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Energy of a free Brownian particle 
coupled to thermal vacuum
J. Spiechowicz & J. Łuczka*

Experimentalists have come to temperatures very close to absolute zero at which physics that was 
once ordinary becomes extraordinary. In such a regime quantum effects and fluctuations start to play 
a dominant role. In this context we study the simplest open quantum system, namely, a free quantum 
Brownian particle coupled to thermal vacuum, i.e. thermostat in the limiting case of absolute zero 
temperature. We analyze the average energy E = E(c) of the particle from a weak to strong interaction 
strength c between the particle and thermal vacuum. The impact of various dissipation mechanisms 
is considered. In the weak coupling regime the energy tends to zero as E(c) ∼ c ln (1/c) while in the 
strong coupling regime it diverges to infinity as E(c) ∼

√
c . We demonstrate it for selected examples of 

the dissipation mechanisms defined by the memory kernel γ (t) of the Generalized Langevin Equation. 
We reveal how at a fixed value of c the energy E(c) depends on the dissipation model: one has to 
compare values of the derivative γ ′(t) of the dissipation function γ (t) at time t = 0 or at the memory 
time t = τ

c
 which characterizes the degree of non-Markovianity of the Brownian particle dynamics. 

The impact of low temperature is also presented.

The journey towards the absolute zero temperature was started in the early 20th century when Heike Kamerlingh 
Onnes and his colleagues discovered techniques to liquify helium. Nowadays the rapid development of technol-
ogy made scientists even more eager to reach this temperature in the lab so that racing towards the absolute zero 
is accelerating swiftly. The lowest temperature currently achieved in laboratories is of the order of picokelvins, 
i.e. many orders lower than the average temperature of the universe T = 2.73 K . At these temperatures we gain 
access to a world of exotic phenomena and physics that was once ordinary becomes extraordinary. Implications of 
such bizarre properties seemingly are boundless and range from gravitational wave detection, superconductivity, 
spintronics to quantum computing and other coming technologies.

At low temperature quantum effects start to play a role in which fluctuations are an inherent part. The origin of 
quantum fluctuations is two-fold: (i) the Heisenberg uncertainty principle and (ii) an environment of temperature 
T being a source of quantum thermal noise. However, even at absolute zero temperature T = 0 , there are still 
vacuum fluctuations that may induce observable effects. Many experiments unveil the role of quantum fluctua-
tions in the ultracold regime. One can mention the motion of macroscopic mechanical objects1, heat transfer 
induced by quantum fluctuations between two objects separated by a vacuum gap2, directly observed reactants, 
intermediates, and products of bimolecular reactions3, optomechanical systems and mechanical resonators4, glass 
formation5, quantum control and characterization of charge quantization6. Another examples of experiments 
concerning zero-point fluctuations are described e.g. in Refs7–14. These works provide observations of various 
effects driven by quantum fluctuations in closed and open quantum systems. Apart from the above interest in 
fundamentals of physics, engineering of the quantum vacuum to create novel devices and protocols for quantum 
technologies has been developing in recent years15.

The existence of vacuum fluctuations is one of the most important predictions of modern quantum field 
theory. One can mention two celebrated examples to evidence it: the Lamb shift16,17 and the Casimir effects18–20. 
The related phenomenon is the zero-point energy being the lowest possible energy that a quantum mechanical 
system may have. A well-known example is a quantum harmonic oscillator of frequency ω0 . If it is considered 
as a closed system then its ground state energy is (1/2)�ω0 . If the oscillator is not perfectly isolated and interacts 
with thermostat of temperature T then its average energy is (1/2)�ω0 coth(�ω0/2kBT) , where kB is the Boltzmann 
constant. At absolute zero temperature T = 0 its energy is (1/2)�ω0 , i.e. the same as for the isolated oscillator. 
However, it is true only in the limit of weak coupling between the oscillator and thermostat. If the oscillator-
thermostat coupling is not weak then its energy at T = 0 can be much greater than (1/2)�ω0 . The additional 
portion of energy comes from thermostat fluctuations.

It is interesting to consider a free quantum particle in this context. Its energy is not quantized and its allowed 
values are the same as those of a classical counterpart. If it interacts with a heat bath of temperature T, then 
according to the classical statistical mechanics, the average energy is (1/2)kBT and it tends to zero when T → 0 . 
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In the deep quantum regime, its average energy is non-zero even if T → 0 . In this paper we revisit this problem. 
We study the mean energy E of the free quantum particle coupled to thermal vacuum, i.e. thermostat in the 
limiting regime of absolute zero temperature T = 0 . We focus on the impact of interaction strength between 
the system and thermal vacuum and analyze the role of different dissipation mechanisms. We also discuss fluc-
tuations of energy, the correlation function of thermal vacuum noise and scaling of the memory kernel of the 
Generalized Langevin Equation. Finally, we briefly present the impact of temperature and the harmonic potential. 
Appendices contain proofs of asymptotics of the mean energy for strong and weak particle-thermostat coupling 
for selected examples of the dissipation mechanism.

