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Abstract. We prove that the Niemytzki plane is »-metrizable and we try to explain the
differences between the concepts of a stratifiable space and a s-metrizable space. Also, we
give a characterisation of s-metrizable spaces which is modelled on the version described
by Chigogidze.
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1. INTRODUCTION

The aim of this paper is to present elementary or alternative proofs of some facts
about the class of s-metrizable spaces. Our approach is focused on completely
regular spaces, as it was intended by Shchepin, compare [8], page 164. The class of
»-metrizable spaces was first considered by Shchepin, see [8]. This class contains all
metric spaces and it is wide enough to include many important classes of spaces that
are not metrizable, compare [8] and [9]. To emphasise our motivations, let us quote
Sierpiniski’s book [10].

The theorems of any geometry (e.g. Euclidean) follow, as is well known, from
a number of axioms, i.e. hypotheses about the space considered, and from accepted
definitions. A given theorem may be a consequence of some of the axioms and may
not require all of them.

As a by-product, we obtain a class of spaces which we call ro-stratifiable. We were
not able to find a publication in which ro-stratifiable spaces are examined. As it is to
be shown, the case of the Niemytzki plane, see the definition in [5], page 22, indicates
that certain properties of the Euclidean metric are crucial in a non-metrizable setting.

Our notations are standard, following [5] or [11]. Let us recall that a subset U
of a topological space X is regular open whenever it is the interior of a closed set;
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in other words, U is a regular open set whenever U = intx clx (U). We denote the
family of all regular open subsets of X by RO(X). The complement of a regular
open set is called a regular closed set. So, FF C X is a regular closed set whenever
F = clint F. A subset G of a topological space X is a co-zero set whenever there
exists a continuous function f: X — [0, 1] such that G = f~1((0, 1]).
A Ti-space X is stratifiable if, for the family B of all open subsets of X there exists

a family of functions {fy: U € B} satisfying conditions (1)—(3):

(1) If U € B, then U = f;;'((0, 1]).

(2) If U,V e Band U C V, then fy(z) < fv(z) for any z € X.

(3) For any U € B, the function fy: X — [0,1] is continuous.

(4) For any decreasing sequence (U?) of regular open sets, if

W =int (U,
«

then fw (z) = iIalf fue(x) for any z € X.

A family {fy: U € RO(X)} of functions satisfying (1)—(4) is called a s-metric.
Following Shchepin, see [8], page 164 and compare [9], page 407, a completely regular
space is called s-metrizable whenever it has a s-metric.

The class of Ms-spaces, see [3], is thus the class of stratifiable spaces, compare [2].
Shchepin has introduced the concept of a »-metrizable space with the help of regular
closed sets; conditions (K1)—(K4) for the notion of a s-metric, see [9], page 164, are
direct translations, via de Morgan’s laws, of conditions (1)—(4).

In the next part, we show why the Sorgenfrey line, see the definition in [5], page 21,
is not stratifiable, even though it is s-metrizable. Also, we show that the double
arrow space is ro-stratifiable, but not s»-metrizable, see the ends of parts 2 and 3. This
indicates that condition (4) is independent of conditions (1)—(3). A characterisation
of a s-metrizable space is stated at Propositions 5 and 6. In the last part, we discuss
the properties of the Niemytzki plane.

