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1 Introduction

In recent years, an interpersonal attraction in the conversation has been studied exten-
sively. Figurative language such as sarcasm and the rhetorical question is a ubiquitous part
of conversation[22]. Creating figurative language generation modules can make chatbots
become more human-like[13]. Some recent studies have proposed chatbots that generate
sarcasm[18][2]. However, they do not focus on generating rhetorical questions (RQs). It
is necessary for chatbots to generate RQs to be more human-like because RQs are usually
used in daily conversation and social media dialog[19].

RQs are questions but not meant to obtain an answer[11]. People usually use them to
express their opinions in conversation. Most of the time, a question can be recognized as
an RQ when both the speaker and the listener know the answer or the question’s situation.
For example, “[The situation: Someone arrives late for a meeting. As the chair of the
meeting enters, they utter:] Do you know what time it is?[9]” All of the speakers and the
listener know the time. Therefore the listener knows that the speakers want to declare that
“the listener is late.”

To recognize an RQ and obtain the speaker’s opinion, the listener needs to use the
knowledge shared between them. Furthermore, there is a specific interrelation between
irony and RQs[19]. Therefore RQs are always used to express their negative opinions.
Questions based on the valence-reversed commonsense knowledge can be easily recog-
nized as RQs because both speaker and listener know their answer are negative. For ex-
ample, the commonsense knowledge “Giving money to the poor will make good world”
can be converted into an RQ: “Will giving money to the rich make a good world?”

This study aims to generate a negative-answering RQ by using valence-reversed com-
monsense knowledge sentences to make the chatbot more appropriate and human-like in
a conversation. Additionally, we use a situation classifier analyzing previous contexts to
decide when to generate a literal response, sarcastic response, and RQ.

The rest of this paper is as follows in Section 2, we review previous researches related
to the RQ generation and the classification for conversation. In Section 3, we introduce
the techniques that we used in this study. Pre-trained models: BERT, RoBERTa, com-
mon sense knowledge scoring model, grammatical error correction model, DIALOGPT;
Neural network architecture: Bi-LSTM; modules: Sarcasm generation. In Section 4, we
show the methodology of the chatbot, the situation classification, and the RQ generation.

In Section 5, we illustrate the situation classifier and RQ generator’s evaluation and their
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result. In Section 6, we conclude a summary and describe the future work.



2 Related Work

2.1 Classification for the Conversation

Ghosh et al.[7] proposed a sarcasm detection for conversation by using pre-trained
word embedding models[6] and attention-based LSTM models to analyze contexts and
responses separately. They address that the previous contexts have a relationship with the
response that improves the sarcasm detection performance.

Oraby et al.[19] proposed an RQ classification for conversation using SVM and LSTM
models. They also experimented with LIWC categories as additional features. The clas-
sification was trained by the merge of RQ, a previous context, and a past context.

In this study, we only select the previous contexts to classify the situation in which
response should be output in a conversation by using a neural network which is introduced

in Section 4.2.

2.2 Sarcasm Generation

We do not find any research on RQ generation. However, there is a relationship be-
tween sarcasm and rhetorical question. We refer to the research of sarcasm generation to
obtain the idea of a rhetorical question.

Research on sarcasm generation is just started. Joshi et al.[13] presented a SarcasmBot
that extracted information from user input by a rule-based generator selector. It decided
the sarcasm generator with eight-generation modules (such as offensive word response
generator and hyperbole generator) to generate a sarcastic response.

Mishra et al.[18] proposed a sarcasm generator that converted a literal negative opin-
ion into a sarcasm. Their method was based on a characteristic of sarcasm that it usually
had both of the positive sentiment phrase and the negative situation at the same time. The
first filtered the sentiment words and phrases from the input. Next, they reversed the sen-
timent words and phrases, which had a strong positive sentiment. Then, they used the
filtered input to retrieve the related negative situation sentences from the negative senti-
ment sentences corpus. Finally, they synthesized the positive sentiment phrase and the
negative situation phrase to obtain a sarcastic output.

Chakrabarty et al.[2] proposed a state-of-the-art sarcasm generator that converted a

literal input into a sarcastic sentence. We use it in our chatbot to generate sarcastic re-
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sponses, so we introduce it in Section 3.1.
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Figure 3.1: The pipeline of the sarcasm generation[2].

3 Technical explanation

3.1 Sarcasm Generation

Chakrabarty et al.[2] proposed a state-of-the-art sarcasm generator that converted a
literal utterance into a sarcastic sentence based on commonsense knowledge. We use
it in our chatbot to generate sarcastic responses and evaluate them by contrasting them
with RQ responses and literal responses. The pipeline of the whole sarcasm generation is

shown in Figure 3.1.

They create three modules to generate sarcasm. These modules are introduced below.

3.1.1 Reversal of Valence

There is a characterization of the sarcasm that usually contains a positive sentiment
phrase and a negative situation[15]. So this module uses a word-level negative score ob-
tained from SentiWordNet[5] to reverse the word’s valence with the highest negative sen-
timent score. It makes the positive sentiment phrase in the sentence. When the negation
word “not” or word ending in “n’t” exist, they remove it without reversing the negation

word.