Model of  a  free quantum Brownian particle.  We consider the standard model of a free quantum 
Brownian particle coupled to a heat bath of temperature T. For the paper to be self-contained and for the reader’s 
convenience, we now recall certain basic notions and important elements of this model, see also section Methods 
and Ref.21. It is a quantum particle of mass M coupled to a heat bath that is described by the Caldeira-Leggett 
Hamiltonian, see e.g.23–30,

where the heat bath is modeled as a set of non-interacting quantum harmonic oscillators. The operators {x, p} 
are the coordinate and momentum operators of the Brownian particle and {qi , pi} refer to the coordinate and 
momentum operators of the i-th thermostat oscillator of mass mi and the eigenfrequency ωi . The parameter ci 
characterizes the coupling between the particle and the i-th oscillator. All coordinate and momentum operators 
obey canonical equal-time commutation relations.

From the Heisenberg equations of motion for all coordinate and momentum operators {x, p, qi , pi} one can 
obtain an effective equation of motion for the particle coordinate x(t) and momentum p(t)31. It is called a general-
ized quantum Langevin equation and for the momentum operator of the Brownian particle it reads21

where the dot denotes the derivative with respect to time and γ (t) is the memory function (damping or dissipa-
tion kernel),

which can be expressed by the spectral function J(ω) of the thermostat that contains information on its modes 
and the Brownian particle-thermostat interaction. Remark: The above definition of the spectral density J(ω) dif-
fers from another frequently used form J̃(ω) = ωJ(ω) . We prefer the definition as in Eq. (3) because of a direct 
relation to the cosine Fourier transform γ̂F(ω) of the dissipation function (3), i.e. γ̂F(ω) = J(ω) . Here the Ohmic 
case corresponds to J(ω) = const . The operator η(t) can be interpreted as quantum thermal noise acting on the 
Brownian particle and has the form

which depends on the thermostat operators {qi(0), pi(0)} at the initial moment of time.
One can solve Eq. (2) to find p(t) and calculate averaged kinetic energy E(t) = �p2(t)�/2M of the Brownian 

particle (the notation �·� stands here for the averaging over the initial state of the composite system). It is equal 
to the total average energy of the particle. In the thermodynamic limit of the infinitely extended heat bath and 
for t → ∞ , when a thermal equilibrium state is reached, the average kinetic energy E of the Brownian particle 
can be presented in the form (for a detailed derivation, see Ref.21,22)

and

where

The function P(ω) fulfils all conditions imposed on the probability density: (i) it is non-negative, i.e. P(ω) ≥ 0 , 
and (ii) normalized on the positive real half-line, i.e. 

∫∞
0 dω P(ω) = 1 . The corresponding proof is presented 

in Ref.32. Equations (5)–(6) constitute a quantum counterpart of the energy equipartition theorem well known 
for classical systems. It says that in quantum physics energy is not equally distributed among the degrees of 
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freedom but it is allocated according to the corresponding probability density function P(ω) . Because the model 
is exactly solvable the probability density P(ω) obtained from Eq. (6) is exact and determined by Eq. (7), i.e. 
by the Laplace transform R̂L(z) of the response function R(t). In turn, Eq. (7) contains the Laplace transform 
γ̂L(z) of the memory function γ (t) in Eq. (2) and as such it depends on the spectral function J(ω) , which via Eq. 
(3), comprises all information on the oscillator-thermostat interaction and frequencies of the heat bath modes.

Recently, it has been proven that the relation similar to Eq. (5) holds true for all quantum systems for which 
the concept of kinetic energy has sense (e.g spin systems are outside of this class)33. The quantum system can be 
composed of an arbitrary number of non-interacting or interacting particles, subjected to any confining potentials 
and coupled to thermostat with arbitrary coupling strength.

In the presently considered case all dynamical quantities are almost periodic functions of time when ther-
mostat consists of a finite number of oscillators. In particular, the dissipation function γ (t) is an almost periodic 
function of time. In order to consistently model the dissipation mechanism, the thermodynamic limit should 
be imposed by assuming that a number of the thermostat oscillators tends to infinity. Then the dissipation 
function (3) decays to zero as t → ∞ and the singular spectral function J(ω) in Eq. (3) (which is a distribution 
rather than an ordinary function) is expected to tend to a (piecewise) continuous function. All what we need 
to analyze the averaged energy E of the Brownian particle is the memory kernel γ (t) in Eq. (2) which defines 
the dissipation mechanism or equivalently the spectral distribution J(ω) that contains all information on the 
particle-thermostat interaction.

