.8 ± 2.0a* 9.58 ± 1.07a* 0.50 ± 0.05a* 19.26 ± 0.26a*

NR 4.7 ± 0.05a^ 11.4 ± 0.20a^ 5.56 ± 0.20a^ 0.26 ± 0.01a^ 21.48 ± 0.09a^

IX R 5.1 ± 0.02a* 17.5 ± 0.90a* 8.16 ± 0.00a* 0.40 ± 0.01a* 20.35 ± 0.33a*

NR 4.6 ± 0.01a^ 6.6 ± 1.0a^ 3.99 ± 0.42a^ 0.19 ± 0.03^ 20.94 ± 1.18a^

B V R 4.4 ± 0.02b* 49.4 ± 0.40c* 22.68 ± 0.54b* 0.80 ± 0.02b* 28.28 ± 0.05c*

NR 5.0 ± 0.02b^ 23.9 ± 0.90c^ 9.62 ± 1.96b^ 0.41 ± 0.08b^ 23.35 ± 0.26b^

IX R 4.1 ± 0.01b* 64.7 ± 0.10b* 30.69 ± 0.09c* 1.10 ± 0.00b* 27.99 ± 0.03c*

NR 5.3 ± 0.01b^ 14.3 ± 0.10b^ 5.64 ± 0.68b^ 0.24 ± 0.03b^ 23.20 ± 0.12a^

K V R 4.0 ± 0.01c* 38.9 ± 0.10b* 21.62 ± 1.23b* 0.92 ± 0.05b* 23.52 ± 0.06b*

NR 4.2 ± 0.02c^ 18.1 ± 0.50b^ 9.85 ± 1.68b^ 0.47 ± 0.06b^ 21.16 ± 0.83a^

IX R 3.9 ± 0.01c* 47.6 ± 0.40c* 19.43 ± 1.19b* 0.85 ± 0.04c* 22.99 ± 0.21b*

NR 3.8 ± 0.01c^ 17 ± 0.00c^ 8.19 ± 0.30c^ 0.34 ± 0.01b^ 23.97 ± 0.04a^

KO V R 3.5 ± 0.03d* 47.1 ± 1.90c* 24.77 ± 1.06c* 0.85 ± 0.06b* 29.24 ± 0.62c*

NR 3.6 ± 0.03d^ 26.9 ± 3.50c^ 30.75 ± 0.06c^ 1.17 ± 0.00c^ 26.21 ± 0.09c^

IX R 3.6 ± 0.02d* 68.6 ± 0.40d* 19.97 ± 1.86b* 0.69 ± 0.05d* 28.83 ± 0.52c*

NR 3.7 ± 0.01d^ 8.8 ± 0.40d^ 3.13 ± 0.01a^ 0.10 ± 0.00a^ 30.25 ± 1.03b^

The different letters denote significant differences between the particular soil physiochemical properties in
the rhizosphere or non-rhizosphere soils in the same month and different marks denote significant differences
between the rhizosphere and non-rhizosphere soils in the same month and in this same sapling sites (p <
0.05)

M Miasteczko Śląskie, B Bukowno, K Katowice–Kostuchna, KO Kokotek, V May, IX September, R
rhizosphere soil, NR non-rhizosphere soil, OM organic matter
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higher in the rhizosphere soil samples than in the non-
rhizosphere soil (Table 6).

Enzyme activity

It is clear that the enzyme activity in the V. myrtillus rhi-
zosphere soil samples was higher than it was in the non-
rhizosphere samples. There was a significant difference (p
< 0.05) between the enzyme activity in the rhizosphere and
non-rhizosphere soils at the same sampling site in the same
month. The highest arylsulphatase activity (Fig. 2a) was
found in the rhizosphere soil at site B in May and the lowest
also in the rhizosphere soil in May at site KO. The
β-glucosidase activity (Fig. 2b) was higher at the other sites
than at site M in both the rhizosphere and non-rhizosphere
soils. The highest activity of this enzyme was observed in
May in the rhizosphere soil at site K.

The dehydrogenase (Fig. 2c) levels ranged from 0.15 (μg
TPF g−1 dm 16−1) in the non-rhizosphere soil samples at site M
in September to 3.89 (μg TPF g−1 dm 16−1) in the rhizosphere
soil of V. myrtillus at site B in May. We recorded no alkaline
phosphatase (Fig. 2d) activity in May in the rhizosphere and
non-rhizosphere soil samples at site M and site KO (only in the
non-rhizosphere soil samples). Moreover, the lowest alkaline
phosphatase activity was observed in non-rhizosphere soil at M
site in September. The highest alkaline phosphatase activity was
found in the non-rhizosphere soil at site B.

The highest acid phosphatase activity (Fig. 2e) was
recorded in both rhizosphere and non-rhizosphere soil
samples at site B in May. At the same time, we observed the
lowest activity at the sampling site B in September.

The urease activity (Fig. 2f) was higher in the rhizosphere
soil samples collected in September and tended to be highest at
sites B and KO while the lowest activity was observed in the
non-rhizosphere soil at site M. We found that the enzyme
activity did not show any clear seasonal patterns.