3.1.2 Retrieval of Commonsense Context

First, this module extracts nouns, adjectives, adverbs, and verbs from the literal utter-
ance. Next, it feeds them to the COMET([1] model initiated with a pre-trained GPT[20]
model and fine-tuned by the ConceptNet corpus[25] to get the commonsense term or
phrase. Then, they use it to retrieve sentences from the corpus of a high-quality sentence
website!. Finally, they modify the subject of the sentence to keep it the same as the origi-
nal sentence and use a neural grammatical error correction system[28] to correct grammar

errors for it.

3.1.3 Ranking for Semantic Incongruity

They fine-tuned a RoOBERTa-large[17] pre-trained model to calculate semantic incon-
gruity scores for ranking the sentences’ appropriateness. After using the model to predict
the rank of sentences, the module concatenates the literal utterance with the top-ranked

sentence to finish the generation of a sarcasm.

3.2 Transformer Pre-trained models

We fine-tuned four pre-trained models, i.e., BERT, BERT Large, RoOBERTa, and RoBERTa

Large model in this study for the situation classification.

3.2.1 BERT

Devlin et al.[4] proposed a language representation model that stands for bidirectional
encoder representations from Transformers (BERT). Unlike traditional encoder represen-
tation models, BERT is able to pre-train representations from unlabeled text by condition-
ing both right and left contexts in all layers.

The BERT encoder uses the encoder part of Transformer. It is a multi-layer bidi-
rectional Transformer encoder. Because the self-attention mechanism is allowed in the
Transformer, BERT also uses the self-attention. So it can be fine-tuned easily. Differ-
ent from GPT[20] Transformer uses a one-way self-attention that every token can only
attend to context to its left, BERT Transformer uses bidirectional self-attention. These
self-attentions arrange in parallel, called Multi-Head-Attention, as shown in the “Trm”

part of Figure 3.2. BERT is a combination of these units, as shown in Figure 3.2.

Thttps://sentencedict.com/



Figure 3.2: The structure of BERT model[4].

In BERT, A sentence or a pair of sentences specified as a token embedding. The token
embedding for them uses WordPiece embeddings[26]. With a 30,000 token vocabulary to
divide and tokenize in units more refined than word units. Every sequence’s first token is
always a unique classification token ([CLS]) for the first token in the series. There is al-
ways a special token ([SEP]) in the middle of two sentences to differentiate the sentences,
and it is also used in the last token.

The pre-learned models distributed by Google in the repository uses Books Corpus
(800 million words) and English Wikipedia (2.5 billion words) for learning. The BERT-
Base-uncased has 12 layers, 768 hidden layers, 12 attention heads, and 110M parame-
ters. The BERT-Large-uncased has 24 layers, 1024 hidden layers, 16 attention heads, and
340M parameters.

3.2.2 RoBERTa

Liu et al.[17] proposed a robustly optimized BERT pretraining approach (RoOBERTa).
RoBERTa has the same architecture as BERT, but it uses a different tokenizer that is a
byte-level BPE. Therefore, Roberta does not have the special token ([SEP] and [CLS])
and token type IDs are no longer used. They improved BERT by four measures:

e Training the model longer with bigger batches and more data.
e Removing the next sentence prediction objective.

e Training on longer sequences.
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Figure 3.3: The structure of an LSTM memory block[10].

e Dynamically changing the masking pattern applied to the training data.

They also use a larger dataset (CC-NEWS) to train the model.

Every sequence’s first token is always a special classification token (< /s >) for the
first and last token in the series. This token is also added in the middle of two sentences
to differentiate the sentences.

The pre-trained ROBERTa model has 12 layers, 768 hidden layers, 12 attention heads,
and 125M parameters. The RoBERTa-Large-uncased has 24 layers, 1024 hidden layers,
16 attention heads, and 355M parameters.

3.3 Bidirectional Long Short-Term Memory
3.3.1 Long Short-Term Memory

Long Short-Term Memory (LSTM) is an architecture that is proposed by Hochreiter
et al.[12] and extended by Greff et al.[10]. An LSTM layer consists of a set of recurrently
connected blocks, which are known as memory blocks. Each of them includes recurrently
connected memory cells and three units: the input, output, and forgets gates that provide
continuous analogs of write read and reset operations for the cells. Figure 3.3 shows the
structure of the memory block.

The network that contains LSTM layers is well-suited to the classifying tasks because

it is developed to solve the vanishing gradient problem in training.
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Figure 3.4: The structure of a BRNN unfolded in three-time steps[23].

Table 3.1: Tuples with the left term “soak in hotspring” when searching in the common-
sense knowledge base

relation right term
UsedFor heal
HasPrerequisite take shower
UsedFor relaxation
MotivatedByGoal | your muscle be sore

3.3.2 Bidirectional Recurrent Neural Networks

Bidirectional long short-term memory (Bi-LSTM) network is one of the bidirectional
recurrent neural network (BRNN)[23]. The BRNN connects two hidden layers of op-
posite directions to the same output. Therefore, the output layer can receive data from
backward and forward states at the same time. Figure 3.4 shows the structure of a BRNN

unfolded in three-time steps. It works well in context input.