Results: average energy of the Brownian particle at zero temperature
At non-zero thermostat temperature T > 0 , the average energy of the free quantum Brownian particle given by 
Eq. (5) is always greater than at zero temperature T = 0 . When T → 0 then coth(�ω/2kBT) → 1 and Eq. (5) 
reduces to the form

which is proportional to the first statistical moment of the probability density P(ω) . It can be interpreted as an 
averaged kinetic energy �ω/4 per one degree of freedom of thermostat oscillators which contribute to E accord-
ing to the probability distribution P(ω) . The latter quantity, c.f. Eqs. (6) and (7), is defined solely by the dissipa-
tion function γ (t) . The choice of γ (t) is arbitrary, although in principle it should be determined by properties 
of the environment. As outlined above to guarantee the consistent description γ (t) needs to be a bounded and 
decaying function of time. In the following we consider several examples of γ (t) in order to investigate how E 
depends on γ (t) and whether there is an universal behaviour of E which is robust against changes of the dis-
sipation mechanism γ (t).

Analytically tractable case: Drude model.   The so-called Drude model is defined by the exponentially 
decaying damping function or/and the spectral density given by the following form30

where γ0 > 0 is the particle-thermostat coupling strength and τc > 0 is the memory time which characterizes 
the degree of non-Markovianity of the Brownian particle dynamics. Its inverse ωc = 1/τc is the Drude cutoff 
frequency. The probability distribution is found to be21

and the mean energy of the Brownian particle is given by the formula

We note that there are three parameters of the system {M, γ0, τc} . The dimensionless quantities can be intro-
duced as follows

which transform the relation (11) to the form

In this scaling the parameter c is the dimensionless particle-thermostat coupling strength. It is impressive that 
now the system is completely characterized by only one parameter c. The above integral (13) can be explicitly 
calculated yielding quite remarkable expression for the mean energy, namely,
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∫ ∞
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The dependence of Ẽ(c) upon the coupling constant c is depicted in Fig. 1. It is a monotonically increasing 
function of the latter parameter. If c → 0 then Ẽ(c) → 0 and Ẽ(c) → ∞ when c → ∞ . In the weak coupling 
regime c ≪ 1 , the first two leading contributions to the energy have the form

Their graphical representation is also depicted in Fig. 1. The term Ẽ1(c) is already known in the literature30. It is 
worth noting that the leading order contribution to the Lamb shift is also logarithmic and reads α5 ln(1/α) , where 
α is a fine-structure constant. The correction Ẽ2(c) is the next to the leading order contribution to Ẽ(c) for small 
c. The term (−c2/π) is included to minimize the deviation from the exact value of the zero-point particle energy. 
We now return to the dimensional variables and the leading order contribution to the dimensional energy is

It is the purely quantum term which is proportional to � and tends to zero when the coupling constant γ0 → 0 
or the memory time τc → 0 or the particle mass M → ∞ . The asymptotics of Ẽ(c) can be evaluated also for the 
limit of strong coupling. By inspecting (15) we find that

i.e. it increases with the coupling constant as a square root of c. In Appendix A we prove that the same asymptotics 
holds true for non-zero temperatures, T > 0.

Other examples of the dissipation mechanism.  We now want to analyze how the average energy of 
the quantum Brownian particle depends on different dissipation mechanisms modeled by γ (t) and check the 
interrelations between the corresponding zero-point energies.

1. Lorentzian decay  As the second example we pick the Lorentz type dissipation for which

Such a choice of the dissipation kernel leads to the following probability distribution

where
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(19)Ẽ(c) ∼
√
c, c ≫ 1,

(20)γL(t) = γ0
1

1+ (t/τc)2
, JL(ω) = γ0τc e

−τcω .

(21)PL(ω) =
4ν0 e

−τcω

π2ν20 e
−2τcω + h2(ω)

, ν0 =
γ0τc

M
,

0

0.01

0.02

0.03

0.04

0 0.02 0.04 0.06 0.08 0.1
Ẽ
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Figure 1.   The rescaled average energy Ẽ(c) of the free quantum Brownian particle in the limiting case of weak 
coupling c. The first two leading contributions Ẽ1(c) and Ẽ2(c) to Ẽ(c) are depicted.
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and Ei (z) is the exponential integral. For this mechanism of dissipation the mean energy E in Eq. (8) cannot be 
calculated analytically. However, in Appendix B, we evaluate the strong coupling asymptotics and demonstrate 
that it is the same as for the Drude model, i.e. Ẽ ∼ √

c for c ≫ 1.
2. Family of algebraic decay  This class of dissipation mechanisms is defined by the following formula for the 

memory kernel and the spectral density,

where n ∈ N , n ≥ 2 and En(z) is the exponential integral. The probability distribution takes the form