2. B-APPROXIMATIONS AND ro-STRATIFIABLE SPACES

If X is a Tp-space, B is a family of open subsets of X, then a family of functions
{fv: U € B}, where fy: X — [0,1] for all U in B, is called a B-stratification if it
fulfils conditions (1)—(3). If a space X has a B-stratification, then the space X is
said to be B-stratifiable. If A C B and the space X is B-stratifiable, then it is also
A-stratifiable. If B = RO(X), then we will say that X is ro-stratifiable instead of
RO(X)-stratifiable. If a space X is ro-stratifiable, then any regular open set of X is a
co-zero set by conditions (1) and (3). Moreover, if the family B = RO(X) fulfils condi-
tions (1) and (3), then the space X is »-normal; recall that a completely regular space
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is s-normal whenever any pair of nonempty disjoint and regular closed sets can be
separated by disjoint open sets, see [9], compare [1]. To see this, fix disjoint and regu-
lar closed subsets F, G C X. Conditions (1) and (3) imply that there exist continuous
functions f,g: X — [0,1] such that F = f~1(0) and G = g~*(0). Then preimages of
[0, 1) and (3, 1] via the continuous function f/(f + g) separate F' and G. Under the
additional assumption that each regular closed subset of X is a Gs-set, one can verify,
using a modified proof of Urysohn’s lemma, that if the space X is s»-normal, then it
is also ro-stratifiable. This additional assumption is necessary as shown below.

There are compact Hausdorff spaces, and hence s-normal spaces, which are
not ro-stratifiable. For example, a compact Hausdorff space, containing a regular
open subset which is not a co-zero set, cannot be ro-stratifiable. Any such space
is s-normal, being a normal space. To see an example, set

Y ={a: agwl}u{%: n>0}

and consider the linear order (Y, <) which is the restriction of the well order of the
ordinals on {a: o < w;} and inherits the order from the real line on {1/n: n > 0}
and if @ < wy and n > 0, then @ < 1/n. The linear topology on Y generated by < is
compact and Hausdorff. In this topology, there are regular open sets which are not
co-zero sets, for example {a: o < w}.

In the above reasoning, we do not use condition (2). For more results concerning
»-normal spaces, compare [6]. Also, there are many examples of completely regular
spaces which are not s-normal, e.g. the ones which can be built using a technique
called the Jones’ machine, compare [7] or [1].

It was noted in [3], pages 106-107 that the Sorgenfrey line S, i.e. the real line with
a topology generated by the collection of all intervals of the form [a, b), where a,b € R
and a < b, is not stratifiable, being a paracompact and perfectly normal space; in
other words, if B is the family of all open subsets of S, then no family {fy: U € B}
of functions fulfils conditions (1)—(3) with respect to S and B, see Proposition 1.
Nonetheless, the family consisting of characteristic functions of closed-open sets of S
fulfils conditions (1)—(3).

Proposition 1. If A = {[z,y): z <y} U{(x,y): x,y € Q}, then the Sorgenfrey
line is not A-stratifiable.

Proof. Suppose that afamily {fy: U € A} is an A-stratification, i.e. it satisfies
conditions (1)—(3) with respect to S and .A. For an interval (a,a+2) € Aand n > 0,
put

R = (@042 0 {2 fi (@) > 1.
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Since (a,a + 1) C |J{R,: n > 0}, using the Baire category theorem, choose n such
that
(a,a+1)Nintcl R, # 0,

where the interior and the closure are taken with respect to the Euclidean topology.
Next, choose a rational number = € (a,a + 1) N R, and a decreasing sequence (x)
converging to x such that x; € (a,a + 1) N R,,. Thus, for all k¥ we have z;, + 1 €
(z,a + 2), so by condition (2), we obtain

1
f(w,a+2)(mk) z f[xk,wk-i-l) (xk) > E

Since = ¢ (z,a + 2), by condition (1), we obtain f(; 442)(z) = 0, which contradicts
the continuity of f(; q42)- O

It is known that the Sorgenfrey line S is a s-metrizable space, compare [12],
page 507. Therefore the space S is ro-stratifiable. We present an alternative proof,
using the sequential criterion for the continuity of a function. If U is a regular open
subset of S, then put

fola) = sup{(¢ — z): [x,q) CUN[z,x+1)} when z € U;
0 when z ¢ U.