Based on the soil enzyme activity, the highest values of
the indexes TEI and Mw (Table 7) were found in the V.
myrtillus rhizosphere soil samples. The highest value of TEI
was found at site B in rhizosphere soil in May and the
lowest in the non-rhizosphere soil from site M in Septem-
ber. In the case of the Mw index, the highest value was
observed in the rhizosphere soil at site KO, while the lowest
was in the non-rhizosphere soil at site M.

The effect of heavy metal pollution and other soil
properties on the soil enzyme activity

A more severe impact of heavy metals and soil properties on
soil enzyme activity was observed in the V. myrtillus rhizo-
sphere soil samples than in the non-rhizosphere soil samples at
the same site (Fig. 3a, b). Generally, the activity of the soil
enzymes, especially β-glucosidase and urease, decreased with
increasing heavy metal concentrations for both the CaCl2 and

Table 4 The concentrations of macronutrients (mg kg−1) at soil samples (mean values ± SD, n= 3)

K Mg Na Ca P S

M V R 171.17 ± 23.19a* 285.70 ± 42.95c* 1.23 ± 0.18b* 690.75 ± 92.84ab* 818.22 ± 110.78a* 2028.68 ± 301.85a*

NR 111.87 ± 4.67a^ 126.72 ± 11.15a^ 0.82 ± 0.03a^ 368.68 ± 27.48a^ 379.08 ± 25.59a^ 938.72 ± 74.41a^

IX R 175.75 ± 4.94a* 218.50 ± 7.72b* 1.07 ± 0.03ab* 536.60 ± 23.99a* 653.15 ± 10.80a* 1695.25 ± 56.23a*

NR 113.65 ± 12.76a^ 96.70 ± 15.05a^ 0.70 ± 0.05a^ 107.92 ± 27.93a^ 308.80 ± 40.76a^ 746.73 ± 88.78b^

B V R 198.73 ± 26.26a* 210.38 ± 26.83bc* 1.10 ± 0.13a* 1415.88 ± 224.07c* 653.83 ± 70.72a* 1810.32 ± 234.59a*

NR 186.10 ± 17.91b* 229.28 ± 27.73c* 1.60 ± 0.13c^ 1085.57 ± 150.56c^ 501.57 ± 66.73b* 1402.90 ± 171.19b*

IX R 207.55 ± 37.46a* 213.65 ± 39.19b* 1.12 ± 0.19b* 1522.97 ± 324.91c* 698.55 ± 120.91a* 1959.63 ± 368.36a*

NR 161.15 ± 3.12c* 202.02 ± 5.23c* 1.45 ± 0.05c^ 892.07 ± 49.08c^ 354.60 ± 12.83ab^ 1002.15 ± 42.85c^

K V R 184.23 ± 37.22a* 147.03 ± 41.18ab* 0.98 ± 0.19a* 795.73 ± 157.47b* 705.27 ± 158.08a* 1599.17 ± 352.92a*

NR 175.65 ± 5.32b* 184.38 ± 5.13b* 1.15 ± 0.05b* 481.30 ± 32.04a^ 593.90 ± 34.00b* 1272.33 ± 60.33b*

IX R 163.45 ± 6.49a* 143.22 ± 10.19a* 0.82 ± 0.03a* 738.97 ± 27.42a* 681.50 ± 28.98a* 1644.00 ± 63.68a*

NR 137.00 ± 5.30b^ 113.40 ± 8.25b^ 0.83 ± 0.03b* 249.58 ± 28.94b^ 425.42 ± 28.11b^ 968.27 ± 80.36bc^

KO V R 137.73 ± 23.00a* 69.60 ± 19.72a* 0.73 ± 0.10a* 369.22 ± 76.62a* 680.98 ± 138.99a* 1452.90 ± 302.80a*

NR 134.50 ± 2.98a* 89.75 ± 1.88a* 0.78 ± 0.03a* 279.00 ± 9.97a* 515.50 ± 16.46b* 1228.33 ± 18.13b*

IX R 182.10 ± 4.50a* 98.10 ± 9.09a* 1.02 ± 0.03ab* 816.37 ± 6.55a* 890.97 ± 12.76b* 1772.65 ± 16.45a*

NR 99.73 ± 8.40a^ 52.25 ± 10.71a 0.65 ± 0.05a^ 71.55 ± 43.43a^ 350.42 ± 60.29ab^ 451.65 ± 113.58a^

The different letters denote significant differences between the particular macronutrient concentrations in the rhizosphere or non-rhizosphere soils
in the same month and different marks denote significant differences between the rhizosphere and non-rhizosphere soils in the same month and in
this same sapling sites (p < 0.05)

M Miasteczko Śląskie, B Bukowno, K Katowice–Kostuchna, KO Kokotek, V May, IX September, R rhizosphere soil, NR non-rhizosphere soil
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Table 5 The concentration of selected metals (mg kg−1) in fractions of the soils extracted with HNO3 (mean values ± SD, n= 3) and classification
of soil samples