3. The Debye-type model Another example of the dissipation model reads

where ωc = 1/τc is the cut-off frequency and θ(x) denotes the Heaviside step function. This model of dissipation 
is peculiar: the spectral density is a positive constant on the compact support [0,ωc] determined by the memory 
time τc and is zero outside this interval of frequencies. Under this assumption the probability density can be 
presented as

and has the same compact support [0,ωc] as the spectral function JS(ω) . The corresponding integral (8) for the 
mean energy E cannot be analytically calculated with the probability distribution (26). However, in Appendix C, 
we evaluate the weak coupling regime and show that it is the same as for the Drude model, namely, Ẽ ∼ c ln(1/c) 
for c ≪ 1.

Average energy vs dissipation mechanism.   In Fig. 2a we present dependence of the average energy 
Ẽ(c) on the particle-thermostat coupling strength c for different forms of the dissipation mechanism. To facilitate 
the analysis, we plot the damping kernel γ̃ (t̃) and the spectral density J̃(ω̃) in panels (b) and (c), respectively. 
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Figure 2.   (a) The average energy of the quantum Brownian particle Ẽ(c) depicted for different dissipation 
mechanisms. (b) The dissipation kernel γ̃ (t̃) , (c) the spectral density J̃(ω̃) , (d) the cumulative distribution 
function F̃(ω̃) and (e) the correlation function C̃0(t̃) of quantum noise, in inset we present the magnified 
correlation functions for the Debye and Lorentz case. The dimensionless quantities are: γ̃ (t̃) = γ (t̃/ωc)/γ0 , 
J̃(ω̃) = (ωc/γ0)J(ωcω̃) , F̃(ω̃) = F(ω) and C̃0(t̃) = 2C0(t̃/ωc)/(γ0�ωc) . The dimensionless variables are: 
t̃ = ωct and ω̃ = ω/ωc . In (d) c = 0.25.



6

Vol:.(1234567890)

Scientific Reports |         (2021) 11:4088  | https://doi.org/10.1038/s41598-021-83617-y

www.nature.com/scientificreports/

In panel (e) we display the correlation function C̃0(t̃) of quantum noise (4) [see Eqs. (40) and (32)]. The reader 
can immediately note that the sequence (from the top to the bottom) of the zero-point energy curves Ẽ(c) for 
different dissipation mechanisms is the same as the ordering of the damping kernels γ̃ (t̃) and the spectral densi-
ties J̃(ω̃) for small times t̃ and frequencies ω̃ , respectively. In contrast, it is rather difficult to reveal any universal 
pattern in the impact of the dissipation form on the corresponding correlation function C̃0(t̃) of quantum ther-
mal noise η(t) , see panel (e) of Fig. 2. Similarly, there is no evident relation between the probability densities 
Pj(ω), (j = D, S, L, n = 2, 4, 6) (not depicted) and the zero-point energy curve Ẽ(c) . However, it is instructive to 
analyze the cumulative distribution function Fj(ω) , namely,

It is depicted in Fig. 2d from which it follows that the correlation between Fj(ω) and Ẽ(c) is evident: If the 
cumulative distribution function is greater then the zero-point energy Ẽ(c) is smaller. If for two probabili-
tiesFj(ω) > Fl(ω) for ω ∈ (0,ωc/2) then for the corresponding energies Ẽj(c) < Ẽl(c) . The above observations 
allow us to formulate the following conjectures: 

1.	 The decay rate of the damping kernel γ (t) crucially modify the energy E . If γ (t) decreases rapidly then E is 
small. In other words, if γ1(t) < γ2(t) for t ∈ (0, τc) then Eγ1 < Eγ2.

2.	 If the main contribution to the zero-point energy E comes from the environment oscillators of small frequen-
cies ω then E is small. It means that if J1(ω) < J2(ω) for ω ∈ (0,ωc) then EJ1 < EJ2.

3.	 There is no non-zero lower bound for the zero-point energy E(c) of the free quantum Brownian particle, i.e. 
for any γi(t) one can find γj(t) that Ej < Ei.

By analyzing Fig. 2 we find three quantifiers which allow to order the sequence of the energy curves for vari-
ous dissipation mechanisms. They are: the memory kernel γ (t) or the spectral function J(ω) , or the cumulative 
distribution function Fj(ω) . Perhaps the most convenient way to arrange them is by inspecting the derivative 
γ ′(t) of the memory kernel γ (t) at zero t = 0 or at the memory time t = τc . These values are listed in Table 1. 
The rule is the following: If γ ′(0) decreases then the mean energy E also decreases. In turn, if γ ′(τc) increases 
then E decreases. The only exception is the case of the Debye dissipation function which, however, belongs to 
a different class than the rest of the considered models. Indeed, the Debye spectral density JS(ω) possesses a 
compact support [0,ωc] while the remaining spectral densities are non-zero on the frequency interval [0,∞).