By the definition, the family {fy: U € RO(S)} fulfils conditions (1) and (2). To
verify condition (3), we shall check that each function fy: S — [0,1] is continuous.
Indeed, suppose that a sequence (x,,) is convergent to x. Since we consider conver-
gence in S, we can assume that for all n, z < z,. If x € U, then, by the definition
of fu, the sequence (fy(z,)) converges to fu(x). But if x ¢ U, then the fact that
U € RO(S) implies that there is a decreasing sequence (y,) converging to x such
that y, ¢ U and z, < y,. Then, again using the definition of fy;, we check that
fu(xn) < yn, — @, which implies that the sequence (fu(x,)) converges to 0 = fy(x).

Now, we will slightly modify this definition of a stratifiable space which was pro-
posed in [2], page 1. Let 1 = (0,1) N Q be the set of all rational numbers from the
open unit interval. Fix a topological space X and its base B. Let us assume that
every U € B is assigned a family {U,: g € 1}, consisting of open sets. We will call the
collection {{U,: ¢ € 1}: U € B} a B-approzimation if it satisfies conditions (a)—(c).
(a) U € B, then U = J{U,: q €1}
(b) IfU,VeB,geland U CV, then U, C V.

(c) fU € B, p,g €l and p < g, then cl(U,) C U,.
Observe that if {{U,: ¢ € I}: U € RO(X)} is an RO(X)-approximation, then the
family
{{intcl(Uy): g€ 1}: U € B}
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is also an RO(X)-approximation. The following propositions explain a connection
between B-approximations and B-stratifications.

Proposition 2. If a family {fy: U € B} is a B-stratification, then the family

{f5' (¢, 1])): q€1}: UeB}

is a B-approximation.

Proof. The sets U, = f;;'((g,1]) are open since each fr; is a continuous func-
tion. By the definition of fy, conditions (1) and (a) are equivalent. For the same
reasons, conditions (2) and (b) are equivalent. If p < ¢, then we have

l(Uy) < fir' (g, 1)) € Uy
since fy is a continuous function. O

Proposition 3. If a collection {{U,: ¢ € 1}: U € B} is a B-approximation, then
the family {fy: U € B}, where

sup{g e l: z€U,} whenzeU,
fu(@) =

0 when z ¢ U,

is a B-stratification.

Proof. Clearly, condition (b) implies (2). For every U € B, the function fy is

upper semi-continuous since

o ([0,9) = X\ el(y): p < g}

Indeed, if fy(z) < ¢, then take p;,ps € 1 such that fy(z) < p1 < p2 < ¢. Condi-
tion (c) implies that « ¢ U,, D cl(Up,). But when p < g and = ¢ cl(U,), we have
x ¢ U,. Again, by condition (c) and the definition of f;, we check that fy(z) < p.
Each function fy is lower semi-continuous since

fit (e 1]) = U0 p> ¢}

Indeed, if fy(z) > g, then, by the definition of fi;, there exists p > ¢ such that
x € Up. But when z € U, and p > ¢, then fi(x) > p > q. We have shown that each
function fy is continuous. Obviously, U = |J{U,: ¢ € I} implies U = f;'((0,1]).

O
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Borges in Theorem 5.2 of [2] characterised a stratifiable space as a space with a
B-stratification, where B consists of all nonempty open sets. So, Propositions 2 and 3
bring us to another characterisation of stratifiable spaces.

Theorem 4. Let B be the family of all open subsets of a topological space X .
Then the space X is stratifiable if and only if it has a B-approximation.

Consider the lexicographic order on D = [0, 1] x {0,1}. Note that D with the order
topology is well known as the double arrow space or the two arrows space. Observe
that regular open subsets of D are unions of pairwise disjoint closed-open intervals.
Indeed, if U C D is an open set, then for every x in U let U, be the union of all open
intervals I C U such that « € I. If U is regular open, then the family {U,: z € U}
consists of closed and open (i.e. clopen) subsets of D and is a partition of U. Since
for each = € U there exist a,b € R such that U, = ((a,0), (b,1)) = [(a, 1), (b,0)], we
put

0 when z ¢ U,
fulz)=<¢ b—a whenz e U, =|(a,l),(b0)];
1 when z € U N {(0,0), (1,1)}.