Cd Mn Zn Fe Pb PLI GRADE

M V R 33.53 ± 3.97b* 124.82 ± 16.46c* 1697.50 ± 221.96c* 4164.17 ± 582.73c* 1568.75 ± 343.65b* 22 EH

NR 10.63 ± 0.76c^ 52.02 ± 4.86bc^ 640.70 ± 50.27b^ 2451.48 ± 208.85a^ 580.83 ± 15.73c^ 9 EH

IX R 28.53 ± 0.76c* 79.43 ± 2.27c* 1407.08 ± 330.96b* 3965.83 ± 571.08c* 1584.58 ± 275.97b* 16 EH

NR 6.00 ± 0.87b^ 26.92 ± 3.04b^ 319.83 ± 38.59b^ 50411.25 ± 6541.68b^ 657.92 ± 70.65c^ 14 EH

B V R 3.07 ± 0.45a* 35.00 ± 2.36a* 456.95 ± 60.08b* 3813.33 ± 507.48b* 206.25 ± 24.33a* 5 EH

NR 7.60 ± 1.00b^ 64.78 ± 8.43c^ 710.80 ± 104.83b^ 4476.67 ± 585.65c* 379.58 ± 54.98b^ 9 EH

IX R 2.95 ± 0.56b* 26.75 ± 4.54a* 461.27 ± 81.61a* 3272.08 ± 434.66bc* 203.33 ± 39.69a* 4 EH

NR 5.50 ± 0.35ba^ 45.32 ± 1.21c^ 532.40 ± 23.48c* 3382.92 ± 180.11a* 287.50 ± 11.25b^ 14 EH

K V R 0.40 ± 0.13a* 79.62 ± 4.65c* 40.42 ± 11.11a* 2196.47 ± 596.86a* 61.55 ± 17.02a* 2 M

NR 0.30 ± 0.05a* 44.40 ± 2.62b* 47.60 ± 2.01a* 3514.05 ± 42.39b^ 105.88 ± 6.98a^ 2 M

IX R 0.40 ± 0.06a* 77.51 ± 6.11c* 41.28 ± 3.10a* 2369.70 ± 189.81b* 64.43 ± 3.85a* 2 M

NR 0.12 ± 0.03a^ 25.35 ± 1.20b^ 23.10 ± 1.90a^ 2578.18 ± 126.80a* 62.57 ± 6.38a* 2 M

KO V R 0.51 ± 0.08a* 12.75 ± 2.66a* 35.47 ± 8.80a* 1217.40 ± 269.41a* 44.62 ± 9.38a* 0.1 N

NR 1.14 ± 0.42b* 19.62 ± 7.68a* 38.56 ± 13.65a* 1935.27 ± 50.44a^ 76.17 ± 2.87a^ 0.1 N

IX R 0.50 ± 0.05a* 33.00 ± 11.17a* 36.98 ± 0.40a* 1083.03 ± 275.37a* 28.88 ± 0.14a* 0.1 N

NR 0.14 ± 0.02a^ 5.83 ± 1.37a^ 11.82 ± 5.52a^ 1260.95 ± 190.44a* 26.73 ± 6.41a^ 0.1 N

The different letters denote significant differences between the particular HNO3 extracted metal concentrations in the rhizosphere or non-
rhizosphere soils in the same month and different marks denote significant differences between the rhizosphere and non-rhizosphere soils in the
same month and in this same sapling sites (p < 0.05)

MMiasteczko Śląskie, B Bukowno, K Katowice–Kostuchna, KO Kokotek, VMay, IX September, R rhizosphere soil, NR non-rhizosphere soil, PLI
pollution load index, N no pollution (PLI < 1), M moderate pollution (1 < PLI < 2), EH extremely heavy pollution (3 < PLI)

Table 6 The concentration of selected metals (mg kg−1) in fractions of the soils extracted with CaCl2 (mean values ± SD, n= 3) and their potential
bioavailability (%)

Cd Mn Zn Fe Pb

M V R 16.15 ± 2.75b* 48.00 14.81 ± 2.18a* 12.17 648.60 ± 110.70c*38.14 0.10 ± 0.03a* 0.00 23.35 ± 2.45b* 1.52

NR 7.80 ± 0.38d^ 73.67 7.71 ± 0.53a^ 14.90 389.80 ± 9.30c^ 61.06 0.28 ± 0.03a^ 0.01 10.75 ± 0.75b^ 1.85

IX R 15.60 ± 0.50b* 54.73 15.23 ± 0.23a* 19.18 564.25 ± 12.95c*41.35 0.48 ± 0.02a* 0.01 23.90 ± 1.20b* 1.55

NR 5.68 ± 0.15c^ 92.17 5.28 ± 0.07a^ 19.77 183.90 ± 3.14c^ 58.00 1.33 ± 0.12a^ 0.00 47.89 ± 1.77b^ 7.32

B V R 1.61 ± 0.03a* 53.42 20.46 ± 0.18b* 58.65 201.11 ± 2.57b* 44.61 29.43 ± 0.49c* 0.78 3.69 ± 0.35a* 1.82