Discussion
Fluctuations of energy.   In order to analyze fluctuations of energy let us note that in the stationary state 
the Brownian particle momentum depends linearly on thermal noise η(t) (cf. Eq. (38) in the section Methods),

Statistical characteristics of quantum thermal noise η(t) are analogous to a classical stationary Gaussian 
stochastic process. For the above reasons the particle momentum p is also Gaussian implying that

From this relation it follows that fluctuations of energy are proportional to the average energy E. Indeed, 
the energy variance is (�E)2 = 2E2 and in consequence the standard deviation of energy is proportional to the 
average energy, �E =

√
2E . Therefore the dependence of energy fluctuations �E on the coupling constant c is 

exactly the same as for E. In particular, �E tends to zero for c → 0 and it diverges when c → ∞.

(27)Fj(ω) =
∫ ω

0
Pj(u)du, j = D, S, L, n = 2, 4, 6.

(28)lim
t→∞

p(t) = lim
t→∞

∫ t

0
R(t − u)η(u)du.

(29)�p4� = 3�p2�2.

Table 1.   Numerical values of the derivatives γ̃ ′(t̃) of various dimensionless dissipation functions computed 
for t̃ = 0 and t̃ = 1 , i.e. for the memory time t = τc which characterizes the degree of non-Markovianity of the 
particle dynamics.

• γ̃ ′(0) γ̃ ′(1)

Debye γ̃S(t̃) = sin t̃/t̃ 0 − 0.301169

Lorentz γ̃L(t̃) = 1/(t̃2 + 1) 0 − 0.5

Drude γ̃D(t̃) = exp (−t̃) − 1 − 0.367879

Algebraic n = 2 , γ̃2(t) = 1/(t̃ + 1)2 − 2 − 0.25

Algebraic n = 4 , γ̃4(t) = 1/(t̃ + 1)4 − 4 − 0.125

Algebraic n = 6 , γ̃6(t) = 1/(t̃ + 1)6 − 6 − 0.046875
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The correlation function of thermal vacuum noise.   For classical systems the correlation function 
C(t) = Ccl(t) of thermal noise η(t) is equal, up to a constant factor, to the damping function γ (t) . Indeed, for 
high temperature

and from Eq. (40) it follows that

Properties of Ccl(t) can be deduced from Fig. 2b. At absolute zero temperature T = 0 its quantum counterpart 
C0(t) is obtained from Eq. (40) and reads

In contrast, it is not proportional to γ (t) as in the classical case. Representative examples of C0(t) are depicted 
in Fig. 2e. For the Drude model, the correlation function (32) reads

When t → 0 then CD(t) → ∞ and the second moment of noise diverges, �η2(t)� → ∞ . For the Debye-type 
model, it is bounded and has the form

and for the Lorentzian decay it is also bounded,

For the algebraic decay of γ (t) given by Eq. (23) there is no an analytical expression for C0(t) . Its numerical 
calculation is presented in Fig. 2e. For all members of the family of algebraic decay the second moment of noise 
does not exist, �η2(t)� = ∞.

There are three crucial disparities: (i) In the classical case Ccl(t) → 0 for T → 0 . In the quantum case 
C0(t)  = 0 at absolute zero temperature T = 0 . (ii) C0(0) can diverge for quantum systems while its classical 
counterpart Ccl(0) has to be finite, cf. Eq. (21). (iii) if Ccl(t) is positive then C0(t) may assume negative values. 
It means that quantum noise can exhibit negative correlations (anticorrelations) while its classical counterpart 
exhibits only positive ones. For tailored forms of the dissipation kernels classical noise may also be anticorrelated 
as it is the case e.g. for the Debye model.

Scaling of the memory kernel.   In this paper, we choose the memory kernels in such a way that all have 
the same value at the initial time, γ (0) = γ0 . In the literature, the memory kernel γ (t) is frequently defined in 
such a way that it tends to the Dirac delta distribution δ(t) when the memory time τc tends to zero, i.e. as a Dirac 
δ-sequence (cf. Ref21). E.g. for the Drude model the most common form reads

Indeed, limτc→0 γ (t) = γ δ(t) and for the integral part of the Langevin equation (2) one gets