3.4 Common Sense Knowledge Scoring Model

Li et al.[16] convert ConceptNet’s[24] commonsense resources by formulating the
problem as a commonsense knowledge base. The base contains 600,000 tuples of com-
monsense knowledge phrases that the tuples consist of a relation, a left term, and a right
term. When we search the “soaking in a hotspring” in the base, some examples are shown
in Table 3.1.

They trained a neural network model for scoring the relationship of two tuples by
using the base. The base has 34 relation types. The model analyzes the left term and the
right term to predict each relation type’s probability.

11



3.5 Grammatical Error Correction Model

Grammatical Error Correction (GEC) is a sequence to sequence task where a model
corrects an ungrammatical sentence to a grammatical sentence. Kaneko et al.[14] pro-
posed a model for GEC. They incorporated a pred-trained mask language model (MLM)
into an encoder-decoder model to deal with the GEC task. They called it the BERT-fuse
GED model.

The MLM that Kaneko et al. used is a BERT-fused neural machine translation (NMT)
model developed by Zhu et al.[29] uses the representation from BERT by feeding it into
all layers instead of feeding input embeddings only. It also uses the attention mechanism
to adjust how each layer interacts with the representations.

The BERT-fuse GED model is one of the most effective techniques in GEC tasks. We

use it to check and revise the grammatical error in our generated sentences.

3.6 DIALOGPT model

Zhang et al.[27] proposed a large, tunable neural conversation response generation
model (DIALOGPT) that is able to produce consistent responses. The model is based on
the GPT-2. It is trained on about 147M posts from Reddit comments. These comments

are filtered by removing the contexts and the responses that accord with the rules below:

e [t contains a URL.

It contains a word that is repeated at least three times.

The response does not contain at least one of the top-50 most frequent English

words.

The response contains special markers.

It is longer than 200 words.
o [t contains offensive language which exists in a large blocklist.

They trained the model by three different configurations, which are shown in the Table
3.2.

12



Table 3.2: Model configurations. “B” denotes batch size per GPU, “D_emb” is the Em-
badding size[27].

Model | Layers | D emb | B
117M 12 768 128
345M 24 1024 64
762M 36 1280 32

13



4 Methodology

4.1 Chatbot

The chatbot in this study works as shown in Figure 4.1. It uses the user’s utterances
and previous utterances to generate appropriate responses. The following three steps pro-

cess the chatbot.

4.1.1 Step A

The situation classifier selects an appropriate response type from among sarcasm, RQ,

and literal responses. The situation classifier is introduced in Section 4.2.

4.1.2 StepB

The literal response generator generates a literal response by using preceding utter-
ances. We use the DIALOGPT-Large model that is introduced in Section 3.6 after fine-
tuning to generate literal responses. We fine-tune the DIALOGPT model by setting the
parameters. The settings are shown in Listing 1. All of them are used to make the model

generate more human-like utterances than the original model.

do_sample=True The model can randomly choose the next word w; in the generation

according to its conditional probability distribution shown in Equation 4.1.
max_length=1000 It makes the model can only admit the first 1000 words.

top_k=50 It limits the sampling pool to the 50 most similar words for the next word

candidate.

top_p=0.95 The number of samplings chosen from the sampling pool, which is as small
as possible. Simultaneously, the sum of selected words = probability mass must

higher than the probability of 0.95.

temperature=0.9 The temperature makes the next word distribution less random when

it is close to one.

Generated literal responses are directly used to respond to a chatbot (when the situ-
ation classifier judged that a literal response is most appropriate) or input to the RQ and

sarcasm generator.
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4.1.3 Step C

When the situation classifier decides to generate an RQ response, an RQ generator
converts the literal response into an RQ response, explained in Section 4.3. When the clas-
sifier decides to generate a sarcasm response, a sarcasm generator converts the literal utter-
ance into a sarcasm response. We use the sarcasm generator proposed by Chakrabarty et
al.[2]. It concatenates valence-reversed literal utterances with the sentences retrieved from

an online sentence dictionary with high-quality sentences using commonsense phrases.

w; ~ P(wlwy,-1) 4.1)

Listing 1: The parameters that we set for the DIALOGPT model

do_sample=True,
max_length=1000,
top_k=50,
top_p=0.95,

temperature=0.9,

4.2 Situation Classification

In this study, we fine-tune four pre-trained models, i.e., BERT, BERT large, RoBERTa,
and RoBERTa large, to classify which of RQ, sarcastic and literal responses are appropri-
ate according to the current situation.

Two previous contexts before a response in a conversation are the target that we choose
to analyze. When several previous contexts exist in a conversation, we choose the latest
two contexts, i.e. there is a conversation that contains “context_3”, “context_2”, “con-
text_1” and “response”. The “response” is a reply to the “context_1”. We choose “con-
text 2” and “context_1”. Next, we add the separation token between them and then con-
catenate them to one sequence. Then we encode the sequence by the pre-trained model.
Finally, we input it into our classification model. We describe two model families for the
situation classification. The first model is a base-line.

