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Resumen en español

El Teorema de Cramér–Wold [30, p.291] establece que una probabilidad de Borel en un
espacio euclídeo está determinada unívocamente por sus proyecciones unidimensionales.
En otras palabras, dos distribuciones son iguales si y solo si todas sus marginales
unidimensionales son iguales.

Una versión mejorada del Teorema de Cramér–Wold aparece en el Teorema de Cuesta–
Fraiman–Ransford [35, p.203]. En virtud de este resultado se tiene que una sola
proyección unidimensional aleatoriamente elegida es suficiente para distinguir de forma
casi segura a dos distribuciones definidas en un espacio de Hilbert separable siempre
que los momentos de una de ellas satisfagan cierta condición. De forma más precisa,
este resultado viene a decir que, bajo la condición mencionada, dadas dos distribuciones
de probabilidad, si las proyectamos en el mismo subespacio unidimensional elegido con
una distribución continua, entonces se tiene que casi seguro, las dos distribuciones son
diferentes/iguales si y solo si las dos proyecciones son diferentes/iguales.

El Teorema de Cramér–Wold justifica el uso de las técnicas de Projection Pursuit (PP)
en los tests de bondad de ajuste, ya que la base de estas técnicas es proyectar los datos
en una serie de direcciones unidimensionales apropiadas. En particular, la selección de
estas direcciones se realiza maximizando un criterio específico de optimalidad que mide
el grado de “interés” de las direcciones. Por ejemplo, en tests de igualdad de dos distribu-
ciones, las técnicas PP pretenden buscar las direcciones donde las distribuciones son lo
más diferentes posible. Como alternativa a estas direcciones (pseudo-)deterministas,
el Teorema de Cuesta–Fraiman–Ransford permite considerar proyecciones aleatorias.
Éstas consisten simplemente en proyectar los datos iniciales de alta dimensión en un
subespacio de baja dimensión seleccionado aleatoriamente. Esta técnica se ha usado
en algoritmos de diversas áreas como optimización combinatoria (Vempala [132]),
recuperación de la información (Bingham y Mannila [20]), aprendizaje automático
(Arriaga y Vempala [9]), reconocimiento facial (Goel et al. [72]), etc.

Las proyecciones aleatorias son rápidas y estables, por ejemplo ver teorema 2.2.2 en
el Capítulo 2. Por tanto, se usan en aplicaciones que reducen la dimensión y que
requieren de cierta eficiencia computacional y preservación de la estructura local de los
datos. Evidentemente, reemplazar datos d-dimensionales por otros de menor dimensión
conlleva una pérdida de información, sin embargo esta desventaja no es tan relevante
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como pudiera parecer a priori, ver por ejemplo Cuesta-Albertos et al. [36] donde se
compara esta técnica con procedimientos PP en test de bondad de ajuste a la normalidad.
Todas estas propiedades llevan a considerar en este trabajo este tipo de proyecciones.
Ahora bien, ¿cómo usar las proyecciones aleatorias? Podemos dividir las soluciones que
aparecen en la literatura según dos puntos de vista: se elige un estadístico apropiado
para el problema considerado en el caso unidimensional y entonces

i) Manejamos solamente una única proyección aleatoria y calculamos el valor del
estadístico.

ii) Calculamos el valor esperado, dada la muestra, del estadístico.

La idea es, por ejemplo, en vez de llevar a cabo un test de igualdad de medias en datos
funcionales, tomar una proyección unidimensional y realizar dicho test en los datos
proyectados unidimensionales. Por lo tanto, i) sería el resultado de usar dicho test con
una única proyección, mientras que ii) sería el resultado de realizar la integración de
los valores de un estadístico (o de unos p-valores) en todas las direcciones posibles.
Este hecho tiene una repercusión importante en la complejidad de cálculo ya que i)
utiliza una única dirección por lo que el procedimiento acabaría en un paso, mientras
que con ii) habría que integrar en las direcciones. La complejidad de esta integral
dependerá de la rejilla elegida que, a su vez, tiene que crecer con la dimensión. En cierta
manera ii) aplica el Teorema de Cramér–Wold, mientras que i) se basa en el Teorema de
Cuesta–Fraiman–Ransford.

Notar que i) es una cantidad aleatoria, pero ii) no lo es. De hecho es el valor esperado
de las cantidades aleatorias de i). Además mientras que es esperable que en la mayoría
de las situaciones, ii) proporcione mayor potencia por manejar más información, podría
suceder que, por ejemplo, en un test de bondad de ajuste tuviéramos dos probabilidades
diferentes pero el valor esperado de un determinado test fuera igual al obtenido bajo la
nula. Con i) esto no puede suceder porque con probabilidad uno todas las marginales
son diferentes.

A continuación analizamos varias características de estos procedimientos.

Sobre el uso de i): Como hemos señalado, el uso de una única proyección aleatoria
simplifica los cálculos en comparación con la integración sobre todas las proyecciones.
Sin embargo en la práctica, i) tiene el inconveniente de que el resultado depende de la
dirección en la que se proyecta y bajo la alternativa la potencia puede ser baja. La forma
más usual de solventar este problema es proyectar en varias direcciones combinando los
resultados usando, por ejemplo, Bonferroni o el False Discovery Rate. No obstante, no
existe una guía clara para elegir el número de direcciones aleatorias a utilizar, sin contar
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además que las técnicas de False Discovery Rate son conservadoras (aunque menos que
las de Bonferroni).

Como solución a los problemas relacionados con la potencia, en este trabajo proponemos
usar el análisis secuencial, que resuelve al mismo tiempo, los problemas de precisar el
número de proyecciones necesarias y la manera de combinar los p-valores. Además los
procedimientos secuenciales utilizan en media menos observaciones que aquellos que
las fijan de antemano para lograr la misma potencia, Tartakovski et al. [130].

El uso de la proyecciones aleatorias como en i), se ha aplicado en diversos problemas
tales como los tests de bondad de ajuste (Cuesta-Albertos et al. [34], Cuesta-Albertos
et al. [36] and Cuesta-Albertos et al. [38]), el análisis de la varianza (Cuesta-Albertos
y Febrero-Bande [32]), tests de linealidad en regresión funcional (Cuesta-Albertos et
al. [39]), para la construcción de profundidades (Cuesta-Albertos y Nieto-Reyes [33]),
etc.

Sobre el uso de ii): Integrar un estadístico a través de todas las direcciones, como se
propone en ii), fue considerado por primera vez en el contexto de la regresión lineal
por Escanciano [50] en su test de bondad de ajuste Cramér–von Mises proyectado. Este
test se ha exportado entre otros contextos al de datos funcionales por García-Portugués
et al. [66]. Este último test fue comparado en Cuesta-Albertos et al. [39] con otro test
propuesto en ibíd, que sigue la filosofía de ii), con resultados empíricos que evidenciaron
que integrar a través de todas las direcciones en ese contexto suele dar una potencia
superior en la práctica, aunque con un coste computacional muy superior O(n3) frente
a O(n).

Debido a las características comentadas, consideramos conveniente usar i) para un
nuevo procedimiento en dimensión alta de detección de outliers y ii) para proponer
una novedosa clase de tests de uniformidad en hiperesferas. A continuación precisamos
estos problemas y las razones que nos han llevado a elegir i) o ii).

- El procedimiento de detección de outliers en datos multivariantes gausianos (ver
Capítulos 3 y 4) consiste en proyectar los datos en un subespacio unidimensional
elegido aleatoriamente donde se aplica un procedimiento de detección de out-
liers unidimensional, similar al de Tukey pero con un umbral que depende de
la dimensión inicial de los datos y del tamaño muestral. Como ya hemos co-
mentado anteriormente, hay varias razones para usar más de una proyección y
para determinar el número de proyecciones necesarias usaremos aquí el análisis
secuencial.
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El problema de detección de outliers en situaciones donde es factible estimar
la matriz de covarianzas puede considerarse resuelto. En cambio, el interés de
nuestra propuesta radica en escenarios de alta dimensión donde esta estimación
no es factible. A su vez, en aquellas situaciones en las que aparecen grandes
diferencias entre los autovalores de la matriz de covarianzas, un outlier situado en
la dirección del valor propio asociado al mayor autovalor, va a ser outlier en un
conjunto “pequeño” de direcciones, por lo que un procedimiento basado en ii) no
lo puede detectar. Por ello, en este contexto es preferible usar i).

- La clase de tests de uniformidad en la hiperesfera está basada en la integral a lo
largo de todas las posibles direcciones de una discrepancia cuadrática ponderada
entre la función de distribución empírica de los datos proyectados y la distribución
uniforme proyectada (ver Capítulo 5). Por tanto, la familia propuesta de tests
depende del peso que se use en la ponderación. Se obtienen expresiones sencillas
para varios tests estadísticos en el círculo y en la esfera y otras relativamente
manejables en dimensiones superiores.

En este contexto hemos usado ii) ya que el procedimiento está concebido para
su aplicación en dimensiones bajas o moderadas y prima la potencia sobre la
complejidad de cálculo.

Veremos en las siguientes secciones de forma más específica las dos aplicaciones men-
cionadas, las conclusiones que hemos obtenido y finalizaremos con los problemas
abiertos que han surgido a lo largo de esta tesis. Los principales resultados del Capí-
tulo 4 aparecen en Navarro-Esteban and Cuesta-Albertos [109] y los del Capítulo 5 en
García-Portugués et al. [70] y García-Portugués et al. [67].

Detección de outliers

El estudio de las observaciones anómalas o outliers ha sido de gran interés desde mitad
del siglo XX. De hecho, actualmente, hay una gran variedad de libros (ver por ejemplo
Barnett y Lewis [14]) y diversos paquetes de software estadístico que versan sobre este
problema. Su detección es una parte importante en el preprocesamiento de los datos
ya que pueden llevar a un modelo mal especificado, a una estimación sesgada de los
parámetros o a resultados incorrectos en general, ver Weisberg [138].

Comúnmente se acepta que un outlier es una observación, o conjunto de ellas, que
parece ser inconsistente con el resto de los datos. Sin embargo, la formalización de la
idea de tal inconsistencia no es directa. Aquí, nos centraremos en comprobar si vectores
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x ∈ Rd son outliers con respecto a una muestra de v.a.’s (vectores aleatorios) i.i.d.
(independientes e idénticamente distribuidos) X1, . . . ,Xn de Rd con distribución normal
de vector de medias µ y matriz de covarianzas Σ, Nd(µ,Σ). Para ello, tomaremos como
referencia la Definición 0.0.1, la cual se basa en el resultado bien conocido de que el
cuadrado de la norma de Mahalanobis de un vector d-dimensional con distribución
Nd(µ,Σ), sigue una distribución chi-cuadrado con d grados de libertad, χ2

d.

Dado 0 < δ < 1, denotamos Cdn(δ) a la raíz cuadrada del δ-cuantil del máximo de una
muestra aleatoria de tamaño n con distribución χ2

d. En otras palabras, Cdn(δ) es la
solución de la ecuación:

P (max {∥X1 −µ∥Σ , . . . , ∥Xn −µ∥Σ} ≥ Cdn(δ)) = δ,

donde ∥X−µ∥Σ = ∥Σ−1/2 (X −µ) ∥, siendo ∥ ⋅ ∥ la norma euclídea y X1, . . . ,Xn son v.a.’s
i.i.d. con distribución Nd(µ,Σ).

Definición 0.0.1. Sea x ∈ Rd y δ ∈ (0,1). Diremos que x es un outlier al nivel δ con respecto
a muestra aleatoria simple de tamaño n y distribución Nd(µ,Σ), si ∥x −µ∥Σ ≥ Cdn(δ).

Así que, dado x ∈ Rd, las hipótesis a contrastar son

H0 ∶ ∥x −µ∥Σ < Cdn(δ) vs. H1 ∶ ∥x −µ∥Σ ≥ Cdn(δ). (0.1)

Un inconveniente de la Definición 0.0.1 es que la bola que interviene en ella depende de
la matriz de covarianzas, la cual es desconocida en la práctica. Usaremos las proyecciones
aleatorias unidimensionales para evitar su estimación, puesto que cuanto mayor es la
dimensión, más compleja es esta estimación, siendo imposible en dimensiones altas a
menos que se imponga una estructura a Σ.

El Algoritmo 1 muestra el esquema del procedimiento que proponemos para el contraste
(0.1) .

La elección de los parámetros a y b se discute en la Sección 4.5. Resulta que dependen
del tamaño muestral, de la dimensión del subespacio y de Σ, ver (4.5) y Proposición
4.2.5. Esta dependencia será analizada a través del número esperado de proyecciones
aleatorias necesarias para tomar una decisión sobre el punto que estamos clasificando.
Sobre la estimación de ν̂V y λ̂V empezaremos asumiendo en el Capítulo 3 que µ y Σ
son conocidas. Posteriormente, en el Capítulo 4, los estimaremos por medio de la media
y desviación típica muestrales, las cuales serán reemplazadas por la mediana y la MAD
(median absolute deviation) muestrales para robustificar el método.
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Algoritmo 1: Procedimiento propuesto para contrastar (0.1)

1) Seleccionar a, b ∈ R+, a ≤ b

2) a) Tomar una v.a. V con distribución Nd(0, Id)
b) Considerar V = V/∥V∥

3) Proyectar x y la muestra en el subespacio generado por V. Es decir, calcular x′V
y X′

1V, . . . ,X′
nV

4) a) Calcular ν̂V y λ̂V, estimadores del centro y de la dispersión de las
proyecciones X′

1V, . . . ,X′
nV

b) Considerar yV ∶= x′V−ν̂V
λ̂V

5) Si ∣yV∣ ∈ [a, b] volver al Paso 2), en otro caso:

- El punto x es declarado como outlier si ∣yV∣ > b
- El punto x es declarado como no outlier si ∣yV∣ < a

Hemos corroborado las propiedades obtenidas con varias simulaciones considerando dis-
tintas dimensiones d = 5,50,100,500,1000, tamaños muestrales n = 50,100,500 y cinco
familias de matrices de covarianzas (la identidad Id, tres que tienen los valores propios
muy dispersos y otra que los tiene más concentrados, ver subsección 3.5.2 para más de-
talles). Además comparamos el método propuesto (denotado RP a partir de ahora) con
otros como Filzmoser et al. [61], que propusieron un método basado en componentes
principales (lo denotamos como PCOut), y Ro et al. [116] con su método del producto
de la diagonal mínima (denotado por MDP). Planteamos dos situaciones para realizar
dicha comparación: s1) tenemos una muestra sin outliers y calculamos la proporción
de puntos que declaramos como outliers; s2) introducimos una contaminación de un
10% de outliers y analizamos la proporción de ellos que son detectados. Para estas
situaciones hemos considerado tres matrices adicionales que cubren escenarios con
marginales independientes, otro con correlacciones relativamente altas y un tercero con
correlacciones aleatorias (ver Subsection 4.7.2 para más detalles).

El objetivo de s1) es comprobar si variaciones en la matriz de covarianzas y/o la
dimensión afectan a la estabilidad de los procedimientos. El resultado ha sido que MDP
depende mucho de Σ (si es diagonal o no), y cuando Σ ≠ Id, la dimensión también
afecta. Además, a medida que disminuye n, el número de puntos regulares declarados
incorrectamente como outliers aumenta. En cambio PCOut y RP son más estables cuando
d varía. No obstante, PCOut tiende a declarar más outliers cuando n = 50, notándose
más esta diferencia cuando n aumenta. Además PCOut parece declarar menos outliers
cuando la dependencia no es demasiado fuerte, mientras que ocurre lo contrario con RP.

xxii



La conclusión es que RP parece dar unos resultados más estables que los que dan MDP
o PCOut.

En s2) MDP funciona aceptablemente cuando Σ = Id, teniendo mejores resultados
que PCOut, sin embargo este comportamiento empeora en la mayoría de los casos
cuando Σ difiere de la identidad sobre todo cuando d aumenta. En general, en esta
situación, podríamos decir que PCOut es el ganador cuando Σ tiene correlacciones altas,
mientras que RP sería la mejor opción en el resto de los casos. Por tanto podríamos
sugerir el uso de PCOut en situaciones altamente dependientes y RP en aquellas no tan
dependientes. El problema con esta recomendación es que para saber en qué situación
estamos deberíamos estimar Σ.

Asimismo hemos aplicado el método a dos conjuntos de datos reales, uno con espectros
de resonancia magnética de muestras de vino y otro con espectros infrarrojos de muestras
de gasolina. Ambos conjuntos fueron analizados en Hubert et al. [80] (Hub a partir de
ahora). En ambos conjuntos vimos que PCOut y RP detectan mejor que Hub los outliers
de forma. Además MDP detecta solamente como outliers aquellos puntos que a simple
vista, en su representación, son anómalos. RP declara también como outliers curvas que
tienen peculiaridades no apreciables a simple vista o aquellas que se encuentran en el
borde de la mayoría de los datos, aunque lo hace con una probabilidad baja.

Los análisis empíricos se han llevado a cabo usando el lenguaje de programación
estadístico R y los códigos se pueden solicitar a la autora (paula.navarro@unican.es).

Tests de uniformidad en la hiperesfera

En ocasiones, contrastar la uniformidad de la distribución que genera una muestra
X1, . . . ,Xn cuyo soporte está en la hiperesfera unidad Ωd−1 de Rd, con d ≥ 2, es uno de
los primeros pasos que se realizan al analizar datos multivariantes para los cuales solo las
direcciones (y no las magnitudes) son de interés, son los llamados datos direccionales. Los
datos direccionales están presentes en diferentes disciplinas tales como bioinformática
de proteínas, ciencias ambientales y biología, ver Ley y Verdebout [99] para un resumen
de los casos de estudio más recientes. Debido a la peculiaridad del soporte, el análisis
riguroso de los datos direccionales requiere una adaptación de los métodos estadísticos
clásicos, siendo Mardia y Jupp [102], Ley y Verdebout [98] y Pewsey y García-Portugués
[113] monografías y recopilaciones actuales de la estadística direccional y sus avances.
Además los tests de uniformidad en Ωd−1 son una herramienta importante para: (i)
contrastar distribuciones esféricamente simétricas en Rd (ver, e.g., Cai et al. [25]); (ii)
realizar tests de bondad de ajuste en el círculo mediante la transformación integral de
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probabilidad (Mardia y Jupp [102, Section 6.4.2]); (iii) tests de bondad de ajuste en
Ωd−1, d ≥ 2 mediante una transformación casi canónica, Jupp and Kume [89, Proposition
1]; (iv); contrastar simetría rotacional en Ωd−1 (ver, e.g., García-Portugués et al. [68]).

Desde la segunda mitad del siglo XX, se ha propuesto un gran número de tests para
evaluar la uniformidad en Ωd−1. Estas contribuciones varían en generalidad (dimen-
sión arbitraria vs. tests de dimensión específica; consistencia contra cualquier tipo
de desviación vs. consistencia solo contra ciertas alternativas) y de la metodología
subyacente (paramétricos vs. no paramétricos), un resumen actualizado puede verse
en García-Portugués y Verdebout [64]. Además de su propia importancia, los tests de
uniformidad en Ωd−1 son herramientas auxiliares cruciales, entre otros, en los siguientes
problemas estadísticos: (i) contraste de distribuciones esféricamente simétricas en Rd

(ver, e.g., Cai et al. [25]); (ii) tests de bondad de ajuste en el círculo Ω1 a través de la
transformación integral de probabilidad, Mardia and Jupp [102, Section 6.4.2]; (iii)
tests de bondad de ajuste en Ωd−1, d ≥ 2, a través de una transformación casi-canónica,
Jupp and Kume [89, Proposition 1]; (iv) contrastar la simetría rotacional en Ωd−1 (ver,
e.g., García-Portugués et al. [68]).

Dada una muestra X1, . . . ,Xn de observaciones i.i.d. de X, si llamamos P a la distribu-
ción de X contrastar la uniformidad en Ωd−1 es el contraste de

H0 ∶ P = νd−1 vs. H1 ∶ P ≠ νd−1, (0.2)

donde νd−1 es la distribución de probabilidad uniforme en Ωd−1.

Se propone el test que rechaza H0 de (0.2) para valores grandes del estadístico

PWn,d−1 ∶= nEγ (∫
1

−1
{Fn,γ(x) − Fd−1(x)}2 dW (Fd−1(x))) , (0.3)

donde W una medida positiva σ-finita de Borel en [0,1] y Fd−1 y Fn,γ son, respecti-
vamente, la función de distribución bajo la nula y la función de distribución empírica
de la muestra proyectada en la dirección aleatoria γ, cuya distribución en Ωd−1 es
independiente de la muestra.

Notar que este estadístico sigue la línea i) puesto que es la esperanza con respecto a
las direcciones γ, que siguen una distribución νd−1, de la conocida norma cuadrática
ponderada de Anderson y Darling [7]. Para el peso w ∶ [0,1]→ R+,

Qwn,d−1,γ ∶= n∫
1

−1
{Fn,γ(x) − Fd−1(x)}2w(Fd−1(x))dFd−1(x),

donde los casos particulares de w ≡ 1 y w(u) = 1/(u(1 − u)) dan los estadísticos de
Cramér–von Mises (CvM) y Anderson–Darling (AD), respectivamente.
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En otras palabras, en vez de tomar varias direcciones aleatorias y agregralas después
como en Cuesta-Albertos et al. [37] (ver Subsección 2.6.2 para más detalles), nuestro
estadístico aúna la información de todas las direcciones de Ωd−1 a través de la esperanza
de Qwn,d−1,γ con respecto a γ. Además hemos reemplazado el peso w por la integración
con respecto de una medida W .

A pesar de tener diferente procedencia, demostramos que la clase propuesta está
muy relacionada con la conocida clase de tests de uniformidad de Sobolev. De he-
cho, probamos que los estadísticos de ambas clases tienen forma de U -estadístico con
kernel actuando en los ángulos entre pares de puntos de la muestra. Nuestra nueva
parametrización va a ser ventajosa al permitir derivar nuevos tests para datos hiperesféri-
cos que extienden claramente los tests circulares de Watson [135], Ajne [4] y Rothman
[117], e introducir por primera vez un test de tipo AD para tales datos. Se obtienen las
distribuciones asintóticas y la optimalidad local frente a determinadas alternativas de
los nuevos tests.

Hemos comparado el funcionamiento empírico de los tests propuestos a través de
simulaciones considerando distintas alternativas, dimensiones d = 2,3,4,11 y tamaños
muestrales n = 50,100,200. Entre las conclusiones que hemos obtenido resulta que el
test AD presenta un comportamiento destacable frente a las alternativas unimodales y
una notable robustez frente a las alternativas no unimodales.

Hemos ilustrado la relevancia práctica de los tests propuestos con el análisis de tres
conjuntos de datos reales vinculados a la astronomía. Esta disciplina es una fuente
natural de datos esféricos y del estudio de la uniformidad de éstos, se puede obtener,
por ejemplo, información sobre el origen de los cuerpos celestes. Los dos primeros
conjuntos de datos considerados ya han sido analizados por otros autores y versan sobre
las manchas solares y los cometas de periodos largos. En general, nuestros resultados
confirman los análisis anteriores. Acabamos con el análisis de la distribución de los
cráteres de Rea, una de las lunas de Saturno. Este conjunto no había sido analizado con
anterioridad desde esta perspectiva

Los análisis empíricos se han llevado a cabo usando el lenguaje de programación
estadístico R y son reproducibles en la librería sphunif, García-Portugués and Verdebout
[65].

Trabajo futuro

Esta tesis deja varios problemas abiertos, algunos de ellos planteados desde los inicios y
otros que han ido surgiendo durante su desarrollo. A continuación exponemos algunos
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de los problemas que permanecen abiertos para su futuro estudio. Dividimos dichos
problemas según el tema que tratan:

- Detección de outliers:

a) En esta investigación nos hemos centrado en la detección de outliers en alta
dimensión (ver Capítulos 3 and 4), sin embargo queda pendiente el salto a
dimensión infinita, lo cual parece plenamente factible.

b) Sería de interés también, la extensión a otras familias de distribuciones (como
las familias elípticas generales) e incluso al caso no paramétrico. En estos
casos el procedimiento unidimensional podría estar, por ejemplo, basado en
bootstrap o en kernel density functions.

- Otras aplicaciones del análisis secuencial:

a) Como ya comentamos anteriormente, el análisis secuencial puede ser aplicado
a otros tipos de problemas, pudiéndose elaborar una teoría general que pueda
incluir tests variados (incluso en el caso funcional). Los problemas deberían
presentar algún tipo de invarianza por linealidad como son los analizados en
[32] a [39] (excluido Cuesta-Albertos et al. [35]).

- Tests de uniformidad en la hiperesfera:

a) Una investigación alternativa e inmediata surgiría al proceder à la Escanciano
[50] y reemplazar νd−1 por Fn,γ en (0.3). Esta aproximación reemplazaría
la compleja integración analítica en Ωd−1 por una suma de n términos, no
obstante tendría una conexión menos explícita con los tests de dimensión
específica. Además si suponemos que se hacen los cálculos con las expresiones
exactas de los estadísticos y fijamos d, se pasaría de un test con complejidad
O(n2) a uno con O(n3). Sin embargo, si admitimos que se pueden aproximar
las expresiones de los estadísticos, las complejidades dependerán de cómo se
realicen estas aproximaciones.

b) Otra alternativa sería reemplazar la norma CvM en (0.3) por el “3-point CvM
statistic” de Feltz y Goldin [58].

c) Hemos visto que ciertos resultados como la Proposición 5.1.5 nos ayudan
a definir nuevos tests de uniformidad basados en diferentes elecciones de
las medidas W . Por ejemplo, la medida Wa,b(x) ∶= Ix(a, b), donde Ix(a, b)
es la función beta incompleta regularizada, genera una familia flexible de
dos parámetros de tests de uniformidad en Ωd−1, aunque con expresiones
engorrosas para las funciones involucradas.
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Este es solamente un ejemplo concreto de W entre muchos otros que po-
dríamos considerar para construir PWn,d−1. Además, se podría estudiar también
la extensión a dimensiones más altas de otros tets conocidos.

d) Sería posible, aunque complicado, introducir tests de bondad de ajuste para
distribuciones no uniformes en Ωd−1 reemplazando Fd−1 en (0.3) por la
distribución apropiada.

e) Bakshaev [11] propuso un test de uniformidad para el que solo obtuvo la
distribución asintótica en dimensiones 2 y 3 (y de forma no explícita). El
hecho de que este test pertenezca a la familia introducida aquí (ver nota
5.1.8) hace que nos planteemos la posibilidad de obtener una expresión
explícita para esta distribución en cualquier dimensión.
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Introduction 1
The Cramér–Wold Theorem [30, p.291] asserts that a Borel probability measure on an
Euclidean space is uniquely determined by all its one-dimensional projections. In other
words, two distributions are equal if and only if all their one-dimensional marginals are
equal.

This result justifies the use of Projection Pursuit (PP) techniques in goodness of fit tests
since the core of those techniques is to project the data onto one-dimensional appropriate
directions. In particular, the selection of the directions is done by maximizing a certain
optimality criteria that measures the degree of “interestingness” of the directions. In this
way, in the case of checking the equality of two distributions, PP techniques help to search
the directions where the two distributions are as different as possible. As alternative to
these (pseudo-)deterministic directions, random projections will be considered in this
thesis. Random projections simply consist in projecting the original high-dimensional
data into a low-dimensional randomly chosen subspace. This technique has been utilized
in numerous algorithms of different areas such as combinatorial optimization (Vempala
[132]), information retrieval (Bingham and Mannila [20]), machine learning (Arriaga
and Vempala [9]), and face recognition (Goel et al. [72]).

Random projections run quite fast and are stable, see for instance, Theorem 2.2.2
in Chapter 2. Hence they are used in dimension reduction applications that need
computational efficiency and to preserve the local structure of the data. Obviously,
replacing data by lower dimensional ones implies a loss of information, however, this
disadvantage is not as relevant as it could seem at a first view, see for instance Cuesta-
Albertos et al. [36], where this technique is compared with PP procedures in normality
goodness of fit tests. This makes random projections a useful dimension reduction
technique.

A sharp form of the Cramér–Wold Theorem was given in the Cuesta–Fraiman–Ransford
Theorem [35, p.203]. From that, it is known that a.s. just a one-dimensional random
projection is enough to distinguish between two distributions defined on a separable
Hilbert space if one of them satisfies a certain condition on their moments: if two
distributions are given, the above mentioned condition is satisfied, we choose a one
dimensional subspace using a continuous distribution and we compute the marginals of
those distributions on this subspace, then we have that a.s., the two distributions are
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different/equal if and only if the two marginals are different/equal. From these results a
question arises, how to manage random projections? In the literature some applications
have been proposed following two points of view: choose a statistic suitable for your
problem in the one-dimensional case and then

i) Take just a random direction and compute the value of the statistic.

ii) Compute the expected value, given the sample, of this statistic.

The idea is, for instance, instead of carrying out a test of equality of means of functional
data, to take just a one-dimensional projection and to conduct the test of equality of
means on the projected one-dimensional data. Then, i) is the result of an only handled
test, whereas ii) is the result of integrating the values of the statistic along all the
directions. In addition, i) is random, whereas ii) does not it. In fact, ii) is the expected
value of i). This fact has a significant impact on the computational complexity since i)
uses an only direction, thus, the procedure ends in one step, while with ii), it would be
necessary to integrate in the directions. The complexity of this integral will depend on
the chosen grid which, in turn, has to grow with the dimension. Somehow i) is based on
the Cuesta–Fraiman–Ransford Theorem while ii) applies the Cramér–Wold Theorem.

The practical use of i) has a main drawback: the procedures based on this technique are
conditional given the chosen random direction and the power under the alternative is
low. The most common way to alleviate this problem is to choose several projections
and, then, combine the obtained results making use, for instance, of the Bonferroni or
the False Discovery Rate techniques. However, no clear guidance has been given on the
right number of random directions to be selected and, additionally, the use of the False
Discovery Rate is slightly conservative (but less than Bonferroni’s). On the other hand,
the advantage of i) is its computational speed which, contrary to ii), is not too affected
by the dimension.

To solve the power problems of i), we propose the use of sequential analysis. This choice
is due to the fact that it needs on average smaller sample sizes than fixed sample size
procedures to achieve the same power (Tartakovski et al. [130]). Therefore, the use
of sequential analysis resolves, at the same time, the problems to fix the number of
required projections in a data-driven way and the manner to combine the obtained
p-values.

This use of random projections, as in i), has been applied in goodness of fit (Cuesta-
Albertos et al. [34], Cuesta-Albertos et al. [36] and Cuesta-Albertos et al. [38]), analysis
of variance (Cuesta-Albertos and Febrero-Bande [32]), testing linearity in functional
regression (Cuesta-Albertos et al. [39]), constructing depths (Cuesta-Albertos and Nieto-
Reyes [33]), etc.
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Integrating the values of a statistic along all the unit-norm directions, as ii) proposes,
was firstly considered, within the regression context, by Escanciano [50] in his Projected
Cramér–von Mises goodness-of-fit test. His test has been exported to, among other
settings, the functional data context in García-Portugués et al. [66]. Relevant to the
consideration of this point of view, the test in ibid was compared in Cuesta-Albertos
et al. [39] against a proposal based on the ii) paradigm of Cuesta-Albertos et al. [37],
with empirical results evidencing that integrating along all the directions within the test
tends to provide superior power in practice, in spite of a much slower computation.

In this thesis we analyse two problems using random projections. We propose:

- A new procedure to detect outliers in Gaussian high-dimensional data (see Chap-
ters 3 and 4). It consists in projecting the data in a one-dimensional randomly
chosen subspace where an appropriate univariate outlier detection method is
applied. The used unidimensional method is similar to Tukey’s method but with a
threshold depending on the initial dimension and the sample size. As previously
stated, there are several reasons to use more than one projection and here the
required number of projections is determined using sequential analysis.

The task of detecting outliers in circumstances where the estimation of the co-
variance matrix is feasible can be considered solved. However, the interest of
our proposal resides in high-dimensional settings where such estimation is not
viable. In turn, in those situations in which big differences appear among the
eigenvalues of the covariance matrix, an outlier located in the direction of the
eigenvalue associated with the highest eigenvalue will be an outlier in a “ small ”
set of directions. Thus, a procedure based on ii) cannot detect it and therefore, in
this context it is preferable to use i).

- A novel projection-based class of uniformity tests on the hypersphere integrating
along all possible directions a weighted quadratic discrepancy between the empiri-
cal cumulative distribution function (cdf) of the projected data and the cdf of the
projected uniform distribution (see Chapter 5). Thus, we propose a full family of
tests depending on the used weight. In addition, simple expressions for several
test statistics are obtained for the circle and sphere, and relatively tractable forms
for higher dimensions.

We use here the philosophy of ii) because those tests are intended to be used in
low or moderate dimensional spaces.

We next explain the two problems above referred in more detail. The main results of
Chapter 4 appear in Navarro-Esteban and Cuesta-Albertos [109] and those of Chapter 5
in García-Portugués et al. [70] and García-Portugués et al. [67].
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1.1 Outlier detection

Outlying, or unusual, observations have been of enormous interest since the second
half of the twentieth century. Indeed, outlier detection methods are nowadays widely
discussed in a variety of textbooks on Statistics (see Barnett and Lewis [14], for instance)
and implemented in statistical software packages. Their detection is an important part
of the preprocessing of the data because they may lead in the subsequent analysis to
model misspecification, biased parameter estimation and incorrect results in general,
see Weisberg [138] for instance. Typically, once suspicious observations have been
flagged, the action to be taken remains the personal decision of the analyst. Mostly
those observations are deleted, but this procedure is not always correct. A curious
example of wrong use of the systematic elimination of outliers is the discovery of the
ozone hole. In 1985, three scientists were shocked when they realized that the levels of
the Antarctic ozone had decreased more than the usual, Farman et al. [53]. However,
these low measures had been registered for several years by then; as they were so
low, the measuring satellites had eliminated them because they had been programmed
automatically to flag ozone losses of this magnitude as measurement failures and to
delete them.

It is universally accepted that outliers (abnormalities, anomalies or irregularities) are
observations which appear to be inconsistent with the rest of the data. However,
the idea of such inconsistency is not straightforward to formalize. We provide some
formalizations of this concept in Chapter 2 which justify our choice of Definition 1.1.1.
This is based on the well known fact that if a d-dimensional rv (random vector) has
normal distribution with mean vector µ and covariance matrix Σ, Nd(µ,Σ), then the
square of its Σ-based Mahalanobis distance to µ follows a chi-squared distribution with
d degrees of freedom, χ2

d.

Given 0 < δ < 1, denote by Cdn(δ) the square root of the δ-quantile of the maximum
of a random sample with size n and distribution χ2

d, i.e. Cdn(δ) is the solution of the
equation:

P (max {∥X1 −µ∥Σ , . . . , ∥Xn −µ∥Σ} ≥ Cdn(δ)) = δ, (1.1)

where ∥X −µ∥Σ = ∥Σ−1/2 (X −µ) ∥, with ∥ ⋅ ∥ being the Euclidean norm and X1, . . . ,Xn

are iid (independent and identically distributed) rv’s with distribution Nd(µ,Σ). Thus,
Cdn(δ) is the square root of F−1

χ2
d

((1 − δ)1/n), where F−1
χ2
d

is the quantile function of the

distribution χ2
d. To ease the notation, we omit δ in Cdn(δ) when its value is clear from

the context or its exact value is irrelevant.
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Definition 1.1.1. Let x ∈ Rd and δ ∈ (0,1). We say that x is an outlier at the level
δ with respect to a simple random sample with size n and a distribution Nd(µ,Σ), if
∥x −µ∥Σ ≥ Cdn(δ).

Definition 1.1.1 is easily modified to cover dependent data or other elliptical non-
gaussian distributions. The only difference in the dependent case will be the expression
for Cdn(δ) which will be more complex.

Therefore, in this work we focus on testing outlyingness of some vectors x in Rd with
respect to a sample of iid rv’s X1, . . . ,Xn in Rd with normal distribution Nd(µ,Σ). Thus,
the hypotheses to be tested are

H0 ∶ ∥x −µ∥Σ < Cdn(δ) vs. ∥x −µ∥Σ ≥ Cdn(δ). (1.2)

Figure 1.1.: Representation of the set {x ∶ ∥x −µ∥Σ = Cdn(δ)} for d = 3, n = 100, δ = 0.05 and different
covariance matrices (from left to right): the identity, Σ = (

1 0 0
0 3 0
0 0 10

) and Σ = (
1 0.9 0.9

0.9 1 0.9
0.9 0.9 1

).

A drawback of this definition is that the ball depends on the covariance matrix, see
Figure 1.1, which is unknown in practice. We use one-dimensional random projections
(directions) to avoid its estimation because the higher the dimension, the more complex
the estimation of the matrix, becoming impossible in high dimensions unless a structure
in Σ is imposed. Algorithm 2 gives the sketch of the proposed procedure to test (1.2).

Remark 1.1.2. The standardization in Step 4.b) makes irrelevant the norm of the selected
V. This fact allows us to assume without loss of generality, when appropriated, that ∥V∥ = 1
in Step 2.a).