In this limit, the integro-differential equation (2) reduces to the differential Langevin equation. It is often 
called the white noise limit or Markovian approximation. Let us verify its consequences. Firstly, according to Eq. 
(42), in such a case the force constant k0 = γ (0) = γ /τc . When τc → 0 then k0 → ∞ and the counter-term in 
Eq. (41) becomes greater and greater. Secondly, the zero-point energy of the Brownian particle tends to infinity. 
It is explicitly seen from Eq. (18) by inserting γ0 = γ /τc . Indeed, E1 = �ωcẼ1 ∝ ln(1/τc) → ∞ . Moreover, if τc is 
varied as a control parameter then the force constant k0 = γ /τc is modified and the Hamiltonian (1) is altered. In 
this way one compares e.g. the average energy E for two different values of τc , i.e. for two different Hamiltonians 
(namely for two different physical systems). It shows that the problem of the white noise limit or the Markovian 
approximation in quantum physics is subtle and still not satisfactory resolved.

Impact of temperature and potential energy.  In order to complement the analysis, in Fig. 3 we show 
the influence of temperature and a potential on the average kinetic energy of the quantum Brownian particle. 
As an example we present the case of a harmonic oscillator for which the potential is U(x) = Mω0x

2/2 . It is 
an exactly solvable model35. As expected, if temperature of a thermal bath increases the average kinetic energy 
of the particle grows as well. It is obvious that the average potential energy becomes greater when the eigenfre-

(30)coth

(

�ω

2kBT

)

≈ 2kBT

�ω

(31)Ccl(t) = kBTγ (t).

(32)C0(t) =
∫ ∞

0

�ω

2
J(ω) cos(ωt)dω.

(33)CD(t) = −γ0

π

�ωc

2

[

e−ωc t Ei (ωct)+ eωc t Ei (−ωct)
]

.

(34)CS(t) = γ0
�ωc

2

[

sin(ωct)

ωct
+ cos(ωct)− 1

(ωct)2

]

, �η2(t)� = CS(0) = γ0
�ωc

4

(35)CL(t) = γ0
�ωc

2

1− (ωct)
2

[1+ (ωct)2]2
, �η2(t)� = CL(0) = γ0

�ωc

2
.

(36)γ (t) = γ

τc
e−t/τc .

(37)
1

M

∫ t

0
γ (t − s)p(s) ds → γ

p(t)

M
.
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quency ω0 increases. The same hold true for the total energy. What is in clear contrast to classical result is the 
dependence of the average kinetic energy on the eigenfrequency ω0 . Here, the kinetic energy grows together 
with ω0 whereas classically it is independent of the latter parameter and equal to (1/2)kBT as the equipartition 
theorem states. Solid lines represent the results for the free particle where the dashed ones correspond to the 
harmonic oscillator.

Conclusions
We have revisited the paradigmatic model of a free quantum Brownian particle in contact with quantum ther-
mostat in the limiting case of absolute zero temperature and studied the mean energy of the particle. We have 
scrutinized the impact of a limited class of dissipation mechanisms for which behaviour of the zero-point energy 
of the Brownian particle as a function of the rescaled coupling strength between the system and the thermostat 
is similar.

We show that the sequence of the average energy curves E(c) for different dissipation mechanisms is the 
same as the sequence of the damping curves γ (t) , the spectral densities J(ω) and the cumulative distribution 
functions F(ω) for small values of their arguments, respectively. In particular, we find out that the best quanti-
fier is the derivative γ ′(t) of the dissipation function γ (t) at time t = 0 or at the characteristic time t = τc . For 
the Drude model we additionally obtained an exact analytical formula for the zero-point energy of the free 
Brownian particle. It allowed us to evaluate the asymptotic forms of the energy in the limit of weak and strong 
particle-environment coupling at zero and non-zero temperature. The Debye model exhibits the same weak 
coupling asymptotics as the Drude model. From Fig. 2a it follows that also for the Lorentzian decay the same 
weak coupling asymptotics holds true. Moreover, the Lorentz model displays the same strong coupling asymp-
totics as the Drude model.

We briefly discussed the problem of energy fluctuations �E . However, because they are proportional to the 
average energy E, their functional behavior is the same as E. In particular, �E tends to zero for c → 0 and it 
diverges when c → ∞ . We compared the correlation functions of thermal noise in the classical and quantum 
case. In particular, quantum thermal noise can exhibit negative correlations (anticorrelations) while its classi-
cal counterpart exhibits only positive ones. We pointed out some subtleties and imperfections of the discussed 
model when the damping kernel is scaled in such a way that it tends to the Dirac delta distribution. When the 
memory time approaches zero, the force constant as well as the zero point energy tend to infinity. Last but not 
least, we discussed the influence of the harmonic potential on the zero-point energy of the particle. Finally, we 
have to emphasize that the presented results and statements are correct for a broad but limited class of examples 
of the memory function (or the spectral density). Still there is an open question how general the results are.