Figure 4.2 shows the structure of the BERT base-line model. Figure 4.4 shows the
structure of the BERT large model. Figure 4.6 shows the structure of the roBERTa model.
Figure 4.8 shows the structure of the roBERTa large model.
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Figure 4.1: The flowchart of the chatbot: The components originally proposed in this
study are indicated in blue.
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Parentheses in the figures show the input shape and output shape of current layers.
The question mark means this dimension is variable. They are defined in the fit methods.
BERT and BERT-large use the same model as well as Roberta and Roberta-large use the
same model. The difference between them is the output shape because large models have

a large size of the hidden layers.

o BERT models have three input layers that are the input IDs (input_ids), attention
mask (attention_mask), and token type IDs (token_type_ids). All of them are gen-
erated by the BERT tokenizer. The input IDs contain the index of the encoded
sequence. The attention mask points out the range of tokens that the model should
pay attention to it. Token type IDs are not used in the classification case, so it is ini-
tiated to a list of zero. Otherwise, ROBERTa models have two input layers: the input
IDs (input_ids) and attention mask (attention_mask). All of them are generated by

the RoBERTa tokenizer. The token type IDs are no longer used in ROBERTa.
e The TFBertModel is the pre-trained model.
e The flatten layer reduces the elements’ dimension to one.
e The dropout layer drops out units randomly to prevent over-fitting too early.
e Softmax activation of the last layer to determine the results.

The second model uses two bidirectional LSTM layers instead of flatten layer to get a
better result.

Figure 4.3 shows the structure of the BERT model with Bi-LSTM layers. Figure 4.5
shows the structure of the BERT large model with Bi-LSTM layers. Figure 4.7 shows the
structure of the roBERTa model with Bi-LSTM layers. Figure 4.9 shows the structure of
the roBERTa large model with Bi-LSTM layers.

4.3 RQ Generation

We propose an RQ generator that converts a literal response to an RQ using common-
sense knowledge. The structure of the RQ generator is shown in Figure 4.10.

The generator reverses the valence of commonsense knowledge that is relevant to the
literal response and converts it into an interrogative sentence. The method of valence

reservation is the same as the sarcasm generation, which is introduced in Section 3.1.1
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input: | [(7, 200)] input: | [(?, 200)] input: | [(7, 200)]

InputLayer InputLayer InputLayer
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' /
input: ?, 200), (?, 200), (?, 200
TFBertModel P I( ) ( . ) ( . )
output: ((?, 200, 768), (7, 768))
input: | (7, 200, 768)
Flatten -
output: | (7, 153600)
y
input: | (2, 153600)
Dropout -
output: | (7, 153600)
y
input: | (2, 153600)
Dense

output: (7, 3)

Figure 4.2: The structure of BERT model.

The generator analyzes the sentence structure of the literal response by using the part-of-
speech tagging (POS) to mark up each word in the initial response as corresponding to a

particular part of speech[3]. It also checks the sentiment polarity of all words.

When a verb has the highest sentiment score, the generator reverses its valence to
reverse the whole meaning of the sentence. The generator extracts keywords from the
original literal response, such as the verbs, nouns, and adjectives, and use the common-
sense knowledge scoring model[16] to calculate a commonsense score. When the score
is higher than 0.5, the valence-reversed literal response is converted to wh-question. The
method of question generation is introduced in Section 4.3.1. When the score is lower

than 0.5, the initial literal response is output directly.

When the highest sentiment word is an object, a subject, or no sentiment phrase, the
generator extracts keywords from the literal response and searches on the commonsense
knowledge sentences using the keywords to obtain commonsense knowledge sentences.
The commonsense knowledge sentences is introduced in Section 4.3.3. When no sentence
can be found, the initial literal response is output directly. Next, the generator selects the
top ten commonsense knowledge sentences topically similar to the initial response. The
framework of sentence transformers[21] scores the similarity of sentences. Then, the

generator reverses the valence of these commonsense knowledge sentences and converts
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InputLayer InputLayer InputLayer
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Bidirectional(LSTM)
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output: | (7, 256)
input: | (7, 256)
Dense
output: (7, 3)

Figure 4.3: The structure of BERT model with bi-LSTM layers.
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input: | [(7, 200)] input: | [(?, 200)] input: | [(7, 200)]
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y
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Figure 4.4: The structure of BERT large model.

them to yes-no questions. After that, it concatenates them behind the initial response
to obtain RQs. Finally, the generator selects the most appropriate RQ response using a
fine-tuned BERT model, which is introduced in Section 4.3.2 that computes candidate

responses’ appropriateness.

4.3.1 Question Generation

We use the classic method to convert the question because we do not find a dataset
that contains short sentences and their questions. The question generation first obtains the
POS marks for the initial response and all words’ sentiment polarity.

When a verb has the highest sentiment score, the generator converts the response to
wh-question. Firstly, it uses the Stanford Parser? to find named-entity recognition of the
subject. Secondary, it matches the dictionary that we made to obtain interrogative words.
The dictionary is shown as the Listing 2.