The choice of parameters a and b is discussed in Section 4.5. It turns out that they
depend on the sample size, on the dimension of the space and on Σ, see (4.5) and
Proposition 4.2.5. This dependency will be analysed through the expected number of
required projections to reach the decision about the point we are classifying. Concerning
the estimation of ν̂V and λ̂V we begin assuming that µ and Σ are known in Chapter
3. Then, we employ the sample mean and the sample standard deviation which will
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Algorithm 2: Proposed procedure to test if a point x is an outlier or not

1) Select a, b ∈ R+, a ≤ b

2) a) Take a rv V with Nd(0, Id) distribution

b) Make V = V
∥V∥

3) Project x and the sample on the subspace generated by V, i.e. compute x′V and
X′

1V, . . . ,X′
nV

4) a) Calculate ν̂V and λ̂V estimators of the centre and of the dispersion of the
projections X′

1V, . . . ,X′
nV

b) Consider yV ∶= x′V−ν̂V
λ̂V

5) If ∣yV∣ ∈ [a, b] go back to Step 2), else:

- The point x is declared as an outlier if ∣yV∣ > b
- The point x is declared as non-outlier if ∣yV∣ < a

be replaced by the sample median and the sample median absolute deviation, MAD,
respectively, to make them more robust in Chapter 4.

1.2 Uniformity tests on the hypersphere

Testing the uniformity of the distribution generating a random sample X1, . . . ,Xn

supported on the unit hypersphere Ωd−1 of Rd, with d ≥ 2, is one of the first steps when
analysing multivariate data for which only the directions (and not the magnitudes)
are of interest – the so-called directional data. Directional data arise in many applied
disciplines, such as protein bioinformatics, environmental science, and biology; we refer
to Ley and Verdebout [99] and references therein for an overview of recent applications
and case studies. Due to the peculiarity of the support, a rigorous analysis of directional
data requires from the consideration of adapted statistical methods, with Mardia and
Jupp [102], Ley and Verdebout [98] and Pewsey and García-Portugués [113] being the
current reference monographs and reviews on directional statistics.

A sizeable number of tests for assessing uniformity on Ωd−1 have been proposed. These
contributions range notably in generality (arbitrary dimension vs. specific-dimension
tests; consistency against all kind of deviations vs. consistency only against certain
alternatives) and underlying methodology (parametric vs. nonparametric tests); see
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García-Portugués and Verdebout [64] for an updated review. In addition to its self-
importance, uniformity tests on Ωd−1 are important auxiliary tools for, among others,
the following statistical problems: (i) testing for spherically-symmetric distributions on
Rd (see, e.g., Cai et al. [25]); (ii) goodness-of-fit tests on the circle Ω1 via the probability
integral transform, Mardia and Jupp [102, Section 6.4.2]; (iii) goodness-of-fit tests on
Ωd−1, d ≥ 2, via an almost-canonical transformation, Jupp and Kume [89, Proposition 1];
(iv) testing for rotational symmetry on Ωd−1 (see, e.g., García-Portugués et al. [68]).

Given a sample X1, . . . ,Xn of iid observations of X, where P is the distribution of X,
testing uniformity on Ωd−1 is formalized as the testing of

H0 ∶ P = νd−1 vs. H1 ∶ P ≠ νd−1, (1.3)

where νd−1 stands for the uniform probability distribution on Ωd−1.

As we mentioned, we develop a projection-based class of uniformity tests on the hyper-
sphere to test (1.3) in Chapter 5. Despite its different origin, the proposed class is shown
to be related to the well-studied Sobolev class of uniformity tests. We will see that, in
virtue of (2.13) and (5.17), both types of statistics have a U -statistic form with kernels
acting on the angles between pairs of points in the sample. Our new parametrization
proves itself advantageous by allowing to derive new tests for hyperspherical data that
neatly extend the circular tests by Watson [135], Ajne [4], and Rothman [117], and
by introducing the first instance of an Anderson–Darling-like test for such data. The
asymptotic distributions and the local optimality against certain alternatives of the new
tests are obtained.

1.3 Analysis of simulated and real datasets

Several analysis of simulated and real datasets have been carried out for all the methods
proposed throughout this work. Specifically, the chosen real datasets are:

- For the novel outlier detection method, two well-known datasets: the wine (mag-
netic resonance spectra of some wine samples) and octane (infrared spectra of
some gasoline samples) datasets.

- For the proposed uniformity tests, three datasets coming from astronomy: the first
two ones build on previous applications in the circle and the sphere, while the
third is a novel case study on the uniform distribution of the craters of Rhea, a
moon of Saturn.
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We use the statistical programming language R and all the codes can be provided on
demand (paula.navarro@unican.es). The end-to-end reproduction of the analysis of the
three real datasets in Chapter 5 is possible trough the sphunif, package García-Portugués
and Verdebout [65]. The results concerning to the outlier detection method appear
in Navarro-Esteban and Cuesta-Albertos [109] and those related with the proposed
uniformity tests in García-Portugués et al. [67].
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Background 2
„For most of history, Anonymous was a woman.

— Virginia Woolf

In order to make this work self-contained, this chapter presents some notation, non-
original definitions and results that will be relevant to the following chapters. It is
organised as follows. Section 2.1 is devoted to the notation of special functions which
will be used later, Section 2.2 shows the main properties of random projections, Section
2.3 presents different outlier definitions, Section 2.4 exposes some existing outlier
detection methods and Section 2.5, several properties of the spherical distributions.
Section 2.6 briefly introduces the uniformity tests on the hypersphere showing some
particular cases, in particular those belonging to the class of Sobolev tests, which will
be relevant for Chapter 5. Section 2.7 summarizes relevant results from the theory of
integral equations that are required in the proof of Theorem 5.2.2. We conclude this
chapter with an introduction to sequential analysis which is the key of the proposed
outlier detection method. The reader can skip those sections if she/he is familiar with.

2.1 General notation

Apart from the notation employed in the Introduction, we will adopt the common
convention of using boldface letters for vectors, while regular font is used for both
matrices and scalars. Capital letters are used for rv’s and matrices, with the context
ensuring no ambiguity. For x,y ∈ Rd, the Euclidean norm of x is denoted by ∥x∥ and
x′ is its transpose. For a square matrix T = (tij), T ′ denotes its transpose and ∣T ∣ its
determinant. The identity matrix of dimension d is denoted by Id.

We refer by Ωd−1
Σ (r) to the Mahalanobis hypersphere of radius r associated to the positive

definite matrix Σ. Thus Ωd−1
Σ (r) ∶= {x ∈ Rd ∶ ∥x∥Σ = r}. In an abuse of notation, Ωd−1

r

denotes such a sphere when Σ = Id, ωd−1
t is its surface area, ωd−1

r = 2πd/2rd/Γ(d/2), and
we omit the sub-index r when r = 1.
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We assume that all the rv’s are defined on the same, rich enough, probability space
(Υ,A,P). Given two rv’s X and Y, E(X∣Y) will denote the conditional expectation of
X given Y and P(X∣Y) will be a regular conditional distribution for X given Y.

By X d= P we mean that P is the distribution of the rv X. By pdf we mean probability
density function and 1A denotes the indicator function of the set A. In an abuse
of notation, the pdf of νd−1, the uniform probability on Ωd−1, with respect to ωd−1,
the Lebesgue measure on Ωd−1, is denoted by 1/ωd−1(Ωd−1). The symbol

d↝ means
convergence in distribution.

We use m(P) and M∗(P) to denote the median and the median absolute deviation
(MAD) of a distribution P and, m̂(P) and M̂∗(P) to denote their sample versions; we
omit the distribution when they are clear from the context.

In some integrals, given a vector z = (z1, . . . , zd) we denote z−i ∶= z1⋯zi−1zi+1 . . . zd and
dz−i ∶= dz1⋯dzi−1dzi+1 . . .dzd. The positive part of a function f will be denoted by (f)+.
Given two real functions of real variables f(t) and g(t), the symbol f ∼ g means that
limt→∞

f(t)
g(t) = 1.

2.1.1 Special functions and orthogonal polynomials

Let a, b be strictly positive real numbers and z ∈ [0,1]. Let us define

Iz(a, b) ∶=
B(z;a, b)
B(a, b)

,

where B(z;a, b) ∶= ∫
z

0
ya−1(1−y)b−1 dy is the lower incomplete function with parameters

a and b and B(a, b) is the beta function.

We also denote B−1(y;a, b) the inverse of the lower incomplete beta function. Elementary
properties of those functions are B(a, b) = B(b, a) and Iz(a, b) = 1 − I1−z(b, a). Given
a, x > 0, we denote

- The incomplete lower gamma function with parameter a as γ(a, x) ∶= ∫
x

0 ya−1e−y dy.

- The regularized lower gamma function with parameter a as P(a, x) ∶= γ(a, x)/Γ(a).

Let x be real, the error function is defined as erf(x) ∶= 2√
π ∫

x
0 e−y

2 dy.

Let k ∈ N, α > −1/2 and α ≠ 0, for x ∈ [−1,1], we denote the kth Gegenbauer polynomial

of order α as Cαk (x) ∶=
⌊k/2⌋
∑
j=0

(−1)j Γ(α+k−j)
j!(k−2j)!Γ(α)(2x)

k−2j and the kth Chebyshev polynomial

of the first kind as Tk(x) ∶= cos(k cos−1 x).

10 Chapter 2 Background



Given d ≥ 3, the Gegenbauer polynomials C
d/2−1
k form an orthogonal basis on

(L2
d−1[−1,1], υd−1), the space of square-integrable real functions in [−1,1], with respect

to the weight υd−1 ∶= (1 − x2)(d−3)/2. Therefore, they satisfy, for k ≥ 0,

∫
1

−1
C
d/2−1
k (x)Cd/2−1

` (x)(1 − x2)(d−3)/2 dx = δk`ck,d−1,

where ck,d−1 ∶= 22−dπΓ(d + k − 2)/ ((d + 2k − 2)k!Γ(d/2 − 1)2), and therefore any func-
tion g ∈ (L2

d−1[−1,1], υd−1) can be uniquely expressed into the basis of Gegenbauer
polynomials of order d/2 − 1 as

g(x) =
∞
∑
k=0

bk,d−1C
d/2−1
k (x), where bk,d−1 =

1
ck,d−1

∫
1

−1
g(x)Cd/2−1

k (z)(1 − x2)(d−3)/2 dx.

For d = 2, the Chebyshev polynomials of the first kind form an orthonormal basis on
(L2

1[−1,1], υ1) with respect to the weight υ1 ∶= (1 − x2)−1/2, with normalizing constants
given by ck,1 = (1 + δk0)π/2 for k ≥ 0.

More specialized notation is introduced in context.

2.2 Random projections

In this section we show the most relevant properties of random projections which are
the foundations of the proposed outlier detection method, Chapter 4, and the uniformity
test on the hypersphere, Chapter 5.

Johnson and Lindenstrauss’ Lemma, [85], is the basis of the feasibility of random
projections. Their most useful property for us is due to Theorem 3.1 in Cuesta-Albertos
et al. [35]. Next we detail those results.

Theorem 2.2.1 (Johnson and Lindenstrauss). Let ε ∈ (0,1/2) and let D ⊂ Rd be a set of n
points and k = O(logn/ε2). There exits a mapping f ∶ Rd Ð→ Rk such that for all u, v ∈D,

(1 − ε)∥u − v∥2 ≤ ∥f(u) − f(v)∥2 ≤ (1 + ε)∥u − v∥2.

Furthermore, this map can be found in randomized polynomial time.

In Theorem 2.2.1, randomness comes from the fact that in the proof, f has the demanded
properties with probability at least 1/n, thus if the process is repeated O(n) times, the
success probability can be increased to the desired constant, see Dasgupta and Gupta
[42]. On the other hand, one of such mapping is the projection to a random subspace of
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dimension k. Algorithmically the projection is obtained by the multiplication of a random
d × k matrix T = (tij) to the right of the matrix of the data (whose rows correspond to
the observations). For instance, this matrix can be defined choosing iid tij with:

tij ∶=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 with probability 1/2s,

0 with probability 1 − 1/s,

−1 with probability 1/2s,

where s ∈ {1,3}, see Achlioptas [1]. Another type of random projection matrix, our
choice, selects the tij ’s with standard normal distribution or uniform distribution (see,
for instance Lemma 2.2 in Dasgupta and Gupta [42] or Vempala [132, Section 1.2] for
two precise formulations of this). Formally, the result is given in the following random
projection theorem.

Theorem 2.2.2 (Dasgupta and Gupta [42], Vempala [132]). Let ε, δ ∈ (0,1/2) and
T be a random k × d matrix whose rows are chosen independently from Nd(0, Id). If
k = O(log(δ−1)/ε2) and x is a unit-length d-dimensional vector,

P(∣∥ 1√
k
Tx∥

2
− 1∣ > ε) < δ.

On the other hand, random projections have also the amazing property of, in some sense,
allowing to identify distributions: by Cuesta-Albertos et al. [35], it is known that only a
one dimensional random projection is enough to distinguish between two distributions
defined on a separable Hilbert space if one of them satisfies a certain condition on their
moments. Let us state this result formally in the d-dimensional case. To this, we use
the following notation: given two Borel probability measures P,Q on Rd, we define
C(P,Q) ∶= {x ∈ Rd ∶ P⟨x⟩ = Q⟨x⟩}, where ⟨x⟩ denotes the one-dimensional subspace
spanned by x and P⟨x⟩ is the probability P projected onto the subspace ⟨x⟩, i.e. the
probability measure on ⟨x⟩ given by

P⟨x⟩(B) = P(π−1
⟨x⟩(B)),

where B is a Borel subset of ⟨x⟩ and π⟨x⟩ denotes the orthogonal projection onto the
subspace ⟨x⟩.

Theorem 2.2.3 (Cuesta-Albertos et al. (2007)). Let P,Q be Borel probability measures
on Rd, where d ≥ 2. Assume that:

- The absolute moments mn ∶= ∫ ∥x∥n dP(x) are finite and satisfy ∑n≥1m
−1/n
n = ∞

(which implies that P is characterized by its moments).
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- The set C(P,Q) is of positive Lebesgue measure in Rd.

Then P = Q and C(P,Q) = Rd.

Some applications of this result to statistical problems were mentioned in the Introduc-
tion.

2.3 What is an outlier?

As we mention in the Introduction, the idea of outlier is universally accepted, but its
formalization is not. We classify the notions of outlier in two families: distribution-based
and distance-based.

For instance, Hawkins [76] and Febrero et al. [56] and [57] give the following distribution-
based notion: A multidimensional outlier is an observation generated by a rv with a
different distribution than the one of regular observations. When this definition is
put into practice, strictly speaking, every element of the sample might be an outlier.
Furthermore, as in practice we have no way of exactly knowing the distribution with
which the sample was drawn, we could always conclude that no observation is outlier.
For example, take a sample generated by the standard normal distribution and a point
generated with a Cauchy distribution; represented in Figure 2.1 with black and red dots
respectively. In practice, we are not able of distinguishing the red point from the black
ones. Therefore, we would declare the red point as regular. Consequently, for this work
we discard this family of notions and focus on the second one, which is more convenient
to practical use.

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

Cauchy(0,2)

N(0,1)

Figure 2.1.: Sample drawn from a N1(0,1) distribution (black) and a point drawn from a Cauchy
distribution (red). It is shown the difficulty of noticing the red point as an outlier.

The second family of notions considers as outliers those points lying at a distance
greater than a given threshold from the centre of the sample, independently of the
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distribution which produced them. It is important to emphasize that, in this case, the
outlier identification problem does not consist in stating which observations are irregular
but rather specifying the observations that lie in a particular region.

The idea that an outlier is a point too separated from the centre of a data set can dated
back to 1968 in Healy [77]. It was made more precise in Davies and Gather [44] for
dimension d = 1 and in Becker and Gather [15] for multidimensional data. Those papers
propose computing (robust) estimators of the centre and of the covariance matrix of the
data set at hand, and, then declaring outliers those points whose Mahalanobis distances
to the estimated centre are greater than a previously fixed threshold. An important
characteristic is that the threshold should depend on both d and n (see Theorem 3.4.3 in
Chapter 3). Some computational problems were reported, for instance, in Cerioli et al.
[28] and Cerioli [27], albeit they will not appear in our implementation in Chapter 4.

2.3.1 When is a point far away from the rest?

In one dimension the most popular definition of outlier is due to Tukey [131]. There, an
outlier is defined as a point which lies outside of the interval

(q1 − 1.5(q3 − q1), q3 + 1.5(q3 − q1)), (2.1)

where q1 and q3 are respectively the first and third quantile of the sample under
consideration. The choice of the constant 1.5 is due to the fact that under normality,
we expect to declare as outliers the 0.7% of the data. There is a conservative version
of this definition where 1.5 is replaced by 3, and therefore only the 0.00023% of the
data are expected to be flagged as outliers, which in this case are known as extreme
outliers. The weakness of this proposal is that the probability of declaring a point as
outlier is not sample size dependent. In fact, as commented in Hoaglin et al. [79], this
method is highly liberal with the constant 1.5. For instance, there is a probability of 0.5
of declaring at least a point as outlier in a outlier-free sample with normal distribution
and size 100. This probability increases to 0.9 if the sample size is 328.

The following example shows the importance of taking into account the sample size.
Take a sample X1, . . . ,Xn drawn from the N1(0,1) with n = 10 and another one with
n = 1000, and introduce the point 3 in both samples (see Figure 2.2). We see that the
point 3 is inconsistent with the rest of the sample when n = 10 (left panel), meanwhile it
seems part of the cloud of the data when n = 1000 (right panel). In fact, we have

P(max{X1, . . . ,X10} ≥ 3) = 0.01,
P(max{X1, . . . ,X1000} ≥ 3) = 0.74.
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This implies that the point 3 could be declared as an outlier when n = 10 and should not
when n = 1000. However, the interval defined in equation (2.1) is (−2.698,2.698), i.e.
according to Tukey [131] 3 is always declared as outlier, independently on the sample
size.

−3 −2 −1 0 1 2 3

N(0,1)

−2 0 2

N(0,1)

Figure 2.2.: Plots of two simulated random samples (in black) with N1(0,1) and sample size n = 10
(left) and n = 1000 (right). The point 3 (in red and triangular) is inconsistent in the left plot,
while it seems part of the cloud of the data in the right plot.

Iglewicz and Banerjee [81] provided a modification of Tukey’s definition which takes
into account the sample size.

Definition 2.3.1 (Iglewicz and Banerjee). Let δ ∈ (0,1) be the desired probability of
declaring at least one outlier for a sample with no outliers of size n and distribution
N(0,1). An outlier with respect to that sample is a point which lies out of the interval

(q1 − f(n)g(n)(q3 − q1), q3 + f(n)g(n)(q3 − q1)),

where
f(n) ∶= Φ−1[(1−δ/2)1/n]−.6745

1.349 ,

g(n) ∶= 1 + 8.9764
n − 126.6262

n2 + 1531.7064
n3 − 10729.3439

n4 ,

with Φ−1(⋅) the quantile function of a rv with distribution N(0,1).

The function g(n) of Definition 2.3.1 is an approximate formula which has been calcu-
lated through simulations in order to control δ. Note that g(n) is strictly decreasing for
n ≥ 30 and that g(2000) ≈ 1.005, i.e. back to the above example, the intervals defined
in Definition 2.3.1 are (−2.995,2.995) and (−4.083,4.083) for n = 10 and n = 1000,
respectively, and δ = .05. Therefore, the point 3 would be declared as outlier when
n = 10, while it would declared as no outlier when n = 1000.

Definition 2.3.1 is still a one dimensional procedure and our scenario is d-dimensional,
but we can transform the above interval into a ball whose shape should be determined
by the covariance matrix Σ, since we focus on multivariate normally distributed data.
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That is, a point must be an outlier if it is outside a ball centred at the centre of the
sample with a radius big enough as to contain most points in the sample. Those ideas
lead to Definition 1.1.1 presented in the Introduction.

2.4 Methods to detect outliers

If µ and Σ are known it is simple to check whether a given point satisfies Definition 1.1.1
or not. However, in practice, those parameters must be estimated and, consequently,
somehow obtaining accurate robust estimations of µ and Σ and detecting outliers are
essentially equivalent. For that reason we pay some attention in Subsection 2.4.1 to
methods devoted to obtain robust estimations of those parameters. However, we already
mentioned in the Introduction that those estimators habitually do not work properly in
high-dimensional settings. Hence, high-dimensional methods which skip the estimation
of Σ are explored in Subsection 2.4.2 where we also analyse some dimension reduction
procedures. This is the family the random projections method belongs to.

2.4.1 Methods that estimate the covariance matrix

There exist many detection methods when d is low or moderate in comparison with n,
see, for instance Barnett and Lewis [14] and Aggarwal [3] and references therein. First
we focus on methods that estimate Σ. Once Σ is estimated, they use Definition 1.1.1. If
the sample includes outliers, it is known that the classical least-squares estimates can be
strongly affected or completely fail. Hence classical estimators of µ and Σ are replaced
by some highly robust ones (Rousseeuw and Van Zomeren [120], Becker and Gather
[15] and Peña and Prieto [112]).

A key concept in robust estimation is the breakdown point, a measure used to describe
the resistance to the presence of outliers of the estimators. Roughly speaking, the
breakdown point of an estimator is the largest fraction of arbitrarily contaminated
observations that the sample may contain before the value of the estimator becomes
arbitrarily large, see Maronna et al. [105] for further references.

Obviously the highest possible breakdown point is 50%. Among the methods with
highest breakdown point, given h with n/2 < h < n, we have the minimum volume
ellipsoid estimator (MVE), (Rousseeuw [118]), which searches for the ellipsoid with
minimum volume containing h data points, and the minimum covariance determinant
(MCD) estimator [118], which is the covariance matrix of the h observations whose
covariance matrix has minimal determinant. Davies [43] showed that the MVE has
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a lower convergence rate, n−1/3, than the MCD, n−1/2. However the MCD involves a
high computational complexity. Additionally, both methods have limitations, because
although they estimate feasibly the shape of the covariance matrix, they do not give a
good approximation of their scale. The problem is that, both methods require the value
h to be previously fixed by the user and, as a consequence, they tend to underestimate
or overestimate the covariance matrix depending on the relation between n − h and the
real number of outliers in the sample.

There are also some improvements or extensions of those methods to make them more
computationally efficient, for instance Rousseeuw and Van Driessen [119], Cerioli [27]
and Jobe and Pokojovy [84]. However, those kind of methods do not work well for high-
dimensional data or in presence of n/(d + 1) outliers or more. For instance, in Adrover
and Yohai [2] the maximum bias of the MCD covariance estimator was computed
numerically and it was showed that, when the dimension increases, the maximum bias
of the MCD grows almost exponentially.

There are some alternatives which require the estimation of Σ but they do not use
Definition 1.1.1. As an example we finish this section showing a depth based method
which although its main goal is not to obtain an estimation of Σ, it will be required even-
tually. Such method was proposed by Sun and Genton [128] and it is a d-dimensional
version of the classical boxplot. We present it here from the multivariate point of view
albeit it was proposed in the functional setting. Given a sample in Rd, a depth is a map
D ∶ Rd ↦ R such that if x, y ∈ Rd, then D(x) ≥ D(y) is equivalent to that x is deeper
than y inside the sample (see Liu et al. [100] for more details). The procedure goes
as follows: order the points according to this depth, i.e. the first point is the deepest
point and so on. We estimate the centre of the data with the deepest point. Compute
the 50% convex central region (analogous to the interquartile range in the univariate
Tukey’s method), in other words: compute the convex set generated by the 50% deeper
points in the sample in each direction. Define the fences as a positive constant times
the width of this central region intersected with the direction. Any vector such that the
segment joining it with the center crosses the fences is declared as an outlier. In Sun
and Genton [128], the constant factor is taken as 1.5 (not size-dependent) and in Sun
and Genton [129] is chosen through a procedure that requires the estimation of the
covariance matrix. Moreover, both versions of this procedure are useless when d > n.

2.4.2 Methods to handle high-dimensional cases

When the dimension is higher than the sample size the literature is not so abundant as
in the low-dimensional case, but we can mention Fritsch et al. [63] and Ro et al. [116].
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The first paper added a regularization term to the MCD approach to guarantee that
the estimation of the parameters is well-posed in the high-dimensional case. However
in practice, it is not clear how to determine suitable cut-off values to obtain a desired
significance level because there is no result in the paper on the distribution of the
involved statistic. On the other hand, the method introduced in Ro et al. is based on a
modification of the Mahalanobis distance which involves only the diagonal of Σ. Thus,
it is equivalent to consider uncorrelated marginals and this does not usually occur in
practice.

Next we mention other methods which do not suffer from the mentioned problems.
They are based in dimension reduction techniques.

Outlier detection methods that use dimensionality reduction

Until now, most procedures that we have mentioned are useless when d > n. Moreover,
the estimation of the covariance matrix has unexpected features if both d and n are
large. For instance, when d/n → c ∈ (0,1) and the covariance matrix is the identity,
then the distribution of the eigenvalues of the sample covariance matrix follows the
Marchenko-Pastur law, which is supported on ((1−

√
c)2, (1+

√
c

2). Thus, the larger d/n,
the more spread out the eigenvalues are, see Bickel and Levina [18], and therefore their
estimators become inconsistent. Consequently, it is hard or inappropriate to estimate
covariance matrices without imposing any structure (e.g. sparse matrices such as in
[24]) or assumption (like n≫ d).

For that reason, in order to analyse high-dimensional data, dimension reduction tech-
niques such as PP, due to Kruskal [91] and firstly successful implemented in Friedman
and Tukey [62], are generally used. These techniques consist in finding a lower dimen-
sional representation of the high-dimensional data, in which the original structure of
the data is highly preserved so that the low-dimensional data can be effectively used.
This strategy is an important tool and is widely used in many fields of data analysis,
data mining, data visualization, and machine learning.

Obviously, a key issue is the choice of the optimality criteria. Principal component
analysis (PCA), (Jolliffe [87]), is one of the most widely used technique which employs
a optimality criteria. It consists in projecting orthogonally the data on a low-dimensional
subspace that captures as much of the variation of the data as possible. More precisely,
let X1, . . . ,Xn be d-dimensional centred rv’s. The first principal direction, vn1 , is defined
as the vector

vn1 ∶= arg max
v∶∥v∥=1

{Var(X′
1v, . . . ,X′

nv)}.
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In general, the estimation of the i-th principal direction, vni , is defined as

vni ∶= arg max
v∶∥v∥=1

{Var(X′
1v, . . . ,X′

nv)},

with the additional restriction (vnj )′vni = 0, where 1 ≤ j < i. Let σ̂2
1 ≥ . . . ≥ σ̂2

n be the
ordered eigenvalues of the sample covariance matrix. Then vn1 , . . . ,vnd are associate
eigenvectors and Var(X′

1vnj , . . . ,X′
nvnj ) = σ̂2

j . Obviously, there are at most min{n − 1, d}
nonzero eigenvalues. Therefore PCA fails to yield consistent estimators of all the
eigenvectors in very high-dimensional settings, (Johnstone and Lu [86]). For instance, it
occurs that it is only possible to obtain the asymptotic distribution forO(n1/5) coefficients
in the linear functional regression model when a PCA-based estimator is used, (Cardot
et al. [26]).

Some methods are based on principal components such as the proposed by Maronna
and Zamar [104], where it is defined the orthogonalized Gnanadesikan–Kettenring
estimate, and the one by Filzmoser et al. [61], who designed a computationally efficient
high-dimensional method which uses two steps to detect the so-called location and
scatter outliers which, roughly speaking, can be identified with clusters of outliers and
isolated outliers respectively.

Other procedures that use PP methods are the Stahel-Donoho estimators. Stahel [125]
and Donoho [48] independently defined the first equivariant robust multivariate esti-
mator with a high breakdown point of one-half for large data sets, regardless of the
dimensions of the data. They look for a univariate projection that makes an observation
be an outlier, based on the idea: “The outlyingness measure is based on the idea that if
a point is a multivariate outlier, then there must be some one-dimensional projection
of the data for which the point is a (univariate) outlier” (Maronna and Yohai [103]).
Define for any x ∈ Rd its outlyingness with respect to the sample X1, . . . ,Xn by

out(x; X1, . . . ,Xn) ∶= max
a∈Rd∶∥a∥=1

∣a′x − m̂(a′(X1∣⋯∣Xn))∣
M̂∗(a′(X1∣⋯∣Xn))

, (2.2)

where (X1∣⋯∣Xn) denotes the matrix whose columns are the vectors of the sample.

Obviously, examining all the possible directions, as in equation (2.2), is the optimal
method but unachievable in practice. To overcome this computational burden, there
exist methods which entail only finitely many projections. For instance, the number of
directions can be approximated by random subsamples as in Stahel [125], but there is a
high computational burden to obtain satisfactory results, see Maronna and Yohai [103].
Peña and Prieto [112] proposed another way of restricting the search to a finite number
of directions. In their work, the data are projected onto a certain set of 2d directions,
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where d is the dimension of the data. Such directions are those that maximize and
minimize the kurtosis coefficient of the projected data. This choice is due to the fact
that a small number of outliers would cause heavy tails and lead to a larger kurtosis
coefficient, meanwhile a number of clustered outliers would start introducing bimodality
and decrease the kurtosis coefficient. However, they necessitate the estimation of the
covariance matrix at the beginning of the process.

Other paper which uses finitely many deterministic directions is Pan et al. [111]. There,
for X a d-dimensional random vector with distribution F and a ∈ Ωd−1, it is defined the
projected Hampel identifier as:

V (x,a, F ) ∶= a′x −m(F a)
M∗(F a)

, (2.3)

where F a denotes the distribution of a′X. Then, this outlier identifier is based on the
differences between V (x,a, Fn)−V (x,a, F ), where V (x,a, Fn) is defined as in equation
(2.3) bit replacing F a by the empirical distribution. Since the theoretical distribution of
the data is usually unknown, a bootstrap step is proposed. Furthermore, they assume
that F has elliptical contours and they do not provide the exact number of the required
directions, which are chosen following an algorithm described in Fang and Wang [51].

Serfling and Mazumder [122] describe another alternative method which uses a finite
number of projections. Although they do not assume elliptical contours, they need of
the estimation of the covariance matrix.

2.5 Spherical Distributions

The uniform distribution on Ωd−1
r , d ≥ 2, is a particular case of the spherical distribution,

as stated in Proposition 2.5.3 . To begin this section, we define spherical distributions.
Then we include some well-known results for further reference.

Definition 2.5.1. Let U be a Ωd−1
r -valued rv. It is said that U has a spherical distribution

(or just that it is spherical) if TU has the same distribution as U, for every orthogonal
d × d matrix T.

The proofs of the following results are immediate, but see Section 3.3 of McNeil
et al. [107] and Theorem 2.5.1 in Fang and Zhang [52]. Proposition 2.5.2 gives a
characterization for the spherical distributions.

Proposition 2.5.2. The following statements are equivalent.
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1. U = (U1, . . . , Ud) has spherical distribution.

2. For all a ∈ Rd, a′U has the same distribution as ∥a∥U1.

Proposition 2.5.3. Let U be a rv with uniform distribution on Ωd−1, then U is spherical.

2.5.1 Uniform distribution on the hypersphere

The following lemma gives the cdf of the marginal of a uniform distribution on Ωd−1.
We include its proof because it was done by the author, although alternative proofs can
be found in the literature, for instance see Mardia and Jupp [102, page 161]) where the
tangent-normal decomposition is used.

Lemma 2.5.4. Let U = (U1, . . . , Ud) be a rv with distribution uniform on Ωd−1. The
distribution function of U1 is given by the following expression:

Fd−1(u) ∶=
1
2
(1 + sign(u)Iu2 (1

2
,
d − 1

2
)) , u ∈ [−1,1].

Proof. By (2.5.11) in Fang and Zhang [52],

Fd−1(u) = B (1
2 ,

d−1
2 )−1

∫
u

−1
(1 − y2)(d−3)/2 dy.

By the change of variable y2 = s,

Fd−1(u) =
1

2B (1
2 ,

d−1
2 )

(sign(u)B(u2; 1
2
,
d − 1

2
) +B(1

2
,
d − 1

2
)) .

Then, the result is deduced from the definition of the incomplete beta function.

Some particular cases for d = 2,3 in Lemma 2.5.4 are, for u ∈ [−1,1],

F1(u) = 1 − 1
π

cos−1(u), F2(u) =
1
2
(u + 1). (2.4)

Due to the recurrence properties of the incomplete beta function, the next relation holds
for d ≥ 4

Fd−1(u) = Fd−3(u) +
u(1 − u2)(d−3)/2

(d − 3)B(1
2 ,

d−3
2 )

. (2.5)
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2.6 Uniformity tests on the hypersphere

We introduce in this section some well-known uniformity tests which will be mentioned
in Chapter 5. We begin reviewing the construction and specifics of the Sobolev tests
which are closely related with the projection-based uniformity tests on the hypersphere
that we propose here, as we will see in Section 5.2.1 of Chapter 5, and contains most of
the nonparametric uniformity tests in Ωd−1 for d ≥ 2. Then, we briefly see a test based
on a finite number of random projections, thus being a test which follows the line ii)
described in the Introduction as opposed to the test we introduce in Chapter 5.

2.6.1 Sobolev tests of uniformity

Sobolev tests, as introduced in Beran [16] and Giné [71], are based on the eigenfunc-
tions of the Laplacian on Ωd−1, which form an orthonormal basis (the so-called spherical
harmonics) on L2(Ωd−1, νd−1), the space of square-integrable functions on Ωd−1 with
respect to the uniform measure νd−1 of Ωd−1. Denoting by Ek to the space of eigenfunc-
tions corresponding to the k-th non-zero eigenvalue of the Laplacian, it is well-known
that L2(Ωd−1, νd−1) =⊕∞

k=0 Ek, where E0 is the space of constant functions. Moreover,

`k,d−1 ∶= dim(Ek) = (d + k − 3
d − 2

) + (d + k − 2
d − 2

). (2.6)

Then, ∪∞k=1{gi,k ∶ i = 1, . . . , `k,d−1} is an orthonormal basis for L2(Ωd−1, νd−1) and so is
{gi,k ∶ i = 1, . . . , `k,d−1} for Ek. Theorem 1.5.1 in Dai and Xu [41]) gives expressions of
gi,k for d ≥ 2. This allows to write ψ ∈ L2(Ωd−1, νd−1), a pdf with respect to νd−1, as

ψ(u) =
∞
∑
k=0

`k,d−1

∑
i=1

ei,kgi,k(u),

where ei,k = ⟨f, gi,k⟩ ∶= ∫Ωd−1 ψ(u)gi,k(u)νd−1(du) = Ef [gi,k(X)].

Importantly, due to the orthogonality of the sets Ek, ψ equals the uniform pdf if and
only if ei,k = 0 for all i = 1, . . . , `k,d−1 and k ≥ 1. Thus, H0 is conveniently characterized
within L2(Ωd−1, νd−1).

Sobolev tests exploit the previous characterization with statistics that inspect the empiri-
cal version of ei,k ’s and that weight the observed deviations from zero on each Ek by a
sequence of weights. Formally, they consider the mapping

u ∈ Ωd−1 ↦ t(u) ∶=
∞
∑
k=1

vk,d−1tk(u) ∈ L2(Ωd−1, νd−1),
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where tk(u) ∶= ∑`k,d−1
i=1 gi,k(u)gi,k ∈ Ek (which allows to construct the estimates

(ê1,k, . . . , ê`k,d−1,k)), and {vk,d−1} is an arbitrary real sequence such that∑∞k=1 v
2
k,d−1`k,d−1 <

∞. Then, the Sobolev test for {vk,d−1} rejects H0 in (1.3) for large values of the statis-
tic

Sn,d−1({vk,d−1}) ∶=
1
n

∥
n

∑
i=1

t(Xi)∥
2
= 1
n

n

∑
i,j=1

∞
∑
k=1

v2
k,d−1⟨tk(Xi), tk(Xj)⟩. (2.7)

Given u,v ∈ Ωd−1, an explicit form (Prentice [114, Proposition 2.1]) for the addends in
(2.7) is

⟨tk(u), tk(v)⟩ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

2Tk(u′v), d = 2,

(1 + 2k
q−1)C

(d−2)/2
k (u′v), d ≥ 3,

(2.8)

where Tk and C(d−2)/2
k are the kth Chebyshev polynomial of the first kind and the kth

Gegenbauer polynomial of order (d − 2)/2, respectively (defined in Subsection 2.1.1).
Since

lim
α→0+

1
α
Cαk (z) =

2
k
Tk(z) for k ≥ 1, (2.9)

see equation 18.7.25 in NIST [46], the case d = 2 in (2.8) can be seen as an extension of
the d ≥ 3 case, which enables writing ⟨tk(u), tk(v)⟩ = (1+ 2k

d−2)C
(d−2)/2
k (u′v) for d ≥ 2 by

assuming implicitly such extension for d = 2. We do so henceforth for the sake of brevity,
unless an explicit separation of the two cases is beneficial for clarity.

Alternatively, Sobolev tests can be constructed as the locally most powerful rotation-
invariant tests for testing H0 in (1.3) against specified alternatives f(⋅′µ), µ ∈ Ωd−1

(Beran [16] and Giné [71]). The construction is based on an application of the Neyman–
Pearson Lemma and a locality argument (assuming f ≈ 1), providing an equivalent
expression for the test statistic (2.7):

Sn,d−1({vk,d−1}) =
1
n
∫Ωd−1

(
n

∑
i=1
f(X′

iσ) − n)
2
νd−1(dσ), (2.10)

where

f(z) ∶= 1 +
∞
∑
k=1

(1 + 2k
d − 2

) vk,d−1C
(d−2)/2
k (z), z ∈ [−1,1]. (2.11)

Proposition 2.1 in Prentice [114] states the existence of gf ∈ L2
d−1[−1,1] such that

gf(z) =
∞
∑
k=1

bk,d−1C
(d−2)/2
k (z), bk,d−1 = (1 + 2k/(d − 2))v2

k,d−1, k ≥ 1, (2.12)
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and such that

Sn,d−1({vk,d−1}) =
1
n

n

∑
i,j=1

gf (X′
iXj) . (2.13)

When d = 2, the continuity extension (2.9) is assumed in (2.11) and (2.12), resulting
f(z) = 1 +∑∞k=1(2bk,1)1/2Tk(z) and gf(z) = ∑∞k=1 bk,1Tk(z) with bk,1 = 2v2

k,1, k ≥ 1.