Methods
In order to calculate the average kinetic energy E given by Eq. (5) one has to solve Eq. (2) to find p(t). Because 
Eq. (2) is a linear integro-differential equation it can be solved by e.g. the Laplace method. The result reads

where R(t) is called a response function and is determined by its Laplace transform R̂L(z) , see Eq. (7). Having 
p(t) one can calculate the symmetrized momentum-momentum correlation function which, in the thermody-
namic limit imposed on a heat bath, is expressed by the symmetrized noise-noise correlation function21. The 
statistics of noise η(t) defined in Eq. (4) is crucial for evaluation of E. We assume the factorized initial state of 
the composite system, i.e., ρ(0) = ρS ⊗ ρB , where ρS is an arbitrary state of the Brownian particle and ρB is the 
canonical Gibbs state of the heat bath of temperature T, namely,

(38)p(t) = R(t)p(0)− x(0)

∫ t

0
R(t − u)γ (u)du+

∫ t

0
R(t − u)η(u)du,

Figure 3.    (a) Impact of temperature on the dimensionless mean kinetic energy Ẽ of the free quantum particle 
within the Drude model. (b) Influence of the eigenfrequency ω̃0 of the harmonic oscillator on its mean 
kinetic energy Ẽ . Solid lines represent the results for the free particle where the dashed ones correspond to the 
harmonic oscillator. The dimensionless energy Ẽ = E/�ωc , temperature T̃ = kBT/�ωc and ω̃ = ω/ωc . In (b) 
c = 10.
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where HB is the Hamiltonian of the heat bath. The factorization means that there are no initial correlations 
between the particle and thermostat. The initial preparation turns the force η(t) into the operator-valued quantum 
thermal noise which in fact is a family of non-commuting operators whose commutators are c-numbers. This 
noise is unbiased and its mean value is zero, �η(t)� = Tr [η(t)ρB] = 0. Its symmetrized correlation function

depends on the time difference. The higher order correlation functions are expressed by C(ti − tj) and have the 
same form as statistical characteristics for classical stationary Gaussian stochastic processes. Therefore η(t) defines 
a quantum stationary Gaussian process with time homogeneous correlations.

The next quantity which we should consider is the counter-term in the Hamiltonian (1), i.e. the term pro-
portional to x2 (for the relevant discussion, see e.g. Ref.30),

The force constant k0 is related to the dissipation function by the relation (3) from which it follows that

It is quite natural that quantities like the force constant k0 and the mean energy E should be finite. We note that 
k0 is related to the dissipation function γ (t) at time t = 0 and therefore γ (t) as a decaying function of time should 
be finite, γ (t) < ∞ . Moreover, from (41) it follows that the spectral density J(ω) has to be integrable on the 
positive half-line and the integral is associated with the dissipation function γ (t) at the initial moment of time 
t = 0 . Frequently it is assumed that under some limiting procedure the memory kernel γ (t) tends to the Dirac 
delta in order to study a Markovian regime. It means that γ (t) is an integrable function on the half-axis t ≥ 0 . 
We also assume this restriction. The question is whether the noise correlation function C(t) in Eq. (40) should be 
finite for all values of time, in particular C(0) which is related to the second moment 〈η2(t)〉 of thermal noise. It 
is well known that in classical statistical physics thermal noise is frequently represented as Gaussian white noise 
for which the second moment does not exist and it is not a drawback. One can keep this question open as long 
as it does not lead to divergences of relevant measurable observables.

Appendix A: Strong coupling for the Drude dissipation at T > 0

For the Drude model, the average energy (5) of the Brownian particle coupled to thermostat of non-zero tem-
perature has the form

where the dimensionless quantities are defined in Eq. (12) and A = �ωc/2kBT with ωc = 1/τc . It corresponds 
to Eq. (13) for T > 0 . We want to evaluate the asymptotics of (43) for c → ∞ . From the graph of x coth(Ax) it 
follows that for any number b > 0 the function x coth(Ax) ≤ b for x ≤ b/2 . We put b = 2c1/3 . Next, we note 
that for c ≫ 1 the following inequalities hold true:

We present the integral in Eq. (43) as a sum of two integrals,

If c → ∞ the first integral tends to zero:

Now, we consider the second integral. We note that for sufficiently large c ≫ 1,

and hence

(39)ρB = exp (−HB/kBT)/Tr [ exp (−HB/kBT)], HB =
∑

i

[

p2i
2mi

+ 1

2
miω

2
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2
i

]

,
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(46)Ẽ(c) = 1

2π

∫ c1/3

0

cx coth(Ax)

(x2 − c)2 + x2
dx + 1

2π

∫ ∞

c1/3

cx coth(Ax)

(x2 − c)2 + x2
dx.