When there is no matching result in the dictionary, the generator finds the POS tags
that are the Proper Nouns Singular (NNP), Proper Nouns Plural (NNPS), Common Nouns
Singular or Mass (NN), and Common Nouns Plural (NNS) in the response. When there

is no word matched with these POS tags, the initial response is output. When there are

Zhttps://nlp.stanford.edu/software/lex-parser.shtml
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Figure 4.5: The structure of BERT large model with bi-LSTM layers.
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Figure 4.6: The structure of ROBERTa model.

words with these POS tags, the generator will do:

e [t finds the words of indefinite pronouns that do not refer to any specific person,
which are usually used in the conversation. Such as “everybody” and “everyone”.
It also searches for the POS tag of Personal Pronouns (PRP)in the sentences. These

words are converted to the interrogative words: “Who”.

o It searches for the POS tag of Possessive Pronouns (PRP$) and Possessive Endings

’s (POS) in the sentences. These words are converted to the interrogative words:
“Whose”.

e The words of indefinite pronouns that do not refer to any specific things, such as

“everything”, “nothing” and others will be converted to the interrogative words:
“What”.

When the response has no highest sentiment scored verb, the generator converts the
response to a yes-no question. When the first word in the response has the POS tag of
“TO”, it will be converted into “Should we”. When the words in the response have the
POS tag of Modal Verbs (MD), such as “should” and “will”, and there is a verb in the

next two words simultaneously, the generator moves the word that has “MD” tag to the
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Figure 4.7: The structure of RoOBERTa model with bi-LSTM layers.
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Figure 4.8: The structure of ROBERTa large model.

response’s beginning. Otherwise, When the verb has the tags of the past tense (VBD), the
third-person singular present (VBZ), past participle (VBN), or non-3rd person singular
present (VBP), the generator adds “Do” to the response’s beginning. The grammatical
error correction model that we introduced in Section 3.5 can tenses problems. When all

the matching is missed, the generator adds the “Is it that” at the beginning of the response.

4.3.2 The RQ Detection

The RQ uses the same method of the situation classification that we introduced in
Section 4.2. The only difference is the input data and the labels. The generated RQ is
concatenated behind the initial response and then The completed RQ is added behind the
input sequence. The labels are changed to RQ or not RQ. We also trained the fine-tuned
models. The output of the model is the probability of the RQ. The generator uses it as a

score of the appropriation of the RQ response.
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Figure 4.9: The structure of ROBERTa large model with bi-LSTM layers.
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Figure 4.10: The structure of RQ generator.
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Table 4.1: Samples of the commonsense knowledge sentences

Relation ‘ Left_term ‘ Right_term ‘ Knowledge
AtLocation a letter an envelope a letter in an envelope
CapableOf athlete jump high athlete can jump high

HasPrerequisite | make a better world | give money to the poor | give money to the poor will
make a better world

Desires Most people become wealthy Most people want to
become wealthy

Listing 2: The dictionary of NER and interrogative words

ner_dic = {"Who": ["PERSON"],
"Where": ["NORP", "FAC", "ORG", "GPE", "LOC"],
"What": ["PRODUCT", "WORK_OF_ART", "LAW"],
"What event": ["EVENT"],
"What language": ["LANGUAGE"],
"When": ["DATE", "TIME"]}

4.3.3 Commonsense Knowledge Sentences

We build commonsense knowledge sentences by processing commonsense knowledge
sentences base, which is introduced in Section 3.4 to concatenate left and right terms.
Then, make them a complete sentence by filling the phrases between them. We create a
dictionary to choose the filling phrases, shown in Listing 3. The phrases are matched by
the relation type, which is marked in the commonsense knowledge base. Some relation
types are used at a very low probability, so we do not use them.

There are some samples of the base shown in Table 4.1. The column of “Knowledge”

contains completed sentences of commonsense knowledge.
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Listing 3: Commonsense knowledge sentences of filling phrases

left_to_right = {"ReceivesAction": "is",
"AtLocation": "in",
"HasA": "has a",
"IsA": "is a",
"NotCapableOf": "can not",
"Causes": "makes people",
"CausesDesire": "make people want to",
"HasProperty": "is",
"Desires": "want to",
"InheritsFrom": "is inherited from",

"CapableOf": "can",
"NotIsA": "is not a",
"NotHasProperty": "is not",
"NotDesires": "do not want to",
"DesireOf": "have a desire of",

"LocationOfAction": "in",
"MotivatedByGoal": "because",
"PartOf": "is a part of",
"MadeOf": "is made of",
"RelatedTo": "is related to",
"DefinedAs": "is",
"NotHasA": "does not have",
"SymbolOf": "is a symbol of",
"CreatedBy": "is created by",
"UsedFor": "is used of"}

right_to_left = {"HasSubevent": "to",
"HasPrerequisite": "will",
"HasLastSubevent": "after",
"HasFirstSubevent": "before",
"InstanceOf": "such as"}

not_use = {"LocatedNear", "HasPainCharacter",

"HasPainIntensity", "NotMadeOf"}
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5 Experiment