Remark 2.6.1. Equation (2.13) and the comment which follows it, show that it is rather
{v2
k,d−1} who determines Sn,d−1({vk,d−1}). Moreover, f immediately provides {v2

k,d−1},
hence Sn,d−1({vk,d−1}). Because of this, we will use the notation Sn,d−1(f) to refer to
Sn,d−1({vk,d−1}) when the indexing by f ∈ Fd−1 provides better clarity. For that, we define

Fd−1 ∶= {f ∈ L2
d−1[−1,1] ∶ f(z) =1 +

∞
∑
k=1

(1 + 2k
d−2) vk,d−1C

d−2)
2

k (z),
∞
∑
k=1

v2
k,d−1`k,d−1 <∞} .

Note that two different functions f, f∗ ∈ Fd−1 such that vk,d−1 = ±v∗k,d−1, k ≥ 1, determine
the same squared coefficients, hence yielding the same statistic.

The following precise definition of the Sobolev class of test statistics will be useful in
Chapter 5.

Definition 2.6.2 (Sobolev class). The Sobolev class of test statistics is defined as S ∶=
{Sn,d−1({vk,d−1}) ∶ {vk,d−1} ⊂ R,∑∞k=1 v

2
k,d−1`k,d−1 <∞} = {Sn,d−1(f) ∶ f ∈ Fd−1}. The h-

finite Sobolev class is defined as

Sh ∶= {Sn,d−1({vk,d−1}) ∈ S ∶ {vk,d−1} has at most h non-null terms}.

Clearly, Sh ⊂ S, ∀h ≥ 1. The h-finite Sobolev class has been studied in Jupp [88] and
Jammalamadaka et al. [83].

For the sake of reference, we collect in the following theorem the main results on the
tests based on (2.7) and (2.10), as stated in Giné [71] and Prentice [114].

Theorem 2.6.3 (Giné [71], Prentice [114]). Let {vk,d−1} be a real sequence satisfying

∑∞k=1 v
2
k,d−1`k,d−1 < ∞. Let Yk be independent rv’s with χ2

`k,d−1
distribution, k ≥ 1. Then,

under H0 in (1.3),

Sn,d−1({vk,d−1})
d↝

∞
∑
k=1

v2
k,d−1Yk. (2.14)
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In addition, the test that rejects for large values of Sn,d−1({vk,d−1}) is asymptotically and
locally (in κ → 0) most powerful rotation-invariant (except O(κ3) terms) against the
alternative with pdf

fµ,κ(x) ∶= (1 − κ) 1
ωd−1 + κ

f(x′µ)
ωd−1 , 0 < κ ≤ 1, (2.15)

where µ ∈ Ωd−1 is unspecified and f is given by (2.11). Furthermore, if vk,d−1 ≠ 0, for all
k ≥ 1, the test is consistent against all non-uniform alternatives with pdf in L2(Ωd−1, νd−1).

Further details and insights on Sobolev tests can be seen in Section 3 of García-Portugués
and Verdebout [64] and references therein.

We finish this subsection showing some well-known Sobolev tests which will be men-
tioned in Chapter 5. Some remarks about them: i) Watson, Rothman, Ajne and Rayleigh
tests were initially proposed to test (1.3) for the circular case (although Ajne and
Rayleigh tests are immediately generalizable to Ωd−1 for d > 2, both through the Sobolev
class of tests); meanwhile, Bingham was proposed for the sphere. ii) Although Rayleigh,
Watson, Rothman, Ajne, and Bingham tests were introduced before the definition of
Sobolev tests, Giné showed that they belong to this class, see Giné [71].

Rayleigh test: The Rayleigh test [115] is based on the fact that if X has ν1 distribution,
then E(X) = 0 or, equivalently, ∥E(X)∥2 = 0. This leads to define the Rayleigh’s statistic
as

Rn ∶= 2n∥ 1
n

n

∑
i=1

Xi∥
2
= 2
n

⎛
⎝
(
n

∑
i=1

cos Θi)
2
+ (

n

∑
i=1

sin Θi)
2⎞
⎠
.

Watson test: The Watson [135] statistic is defined as

U2
n ∶=n∫

2π

0
{Gn(θ) −G(θ) − ∫

2π

0
(Gn(ϕ) −G(ϕ)) dG(ϕ)}

2
dG(θ), (2.16)

where Gn(θ) ∶= (1/n)∑ni=1 1{Θi≤θ} is the empirical cdf of the circular sample Θ1, . . . ,Θn

in [0,2π), G(θ) ∶= θ/(2π) is the uniform cdf on [0,2π), where the origin is implicitly
assumed to be 0. The statistic U2

n has several neat connections with other circular and
linear uniformity tests; particularly it can be regarded as the rotation-invariant version
of the CvM statistic that selects the origin in such a way that the discrepancy of the
sample with respect to H0 is minimized (see, e.g., García-Portugués and Verdebout
[64]).
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Alternatively, U2
n has the form (see, e.g., Mardia and Jupp [102, p. 111]):

U2
n =

1
n

n

∑
i,j=1

h (θij) =
2
n
∑
i<j
h (θij) +

1
12
, h(θ) = 1

2
( θ2

4π2 −
θ

2π
+ 1

6
) , (2.17)

where θij = cos−1(cos(Θi −Θj)) ∈ [0, π] is the shortest angle distance between Θi and
Θj .

Rothman test: The test statistic by Rothman [117] compares the number of expected
and observed data points in arcs of Ω1 of length 2πt in a rotationally-invariant way:

Rn,t ∶=
1

2πn ∫
2π

0
(N(α, t) − nt)2 dα, (2.18)

where N(α, t) ∶= #{Θ1, . . . ,Θn ∶ cos−1(cos(Θi − (α + tπ))) < tπ, i = 1, . . . , n} represents
the number of observations in the arc [α,α+2πt), for α ∈ [0,2π) and t ∈ (0,1). The Ajne
[4] statistic arises as a particular case of Rn,t with t = 1/2:

An ∶=
1

2πn ∫
2π

0
(N (α, 1

2) −
n
2 )

2 dα = n
4
− 1
nπ
∑
i<j
θij . (2.19)

Bingham test: Bingham test [19] is based on the fact that if X has νd−1 distribution,
then E(X′X) = Id/d or equivalently, the trace tr (E(X′X)2) − d−1 = 0. It is defined as

Bn ∶=
nd(d + 2)

2
(tr(S2

n) −
1
d
) ,

where Sn ∶= n−1∑ni=1 X′
iXi is the empirical covariance matrix of the X1, . . . ,Xn.

Giné test: The Giné statistic [71] designed for d = 2, extended in Prentice [114] for
d ≥ 2, is defined as

Gn ∶=
n

2
− (d − 1)Γ((d − 1)/2)2

2nΓ(d/2)2 ∑
1≤i<j≤n

sin(cos−1(X′
iXj)).

Bakshaev test: Bakshaev [11] proposed the chordal-based test statistic

Nn,d−1 ∶= nE∥X1 −X2∥ −
1
n

n

∑
i,j=1

∥Xi −Xj∥
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for testing uniformity on Ωd. Observing that ∥Xi −Xj∥ =
√

2 − 2 cos(θij) = 2 sin (θij/2)
and that E∥Xi −Xj∥ =

√
2 ∫

1
−1

√
1 − tdFd−1(t) under H0, when d = 3 the test statistic can

be written as

Nn,2 =
4n
3
− 4
n
∑
i<j

sin(
θij

2
) . (2.20)

2.6.2 A test based on random projections

Cuesta-Albertos et al. [37] proposed a uniformity test based on random projections.
It is based on the characterization in Theorem 2.2.3. As a consequence of this char-
acterization, testing H0 in (1.3) is (almost surely) equivalent to testing Hγ

0 ∶ γ
′X has

distribution Fd−1, where Fd−1 (see Lemma 2.5.4) is the common cdf of the sample of
random projections γ′X1, . . . ,γ

′Xn under H0 (see Proposition 3.2.2), and γ is a rv with
distribution on Ωd−1 independent of the sample. Denoting by Fn,γ to the empirical cdf
of the projections γ′X1, . . . ,γ

′Xn, the test rejects Hγ
0 , and consequently H0, for large

values of the Kolmogorov–Smirnov test statistic

Dn,γ ∶= sup
x∈[−1,1]

∣Fn,γ(x) − Fd−1(x)∣. (2.21)

As already mentioned, this test depends on the random direction γ. In order to alleviate
this, Cuesta-Albertos et al. [37] considered k random projections on the iid rv’s γ1, . . . ,γk

and used the aggregated statistic Cn ∶= min{pγ1 , . . . , pγk}, where pγj represents the p-
value associated to the test performed with the random direction γj . The test rejects for
low values of Cn,γ1,...,γk . The distribution of Cn under H0 is unknown, but the authors
approximate it by Monte Carlo simulations (conditionally on the sample γ1, . . . ,γk).

2.7 Required results about integral equations

We show next some results from the theory of integral equations that are needed to
prove Theorem 5.2.2 and are particularizations for real L2[−1,1] kernels of results in
Smithies [123, Chapters 7 and 8].

Definition 2.7.1 (L2-kernel and its adjoint). A real Borel measurable function K defined
on [−1,1] × [−1,1] is called an L2-kernel if ∫

1
−1 ∫

1
−1K(s, t)2 dsdt, ∫

1
−1K(s, t)2 ds, and

∫
1
−1K(s, t)2 dt are finite for every s, t ∈ [−1,1]. The adjoint kernel of K, denoted by K∗, is

defined as K∗(s, t) ∶=K(t, s), for s, t ∈ [−1,1].
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Definition 2.7.2 (Singular values and singular functions). Let K be an L2-kernel and
u, v ∈ L2[−1,1] such that u, v ≠ 0. The real number µ is called a singular value of K and
[u, v] are referred to as a pair of singular functions of K associated to the singular value µ
if

u(s) = µ∫
1

−1
K∗(s, t)v(t)dt and v(s) = µ∫

1

−1
K(s, t)u(t)dt.

It happens that the set of the singular values of K is either finite or denumerable with
no finite limit points. In addition, given a singular value µ, the set of singular functions
associated to µ constitutes a finite dimensional linear subspace. Then, each singular
value µ admits a finite number of pairs of singular functions, say {[ui, vi]}

dµ
i=1, which are

an orthonormal basis of the corresponding singular functions. The union of those bases
forms a full orthonormal system of singular functions.

In what follows we consider ordered systems of singular values {µn}∞n=1,0 < µ1 ≤ µ2 ≤ . . .,
where each singular value is repeated as many times as the dimension of the associated
subspace of singular functions dµn . With an abuse of notation, the collection of singular
values and singular functions {([un, vn];µn)}∞n=1, referred to as singular system, is treated
as infinite.

Proposition 2.7.3 (Theorem 8.7.1 in Smithies [123]). Let {([un, vn];µn)}∞n=1 be a
singular system of the L2-kernel K and let y ∈ L2[−1,1]. Then, the equation

y(s) = ∫
1

−1
K(s, t)x(t)dt

has a solution x ∈ L2[−1,1] for almost every s ∈ [−1,1] if and only if

a) ∑∞n=1 µ
2
n ∫

1
−1(y(s)un(s))

2 ds <∞;

b) ∫
1
−1 y(s)u(s)ds = 0 for every function u ∈ L2[−1,1] such that ∫

1
−1K

∗(s, t)u(s)ds = 0
for almost every t ∈ [−1,1].

2.8 Sequential analysis

A sequential method is characterized by a stopping rule that decides whether to stop
the observation process with (X1, . . . ,Xn) or to get an additional observation Xn+1 for
n ≥ 1. Therefore, the sample size is not predetermined, in fact it is a random variable.

Those procedures started with Wald’s sequential probability ratio tests (SPRTs) [133]
around the 1930s and they have been used very often (see for instance Box et al. [22],
Montgomery [108] and Wetherill and Brown [139]). They were initially developed
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as methods of quality control, and since then, they form the basis of many more
sophisticated developments in quality control methodologies. They are also widely used
in general test of hypotheses problems. In fact, they are applied in a wide range of
situations: biomedical signal and image processing, intrusion detection in computer
networks and security systems, detection of road traffic incidents, human motion
analysis, etc, (Tartakovski et al. [130]).

Wald’s SPRT. Wald’s SPRT was originally formulated as a test between two simple
hypotheses. Let x1, . . . , xn be a sequence of iid observations of a rv X and f(x, θ) be the
pdf of X, where the parameter θ is unknown. The hypotheses to be sequentially tested
are of the form H0 ∶ θ = θ0 and H1 ∶ θ = θ1. Let m be a positive integer, the likelihood
of a sample x1, . . . , xm is ∏mi=1 f(xi, θ0), when H0 is true and ∏mi=1 f(xi, θ1), when H1 is
true. Let 0 < a < b be two constants. Consider the ratios:

Λm ∶=
m

∏
i=1

f(xi, θ1)
f(xi, θ0)

.

At any stage of the process (m-th step with m ≥ 1), Λm is computed and

- Stop and accept H1 if Λm ≥ b.

- Stop and accept H0 if Λm ≤ a.

- Continue and take an additional observation if a < Λm < b.

The constants a and b are chosen in order to control the prescribed errors of type I and
II, α and β. Wald suggested that in practice those constants can be approximated by
a ≈ (1 − β)/α and b ≈ (1 − α)/β.

Two functions characterize the SPRT:

- The operating characteristic (OC), denoted by L(θ), is the probability of accepting
H0 when the parameter is θ. Thus, it is one minus the power function.

- The average sample number (ASN), or expected duration of the experiment,
denoted by Eθ(K), is the mean number of sample points which are necessary for
testing the hypotheses when the true value of the parameter is θ.

The performance of SPRTs has been studied extensively. It is well known that Wald’s
SPRT is the optimal method (in the sense that it requires the smallest number of required
observations to achieve the given errors α and β) when the observations are iid and the
hypotheses to be tested are simple, (Wald and Wolfowitz [134] and Matthes [106]).
In particular, let L(θ) and Eθ(K) be the OC and the ASN respectively for a SPRT, and
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L̃(θ) and Ẽθ(K) be the same functions but for another test. If L̃(θ0) ≥ L(θ0) and
L̃(θ1) ≤ L(θ1), then Ẽθ0(K) ≥ Eθ0(K) and Ẽθ1(K) ≥ Eθ1(K).

However, these assumptions may be quite restrictive in real applications (the observa-
tions are not always iid and the hypothesis to be tested are often composite). Indeed,
theoretically, SPRTs require neither the hypotheses to be simple nor the observations
to be iid, neither the thresholds for the test to be constant over time. Nevertheless,
studying SPRTs properties and behaviour becomes much more complicated without
these assumptions. For instance, there exist some non-parametric SPRTs with dependent
data such as Lai [93], although the optimal parametric SPRTs with dependent data is
still an open problem (see Niu and Varshney [110]). There also exist generalized SPRTs
where the thresholds are not constant, unfortunately the determination of how those
thresholds should be chosen is still not solved (see Gölz et al. [73]).
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Outliers detection: known
parameters

3

„Let us choose for ourselves our path in life, and let
us try to strew that path with flowers.

— Emilie du Chatelet

This chapter aims to propose a method to decide whether a point is an outlier or not
with respect to a multivariate normal distribution with known parameters. This is a
previous step to study the method when the parameters are unknown, which is the
most common situation in practice. We also provide the expected number of projections
required to declare a point as outlier or not and also the values of the constants a, b
which determine the test when the covariance matrix is the identity (see Propositions
3.3.1 and 3.5.4 respectively).

3.1 Scenario of the method and notation

Let µ and Σ be known parameters and Cdn(δ) defined in (1.1). Basic ideas presented in
the Introduction lead to test the following hypotheses for a given point x ∈ Rd ∶

H0 ∶ ∥x −µ∥Σ ≤ Cdn(δ), i.e. x is no outlier wrt Nd(µ,Σ),
H1 ∶ ∥x −µ∥Σ > Cdn(δ), i.e. x is an outlier wrt Nd(µ,Σ).

(3.1)

The procedure to test (3.1) is analogous to Algorithm 2 replacing ν̂V and λ̂V by νV

and λV, which are measures of central tendency and of dispersion, respectively, of the
projected distribution.

Our selection in this work for νV and λV will be, respectively, the mean, µV, or
the median, mV, and the standard deviation, σV, or the MAD, denoted by M∗

V. It
is well known that under normality the MAD overestimates the standard deviation
(see Maronna et al. [105]). To make it consistent (see ibid), we use the normalized
MAD, abridged to MADN: MV =M∗

V/q3, where q3 is the third quantile of a N1(0,1)

31



distribution. In this chapter no estimation is needed, and µV = mV and σV = MV.
Hence, to simplify, we use µV and σV through this chapter.

A remaining task is to select a and b in order to have a test with prescribed errors of type
I and II equal to α and β, respectively. It turns out that a and b depend on the sample
size and on the dimension of the space, but to avoid excessive notational burden, we do
not make explicit this dependency, which will be analysed giving the expected number
of required projections to reach the decision about the point we want to classify (related
with the efficiency of the method).

Under H0, the only relevant quantity here is the value of t = ∥x −µ∥Σ , thus instead
of assuming that we have a fixed point, we will replace the point x by a generic point
on the Mahalanobis sphere with centre at µ and radius t, for some t > 0. Being more
precise, we will replace the point x ∈ Rd by a random observation X coming from a
Nd(µ,Σ) distribution given that ∥X −µ∥Σ = t. We begin with two assumptions and
some notation:

(A1) X is a rv with distribution Nd(µ,Σ).

(A2) V and V1, . . . ,Vn are iid rv’s with distribution Nd(0, Id) which also are

independent from the rv in (A1).

Notation. Under assumptions (A1) and (A2), denote

Y V ∶= X′V − µV
σV

. (3.2)

When V = Vk, we ease the notation writing Y k instead of Y Vk . The rv number of
random projections which we need to decide if X is an outlier or not with respect to the
distribution Nd(µ,Σ) is denoted by Ka,b(Σ). Thus, given 0 < a ≤ b

Ka,b(Σ) ∶= inf {k ∶ ∣Y k∣ < a or ∣Y k∣ > b} . (3.3)

However, when there is no possibility of confusion, or the specific values of a, b or Σ are
not important, we omit those parameters and simplify, for instance, to K. Note that if
K is finite, then Y K is well defined.

For s, t > 0, let X be a rv with distribution Nd(µ,Σ) and Z with distribution Nd(µ, Id),
denote ft the pdf of X given that ∥X∥Σ = t and

yV ∶= (x′V − µV) /σV,

F (s, t) ∶= P ( ∣Z′V−µV∣
∥V∥ < s ∣ ∥Z∥ = t) ,

FΣ(a, b, t) ∶= P(∣Y K ∣ > b ∣ ∥X∥Σ = t).
(3.4)
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Notice that the distribution of Y V does not depend on µ neither that on scale. Since
our method relies on Y V, we can assume w.l.o.g. that µ = 0.

3.2 The distribution of the projections Y V

Let s, t > 0, we firstly show in Proposition 3.2.1 that P ( ∣Y V∣ < s ∣ ∥X∥Σ = t) does not
depend on the covariance matrix. This allows us to obtain en explicit expression for it,
as it can be seen in Proposition 3.2.2.

Proposition 3.2.1. Let y ∈ [−t, t], with t > 0. Under assumptions (A1) and (A2), we have
that P (Y V < s ∣ ∥X∥Σ = t) does not depend on Σ.

Proof. Write X = Σ1/2X0, with X0 a rv with distribution Nd(0, Id), then

P (Y V < s ∣ ∥X∥Σ = t) = P( X′
0Σ1/2V
σV

< s ∣ ∥X0∥ = t)

= E [P(X′
0UΣ < s ∣ UΣ, ∥X0∥ = t) ∣ ∥X0∥ = t] ,

where UΣ ∶= Σ1/2V/σV. Then, it is enough to see that P(X′
0UΣ < s ∣UΣ, ∥X0∥ = t) does

not depend on Σ. Note that,

P(X′
0UΣ < s ∣UΣ, ∥X0∥ = t) = P( X′

0
∥X0∥

UΣ < s

∥X0∥
∣ UΣ, ∥X0∥ = t) .

Obviously X′
0/ ∥X0∥ has a uniform distribution on Ωd−1. Since ∥UΣ∥ = 1, we have that 2.

in Proposition 2.5.2 gives

P( X′
0

∥X0∥
UΣ < s

∥X0∥
∣ UΣ, ∥X0∥ = t) = P(∥UΣ∥U1

0 < s

∥X0∥
∣ UΣ, ∥X0∥ = t)

= P(U1
0 < s

∥X0∥
∣ UΣ, ∥X0∥ = t) , (3.5)

where U1
0 is the one dimensional marginal of a r.v. with uniform distribution on Ωd−1.

Consequently, (3.5) does not depend on UΣ neither on Σ.
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Proposition 3.2.2. Let t > 0 and s ∈ R. Under assumptions (A1) and (A2), we have

P (Y V < s ∣ ∥X∥Σ = t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if s ≤ −t,

1
2 + sign(s)1

2 Is2/t2 (1
2 ,

d−1
2 ) if s ∈ (−t, t),

1 if s ≥ t,

where Is2/t2 (1
2 ,

d−1
2 ) denotes the incomplete beta function.

Proof. The result when s ∉ [−t, t] is trivial. If s ∈ (−t, t), by Proposition 3.2.1 we have
that, if Z is a rv with Nd(0, Id) distribution, then

P (Y V < s ∣ ∥X∥Σ = t) = P( Z′V
∥V∥

< s ∣ ∥Z∥ = t)

= E [P( Z′V
∥V∥

< s ∣ Z = z) ∣ ∥Z∥ = t]

= ∫Ωd−1
t

P( Z′V
∥V∥

< s ∣ Z = z) fZ ∣ ∥Z∥=t(z)dz−d.

(3.6)

Denoting by U1
0 the one-dimensional marginal of a rv uniform on Ωd−1, by Proposition

2.5.2, given z ∈ Ωd−1
t :

P( Z′V
∥V∥

< s ∣ Z = z) = P (U1
0 < st−1 ∣ Z = z) .

This expression does not depend on z, therefore we can take this expression out of the
integral in (3.6). By fZ∣ ∥Z∥=t being a pdf and Lemma 2.5.4, the result is deduced when
s ∈ (−t, t).

Remark 3.2.3. From previous propositions, it is deduced that

i) The expression of P (Y V < s ∣ ∥X∥Σ = t) given in Proposition 3.2.2 depends on the
dimension. Moreover, the computation of Is2/t2 (1

2 ,
d−1

2 ) is not too daunting and
explicit expressions can be obtained. For instance, we have that:

- If d = 2 ∶ Is2/t2 (1
2 ,

1
2) =

2
π sin−1 (st−1) .

- If d = 11 ∶ Is2/t2 (1
2 ,5) =

1
128t9 (35s9 − 180s7t2 + 378s5t4 − 420s3t6 + 315st8) .

ii) Proposition 3.2.1 shows that the distribution of Y V given ∥X∥Σ does not depend
on Σ. Moreover, from the proof of Proposition 3.2.2, we infer that if Σ = Id, then
X′V/∥V∥ only depends on ∥X∥ but not on the precise value of X.
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Figure 3.1 shows the graph of the probability P (X′V/ ∥V∥ < s ∣ ∥X∥ = t) , computed as
shown in Proposition 3.2.2 for different values of n and d with Σ = Id and t = Cdn. We
see that the larger the dimension the more concentrated the distribution on the central
part of the interval (−Cdn,Cdn). We appreciate no big differences when the sample size
increases.
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Figure 3.1.: Representation of F ∗
(s,Cdn) ∶= P(X′V

∥V∥ < s ∣∥X∥ = Cdn) for different values of n and d.

Next example shows that the property ii) of Remark 3.2.3 may fail if Σ ≠ Id.

Example 3.2.4. Let n = 100, d = 2, and consider the distribution N2(0,Σ), where Σ =
( 1 0

0 10 ) . In this case, the set {x ∶ ∥x∥Σ = t}, for any t > 0 is an ellipse on the plane with
its major axis 101/2 times larger than its minor axis. We also have that Cdn = 3.8925.
Take xM = (0,101/2Cdn)′ and xm = (Cdn,0)′, thus ∥xM∥Σ = ∥xm∥Σ = Cdn. Let V be
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a rv with uniform distribution on Ω1, by Lemma 2.5.4 and taking into account that
Iy (1/2,1/2) = 2 sin−1(√y)/π for any y > 0, we have that, if s = 3.8920, then

P(
∣x′MV∣
σV

< s) = 2
π

sin−1 ( s

(10(Cdn)2 − 9s2)1/2) = 0.9678,

P(∣x′mV∣
σV

< s) = 2
π

sin−1 ( 101/2s

((Cdn)2 + 9s2)1/2) = 0.9968.

This difference between the probabilities increases with the quotient between the maximum
and the minimum of the eigenvalues of the covariance matrix. For instance, if we repeat the
computations using Σ = ( τ 0

0 103τ
), xM = (0,103/2τCdn)′ and xm = (τCdn,0)′ for some τ > 0,

then

P(
∣x′MV∣
σV

< s) = 2
π

sin−1 ( s

(103(Cdn)2 − 999s2)1/2) = 0.7013,

P(∣x′mV∣
σV

< s) = 2
π

sin−1 ( 103/2s

((Cdn)2 + 999s2)1/2) = 0.9997.

Given s > 0, Example 3.2.4 leads us to study the variation on x of the function P (yV < s)
on the set {x ∶ ∥x∥Σ = t} for a given t > 0, which is given in Proposition 3.2.7. To prove
it, we need some previous results.

Notice that, in Lemma 3.2.5, in the sets Ri, defined there, we assume that v2 ≠ 0 just to
simplify the writing. It is enough that vi ≠ 0 for some i ∈ {2, . . . , d}.

Lemma 3.2.5. Given 0 < σ1 ≤ . . . ≤ σd, x = (x1, . . . , xd)′ and v = (v1, . . . , vd)′, let
0 ≠ t = ∥x∥ , then the map H ∶ Rd Ð→ Rd given by

H(v1, . . . , vd) ∶= ( x1v1 + ψ
(σ2

1v
2
1 + ϕ)1/2 , v2, . . . , vd) ,

where ψ(= ψv) ∶= x2v2 + ⋯ + xdvd and ϕ(= ϕv) ∶= σ2
2v

2
2 + ⋯ + σ2

dv
2
d, is injective when

restricted to each of the following regions:

R1 ∶= {v ∶ v1 < x1ϕv
σ2

1ψv
, ψv > 0, v2 ≠ 0} ; R2 ∶= {v ∶ v1 < x1ϕv

σ2
1ψv

, ψv < 0, v2 ≠ 0} ;

R3 ∶= {v ∶ v1 > x1ϕv
σ2

1ψv
, ψv > 0, v2 ≠ 0} ; R4 ∶= {v ∶ v1 > x1ϕv

σ2
1ψv

, ψv < 0, v2 ≠ 0} .

Proof. The projection of the last d − 1 components of H coincides with the identity
function, which is obviously injective. Therefore we assume that v2, . . . , vd are fixed and
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study the monotonicity of the function H1(v1, . . . , vd) = (x1v1 + ψ)/(σ2
1v

2
1 + ϕ)1/2. We

have that

∂H1(v1, . . . , vd)
∂v1

=
x1

√
σ2

1v
2
1 + ϕ − (x1v1 + ψ)σ2

1v1(σ1v
2
1 + ϕ)−1/2

σ2
1v

2
1 + ϕ

= σ1(x1ϕ/σ1
1 − ψv1)

(σ2
1v

2
1 + ϕ)3/2 .

Then ∂H1(v1,...,vd)
∂V1

= 0 if and only if v1 = x1ϕ
σ2

1ψ
, or ψ = 0 and x1 = 0. It is easy to check that

H1 is strictly increasing on R1 and R4, while it is strictly decreasing on R2 and R3.

Consequently, the result is proven.

For the sake of simplicity we denote the function H restricted to the regions R1, R2, R3

and R4 as H1, H2, H3 and H4, respectively.

Corollary 3.2.6. With the notation above introduced, we have that:

- On H(R1) = (− ∣x1∣
σ1
,

√
x2

1
σ2

1
+ ψ2

v
ϕv

) × {(v2, . . . , vd)′ ∶ ψv > 0}:

H−1
1 (y, v2, . . . , vd) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(h+(y), v2, . . . , vd) , if − ∣x1∣
σ1

< y < ∣x1∣
σ1
,

(h−(y), v2, . . . , vd) , if ∣x1∣
σ1

< y <
√

x2
1
σ2

1
+ ψ2

v
ϕv
.

- On H(R2) = (−
√

x2
1
σ2

1
+ ψ2

v
ϕv
,− ∣x1∣

σ1
) × {(v2, . . . , vd)′ ∶ ψv < 0}:

H−1
2 (y, v2, . . . , vd) = (h+(y), v2, . . . , vd) , for −

¿
ÁÁÀx2

1
σ2

1
+ ψ

2
v

ϕv
< y < − ∣x1∣

σ1
.

- On H(R3) = ( ∣x1∣
σ1
,

√
x2

1
σ2

1
+ ψ2

v
ϕv

) × {(v2, . . . , vd)′ ∶ ψv > 0}:

H−1
3 (y, v2, . . . , vd) = (h+(y), v2, . . . , vd) , for

∣x1∣
σ1

< y <

¿
ÁÁÀx2

1
σ2

1
+ ψ

2
v

ϕv
.

- On H(R4) = (−
√

x2
1
σ2

1
+ ψ2

v
ϕv
,
∣x1∣
σ1

) × {(v2, . . . , vd)′ ∶ ψv < 0}:
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H−1
4 (y, v2, . . . , vd) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(h−(y), v2, . . . , vd) , if −
√

x2
1
σ2

1
+ ψ2

v
ϕv

< y < − ∣x1∣
σ1
,

(h+(y), v2, . . . , vd) , if − ∣x1∣
σ1

< y < ∣x1∣
σ1
,

where h±(y) ∶= (x1ψv ± ∣y∣
√
x2

1ϕv + σ2
1 (ψ2

v − y2ϕv)) / (σ2
1y

2 − x2
1).

Proof. From Lemma 3.2.5, the explicit expression of the inverse of H is:

H−1(y, v2, . . . , vd) = (h±(y), v2, . . . , vd) .

It remains to determine when the first coordinate of H−1(y, v2, . . . , vd) is h+ or h−.
Suppose ψv > 0 and y > ∣x1∣/σ1, (the rest of the cases are analogous) then

x1ψv + ∣y∣
√
x2

1ϕv + σ2
1 (ψ2

v − y2ϕv)
σ2

1y
2 − x2

1
>
x1ψv − ∣y∣

√
x2

1ϕv + σ2
1 (ψ2

v − y2ϕv)
σ2

1y
2 − x2

1
.

Hence by the definition of the regions Ri: (h−(y), v2, . . . , vd) = H−1
1 (y, v2, . . . , vd), if

(y, v2, . . . , vd) ∈ R1, and (h+(y), v2, . . . , vd) = H−1
3 (y, v2, . . . , vd), if (y, v2, . . . , vd) ∈ R3.

Proposition 3.2.7 gives an expression of the cdf of the standardized random projection
of a given d-dimensional vector. Remember that, by Proposition 3.2.1, this distribution
does not depend on such vector if Σ = Id and it may depend if Σ ≠ Id (see Example
3.2.4).

Proposition 3.2.7. Let x = (x1, . . . , xd)′ ∈ Rd. Assume that Σ is diagonal with eigenvalues
0 < σ2

1 ≤ . . . ≤ σ2
d and that 0 ≠ t ∶= ∥x∥Σ. If V has Nd(0, Id) distribution, then the

distribution of yV is supported by [−t, t] and

P(yV < s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ ∫
A−

∆(s)e−
1
2 ∑

d
i=2 v

2
i dv−1 if − t < s < −∣x1∣/σ1,

1
2 − sign(s)τ ∫

A+
∆(s)e−

1
2 ∑

d
i=2 v

2
i dv−1 if − ∣x1∣/σ1 ≤ s ≤ ∣x1∣/σ1,

1 − τ ∫
A+

∆(s)e−
1
2 ∑

d
i=2 v

2
i dv−1 if ∣x1∣/σ1 < s < t,

where ∆(s) ∶= erf (h+(s)/
√

2) − erf (h−(s)/
√

2), v−1 = (v2, . . . , vd)′, τ ∶= (2
d+3
2 π

d−1
2 )

−1
,

A+ ∶= {v−1 ∶ ψv > 0} and A− ∶= {v−1 ∶ ψv < 0} with ψv and ϕv defined as in Lemma 3.2.5
and h±(⋅) as in Corollary 3.2.6.
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Proof. To ease the notation, we omit the sub-index v in ψv and ϕv. Due to the symmetry
of the distribution of V, we assume that xi ≥ 0 for i = 1, . . . , d. It is clear that yV ∈ [−t, t].
Take the transformation H defined on Lemma 3.2.5.

We have that if B,B0 are two Borel sets and V 1, . . . , V 4 are rv’s such that the distribution
of V i is that of V given that V ∈Ri, for i = 1, . . . ,4, denoting the conditional probability
of B0 given B by P(B0∣B) with P(B) > 0, then:

P(Y ∈ B) = P(H(V ) ∈ B)

=
4
∑
i=1

P(V ∈Ri)P(H(V ) ∈ B∣V ∈Ri)

=
4
∑
i=1

P(V ∈Ri)P(Hi,1(V i) ∈ B), (3.7)

where, as stated, Hi = (Hi,1, . . . ,Hi,d) is the restriction of H to the set Ri, i = 1, . . . ,4.
Since all Hi are injective and derivable we have that

P(Hi,1(V i) ∈ B) = ∫
B
∫

Rd−1
fV i(H−1

i (s,v−1))∣JHi(s,v−1)∣dv−1 ds, (3.8)

where fVi is the pdf of the rv Vi. We trivially have that

∣JHi(s,v−1)∣ = ∣
(∂Hi)−1

1 (s)
∂s

∣ ,

and

fV i(H−1
i (s,v−1)) =

1
P(V ∈Ri)

fV (H−1
i (s,v−1))1Ri(H

−1
i (y,v−1)).

This expression jointly with (3.7) and (3.8) give

P(Y ∈ B) = ∫
B

4
∑
i=1
∫

Rd−1
fV (H−1

i (s,v−1))∣JHi(s,v−1)∣dv−1 ds,

where we have used the fact that, by definition, 1Ri((Hi)−1(s,v−1)) = 1.

We study the sign of the determinant of the Jacobian. By Corollary 3.2.6,

∣
(Hi)−1

1 (s)
∂s

∣ = ∣∂h±(s)
∂s

∣

=
∓x

4
1
σ4

1
ϕ + x2

1
σ2

1
(±s2ϕ ∓ ψ2) ∓ s2ψ2 − 2x1

σ1
ψϕ1/2s(x

2
1
σ2

1
+ ψ2

ϕ − s2)
1/2

σ1(s2 − x2
1/σ2

1)2(x2
1/σ2

1ϕ + ψ2 − s2ϕ)1/2 ,
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where the signs depend on the particular index and s.

We have that ∣∂h±(s)∂s ∣ = 0 only when s ∈ {0,±x1/σ1}. As those values are not in the
mentioned regions, we can state that:

- If s > 0, ∂h+(y)/∂s < 0 and ∂h−(s)/∂s > 0.
- If s < 0, ∂h+(y)/∂s > 0 and ∂h−(s)/∂s < 0.

Take B = (−∞, r], with r ∈ (−t,−∣x1∣/σ1), then

P(yV < r) =∫
A+

(∫
r

−t
fV (H−1

1 (s,v−1))∣JH1(s,v−1)∣ds

+ ∫
r

−t
fV (H−1

3 (s,v−1))∣JH3(s,v−1)∣ds) dv−1

+ ∫
A−

(∫
r

−t
fV (H−1

2 (s,v−1))∣JH2(s,v−1)∣ds

+ ∫
r

−t
fV (H−1

4 (s,v−1))∣JH4(s,v−1)∣ds) dv−1. (3.9)

We have fV (H−1
i (s,v−1))∣JHi(s,v−1)∣ = 0 when r ∈ (−t,−

√
s2

1 + ψ2/φ) for i = 1, . . . ,4
and, using Corollary 3.2.6,

P(yV < r) = 1
(2π)d ∫A−

(∫
r

−
√
x2

1/σ2
1+ψ2/φ

e−
1
2 (h

2
+
(s)+v2

2+⋯+v2
d)∂h+(s)

∂y
ds

− ∫
r

−
√
x2

1/σ2
1+ψ2/φ

e−
1
2 (h

2
−
(s)+v2

2+⋯+v2
d)∂h−(s)

∂s
ds) dv−1.

From h− (−
√
x2

1/σ2
1 + ψ2/φ) = h+ (−

√
x2

1/σ2
1 + ψ2/φ) , the result is obtained. The case

−∣x1∣/σ1 < r < 0 is analogous and the cases when r > 0 are deduced by symmetry.