(47)
∫ c1/3

0

cx coth(Ax)

(x2 − c)2 + x2
dx ≤

∫ c1/3

0
2c1/3 c

( c

2

)−2
dx = 8 c−1/3 → 0.

(48)1 ≤ coth(Ax) ≤ coth(Ac1/3) for x ∈ (c1/3,∞)



10

Vol:.(1234567890)

Scientific Reports |         (2021) 11:4088  | https://doi.org/10.1038/s41598-021-83617-y

www.nature.com/scientificreports/

The first integral from the left side (the lower bound) can be analytically evaluated (cf. Eq. (13)) and behaves 
as 
√
c when c → ∞ . The integral in the second line (the upper bound) also behaves as 

√
c when c → ∞ . From 

the squeeze theorem it follows that the middle integral also behaves as 
√
c . We conclude that in the case of the 

strong particle-thermostat coupling

holds true both for zero and non-zero temperature in the Drude model of dissipation.

Appendix B: The Lorentzian decay: strong coupling
We perform the analysis of the strong coupling limit (c ≫ 1) in two steps. In the first step, we consider the prob-
ability density (21) in the form

where

Note that f(x) does not depend on the parameter c. We analyze Pc(x) on two intervals 
x ∈ (0,∞) = (0,X0] ∪ (X0,∞) for some number X0 which depends on c and is sufficiently smaller than the non-
zero root of the function g(x), i.e. X0 ≪ xm , where xm is a root of the equation g(xm) = 0 . On the interval (0,X0] 
the density Pc(x) tends to zero and the average energy tends to zero when c → ∞ . On the interval (X0,∞) , the 
density Pc(x) tends to the Dirac delta distribution when c → ∞ . Now, we provide analytical arguments indicat-
ing how to isolate the Dirac delta contribution. In Fig. 4, we depict the graph of f(x). For any c > 0 the function 
g(x) always has a non-zero root x = xm , i.e. g(xm) = 0 , see Fig. 4. If c increases, the value xm also increases. For 
very large c, the value xm is large and the denominator in Eq. (51) is small. In consequence, the density (51) has 
a peak at x = xm and reads

Because for large c the value of xm is also large, we can evaluate how xm depends on c. To this aim we use the 
asymptotic expansion36

Hence

We observe that xm grows with c as xm ∼ √
c and at this value the probability density is

(49)
∫ ∞

c1/3

cx

(x2 − c)2 + x2
dx ≤

∫ ∞

c1/3

cx coth(Ax)

(x2 − c)2 + x2
dx ≤
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c1/3

cx coth(Ac1/3)

(x2 − c)2 + x2
dx.

(50)Ẽ(c) ∼
√
c, c ≫ 1

(51)Pc(x) =
1

τc
PL

(

x

τc

)

= 4e−x

c[π2 e−2x + g2(x)] ,

(52)g(x) = 2x/c − f (x), f (x) = e−x Ei (x)− ex Ei (−x).

(53)Pc(xm) =
4

cπ2
exm .

(54)f (xm) ≈
2

xm
+ 4

x3m
= 2xm

c
.

(55)x2m = c

2
[1+

√

1+ 8/c ] ≈ c for c ≫ 1

(56)Pc(xm) =
4

cπ2
e
√
c → ∞ for c → ∞

Figure 4.   Left panel. Black: the function f(x) defined in Eq. (52). Red and blue: the straight line 2x/c for c = 400 
and c = 900 , respectively. The intersection of the curves is a root of the equation g(x) = 0 defined in Eq. (52). 
Right panel. Example of three terms of the Dirac δ-sequence pc(y) defined in Eq. (58).
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This is the part of Pc(x) which tends to the Dirac delta distribution. In the second step, we use a different 
scaling and present the dimensionless energy in the form

where the normalized probability density pc(y) takes the form

It resembles the Dirac delta sequence (see also37): ǫ/[ǫ2 + x2] → πδ(x) when ǫ → 0 . In the strong 
coupling regime, when c ≫ 1 , the probability density (58) tends to the Dirac δ-distribution, namely,

In Fig. 4 we visualize three terms of this Dirac δ-sequence. The value y0 is obtained from the equation 
b(y0) = 0 and for large c it takes the form b(y) = 2(y − 1/cy) . Hence y0 = 1/

√
c and b′(y0) = 4 . Inserting (59) 

into (57) yields the asymptotics

which is the same as for the Drude model.

Appendix C: The Debye‑type model: weak coupling
For the Debye memory function (25) the dimensionless zero-point energy reads

The dimensionless quantities are defined in Eq. (12). In the limit of weak coupling, c ≪ 1 , it can be well 
approximated by the equation

It has the same asymptotics as for the Drude model of dissipation.
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