NR 3.26 ± 0.19c^ 43.30 16.03 ± 0.84a^ 25.05 237.12 ± 13.72b^33.83 1.65 ± 0.18ab^ 0.04 3.76 ± 1.43a* 1.00

IX R 1.01 ± 0.42a* 33.01 8.12 ± 4.04a* 29.10 137.06 ± 54.47b*28.86 20.35 ± 6.50b* 0.61 3.44 ± 1.25a* 1.67

NR 2.73 ± 0.09b^ 49.82 5.44 ± 0.16a* 12.00 221.80 ± 6.67b* 41.74 0.97 ± 0.07a^ 0.03 2.37 ± 0.08a* 0.82

K V R 0.40 ± 0.03a* 99.97 65.27 ± 14.28b* 80.28 20.46 ± 0.89a* 53.36 22.43 ± 1.82b* 1.05 2.90 ± 1.86a* 4.42

NR 0.16 ± 0.07a^ 56.51 24.24 ± 8.86b^ 55.37 10.11 ± 3.86a^ 21.47 3.98 ± 1.41bc^ 0.11 3.14 ± 0.69a* 2.99

IX R 0.38 ± 0.03a* 85.77 61.03 ± 2.03b* 79.22 20.81 ± 2.76a* 50.89 29.62 ± 7.74b* 1.27 2.20 ± 0.89a* 3.47

NR 0.11 ± 0.05a^ 67.50 9.99 ± 3.32b^ 39.66 5.48 ± 2.13a^ 24.07 6.18 ± 2.28b^ 0.24 3.71 ± 1.09a* 6.08

KO V R 0.37 ± 0.12a* 73.76 10.27 ± 1.28a* 83.11 24.78 ± 3.55a* 72.31 34.78 ± 4.68c* 2.95 2.98 ± 0.84a* 6.92

NR 0.13 ± 0.03a^ 13.76 13.85 ± 0.10a* 64.70 34.382.41a* 69.71 6.12 ± 2.38c^ 0.32 6.05 ± 4.56ab^ 7.90

IX R 0.45 ± 0.00a* 89.74 32.03 ± 5.95b* 80.13 25.81 ± 1.89a* 69.77 6.71 ± 1.53a* 0.66 1.00 ± 0.23a* 3.45

NR nd 0.00 1.74 ± 0.16a^ 31.59 9.23 ± 1.11a^ 98.57 16.94 ± 1.74c^ 1.38 3.00 ± 0.48a^ 11.60

The different letters denote significant differences between the particular CaCl2 extracted metal concentrations in the rhizosphere or non-
rhizosphere soils in the same month and different marks denote significant differences between the rhizosphere and non-rhizosphere soils in the
same month and in this same sapling sites (p < 0.05)

M Miasteczko Śląskie, B Bukowno, K Katowice–Kostuchna, KO Kokotek, V May, IX September, R rhizosphere soil, NR non-rhizosphere soil, nd
not detected, potential bioavailability determined as the percentages of CaCl2 extracted metals in relation to the HNO3 extracted metals
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HNO3 extracted values. A positive correlation coefficient was
also obtained between β-glucosidase and urease and soil
properties such as the organic matter content and the C and N
concentrations. There were highly significant correlations
between the activity of all of the investigated soil enzymes and
the macronutrient levels in both the rhizosphere and non-
rhizosphere soils (Fig. 3a, b).

A PCA analysis of the rhizosphere soils (Fig. 4a)
showed that the factors that correlated with the first axis
explained 96.6% of the variability, thus indicating
negative correlations between the β-glucosidase, urease
and alkaline phosphatase activity and the pH value and
the Zn, Pb, Cd content (CaCl2 extracted), but a positive
correlation between these enzymes and the C, N, OM

Fig. 2 Arylsulphatase (a), β-glucosidase (b), dehydrogenase (c),
alkaline phosphatase (d), acid phosphatase (e), urease (f) activities in
rhizosphere and non-rhizosphere soil of investigated sites (mean
values ± SD, n= 3). The different small letters denote significant dif-
ferences between the particular metal concentrations in the rhizosphere
or non-rhizosphere soils in the same month and big letters denote

significant differences between the rhizosphere and non-rhizosphere
soils in the same month and in this same sampling sites (p < 0.05). M
Miasteczko Śląskie, B Bukowno, K Katowice–Kostuchna, KO
Kokotek, V May, IX September, R rhizosphere soil, NR non-
rhizosphere soil
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content. In turn, for the non-rhizosphere soils (Fig. 4b),
the first axis explained 99.7% of the variability. The
factors for which there was a positive correlation were
the β-glucosidase activity and P content, urease activity
and C content and acid phosphatase and pH value.
Negative correlations were found between the alkaline
phosphatase and dehydrogenase activity and the Cd,
Znb, Pb and Cdb content.

The ACR (enzyme activity change ratio) varied from
−94.21 to 1105.85 for the V. myrtillus rhizosphere soil and
from −91.78 to 194.75 for the non-rhizosphere soil
(Table 7).