The expression obtained in Proposition 3.2.7 can be written in an explicit way when
d = 2.

Corollary 3.2.8. Under the same assumptions as in Proposition 3.2.7, if we additionally
assume that d = 2 and V has N2(0, I2) distribution, then the distribution of yV is supported
by [−t, t] and

P(yV < s) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
2π (tan−1(h̃+(s)) − tan−1(h̃−(s))) if − t < s < − ∣x1∣

σ1
,

1
2 + sign(s) 1

2π (tan−1(h̃−(s)) − tan−1(h̃+(s))) if − ∣x1∣
σ1

< s < ∣x1∣
σ1
,

1 − 1
2π (tan−1(h̃+(s)) − tan−1(h̃−(s))) if ∣x1∣

σ1
< s < t,

where h̃±(s) = (x1x2 ± ∣s∣ (σ2
2x

2
1 + σ2

1(x2
2 − σ2

2s
2))1/2) / (σ2

1s
2 − x2

1) .
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Proof. Without loss of generality assume that x2 > 0. Since d = 2, A+ ∶= {v2 ∶ v2 > 0}
and A− ∶= {v2 ∶ v2 < 0}. Let us consider the case r ∈ (−t,−∣x1∣/σ1), the other cases are
analogous. Expression (3.9) now is

P(Y < r) =∫
A+
∫

r

−t
(fV (H−1

1 (s), v2)∣JH1(s, v2)∣ + fV (H−1
3 (s), v2)∣JH3(s, v2)∣) dsdv2

+ ∫
A−
∫

r

−t
(fV (H−1

2 (s), v2)∣JH2(s, v2)∣ + fV (H−1
4 (s), v2)∣JH4(s, v2)∣) dsdv2.

For i = 1, . . . ,4, the determinant of the Jacobian is ∣JHi(s, v2)∣ = ∣v2
∂h̃±(s)
∂s ∣. By Corollary

3.2.6 and since r ∈ (−t,−∣x1∣/σ1), we have

P(yV < r)= 1
2π ∫

r

−t
(∂h̃+(s)

∂s
∫

0

−∞
v2e

− v
2
2
2 (1+h̃2

+
(s)) dv2 −

∂h̃−(s)
∂y
∫

0

−∞
v2e

− v
2
2
2 (1+h̃2

−
(s)) dv2) ds

= 1
2π

(∫
r

−t

∂h̃+(s)
∂s

1
1 + h̃2

+(s)
ds − ∫

r

−t

∂h̃−(s)
∂s

1
1 + h̃2

−(s)
ds) .

The proof is concluded solving these integrals and applying h̃−(−t) = h̃+(−t).

3.2.1 Several projections

Our decision will be based on the value of Y K . Most of the times we will have K > 1
and, therefore, the distribution of Y K will depend on the joint distribution of the
one-dimensional rv’s Y 1, . . . , Y k, . . . In this subsection we pay some attention to this
problem.

We begin with Proposition 3.2.10, where we show that the projections are not condition-
ally independent given the Mahalanobis norm of the point which is investigated unless
Σ = Id, meanwhile they are trivially independent when the point is given. This fact is
stated for further reference in Lemma 3.2.9. After this we will obtain in Proposition
3.2.11 an expression of the probability to declare a generic point in Ωd−1

Σ (t) as an
outlier.

Lemma 3.2.9. Under assumption (A2), Y V1 , . . . , Y Vk are conditionally independent given
X.

Proposition 3.2.10. Under assumptions (A1) and (A2) the rv’s Y V1 , . . . , Y Vk are condi-
tionally independent given ∥X∥Σ if and only if Σ = Id.

Proof. Let t > 0 and x ∈ Rd such that ∥x∥ = t. Define δ(x) ∶= P(Y V < a∣X = x) −P(Y V <
a∣∥X∥Σ = t). From Proposition 3.2.7 it follows that the map x ↦ P(Y V < a∣X = x)
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is continuous and not constant on x for any real a if Σ ≠ Id. Thus, if t > 0, then

∫ δ2(x)PX∣∥X∥Σ=t(dx) > 0. However, by definition of δ(x),

P(Y V < a∣∥X∥Σ = t) = ∫ P (Y V < a∣X = x)PX∣∥X∥Σ=t(dx)

= P(Y V < a∣∥X∥Σ = t) + ∫ δ(x)PX∣∥X∥Σ=t(dx),

and, consequently, ∫ δ(x)PX∣∥X∥Σ=t(dx) = 0. Denote gt(a) ∶= P(Y V1 < a, Y V2 <
a ∣∥X∥Σ = t), then, by Lemma 3.2.9.

gt(a) = ∫ P (Y V1 < a, Y V2 < a∣X = x)PX∣∥X∥Σ=t(dx)

= ∫ P(Y V < a∣X = x)2PX∣∥X∥Σ=t(dx)

= ∫ (P(Y V < a∣∥X∥Σ = t)2 + δ2(x) + 2δ(x)P(Y V < a∣∥X∥Σ = t))PX∣∥X∥Σ=t(dx)

= P(Y V < a∣∥X∥Σ = t)2 + ∫ δ2(x)PX∣∥X∥Σ=t(dx)

> P(Y V < a∣∥X∥Σ = t)2.

However, if Σ = Id, by ii) in Remark 3.2.3, we have that P(Y V < a∣X = x) is constant on
x and the same reasoning shows the independence in this case.

3.2.2 The testing problem revisited

We provide now some characteristics of the distribution of Y K which will be crucial in
the determination of the constants a and b. Given α ∈ (0,1), the intended error of type I,
our goal is to calculate values of a and b with 0 < a ≤ b < Cdn(δ) such that P(K <∞) = 1,
and the probability of declaring a point X as outlier when it is not it is less or equal
than α, i.e. a and b should verify

sup
t≤Cdn(δ)

FΣ(a, b, t) = α. (3.10)

Proposition 3.2.11 gives an expression for the term FΣ(a, b, t) which appears in (3.10).
The reason to exclude the case a = 0 in the rest of this chapter, is that for any x we have
that P(∣yv∣ ≤ 0) = 0 a.s. what, issues aside, would lead to P(K <∞) = 0.

Proposition 3.2.11. Under assumptions (A1) and (A2), suppose that a, b and t are
strictly positive constants such that a ≤ b, then
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FΣ(a, b, t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0, if b ≥ t,

∫Ωd−1
Σ (t)

P(∣yV∣ > b)
1 −P(∣yV∣ ∈ (a, b))

ft(x)dx, if 0 < a ≤ b < t.

Proof. By definition, see (3.4),

FΣ(a, b, t) =
∞
∑
k=1

P({∣Y K ∣ > b} ∩ {K = k} ∣ ∥X∥Σ = t)

=
∞
∑
k=1

P ( for i = 1, . . . , k − 1; ∣Y Vi ∣ ∈ [a, b] and ∣Y Vk ∣ > b∣ ∥X∥Σ = t) .

Since a > 0, P(∣Y K ∣ > b∣ ∥X∥Σ = t) = E (P(Y K > b ∣X)∣ ∥X∥Σ = t) . By Lemma 3.2.9

FΣ(a, b, t) = E(
∞
∑
k=1

(P(∣Y k∣ ∈ (a, b)∣X))k−1 P(∣Y ∣ > b ∣X)∣ ∥X∥Σ = t)

= E( P(∣Y V∣ > b)
1 −P(∣Y V∣ ∈ (a, b))

∣ ∥X∥Σ = t) .

By Propositions 3.2.2 and 3.2.10, if Σ = Id, Proposition 3.2.11 simplifies as shown in
Corollary 3.2.12.

Corollary 3.2.12. Under the assumptions of Proposition 3.2.11, if, additionally, X is a rv
with distribution Nd(0, Id), then,

P (∣Y K ∣ > b ∣ ∥X∥ = t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0, if a > 0, b ≥ t,
1−Ib2/t2(

1
2 ,
d−1
2 )

1+Ia2/t2(
1
2 ,
d−1
2 )−Ib2/t2(

1
2 ,
d−1
2 ) , if 0 < a ≤ b < t.

Proposition 3.2.11 gives the mean value of the probability to declare a point as non-
outlier given its Mahalanobis norm. However, this probability depends on the precise
location of the point, and it varies between the extremes shown in Theorem 3.2.14.

For further reference we state the following lemma, whose proof is trivial.

Lemma 3.2.13. Let v, w, v1 and w1 be such that 0 < v < v1 and 0 < w1 < w, then

v

v +w
< v1

v1 +w1 .

Theorem 3.2.14. Let Σ be a diagonal matrix with ordered eigenvalues 0 < σ2
1 ≤ . . . ≤ σ2

d;
let x ∈ Rd with 0 ≠ t = ∥x∥Σ . Assume that a, b are strictly positive constants such that
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a ≤ b < t, and consider Y K as in (3.2). Under assumption (A2), we have that the map
x ↦ P(∣Y K ∣ > b ∣X = x) attains a minimum and a maximum when x = (±tσ1,0, . . . ,0)
and x = (0, . . . ,0,±tσd) respectively.

Proof. The same reasoning as in Proposition 3.2.11 gives

P(∣Y K ∣ > b ∣X = x) = 1 −P(∣yV∣ < b)
1 −P(∣yV∣ < b) +P(∣yV∣ < a)

.

Choose a basis whose first element is x/∥x∥. Write V = (V1, . . . , Vd), then

P(∣yV∣ < s) = P(∥x∥ ∣V1∣
σV

< s) = P(∣V1∣
σV

< s

∥x∥
) .

Hence P(∣yV∣ < b) is strictly decreasing in ∥x∥ and we only have to search the extreme
values of ∥x∥, or equivalently, of ∥x∥2 under the restriction t2 = ∥x∥2

Σ = ∑di=1 σ
−2
i x

2
i , if we

write x on the basis of the eigenvectors of Σ. But it is clear that the extreme values of
∥x∥ are attained in (tσ1,0, . . . ,0) and (0, . . . ,0, tσd).

From the proof of Theorem 3.2.14, Proposition 3.2.15 follows and states that the proba-
bility of declaring a point as outlier is strictly increasing with respect to its Mahalanobis
norm.

Proposition 3.2.15. Under the same hypotheses of Theorem 3.2.14, the map t↦ P(∣Y K ∣ >
b ∣∥X∥Σ = t) is strictly increasing.

By Proposition 3.2.15, equation (3.10) is equivalent to

FΣ(a, b,Cdn) = α. (3.11)

3.3 Moments of K

In this section we compute the expected number of projections that we need to take a
decision on whether a point is an outlier or not. This is a way to determine the efficiency
of the method. It is also helpful to know the variance of the required number of
projections to have a more precise idea of the projections that we will need. Proposition
3.3.1 gives such expressions.
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Proposition 3.3.1. Under assumption (A1), assume that a, b and t are strictly positive
numbers such that a ≤ b and consider K and yV defined as in (3.3) and (3.4) respectively.
Then

E(K ∣ ∥X∥Σ = t) = ∫Ωd−1
Σ (t)

1
1 −P(∣yV∣ ∈ (a, b))

ft(x)dx,

Var(K ∣ ∥X∥Σ = t) = ∫Ωd−1
Σ (t)

P(∣yV∣ < b) −P(∣yV∣ < a)
(1 −P(∣yV∣ ∈ (a, b)))2 ft(x)dx.

Proof. Beginning with the expectation; by Lemma 3.2.9, we have that

E(K ∣ ∥X∥Σ = t) = E (E(K ∣X)∣ ∥X∥Σ = t)

= E [((1 −P(∣Y V∣ ∈ (a, b)∣X))
∞
∑
i=1
iP(∣Y V∣ ∈ (a, b)∣X)i−1)∣ ∥X∥Σ = t]

= E [( 1 −P(∣Y V∣ ∈ (a, b))
(1 −P(∣Y V∣ ∈ (a, b)))2)∣ ∥X∥Σ = t]

= E [( 1
1 −P(∣Y V∣ ∈ (a, b))

)∣ ∥X∥Σ = t] . (3.12)

For the variance, the result follows from (3.12) and

Var(K ∣ ∥X∥Σ = t) = E [K2 ∣ ∥X∥Σ = t)] − (E [K ∣ ∥X∥Σ = t)])2

= E [E(K2 ∣X, ∥X∥Σ = t)] − (E(K ∣ ∥X∥Σ = t))2

= E [gtX] − (E(K ∣ ∥X∥Σ = t))2 ,

where

gtX = E [(1 −P(∣Y V∣ ∈ (a, b)∣X))
∞
∑
i=1
i2P(∣Y V∣ ∈ (a, b)∣X)i−1∣ ∥X∥Σ = t]

= E [ (1 −P(∣Y V∣ ∈ (a, b)))(P(∣Y V∣ < b) +P(∣Y V∣ > a))
(1 −P(∣Y V∣ ∈ (a, b)))3 ∣ ∥X∥Σ = t]

= E [ P(∣Y V∣ < b) +P(∣Y V∣ > a)
(1 −P(∣Y V∣ ∈ (a, b)))2 ∣ ∥X∥Σ = t] .

Observe that the expressions of Proposition 3.3.1 are well-defined, because only the
values a = 0 and b ≥ t would make the integrand infinite.

Notice that Proposition 3.2.7 gives explicit expressions for the probabilities P(∣yV∣ < b)
which appear in Proposition 3.3.1. The conclusions in Proposition 3.3.1 get simplified in
the case Σ = Id, as shown in next corollary which follows from Propositions 3.3.1, 3.2.2
and 3.2.10.
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Corollary 3.3.2. Under the assumptions in Proposition 3.3.1, if Σ = Id, then

E(K ∣ ∥X∥ = t) = 1
1 + Ia2/t2 (1

2 ,
d−1
2 ) − Ib2/t2 (1

2 ,
d−1

2 )
,

Var(K ∣ ∥X∥ = t) =
Ib2/t2 (1

2 ,
d−1

2 ) − Ia2/t2 (1
2 ,

d−1
2 )

(1 + Ia2/t2 (1
2 ,

d−1
2 ) − Ib2/t2 (1

2 ,
d−1
2 ))2 .

A graphical representation of the functions in Corollary 3.3.2 appears in the left panel
of Figure 3.2 that shows the curves t ↦ E(K ∣∥X∥ = t) ± (Var (K ∣∥X∥ = t))1/2 and
t ↦ E(K ∣∥X∥ = t). Since those curves only depend on pta,b ∶= P (∣Y V∣ ∈ (a, b)∣∥X∥ = t),
those are the values that we represent in the axis of abscissas. We see that, as expected,
the higher the probability that the projection on one single vector belongs to the interval
(a, b), pta,b, the higher the value of the expectation of the number of projections.

Notice that if pta,b = 0, then a = b and E(K ∣∥X∥ = t) = 1 and Var(K ∣∥X∥ = t) = 0. That
means that we make our decision based on just one random projection. The other
extreme case is when pta,b = 1, then a = 0 and b = t what implies that we should take
infinite random projections in order to decide if a point is an outlier or not and the
variance is also infinite. Taking into account the continuity of the scalar product and
that the procedure we are handling to select the random directions is equivalent to
choose them with a uniform distribution on the unit sphere, it happens that, in this case,
we are considering all possible directions.

The right panel in Figure 3.2 shows the coefficient of variation of the number of the
required random projections, i.e. the values of (Var(K ∣ ∥X∥ = t))1/2/E(K ∣ ∥X∥ = t). We
see that the closer the value of pta,b to one, the higher this ratio, which is bounded by
one.

3.4 Asymptotic properties of the threshold Cd
n

In this section we pay attention to the asymptotic behaviour of Cdn(δ), defined in (1.1)
of Chapter 2, when n or d diverge. This information will be helpful in Section 3.5.

Theorem 3.4.3 demonstrates that Cdn(δ) increases to infinity when n or d increases and
provides its rate. To prove it, we first need some lemmas. Lemma 3.4.1 gives an upper
bound of F−1

χ2
d

. It is the first part in Lemma 1 of Laurent and Massart [95]. Lemma 3.4.2
is a simple and curious consequence of L’Hôpital’s rule.
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Figure 3.2.: The left panel shows the curves E(K ∣ ∥X∥ = t) (black) and E(K ∣ ∥X∥ = t) ±

(Var(K ∣ ∥X∥ = t))1/2 (blue). The right panel shows the coefficient of variation of the
required number of projections depending on the value of pta,b when Σ = Id.

Lemma 3.4.1 (Laurent and Massart). Let d ≥ 1 and s ∈ (0,1), then

F−1
χ2
d
(s) ≤ d + log ( 1

1 − s
) + 2

√
d log ( 1

1 − s
).

Lemma 3.4.2. Let f and g be functions such that lim
t→∞

f(t) = lim
t→∞

g(t) = 0 and lim
t→∞

f ′(t)
g′(t) =

c ∈ R. Then

lim
t→∞

log(f(t))
log(g(t))

= 1.

Proof. By applying L’Hôpital’s rule twice, we have:

lim
t→∞

log(f(t))
log(g(t))

= lim
t→∞

g(t)
f(t)

lim
t→∞

f ′(t)
g′(t)

= 1.

Theorem 3.4.3. Let δ ∈ (0,1) and Cdn(δ) defined in (1.1). Then Cdn(δ)→∞ as n→∞ or
d→∞ while the other parameter remain fixed with rates log(n) and d1/2, respectively.

Proof. Firstly, we obtain the limit when n→∞ and d is fixed. From (1.1) we have that
if qn,d ∶= F −1

χ2
d
((1 − δ)1/n), then qn,d = (Cdn(δ))2.

Lower bound: By definition we have (1 − δ)1/n = P(d/2, qn,d/2), where P(⋅, ⋅) is the
regularized lower gamma function. For d = 1,
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(1 − δ)1/n = P (1
2
,
qn,1

2
) = ∫

qn,1/2

0
t−1/2e−t dt = erf (

√
qn,1

2
) .

Take β = 2 and α =
√
e/(2π) in Theorem 2 in Chang et al. [29] to obtain

(1 − δ)1/n < 1 −
√
e/(2π) exp{−qn,1},

from where, taking into account that the quantiles of a χ2
d increase with d, we have that

for any d ≥ 1:

qn,d > − log(1 − (1 − δ)1/n) + log(
√
e/(2π)).

Upper bound: By Lemma 3.4.1, for any n and d we have that

qn,d ≤ d − 2 log (1 − (1 − δ)1/n) + 2
√
−d log (1 − (1 − δ)1/n).

As the third term of the above inequality has a lower order than the second one when
n→∞ and d is fixed, we have that both upper and lower bounds have the same order.
Take f(n) ∶= 1 − (1 − δ)1/n and g(n) ∶= n−1. Both functions f(n) and g(n) trivially go to
zero when n→∞. Furthermore

lim
n→∞

f ′(n)
g′(n)

= − log(1 − δ).

Hence Lemma 3.4.2 gives that qd,n has the same order than log(n) when n→∞.

Secondly, we analyse the limit of Cdn when d→∞ while n is fixed. Let Yd be a rv with
distribution χ2

d. Thus, Yd is the sum of d iid rv’s with distribution χ2
1 whose mean is 1

and whose variance is 2. Then, by the Central Limit Theorem, for a ∈ R,

FY ⋆

d
(a)→ Φ(a), (3.13)

where FY ⋆

d
denotes the cdf of Y ⋆

d ∶= (Yd − d)/
√

2d. Instead of in a fixed a, we are
interested in computing this limit on ad ∶= ((Cdn)2 − d)/

√
2d.

Suppose for a contradiction that {ad} is unbounded. Then there exists a subsequence
{adk} such that limk→∞ adk = ∞. By (3.13) since FY ⋆

d
is increasing, for any a > 0, we

have that

1 ≥ limFY ⋆

dk
(adk) ≥ limFY ⋆

dk
(adk) ≥ limFY ⋆

dk
(a) = Φ(a).
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On the other hand, since limt→∞ Φ(t) = 1, we would have that limk→∞ FY ⋆

dk
(adk) = 1.

This is a contradiction because by definition FY ⋆

dk
((Cdkn )2) = P (Y ⋆

dk
≤ (Cdkn )2) = (1 −

δ)1/n ≠ 1 (remember that n is fixed now). Similarly we handle the case adk → −∞. Thus
{ad} is bounded.

Suppose now that {ad} does not converge, i.e. suppose that there exist two subsequences
{d1

k} and {d2
k} such that ad1

k
→ a1 and ad2

k
→ a2, with a1 < a2. Let a1 < x1 < x2 < a2. From

an index k onward:

(1 − δ)1/n = P(χ2
d1
k
≤ (Cd

1
k
n )

2
) = P (Y ⋆

d1
k
≤ ad1

k
) ≤ P (Y ⋆

d1
k
≤ x1)→ Φ(x1), (3.14)

(1 − δ)1/n = P(χ2
d2
k
≤ (Cd

2
k
n )

2
) = P (Yd2

k
≤ ad2

k
) ≥ P (Y ⋆

d2
k
≤ x2)→ Φ(x2), (3.15)

where the convergence follow from (3.13). (3.14) and (3.15) are simultaneously
impossible because for x1 < x2, Φ(x1) ≠ Φ(x2). Hence {ad} does converge.

Let a ∶= limd→∞ ad, then 0 < (1 − δ)1/n = limd→∞ FY ⋆

d
(ad) = Φ(a) and we have that a ≠ 0.

Then, the result follows from the fact that for any ε > 0, from an index onward

(a − ε)
√

2d + d ≤ (Cdn)2 ≤ (a + ε)
√

2d + d. (3.16)

Table 3.1.: Values of Cd
n for different dimensions, sample sizes and δ = 0.05,0.007.

Cdn(0.05) Cdn(0.007)

n d = 10 d = 50 d = 200 d = 500 d = 1000 d = 10 d = 50 d = 200 d = 500 d = 1000

10 5.01 8.91 15.97 24.19 33.44 5.53 9.39 16.43 24.64 33.90
20 5.20 9.09 16.14 24.35 33.61 5.69 9.54 16.58 24.78 34.04
50 5.43 9.30 16.35 24.56 33.82 5.89 9.73 16.76 24.96 34.21

100 5.60 9.46 16.50 24.71 33.96 6.04 9.87 16.89 25.09 34.34
200 5.76 9.79 16.64 24.85 34.10 6.18 10.00 17.02 25.21 34.46

1000 6.10 9.93 16.95 25.15 34.40 6.49 10.29 17.29 25.48 34.73

From (3.16), we obtain the following corollary.

Corollary 3.4.4. Let Cdn(δ) defined in (1.1) and n ∈ N, then

lim
d→∞

Cdn(δ)√
d

= 1.
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Some illustrations of Theorem 3.4.3 appear in Table 3.1 and Figure 3.3 which show, for
different values of d and n, the values of Cdn(δ) for δ = 0.05 and δ = 0.007. In both cases,
it is evident that, even for small sizes, the value of Cdn grows faster on the dimension
than on the sample size. However, the difference between tha values for δ = 0.05 and
δ = 0.007 is not too large and decreases with n and d.

Figure 3.3.: Values of Cdn(0.05) (left panel) and of Cdn(0.007) (right panel).

3.5 Computation of the constants a and b

In this section we seek the a and b solutions of (3.11). An obvious answer is a = b = aα,
the quantile (1 − α) of Y V, however this obviously produces the worst error of type
II. Therefore, we will search for another solutions taking into account the power of
the test under the alternative hypothesis. We obtain explicit formulae of the solutions
of (3.11) for the identity and approximated numerical solutions for b given a general
covariance matrix and a computed with the identity (see Algorithm 3). Note that in
the case of Σ ≠ Id since Σ is known, making use of the representation X = Σ1/2X0, we
could transform the problem into the case Σ = Id. Nevertheless we do not do it because
these results will be helpful in Chapter 4 where the parameters are unknown. The
main difference between the scenarios where Σ = Id and Σ ≠ Id is the dependency of
the projections given ∥X∥Σ as Proposition 3.2.10 showed. Because of this, we split the
computation of a and b in the cases Σ = Id (Subsection 3.5.1) and Σ ≠ Id (Subsection
3.5.2).

According to Proposition 3.5.1 below, for every a ∈ (0, aα), there exists a unique ba such
that the pair (a, ba) gives a test at the level α for the covariance matrix under considera-
tion. Moreover, the lower the a, the larger the number of required projections, what
increases the chances of taking the right decision (at the price of a higher computational
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time). Later, we will take advantage of this proposition to compute a and b in some
specific simulations. This will be crucial when the parameters are unknown.

Proposition 3.5.1. Let x ∈ Rd be such that 0 < t = ∥x∥Σ. Given a > 0 such that P(∣yV∣ <
a) ≤ α, there exists bta such that FΣ(a, bta, t) = α. Moreover, for every t > Cdn the map a↦ bta
is strictly decreasing on a.

Proof. We know it must be a ≤ b. If a = b, then

α = ∫Ωd−1
Σ (t)

P (∣yV∣ > b) fµ̂(m)ft(x)dx. (3.17)

This condition determines b because the function b↦ P (∣yV∣ > b) is strictly decreasing
and continuous for any x. Let bt0 be the unique solution of (3.17). If a < bt0, there exists
a unique bta such that

α = FΣ(a, bta, t),

because the integrand which implicitly appears in FΣ(a, b, t) (see Proposition 3.2.11) is
strictly increasing on b and continuous.

If a1 < a2, denote hba(x) ∶= P(∣yV∣ > b)/(1−P(∣yV∣ ∈ (a, b))), then h
bta1
a2 (x) < h

bta1
a1 (x) since

P (∣yV∣ < a1) < P (∣yV∣ < a2). Hence FΣ(a2, b
t
a1 , t) > FΣ(a1, b

t
a1 , t), then bta2 < b

t
a1 .

Proposition 3.5.2 describes the relation between the expected number of projections
required to reach a decision when Σ ≠ Id and Σ = Id, what leads us to use the solution
of the identity.

Proposition 3.5.2. Suppose that 0 < a ≤ b < t, and consider K as in (3.3). Under
assumptions (A1) and (A2), if Σ ≠ Id, then

E(K ∣∥X∥Σ = t) > E(K ∣ ∥X∥ = t).

Proof. By Propositions 3.2.7 and 3.3.1

E(K ∣ ∥X∥ = t) = 1
1 −P(∣Y V∣ ∈ (a, b)∣∥X∥ = t)

= 1

∫Ωd−1
Σ (t)

(1 −P(∣yV∣ ∈ (a, b))) ft(x)dx

< ∫Ωd−1
Σ (t)

1
1 −P(∣yV∣ ∈ (a, b))

ft(x)dx,
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where the inequality comes from the fact that the map x ↦ P(∣yV∣ > b) +P(∣yV∣ < a) is
continuous and not constant on x a.s. and Jensen’s inequality.

Remark 3.5.3. Let us denote Z the rv whose value is 1 if the point under consideration
is declared outlier and zero otherwise. Let us assume that, in order to accelerate the
computations, we fix k equal to the maximum number of projections to be taken. If this
number is reached, we decide with probability γ ∈ (0,1) that the point under consideration
is an outlier. Let Zkγ be defined as Z with this accelerated procedure. It is clear that

Zk0 ≤ Z and P(Zk0 < Z) > 0 (resp. Zk1 ≥ Z and P(Zk1 > Z) > 0) .

Therefore, the probability to declare the point as an outlier when γ = 0 (resp. γ = 1) is
strictly less (resp. greater) than α.

Intermediate values of γ are considered in Section 3.7. However we leave an in-depth
study of the variation on γ of those probabilities because the selection of its proper value
giving a probability equal to α does not seem trivial. The strict monotonicity of the map
γ → P(Zkγ < Z) and its continuity make this value unique.

3.5.1 Computation of (a, b) when Σ = Id

Let us assume that we want to compute the constants a and b giving a power α test with
a given finite value k ≥ 1 for E(K), when Σ = Id. Taking into account the expressions in
Corollaries 3.2.12 and 3.3.2, we could solve the system

k = (1 − v + u)−1

α = (1 − v)(1 − v + u)−1,
(3.18)

and then look for a, b such that u ∶= I
a2/(Cdn)

2 (1
2 ,

d−1
2 ) and v ∶= I

b2/(Cdn)
2 (1

2 ,
d−1

2 ). Thus,
Proposition 3.5.4, whose proof is trivial, gives explicit expressions of the values a and b
satisfying (3.18).

Proposition 3.5.4. Let Σ = Id and k ∈ N. The pair (a, b) determining the solution of (3.11)
with E(K) = k satisfies that a = CdnBd(u), b = CdnBd(v), where v = 1 − α/k, u = (1 − α)/k
with v − u ≠ 1 and

Bd(w) ∶=
√

B−1 (wB(d − 1
2

,
1
2
) ; 1

2
,
d − 1

2
), for w = u, v.

For the sake of brevity, we omit the dependency on n, d, u and v of the values (a, b)
obtained in Proposition 3.5.4 unless needed. Note that in such proposition, we have
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implicitly excluded the values a = 0 and b ≥ Cdn, which corresponds to v − u = 1; because
in this case we would have k =∞ in (3.18).

Proposition 3.5.4 allows to study the behaviour of the values a and b when the dimension
or the sample size increase. From Proposition 3.5.4, it is clear that, if we fiz d, then
a and b become proportional to Cdn. However, Proposition 3.5.7 shows that a and b

converge to a strictly positive finite value when d goes to infinity and n is fixed and,
it provides the rate of convergence. This result was not evident because, according to
Theorem 3.4.3, limd→∞C

d
n =∞ and a and b are clearly related to Cdn. To ease the proof

of such proposition, we state some previous lemmas.

Lemma 3.5.5. Consider hd = d1/2B (d−1
2 , 1

2) , then there exists limd→∞ hd = h ∈ (0,∞).

Proof. It follows from Stirling’s approximation, since B (d−1
2 , 1

2) = Γ (d−1
2 )Γ (1

2) /Γ (d2) .

Lemma 3.5.6. Given u ∈ (0,1), then there exists Su ∶= lim
d→∞

√
dBd(u) and Su ∈ (0,∞).

Proof. Let xd(u) ∶= (Bd(u))2 and qd(u) ∶= uB (d−1
2 , 1

2) . Two claims are proved: (i) The
function xd(u) converges to zero with rate of convergence d−1 and (ii) The limit of
dxd(u) exists. For (i), by definition,

qd(u) = ∫
xd(u)

0
t−1/2(1 − t)(d−3)/2 dt

≥ (1 − xd(u))(d−3)/2∫
xd(u)

0
t−1/2 dt

= 2(xd(u))1/2(1 − xd(u))(d−3)/2.

Thus, from Lemma 3.5.5 we have that xd(u)→ 0 with rate at most n−1. However

qd(u) ≤ ∫
xd(u)

0
t−1/2 dt = 2(xd(u))1/2,

and consequently, Lemma 3.5.5 again allows us to conclude (i). For (ii), by (i), there
exists a function gd(u) such that xd(u) = gd(u)d−1 and for any u ∈ (0,1)

0 < lim
d→∞

gd(u) ≤ lim
d→∞

gd(u) <∞.

Fix u and omit it in the notation. Suppose that there exist two sequences {d1
k} and {d2

k}
such that both diverge and

0 < lim
k→∞

gd2
k
= g2 < g1 = lim

k→∞
gd1
k
<∞.
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Take a subsequence {d2
k⋆} of {d2

k} such that d2
k⋆ > kd

1
k and that for any k,

gd1
k
> gd2

k
. (3.19)

Let hd be defined in Lemma 3.5.5, thus hd → h ∈ (0,∞). Then

lim
k

(qd1
k

√
d1
k − qd2

k⋆

√
d2
k⋆) = 0. (3.20)

To ease the notation, we call Λk ∶= qd1
k

√
d1
k − qd2

k⋆

√
d2
k⋆ , x̃

1
k ∶= xd1

k
, x̃2

k ∶= xd2
k⋆

and

ϕ(t, d) ∶= d1/2(1 − t)
d−3
2 . Since d2

k⋆ > d
1
k, by (3.19), we have that x̃1

k > x̃
2
k and

Λk = ∫
x̃1

0
t−

1
2ϕ(t, d1

k)dt − ∫
x̃2

0
t−

1
2ϕ(t, d2

k⋆)dt

= ∫
x̃1

x̃2
t−

1
2ϕ(t, d1

k)dt + ∫
x̃2

0
t−

1
2 (ϕ(t, d1

k) − ϕ(t, d
2
k⋆)) dt.

Note that the second term of the above equality is strictly positive from an index onward
because d2

k⋆ > d
1
k and the function ϕ(t, d) is decreasing in d from an index forward, since

the derivative of its square is

∂ϕ2(t, d)
∂d

= (1 − t)d−3 + d log(1 − t)(1 − t)d−3.

Therefore,

Λk ≥ ∫
x̃1
k

x̃2
k

t−
1
2ϕ(t, d1

k)dt ≥ ϕ(x̃1
k, d

1
k)∫

x̃1
k

x̃2
k

t−
1
2 dt = (1 − x̃1

k)
d1k−3

2 2
⎛
⎜
⎝
√
gd1
k
−

¿
ÁÁÀgd2

k⋆

d1
k

d2
k⋆

⎞
⎟
⎠
.

Take k → ∞, as d2
k⋆ > d

1
k, we have Λk → e−g1/22√g1 > 0, which is a contradiction with

(3.20) and the Claim (ii) is proved. Thus there exists Su = lim
d→∞

dxd(u) and Su ≠ 0 by

Claim (i).

Proposition 3.5.7. Let α ∈ (0,1) and k ≥ 1. The pair (ad, bd) determining the solution
of (3.18) satisfies that there exist a∞ = lim

dÐ→∞
ad and b∞ = lim

dÐ→∞
bd, when n is kept fixed.

Furthermore, both limits are finite and strictly positive.

Proof. From Corollary 3.4.4, we have that lim
d→∞

Cdn√
d
= 1 and the result follows from

Lemma 3.5.6.

Table 3.2 shows the values of a and b (approximated taking four decimals) with δ = 0.05
and α = 0.05. Those values have been computed using the expression of Proposition
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3.5.4 for several values of n, d and k. To do this, we have used the function Ibeta.inv
of the zipfR package in R which allows to compute the inverse of an incomplete beta
function. The choice of the values of the dimension and the sample size (here and
through this chapter and the next one) attempts to represent the scenarios when the
dimension is higher (smaller) than the sample size. From this table, the bigger E(K)
and/or n, the wider the interval (a, b) according to Corollary 3.3.2. However, the larger
the dimension, the narrower the interval (a, b). In addition, a and b converge to a
different limit as the dimension goes to infinity, which is consistent with Proposition
3.5.7.

Table 3.2.: Values of (a, b) for Σ = Id, Cd
n ≡ Cd

n(0.05) and different values of n, d and k =
E (K ∣∥X∥ = Cd

n).

n = 50 n = 100 n = 500

k = 50 k = 100 k = 50 k = 100 k = 50 k = 100

d a b a b a b a b a b a b

5 0.0573 4.4057 0.0287 4.4401 0.0595 4.5737 0.0297 4.6095 0.0642 4.9369 0.0321 4.9755
50 0.0318 4.1611 0.0159 4.3736 0.0323 4.2302 0.0162 4.4463 0.0335 4.3793 0.0167 4.6029
102 0.0293 3.9424 0.0147 4.1569 0.0297 3.9912 0.0148 4.2084 0.0305 4.0962 0.0152 4.3192
500 0.0262 3.6000 0.0131 3.8057 0.0264 3.6214 0.0132 3.8283 0.0267 3.6675 0.0133 3.8770
103 0.0255 3.5119 0.0127 3.7137 0.0256 3.5270 0.0128 3.7297 0.0258 3.5593 0.0129 3.7638

3.5.2 Computation of (a, b) when Σ ≠ Id

Taking into account the expressions in Propositions 3.2.11 and 3.3.1, in order to compute
the constants a and b giving an α-level test with a given value k ≥ 1 for E(K), when
Σ ≠ Id, we should solve the system

k =∫Ωd−1
Σ (Cdn)

1
1 −P(∣yV∣ < b) +P(∣yV∣ < a)

fCdn(x)dx

α =∫Ωd−1
Σ (Cdn)

1 −P(∣yV∣ < b)
1 −P(∣yV∣ < b) +P(∣yV∣ < a)

fCdn(x)dx.

However, due to the difficulty in solving this system (see Proposition 3.2.7) when k > 1
(remember that in the not too interesting case k = 1, those expressions do not depend
on Σ, see Proposition 3.2.1, and we take the solution corresponding to Σ = Id), we have
decided, basing our selves on Proposition 3.5.3, to use the values obtained for Σ = Id to
manage any covariance matrix. Before taking this decision we need to check if those
values are adequate for general matrices. As stated, we are not aware of any specific
determination of a and b for general matrices and to make this check, we have resorted
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to carry out the comparison in four specific families of covariance matrices. In addition,
since we think that the worst situation with those constants could occur in matrices with
sparse eigenvalues, we have chosen three families with large variation among them and
one with little variation. The considered families are:

- Σd
1 are matrices with the half of their eigenvalues 1’s and the others d2.

- Σd
2 are matrices with equally spaced eigenvalues from 1 to d2.

- Σd
3 are matrices whose eigenvalues are 1’s d − 1 times and one is d2.

- Σd
4 are matrices with eigenvalues varying between 1 and 2. They are the result of

the ratio between two equispaced sequences between d2 and 2 and between d2

and 1 respectively.

In those computations and in those that follows E(K ∣∥X∥Σ = rCdn(δ)), with δ = 0.05, will
be denoted as krI and kri when Σ = Id or Σ = Σd

i , i = 1, . . . ,4 respectively. The super-index
r will be omitted when r = 1.

