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Abstract: This work proposes separating data analysis from hyperspectral enhancement or
editing, providing a robust, context-independent, fully-tunable framework for biomarker-based
contrast in wide-field imaging with a series of reliable properties that could enable its use in
guided surgery. Some applications of this method powered by deep learning diagnostics will
be discussed and shown.
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1. Introduction
In this particular context, the term hyperspectral enhancement refers to the alteration of natural spectral properties
in a hyperspectral image (HSI) so that their reconstruction to a visualizable domain highlights or enhances pixels
with specific molecular or spectral properties. Current state-of-the art methods for image enhancement apply Principal
Components Analysis (PCA), which is based on the Singular Value Decomposition (SVD), as part of their workflow
[1–3]. The SVD is an operator with a provable unique solution. This unfortunately means that imaging contrast will be
significantly dependent on what is present in the hyperspectral, fluorescence or multimodal images, which may hinder
their translation into a clinical domain.

In this contribution, some examples of how the SVD could potentially damage image contrast are shown, and an
improved method, inspired by previous algorithms, is demonstrated. Instead of extracting what should be enhanced
with PCA, a relevant magnitude of interest must be first found. Then, a colorimetric method with tunable enhancement
gain, contrast, and threshold is provided, essentially mimicking the previous methods but without this sensitivity to
nonessential information in the image. Its resilience and robustness may prove its potential applicability in the field of
guided surgery [4].

2. Materials and methods

Imaging systems Two different imaging systems were used to produce molecular imaging data, namely (1) a hy-
perspectral rotating mirror system [5] and (2) a Perkin-Elmer IVIS CT machine with a retrofitted Spatial Frequency
Domain Imaging (SFDI) device [6]. Both systems are wide-field molecular imaging devices, with the following fun-
damental properties:

• The HSI system is a far-field rotating mirror scanning system capable of an FOV of about 15× 15 cm, a reso-
lution of 1024× 1024 pixels, and 218 channels in the Vis-NIR range (400-1000 nm, about 3 nm per channel).
The device is used in two experiments, namely (a) the acquisition of HSI data of a healthy subject’s hand, and
(b) closed-loop quantification of Intralipid vs. red ink concentrations.

• The SFDI machine allows for 1024×1024-pixel images, an FOV of circa 10×10 cm, and a total of four spatial
frequencies (0.0, 0.1488, 0.6053, 1.3736 mm−1) and four wavelengths (490.0, 550.0, 600.0, and 700.0 nm). The
objective of this device is to enable surgical margin assessment in Breast Conserving Surgery (BCS) specimens.
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Fig. 1. SVD-based enhancement provides different results depending on the frequency distribution
of the various types of spectra in an image.

Hyperspectral enhancement Hyperspectral enhancement consists on editing spectra prior to spectral reconstruc-
tion. By spectral reconstruction we refer to the transformation of Vis-NIR spectral data to representable RGB data, by
means of Color Matching Functions, which attempt to imitate the spectral sensitivity of the human retina [7]. This is
usually approximated by Riemannian sums:

X ≈ k(r� s)x̄T
∆λ , Y ≈ k(r� s)ȳT

∆λ , Z ≈ k(r� s)z̄T
∆λ , (1)

where r = (r1, . . . ,rl)
T is a vector of reflectance data, s = (s1, . . . ,sl)

T is the power spectral density of a CIE-
standardized illuminant, and x̄, ȳ, z̄ are the Color-Matching Functions (CMFs) for a secondary light source (i.e. re-
flected information). Finally, k is a normalization constant, k = 100/(∑l

i=1 siȳi∆λ ). The constant ∆λ is the spectral
resolution.

Hyperspectral enhancement attempts to exaggerate the specific spectral properties of a particular spectrum r by a
particular function r′ = f (r;θ). Here, we denote r′ as the enhanced spectrum, achieved via an enhancement method
f (r;θ), with θ a series of specific parameters. In essence, if θ is not an objective quantity and/or depends on elements
of the image that are non-essential, then its ability to highlight specific spectral signatures will be hindered.

SVD-based enhancement A common method for spectral anomaly detection uses the SVD, or Singular Value De-
composition, of the spectra present in a given HSI image. These methods obtain an enhanced spectrum via the expres-
sion [1, 3]:

r′i =W (ri− si)+ ri, (2)

and here ri represents the original spectrum (as a column vector), r′i is the enhanced spectrum and si is an m-rank
approximation of spectrum ri:

si =
m

∑
j=1

αi ju j + r̄, (3)

with {u j} the left singular vectors of matrix R = (r1| . . . , |rn) with n spectra as column vectors, αi j = 〈ri− r̄i,u j〉 is the
projection of ri− r̄ onto the j-th left singular vector, and r̄ = 1