Biological indices

A total of 20 179 microarthropods from nine different
taxa were extracted from the soil samples (Table 8).
Mites were by far the most abundant taxa in the samples
(Table 8). The highest number of microarthropods (2486)
were collected in the rhizosphere soil samples at site KO.
The highest value of the QBS and FEMI indices were
found in the rhizosphere soil at the control site KO and
the lowest in the non-rhizosphere soil samples at con-
taminated site M (Table 8).

Discussion

Assessment of heavy metal pollution

Very high total concentrations of the studied heavy metals
were observed in the soils from Miasteczko Śląskie (site
M). The concentrations of Cd, Zn and Pb exceeded the
permissible levels according to the Regulations of the Polish
Minister of the Environment (2002). Under this regulation,
the maximum allowable concentrations of these metals in
the soil should not exceed 3 mg kg−1, 300 mg kg−1 and
100 mg kg−1, respectively. Excessive concentrations of Cd,
Zn and Pb were also found at Bukowno (site B). These
results were like our previous studies that had been carried
out in the same or similar areas (e.g., Kandziora-Ciupa et al.
2017).

At Miasteczko Śląskie, the rhizosphere soils accumulated
more heavy metals than the non-rhizosphere soils, while at
the other sampling sites the heavy metal content was lower
in the rhizosphere than in the non-rhizosphere soils in
most cases.

In this study, the pollution load index was also deter-
mined, which was particularly high at site M. We agree with
Yang et al. (2016) that PLI is a simple and useful means to

Table 7 Chosen indexes and
indices of soil samples

TEI Mw ACR

AS βG Deh AlP AP Ure

M V R 5.68a* 130.99a* 620.09 −80.93 87.84 0 111.56 −93.60

NR 3.03a^ 38.04a^ 18.91 −78.58 −41.62 0 6.21 −91.06

IX R 5.45a* 106.48a* −4.18 −80.55 −37.86 −68.98 26.72 −94.21

NR 2.14a^ 23.38a^ −35.07 −38.40 −79.00 −91.02 77.47 −92.81

B V R 12.23b* 857.13c* 1105.85 3.56 183.75 239.34 282.79 −91.00

NR 6.85b^ 234.52c^ 62.98 −43.30 68.80 0 96.88 −92.12

IX R 7.06a* 135.35a* −39.61 −27.69 −14.65 −81.49 −67.70 −87.98

NR 5.81c^ 95.29bc^ 13.25 106.10 178.29 79.77 −53.97 −88.05

K V R 6.40a* 167.46ab* 349.08 −2.44 81.67 101.80 −46.52 −90.14

NR 4.56a^ 124.48b* −35.14 −48.59 −62.04 0 −56.82 −91.25

IX R 7.13a* 129.65a* −48.79 17.05 −32.98 −71.33 −63.45 −91.57

NR 5.35b* 151.04c* −48.69 83.96 194.75 17.68 177.22 −91.78

KO V R 5.31a* 219.9b* 0 0 0 0 0 0

NR 4.21a* 85.11ab^ 0 0 0 0 0 0

IX R 10.82b* 577.58b* 0 0 0 0 0 0

NR 3.92ab^ 44.79ab^ 0 0 0 0 0 0

The different letters denote significant differences between particular indexes (TEI and Mw) in the
rhizosphere or non-rhizosphere soils in the same month and different marks denote significant differences
between the rhizosphere and non-rhizosphere soils in the same month and in this same sapling sites (p <
0.05)

M Miasteczko Śląskie, B Bukowno, K Katowice–Kostuchna, KO Kokotek, V May, IX September, R
rhizosphere soil, NR non-rhizosphere soil, TEI total enzyme activity index, Mw potential biochemical soil
fertility index, ACR enzyme activity change ratio, AS arylsulphatase, βG β-glucosidase, Deh dehydrogenase,
AlP alkaline phosphatase, AP acid phosphatase, Ure urease
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assess the overall level of heavy metal pollution between
different sampling sites.

Many studies have emphasized that the total con-
centration of heavy metals in soils provides little infor-
mation on their mobility, bioavailability and, hence, their
potential toxicity (Feng et al. 2005; Boussen et al. 2013;
Wójcik et al. 2014). It has been widely accepted that
heavy metal availability has a major influence on the
toxic effects in biological systems (Olaniran et al. 2013;
Yang et al. 2017). For the extraction of heavy metals, a
0.01 M CaCl2 solution has been proposed as the most
preferred extraction medium solution (Menzies et al.
2007; Boussen et al. 2013). The following descending
order of bioavailability was found for the heavy metals
that were analyzed: Cd > Zn > Mn > Pb > Fe in both the
rhizosphere and non-rhizosphere soils samples. Similar
results were found by Szarek-Łukaszewska and Niklińska
(2002) in Zn–Pb ore tailings or their immediate vicinity
and by Wójcik et al. (2014) in Zn–Pb waste deposits in
southern Poland.