The comparison goes as follows: For each combination of dimension and sample size,
we have computed a pair (aI , bI) giving an α-level test for the identity matrix with the
expression in Proposition 3.5.4. We have kept aI and, for every Σd

i , i = 1, . . . ,4, we have
computed the value bΣ such that the pair (aI , bΣi) is an α-level test using Algorithm 3
with N = 104 simulations.

Algorithm 3: Computation of b when Σ is known

1) We fix N large and for j = 1, . . . ,N :

1.1) Generate Xj
0,X

j
1, . . . ,X

j
n iid rv’s with distribution Nd(0,Σ) and Vj

independent from the rest with distribution Nd(0, Id)

1.2) Consider Xj = Cdn(δ)Xj
0

∥Xj
0∥

1.3) Compute Y j = ∣(Xj)′Vj ∣
σVj

2) Take b equal to the quantile v of the sample Y 1, . . . , Y N

Regrettably, some simulations have shown that the test associated to the obtained pair
has generally power lower than α, because the values bΣ are lower than desired. To fix
this point we recalculate bΣi , keeping aI fixed, by simulations with the bisection method.
This procedure has proved to give tests at the right level.

The great news is that in all cases we have considered, we have found that the upper
bound of the interval which covers the 95% of the values of the rv Y V with an endpoint
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in aI is very similar to bI when d ≥ 50. Moreover, excepting if Σ = Σd
3, the sample means

of the number of projections K are also very similar (see Table A.1 in the Appendix).
All obtained bΣ’s are in Table 3.3. For each pair of sample size and dimension, Table 3.4
shows the bΣ maximizing the difference ∣bI − bΣ∣ along the four covariance matrices and
the matrix producing it. Those values of bΣ should be compared with the bI ’s shown in
Table 3.2.

Table 3.3.: Approximated values of b for Σ = Σd
i with i = 1, . . . ,4 and different values of n, d,

and a’s are the values obtained in Table 3.2 for k1
I = 50,100.

Σd1 Σd2 Σd3 Σd4
d n k1

I = 50 k1
I = 100 k1

I = 50 k1
I = 100 k1

I = 50 k1
I = 100 k1

I = 50 k1
I = 100

5 50 4.4118 4.4418 4.4139 4.4440 4.4358 4.4593 4.4074 4.4399
100 4.5766 4.6135 4.5794 4.6132 4.6021 4.6317 4.5778 4.6066
500 4.9412 4.9749 4.9412 4.9800 4.9651 4.9971 4.9412 4.9754

50 50 4.1832 4.3740 4.1606 4.3694 4.1606 4.3695 4.1731 4.3693
100 4.2482 4.4237 4.2390 4.4415 4.2482 4.4421 4.2298 4.4363
500 4.3978 4.6081 4.3788 4.6177 4.3692 4.5795 4.3788 4.5938

100 50 3.9429 4.1683 3.9577 4.1743 3.9339 4.1385 3.9339 4.1623
100 4.0098 4.2267 3.9947 4.1988 3.9827 4.1705 4.0068 4.2079
500 4.0875 4.3371 4.0998 4.3310 4.0875 4.2753 4.0906 4.3310

500 50 3.5960 3.8125 3.6028 3.8088 3.5893 3.7526 3.5891 3.8006
100 3.6190 3.8232 3.6340 3.8202 3.5933 3.8184 3.6314 3.8190
500 3.6726 3.8902 3.6573 3.8718 3.6489 3.8629 3.6513 3.8707

1000 50 3.5069 3.7183 3.5069 3.7180 3.4978 3.7075 3.5057 3.7165
100 3.5385 3.7297 3.5328 3.7295 3.5317 3.7218 3.5328 3.7295
500 3.5593 3.7578 3.5472 3.7349 3.5439 3.7317 3.5469 3.7350

Table 3.4.: Values of bΣ giving the greatest difference ∣bI − bΣ∣ for Σ = Σd
i , i = 1, . . . ,4, and

different values of d and n. a’s are taken from Table 3.2. Column Σ tells the matrix
in which bΣ was obtained.

n = 50 n = 100 n = 500

k1
I=50 k1

I=100 k1
I=50 k1

I=100 k1
I=50 k1

I=100

d bΣ Σ bΣ Σ bΣ Σ bΣ Σ bΣ Σ bΣ Σ

5 4.4074 Σd4 4.4399 Σd4 4.6021 Σd3 4.6317 Σd3 4.9651 Σd3 4.9971 Σd3
50 4.1832 Σd1 4.3693 Σd4 4.2482 Σd3 4.4237 Σd1 4.3978 Σd1 4.5795 Σd3

100 3.9577 Σd2 4.1743 Σd2 4.0098 Σd1 4.1705 Σd3 4.0875 Σd3 4.2753 Σd3
500 3.5891 Σd4 3.7526 Σd3 3.5933 Σd3 3.8184 Σd3 3.6489 Σd3 3.8629 Σd3

1000 3.4978 Σd3 3.7075 Σd3 3.5317 Σd3 3.7218 Σd3 3.5439 Σd3 3.7317 Σd3

3.6 On the error of type II

Apart from the number of expected number of projections, the error of type II is another
issue that we have to take into account in order to decide which values of a and b are
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preferable. For that, we take points in the alternative, i.e. points with Mahalanobis
norm greater than Cdn, and compute the probability of declaring them as outliers.
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Figure 3.4.: Probability of declaring a point as outlier (vertical axis) given its Mahalanobis norm (hori-
zontal axis) for different values of d, n = 50 and Σ = Id. Here k ∶= E(K ∣∥X∥ = Cdn).

Figure 3.4 shows a graphical representation of the function of Corollary 3.2.12 for a
and b which satisfy equation (3.11). We see how the probability of declaring a point
as an outlier increases when the norm does so for n = 50, d = 5,50,500, Σ = Id and for
different values of kI ∶= E(K ∣∥X∥ = Cdn), i.e. for different values of a and b. We also
see in dashed horizontal lines the probabilities 0.05 and 0.95 and in the vertical line
the norm Cdn. This vertical line divides the graph in two parts, the left part corresponds
to the points whose Mahalanobis norm is less than Cdn, that is, points which are no
outliers, the right part corresponds to points with Mahalanobis norm greater than Cdn,
that means points which are outliers. When we are in the left part, the probability of
declaring the point X as an outlier is always less than α = 0.05 for every value of k,
according to the fact that we are handling tests at the level 0.05. Meanwhile, when X
has a Mahalanobis norm greater than Cdn, the probability of declaring the point as an
outlier depends clearly upon the value of k.

The reason of choosing only a particular value of n in Figure 3.4 is that the results show
that this probability is hardly dependent on the sample size. Additionally, we see in
the figure that all the curves basically have the same shape independently on d, and
even the probability to declare as outliers points with norm hCdn seems similar for the
different values of d and h ≥ 5. On the other hand, when k = 1 (a = b), we are in the
worst scenario because the area under the curve is the lowest and when k =∞ (a = 0
and b = Cdn), it is the best one because the area under the curve is the highest possible.
In other words, the larger the number of expected number of projections, the lower
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the error of type II. Consequently, a desirable feature is to find a balance between the
expected number of vectors and the error of type II. Proposition 3.6.1 helps us to it
because it allows to compute a and b in order to have a desired power.

Proposition 3.6.1. Let X be a rv with distribution Nd(0, Id). Under assumption (A2),
assume h > 1 and 0 < p0 < ph < 1. Then, the system

⎧⎪⎪⎪⎨⎪⎪⎪⎩

P(X declared as outlier ∣ ∥X∥ = Cdn) = p0

P(X declared as outlier ∣ ∥X∥ = hCdn) = ph,
(3.21)

has solutions a and b such that a = CdnBd(u), b = CdnBd(v) where v = 1 − up0/(1 − p0) and
u satisfies the following system, where u∗ ∈ (0,1 − ph):

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

B−1 (uB (d−1
2 , 1

2) ; 1
2 ,

d−1
2 ) = h2B−1 (u⋆B (d−1

2 , 1
2) ; 1

2 ,
d−1
2 )

B−1 (vB (d−1
2 , 1

2) ; 1
2 ,

d−1
2 ) = h2B−1 ((1 − u∗ ph

1−ph )B (d−1
2 , 1

2) ; 1
2 ,

d−1
2 ) .

(3.22)

Proof. By Corollary 3.2.12, we rewrite the system (3.21) as

⎧⎪⎪⎪⎨⎪⎪⎪⎩

p0 = (1 − Ib2/(Cdn)2 (1
2 ,

d−1
2 ))/(1 + I

a2/(Cdn)
2 (1

2 ,
d−1
2 ) − I

b2/(Cdn)
2 (1

2 ,
d−1
2 ))

ph = (1 − Ib2/(hCdn)2 (1
2 ,

d−1
2 ))/(1 + Ia2/(hCdn)2 (1

2 ,
d−1

2 ) − Ib2/(hCdn)2 (1
2 ,

d−1
2 )) .

(3.23)

Taking α = p0 and k = 1/(1 − p0) in Proposition 3.5.4, the first equation of system (3.23)
becomes

a = CdnBd(u), b = CdnBd(v), with v = 1 − up0/(1 − p0) and u ∈ (0,1 − p0),

and taking α = ph and k = 1/(1 − ph) in Proposition 3.5.4, the second one is

a = hCdnBd(u⋆), b = hCdnBd(v⋆), with v⋆ = 1 − u⋆ph/(1 − ph) and u⋆ ∈ (0,1 − ph),

where Bd(t) is defined in Proposition 3.5.4. The result is deduced since the values of a
and b have to be the same in both equations.

Table 3.5 shows the expected number of projections, calculated with Corollary 3.3.2,
and using the values of a and b of Proposition 3.6.1 for p0 = 0.1 and ph = 0.95, n = 100
and different values of h and d. Note that we have computed the values of a and b of
Proposition 3.6.1 in a numerical way since we are not able to obtain an explicit formula
from system (3.22). In the table we see that k considerably increases when d does so
and h ≤ 4, while it has resembling values when h = 5.
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Table 3.5.: Values of k and kh for n = 100 and different values of d using a and b of Proposition
3.6.1 with p0 = 0.1 and ph = 0.95.

d = 5
h = 1.1 h = 1.2 h = 1.3 h = 1.4 h = 1.5 h = 3 h = 5

kI 51 40 33 28 24 8 4

khI 3 3 2 2 2 1 1

d = 50
h = 1.1 h = 1.2 h = 1.3 h = 1.4 h = 1.5 h = 3 h = 5

kI > 1016 625000 26938 4608 1465 21 6

khI > 1016 41667 1946 358 122 3 2

d = 500
h = 1.1 h = 1.2 h = 1.3 h = 1.4 h = 1.5 h = 3 h = 5

kI > 1016 7500000 97508 10352 2576 22 6

khI > 1016 500000 7042 805 215 4 2

3.7 Numerical studies

This section explores how the use of the constants of a and b computed with Proposition
3.5.4, i.e. for Σ = Id, affects the probability of declaring a point as an outlier and the
required number of projections to reach this decision when we handle other matrices.

This choice is not very relevant in this chapter but it becomes crucial in Chapter 4
when we will face unknown µ and Σ. The selection of these constants is justified
by Proposition 3.5.2 and since we have seen that the values of b’s for the covariance
matrices that we handle are resembling (see Table 3.3), thus we expect not too big
differences on the kΣ’s. All the results are attained with 5000 replicated simulations. The
estimates of E(K ∣∥X∥Σ = rCdn) (which will be the sample means along the simulations
we do) will be denoted k̂rΣ. To ease the notation, we will write krI , k̂

r
I , k

r
i and k̂ri when

Σ = Id or Σ = Σd
i , i = 1, . . . ,4 for the matrices defined in Section 3.5.2.

Table 3.6 shows the estimate of the probability of declaring as an outlier a rv such
that ∥X∥Σ = Cdn with Σ ≠ Id when we use a and b computed for the identity matrix for
the case n = 50 and different values of d (the complete cases are in Table A.1 in the
Appendix). We see that they are reasonable for d ≥ 50, i.e. around 0.05. However, for
d = 5 the estimations are up to 1.5 times the expected value 0.05. In any case, the values
more distant from 0.05 are those corresponding to Σ = Σ5

3.

We also see that the sample mean of the number of required projections k̂1, . . . , k̂4 are
always greater or very close to kI , which illustrates the result shown in Proposition
3.5.3.
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Table 3.6.: Estimation of the probability of declaring as an outlier a vector such that ∥X∥Σ = Cd
n,

for n = 50 and different values of d and Σ = Σd
i with i = 1, . . . ,4 when we use the

values of a and b computed with Proposition 3.5.4. We also show the sample means
of K.

d k1
I k̂1 Σd1 k̂2 Σd2 k̂3 Σd3 k̂4 Σd4

50 50 49 0.0544 51 0.0528 190 0.0492 50 0.0448
100 101 0.0504 103 0.0534 379 0.0510 100 0.0508

100 50 51 0.0500 50 0.0460 262 0.0474 50 0.0470
100 101 0.0498 99 0.0478 516 0.0466 101 0.0542

500 50 51 0.0476 49 0.0498 548 0.0416 51 0.0498
100 99 0.0556 98 0.0514 1184 0.0484 102 0.0552

1000 50 50 0.0494 50 0.0520 846 0.0500 50 0.0510
100 101 0.0530 101 0.0515 1610 0.0415 96 0.0525

Table 3.7.: Estimation of the probability of declaring as an outlier a vector such that ∥X∥Σ =
rCd

n, r = 1.2,2 for n = 50 when we use the values of a and b computed with
Proposition 3.5.4. We also show the sample mean of K.

d ∥X∥Σ k1
I k̂I Id k̂1 Σd1 k̂2 Σd2 k̂3 Σd3 k̂4 Σd4

50 1.2Cdn 50 43 0.3124 44 0.2816 43 0.3020 148 0.2070 44 0.3188
100 82 0.3638 84 0.3112 82 0.3460 287 0.2122 79 0.3590

2Cdn 50 8 0.9220 9 0.9146 8 0.9230 34 0.7224 8 0.9226
100 10 0.9463 11 0.9470 10 0.9526 49 0.7786 10 0.9576

100 1.2Cdn 50 44 0.3018 46 0.2854 45 0.2890 218 0.1910 45 0.2956
100 84 0.3354 87 0.3138 83 0.3454 418 0.2034 83 0.3492

2Cdn 50 9 0.9163 9 0.9152 9 0.9136 49 0.6960 9 0.9156
100 11 0.9513 12 0.9440 11 0.9452 73 0.7376 11 0.9420

500 1.2Cdn 50 46 0.2824 45 0.2818 45 0.2790 488 0.1958 45 0.2808
100 86 0.3324 88 0.3106 87 0.3174 932 0.1912 88 0.3294

2Cdn 50 9 0.9007 9 0.9124 9 0.9106 106 0.6764 9 0.9142
100 11 0.9493 11 0.9426 11 0.9520 164 0.7196 11 0.9488

1000 1.2Cdn 50 45 0.2753 45 0.2840 45 0.2815 660 0.1810 46 0.2755
100 86 0.3140 84 0.3095 86 0.3255 1367 0.1875 83 0.3215

2Cdn 50 9 0.9127 9 0.9147 9 0.9193 152 0.6867 9 0.9123
100 11 0.9430 11 0.9447 11 0.9443 237 0.7043 12 0.9463

Table 3.7 shows the estimation of the probability of declaring a point as outlier when its
norm is 1.2Cdn and 2Cdn for n = 50 and different values of d (complete cases are in Table
A.2 in the Appendix). The values of the column Id are the highest, although with the
exception of the case Σ = Σd

3, the differences in power are small. Obviously, when E(K)
increases, the probability also increases. Analogously to Table A.1, there is no difference
when n increases because the only parameter which depends on it is Cdn. We also see
that the case Σd

4 is the most resembling to the identity matrix case. Moreover, with the
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exception of Σ = Σd
3, the sample means of the number of projections ki and kI are also

very similar.

Table 3.8.: Estimation of the probability of declaring as an outlier a vector such that ∥X∥Σ = Cd
n,

for n = 50 using a and b from Proposition 3.5.4 and kmax = 1/(1 − F (b,Cd
n) +

F (a,Cd
n)). We also show the sample mean of the required projections.

d k1
I k̂I Id k̂1 Σd1 k̂2 Σd2 k̂3 Σd3 k̂4 Σd4

50 50 32 0.0300 33 0.0310 32 0.0306 38 0.0130 33 0.0326
100 65 0.0306 64 0.0364 63 0.0344 75 0.0106 64 0.0358

100 50 32 0.0310 32 0.0326 32 0.0318 40 0.0092 32 0.0268
100 64 0.0316 65 0.0280 64 0.0338 78 0.0066 64 0.0326

500 50 32 0.0316 32 0.0342 32 0.0304 43 0.0044 32 0.0350
100 64 0.0362 64 0.0324 64 0.0326 85 0.0054 64 0.0282

1000 50 32 0.0337 33 0.0340 33 0.0373 43 0.0053 32 0.0320
100 63 0.0322 63 0.0377 64 0.0337 86 0.0027 64 0.0247

Table 3.9.: Estimation of the probability of declaring as an outlier a vector such that ∥X∥Σ = rCd
n,

r = 1.2,2 for n = 50 when we use a and b from Proposition 3.5.4 and kmax = 1/(1 −
F (b,Cd

n) + F (a,Cd
n)). We also show the sample mean of the required projections.

d ∥X∥Σ k1
I k̂I Id k̂1 Σd1 k̂2 Σd2 k̂3 Σd3 k̂4 Σd4

50 1.2Cdn 50 30 0.2126 31 0.2050 31 0.2104 38 0.0628 30 0.2118
100 57 0.2714 59 0.2338 59 0.2488 75 0.0690 59 0.2574

2Cdn 50 8 0.9186 9 0.9042 8 0.9182 23 0.5714 8 0.9198
100 10 0.9566 11 0.9434 10 0.9540 40 0.6504 10 0.9574

100 1.2Cdn 50 30 0.2014 31 0.2010 30 0.1986 39 0.0504 31 0.1956
100 58 0.2466 60 0.2256 59 0.2374 78 0.0466 59 0.2398

2Cdn 50 8 0.9184 9 0.9106 9 0.9106 27 0.4804 8 0.9172
100 11 0.9468 12 0.9368 11 0.9560 46 0.5752 11 0.9432

500 1.2Cdn 50 31 0.1898 31 0.1844 31 0.1878 43 0.0260 31 0.1904
100 60 0.2198 60 0.2210 59 0.2134 84 0.0268 60 0.2244

2Cdn 50 9 0.9100 9 0.9116 9 0.9128 34 0.3262 9 0.9098
100 11 0.9430 12 0.9442 11 0.9496 64 0.3834 11 0.9468

1000 1.2Cdn 50 31 0.1950 31 0.1880 31 0.1797 44 0.0230 31 0.1993
100 58 0.2381 60 0.2307 60 0.2110 87 0.0227 59 0.2153

2Cdn 50 9 0.9160 9 0.9130 9 0.9120 36 0.2693 9 0.9097
100 11 0.9450 12 0.9380 11 0.9477 68 0.3363 11 0.9477

Tables 3.8 and 3.9 show the probability of declaring a point with Mahalanobis norm Cdn,
1.2Cdn and 2Cdn respectively as outlier for n = 50 and different values of d and the sample
mean of the number of projections when we truncate the number of projections by
1/(1−F (b,Cdn)+F (a,Cdn)) and, if no decision has been taken when the limit is reached,
we declare the points as non-outlier. Complete cases are in Tables A.3 and A.4 in the
Appendix. For Σd

1, the values of Table 3.8 are around 0.03 and for the rest of Σd
i those

values are similar, with the exception of Σ = Σd
3 where they go down to 0.011. This
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indicates that the truncation is too conservative, what obviously implies a loss of power
as we see when we compare the values of Table 3.9 with Table 3.7. In fact this loss is
more noticeable when d increases.

Table 3.10.: Estimation of the probability of declaring as an outlier a vector such that ∥X∥Σ = Cd
n,

for n = 50 using a and b from Proposition 3.5.4 when we truncate by kmax =
1/(1 − F (b,Cd

n) + F (a,Cd
n)) and if no decision is taken, we decide with probability

γ = 0.05. We also show the sample mean of the required projections.

d k1
I k̂I Id k̂1 Σd1 k̂2 Σd2 k̂3 Σd3 k̂4 Σd4

50 50 32 0.0730 32 0.0842 33 0.0816 38 0.0582 33 0.0776
100 64 0.0796 64 0.0766 64 0.0842 75 0.0556 65 0.0812

100 50 32 0.0894 32 0.0796 32 0.0892 40 0.0580 32 0.0790
100 64 0.0818 64 0.0760 63 0.0840 78 0.0550 63 0.0804

500 50 32 0.0744 32 0.0874 32 0.0778 43 0.0562 32 0.0784
100 64 0.0902 63 0.0844 63 0.0792 84 0.0502 64 0.0802

1000 50 32 0.0786 33 0.0798 32 0.0812 44 0.0538 32 0.0858
100 63 0.0796 64 0.0818 64 0.0848 87 0.0572 64 0.0828

Table 3.11.: Estimation of the probability of declaring as an outlier a vector such that ∥X∥Σ =
rCd

n, r = 1.2,2 for n = 50 using a and b from Proposition 3.5.4, when we truncate
by kmax = 1/(1 − F (b,Cd

n) + F (a,Cd
n)) and if no decision is taken, we decide with

probability γ = 0.05. We also show the sample mean of the required projections.

d ∥X∥Σ k1
I k̂I Id k̂1 Σd1 k̂2 Σd2 k̂3 Σd3 k̂4 Σd4

50 1.2Cdn 50 30 0.2600 30 0.2448 30 0.2534 38 0.1104 30 0.2596
100 58 0.2958 59 0.2742 59 0.2784 73 0.1152 57 0.2916

2Cdn 50 8 0.9252 9 0.9106 8 0.9186 24 0.585 8 0.9338
100 10 0.9552 11 0.9510 10 0.9542 38 0.691 10 0.9514

100 1.2Cdn 50 31 0.2322 30 0.2440 31 0.2372 40 0.0900 30 0.2426
100 59 0.2784 60 0.2484 59 0.2600 78 0.0998 58 0.2676

2Cdn 50 8 0.9226 9 0.9204 9 0.917 27 0.5092 8 0.9162
100 11 0.9482 11 0.9438 11 0.948 47 0.5996 11 0.9524

500 1.2Cdn 50 30 0.2320 31 0.2308 31 0.2226 42 0.0804 31 0.2280
100 59 0.2716 60 0.2610 59 0.2648 84 0.0738 59 0.2628

2Cdn 50 9 0.9152 9 0.9176 9 0.916 33 0.3704 9 0.916
100 11 0.9448 12 0.9492 12 0.950 64 0.4150 11 0.946

1000 1.2Cdn 50 31 0.2250 30 0.2374 31 0.2394 44 0.0746 31 0.2304
100 59 0.2572 60 0.2610 59 0.2578 87 0.0740 59 0.2710

2Cdn 50 9 0.9204 9 0.9172 9 0.9224 36 0.3230 9 0.9128
100 11 0.9506 12 0.9452 11 0.9486 67 0.3786 12 0.9480

As we commented in Section 3.5, another possibility when we truncate the number of
required projections is that, if no decision has been taken when the limit is reached, we
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declare the points as outliers with a determined probability γ. Under these conditions
and taking γ = 0.05, Tables 3.10 and 3.11 give the probability of declaring a point with
Mahalanobis norm Cdn, 1.2Cdn and 2Cdn respectively as outlier for n = 50 and different
values of d. It is noticeable that a value as small as this one, provides powers well above
0.05 under the null for all cases except Σ = Σd

3; but even in the last situation, all powers
are above 0.05. In fact, the mean increments of power are about 135%, 15% and 20%
when ∥X∥Σ = rCdn for r = 1,1.2,2 respectively.
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Outliers detection: unknown
parameters

4

„Nothing in life is to be feared, it’s only to be
understood.

— Marie Curie

This chapter explores the proposed method when the parameters µ and Σ are unknown
(which is the only situation interesting in practice), and therefore, it is not possible to
be completely sure if the Definition 1.1.1 holds. Basically we follow the same scheme as
in Chapter 3.

4.1 Introduction to the method and additional notation

To test (3.1), we follow Algorithm 2. We will consider two assumptions and some
notation:

(A1.e) X and X1, . . . ,Xn are iid rv’s with distribution Nd(µ,Σ).

(A2.e) V and V1, . . . ,Vn are iid rv’s with distribution Nd(0, Id) which also are

independent from the rv’s in (A1.e)

The sample mean and the covariance matrix will be denoted by µ̂ and Σ̂. Initially the
centre and the dispersion of the projected sample X′

1V, . . . ,X′
nV will be estimated by

its sample mean, µ̂V, and standard deviation σ̂V. Afterwards, we will use the sample
median and MADN, denoted by m̂V and M̂V respectively. Furthermore, since both of
them may not be unique, the notation m̂v and M̂v refers to the choice of any one of
them.

We use the same notation as in Chapter 3 but with the estimated quantities, which are
denoted adding the sub-index n. For instance:

Y V
n ∶= X′V − µ̂V

σ̂V
, (4.1)
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Ka,b
n (Σ) ∶= inf {k ∶ ∣Y k

n ∣ < a or ∣Y k
n ∣ > b} . (4.2)

The denominator in (4.1) can be zero for some V’s, however the subset of V’s satisfying
this has null Lebesgue measure even in the case d > n.

As it happened with Y V, the distribution of Y V
n does not depend on µ nor on scale.

Since our method relies on Y V
n , we can assume w.l.o.g. that µ = 0.

For m, x ∈ Rd, S a d × d semi-positive definite matrix and V with distribution Nd(0, Id),
we denote

yV
m,S ∶=

(x −m)′ V
(V′SV)1/2 ,

and ∥x∥S ∶= ∥ (S+)1/2 x∥ with S+ is the Moore-Penrose inverse of S.

4.2 Some properties of the distribution of Y V
n

We begin obtaining explicit expressions for the conditional distribution of Y V
n given

∥X∥Σ in Proposition 4.2.2. Then, Proposition 4.2.3 gives an expression of the cdf of the
standardized random projection of a given d-dimensional vector. In this proposition we
suppose that S is diagonal, which entails no loss of generality, since a rotation of the
coordinates axes allows us to obtain this kind of matrix. Note that the only assumption
on the number of non-null eigenvalues of S is the existence of at least two strictly
positive ones.

To prove Proposition 4.2.2, the equality Y V
n = (X′V

σV
− µ̂V
σV

) σV
σ̂V

leads us to consider the

following rv’s:

Y1 ∶=
X′V
σV

, Y2 ∶=
µ̂V

σV
, Y3 ∶=

σV
σ̂V

. (4.3)

We next obtain the pdf’s of those rv’s given that ∥X∥Σ = t, with t > 0. Since we compute
the conditional pdf’s given the norm of the point, the rv Y1 does not follow a standard
normal distribution. Recall also that the sample mean and the sample variance are
calculated using only the sample and therefore, Y1 is the only rv which depends on X,
the point we want to classify as outlier or not. Consequently, the distribution of Y2 and
Y3 do not depend on t.
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Lemma 4.2.1. Under assumptions (A1.e) and (A2.e), the pdf ’s of the rv’s Y1, Y2, Y3,
defined in (4.3) given that ∥X∥Σ = t with t > 0, are

f tY1(u) = (B (d−1
2 , 1

2))
−1
t2−d(t2 − u2)(d−3)/2, if u ∈ [−t, t] and null otherwise,

fY2(u) = ( n
2π

)
1/2

exp{−nu2/2}, u ∈ R,

fY3(u) =
(n − 1)(n−1)/2

2(n−3)/2Γ (n−1
2 )

u−n exp{−n−1
2u2 } , for u ∈ [0,∞) and null otherwise.

Proof. Firstly, fix V = v. Using Lemma 2.5.4, it is easily seen that the pdf of Y1 given
v and that ∥X∥Σ = t coincides with the expression we propose for f tY1

. Secondly, for
Y2, since µ̂v follows a N1(0, σ2

v/n) distribution, then the rv µ̂v/σv follows a N1(0,1/n)
distribution. For Y3, it is known that σ̂2

v(n − 1)/σ2
v follows a χ2

n−1 distribution. Then,
a change of variable gives that the pdf of Y3 given v is fχ2

n−1
((n − 1)u−2)2(n − 1)u−3,

which writing the expression of fχ2
n−1

gives the function we propose for fY3 . The result
follows because none of those distributions depend on the chosen v.

Proposition 4.2.2. Under assumptions (A1.e) and (A2.e), the cdf of Y V
n given that

∥X∥Σ = t, with t > 0, does not depend on Σ and its value is

P (Y V
n < r ∣ ∥X∥Σ = t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−τ ∫
r

−∞∫
0

−∞∫
t

−t
gt(s, x, z)dsdxdz, r < 0,

1
2 + τ ∫

r

0 ∫
∞

0 ∫
t

−t
gt(s, x, z)dsdxdz, r > 0,

where gt(s, x, z) ∶= xn−1

zn exp{−(n−1)x2

2z2 } (t2 − s2)d⋆ exp{−n2 (s − x)2}, d⋆ ∶= (d − 3)/2 and

τ ∶= t2−d
√

n
2π (n − 1)

n−1
2 / (2

n−3
2 Γ (n−1

2 )B (d−1
2 , 1

2)).

Proof. The rv’s Y1, Y2, Y3 defined in (4.3) are conditionally independent given V. If
r < 0, then the pdf of the rv Y V

n given ∥X∥Σ = t is:

f tY V(r) = f t(Y1−Y2)Y3
(r)

= ∫
R
f tY1−Y2(x)fY3(r/x)∣x∣

−1 dx

= ∫
R
fY3(r/x)∣x∣

−1 (∫
R
f tY1(s)fY2(s − x)ds) dx.

It suffices then to write the expressions of the pdf’s of the rv’s Y1, Y2, Y3, given by Lemma
4.2.1, to obtain the first equality of this proposition. The reasoning when r is positive is
identical.
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We omit the proof of the following proposition because it is the same to that in Proposi-
tion 3.2.7 replacing h±(⋅), ψV and φV by ĥ±(⋅), ψ̂V and φ̂V respectively.

Proposition 4.2.3. Let x = (x1, . . . , xd)′ ∈ Rd. Assume that m = (m1, . . . ,md)′ ∈ Rd, S is
diagonal with eigenvalues 0 < s2

1 ≤ . . . ≤ s2
` and 0 = s2

`+1 = . . . = s
2
d with 2 ≤ ` ≤ d and that

t ∶= ∥x −m∥S > 0. If V is uniformly distributed on Ωd−1, then the distribution of yV
m,S is

supported by [−t, t] and

P(yV
m,S ≤ z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ ∫
Av
−

∆(z)e−
1
2 ∑

d
i=2 v

2
i dv−1, −t < z < − ∣u1∣

s1
,

1
2 − sign(z)τ ∫

Av
+

∆(z)e−
1
2 ∑

d
i=2 v

2
i dv−1, − ∣u1∣

s1
≤ z ≤ ∣u1∣

s1
,

1 − τ ∫
Av
+

∆(z)e−
1
2 ∑

d
i=2 v

2
i dv−1,

∣u1∣
s1

< z < t,

with ∆(z) ∶= erf (ĥ+(z)/
√

2) − erf (ĥ−(z)/
√

2) where erf(⋅) is the error function, ĥ±(z) =

(u1ψ̂v ± ∣z∣
√

(u1)2ϕ̂v + s2
1ψ̂

2
v − s2

1z
2ϕ̂v) / (s2

1z
2 − (u1)2), τ ∶= (2

d+3
2 π

d−1
2 )−1, Av

+ ∶= {v−1 ∶

ψ̂v > 0}, Av
− ∶= {v−1 ∶ ψ̂v < 0} and v−1 ∶= (v2, . . . , vd)′, with ψ̂v ∶= u2v2 + ⋯ + udvd,

ϕ̂v ∶= s2
2v

2
2 +⋯ + s2

`v
2
` , and ui = xi −mi for i = 1, . . . , d.

Propositions 4.2.5 and 4.2.11 respectively give an expression and some properties
of Fn,Σ(a, b, t) which will help to determine a and b in practice. As in Chapter 3,
given α ∈ (0,1), the intended error of type I, we want to obtain 0 < a ≤ b such that
P(Kn <∞) = 1, and

sup
t≤Cdn

Fn,Σ(a, b, t) = α. (4.4)

Similar reasons given in Chapter 3 lead us to exclude the case a = 0.

We include no proof of Proposition 4.2.5 because it is analogous to that in Proposition
3.2.11 but conditioning to the point X and the sample X1, . . . ,Xn instead of conditioning
only to the point and taking into account Lemma 4.2.4, which is obvious.

Lemma 4.2.4. Let V1, . . . ,Vk be iid rv’s, then Y 1
n , . . . , Y

k
n defined in (4.1) are condition-

ally iid given the d-dimensional vectors X and X1, . . . ,Xn.

Proposition 4.2.5. Under assumptions (A1.e) and (A2.e), suppose that a, b, t are strictly
positive constants such that a ≤ b, then

Fn,Σ(a, b, t) = ∫Ωd−1
Σ (t)∫Rd

∫
Rd2

gba(x,m, S)(S)ft(x)PΣ̂(dS)Pµ̂(dm)dx,

where gba(x,m, S) ∶= P (∣yV
m,S ∣ > b) / (P (∣yV

m,S ∣ > b) +P (∣yV
m,S ∣ < a)), PΣ̂ is the Wishart

distribution with parameters n and Σ, and Pµ̂ is the Nd (0, n−1Σ).
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From Proposition 4.2.5, it is clear the following corollary.

Corollary 4.2.6. Under the assumptions in Proposition 4.2.5, we have that

P (∣Y Kn
n ∣ > b ∣ ∥X∥Σ = t,X1, . . . ,Xn) = ∫Ωd−1

Σ (t)
gba(x, µ̂, Σ̂)ft(x)dx.

Proposition 4.2.7 leads to an easier expression of Proposition 4.2.5 for Σ = Id, provided
in Corollary 4.2.8. The quantities in such corollary can be computed from Proposition
4.2.2. We exclude the proof of Proposition 4.2.7 because it is analogous to that in
Proposition 3.2.10 conditioning to (X, µ̂, Σ̂) instead of only X.

Proposition 4.2.7. Under the assumptions (A1.e) and (A2.e) the rv’s Y 1
n , . . . , Y

k
n defined

in (4.1) are conditionally independent given ∥X∥Σ if and only if Σ = Id.

Corollary 4.2.8. Under assumptions in Proposition 4.2.5. If Σ = Id, then

Fn,Σ(a, b, t) =
P (∣Y V

n ∣ > b∣∥X∥ = t)
1 −P (∣Y V

n ∣ ∈ (a, b)∣∥X∥ = t)
.

Proposition 4.2.11 proves the monotonicity on t of Fn,Σ(a, b, t). Before proving and
stating Proposition 4.2.11, we need some previous results, but notice firstly that such
proposition allows us to write (4.4) as

Fn,Σ(a, b,Cdn) = α. (4.5)

Lemma 4.2.9. Let d > 1 and let S and Σ be d × d semi-positive symmetric matrices and Z
be a d-dimensional rv. The function r ↦ f(r) is increasing, where

f(r) ∶= P(Σ1/2Z be declared outlier w.r.t. Nd(0, S) ∣ ∥Σ1/2Z∥ = r).

Proof. Let z ∈ Rd and let r = ∥Σ1/2z∥, the same reasoning as in Theorem 3.2.14 (taking
Σ1/2z instead of x) leads us to the fact that P(∣(Σ1/2z)′V∣/ΣV > b) increases with r and
it does not depend on the specific value of z. A similar reasoning implies that the map

r ↦ P( ∣(Σ1/2z)′V∣
ΣV

< a) decreases on r and the result follows from:

f(r) =∫
P( ∣(Σ1/2z)′V∣

ΣV
> b)

P ( ∣(Σ1/2z)′V∣
ΣV

> b) +P ( ∣(Σ1/2z)′V∣
ΣV

< a)
PZ∣ ∥Σ1/2Z∥(dz)

=
P ( ∣V1∣

ΣV
> b
r)

P ( ∣V1∣
ΣV

> b
r) +P ( ∣V1∣

ΣV
< a
r )
.
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Lemma 4.2.10. Let δ, c ∈ (0,1), Σ be a semi positive definite symmetric matrix and Z be
a rv with distribution Nd (0, δId) . If x ≠ 0, then for any g increasing function

E[g(∥Σ1/2(Z + x)∥)] ≥ E[g(∥Σ1/2(Z + cx)∥)].

Proof. Taking h(w) = w, the second part in Corollary 2 in [6] gives that if x ≠ 0 then

P(∥Σ1/2(Z + cx)∥ ≤ r) ≥ P(∥Σ1/2(Z + x)∥ ≤ r).

From here, the lemma trivially follows.

Proposition 4.2.11. Under assumptions (A1.e) and (A2.e), if a, b and t are strictly
positive constants such that a ≤ b, then the function Fn,Σ(a, b, t) is strictly increasing in t.