Then, check that the family {fy: U € RO(D)} is an RO(D)-stratification.

3. ON »-METRIZABLE SPACES

The notion of a s-metrizable space (a s-metric space) has been introduced
by Shchepin, see [8], compare [9]. In [4], Chigogidze gave a characterisation of
»-metrizable spaces. However, in Mathematical Reviews H. H. Wicke, the reviewer
of [4], noted: This article is an announcement of results; proofs are not included.
So, we propose a slight modification of the characterisation from [4]. Assume that
a space X is completely regular and ro-stratifiable. Fix an RO(X)-stratification
{fu: U € RO(X)} and let {{U;: ¢ € 1}: U € RO(X)} be its corresponding
RO(X)-approximation, obtained by the formula U, = f;'((g,1]). Then consider
the following condition, where the sequence (U®*) may be transfinite.

(d) If (U®) is a decreasing sequence of regular open sets, p,q € | and p < ¢, then
c(UY) C (int UO‘> .
< (),

Because of [9], Theorem 18 the double arrow space D, being compact, first-countable
and of weight continuum, is not s-metrizable. Thus, the class of all ro-stratifiable
spaces is wider than the class of all s--metrizable spaces.
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Proposition 5. If an RO(X)-approximation fulfils condition (d), then its corre-
sponding RO(X)-stratification fulfils condition (4).

Proof. Fix an RO(X)-approximation {{U,: ¢ € [}: U € RO(X)} and its
corresponding RO(X)-stratification {fy: U € RO(X)}. Let (U*) be a decreasing
sequence of regular open sets and let

W:mﬂw.

Suppose that there exists = in X such that fi (x) # inf fy=(z). By condition (2),
«
we have fi(z) < inf fyo(x). Choose rationals p, ¢ such that

fw(x) <p < g <inf fya ().
Since fw (z) < p implies x € X \ cl(W,), by condition (d), we get

ze X\ W, < JX\c(UP).

So, there exists 8 such that z € X \ cl(Uf), which implies that fys(z) < ¢; a con-
tradiction. 0

Proposition 6. If an RO(X)-stratification fulfils condition (4), then its corre-
sponding RO(X)-approximation fulfils condition (d).

Proof. Fix an RO(X)-stratification {fy: U € RO(X)} and its corresponding
RO(X)-approximation {{U;: ¢ € 1}: U € RO(X)}. Let (U*) be a decreasing
sequence of regular open sets and let

W:mﬂm.

Fix rationals p < ¢. Suppose that there exists = € [cl(Ug) \ W,. Thus fi (x) <

p < q. By condition (4) there exists 8 such that fys(z) < g. But the function fis is
continuous, hence there exists an open V 3 z such that V C f(;ﬁl([&q)). Therefore
VN Uq'B £0.IfbeVn U(f, then ¢ < fys(b) < ¢; a contradiction. O

Assume that a family {fy: U € RO(X)} witnesses that a space X is ro-stratifiable.
This family fulfils condition (4) if and only if it yields the RO(X)-approximation
which fulfils condition (d). Thus, we obtain the following theorem, which is a char-
acterisation of s--metrizable spaces, resembling those given in [4].

Theorem 7. A Ty-space is »x-metrizable if and only if it is ro-stratifiable.
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Now, we will show why the double arrow space D does not satisfy condition (4).
This gives an alternative proof that this space is not s-metrizable, compare [9],
Theorem 18. Suppose that the space D is s-metrizable. Then there exists an
RO(D)-approximation {{U,: ¢ € }: U € RO(D)}. For every U = [(a, 1), (b,0)] C D
let

t({U) =sup{p € (0,1)NQ: U =U,}.

Since each U is a compact subset, by condition (a), numbers ¢(U) are well defined.