At site M, the bioavailability of the heavy metals in the
rhizosphere soils was significantly lower than in the non-
rhizosphere soils samples, and the reason was attributed to
an increase in pH in the rhizosphere soil (Wang et al. 2002).
Among soil properties, soil pH had the greatest impact on
the desorption and bioavailability of heavy metals, because
of its strong effects on solubility and speciation of heavy
metals both in the soil as a whole and particularly in the soil
solution (Müehlbachová et al. 2005; Chen et al. 2013). At
high pH, metals tend to form insoluble metal mineral
phosphates and carbonates, whereas at low pH they tend to
be found as free ionic species or as soluble organometals
and are more bioavailable (Olaniran et al. 2013). At the
other sampling sites, in most cases, heavy metal bioavail-
ability was higher in the rhizosphere soils samples. Yang
et al. (2017) detected that the availability of Pb was sig-
nificantly higher in bulk soil than that in rhizosphere soil at
medium and high pollution levels. Low molecular weight
organic acids (e.g., oxalate), which are released by plant
roots can form complexes with heavy metals, which can

Fig. 3 Heat map of the correlation between soil enzyme activities and
properties in rhizosphere (a) and non-rhizosphere (b) soils. Strong
positive correlation (red), weak correlation (yellow), strong negative
correlation (green); *significant correlation (p < 0.05). AS

arylsulphatase, βG β-glucosidase, Deh dehydrogenase, AlP alkaline
phosphatase, AP acid phosphatase, Ure urease, OM organic matter, b
potentially bioavailable elements
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immobilize and reduce their availability in rhizosphere soil
(Wang et al. 2002; Luo et al. 2017).

Soil enzyme activity

Rhizosphere effects on enzyme activity

In general, all of the soil enzyme activity that was measured
in this study exhibited higher values in the rhizosphere soils
than in the non-rhizosphere soil. The higher enzyme activity
of the rhizosphere may be due to the physiological activity
of the roots, which produce and release large amounts of
enzymes under the influence of heavy metals or via the lysis
of root cells. Moreover, it may also depend on the phy-
siological metabolic activities of the diverse microbial
populations, which produce specific soil enzymes (Gian-
freda 2015; Xiao et al. 2017; Yang et al. 2017).

Effects of the soil properties and macronutrient content on
the enzyme activity

In this study, the physicochemical properties of the rhizo-
sphere soils such as the levels of OM, C, N, K, Mg, Na, Ca,
P and S were significantly higher than those of the non-
rhizosphere soils. According to Wang et al. (2009), this may
be the result of the exudates and metabolites that are
released by the roots and microbial metabolites in rhizo-
sphere soil. Garcia et al. (2005) found that in all six
investigated plant species, there was an increase in the
organic matter content in the rhizosphere.

A factor that may largely determine soil enzyme activity
is the organic matter content, which correlates with several
biochemical functions of the soil enzymes (Nannipieri et al.
2002; Wahsha et al. 2017). The organic matter content
provides a better soil environmental condition for stabi-
lizing and protecting enzymes. A higher organic carbon
content supports a larger microbial biomass, which leads to
an increase in the enzymatic activity (Bartkowiak et al.
2017). Many authors have found positive correlations
between soil enzyme activity and organic matter content
(e.g., Tan et al. 2014; Gucwa-Przepióra et al. 2016). In the
present study, we found a statistically significant correla-
tion between the activity of β-glucosidase, alkaline phos-
phatase, and urease in the rhizosphere soils, along with the
dehydrogenase and organic matter content in the non-
rhizosphere soils. This supports the findings of Patel and
Patra (2014), who found that the activity of acid and
alkaline phosphatase and dehydrogenase in tannery sludge
that was rich in heavy metals were positively correlated
with organic matter.

Soil pH has been identified as one of the key abiotic
environmental factors shape soil enzyme activity in soils
(Turner 2010; Pan et al. 2018). Effron et al. (2004) reported
that the enzyme activity was sensitive to pH changes and
that different enzymes can respond differently to the same
pH. In this study, the urease and beta-glucosidase activity
levels were negatively correlated with the soil pH values,
while by contrast, the acid phosphatase and arylsulphatase
levels increased with higher soil pH values. In rhizosphere
soils, changes in soil pH values have a stronger influence on
the enzyme activity than in non-rhizosphere soil. Previous
studies have reported that urease, β-glucosidase, and acid
phosphatase are significantly affected by changes in soil pH
(Acosta-Martinez and Tabatabai 2000; Hinojosa et al.
2004).

Analysis of the data showed that there were highly sig-
nificant correlations between all of soil enzyme activity and
macronutrient contents in both the rhizosphere and non-
rhizosphere soils that were investigated. According to
Chróst (1991), microorganisms control their enzyme pro-
duction in response to nutrient availability. The strong

Fig. 4 Principal Component Analysis (PCA) biplot of sampling sites
and heavy metal concentrations and enzyme activities and biochemical
parameters in the rhizosphere (a) and non-rhizosphere (b) soil samples.
M Miasteczko Śląskie, B Bukowno, K Katowice–Kostuchna, KO
Kokotek, AS arylsulphatase, BG β-glucosidase, Deh dehydrogenase,
AlP alkaline phosphatase, AP acid phosphatase, Ure urease, OM
organic matter, Xb potentially bioavailable elements
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dependency between soil enzyme activity and different soil
properties confirms that soil enzyme activity provides a
meaningful integrative measure of the soil physicochemical
properties and biological soil fertility, which, thus, may play
a role in monitoring soil biological quality (Aşkın,
Kızılkaya 2006; Tan et al. 2014).