Proof. Given z ∈ Ωd−1 and S ∈ Rd
2
, let us consider

Gz,S(t) = ∫
Rd

P( ∣(tΣ1/2z−y)′V∣
∥S1/2V∥ > b)

P ( ∣(tΣ1/2z−y)′V∣
∥S1/2V∥ > b) +P ( ∣(tΣ1/2z−y)′V∣

∥S1/2V∥ < a)
fµ̂(y)dy,

where µ̂ follows a Nd(0,Σ/n) distribution. The proposition will be proved if we show
that Gz,S(t) is increasing because

Fn,Σ(a, b, t) = 1
ωd1
∫Ωd−1

1
∫

Rd2
Gz,S(t)PΣ̂(dS)dz.

Given the rv Z, let {Z outlier wrt Nd(0, S)} denote the set where Z is declared outlier
with respect to Nd(0, S). Then

P{Z outlier wrt Nd(0, S)} = ∫
P ( ∣z′V∣

∥S1/2V∥ > b)

P ( ∣z′V∣
∥S1/2V∥ > b) +P ( ∣z′V∣

∥S1/2V∥ < a)
PZ(dz).

If we take µ̂Id
n = Σ−1/2µ̂ and f is the function defined in Lemma 4.2.9,

Gz,S(t) = P(Σ1/2(µ̂Id
n + tz) outlier wrt Nd(0, S))

= ∫
∞

0
P(Σ1/2(µ̂Id

n + tz) outlier wrt Nd(0, S)∣∥Σ1/2(µ̂Id
n + tz)∥ = r)P(dr)

= E[f(∥Σ1/2(µ̂Id
n + tz)∥)],

and the result is deduced from Lemmas 4.2.9 and 4.2.10.
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4.3 Moments of Kn

In this section we state Proposition 4.3.1 which is the version of Proposition 3.3.1 for Σ
unknown. Its proof is not included because it is similar to that of Proposition 4.2.5.

Proposition 4.3.1. Under assumptions (A1.e) and (A2.e), assume that a, b and t are
strictly positive numbers such that a ≤ b and consider Kn defined as in (4.2), then

E (Kn∣ ∥X∥Σ = t) =∭
D

ḡba(x,m, S)ft(x)PΣ̂(dS)Pµ̂(dm)dx,

Var (Kn∣ ∥X∥Σ = t) =∭
D

ḡba(x,m, S)(2ḡba(x,m, S) − 1)ft(x)PΣ̂(dS)Pµ̂(dm)dx

−
⎛
⎜
⎝
∭
D

ḡba(x,m, S)ft(x)PΣ̂(dS)Pµ̂(dm)dx
⎞
⎟
⎠

2

,

where ḡba(x,m, S) = 1/ (P (∣yV
m,S ∣ > b) +P (∣yV

m,S ∣ < a)), D ∶= Ωd−1
Σ (t) × Rd × Rd

2
, and

PΣ̂ and Pµ̂ are the Wishart distribution with parameters n and Σ, and the Nd(0,Σ/n),
respectively.

Propositions 4.2.7 and 4.3.1 allow to obtain Corollary 4.3.2.

Corollary 4.3.2. Under assumptions in Proposition 4.3.1, if Σ = Id, then

E (Kn∣ ∥X∥ = t) = 1
1 −P (∣Y V

n ∣ ∈ (a, b)∣∥X∥ = t)
,

Var (Kn∣ ∥X∥ = t) =
P (∣Y V

n ∣ < b∣∥X∥ = t) −P (∣Y V
n ∣ < a∣∥X∥ = t)

1 − (P (∣Y V
n ∣ ∈ (a, b)∣∥X∥ = t))2 .

It is clear from Corollary 4.3.2 that E(Kn∣∥X∥ = t) and Var(Kn∣∥X∥ = t) do not depend
on either the specific value of t or the dimension, but rather, only on the probability
P (∣Y V

n ∣ ∈ (a, b)∣∥X∥ = t). We do not include their graphical representation because of
their similarity with those in Figure 3.2.

4.4 Robust versions of Kn and Y V
n . Additional notation

The results in Sections 4.2 and 4.3 fix the problem when we have a clean sample and
we want to decide whether a point which is not in the sample is an outlier or not.
Regrettably this setting is unrealistic and often the sample at hand will contain outliers
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which may considerably affect the sample mean and standard deviation. Because of
this, we propose to replace µ̂V and σ̂V in (4.1) by some robust counterparts. As stated
before, our selections are the median, mV, and the MADN, MV.

To reflect the change, we replace Y V
n and Kn by Ỹ V

n and K̃n, respectively. Notice that
in this case (4.5) becomes

P (∣Ỹ K̃n
n ∣ > b ∣ ∥X∥Σ = Cdn) = α. (4.6)

As it usually occurs with robust estimators (see, for instance, Cerioli et al. [28] or Becker
and Gather [15]), it is difficult to obtain the conditional exact distribution of Ỹ K̃n

n .
Because of this we prove, in Theorem 4.4.6, that asymptotically on n this distribution
coincides with that of Y Kn

n . Afterwards, in Section 4.7, we will present simulations
suggesting that this approximation gives acceptable results in many cases for small
sample sizes and arbitrary values of the dimension.

Theorem 4.4.5 is an auxiliary result to obtain Theorem 4.4.6. However, we consider that
it could have some independent interest. We first state some additional notation.

Notation. Under assumptions (A1.e) and (A2.e), denote QV and Q̄V the probability
distribution of X′V and of ∣X′V∣, respectively, and let us consider the following sets:

RnV ∶= {X′
1V, . . . ,X′

nV}

TnV ∶= {∣X′
1V∣, . . . , ∣X′

nV∣}

SnV ∶= {∣X′
1V −mV∣, . . . , ∣X′

nV −mV∣}

ŜnV ∶= {∣X′
1V − m̂V∣, . . . , ∣X′

nV − m̂V∣}.

Given S ⊂ R finite (resp. the real rv X) and α ∈ (0,1), m(S) and M(S) (resp.
m(X) and M(X)) denote the sets of its medians and MADNs; [qα(S), q̄α(S)] (resp.
[qα(X), q̄α(X)]) is the interval of the α-quantiles of S (resp. X). We define the interval
[Mα(S), M̄α(S)] ∶= ∪m∈m(S) [qα(∣S −m∣), q̄α(∣S −m∣)], similarly for [Mα(X), M̄α(X)].
Thus, m(S) = [q 1

2
(S), q̄ 1

2
(S)] and M(S) = [M 1

2
(S), M̄ 1

2
(S)].

According to the assumptions in Section 2.1, all random quantities we handle are
defined on (Υ,A,P). Therefore all of them depend on some ω ∈ Υ. Here we will be
sometimes interested in making this dependence explicit; in those cases, ω will appear
as super-index as in m̂ω

V, or in Sn,ωV .
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Lemma 4.4.1. Let U and V be two real rv’s such that there exist δ and γ with P{∣U −V ∣ ≤
δ} ≥ 1 − γ. Then for every α ∈ [γ,1 − γ],

[qα(U), q̄α(U)] ⊂ [qα−γ(V ) − δ, q̄α+γ(V ) + δ] (4.7)

[Mα(U), M̄α(U)] ⊂ [Mα−γ(V ) − (2δ + δ∗γ), M̄α+γ(V ) + (2δ + δ∗γ)], (4.8)

where δ∗γ = max{q 1
2
(V ) − q 1

2−γ
(V ), q̄ 1

2+γ
(V ) − q̄ 1

2
(V )}.

Proof. Let q ∈ [qα(U), q̄α(U)]. Then, by definition of quantile:

α ≤ P{U ≤ q} ≤ P[∣U − V ∣ ≤ δ,U ≤ q] +P{∣U − V ∣ > δ} ≤ P{V ≤ q + δ} + γ.

Hence α−γ ≤ P{V ≤ q+δ}, which implies q+δ ≥ qα−γ(V ). And then qα(U) ≥ qα−γ(V )−δ.
Analogously, we can prove q̄α(U) ≤ q̄α+γ(V ) + δ and (4.7) is shown.

To prove (4.8), consider mU ∈ m(U). Take α = 1/2 in (4.7). There exits mV ∈ m(V )
such that ∣mU −mV ∣ ≤ δ + δ∗γ . Hence, if ∣U − V ∣ ≤ δ, then

∣∣U −mU ∣ − ∣V −mV ∣∣ ≤ ∣U − V ∣ + ∣mU −mV ∣ ≤ 2δ + δ∗γ ,

and (4.8) follows from the definition of MAD and (4.7).

Corollary 4.4.2. Under the hypotheses in Lemma 4.4.1,

m(U) ⊂ [q 1
2−γ

(V ) − δ, q̄ 1
2+γ

(V ) + δ] .

If we apply Lemma 4.4.1 to rv’s uniformly distributed on finite sets with the same
cardinal, we obtain the following corollary.

Corollary 4.4.3. If S = {s1, . . . , sn} ⊂ R and R = {r1, . . . , rn} ⊂ R satisfy that there exist
δ, γ such that #{i ∶ ∣si − ri∣ ≤ δ} ≥ n(1 − γ), then for every α ∈ [γ,1 − γ],

[qα(S), q̄α(S)] ⊂ [qα−γ(R) − δ, q̄α+γ(R) + δ]

[Mα(S), M̄α(S)] ⊂ [Mα−γ(R) − (2δ + δ∗γ), M̄α+γ(R) + (2δ + δ∗γ)], (4.9)

where δ∗γ = max {q 1
2
(R) − q 1

2−γ
(R), q̄ 1

2+γ
(R) − q̄ 1

2
(R)}.

Lemma 4.4.4. For every v ∈ Ωd−1, there exists a probability one set A ∈ A such that for
every ω ∈ A and γ ∈ (0,1/2)
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sup
α∈(γ,1−γ)

(max {∣qα(R
n,ω
v ) − qα(Qv)∣ , ∣q̄α(Rn,ωv ) − qα(Qv)∣})→ 0,

sup
α∈(γ,1−γ)

(max {∣qα(T
n,ω
v ) − qα(Q̄v)∣ , ∣q̄α(Tn,ωv ) − qα(Q̄v)∣})→ 0.

Proof. Since X′v is a normal rv, then the assumptions in Corollary 1.4.3 in Csörgő [31]
are satisfied. Therefore, (1.4.24) in Csörgő [31] holds and the first statement is verified.
A similar reasoning leads to the second one.

Theorem 4.4.5. Under assumptions (A1.e) and (A2.e), there exists A0 ∈ A with P(A0) =
1 such that if ω ∈ A0, then, as n→∞,

sup
v∈Ωd−1

∣m̂ω
v −mv∣→ 0 and sup

v∈Ωd−1
∣M̂ω

v −Mv∣→ 0. (4.10)

Proof. We first apply the Glivenko-Cantelli Theorem to the iid rv’s {∥Xi∥} and we have
that a.s., as n→∞,

sup
r>0

∣#{i ≤ n ∶ ∥Xi∥ ≤ r}
n

−P(∥X1∥ ≤ r)∣→ 0. (4.11)

Given h ∈ N, since Ωd−1 is compact, there exist vh1 , . . . ,vhJh ∈ Ωd−1 such that for every
v ∈ Ωd−1 there exists iv ∈ {1, . . . , Jh} such that ∥v − vhih∥ ≤ h−1. From Lemma 4.4.4,
we have that there exists Ah ∈ A such that P(Ah) = 1 and for every ω ∈ Ah, (4.11) is
satisfied and for every γ ∈ (0,1/2),

sup
α∈(γ,1−γ)

(max
i≤Jh

{∣qα(R
n,ω

vhi
) − qα(Qvhi

)∣ , ∣q̄α(Rn,ωvhi
) − qα(Qvhi

)∣})→ 0,

sup
α∈(γ,1−γ)

(max
i≤Jh

{∣qα(T
n,ω

vhi
) − qα(Q̄vhi

)∣ , ∣q̄α(Tn,ωvhi
) − qα(Q̄vhi

)∣})→ 0.
(4.12)

Denote A0 = ∩h∈NAh. Obviously A0 ∈ A and P(A0) = 1. Let ω ∈ A0 be a point which will
remain fixed along the proof. We begin proving the first statement in (4.10). Let ε > 0.
Let λd be the largest eigenvalue of Σ. Given v ∈ Ωd−1 and γ ∈ (0,1/2), we have that

q 1
2+γ

(Qv) − q 1
2−γ

(Qv) = (v′Σv) (q 1
2+γ

(N1(0,1)) − q 1
2−γ

(N1(0,1)))

≤ λd (q 1
2+γ

(N1(0,1)) − q 1
2−γ

(N1(0,1))) .

Therefore, there exists γ1 ∈ (0,1/2) such that

sup
v∈Ωd−1

(q 1
2+γ1

(Qv) − q 1
2−γ1

(Qv)) <
ε

3
. (4.13)
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Analogously, we can prove that there exits γ2 ∈ (0,1/2) such that,

sup
v∈Ωd−1

(q 1
2+γ2

(Q̄v) − q 1
2−γ2

(Q̄v)) <
ε

3
. (4.14)

Take γ = inf{γ1, γ2, ε}. Let r > 0 be such that P(∥X1∥ ≤ r) > 1 − γ and h ∈ N such that
r/h < ε/3 and 2dλdM1/h < ε/3, where M1 is the MADN of a N1(0,1).

By (4.11) and (4.12), there exists Nω such that if n ≥ Nω, then #{i ≤ n ∶ ∥Xi(ω)∥ < r} >
n(1 − γ) and

sup
α∈( 1

2−γ,
1
2+γ)

(max
i≤Jh

{∣qα(R
n,ω

Vh
i

) − qα(Qvhi
)∣ , ∣q̄α(Rn,ωvhi

) − qα(Qvhi
)∣}) < ε

3

sup
α∈( 1

2−γ,
1
2+γ)

(max
i≤Jh

{∣qα(T
n,ω

vhi
) − qα(Q̄vhi

)∣ , ∣q̄α(Tn,ωvhi
) − qα(Q̄vhi

)∣}) < ε
3
.

(4.15)

Let v ∈ Ωd−1, if ∥Xj(ω)∥ ≤ r,

∣(Xj(ω))′v − (Xj(ω))′vhiv ∣ ≤ ∥Xj(ω)∥∥v − vhiv∥ ≤ rh
−1 < ε

3
, (4.16)

and therefore, by Corollary 4.4.3 with α = 1/2, we have that

m̂ω
v ∈ [q 1

2−γ
(Rn,ωVh

iV
) − ε

3
, q̄ 1

2+γ
(Rn,ωVh

iV
) + ε

3
] ,

and (4.15) gives

m̂ω
v ∈ [q 1

2−γ
(Qvhiv

) − 2ε
3
, q 1

2+γ
(Qvhiv

) + 2ε
3
] . (4.17)

On the other hand, we have that

∣m̂ω
v −mv∣ ≤ ∣m̂ω

v −mvhiv
∣ + ∣mvhiv

−mv∣. (4.18)

Moreover, mv = 0 for every v because all probabilities Qv are normal with mean zero.
Thus, the second addend in (4.18) is null. However, (4.17) and (4.13) imply

∣m̂ω
v −mvhiv

∣ < ε. (4.19)

Then, the first item in (4.10) is proved because by (4.18) and (4.19) we have that, if
n > Nω, then

sup
v

∣m̂ω
v −mv∣ < ε. (4.20)
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For the second item in (4.10), notice that if v ∈ Ωd−1 and h ∈ N, then

∣M̂ω
v −Mv∣ ≤ ∣M̂ω

v − M̂ω
vhiv

∣ + ∣M̂ω
vhiv

−Mvhiv
∣ + ∣Mvhiv

−Mv∣. (4.21)

If n ≥ Nω, i = 1, . . . , n, and v ∈ Ωd−1, from (4.20) (remember that m = 0) we have

∣ ∣(Xi(ω))′ v − m̂v∣ − ∣(Xi(ω))′ v∣ ∣ ≤ ∣m̂v∣ < ε. (4.22)

Therefore, we can apply Corollary 4.4.3 with α = 1/2, δ = ε and γ = 0 to obtain that

[M 1
2
(Rn,ωv ) , M̄ 1

2
(Rn,ωv )] = [q 1

2
(Ŝn,ωv ) , q̄ 1

2
(Ŝn,ωv )]

⊂ [q 1
2
(Tn,ωv ) − 2ε, q̄ 1

2
(Tn,ωv ) + 2ε] ,

which joined to (4.15) and the fact that Mv =m(Q̄v) gives that if n ≥ Nω,

∣M̂ω
Vh
iV
−MVh

iV
∣ < 2ε + ε

3
.

Concerning the third addend in (4.21), notice that Mv =m(Q̄v) coincides with v′ΣvM1.
Thus, if we write v = (v1, . . . , vd)′, then

∣Mvhiv
−Mv∣ = ∣v′Σv − (vhiv)

′Σvhiv ∣M1

=
RRRRRRRRRRR

d

∑
j=1

(vj)2
λj −

d

∑
j=1

((vhiv)
j)2

λj

RRRRRRRRRRR
M1

≤ λdM1
d

∑
j=1

∣(vj)2 − ((vhiv)
j)2∣

≤ 2λdM1
d

∑
j=1

∣vj − (vhiv)
j ∣

≤ 2dλdM1 ∥v − vhij∥ ≤
2dλdM1

h
< ε

3
.

Now, let us pay attention to the first addend in (4.21). According to (4.16) and (4.9) in
Corollary 4.4.3, we have that

∣M̂v − M̂vhiv
∣ ≤ M̄ 1

2+α
(Rn,ωvhiv

) −M 1
2−α

(Rn,ωvhiv
) + 2ε

3
+ δ∗γ . (4.23)

First, (4.15) and (4.13) give that

δ∗γ ≤ q̄ 1
2+γ

(Rn,ωvhiv
) − q 1

2−γ
(Rn,ωvhiv

) ≤ q 1
2+γ

(Qvhik
) − q 1

2−γ
(Qvhik

) + 2ε
3
< ε.
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For the first addend in (4.23), by Corollary 4.4.3 with γ = 0, we conclude that

M̄ 1
2+γ

(Rn,ωvhiv
) −M 1

2−γ
(Rn,ωvhiv

) = q̄ 1
2+γ

(Sn,ω
ihv

) − q 1
2+γ

(Sn,ω
ihv

)

≤ q̄ 1
2+γ

(Tn,ωvhiv
) − q 1

2−γ
(Tn,ωvhiv

) + 2 ∣m̂vhiv
∣ ,

and from (4.15), (4.14) and (4.20) we have that

M̄ 1
2+γ

(Rn,ωvhiv
) −M 1

2−γ
(Rn,ωvhiv

) < 3ε.

And the proof ends because (4.23) and the previous inequalities give that if ω ∈ A0 and
n ≥ Nω, then

∣M̂v − M̂vhiv ∣ < 6ε.

Theorem 4.4.6. Assume (A1.e) and (A2.e). Suppose that a, b and t are strictly positive
constants such that a ≤ b and let K̃n be as defined above. Then, as n→∞, a.s.

P (∣Ỹ K̃n
n ∣ > b ∣ ∥X∥Σ = t)→ ∫Ωd−1

Σ (t)
gba(x,0,Σ)ft(x)dx,

where gba(⋅, ⋅, ⋅) was defined in Proposition 4.2.5.

Proof. Let ω ∈ Υ and denote

gn,ωa,b (x) ∶=
P(v ∶ ∣x′v−m̂n,ωv ∣

M̂n,ω
v

> b)

P(v ∶ ∣x′v−m̂n,ωv ∣
M̂n,ω

v
> b) +P(v ∶ ∣x′v−m̂n,ωv ∣

M̂n,ω
v

< a)
.

Notice that the probabilities involved in this expression are conditioned given the sample
X1, . . . ,Xn. It is clear that if we integrate on the samples

P (∣Ỹ K̃n
n ∣ > b ∣∥X∥Σ = t) =∫Ωd−1

Σ (t)
(∫Υ

gn,ωa,b (x)dP(ω)) ft(x)dx.

Let us prove that the map gn,ωa,b is well defined. As in Theorem 4.4.5, we denote by M1

the MADN of the N1(0,1). If v ∈ Ωd−1, then Mv = (v′Σv)1/2
M1 ≥ λ1M1.

According to Theorem 4.4.5, there exists a set A0 ∈ A with P(A0) = 1 such that for every
ω ∈ A0, there exits Nω such that if n ≥ Nω then for every v ∈ Ωd−1, M̂n,ω

v > λ1M1/2 and
∣m̂n,ω

v ∣ < aλ1M1/4. Then, if x ∈ Ωd−1
Σ (t)
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P(v ∶ ∣x′v−m̂n,ωv ∣
M̂n,ω

v
< a) = P (v ∶ x′v ∈ (m̂n,ω

v − aM̂n,ω
v , m̂n,ω

v + aM̂n,ω
v ))

≥ P(v ∶ x′v ∈ (m̂n,ω
v − aλ1M1

2
, m̂n,ω

v + aλ1M1
2

))

≥ P(v ∶ x′v ∈ (−aλ1M1
4

,
aλ1M1

4
)) > 0,

where the last inequality follows from the fact that {v ∶ ∣x′v∣ < aλ1M1/4} ≠ ∅.

Additionally, for every ω ∈ A0, v ∈ Ωd−1 and x ∈ Ωd−1
Σ (t)

1
{
∣x′v−m̂n,ωv ∣

M̂
n,ω
V

>b}
→ 1{ ∣x′v∣

Mv
>b} (4.24)

unless v satisfies that ∣x′v∣ = bMv, but this equality only happens for v in a set (de-
pending on x) with Lebesgue measure equal to zero. Consequently, for every ω ∈ A0

and x ∈ Ωd−1
Σ (t), the convergence in (4.24) holds for almost every v ∈ Ωd−1. Since the

involved functions are bounded, (4.24) gives that, for every ω ∈ A0,

gn,ωa,b (x)→ g̃a,b(x).

The fact that 0 ≤ gn,ωa,b (x) ≤ 1 for every x, allows to apply the dominated convergence
theorem and the result is proven.

Next proposition gives the asymptotic behaviour of the first two moments of K̃n. Its
proof is similar to that one of Theorem 4.4.6 and we do not include it.

Proposition 4.4.7. Under assumptions (A1.e) and (A2.e), assume that a, b, t are strictly
positive constants such that a ≤ b. Then, as n→∞, a.s.

E (K̃n ∣ ∥X∥Σ = t)→ ∫Ωd−1
Σ (t)

ḡba (x,0,Σ) ft(x)dx,

Var(K̃n ∣ ∥X∥Σ = t)→ ∫Ωd−1
Σ (t)

ḡba (x,0,Σ) (2ḡba (x,0,Σ) − 1) ft(x)dx

− (∫Ωd−1
Σ (t)

ḡba (x,0,Σ) ft(x)dx)
2
,

where ḡba(⋅, ⋅, ⋅) was defined in Proposition 4.3.1.

The expressions of Theorem 4.4.6 and Proposition 4.4.7 get simplified in the case Σ = Id
as shown in the following corollary.
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Corollary 4.4.8. With the assumptions and the notation in Theorem 4.4.6, consider F (⋅, t)
defined as in (3.4). If Σ = Id, then, as n→∞, a.s.,

P (∣Ỹ K̃n
n ∣ > b ∣ ∥X∥ = t)→ 1 − F (b, t)

1 − F (b, t) + F (a, t)
,

E(K̃n ∣ ∥X∥ = t)→ 1
1 − F (b, t) + F (a, t)

,

Var(K̃n ∣ ∥X∥ = t)→ F (b, t) − F (a, t))
(1 − F (b, t) + F (a, t))2 .

Remark 4.4.9. Denote Xn = {X1, . . . ,Xn}. From the proofs of Theorem 4.4.6 and Propo-
sition 4.4.7 it is clear that a.s.

P (∣Ỹ K̃n
n ∣ > b ∣ ∥X∥Σ = t,Xn)→ ∫Ωd−1

Σ (t)
gba(x,0,Σ)ft(x)dx,

E (K̃n ∣ ∥X∥Σ = t,Xn)→ ∫Ωd−1
Σ (t)

ḡba (x,0,Σ) ft(x)dx,

Var(K̃n ∣ ∥X∥Σ = t,Xn)→ ∫Ωd−1
Σ (t)

ḡba (x,0,Σ) (2ḡba (x,0,Σ)−1) ft(x)dx

− (∫Ωd−1
Σ (t)

ḡba (x,0,Σ) ft(x)dx)
2
.

4.5 Computation of the constants a and b

The explicit computation of a and b requires to find a solution of (4.6) satisfying that
E (K̃n∣∥X∥Σ = Cdn) equals a pre-specified value. This problem has been impossible for us
to tackle even in the non-robust version (4.5) which handles the function Fn,Σ(a, b, t).

Proposition 4.2.5 gives an explicit expression for Fn,Σ(a, b, t); the problem being that
the integrand in this expression is so involved that, with the exception of a = b, we have
not been able to compute the integral even when Σ = Id (note that a and b depend on
the covariance matrix). In addition, the complexity increases when Σ ≠ Id, because of
the dependency of the projections given ∥X∥Σ as Proposition 4.2.7 showed.

Analogously to Chapter 4, a possibility to solve (4.5) as an approximation to (4.6) would
be to take a = b = aα, the conditional (1 − α)-quantile of Y V

n given that ∥X∥Σ = Cdn; but
again this does not look very sensible because this means taking the decision based on
one single random projection. Similarly to Section 3.5, we have now Proposition 4.5.1
which helps us to compute a and b in some situations. We do not include the proof of
such proposition because it is analogous to that in Proposition 3.5.1.
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Proposition 4.5.1. Let x ∈ Rd such that 0 < t = ∥X∥Σ. Given a > 0 such that P(∣ỹV
n ∣ < a) ≤

α, there exists bta such that Fn,Σ(a, bta,Cdn) = α. Moreover, for every t > Cdn the map a↦ bta
is strictly decreasing on a.

Similarly to Proposition 3.5.2, Proposition 4.5.2 somehow eases the computation of a
and b because it states that if we use the constants of the identity for a general covariance
matrix, then we will make the decision using the pre-specified number of projections or
more. We include no proof of such proposition because it is similar to that of Proposition
3.5.2.

Proposition 4.5.2. Let us assume (A1.e) and (A2.e) and let t > 0 and 0 < a ≤ b. Let
Σ ≠ Id be a positive definite matrix. Let XΣ ∶= {XΣ

n} and XId ∶= {XId
n } be two random

samples taken from the Nd(0,Σ) and Nd(0, Id) respectively. Then, almost surely,

lim
n

E(K̃a,b
n ∣∥X∥Σ = t,XΣ) > lim

n
E(K̃a,b

n ∣∥X∥ = t,XId) .

Corollary 4.5.3 is directly deduced from Proposition 4.5.2 and Corollary 4.4.8.

Corollary 4.5.3. With the assumptions and notation in Proposition 4.5.2, then a.s.

lim
n→∞

E (K̃a,b
n ∣∥X∥Σ = t,XΣ

n) >
1

1 − F (b, t) + F (a, t)
.

After Proposition 4.5.2, our proposal consists of using for any sample, the constants a and
b computed for samples taken from Nd(0, Id). However, Proposition 4.5.2 leaves two
open points: the level of the test obtained when using constants a and b computed for
the identity with Σ ≠ Id; and some hints on the expected number of observations when
n is low, mostly, when Σ ≠ Id. We have obtained no theoretical result fixing those points,
but we have produced practical evidence suggesting that the situation is reasonably
good. Specifically, we have used the same covariance matrices as in Subsection 3.5.2 and
we have conducted numerical experiments using pairs (a, b) computed for the identity
with the following results:

1) The obtained rejection rates with Σ ≠ Id are close to the rates of the identity.

2) The results obtained for sample sizes as low as n = 50 are similar to those predicted
by Proposition 4.5.2. I.e., for sample sizes n ≥ 50 and covariance matrices Σ ≠ Id,
the mean of the obtained values for K̃n are mostly larger than the expected for
the identity and they are seldom only slightly lower.

3) The mean of the values obtained for K̃n when Σ ≠ Id are generally similar to those
obtained when Σ = Id but sometimes they are much higher.
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Detailed information on those points as well as some details on the computation of a
and b when Σ = Id are included in Subsections 4.5.1 and 4.5.2.

4.5.1 Computation of (a, b) when Σ = Id

In this subsection, given n ∈ N, we want to compute the constants a and b giving a power
α-test with a given value l ≥ 1 for E(K̃n ∣∥X∥ = Cdn). For this, analogously to Chapter 3,
we could solve the system (3.18) and then look for a and b satisfying that u = F̃ (a,Cdn)
and v = F̃ (b,Cdn), where F̃ (y, t) = P (∣Ỹ V

n ∣ < y ∣∥X∥ = t).

The solution of that system in this case is u = (1−α)/k and v = 1−α/k. Obviously, if k > 1,
then v > u and only remains to find the u and v quantiles of the distribution F̃ (⋅,Cdn).
Since we have no explicit expressions for them and their numerical computation is
not feasible, we have decided to begin computing a and b by the Monte Carlo method.
The computation is done as in Algorithm 3 taking Σ = Id and with the following
modifications: Step 1.3). Compute Ỹ j = ∣(Xj)′Vj − m̂Vj ∣ /M̂Vj ; Step 2). Take a and b
equal to the quantiles u and v of the sample Ỹ 1, . . . , Ỹ N . By the same reasons adduced
in Subsection 3.5.2, we need to employ the bisection method to achieve the desired
level of the test.

Table 4.1 shows the values of the constants a and b for different values of l (see Table A.5
in the Appendix for the non-robust version of them). Those values have been computed
with the above explained methodology with N = 106.

From this table, the bigger l, the wider the interval (a, b) according to Corollary 4.3.2.
However, the larger the sample size, the narrower the interval (a, b). This is due to the
fact that the estimation of the parameters is more stable for greater sample sizes. Last
fact is in contrast with Table 3.2 where we had that, if Σ is known, the larger n, the
wider the interval (a, b).

Table 4.1.: Obtained values of (a, b) when Σ = Id, Cd
n ≡ Cd

n(0.05) and different values of n, d
and l = E(K̃n∣∥X∥ = Cd

n(δ)).

n = 50 n = 100 n = 500
l = 50 l = 100 l = 50 l = 100 l = 50 l = 100

d a b a b a b a b a b a b

5 0.0587 6.0580 0.0289 6.3681 0.05901 5.4914 0.0299 5.6691 0.0645 5.1718 0.0322 5.2655
50 0.0325 4.9714 0.0163 5.3212 0.0326 4.6374 0.0163 4.9143 0.0336 4.4525 0.0167 4.6989

100 0.0303 4.7184 0.0150 5.0936 0.0303 4.3539 0.0151 4.6495 0.0304 4.1478 0.0156 4.3910
500 0.0268 4.3039 0.0133 4.6239 0.0267 3.9230 0.0133 4.2078 0.0266 3.7278 0.0132 3.9520

1000 0.0263 4.1916 0.0130 4.5217 0.0261 3.8253 0.0128 4.0909 0.0259 3.6096 0.0130 3.8197
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4.5.2 Computation of (a, b) when Σ ≠ Id

As stated, based on Proposition 4.5.2, our idea is to use the values obtained for Σ = Id
to handle any covariance matrix. We firstly check if those values are suitable for general
matrices. For this, we will use the matrices Σ1, . . . ,Σ4 defined in Subsection 3.5.2 in
Chapter 3.

The procedure goes as follows, for each combination of dimension and sample size, we
have computed a pair (aI , bI) giving an α-level test for the identity matrix as explained
in Subsection 4.5.1. We have kept aI and, for every Σ = Σd

i , i = 1, . . . ,4, we have
computed (using the same procedure as in Subsection 4.5.1 with N = 104 simulations)
the value bΣ such that the pair (aI , bΣ) is an α-level test.

As in Subsection 3.5.2, the values bI and bΣ are very resembling in the considered cases
(see Table 4.2 which shows the bΣ maximizing the difference ∣bI−bΣ∣). The same happens
with the quantities lrI ∶= E(K̃n∣∥X∥ = rCdn(0.05)) and lrΣ ∶= E(K̃n∣∥X∥Σ = rCdn(0.05))
when r = 1 except for Σ = Σd

3 (see Table A.6 in the Appendix, and Table A.7 for their
non-robust versions).

Table 4.2.: Values of bΣ giving the greatest difference ∣bI − bΣ∣ for Σ = Σd
i , i = 1, . . . ,4, for several

values of d, n and E(K̃n ∣∥X∥Σ = Cd
n). a’s are taken from Table 4.1. Column Σ tells

the matrix in which bΣ was obtained.

n = 50 n = 100 n = 500
l1I=50 l1I=100 l1I=50 l1I=100 l1I=50 l1I=100

d bΣ Σ bΣ Σ bΣ Σ bΣ Σ bΣ Σ bΣ Σ

5 5.0184 Σd1 5.1241 Σd1 4.9185 Σd1 4.9781 Σd1 5.0139 Σd1 5.0735 Σd1
50 5.1413 Σd3 5.4932 Σd3 4.6194 Σd4 4.9504 Σd3 4.4439 Σd3 4.6858 Σd3

100 4.8813 Σd3 5.1857 Σd3 4.3497 Σd4 4.6387 Σd2 4.1399 Σd3 4.3691 Σd3
500 4.3244 Σd2 4.6946 Σd3 4.0248 Σd3 4.2460 Σd3 3.7509 Σd4 3.9143 Σd3

1000 4.3129 Σd3 4.6166 Σd3 3.9221 Σd3 4.1094 Σd3 3.6276 Σd1 3.8363 Σd2

4.6 Practical implementation

In this section we provide advice on the practical implementation of the method. We
pay attention to how to fix the number of expected projections (Subsection 4.6.1) and
how many simulated values of Ỹ V

n we should produce to compute a and b (Subsection
4.6.2). We also include an algorithm to analyse all points in a sample (Algorithm 4 in
Subsection 4.6.3) and we finalize with a procedure to reduce the role of the randomness
in the process (Subsection 4.6.4)
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4.6.1 Which value should we choose for lrΣ?

In principle, the higher the IrΣ the higher the power under the alternative. However, the
computational effort increases. The simulations we present below show a detectable
increment in power from IrΣ = 50 to IrΣ = 100. However, this increment is not too striking
and, of course, the improvement slows down for values of IrΣ above 100.

Hence, our advise is to fix this parameter at 50, or, at most at 100. In fact, in the
simulations in Subsection 4.7.2 we have used IrΣ = 50, while we have chosen IrΣ = 100 in
Subsection 4.7.3.

4.6.2 How many simulated values of Ỹ V are required to obtain a and b?

In Algorithm 3 with the modifications mentioned in Subsection 4.5.1, a large value
N of replicas of Ỹ V

n is required. As stated in Subsection 4.5.1, in this work we have
chosen N = 106, but this is quite time consuming. Some computations suggest that
N = 104 could do it depending on the involved percentiles, but it seems that N = 105

offers a reasonable trade-off between time and precision. Table 4.3 shows the required
computational times for some values of dimension, sample size and l1I . Those times
range from 40 seconds to 33 minutes in a four cores processor 3.2 GHz Intel Core i5.
The decrement observed in the case d = 50, n = 100, l1I = 100 is due to the fact that those
cases required a very sort bisection step.

Table 4.3.: Computation times (in seconds) of a, b with N = 105 simulated values of Ỹ V.

n = 50 n = 100 n = 500
d l1I = 50 l1I = 100 l1I = 50 l1I = 100 l1I = 50 l1I = 100

50 37.972 142.930 74.400 55.347 92.132 321.988
1000 184.780 624.712 282.090 535.981 1047.797 1982.664

The results obtained with N = 105 were acceptable. To see this, it is enough to compare
the results in Tables 4.4 and 4.5 with those in Tables 4.1 and A.9: there are some
differences between the parameters (due to greater uncertainty in the estimation of the
involved quantiles) but, it seems, they are inside reasonable margins.

4.6.3 Algorithm to analyse a sample

The algorithm we propose to analyse all points in a sample is given in Algorithm 4.
There, XR is the set of points deemed as regular.

4.6 Practical implementation 83



Table 4.4.: Obtained values of (a, b) when Σ = Id for different values of n, d and l1I and Cd
n ≡

Cd
n(0.05). Only 105 simulated values for Ỹ V in the first step.

n = 50 n = 100 n = 500
l1I = 50 l1I = 100 l1I = 50 l1I = 100 l1I = 50 l1I = 100

d a b a b a b a b a b a b

5 0.0583 6.0850 0.0290 6.4198 0.0601 5.4816 0.0305 5.6744 0.06450 5.1759 0.0329 5.2607
50 0.0333 4.9870 0.0168 5.3563 0.0326 4.6579 0.0165 4.9365 0.0340 4.4449 0.0170 4.6927

100 0.0297 4.7470 0.0149 5.1214 0.0300 4.3772 0.0150 4.6435 0.0312 4.1760 0.0154 4.3896
500 0.0262 4.3144 0.0131 4.6484 0.0269 3.9731 0.0140 4.2024 0.0275 3.7194 0.0136 3.9522

1000 0.0256 4.1863 0.0122 4.5825 0.0262 3.8331 0.0134 4.0953 0.0257 3.6629 0.0123 3.8329

Table 4.5.: Estimation of the probability of declaring as an outlier a vector such that ∥X∥ = Cd
n,

when Σ = Id, for several values of n, d using a, b obtained in Table 4.4.

n = 50 n = 100 n = 500
l1I = 50 l1I = 100 l1I = 50 l1I = 100 l1I = 50 l1I = 100

d Prob. l̂1I Prob. l̂1I Prob. l̂1I Prob. l̂1I Prob. l̂1I Prob. l̂1I

5 0.0488 52 0.0462 102 0.0492 51 0.0574 100 0.0494 50 0.0424 98
50 0.0528 48 0.0440 98 0.0518 51 0.0454 100 0.0466 48 0.0470 97

100 0.0464 51 0.0474 103 0.0534 50 0.0516 101 0.0460 50 0.0482 100
500 0.0530 50 0.0480 102 0.0506 48 0.0508 94 0.0492 49 0.0492 99

1000 0.0540 50 0.0532 110 0.0482 49 0.0494 96 0.0440 51 0.0524 104

Notice that Algorithm 4 always ends. Moreover, some points declared regular in initial
rounds, could later be declared as outliers, because in Step 2) we make XR = ∅ every
time a new outlier is identified. This is done so to reduce the masking effect.