T e feb (e G )

where p € (0,1)NQ. Note that [0, 75] € U{R,: p € (0,1)NQ}. By the Baire category
theorem there is p € (0,1) N Q such that intcl R, # (). Thus, there exists  and an

increasing sequence (z1) converging to x such that for all k, z;, € R,,. Then

and

At (4] = w01 (1)) # (0. (10).

k

which contradicts condition (d).

4. A »-METRIC FOR THE NIEMYTZKI PLANE

In [9], page 827, it has been noted that Zaitsev showed that the Niemytzki plane
is se-normal. A proof of this fact can be found in [1]. The Niemytzki plane L is the
closed upper half-plane L = R X [0, c0) endowed with the topology generated by the
family of all open discs disjoint with the real axis Ly = {(z,0): « € R} and all sets
of the form {a}U D, where D C L is an open disc tangent to L; at the point a € L;.
For our purposes here, we use the following notations. Let B((z,y),r) denote the
open disc with centre (z,y) and radius r, and let B*(z,r) = B((z,7),7) U {(z,0)}.
Put

B={B((z,y),r): (x,y) € L\ Ly and r <y, 0<r <1}

and B* = {B*(z,r): 0 <r <1 and « € R}. Thus, the family B = B* U B is a base
for L.

Fact 8. The family 8 is closed with respect to increasing unions.
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Proof. Let U, = B((%n,Yn),™n) € B and let (U,) be an increasing se-
quence. Thus the sequence of reals (r,), being bounded and increasing, is con-
vergent, i.e. there exists r such that r, — r. Also, if (zk,,yk,), (Tm, Ym,) are
convergent subsequences to (z,y), («’,y’), respectively, then (z,y) = (¢/,y'). In-
deed, if (x,y) # (2/,y’), then the union (J{U,: n > 0} is a disc with radius r and
with two different centres, which is impossible in the Euclidean metric. Thus, the
sequence (z,, yp) is convergent and let (x,y) be its limit. We have | J{U,: n > 0} =
B((z,y),r). If U, = B*(xn,r,) € B* for infinitely many n, then (z,,y,) — (z,7)
and (H{Un: n >0} = B*(z, 7). O

The above proposition is surely folklore. We include it to make elementary meth-
ods, that we use below, more understandable. So, we think the reader will have no
trouble verifying that if a sequence (B*(x,,7,,)) is decreasing, then the sequence (z,,)
is constant, hence the set inty, (J{U,: n > 0} is empty or belongs to B*. We are in
a position to define an RO(L)-stratification. If U = B((a,b),r) € B, then put

r—\/(a:—a)2+(y—b)2 when (z,y) € U;

0 for other cases.

fU($7y) = {

Thus, fuy(x,y) is the distance between the point (z,y) and the complement of the
open disc B((a,b),r) ="U.
If U = B((a,r),r) U{(a,0)} € B*, then put

r—+/(x—a)2+(y—r)2 when (z,y) € U and r < y;

r when (2,y) = (a,0);
{Ij’ = —
fol@,y) T—M when (z,y) € U and y < r;
2yr — y2
0 for other cases.

For every U € B* the function fy is continuous in L\ L; with respect to the Euclidean
topology, and hence it is continuous in L \ L; with respect to the Niemytzki plane.
Suppose that nh_}n;O (Zn,yn) = (a,0) with respect to the Niemytzki plane. Without
loss of generality, we can assume that (z,,¥y,) € B((a,1/n),1/n) and 2/n < r. Since
for every natural number n the inequality |z, —a| < \/m holds and y,, — 0,
we obtain

r|z, — a >T?r\/2/n—yn .
= ? .
V2ynr — Y2 V2r —y, n—oo

Thus, we have checked that for every U € 9B the function fy: L — [0,1] is
continuous.

rz fU(xnayn) =Tr-—=
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For every V € RO(L) put
fv(z,y) =sup{fu(z,y): Ue€BandU C V}.

If V € B, then both definitions of fy coincide. Also, if (z,y) € L\ V, then
fv(z,y) =0.