In contrast, Wyszkowska and Wyszkowski (2003) pro-
posed a potential biochemical soil fertility index (Mw),
which could be more efficient in making predictions about
soil fertility than the activity of a single soil enzyme. In the
present study, we found that the Mw was higher in the rhi-
zosphere soil; however, the Mw index did not correlate with.
the studied soil properties.

Effects of heavy metals on the enzyme activity

Analysis of many different enzyme activities can provide a
better picture of the status of soil processes and functioning
(Acosta-Martinez et al. 2003), therefore, in this study, we
examined the activity of six soil enzymes.

The effects of heavy metals on the enzyme activity are
complex. The response of different enzymes to the same
metal can vary greatly and the same enzyme may respond
differently to different metals (He et al. 2003; Li et al. 2009).

The effects of heavy metals on soil enzyme activity have
been reported in many previous studies, but they were
mostly concentrated on the impact of the total concentra-
tions of heavy metals on these enzymes. However, as was
previously mentioned, biological systems and soil quality
are more dependent on the bioavailable heavy metal con-
centration (Hinojosa et al. 2004). Therefore, we focused on
the effect of the potentially bioavailable heavy metal frac-
tion on enzyme activity. In this study, the various soil
metals showed effects on soil enzyme activity and these
effects differed between the rhizosphere and non-
rhizosphere soils.

β-glucosidase is a useful indicator of soil quality and its
activity may indicate changes in the level of organic carbon
earlier than measurements using other methods (Das and
Varma 2011). This enzyme plays an important role in the
degradation of the organic C compounds in the soil and are
important energy sources for microorganism (Acosta-Mar-
tinez and Tabatabai 2000; Narendrula-Kotha and Nkongolo
2017). Turner et al. (2002) and Hinojosa et al. (2004) found
that β-glucosidase is a decisive indicator of soil con-
tamination by toxic metals. In our study, these findings were
supported because we found the lowest β-glucosidase
activity at the site with the highest Cd, Zn and Pb con-
centrations. These metals strongly inhibited the
β-glucosidase activity in both the rhizosphere and non-
rhizosphere soils. In contrast, Narendula-Kotha and Nkon-
golo (2017) reported a higher β-glucosidase activity in
metal-contaminated sites. Similarly, in our work, we found

a positive correlation between the Mn and Fe and
β-glucosidase activity.

Urease catalyzes the hydrolysis of urea in soil, which
induces the formation of carbon dioxide and ammonia
(Baćmaga et al. 2015). In the present study, the correlation
coefficients confirmed that urease activity was negatively
correlated to Cd, Zn, Pb in the rhizosphere soils and to Pb in
the non-rhizosphere soils. Similar results were obtained by
Angelovičová et al. (2014) who found that Pb and Zn
decreased the urease activity levels in soils. According to
Gao (2010), urease appears to be more sensitive to pollution
stress than phosphatases.

Phosphatase plays an important role in transforming
organic phosphorus into an inorganic form that is suitable
for plant uptake (Cang et al. 2009; Angelovičová et al.
2014). We observed an inhibitory effect of Cd, Pb and Zn
on the alkaline phosphatase activity. Also, Pattnaik and
Equeenuddin (2016) found that alkaline phosphatase was
negatively correlated with the examined metals except for
Pb. Wahsha et al. (2017) reported negative correlations
between Fe, Pb, Zn and Cu and alkaline phosphatase.

Dehydrogenase plays a significant role in soil through the
biological oxidation of soil carbon and transfers the hydro-
gen ion from organic substrates to inorganic substances
(Zhang et al. 2008). Dehydrogenase is most sensitive to
heavy metal pollution (Khan et al. 2007). In the present
study, we only found a negative correlation between Pb and
dehydrogenase activity in the non-rhizosphere soils. Similar
results were obtained by Pan and Yu (2011), who found that
the dehydrogenase activity decreased after significantly after
two- and fou-week Pb500 treatments. Wyszkowska et al.
(2006) observed that the application of 50 mg/kg Pb sig-
nificantly reduced the dehydrogenase activity in soil.

Arylsulphatase plays is an indicator of sulphur miner-
alization in soil and is an important part in the cycling of
this element (Lipińska et al. 2014). Its activity depends on
several factors including heavy metals (Kang and Freeman
1999). However, we only found a positive correlation
between this enzyme and the Zn concentration in the non-
rhizosphere soils.