4.6.4 How to reduce the role of the randomness in deciding if a point is
outlier or not?

The proposed procedure is random. Despite the fact that random procedures are used
frequently in Statistics (bootstrap, random forests, optimization algorithms with a
random step, . . .), some people can feel uncomfortable with this. As stated, the larger
lrΣ the lower the role of the randomness. A possibility to reduce further this role is to
repeat Algorithm 4 a not so large number of times, T , using a significance level α. Thus,
since points x satisfying that, let us say, ∥x − µ∥Σ = Cdn(δ) are declared as outliers a
proportion α of times, we could resort to declare as outliers those points which have
been identified as outliers more than a proportion α of times along the T repetitions.

This criteria can be strengthened (resp. relaxed) identifying as outliers only the points
declared as outliers a number of times higher (resp. lower) than the 0.95 (resp. 0.05)
quantile of a binomial with parameters T and α.

84 Chapter 4 Outliers detection: unknown parameters



Algorithm 4: Procedure to look for outliers in a sample
Let X be the set of all points in a sample.

0) Let XR = ∅

1) Take a random projection and analyse all points in X .

2) If some points have been declared as outliers, delete them from X , set XR = ∅,
and go to Step 1). Else, add the points declared as non-outliers, if any, to XR.

3) If XR ≠ X go to Step 1). Else, return XR.

4.7 Numerical studies

In this section we analyse the behaviour of the method thorough simulated experiments
and real datasets. Here, only the results for n = 50 are shown; see Section A.2 in the
Appendix for the complete results. We also compare our procedure with some existing
methods.

The computations of the constants a and b determining the tests are carried out as
described in Subsections 4.5.1 and 4.5.2 with N = 106 simulated values of Ỹ V

n . Analo-
gously to Chapter 3, the estimate of lrΣ (which is the mean of the obtained values) will
be denoted by l̂rΣ and use the same short notation as in Section 3.7.

4.7.1 Simulations

We use the notation introduced in Subsection 4.4. All the results are obtained from 5000
replicated simulations.

Table 4.6 (see Table A.8 in the Appendix for its non-robust version) shows the proportion
of times we have declared a point with Mahalanobis norm Cdn(δ) with δ = 0.05 as an
outlier for n = 50 and several values of d. More results including the cases n = 100,500
are in Table A.9 in the Appendix. The results are acceptable because the proportions are
close to the intended: the percentiles 0.025 and 0.975 of the rv proportion of rejections
with a theoretical proportion equal to 0.05 in 5000 trials are 0.044 and 0.0562 and the
price we pay to achieve robustness seems to produce a slightly conservative test, since
we obtain 18 (out of 120) proportions outside the confidence interval, all of them in the
upper part, but with the maximum (equal to 0.0668) being close to the upper boundary
of the target.
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We also see that the mean number of projections l̂11, . . . , l̂
1
4 are always greater or, if

lower, very close to l1I (giving support to the fact that the asymptotic result shown in
Proposition 4.5.2 also holds for finite sample sizes), being l̂13 always the largest one.
Moreover l̂11, l̂

1
2 and l̂14 are always reasonably similar to l̂1I and, also, all of them are close

to the goal l1I . The values obtained for l̂13 increase with the dimension and, when d = 500
or 103, they are an order of magnitude larger than intended.

Table 4.6.: Estimation of the probability of declaring as an outlier a vector such that ∥X∥Σ = Cd
n,

for n = 50 and several values of d, Σ and l1I . We also show the sample means of K̃n.

d l1I l̂1I Id l̂11 Σd1 l̂12 Σd2 l̂13 Σd3 l̂14 Σd4
50 50 51 0.0528 49 0.0571 49 0.0541 186 0.0668 50 0.0569

100 98 0.0560 99 0.0558 103 0.0553 366 0.0580 99 0.0572

100 50 49 0.0507 48 0.0496 50 0.0501 249 0.0628 50 0.0489
100 100 0.0538 101 0.0519 100 0.0526 526 0.0603 98 0.0494

500 50 49 0.0481 50 0.0507 50 0.0518 552 0.0628 50 0.0483
100 100 0.0520 102 0.0509 99 0.0545 1111 0.0589 101 0.0538

1000 50 50 0.0496 50 0.0538 49 0.0534 790 0.0586 50 0.0500
100 100 0.0520 101 0.0476 102 0.0507 1601 0.0549 99 0.0553

Table 4.7 (see Table A.10 in the Appendix for its non-robust version) shows the estima-
tions of the probability of declaring a point as an outlier when its Mahalanobis norm
is 1.2Cdn or 2Cdn and n = 50. Complete results are in Table A.11 in the Appendix. The
values corresponding to Σ = Id,Σd

4 are the highest, being those of the identity slightly
better. The worst results (and the highest number of required projections) are obtained
for Σ = Σd

3; the remaining ones being similar to those corresponding to the identity.
Obviously when l1I increases, so does the probability to detect the outliers. We also see
an increase of the power when n becomes larger and a slight decrease when d becomes
larger. This makes sense because for larger values of n, the estimation of the parameters
is more accurate, while the larger d, the greater the noise in the sample.

Other features of the procedure such that the proportion of observation wrongly classified
as outliers or the effect of the masking are analyzed in Subsection 4.7.2.

4.7.2 Comparison with other procedures

In this subsection we compare our procedure (denoted RP) with some existing methods
proposed for high-dimensional data: the principal component outlier detection pro-
cedure (denoted PCOut) of Filzmoser et al. [61] and the minimum diagonal product
method (denoted MDP) of Ro et al. [116]. The main interest in this subsection is
twofold: first one is to check how the dimension and the covariance matrix affect those
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Table 4.7.: Estimation of the probability of declaring as an outlier a vector such that ∥X∥Σ =
rCd

n, r = 1.2,2 with n = 50 and several values of d, Σ and l1I .. We also show the
sample means of K̃n.

d ∥X∥Σ lrI l̂rI Id l̂r1 Σd1 l̂r2 Σd2 l̂r3 Σd3 l̂r4 Σd4

50 1.2Cdn 50 48 .2378 48 .2247 48 .2338 163 .1752 48 .2333
100 93 .2729 96 .2412 95 .2617 313 .1867 92 .2639

2Cdn 50 12 .8817 13 .8660 12 .8830 47 .6575 12 .8912
100 16 .9259 19 .9061 16 .9153 74 .6985 16 .9229

100 1.2Cdn 50 48 .2235 49 .2093 48 .2146 223 .1729 49 .2191
100 97 .2387 97 .2236 95 .2320 460 .1723 96 .2487

2Cdn 50 13 .8829 13 .8678 13 .8734 70 .6289 13 .8743
100 18 .9150 19 .9081 18 .9115 113 .6738 18 .9160

500 1.2Cdn 50 50 .2160 48 .2132 49 .2168 518 .1711 50 .2198
100 97 .2454 99 .2375 96 .2399 973 .1761 97 .2412

2Cdn 50 13 .8771 13 .8617 13 .8780 150 .6139 13 .8726
100 18 .9166 18 .9185 18 .9075 249 .6513 18 .9090

1000 1.2Cdn 50 49 .2202 51 .2136 49 .2159 700 .1632 49 .2156
100 98 .2470 97 .2338 97 .2429 1383 .1616 96 .2366

2Cdn 50 13 .8797 13 .8728 13 .8729 214 .6128 13 .8674
100 19 .9116 19 .9134 19 .9093 360 .6551 19 .9124

methods, second one is to see the capability of the procedures to detect multiple outliers
once the parameters have been fixed to have a similar behaviour where there is no
outlier in the sample.

For this, we have chosen two settings: in the first one we handle a clean sample and
compute the proportion of points which are declared as outliers. In the second one
we handle a sample with 10% outliers and analyze the proportion of them which are
detected by the procedures. In both cases, we have employed two different sample
sizes n = 50,100, three dimensions d = 50,500,1000 and seven covariance matrices: first
one is the identity, the elements in the second matrix, S2 = (si,j), are si,j = e−∣i−j∣/d. To
construct the third matrix, S3, we generate a matrix A whose elements are iid N(0,1)
and take S3 = A′A. The remaining four matrices are the Σd

i ’s we handled in Subsection
4.5.2. We include here the results corresponding to Id, S2 and S3 and leave for Section
A.2 in the Appendix those obtained with the Σd

i ’s. Thus, the reported cases here include
a case with independent marginals, another one with relatively high correlations and a
third one in which the correlations are random. For these three frameworks, we have
generated the data with the identity as covariance matrix. Then, we have multiplied
these data by the appropriate matrix to obtain the desired covariance; thus, somehow, we
handle the same data for the three covariance matrices. We have done 500 simulations.
Matrix A varies from each simulation.
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The approaches of PCOut and MDP are implemented in the functions pcout and rmdp in
the R packages mvoutlier and Rfast, respectively. We have kept the default parameters
provided by those functions except for the case when we use rmdp that we fix itertime
= d1.5 in order to follow the suggestion in the help comment that the number of
iterations should be similar to the dimension for sample sizes equal to 50. From there,
we have concluded that for higher sample sizes, the number of iterations should be
greater than the sample size. Regrettably, this makes MDP quite slow. Thus, we have
not run the procedure when d = 1000, since it took 364.18 seconds in the first setting to
compute five values when n = 50.

Since the default options of the functions pcvout and rmdp lead to a discovery of around
10% of outliers in the clean samples, for each dimension and sample size, we have fixed
the parameters a, b for RP in order to obtain approximately this percentage of discoveries
in Table 4.8. This goal was achieved by taking a, b such that E (K̃n ∣ ∥X∥Σ = qnd ) = 50
and P(X declared outlier ∣∥X∥ = qnd ) = 0.1 where qnd is the 0.75-quantile of the square
root of a random sample with size n drawn from a χ2

d. Those parameters have been
used in both settings.

The results obtained when using the covariance matrices Σd
i are similar to those obtained

when Σ = S3. Those cases are handled as described before, excepting for the fact that we
have used a randomly chosen basis in order to prevent the matrices Σd

i being diagonal.
We did not this before because RP is invariant against those rotations. However, it seems
that MDP may depend on whether Σ is diagonal or not and, the first step in PCOut
is to standardise the data, thus making all cases in which Σ is diagonal equivalent to
Σ = Id.

Handling a clean sample

Here we generate a sample from aNd(0,Σ) without outliers and compute the proportion
of observations in the sample that each procedure declares as outliers. In this case there
are no outliers and, therefore, no observation should be declared as outlier. The propor-
tion of outliers is not interesting here (because you can get the desired proportion tuning
appropriately the parameters). We are interested, however, in detecting the stability of
the procedures; more precisely in seeing if the dimension and/or the covariance matrix
affect to the capacity of the procedures to detect outliers.

Our conclusion from those simulations (see Tables 4.8 and A.12 in the Appendix), is
that the behaviour of MDP is very different depending on whether Σ is diagonal or not
and, whether Σ ≠ Id. The dimension also affects its behaviour. The increment of the
sample size decreases the number of wrongly detected outliers. Procedures PCOut and
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Table 4.8.: Proportion of outliers found in a clean data set for several covariance matrices.

MDP PCOut RP
n d Id S2 S3 Id S2 S3 Id S2 S3

50 50 .1360 .1190 .1158 .1025 .1377 .1110 .1108 .0909 .1085
500 .1404 .0320 .0585 .0950 .1308 .1003 .1149 .1003 .1101

1000 — — — .1028 .1317 .1018 .1132 .1000 .1141

100 50 .0735 .0896 .0739 .1022 .1219 .1086 .1044 .0790 .1020
500 .0827 .0187 .0498 .0829 .1235 .0813 .1104 .0810 .1104

1000 — — — .0787 .1232 .0808 .1108 .0830 .1098

RP are quite stable when the dimension varies, in spite of the fact that PCOut tends to
declare more outliers when n = 50. This effect is more noticeable in the results in Table
A.12. Additionally, PCOut seems to declare less outliers when the dependence is not
too strong while the opposite happens with RP. Overall, results from RP are more stable
than those from MDP or PCOut.

Handling a sample with 10% of outliers

In this task, we generate a clean sample, with size .9n from a Nd(0,Σ) and we add
nout = .1n outliers with distributions Nd(0,Σ) given that ∥X∥Σ = pi, i = 1, . . . , nout.
Here we take qi, i = 1, . . . , nout, an equispaced sequence from .95 to .99 and, then,
pi, i = 1, . . . , nout are the square roots of the qi-quantiles of the χ2

d distribution.

Tables 4.9 and A.13 (last one in the Appendix) show the proportion of outliers which
were correctly identified along 500 repetitions; thus, the higher the proportions, the
better. MDP does an acceptable work when Σ = Id, with better results than PCOut, but,
regrettably, its behaviour seems to deteriorate in the other two situations in Table 4.9,
mostly when d increases. In the situations handled in Table A.13 this method gives the
best results when Σ = Σd

3. It is not too bad when d = 50 with the remaining matrices, but
its behaviour deteriorates noticeably when d increases.

Broadly speaking, we can say that PCOut is the winner when Σ = S2 while RP is the
choice in the remaining cases with Σ ≠ Σd

3. Those results suggest that, on highly
dependent situations, the user could benefit from using PCOut; while one should use RP
in no so dependent ones. The problem with this advice is that in order to decide the
kind of situation we need to estimate the covariance matrix.
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Table 4.9.: Samples contain 10% of real outliers. Columns show the proportion of them
correctly identified.

MDP PCOut RP
n d Id S2 S3 Id S2 S3 Id S2 S3

50 50 .1959 .1216 .1357 .1564 .2912 .1684 .2856 .2032 .2844
500 .1842 .0340 .0688 .1196 .1756 .1040 .1568 .1056 .1420

1000 — — — .1060 .1552 .1112 .1576 .1092 .1424

100 50 .1301 .0902 .0905 .2112 .3120 .2282 .3076 .1816 .2864
500 .1424 .0185 .0610 .0856 .1808 .0928 .1790 .1138 .1642

1000 — — — .0812 .1598 .0852 .1478 .1064 .1526

4.7.3 The procedure in practice: Two real data examples

The practical relevance of the proposed test is illustrated on two well-known real data
sets. They have been studied by Hubert et al. [80]. Those data are considered there
as functional; however, all observations in both sets have been measured on the same
values of the independent variable; thus they can be also considered as d-dimensional.

We compute a and b as in Section 4.5.1 with P (∣Ỹ K̃n ∣ > b ∣ ∥X∥Σ = Cdn) = 0.05, l1I = 100
and N = 106. Consequently, a point x such that ∥x∥Σ = Cdn should be identified as outlier
5% of times. We have applied the proposed method T = 100 times to every point in the
sample at hand and we have declared as outliers those points that were identified as
outliers 5% of times or more, following the procedure described in Subsection 4.6.4.

In the analysis we show the outliers identified by the methods introduced in this paper
(denoted RP), in Hubert et al. [80] (denoted Hub), in Filzmoser et al. [61], (denoted
PCOut), and Ro et al. [116] (denoted MDP). PCOut and MDP are handled with their
default parameters, excepting that we take itertime = d in MDP according to the
suggestion that this value should be similar to the dimension when n = 50.

Wine Data

This dataset contains the proton nuclear magnetic resonance spectra of 40 different
wine samples (Larsen et al. [94]). As in Hubert et al. [80], we select the region between
wavelengths 5.37 and 5.62, on which each sample has d = 397 measurements.

Table 4.10 shows the data identified as outliers by the considered procedures. Those
curves are represented in Figure 4.1 with coloured lines. We see that the curve 37 has
two large peaks around wavelength 5.4 and may be considered an isolated outlier.
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Figure 4.1.: The left panel shows the outliers which are detected both in [80] and with the procedure
we present here. The right panel shows the outliers detected with the proposed method but
not in [80].

The curves 1, 12, 17 and 19 oscillate too much, as shown in Figure 4.2, where the
boxplot of the indices of the oscillation ∑dj=1(Xi

j+1 −Xi
j)2 for each point Xi, i = 1, . . . ,40

appear. Such boxplot employs the fences as in Definition 2.3.1 of Iglewicz and Banerjee
[81] with δ = 0.05. Unlike Hub, RP and PCOut declare them as outliers (except for 17
which is not declared by PCOut): RP with probability greater than 0.6 and PCOut with
weights 0.04 (weights close to zero indicate potential outliers).

Table 4.10.: Wines identified as outliers. Each number in row RP (resp. PCOut) is the proportion
of times this wine was declared outlier by RP (resp. the weight of this wine. Low
weights identify potential outliers). Marked with an X (resp. white) cells mean the
wine was (resp. not) identified by the corresponding procedure.

1 2 3 6 12 13 17 18 19 23 27 35 37

RP 0.89 0.16 0.24 0.05 0.67 0.32 0.63 0.64 0.61 0.06 0.19 1.00

Hub X X X X X

PCOut 0.04 0.06 0.16 0.20 0.04 0.08 0.16 0.04 0.14 0.04

MDP X

RP, PCOut and Hub also declare the wines 2, 3 and 23 as outliers. Wine 35 is only
identified by RP and Hub. Figure 4.1 shows that those curves are in the external part
of the bulk of the data: 2 and 3 in the bottom and 23 and 35 in the top part. RP and
PCOut additionally detect 13 as outlier; this curve is in the bottom part of the data just
above of 2 and 3 (see Figure 4.1). RP also detects the curves 6 and 27 (in coloured lines
in Figure 4.1), PCOut only the curve 6, and Hub none of them. We see that curve 6
starts to increase before the other curves; while 27 has a similar shape to the curve 3
(which is declared as an outlier by Hub) but in the top part of the data. However, the

4.7 Numerical studies 91



number of times these curves have been detected by RP (well below the .95-quantile of
a binomial with parameters 100 and .05, which is 9) make them doubtful as outliers
from the RP point of view. PCOut gives the maximum weight, 0.2, to 6, i.e. among all
the outliers that PCOut detects, this curve is the least anomalous.

11213 17 19

Figure 4.2.: Boxplot using fences of Definition 2.3.1 of Iglewicz and Banerjee [81] with δ = 0.05 for the
squared of the differences among the components of each point in the wine data.

The difference between the detected curves by PCOut and RP is that PCOut detects the
curve 18 (with the same weight that curve 3), and RP detects the curves 17, 27 and 35.
Figure 4.3 shows these curves. It seems the curve 18 has some fluctuation, however this
curve does not appear as an outlier in the boxplot of Figure 4.2.
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Figure 4.3.: The left panel shows the outlier which was detect by PCOut but not with our method. The
right panel shows the outliers detected with our method but not with PCOut.

In conclusion, it seems that PCOut and RP detect better the shape outliers than Hub. RP
also detects curves that have not so big peculiarities or those which are in the border of
the bulk of the data albeit with lower probability.
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Octane data

This data set consists of 39 near infrared spectra of gasoline samples over d = 226
wavelengths ranging from 1102 nm to 1552 nm with measurements every two nm. It
is known that samples 25, 26 and 36-39 have a very different spectrum because they
contain added ethanol (Esbensen et al. [49], Rousseeuw et al. [121] and Hubert et al.
[80]). Table 4.11 shows the data identified as outliers by the considered procedures.

Table 4.11.: Outliers in the gasolines. Each number in row RP (resp. PCOut) is the proportion
of times this gasoline was declared outlier by RP (resp. the weight of this wine.
Low weights identify potential outliers). Marked with an X (resp. white) cells
mean the gasoline was (resp. not) identified by the corresponding procedure.

6 23 25 26 34 36 37 38 39

RP 0.11 0.06 0.99 1.00 0.28 1.00 1.00 1 .00 0.99

Hub X X X X X X

PCOut 0.10 0.04 0.04 0.08 0.04 0.04 0.04 0.04

MDP X X X X X X
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Figure 4.4.: Outliers detected in octane data with RP and PCOut methods: the left panel shows the
outliers which are also detected with Hub and MDP methods. The right panel shows the
outliers detected only with RP and PCOut methods.

All the curves identified as outliers are plotted with coloured lines in Figure 4.4. Curi-
ously, Hub and MDP (resp. PCOut and RP excepting for the gasoline 6) detect the same
curves as outliers. Clearly the curves 25, 26 and 36-39, represented in the left panel,
are persistently outlying from wavelength 1390 onward and all procedures detect them.
The curves 23 and 34, represented in the right panel, are declared outliers by PCOut
and RP but not by Hub and MDP. Additionally, RP detects the curve 6. We see that these
three curves are in the border of the bulk of the data and they are slightly separated
from the rest on wavelengths around 1150, 1195 and 1390. Anyhow, curve 23 is only
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declared as outlier 6% of times what makes it doubtful from the point of view of RP.
This is the curve with the highest weight, 0.1, when we apply PCOut.

Similarly to the wine dataset, it seems that PCOut and RP detect the outliers which are
far away from the bulk of the data (curves 25, 26 and 36 to 39) and those which always
are in the border of the data (23 and 34, and additionally RP detects 6).
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On a class of uniformity tests
on the hypersphere

5

„The beauty of Mathematics only shows itself to
more patient followers.

— Maryam Mirzakhani

In this chapter we propose a projection-based class of uniformity tests on the hypersphere.
We show its relation to the Sobolev class of uniformity tests and, also, to other existing
tests such as Watson, Ajne, and Rothman tests, and introduce the first instance of
an Anderson–Darling-like test. We finish the chapter with a simulation study which
corroborates the theoretical findings and evidences that, for certain scenarios, the new
tests are competitive against previous proposals. Real data examples illustrate the usage
of the new tests.

5.1 Projected statistics: A new approach to testing
uniformity

As we mentioned in the Introduction, testing uniformity on the hypersphere Ωd−1 is
formalized as the testing of

H0 ∶ P = νd−1 vs. H1 ∶ P ≠ νd−1,

from a sample X1, . . . ,Xn of iid observations of P. Remember that νd−1 was defined in
Subsection 2.5.1.

5.1.1 Genesis

Our proposal is inspired by the projection-based test of Cuesta-Albertos et al. [37], see
Subsection 2.6.2. Within the same approach of Cuesta-Albertos et al. [37], an alternative
to (2.21) is the well-known weighted quadratic norm by Anderson and Darling [7]:
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Qwn,d−1,γ ∶= n∫
1

−1
{Fn,γ(x) − Fd−1(x)}2w(Fd−1(x))dFd−1(x), (5.1)

where the specifications w ≡ 1 and w(u) = 1/(u(1−u)) for the weight w ∶ [0,1]→ R yield
the Cramér–von Mises and Anderson–Darling test statistics, respectively. In addition to
the extra flexibility provided by the weight w in (5.1) in comparison with (2.21), the
use of quadratic norms instead of sup-norms in goodness-of-fit tests is typically advised
in practise, as they tend to provide higher powers (see, e.g., Stephens [127, Section 5]
or D’Agostino and Stephens [40, page 110]).

Our class of test statistics is based on Qwn,d−1,γ but, rather than drawing several random
directions and aggregating afterwards the outcomes of the associated tests (as in Cuesta-
Albertos et al. [37]), the statistic itself gathers information from all the directions on
Ωd−1: it is defined as the expectation of Qwn,d−1,γ with respect to γ

d= νd−1. Therefore, the
proposed test rejects H0 for large values of the test statistic

Pwn,d−1 ∶= Eγ (Qwn,d−1,γ)

= n∫Ωd−1
[∫

1

−1
{Fn,γ(x) − Fd−1(x)}2w(Fd−1(x))dFd−1(x)]νd−1(dγ). (5.2)

The choice of νd−1 as the distribution for γ is canonical: it is the only sample-independent
distribution that guarantees the invariance of (5.2) against any rotation of the sample,
this being the fundamental property that any uniformity test on Ωd−1 must have. In
addition, as we mentioned in the Introduction, the idea of integrating along all the
unit-norm directions has been already considered.

An obvious generalization of Pwn,d−1 follows by substituting the weight function w with
the integration with respect to a (positive) σ-finite Borel measure W on [0,1], giving
the statistic

PWn,d−1 ∶= nEγ (∫
1

−1
{Fn,γ(x) − Fd−1(x)}2 dW (Fd−1(x))) . (5.3)

Notice that if W is a probability measure, we integrate with respect to a probability
whose cdf is x↦W{[0, Fd−1(x)]}. This generalisation, for instance, allows for weight-
ing schemes that are concentrated on denumerable or finite sets. We will consider
this generalized formulation (5.3) henceforth in the chapter, since it unifies many tests
statistics (see Sections 5.1.3–5.1.5) under the projection-based view. For the sake of
simplicity, W will denote indistinctly a measure and its cdf when there is no possible
ambiguity. Furthermore, we will focus only on symmetric measures with respect to 1/2,

96 Chapter 5 On a class of uniformity tests on the hypersphere



as our first result shows that, due to the construction of PWn,d−1, this restriction does not
imply a loss in generality.

Proposition 5.1.1. LetW and W̃ be σ-finite Borel measures on [0,1] such that W̃{(0, t)} =
1
2 (W{(0, t)} +W{(1 − t,1)}), t ∈ [0,1]. Then,

PWn,d−1 = P
W̃
n,d−1.

Proof. A simple change of variables gives

Eγ (∫
0

−1
{Fn,γ(x) − Fd−1(x)}2 dW (Fd−1(x))) =

Eγ (∫
0

1 {Fn,γ(x−) − Fd−1(x)}2 dW (1 − Fd−1(x)))

employing the facts that Fn,γ(−x) = 1−Fn,−γ(x−), x ∈ [0,1], and that γ
d= νd−1. However,

Fn,γ(x−) = Fn,γ(x) except for x ∈ {γ′X1, . . . ,γ
′Xn}. Thus,

∫
0

1
{Fn,γ(x−)−Fd−1(x)}

2dW (1 −Fd−1(x)) ≠∫
0

1
{Fn,γ(x)−Fd−1(x)}2dW (1 −Fd−1(x))

only if W ({Fd−1(γ′X1), . . . , Fd−1(γ′Xn)}) > 0. Now, let DW denote the points of
discontinuity of x↦W ([0, x]). This set it at most denumerable, and consequently,

Eγ (∫
0

1
{Fn,γ(x−) − Fd−1(x)}

2 dW (1 − Fd−1(x))) ≠

Eγ (∫
0

1
{Fn,γ(x) − Fd−1(x)}2 dW (1 − Fd−1(x))) (5.4)

only if Prob [γ ∈ Ωd−1 ∶ {Fd−1(γ′X1), . . . , Fd−1(γ′Xn)} ∩DW ≠ ∅] > 0. But this probabil-
ity is bounded by∑z∈DW ∑

n
m=1 Prob{γ ∈ Ωd−1 ∶ γ′Xm = F −1

d−1(z)} and, since each addend
represents the probability of γ belonging to a particular hyperplane and γ has a contin-
uous distribution, the sum equals zero. Therefore, we have that the inequality in (5.4)
is impossible.

Observing the implicit sign change in dW (1 − Fd−1(x)) and remembering the definition
of PWn,d−1, we have that

PWn,d−1 = 2nEγ (∫
1

0
{Fn,γ(x) − Fd−1(x)}2 dW̃ (Fd−1(x))) . (5.5)

From (5.5), undoing the previous change of variables and recalling that dW̃ (Fd−1(x))
= dW̃ (1 − Fd−1(x)) by construction, we conclude that PWn,d−1 = P

W̃
n,d−1.
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5.1.2 U -statistic form of PW
n,d−1

Simple computations show that

PWn,d−1 = n∫
1

−1
{Eγ (Fn,γ(x)2) − Fd−1(x)2} dW (Fd−1(x)) (5.6)

= ∫
1

−1
{ 1
n
∑
i≠j
Aij(x) + Fd−1(x)(1 − nFd−1(x))}dW (Fd−1(x)), (5.7)

where (5.6) follows from Eγ (Fn,γ(x)) = Fd−1(x) and (5.7) by Eγ (Fn,γ(x)2) = n−1

Fd−1(x) + n−2∑i≠j Aij(x), where

Aij(x) ∶= ∫Ωd−1
1{γ′Xi≤x,γ′Xj≤x} dνd−1(γ). (5.8)

We can not split (5.7) into two addends if W is not a finite measure, since neither
of them would be finite. This is exactly the case for the measure associated to the
Anderson–Darling weight.

The term in (5.8) is the driver of the PWn,d−1 statistic. Geometrically, it is the proportion
of the hypersphere Ωd−1 covered by the intersection of two hyperspherical caps centered,
respectively, at Xi and Xj with solid angle θx ∶= π − cos−1(x) radians. Evaluating Aij(x),
for arbitrary x ∈ [−1,1], d ≥ 2, and i ≠ j, is not straightforward, despite formulae for the
area of the intersection of two hyperspherical caps being available in Lee and Kim [97,
page 4]. These formulae involve 10 out of the 25 possible cases (precisely, the cases: 1,
2, 4, 5, 6, 8, 14, 15, 23, 25), depending on the values of θx and θij ∶= cos−1(X′

iXj), and
require univariate integrals on Fd−1.

We simplify the computation of Aij(x), henceforth denoted by A(θij , x) due to its
dependence on θij , with Proposition 5.1.4. Before we need Lemma 5.1.2, which also is
useful for several proofs of the main results, and Lemma 5.1.3.

Lemma 5.1.2. Let d ≥ 3. Then:

∫
cos(θ/2)

0
Fd−2 (

t tan (θ/2)
(1 − t2)1/2 ) dFd−1(t) = Fd−1 (cos ( θ2)) +

θ

4π
− 3

4
. (5.9)

Proof. Denote φd(θ) to the left hand side of (5.9). Then:

φd(θ) = Fd−1 (cos ( θ2)) −
1
2
+ ∫

cos(θ/2)

0
(Fd−2 (t tan (θ/2) /(1 − t2)1/2) − 1) dFd−1(t)

=∶ Fd−1 (cos ( θ2)) −
1
2
+ φ∗d(θ). (5.10)
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Compute the derivative of φ∗d(θ) with respect to θ,

d
dθ
φ∗d(θ) = −

1
2

sin ( θ2) (Fd−2(1) − 1)Fd−1 (cos ( θ2))

+ 1
2

sec2 (θ/2)
B (1

2 ,
d−2
2 )B (1

2 ,
d−1

2 ) ∫
cos(θ/2)

0
t(1 − t2

cos2(θ/2)
)
d−4
2

dt = 1
4π
. (5.11)

The proof is concluded from (5.10) and (5.11), and since φ∗d(π) = 0.

Lemma 5.1.3. Let α, θ ∈ [0, π]. If d = 2, then

A(θ, cos(α)) ∶= 1 − 2
π
α +A∗(θ, cos(α)),

where

A∗(θ, cos(α)) ∶=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, 0 ≤ α ≤ θij
2 ,

2α−θij
2π ,

θij
2 < α < π − θij

2 ,

2α
π − 1, π − θij

2 ≤ α ≤ π.

(5.12)

Proof. By definition of A(θ, cos(α)), we have

A(θ, cos(α)) = 1 − 2A(0, cos(α)) +A∗(θ, cos(α)) = 1 − 2α
π
+A∗(θ, cos(α)),

where

A∗(θij , cos(α)) = 1
2π ∫Ω1

1{∠(γ,Xi)≤α,∠(γ,Xj)≤α} ωd−1(dγ),

and simple geometric arguments give (5.12).

Proposition 5.1.4. Let x ≥ 0. Then, A(θ,−x) = A(θ, x) + 1 − 2Fd−1(x) and

A(θ, x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

2F1(x) − 1 + 1
π
(cos−1(x) − θ

2)+ , d = 2,

2 ∫
x
−1 Fd−2 ( t tan(θ/2)

(1−t2)1/2 ) dFd−1(t), d ≥ 3.

Alternatively, for d ≥ 3, we have the expression

A(θ, x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
2 −

θ
2π + 2 ∫

x
0 Fd−2 ( t tan(θ/2)

(1−t2)1/2 ) dFd−1(t), 0 ≤ θ < 2 cos−1(x),

2Fd−1(x) − 1, 2 cos−1(x) ≤ θ ≤ π.
(5.13)

Proof. The equality A(θ,−x) = A(θ, x) + 1 − 2Fd−1(x) follows from (5.8) and the sym-
metry of νd−1. Assume x ≥ 0. For d = 2, by Lemma 5.1.3
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A(θ, x) = 1 − 2 cos−1(x)
π

+A∗(θ, x),

where

A∗(θ, x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0, 0 ≤ θ < 2 cos−1(x),
2 cos−1(x)−θ

2π , 2 cos−1(x) ≤ θ ≤ π.

If d ≥ 3, by (5.8) we have that

A(θ,0) = 2∫
0

−1
Fd−1(t)∫

1

−1
1{u≤t/(1−t2)1/2 tan(θ/2)}Fd−2(u)dudt

= 2∫
0

− cos(θ/2)
Fd−1(t)Fd−2 (

t tan (θ/2)
(1 − t2)1/2 ) dt

= 1
2
− θ

2π
, (5.14)

where (5.14) is due to Lemma 5.1.2. The result is deduced from (5.14), Lemma 5.1.2,
and the following equality

A(θ, x) = A(θ,0) + 2∫
x

0
Fd−1(t)∫

1

−1
1{u≤t/(1−t2)1/2 tan(θ/2)}Fd−2(u)dudt,

taking into account that t/(1 − t2)1/2 tan (θ/2) ≤ 1 when t ∈ [0, cos (θ/2)] and t/(1 −
t2)1/2 tan (θ/2) ≥ 1 when t ∈ [cos (θ/2) ,1].

Expression (5.7) is not computationally pleasant. For that reason, we provide next
alternative forms for PWn,d−1 that expose its U -statistic nature. We do so for the fairly
natural and general case in which W is a positive finite measure on [0,1], standardized
to a probability measure on [0,1] without loss of generality. We firstly write our statistic,
from (5.7), as

PWn,d−1 =
1
n
∑
i≠j
ψWd−1(θij) + ∫

1

−1
Fd−1(x)(1 − nFd−1(x))dW (Fd−1(x)), (5.15)

where

ψWd−1(θ) ∶= ∫
1

−1
A(θ, x)dW (Fd−1(x)). (5.16)

Notice that, since A(0, x) = Fd−1(x), an equivalent expression to (5.15) is
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PWn,d−1 =
1
n

n

∑
i,j=1

ψ̃Wd−1(θij), where ψ̃Wd−1(θ) ∶= ∫
1

−1
(A(θ, x) − Fd−1(x)2) dW (Fd−1(x)).

(5.17)

Proposition 5.1.5. If W is a cdf on [0,1], then, for θ ∈ [0, π] and d ≥ 3,

ψW2 (θ) = 1
2
− θ

2π
+ 2∫

θ/(2π)

0
W (u)du,

ψWd−1(θ) = −
1
2
+ θ

2π
+ 2∫

1/2

0
W (u)du

+ 4∫
cos(θ/2)

0
W (Fd−1(t))(1 − Fd−2 (

t tan (θ/2)
(1 − t2)1/2 ))dFd−1(t).

Proof. From (5.15), we trivially have

PWn,d−1 =
2
n
∑
i<j
ψWd−1(θij) + ∫

1

0
u(1 − nu)dW (u). (5.18)

We separate the first addend for the cases d = 2 and d ≥ 3. For d = 2, direct integration of

∫
π

0 A(θ, cos(α))dW (F1(cos(α))) using Lemma 5.1.3 gives

ψw1 (θ) = − 1 + 2∫
1

0
udW (u) + ∫

1− θ
2π

θ/(2π)
(1 − u − θ

2π) dW (u) + ∫
θ

2π

0
(1 − 2u)dW (u)

= 1 − ∫
1

θ
2π

W (u)du − ∫
1

1− θ
2π

W (u)du,

where the second equality follows because W is a cdf. The result is deduced because
W (1 − t) = 1 −W (t) for t ∈ [0,1] and ∫

1
0 W (u)du = 1/2. For d ≥ 3, simple expressions

for A(θij , x) are not easy to obtain. We follow thus an alternative approach. First, note
that by symmetry

ωd−1 ({γ ∈ Ωd−1 ∶ γ′Xi ≤ x,γ′Xj ≤ x})

= ωd−1 ({γ ∈ Ωd−1 ∶ γ′Xi ≥ γ′Xj ,γ
′Xi ≤ x} ∪ {γ ∈ Ωd−1 ∶ γ′Xj ≥ γ′Xi,γ

′Xj ≤ x})

= 2ωd−1 ({γ ∈ Ωd−1 ∶ γ′Xi ≥ γ′Xj ,γ
′Xi ≤ x})

and hence

∫
1

−1
A(θij , x)dW (Fd−1(x))= 2

ωd−1 ∫
1

−1 ∫Ωd−1
1{γ′Xi≥γ′Xj ,γ′Xi≤x} ωd−1(dγ)dW (Fd−1(x)).