Lemma 9. If (z,y) € V € RO(L), then there exists U € B such that U C V and
fv(z,y) = fo(z,y) > 0.

Proof. Suppose 0 < fy(z,y) = nh_}n;@ fu, (z,y), where U,, € B and U, C V. If
U,, € B for infinitely many n, then we can assume that there are sequences ((z,, y»)),
(ry) and a, b, r such that U, = B((n, Yn),Tn), Tn — a, Yy — band r, = r > 0. We
will show that B((a,b),r) C V. Indeed, fix (¢,e) € B((a,b),r). Let € > 0 be such
that d((c, e), (a,b)) = r — ¢, where d is the Euclidean distance. Choose n such that

Tp >T — % and d((a7 b)a (‘r"’y”)) <

| ™

We have

d((e,€). (20, a)) < d((e.€). (a,5)) +d((,). (20, 9a)) <7 = 5 <7

Therefore (c,e) € U, C V. Moreover,

fV(xvy> = nh—>H;o fUn (x,y) = nh—>Holo max {077’n - \/(:’C - $n)2 + (y - yn)z}
= max {0,r — Vi —a)2+ (y— )2} = fB((ap)m (T Y)-

If U,, € B* for almost all n, then we can assume that there exist sequences (ay,),

(ry,) and a, r such that U, = B*(an,ms), an — a, 1, — 7 and 0 < y < r,, since
the case when y > r,, for infinitely many n one can reduce to the previous reason-
ing. Similarly to the above argument, we check that B((a,r),r) C V. Moreover,
B*(a,r) CV since V € RO(L). Therefore

. : Tn|2 — ay
fv(z,y) = nhHH;o fu.(z,y) = nlL%maX{O,rn - \/ﬁ}
rlz — al
Vo=

The family {U € B: (z,0) € U} = {U € B: (,0) € U € B*} is linearly ordered
by inclusion, hence if y = 0, then, by Fact 8, the union | JU,, belongs to B* and is
contained in V. Thus, this union is the desired set. " O

b= e an (@),

max {O,r —

Proposition 10. If V € RO(L), then the function fyv: L — [0, 1] is continuous.
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Proof. Assume that ILm (zn,yn) = (x,y) with respect to the topology of the
Niemytzki plane. Supposenth;ot nh_)n(}o fv(@nsyn) > p > fv(z,y). For every n there
exists U,, € B such that (z,,y,) € U, CV and fy, (€n,yn) > p. Then there exist
@y, by, Ty such that either U, = B((an,by), ) or U, = B*(ay,r,). We can assume
that there are a, b, r such that a,, - a and b, — b and r,, — r > 0. If for infinitely
many n, U, = B((an,bn), ), then

p g hm fUn (‘rnayn) = nh_?gomax {O,Tn - \/(xn - an)Q + (yn - bn)z}

=max {0,7 —\/(z —a)2 + (y — b)2} = fu(z,y) < fv(z,y) < p;

a contradiction. We can use the same argument if for infinitely many n, r, < y,.
Thus, we can assume that for all n, U,, = B*(ay,r,) and r, > y,. If y > 0, then

' ' ’rnlﬂl‘ - an| }

< = 2y — 2
< Jim fon(oy) = fim max {05, - SEtE
r|lz — al

=max0,r — ——— "¢ = B ar) (T, Yy) < fr(z,y) <p;
{ m} () (2.) < fu (@)

again we have a contradiction.
If y = 0, then a, — z and B*(z,r) C V. So,

D> fV(an) > fB*(x,r)(va) =r= nlgr;or" > nhanclo fUn(xay) Z p;

a contradiction, which finishes the proof. O

Proposition 10 gives an alternative proof that the Niemytzki plane is s--normal
since the family {fy: V € RO(L)} fulfils conditions (1) and (3).

Corollary 11. The Niemytzki plane is ro-stratifiable.

Proof. IfUy,Us € B and Uy C Us, then fy, (z,y) < fu,(z,y) since fy,(z,y)
equals to the distance between (z,y) and the complement of Uj, which is smaller
than the distance fy,(x,y) between (z,y) and the complement of Us.