Additionally, in order to determine the relative toxicity of
heavy metals to enzyme activity in the studied soils, we
determined the enzyme activity change ratio (ACR). A
positive ACR denotes that enzyme activity is enhanced and
a negative ACR denotes that enzyme activity is reduced in
the presence of heavy metals (Xian et al. 2015). In our
study, a negative ACR primarily concerned urease and to a
lesser extent the β-glucosidase activity. Gucwa-Przepióra
et al. (2016) found a negative ACR in soil, which confirmed
the inhibition of soil enzyme activity at a site that had been
affected by smelting activity. Xian et al. (2015) indicated
that for Cd- and As-polluted soils, the ACRs of the enzymes
in the soils did not exhibit a consistent rise and fall pattern.
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In order to assess the total level of soil enzyme activity,
we also calculated the integrated total enzyme activity index
(TEI). The TEI was higher in the rhizosphere soil samples
from all of the investigated sites, but we did not observe any
differences between the sampling sites or correlations
between the TEI and the studied soil properties. In contrast
to our study, Tan et al. (2014) found positive correlations
between the TEI and soil OM, total N and negative corre-
lations between the soil pH values. Additionally, Fang et al.
(2017) reported a positive correlation between the TEI and
electrical conductivity.

In our study, individual enzyme activity had a stronger
correlation with the soil physicochemical properties than the
two indices: TEI and Mw that were calculated.

Biological indices

This study was conducted at sites with different degrees of
soil contamination and each of the investigated sites is
described by a characteristic structure of soil micro-
arthropod community. The soils from Miasteczko Śląskie
(M) had the lowest number of microarthropod taxa as well
as a low QBS and FEMI, which can be explained by the
remarkably high concentrations of heavy metals at that site.
Moreover, Santorufo et al. (2012) found a lower QBS in
heavy-metal contaminated soils. Our results confirmed that
heavy metals contamination affects QBS-ar values. In most
cases the compared to the values obtained for human
degraded soils e.g., from Poland, the UK, Sweden, and Italy
where the other specialists obtained values of this biological
indicator between 40 and 70 (Menta et al. 2018). This
indicates that QBS and FEMI are quite sensitive to the
habitat changes that are caused by the anthropogenic impact
on soil. Similar results were found by Madej et al. (2011)
and Menta et al. (2018). Pollution not only affects meso-
fauna by toxicity, but it can also cause some indirect effects
through changes in the quantity and quality of the soil
organic matter content and the associated microbial com-
munities (Khalil et al. 2009). Many authors (Gwiazdowicz
et al. 2006; Cui et al. 2016; Manu et al. 2017) have indi-
cated a positive correlation between the number of micro-
arthropods and the content of organic matter, TOC and C/N
in the soil. The higher content of the organic matter and the
lower bioavailability of the heavy metals resulting from the
presence of plants influence rhizosphere soil in a way that
makes the living conditions for microarthropod better. That
means that rhizosphere soil has a higher biological quality
compared with non-rhizosphere soil. A higher number of
microarthropods, as well as higher values of the QBS and
FEMI indices, were found in the rhizosphere soil regardless
on the degree of contamination on specific sites.

The soil fauna is a good tool to assess soil biological
quality due to its complex nature. However, in this study, the

FEMI index seems to be a better indicator of the differences
in soil quality both at the sites and the respective soil layers
(i.e., the rhizosphere and non-rhizosphere soil). Because the
FEMI considers both the presence and abundance of indi-
vidual microarthropod taxa, it can assess soil quality more
realistically than the QBS, which was confirmed in the
results that were presented by Yan et al. (2012).

Conclusions

Based on the heavy metal content levels that were deter-
mined, their availability and their influence on soil enzyme
activity and microarthropod communities in the Vaccinium
myrtillus L. rhizosphere soil and the non-rhizosphere soil
from sites with different degrees of pollution, the major
findings of this study are as follows:

(1) The physicochemical and biological properties of the
V. myrtillus rhizosphere soil was significantly different from
those of the non-rhizosphere soil. Our results showed that
the heavy metals had various patterns of mobility between
the rhizosphere and non-rhizosphere soils at different pol-
luted sites. The heavy metal bioavailability was generally
higher in the rhizosphere soil samples except for the most
polluted site—Miasteczko Śląskie. (2) In the V. myrtillus
rhizosphere soil samples, enzyme activity was generally
higher than in the non-rhizosphere soil. β-glucosidase and
urease were strongly impacted by the organic matter con-
tent, the C and N levels and pH values. Moreover, these
enzymes were most sensitive to Cd, Zn and Pb, which
makes them good indicators for detecting the impact of
heavy metal pollution in forest ecosystems. (3) The Vacci-
nium myrtillus L. rhizosphere soil had stronger correlation
coefficient values between the measured parameters than
the non-rhizosphere soil, which suggests that rhizosphere
soil is more sensitive and could be used in the monitoring
and assessment of forest ecosystems. (4) The QBS and
FEMI methods, which are based on microarthropod com-
munities, is a sensitive tool that can be used to assess the
degree of soil degradation. Because of the conjunction
between these methods and the soil physicochemical
properties as well as level of contamination and other bio-
logical parameters such as soil enzyme activity, a proper
assessment of soil quality is possible.

There is still a lack of knowledge on the impact of heavy
metals on changes in the activity of soil enzymes and micro-
arthropod communities in the rhizosphere of selected species
growing in field conditions. The results that were obtained in
our study cannot be interpreted in an unambiguous way and
they only provide an indication of the effect of heavy metal
contamination on the rhizosphere. However, this type of
research, by identifying sensitive indicators, may help to
improve the monitoring and assessment of forest ecosystems.
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