5.1 Evaluation on Situation Classifier

Figlang 2020[8] provided a dataset which contains 13,000 posts of Twitter and Red-
dit contexts and responses. It includes posts as utterances in conversation as well as
their sarcastic responses and non-sarcastic responses. We choose the interrogative sar-
castic responses as RQs. We also selected 797 non-sarcastic interrogative responses and
conducted RQ annotation on the Amazon Mechanical Turk (Amazon MTurk)?. MTurk
is a crowdsourcing marketplace where everyone can outsource their annotation tasks to
a distributed workforce who can virtually perform these tasks. Three MTurk workers
annotated each interrogative response. We showed them the previous contexts and the
response. Then we ask them the response is RQ or not. An example task is shown in the
Figure 5.1. We calculated the average of their annotation of each response. When it is
larger than 0.5, the response is marked as RQ. As a result, 399 questions are annotated as
RQ. There are 6500 sarcasm and 1515 RQs in the dataset. Therefore, we cut the trisection
of the data by three types of responses are literal, sarcastic, and RQ responses, to create
a balanced dataset. 80% of the data is used as training data, and 20% of them are used
as test data. We also use the 5-fold cross-validation to train each model. We evaluate
the proposed situation classifier by accuracy(A), precision (P), recall (R), and F1 scores
(F1). The fine-tuned ROBERTa model with Bi-LSTM layers receives the highest accuracy,
which is 0.43, shown in Table 5.1. The confusion matrix figure without normalization for
the best model is shown in Figure 5.2. There are two reasons that the predicted label of

RQ and sarcasm are majority.

e Mturkers tend to select RQ and sarcasm because the task’s title makes them think

that the answer may have a high RQ probability.

e RQ sometimes has an ironic meaning, and it is appropriate to choose both RQ and
literal in the same situation. It is difficult to predict whether the response is RQ or

sarcasm by only analyzing previous contexts, even by human-being.

3https://requester.mturk.com/
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Is the Response a Rhetorical quesiton?

Select an option
Directions: Yes 1
Read the conversation below and detect whether the response is Rhetorical guestion or not.
The conversation may be not completely.
URLs are replaced by :URL:.
Emoji symbols are replace by the text, such as, :angry_face:.
You can find more information about Rhetorical question by clicking the Instructions buttom .

No 2

Context 0 -> @USER I'm interested in the Moto X Play or Style . Will there be monthly seccurity updates
for these devices ?

Context 1 -> @USER Hello , we have no information on this yet , but we'll keep fans posted on the
availability of future software updates .

Response => @USER Come on ! We're talking about security updates for your new flagships and you
don't have a clue 7 | won't buy .

Figure 5.1: An example task for the RQ annotation.

140

Confusion matrix

120
Literal

100

RQ

True label

80

Sarcasm

F 60

Predicted label

Figure 5.2: The confusion matrix figure for the ROBERTa model with Bi-LSTM layers
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Table 5.1: The results of each model for the situation classifier

Model | Accuracy | Type | Precision | Recall | F1 [ Support |
Literal 0.47 0.38 | 0.42 303
BERT 0.40 RQ 0.38 0.40 | 0.39 303

Sarcasm 0.37 042 | 0.39 303

Literal 0.46 0.45 | 0.46 303
BERT-Large 0.41 RQ 0.39 0.37 | 0.38 303
Sarcasm 0.39 041 | 040 303

Literal 0.52 041 | 046 303
RoBERTa 0.42 RQ 0.37 037 |0.37 303
Sarcasm 0.40 049 | 0.44 303

Literal 0.48 0.44 | 0.46 303
RoBERTa-Large 0.41 RQ 0.40 0.32 | 0.36 303
Sarcasm 0.35 0.45 | 0.40 303

Literal 0.53 0.38 | 0.44 303
BERT + Bi-LSTM 0.41 RQ 0.39 0.33 | 0.36 303
Sarcasm 0.36 0.51 0.42 303

Literal 0.48 037 | 042 303
BERT-Large + Bi-LSTM 0.39 RQ 0.37 0.40 | 0.39 303
Sarcasm 0.34 0.40 | 0.37 303

Literal 0.56 040 | 046 303
RoBERTa + Bi-LSTM 0.43 RQ 0.41 047 | 044 303
Sarcasm 0.37 042 |0.39 303

Literal 0.50 043 | 046 303
RoBERTa-Large + Bi-LSTM 0.42 RQ 0.39 051 |044 303
Sarcasm 0.37 0.31 0.34 303
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5.2 Evaluation on Chatbots
5.2.1 Data

We randomly selected 42 posts from the test data of Figl.ang 2020 dataset[8] and
generated all the types of responses (Literal, sarcasm, RQ and original human responses).
We designed a task on MTurk. Each post was rated by five workers. They were asked
to read the previous contexts and answer the following questions below, and an example
task is shown in Figure 5.3. The complete data for the evaluation and its results are shown

in Section A.1.
e Are these responses rhetorical questions? (Yes/no)
o Are these responses sarcastic? (Yes/no)
e How appropriate is the response in the conversation? (5-point scale)

e How human-like is the response? (5-point scale)

5.2.2 Results of RQ Detection Models

Table 5.2 exhibits the result RQ detection by using different models. The input data
contains the sequence of previous contexts and the generated RQ response. The model
can get both information of the conversation’s situation and the response. Furthermore,
it is only used to classify the sequence contains RQ or not, so the Accuracy of models
is higher than models for situation classifiers. The fine-tuned BERT model receives the
highest accuracy, which is 0.81. All the results of the models are shown in Table 5.2. We
select it to do the RQ detection in the RQ generator.