N ∑
n
j=1 ri is the average spectrum. The matrix W is a diag-

onal matrix with all elements set to zero except for the wavelengths of interest. Essentially, the m-rank approximation
of the spectrum is subtracted to the original data so that the differences that deviate from the most frequent spectra
at specific wavelengths can be exaggerated. This limits the method to only consider statistical anomalies, which are
largely dependent on the number of similar or dissimilar spectra present on a given image or, as can be demonstrated,
on background elements not pertaining to the specimen of interest [4].
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Context-dependence of SVD-based methods Consider the examples shown in Figure 1. Three types of spectra 1.(a)
are synthetically generated: Types A, B, and C. We will try to enhance the reflectance valley about 580 nm of Type
C spectra with the traditional method. In the first scenario, 200, 200, and 50 spectra with AWGN noise are generated
for each type, respectively (as shown in 1.(b)). The ’rare’ spectrum for such scenario is Type C. The result of applying
the SVD to these 450 spectra results in 1.(c), where the first singular vector partly explains the peaks of Type A and
B spectra (at 420 and 480 nm), but not the peaks of Type C. Considering m = 1 for the m-rank approximation, we
obtain that, as a result, the most different spectrum is Type C 1.(d), which is then properly enhanced 1.(e). However,
this contrast is significantly reduced when we provide the SVD with 50, 200, and 200 spectra of Types A, B, and
C, respectively. For this second scenario (1.(f) through 1.(h)), the least common spectrum is Type A, which affects
enhancement at 580 nm for Type C spectra. This dependence on the relatives ratios of spectral signatures within an
image may hinder its applicability in an environment with varying context and in constant movement.

Affinity-based color enhancement (ACE) To achieve a flexible and robust hyperspectral enhancement method,
quantification or detection of anomalies must be achieved separately from the modification of the spectral data. There-
fore, prior to application of the method, a proper affinity function or mapping must be found. An affinity map {ai} is
simply a continuous function that translates the provided data to a map of what should be highlighted. For the exper-
iments showcased below, deep neural networks are trained to obtained the desired diagnostic probability maps. More
specifically:

• Vein enhancement. Vein enhancement required a 6× 100 ELU multilayer perceptron (MLP) network, with a
218×1 input layer and a 3×1 sigmoidal output layer. The three output categories are: (1) Background, (2) Skin
and (3) Veins. A reduced dataset of 600 spectra is produced, while the rest of the pixels (and other images) are
left as test data.

• Chromophore quantification. A network of identical dimensions is set up, but with an 8×1 sigmoidal output
layer. Closed-loop quantification is achieved by preparing a training set of cuvettes with known concentrations,
and a test set with 8 different concentrations: 0%,10%,20%, . . . ,70%. The concentration ci of a given spectrum
is interpolated via ci = ∑

7
j=0 ŷi× (i/10), with ŷ0, . . . , ŷ7 representing the eight output units, which are made to

activate for red-ink-to-Intralipid ratios of 0% through 70%, respectively. A specific concentration ratio can be
targeted with an expression such as ai = σ(− log10(h

2(ci−cob j)
2)), with cobj the objective concentration, h > 0

a desired bandwidth and σ(.) the sigmoid function [4].

• Margin delineation in SFDI This application requires an ensemble of convolutional neural networks, each of
which provides a map of tumor probability and/or malignancy. The ensemble produces an average map of tumor
probability, which is then used as the affinity metric of interest.

Then, the spectral information is edited via applying re,i = ri (1+K · ce · tanh(k (âi +b))), where re,i is the enhanced
output, ri is the original spectrum, K will be is the enhancement gain of the method, ce is the desired output color of
the enhancement, tanh(.) is the hyperbolic tangent function, k is a contrast gain, b is a threshold value, and âi is the
affinity measure value of the spectrum when all the spectra are normalized in the range [0,1], namely âi =

ai−amin
amax−amin

.
The values amin and amax should be known beforehand, by selecting an appropriate affinity metric.

3. Experimental results

Figure 2 provides a general description of the various applications achievable with this method. In the top row, re-
flectance at 850 nm allows for the acquisition of spectral signatures typical of veins and skin. This data can be used for
training, obtaining a probability map for veins in the rest of the image (center). This vein map shall remain constant
regardless of the properties of the background and/or hand orientation, as long as the scatter signatures of veins and
skin remain constant, which is not the case for SVD-based traditional methods [4].

The center row shows the second experiment, pertaining to closed-loop inspection of specific chromophore quan-
tification, demonstrating how deep-learning-powered quantification combined with ACE can provide custom-color
contrast for only cuvettes with 40% red ink-to-Intralipid concentrations. While a trained human may be able to man-
ually detect imprecise or incorrect chromophore or fluorophore concentrations, an automated model can provide an
aid for untrained individuals, or enhance low-SNR fluorescence signals. The output color, contrast and gain of the
enhancement can be set at will, in real time, depending on the needs of the end user. Finally, the bottom row presents
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an example for margin assessment and delineation of a lumpectomy (left) with an ensemble of deep neural networks.
This last example is much simpler, and the affinity function (center) used for enhancement is just a tumor probability
map.

Each application has a different configuration for K, k and b, so that the representation can be dependent on the user’s
objective. Those parameters can be modified in real time, providing additional flexibility. With these particular traits,
the method could perhaps be useful in a variety of applications related to hyperspectral imaging, modulated imaging
and fluorescence-guided surgery, improving contrast as long as an adequate, clinically-relevant affinity function can
be found.
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Fig. 2. Examples of ACE for contrast enhancement. Top row: vein detection algorithms can be
merged with the original spectral data to provide an RGB reconstruction with better contrast. Middle
row: chromophore quantification estimates can also be used; here, 40% ink-to-Spectralon cuvettes
(fifth cuvette from the left in the validation set) are highlighted. Bottom row: enhancing margin
contrast of a Breast Conserving Surgery sample by processing modulated imaging data with a con-
volutional neural network.

4. Conclusions

In this contribution, some issues regarding current hyperspectral enhancement methods have been discussed. The
proposition of a novel method [4] that provides identical results with consistent output shows promise in terms of
applicability to clinically useful scenarios such as vein delineation, chromophore concentration detection, and surgical
margin assessment of lumpectomies.
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