If U = B((a,r),r) and U* = B*(a,r), then y > r implies fy(z,y) = fu-(x,y).
But if 0 < y < r, under the assumption |z — a| < \/2yr — y2, we get

r|lz — al
Therefore fy(z,y) < fu-(z,y) for every (z,y) € L.

If 1 <re and Uy = B*(a,r1) and Uy = B*(a,r2), then we verify that fy, (z,y) <
fu,(x,y) for every (z,y) € Us. We have obtained that the family {fy: U € BUB*}
fulfils conditions (1)—(3). Accordingly, the family {fy: U € RO(L)} fulfils condi-
tions (1)—(3). O

Vie—a?+@y-r?>
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Now, it seems natural to verify that the Niemytzki plane is s-metrizable.

Theorem 12. The Niemytzki plane is »-metrizable.

Proof. We have shown that the family {fy: V € RO(L)} is an RO(L)-
stratification of the Niemytzki plane L. So, it remains to show that it satisfies
condition (4). Fix a decreasing chain {U,: n > 0} consisting of regular open sets
of the Niemytzki plane and put W = int ({U,: n > 0}. Since for all n, W C U,,
we have fi(z) < inf{fy, (z): n > 0} for any x € L. Fix x € L. For every n, by
Lemma 9, there exists V,, € B such that fy, (x) = fv, (z). If for infinitely many n,
V.. € B, then we can assume that there exist sequences ((z,,yn)), (rn) and a, b,
such that B((xn,Yn)sTn) = Va, T — a, Yy, — b and 7, — r. Then B((a,b),r) CW
and fg((ap),r(z) = nl;rr;o fv, (z). But if for all n, V,, = B*(z,, ) and z, — a and
7 — 7 > 0, then we get B*(a,r) C W and fp«(q,)(z) = nlggo fv,, (z). Therefore

fw(z) = lim_fo, (2). O

Proposition 13. The Niemytzki plane is not stratifiable.

Proof. Suppose that there exists a family of functions
{fv: U is an open subset of L}

which fulfils conditions (1), (2) and (3). Put
1 1
Pon= {x ER: fpen(z,y) > - whenever 0 < y < E}

Since R = J{Pu,m: m > 0 and n > 0}, by the Baire category theorem, there exist
a set P, ., and an interval (a,b) such that the intersection P, ,, N (a,b) is dense
in (a,b). Choose (z,cr) € B*(a,1/k) such that zi € P,,, N (a,b) and ¢ < 1/m.
Thus, the sequence ((xg,cx)) is convergent to the point (a,0) with respect to the
Niemytzki plane. By condition (2) we get f1\{(a,0)} (T, k) = fB*(2y,1) Tk, ) > 1/n;

a contradiction with f7\ (4,003 (a,0) = 0. 0
Put
r—+/(a—x)2+(r—y)? if (z,y) € B*(a,7), r <y;
- —1

(r- 2t NEZIET o) € Brar), 0<y <
9B+ (ar)(T,Y) = 2yr —y r

1 if (z,y) = (a,0);

0 for other cases.
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Mimicking the proof of Corollary 11, we check that the family
g= {gB*(a,'r): B*(aar) € B*}

is a B*-stratification. But this family cannot be extended to an RO(L)-stratification.
Indeed, the set V = {(z,y) € L: z > 0} is a regular open subset of the
Niemytzki plane and (0,0) ¢ V. Suppose that the family G U {gy} fulfils con-
ditions (1)-(3). Observe that (1/(3n),1/(6n)) € B*(0,1/n) N B*(1/(3n),1/(3n)).
Since B*(1/(3n),1/(3n)) C V, we get

gv(%n, 6%) = gB*(l/(3n),1/(3n))(3ina Gin) > %;

this is a contradiction with continuity of gy and the equality gy (0,0) = 0.
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