5.2.3 Results of the Chatbot Evaluation

Figure 5.4 displays all human evaluation results for whether the response is RQ or not.

RQ responses that humans think, which are RQs, are the least. It is because:

e RQ responses are generated by rules. It sometimes makes grammatical errors that

affect the human’s detection.

e The commonsense knowledge is unclear for different people in different countries.

In this evaluation, our tasks are answered by Australia, Brazil, Canada, the United
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View instructions

Directions:

Ve generated some responses that is according to previous contexts by using different methods.
Please read contexts and responses, and then answer questions below.

Emoji symbols are replace by the text, such as, :angry_face:.

The conversations may not be completely.

You can click View instructions for more information about rhetorical question and sarcasm.

Conversation:
Context 1: People of Reddit, what's something you've always wanted to ask a a gay person?

Context 2: Meanwhile, us bisexuals are like, "Hi, I'm still here!"

Response A: Hey, we got a question once... | think you just gotta stop being so greedy
Response B: But you can't have a sexual attraction to female humans.
Response C: But you can have a sexual attraction to female humans. They cordially detest each other.

Response D: But you can not have a sexual attraction to female humans. Does dressing nice makes people attracted to the opposite sex 7

Questions:

1. Are these responses rhetorical questions? (Check the 2. Are these responses sarcastic? (Check the check box

check box if it is true) if it is true)

Responses A[] Responses A[]

Responses B [] Responses B[]

Responses C [] Responses G[]

Responses D[] Responses D[]

3. How appropriate is the response in the conversation? 4. How human-like Is the response?

(On scale of 1 (Not Relevant At All) to 5 (Highly Relevant))  (On scale of 1 (Not human-like At All) to 5 (Highly human-

ik
Responses A Ike)

Responses A

Responses B
Responses B

Responses C
Responses G

Responses D
Responses D

Figure 5.3: An example task for chatbots evaluation.
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Table 5.2: The results of each model for the RQ detection

Model Accuracy | Type | Precision | Recall | F1 | Support
BERT 081 Ro" 078 | 08s [og | 0
BERT-Large 078 | TRo 1074 o085 Tos | I
ROBERTa 074 | TRG 1076 | om0
ROBERTa Large 060 kG070 | 066 068|303
BERT 4 BILLSTM | 080 | =pot g gesgr 303
BERT-Large + Bi-LSTM 0.74 Lilgal 8:;; 8:;2 8:;3 §8§
RoBERTa + Bi-LSTM 0.73 Lgeéal 8:33 8:;3 8:;? ;82
RoBERTa-Large + Bi-LSTM |  0.65 Lilgal 8:22 8:2? 8:22 383

Table 5.3: Scores of the chatbot in a different response situation. The leftmost column indicates
the type of response (i.e., literal, sarcasm, or RQ) selected by the situation classifier. The rows
indicate that the mean evaluation scores for four responses in each situation.

(a) Appropriateness
Type | Human | Literal | Sarcasm | RQ
Literal 3.63 342 3.15 3.13
Sarcasm 3.98 3.46 342 3.40
RQ 3.52 3.39 3.40 3.47
(b) Human-likeness
Type Human | Literal | Sarcasm | RQ

Literal 3.70 3.53 3.28 3.45
Sarcasm 4.15 3.62 3.66 3.37
RQ 3.58 3.56 343 3.39
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Figure 5.4: The results of the human evaluation for whether the response is RQ or not.
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Figure 5.5: The results of the human evaluation for whether the response is sarcastic or
not.
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Kingdom, and the United States. For example, the question “Does the democratic
party is a United States political party?” has a vague answer for different people.

Three workers think it is an RQ, but two workers believe it is not.

Figure 5.5 displays all human evaluation results for whether the response is sarcastic
or not. Sarcastic responses, which humans think are sarcasm, are most selected. It is
because that there is the model in the sarcasm generator that ranks sarcastic responses by
the semantic incongruity. It selects the most sarcastic responses from generated responses,
So workers detected that it is sarcastic no matter it is appropriated for the conversation or
not.

Table 5.3 displays each type of response’s average score is rated by workers when the
situation classifier classifies the situation.

Figure 5.6 shows that when the situation classifier chooses RQs, RQ responses achieve
a higher score on appropriateness than literal response and sarcasm. The additional RQ
makes the response more appropriate in the RQ situation. For example, Table 5.4 shows a
post that is classified as a RQ situation. The one who speak the last context thinks that the
idea of the poll is a good idea, and he/she may be a theist. Therefore, when responses want
to against his/her opinion, people think the RQ that aims at theism is more appropriate.
However, when the literal generator misses the important information from the previous
contexts, the RQ generator can not make the appropriate RQ response even in the RQ
situation such as the example in Table 5.5. The literal generator misses the information
about the carbon tax, which is vital in the conversation. It makes the RQ generator’s
response only talking about climate change, which is not related to the previous contexts.
On the other hand, as we said that the RQ generator converts question based on rules that
changes the structures of the sentence. Sometimes grammatical errors cannot be fixed by
the grammatical error correction model. Consequently, the RQ responses are rated as less
human-like than other responses.

Figure 5.7 shows that when the situation classifier selects literal responses, both ap-
propriateness and human-likeness scores are higher than other responses, except for the
human response. Since both the sarcasm generator and the RQ generator are based on the
literal response. When the previous contexts show that it should be a literal response in
this situation, people tend to choose the literal one. Furthermore, there is a high probabil-
ity that the literal response is also appropriated for a conversation when sarcasm or RQ is

appropriated for it.
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Figure 5.6: Each type of response’s average score is rated by workers when the situation
classifier decides to generate RQ.

Figure 5.8 shows that when the situation classifier decides to respond a sarcasm, the
appropriateness scores are lower than the literal responses. However, it has a higher score
in human-likeness. The semantic incongruity ranking selects the most sarcastic response,
which makes the response more human-like. However, the sarcasm generator concate-
nates the valence-reversed literal response with a directly selected sentence from a sen-
tence corpus. The sentence sometimes does not appropriate to the current conversation.

We average the human-rated appropriateness results and select the response, which
has the highest score as the true target. Table 5.6 is the result that when we use the
situation classifier results as estimated targets and the true targets to get classification
metrics. The accuracy of this evaluation is 0.33. Figure 5.9 shows that people tend to
speak sarcasm and literal rather than the RQ. But as the result of Table 5.3, when the
situation is appropriate to speak RQ, people also give a high score to RQ, but lower than
the top one. The result is not good because RQs are usually fitting for choosing both RQ

and literal in the same situation.
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Figure 5.7: Each type of response’s average score is rated by workers when the situation
classifier decides to generate literal responses.

Table 5.4: The example of a post that RQ situation. “App” means the scores of appropri-
ateness; “HL’ means the scores of human-likeness

| Type Utterance | App | HL |
Context 2 Please tell me that you’ve seen mine and poll , we’ve had an
argument about this for over a year and we’ve actually got polls on
this right now , it’s legit , split down the middle
Context 1 It should be praised by God’s , oh wait , GODS MADE THIS
BRILLIANT IDEA ! !'!
Human So you hate your own creation ? You really thought through 3.0 | 40
that one well
Literal I’'m pretty sure God wouldn’t have the money to pay for a poll. 375 | 3.0
Sarcasm | I’m pretty sure god wouldn’t have the money to default for a poll. | 3.75 | 3.75
Happy am I who owes nothing
RQ I’'m pretty sure God wouldn’t have the money to pay for a poll. 425 | 35
Can atheists agree that god does exist ?
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Figure 5.8: Each type of response’s average score is rated by workers when the situation
classifier decides to generate sarcastic responses.
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Table 5.5: The example of a post that RQ situation. “App” means the scores of appropri-
ateness; “HL’ means the scores of human-likeness

Type | Utterance | App | HL |

Context 2 Did you know that as climate change disrupts existing
wind patterns , we are likely to have worse and harsher winters as

the cold Arctic air is no longer held back by those same wind patterns ?
I know the difference between climate and weather is challenging

for you, but still.
Context 1 So ... to hedge against climate change we should pay
carbon tax to the government , so they can give that same money back to
tax payers :person_shrugging: :male_sign: . I guess that will normalize
those wind patterns and will likely prevent catastrophic fires etc ? ?
BRILLIANT IDEA ! !'!

Human more like : appropriate taxation can help steer consumers spending 36 | 2.8
habits directing them to less environmentally disruptive behaviours and
consumer choices . Ppl are driven by price more than moral and principle .
that one well

Literal That’s like a reverse climate change. 24 | 34

Sarcasm That’s like a reverse climate change Nuclear winter - semi-polished 24 | 2.8
basmati rice?

RQ That is like a reverse climate change. Is it that climate change causes 2.6 | 2.8

global warming ?

Table 5.6: The Classification Report of the Evaluation on the Chatbot.

| Type | Precision | Recall | F1 [ Support |
Literal 0.29 045 | 0.36 11

RQ 0.22 0.14 | 0.17 14
Sarcasm 0.44 0.41 0.42 17
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Figure 5.9: The confusion matrix figure for the situation classifier’s predict and the highest
human-rated appropriateness results
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6 Conclusion and Future Work

In this study, we propose a method for generating RQ based on the commonsense
knowledge and the chatbot application that can decide which of RQ, sarcastic, and literal
response should be generated by analyzing users’ utterances and previous contexts. The

conclusion of findings as follows:

e RQ sometimes has an ironic meaning, and it is appropriate to choose both RQ and
literal in the same situation. It is difficult to predict whether the response is RQ
or sarcasm by only analyzing previous contexts, even by human-beings. Yet, the

classification with Bi-LSTM layers can still detect the right response sometimes.

e The proposed RQ generator and situation classifier is effective in that RQs are more
appropriate than literal and sarcastic responses when the classifier decides to gener-
ate RQ responses. However, the generated RQ responses are less human-like than

other types of responses beacuse of grammatical errors.

In the future, we would like to develop a model for converting sentences to questions
that enables the chatbot to generate a higher quality of RQs and to be more human-like.
The literal generator’s problem misses the information in previous contexts affects the
RQ response’s appropriateness, so we would like to extract the keywords from previous
contexts to improve the RQ response’s suitability in the conversation. Furthermore, we

would like to add features to improve situation classifier model.
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