(5.19)

Consider now the two successive tangent-normal decompositions:
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⎧⎪⎪⎪⎨⎪⎪⎪⎩

γ = tXi + (1 − t2)1/2BXi,dξ,

ωd−1(dγ) = (1 − t2)(d−3)/2 dt ωd−2(dξ),
t ∈ [−1,1], ξ ∈ Ωd−2 (5.20)

and

⎧⎪⎪⎪⎨⎪⎪⎪⎩

ξ = uηij + (1 − u2)1/2Bηij ,d−1ζ,

ωd−2(dξ) = (1 − u2)(d−4)/2 duωd−3(dζ),
u ∈ [−1,1], ζ ∈ Ωd−3, (5.21)

where Bx,d denotes a semi-orthonormal matrix d × (d − 1) such that Bx,dB′
x,d = Id − xx′

and B′
x,dBx,d = Id−1 for x ∈ Ωd−1, and, ηij ∶= B′

Xi,d
Xj(1−(X′

iXj)2)−1/2 ∈ Ωd−2. Plugging-
in (5.20) and (5.21) in (5.19) gives

∫
1

−1
A(θij , x)dW (Fd−1(x))

= 2ωd−3
ωd−1

∫
1

−1 ∫
1

−1
{∫

1

−1
1{t≥t cos(θij)+u(1−t2)1/2 sin(θij),t≤x} dW (Fd−1(x))}

× (1 − t2)
d−3
2 (1 − u2)

d−4
2 dtdu,

= 2∫
1

−1
Hd−1(t){∫

1

−1
1{t cos(θij)+u(1−t2)1/2 sin(θij)≤t} dFd−2(u)} dFd−1(t) (5.22)

=∶ ψWd−1(θij)

since ∫
1
t dW (Fd−1(x)) = 1−W (Fd−1(t)) =∶Hd−1(t). Now, for θ ∈ [0, π] and t, u ∈ [−1,1],

t cos(θ) + u(1 − t2)1/2 sin(θ) ≤ t ⇐⇒ u ≤
t tan ( θ2)

(1 − t2)1/2 =∶ u(θ, t).

Note that it can occur that ∣u(θ, t)∣ > 1, so in the integral limits of (5.22) we rather
handle

ũ(θ, t) ∶= ((u(θ, t) ∨ −1) ∧ 1) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1, cos ( θ2) ≤ t ≤ 1,

u(θ, t), − cos ( θ2) < t < cos ( θ2) ,

−1, −1 ≤ t ≤ − cos ( θ2) .

Therefore, denoting τθ = cos(θ/2), (5.22) becomes

ψWd−1(θ) = 2∫
1

−1
Hd−1(t){∫

ũ(θ,t)

−1
dFd−2(u)}dFd−1(t)

= 2∫
1

τθ
Hd−1(t)∫

1

−1
dFd−2(u)dFd−1(t) + 2∫

τθ

−τθ
Hd−1(t)∫

u(θ,t)

−1
dFd−2(u)dFd−1(t)
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= 2∫
1

τθ
Hd−1(t)dFd−1(t) + 2∫

τθ

−τθ
Hd−1(t)Fd−2 (

t tan (θ/2)
(1 − t2)1/2 )dFd−1(t). (5.23)

The proposition is proved by applying Lemma 5.1.2 to the second integral and recalling
that W (1 − t) = 1 −W (t) for t ∈ [0,1] and that ∫

1
0 W (u)du = 1/2.

The above exposed ideas open the way for generating new uniformity tests based on
particular choices of W . Among the many W -specific instances of PWn,d−1 that could be
constructed, we opt to investigate in-depth in the following subsections some weights
that deliver new tests that relate and extend previous proposals of uniformity tests.

5.1.3 Extending the Watson test

One of the simplest measures that can be considered in Proposition 5.1.5 is given by
the cdf W (x) = x, x ∈ [0,1], which is the associated to the Cramér–von Mises (CvM)
weight. As seen in this section, PWn,d−1 yields the celebrated Watson [135] test of
circular uniformity when d = 2 and connects it with the chordal-based uniformity test by
Bakshaev [11] on Ω2. Therefore, the test statistic PWn,d−1 can be seen as a generalization
of the former to Ωd, d ≥ 3.

Proposition 5.1.6 (An extension of the Watson test). Consider the CvM cdf W (x) = x,
x ∈ [0,1]. Then,

PCvM
n,d−1 ∶=

2
n
∑
i<j
ψCvM
d−1 (θij) +

3 − 2n
6

,

where, for θ ∈ [0, π],

ψCvM
d−1 (θ) ∶=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
2 +

θ
2π ( θ

2π − 1) , d = 2,
1
2 −

1
4 sin ( θ2) , d = 3,

ψCvM
1 (θ) + 1

4π2 ((π − θ) tan ( θ2) − 2 sin2 ( θ2)) , d = 4,

and, if d ≥ 3,

ψCvM
d−1 (θ) = −3

4
+ θ

2π
+ 2F 2

d−1 (cos ( θ2)) − 4∫
cos(θ/2)

0
Fd−1(t)Fd−2 (

t tan (θ/2)
(1 − t2)1/2 )dFd−1(t).
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Proof. The second term in (5.18) and the expression for ψCvM
1 follow trivially. For ψCvM

d−1 ,
d ≥ 3, we can write

ψCvM
d−1 (θ) = − 1

4
+ θ

2π
+ 4∫

cos(θ/2)

0
Fd−1(t)

⎛
⎝

1 − Fd−2
⎛
⎝
t tan ( θ2)
(1 − t2)1/2

⎞
⎠
⎞
⎠

dFd−1(t),

from which the desired expression of ψCvM
d−1 for d ≥ 5. For the case in which d = 3:

ψCvM
2 (θ) = − 1

4
+ θ

2π
+

tan2 ( θ2)
π

∫
1

0
cos−1(y)( y

(y2+tan2( θ2 ))
1/2 + 1) 1

(y2 + tan2 ( θ2))
3/2 dy

= − 1
4
+ θ

2π
+ 1

4π

⎛
⎜
⎝
π − π tan ( θ2)

1

(1 + tan2 ( θ2))
1/2 + 4 tan−1 ⎛

⎝
1

tan ( θ2)
⎞
⎠

⎞
⎟
⎠

= 1
2
− 1

4
sin ( θ2) .

If d = 4, then

ψCvM
3 (θ) = − 3

4
+ θ

2π
+ 2F 2

3 (cos ( θ2)) − 2∫
cos(θ/2)

0
F3(t)(1 + t tan (θ/2)

(1 − t2)1/2 ) dF3(t)

= − 1
2
+ θ

2π
+ F 2

3 (cos ( θ2)) −
2
π

cos ( θ2) sin ( θ2)

− 4
π2 tan ( θ2)∫

cos(θ/2)

0
(t2(1 − t2)1/2 − t cos−1(t)) dt, (5.24)

with

∫
cos(θ/2)

0
(t2(1 − t2)1/2 − t cos−1(t)) dt

= 1
4
{cos3 ( θ2) sin ( θ2) − θ cos2 ( θ2) +

1
2

cos ( θ2) sin ( θ2) −
1
2

sin−1 (cos ( θ2))} .

(5.25)

Since F3 (cos (θ/2)) = 1 + (cos(θ/2) sin(θ/2) − θ/2)/π due to (2.5), the third term in
(5.24) results

F 2
3 (cos ( θ2)) = 1 + θ2

4π2 −
θ

π
+ 1
π

(2 − θ) cos ( θ2) sin ( θ2) +
1
π2 cos2 ( θ2) sin2 ( θ2) . (5.26)

The expression for ψCvM
3 arises from combining (5.24), (5.25), and (5.26).

Remark 5.1.7. The test based on PCvM
n,1 is equivalent to the Watson [135] test. Precisely,

PCvM
n,1 = 1

2U
2
n, where U2

n is defined in (2.16) in Subsection 2.6.1. The relation of PCvM
n,1 and

U2
n stems from Proposition 5.1.6 and (2.17). The connection has two main implications:
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(a) It introduces an interpretation of PCvM
n,d−1 as a natural extension of the well-known U2

n

to an arbitrary dimension d.

(b) It adds yet another interesting connection between U2
n and the CvM test.

Remark 5.1.8. From the definition of Bakshaev test (2.20) in Subsection 2.6.1, it is evident
that PCvM

n,2 = 1
8Nn,2.

Remark 5.1.9. We highlight a perhaps intriguing behaviour of PCvM
n,d−1: it simultaneously

yields as particular cases the Watson test for d = 2 and the test by Bakshaev [11] for
d = 3, despite the test by Bakshaev [11] for d = 2 being actually different from the Watson
test. This phenomenon is explained by the dimension-dependence of ψWd−1, a distinctive
feature of PWn,d−1 that naturally arises from its construction, and that sharply contrasts
with the dimension-independent kernels (that handle θij equally for any dimension d) of
other uniformity tests, such as Bakshaev [11]’s Nn,d. As a consequence, PWn,d−1 allows the
extension of circular uniformity tests in a dimension-dependent manner.

5.1.4 Extending the Ajne and Rothman test

We turn now to the consideration of a discrete measure W that yields as particular cases
the circular uniformity tests by Ajne [4] and Rothman [117], and that delivers extensions
of them to Ωd−1, d ≥ 3. This extension of the Rothman test, given in Proposition 5.1.12,
is new, meanwhile that of the Ajne test coincides with that proposed in Prentice [114].

The following result provides a computationally amenable form for (2.18) in Subsection
2.6.1, in the spirit of (2.19), that is required for its comparison with (5.15).

Proposition 5.1.10 (Computation of the Rothman test). Let tm ∶= min(t,1 − t) for
t ∈ (0,1). The test statistic (2.18) can be expressed as

Rn,t = t(1 − t) +
2
n
∑
i<j
ht (θij) , where ht(θ) ∶= (tm − θ

2π)+ − t
2
m. (5.27)

Proof. The statistic Rn,t admits the representation (2.7) for a certain sequence {vk,d−1}.
Following the arguments in Watson [136], Rothman [117] considered the Fourier
expansion of N(α, t)−nt that, adapted to a circular sample Θ1, . . . ,Θn ∈ [0,2π), is given
by N(α, t) − nt = ∑∞k=1 ak cos(kα) + bk sin(kα), where

ak =
1
πk

n

∑
i=1

[sin(kΘi) − sin(kΘi − 2πkt)], bk =
1
πk

n

∑
i=1

[cos(kΘi − 2πkt) − cos(kΘi)].
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From the Fourier expansion it readily follows that

Rn,t =
1

2n

∞
∑
k=1

(a2
k + b

2
k) . (5.28)

Expanding the squares of (5.28) and using the cosine addition formula gives

Rn,t =
1

2n

n

∑
i,j=1

∞
∑
k=1

1
(πk)2 {2 cos(k(Θi −Θj)) − cos(k(Θi −Θj) + 2πkt)

− cos(k(Θj −Θi) + 2πkt)}

= 2
n

n

∑
i,j=1

∞
∑
k=1

sin2(kπt)
(πk)2 cos(k(Θi −Θj)).

where the last equality follows from the basic trigonometric identities

cos(x + y) + cos(x − y) = 2 cos(x) cos(y) and 1 − cos(2kπt) = 2 sin2(kπt).

As a consequence, vk,1 = sin(kπt)/(πk) and Rn,t = 1
n ∑

n
i,j=1 ht(θij) with

ht(θ) = 2
∞
∑
k=1

sin2(kπt)
(πk)2 cos(kθ) = h̃(θ) − 1

2 h̃(θ − 2πt) − 1
2 h̃(θ + 2πt), θ ∈ [0, π],

where h̃(x) ∶= ∑∞k=1
1
k2 cos(kx) = 1

4{(x mod 2π − π)2 − π2

3 }, for x ∈ R. A case-by-case
analysis of the possible values of θ ∈ [0, π] and t ∈ (0,1) gives

ht(θ) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
2π (2πt(1 − t) − θ), if θ ∈ [0,2πtm)

−t2m, if θ ∈ [2πtm, π)
= −min ( θ

2π − t(1 − t), t
2
m) ,

which immediately provides (5.27).

Remark 5.1.11. Somehow imprecise computational recipes for (2.18) seem to have prolif-
erated in the literature. Rothman [117] provided in his equation (35) a computational
form for Rn,t, but relying on an undefined notation and without hints to its derivation.
Employing his equation (8) produces a factor 2 difference with respect to the statistic defined
in his equation (1), since (8) misses 1

2 = ∫
1

0 cos2(2kπx)dx = ∫
1

0 sin2(2kπx)dx (that does
appear in our equation (5.28)). Differently, equation (6.3.63) in [102] states that the
sequence {vk,1} of Rn,t (see Section 2.6.1) is sin(kπt)/(2kπt), which does not correspond
to the statistic as defined in their equation (6.3.50) (equal to our equation (2.18)). These
two misprints introduce new statistics that are proportional to the original definition of
Rn,t and thus yield the same test decision. However, they may induce spurious test outcomes
if the asymptotic distribution of one version is employed with the statistic of another.
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Proposition 5.1.12 (An extension of the Rothman test). Consider the cdf

Wt(x) ∶=
1
2
(1{tm≤x} + 1{1−tm≤x}) ,

with x ∈ [−1,1] and where tm is defined in Proposition 5.1.10. Then,

PRt
n,d−1 =

2
n
∑
i<j
ψRt
d−1(θij) +

1 − n
2

+ nt(1 − t),

where, for θ ∈ [0, π] and d = 2,

ψRt
1 (θ) = ht(θ) +

1
2
− t(1 − t),

if d = 3,4,

ψRt
2 (θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−tm + 1
2 −

1−2tm
π cos−1 ( (1/2−tm) tan(θ/2)

(tm(1−tm))1/2 )

+ 1
π tan−1 ( (cos2(θ/2)−(1−2tm)2)1/2

sin(θ/2) ) , θ < θtm ,

1/2 − tm, θ ≥ θtm ,

ψRt
3 (θ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
2 + tm − θ+θtm

2π + 1
π { sin(θtm)

2 + tan ( θ2) cos2 ( θtm2 )} , θ < θtm ,

1/2 − tm, θ ≥ θtm ,

where θtm ∶= 2 cos−1 (F−1
d−1(1 − tm)), and, if d ≥ 3,

ψRt
d−1(θ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

tm − θ
2π + 2 ∫

cos(θtm/2)
0 Fd−2 (u tan(θ/2)

(1−u2)1/2 )dFd−1(u), θ < θtm ,

1/2 − tm, θ ≥ θtm .

Proof. The second addend in (5.18) is

∫
1

0
u(1 − nu)dWt(u) =

1
2
(1 − n) + nt(1 − t). (5.29)

Denote θ̄ ∶= θ/(2π). If d = 2, the first addend in (5.18) is

ψRt
1 (θ) =1

2
− θ̄ + ∫

θ̄

0
(1{tm≤u} + 1{1−tm≤u}) du

=1
2
− θ̄ + (θ̄ − tm)+ + (θ̄ − (1 − tm))+

=1
2
− θ̄ + (θ̄ − tm)+ . (5.30)
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The proof for d = 2 readily follows from (5.29) and (5.30). For d ≥ 3, by Proposition
5.1.5,

ψRt
d−1(θ) = −

1
2
+ θ̄ + 2∫

1/2

0
Wt(u)du

+ 4∫
cos(θ/2)

0
Wt(Fd−1(u))(1 − Fd−2 (

u tan (θ/2)
(1 − u2)1/2 )) dFd−1(u)

= − tm + 1
2
+ 2 (Fd−1(cos(θ/2)) − 1 + tm)+ − 2Fd−1(cos(θ/2)) − θ̄ + 3

2

+ 2∫
cos(θ/2)∧F−1

d−1(1−tm)

0
Fd−2 (

u tan (θ/2)
(1 − u2)1/2 )dFd−1(u), (5.31)

where the last equality follows from Lemma 5.1.2. If cos(θ/2) < F−1
d−1(1 − tm), from

(5.31) and using Lemma 5.1.2, we have

ψRt
d−1(θ) = −tm + 1

2
− 2Fd−1(cos(θ/2)) − θ̄ + 3

2
+ 2Fd−1(cos(θ/2)) + θ̄ − 3

2
= 1

2
− tm.

If cos(θ/2) > F−1
d−1(1 − tm), from (5.31), we have

ψRt
d−1(θ) = tm + 2 + 2Fd−1 (cos(θ/2)) − 2 − 2Fd−1 (cos(θ/2)) − θ̄

+ 2∫
F−1
d−1(1−tm)

0
Fd−2 (

u tan (θ/2)
(1 − u2)1/2 )dFd−1(u)

= tm − 3
2
+ 2Fd−1 (cos(θ/2)) − 2∫

cos(θ/2)

F−1
d−1(1−tm)

Fd−2 (
u tan (θ/2)
(1 − u2)1/2 )dFd−1(u),

where the last equality follows from Lemma 5.1.2.

Take now d = 3. Then F−1
2 (1 − tm) = 1 − 2tm and, in addition,

2∫
F−1

2 (1−tm)

0
F1 (u tan(θ/2)

(1−u2)1/2 ) dF2(u) = 1 − 2tm − cos−1 ( (1−2tm) tan(θ/2)
2(tm(1−tm))1/2 ) (1−2tm)

π

+ 1
π

tan−1 ( (cos2( θ2 )−(1−2tm)2)1/2

sin( θ2 )
) + θ−π

2π .

Hence, if cos(θ/2) > F−1
2 (1 − tm), from (5.31), we have

ψRt
2 (θ) = tm + π + (1 + 1

2π
) θ + 2(1 − 2tm) cos−1 ⎛

⎝
(1/2 − tm) tan ( θ2)

(tm(1 − tm))1/2
⎞
⎠
(1 − 2tm)

− 2 tan−1
⎛
⎜
⎝

(cos2 ( θ2) − (1 − 2tm)2)1/2

sin ( θ2)

⎞
⎟
⎠
.

If d = 4, note that
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2∫
F−1

3 (1−tm)

0
F2 (

u tan (θ/2)
(1 − u2)1/2 ) dF3(u) =

2
π
∫

F−1
3 (1−tm)

0
(tan ( θ2)u + (1 − u2)1/2) du

=
tan ( θ2)
π

(F−1
3 (1 − tm))2 + 1

π
sin−1 (F −1

3 (1 − tm))

+ 1
π
F−1

3 (1 − tm) (1 − (F−1
3 (1 − tm))2)

1/2
.

Then, if cos(θ/2) > F−1
3 (1 − tm), from (5.31), we have

ψRt
3 (θ) = tm − θ

2π
+ tan(θ/2)

π
(F −1

3 (1 − tm))2 + 1
π

sin−1 (F−1
3 (1 − tm))

+ 1
π
F−1

3 (1 − tm) (1 − (F−1
3 (1 − tm))2)

1/2
.

The proof ends by taking into account that F −1
3 (1 − tm) = cos(θtm/2) by (2.5) and the

definition of θtm .

Remark 5.1.13. For d = 2, PRt
n,1 equals the Rothman test statistic, PRt

n,1 = Rn,t. Therefore,
PRt
n,d−1 can be regarded as an extension of the Rothman statistic to Ωd, d ≥ 2. Furthermore,

the extension is coherent with Prentice [114]’s extension of Ajne [4]’s An to Ωd for d ≥ 2,
given by the test statistic An,d−1 ∶= n/4 − 1/(nπ)∑i<j θij . Indeed, considering t = 1/2,

by Lemma 5.1.2, we obtain that P
R1/2
n,d−1 has the dimension-independent kernel ψd−1(θ) =

1/2 − θ/(2π), d ≥ 2, and therefore the tests based on P
R1/2
n,d−1 and An,d−1 are equivalent.

Remark 5.1.14. The statistic PRt
n,d−1 only depends on tm, hence PRt

n,d−1 = P
R1−t
n,d−1, t ∈ (0,1).

Also, since Fn,γ(F−1(1 − tm)) = Fn,γ(−F−1(tm)) = 1 − Fn,−γ(F−1(tm)−), we have that

PRt
n,d−1 = n∫Ωd−1

(Fn,γ(F−1
d−1(tm)) − tm)2

νd−1(dγ)

= 1
n
∫Ωd−1

(Nd−1 (γ, cos−1(F−1
d−1(1 − tm))) − ntm)2

νd−1(dγ),

where Nd−1(γ, θ) ∶= #{X1, . . . ,Xn ∶ Xi ∈ Cd−1(γ, θ)} and Cd−1(γ, θ) is the hyperspherical
cap centred at γ and with solid angle θ ∈ [0, π]. Therefore, geometrically PRt

n,d−1 is comparing
the number of observed and expected points in Cd−1 (γ, cos−1(F −1

d−1(1 − tm))) under H0, for
all γ ∈ Ωd−1, and hence its connection with (2.18) is evident.

5.1.5 An Anderson–Darling-like test

We introduce now a new test based on the Anderson–Darling weight. Contrary to the
Kolmogorov–Smirnov and CvM tests, up to our knowledge, this is the first adaptation of
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the celebrated Anderson and Darling [8] test to deal with directional data, despite the
test being one of the three most well-known ecdf-based goodness-of-fit tests.

Proposition 5.1.15 (An Anderson–Darling test). If w(u) = 1/(u(1 − u)). Then,

PAD
n,d−1 =

2
n
∑
i<j
ψAD
d−1(θij) + n,

where, for θ ∈ (0, π],

ψAD
d−1(θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2 log (2π) + 1
π {θ log(θ) + (2π − θ) log(2π − θ)} , d = 2,

− log(4) + 2
π ∫

cos(θ/2)
0 log (1+t

1−t) cos−1 ( t tan(θ/2)
(1−t2)1/2 )dt, d = 3,

−2 log (2π) + 1
π
{s(θ) log(s(θ)) + (2π − s(θ)) log(2π − s(θ))}

− 4
π tan ( θ2) ∫

cos(θ/2)
0 t log ( π

cos−1(t)−t(1−t2)1/2 − 1) dt, d = 4,

with s(θ) ∶= θ − sin(θ), and, if d ≥ 3,

ψAD
d−1(θ) = − log(4) + 4∫

cos(θ/2)

0
log( Fd−1(t)

1 − Fd−1(t)
)(1 − Fd−2 (

t tan (θ/2)
(1 − t2)1/2 ))dFd−1(t).

(5.32)

Proof. If d = 2, then by (5.7)

PAD
n,1 = 1

π
∫

π

0
{ 1
n
∑
i≠j
A(θij , cos(α)) + F1(cos(α))(1 − nF1(cos(α)))}w(F1(cos(α)))dα

= 2
n
∑
i<j

1
π
∫

π

0
(
A(θij , cos(α))
F1(cos(α))

+ 1
n − 1

(1 − nF1(cos(α)))) 1
1 − F1(cos(α))

dα.

From F1(cos(α)) = 1 − α/π, we have that

PAD
n,1 = 2

n
∑
i<j
∫

π

0
( π

α(π − α)
A(θij , cos(α)) + 1 − n

(n − 1)α
+ n

(n − 1)π
) dα

= n + 2
n
∑
i<j
∫

π

0
( π

α(π − α)
A(θij , cos(α)) − 1

α
) dα. (5.33)

Since α ↦ 1/(α(π − α)) and α ↦ 1/α are not integrable on [0, π], we first compute the
sum of the integrand. By Lemma 5.1.3, we have to consider three cases depending on
the value of α:

π

α(π − α)
A(θij , cos(α)) − 1

α
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

− 1
π−α , 0 ≤ α ≤ θij

2 ,

− θij
2α(π−α) ,

θij
2 < α < π − θij

2 ,

− 1
α , π − θij

2 ≤ α ≤ π.
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Consequently, from (5.33) we have that

PAD
n,1 = n + 2

n
∑
i<j

{ log (π −
θij

2
) − log(π) −

θij

2π ∫
π−θij/2

θij/2
( 1
α
+ 1
π − α

) dα

− log(π) + log (π −
θij

2
)}

= n + 2
n
∑
i<j

{−2 log (π) + 1
π

[θij log(θij) + (2π − θij) log(2π − θij)]} ,

and thus the expression for ψAD
1 follows. For d ≥ 3, write the statistic as

PAD
n,d−1 = lim

ε→0
PAD,ε
n,d−1,

where, for ε > 0,

PAD,ε
n,d−1 ∶=

1
n
∑
i≠j
W ε
ij + ∫

1−ε

−1+ε
Fd−1(x)(1 − nFd−1(x))w(Fd−1(x))dFd−1(x), (5.34)

W ε
ij ∶= ∫

1−ε

−1+ε
A(θij , x)w(Fd−1(x))dFd−1(x).

For the second term of (5.34) we have that

∫
1−ε

−1+ε

Fd−1(x)(1 − nFd−1(x))
Fd−1(x)(1 − Fd−1(x))

dFd−1(x) = n (Fd−1(1 − ε) − Fd−1(−1 + ε))

+ (n − 1) log( 1 − Fd−1(1 − ε)
1 − Fd−1(−1 + ε)

) . (5.35)

By the same arguments as in (5.22) and (5.23), the first term of (5.34) is

W ε
ij = 2∫

1

−1
Hε
d−1(t){∫

1

−1
1{t cos(θij)+u(1−t2)1/2 sin(θij)≤t} dFd−2(u)} dFd−1(t) =∶ ψεd−1(θij),

where, for x ∈ (−1 + ε,1 − ε),

Hε
d−1(x) ∶= ∫

1−ε

x
w(Fd−1(t))dFd−1(t) = log( Fd−1(1 − ε)

1 − Fd−1(1 − ε)
) + log(1 − Fd−1(x)

Fd−1(x)
) .

Analogously to (5.23), we have that

ψAD,ε
d−1 (θ) = 2∫

1

cos(θ/2)
Hε
d−1 (t)dFd−1(t) + 2∫

cos(θ/2)

− cos(θ/2)
Hε
d−1 (t)Fd−2 (

t tan (θ/2)
(1 − t2)1/2 )dFd−1(t)

=∶ ψAD,ε
d,1 (θ) + ψAD,ε

d,2 (θ).

Each term here can be computed separately:
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ψAD,ε
d,1 (θ) = − 2Fd−1 (cos ( θ2)) log( Fd−1(1 − ε)

1 − Fd−1(1 − ε)
) − 2∫

cos(θ/2)

0
log(1 − Fd−1(x)

Fd−1(x)
)dFd−1(t)

− log(4) − 2 log (1 − Fd−1(1 − ε)) , (5.36)

ψAD,ε
d,2 (θ) = (2Fd−1(cos ( θ2)) − 1) log( Fd−1(1 − ε)

1 − Fd−1(1 − ε)
)

+ 2∫
cos(θ/2)

0
log(1 − Fd−1(t)

Fd−1(t)
)(2Fd−2 (

t tan (θ/2)
(1 − t2)1/2 ) − 1)dFd−1(t), (5.37)

where in the first term of (5.37) it is employed that

∫
cos(θ/2)

− cos(θ/2)
Fd−2 (

t tan (θ/2)
(1 − t2)1/2 )dFd−1(t) = Fd−1 (cos ( θ2)) −

1
2

and in the second that

∫
cos(θ/2)

− cos(θ/2)
log(1 − Fd−1(t)

Fd−1(t)
)Fd−2 (

t tan (θ/2)
(1 − t2)1/2 )dFd−1(t)

= ∫
cos(θ/2)

0
log(1 − Fd−1(t)

Fd−1(t)
)(2Fd−2 (

t tan (θ/2)
(1 − t2)1/2 ) − 1)dFd−1(t).

From (5.32), it results

ψAD,ε
d−1 (θ) = ψAD

d−1(θ) − log (1 − Fd−1(1 − ε)) − log (Fd−1(1 − ε)) . (5.38)

Consequently, by (5.34), (5.35), (5.36), and (5.37):

PAD
n,d−1 = lim

ε→0
{ 2
n
∑
i<j

[ψAD
d−1(θij) − log (1 − Fd−1(1 − ε)) − log (Fd−1(1 − ε))]

+ n (Fd−1(1 − ε) − Fd−1(−1 + ε)) + (n − 1) log( 1 − Fd−1(1 − ε)
1 − Fd−1(−1 + ε)

)}

= n + 2
n
∑
i<j
ψAD
d−1(θij).

The particular expression for d = 3 follows trivially from (5.32). For d = 4, from (5.32)
and taking into account that F3(cos(θ/2)) = 1 + (sin(θ) − θ)/(2π), it follows

ψAD
3 (θ) = − log(4) − 2 log(π) + 2 log(2π + sin(θ) − θ) + 1

π
(sin(θ) − θ) log(2π + sin(θ) − θ

θ − sin(θ)
)

−
4 tan ( θ2)

π
∫

cos(θ/2)

0
t log( π

cos−1(t) − t(1 − t2)1/2 − 1) dt.
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Remark 5.1.16. Because limθ→0+ ψ
AD
d−1(θ) = 0, by continuity, ψAD

d−1(0) ∶= 0.

5.1.6 Summary

We conclude this section by summarizing in Table 5.1 the new test statistics proposals
and by showing in Figure 5.1 the associated kernel functions of PCvM

n,d−1, PRt
n,d−1, and

PAD
n,d−1.

In Figure 5.1, the formulation in (5.17) is considered to achieve a standardization
of the three kernel functions. Recall the difference in vertical scales, indicating the
larger variability of PRt

n,d−1 and PAD
n,d−1 with respect to PCvM

n,d−1. The kernels ψ̃R1−t
d−1 and ψ̃Rt

d−1
coincide (Remark 5.1.14).

Table 5.1.: Extensions and connections given by the new family of projected tests.

Test Ω1- or Ω2-specific Ωd−1, d ≥ 2
Watson U2

n for Ω1 (Watson [135]) PCvM
n,d−1

Ajne An for Ω1 (Ajne [4]) P
R1/2
n,d−1

1

Rothman Rn,t for Ω1 (Rothman [117]) PRt
n,d−1

Chordal-based Nn,2 for Ω2 (Bakshaev [11]) PCvM
n,d−1

Anderson–Darling — PAD
n,d−1
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Figure 5.1.: From left to right, depiction of ψ̃CvM
d−1 (θ) = ψCvM

d−1 (θ) − 1
3 , ψ̃

R1/3
d−1 (θ) = ψ

R1/3
d−1 (θ) − 5

18 , and
ψ̃AD
d−1(θ) = ψ

AD
d−1(θ) + 1, for d = 2,3,4,6,11.

1P
R1/2
n,d−1 coincides with Prentice [114]’s extension of An to Ωd−1.

5.1 Projected statistics: A new approach to testing uniformity 113



5.2 Connection with the Sobolev class

This section analyses the relation of the new class with the Sobolev class and gives its
asymptotics. The notation about the class of Sobolev tests given in Subsection 2.6.1 will
be useful.

5.2.1 Relation between Sobolev and projected classes

Despite being rooted on a different motivation, the class of projected statistics is indeed
related with the Sobolev class, as explained in the Introduction. Thus, an important
issue to address is the existence of a bijection between both classes:

Q1) For any projected statistic with measure W , is there a fW ∈ Fd−1 such that the
statistic is expressible as a Sobolev one with gfW (z) = ψ̃Wd−1(cos−1(z)) in (2.14)?

Q2) For any Sobolev statistic with f ∈ Fd−1, is there a measure Wf such that the statistic
is expressible as a projected one with ψ̃Wf

d−1(θ) = gf(cos(θ)) in (5.17)?

To elucidate these queries, we introduce next several classes of projected-ecdf test
statistics with varying generality. We exclude the weights with W ({0}) > 0 due to its
lack of statistical interest and related technical difficulties.

Definition 5.2.1 (Projected-ecdf classes). The projected-ecdf classes of statistics (a)
P+, (b) Pσ+, and (c) P± are defined as the collection of statistics PWn,d−1 indexed by W , a
measure on [0,1], with W ({0}) = 0, such that, for each class, (a) W is a probability, (b)
W is positive σ-finite, (c) W is signed, finite, and absolutely continuous with respect to the
Lebesgue measure.

Obviously, from the definition P+ ⊂ Pσ+. Also, PCvM
n,d−1, P

Rt
n,d−1 ∈ P+ and PAD

n,d−1 ∈ Pσ+.The
next theorem answers the questions raised in Q1) and Q2) above in light of the differ-
ent projected-ecdf classes. Its first statement concludes that “sensible” projected-ecdf
statistics (associated to probabilities W ), as well as the Anderson–Darling statistic, are
indeed Sobolev statistics. The second statement shows that finite Sobolev tests are
projected-ecdf statistics with absolutely continuous, potentially signed, measures W .

Theorem 5.2.2 (Projected-ecdf and Sobolev classes relations). It happens that:

i. P+ ⊂ S and PAD
n,d−1 ∈ S.

ii. S` ⊂ P±, for all ` ≥ 1.
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The proof of Theorem 5.2.2 is split for each statement. We begin with some lemmas
required to prove i.

Lemma 5.2.3. If a > b and γ ∈ R, then the order of Γ(γk + a)/Γ(γk + b) as k → ∞ is
(γk + a)a−b.

Proof. Stirling’s equivalence gives

Γ(γk + a)
Γ(γk + b)

∼ e
−(γk+a)

e−(γk+b)
(γk + a)γk+a

(γk + b)γk+b
(γk + b)1/2

(γk + a)1/2

∼ eb−a (γk + a
γk + b

)
γk+b

(γk + a)a−b

∼ eb−aea−b(γk + a)a−b.

Lemma 5.2.4. Let k ≥ 1 and d ≥ 3. For x ∈ [−1,1], we have

∣C(d−3)/2
k (x)∣ ≤ Γ(k + (d − 2)/2)

Γ(d − 2)Γ(k + 1)
.

Proof. The result follows from equation (11) in Lohöfer [101] and equation 18.14.4 in
[46].

Lemma 5.2.5. Let x ∈ [−1,1] and consider the function fxd−1(z) ∶= (Fd−1(x))−11{z≤x}, z ∈
[−1,1]. For k ≥ 1, denote by (1+2k/(d−2))vxk,d−1 and by 2vxk,d−1 to the Gegenbauer (d ≥ 3)
and Chebyshev coefficients (d = 2) of fxd−1, respectively. Then,

∣vxk,d−1∣ ≤
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(kπF1(x))−1 , d = 2,

2d−3/2 (Γ (d2))
2 (πFd−1(x))−1O ((k + (d − 1)/2)−d/2) , d ≥ 3.

Proof. For d = 2, we have that

∣vxk,1∣ =
1

2ck,1F1(x)
∣∫

x

−1
Tk(z)(1 − z2)−1/2 dz∣ = 1

kπF1(x)
∣ sin(k cos−1(x))∣ ≤ 1

kπF1(x)
.

For d ≥ 3, equation 18.17.1 in [46] gives

∫
x

0
C

(d−2)/2
k (z)(1 − z2)(d−3)/2 dz = d − 2

k(k + d − 2)
(Cd/2k−1(0) − (1 − x2)(d−1)/2Cd/2k−1(x)) .

(5.39)

The parity of C(d−2)/2
k jointly with the definition of the Gegenbauer coefficients and

(5.39) give that
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vxk,d−1 = 1
ck,d−1 (1 + 2k

d−2)Fd−1(x)
(∫

0

−1
C

(d−2)/2
k (z)(1 − z2)(d−3)/2 dz

+∫
x

0
C

(d−2)/2
k (z)(1 − z2)(d−3)/2 dz)

=
2d−2 (Γ (d2))

2

π(d − 2)Fd−1(x)
(1 − q)(1 − x2)(d−1)/2Cd/2k−1(x)

k(k + d − 2)

=
−2d−2 (Γ (d2))

2

πFd−1(x)
(k − 1)!

Γ(k + d − 1)
(1 − x2)(d−1)/2Cd/2k−1(x). (5.40)

Then, from (5.40), we have

∣vxk,d−1∣ ≤
2d−3/2 (Γ (d2))

2

πFd−1(x)
(k − 1)!

Γ(k + d − 1)
C
d/2
k−1(x)

≤
2d−3/2 (Γ (d2))

2

πFd−1(x)
(k − 1)!

Γ(k + d − 1)
sup

x∈[−1,1]
∣Cd/2k−1(x)∣

≤
2d−3/2 (Γ (d2))

2

πFd−1(x)
(k − 1)!

Γ(k + d − 1)
Γ(k + (d − 2)/2)

Γ(k)
(5.41)

=
2d−3/2 (Γ (d2))

2

πFd−1(x)
O ((k + (d − 1)/2)−d/2) , (5.42)

where the inequality (5.41) comes from Lemma 5.2.4 and equality (5.42) from Lemma
5.2.3.

In the proof of the previous lemma, we have obtained relation (5.40) that we state
separately for further reference.

Corollary 5.2.6. Let x ∈ [−1,1]. For k ≥ 1, consider the Gegenbauer (d ≥ 3) and Chebyshev
coefficients (d = 2) of fxd−1 defined in Lemma 5.2.5 (1 + 2k/(d − 2))vxk,d−1 and 2vxk,d−1,
respectively. Then,

vxk,d−1 =
−2d−2 (Γ (d2))

2

πFd−1(x)
(k − 1)!

Γ(k + d − 1)
(1 − x2)(d−1)/2Cd/2k−1(x).

Lemma 5.2.7. It happens that bAD
k,1 = O(log(k)/k2) and, consequently, ∑∞k=1 b

AD
k,1 <∞.

Proof. It happens that

bAD
k,1 ≤ 2

πk2 (∫
π/2

0

1 − cos(2kθ)
θ

dθ + ∫
π

π/2

1 − cos(2kθ)
π − θ

dθ) . (5.43)
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We will only consider the first integral in (5.43) because the other one is handled
similarly. Obviously, if k ≥ 1, then

∫
π/2

0

1 − cos(2kθ)
θ

dθ = ∫
kπ

0

1 − cos(u)
u

du ≤ I1 +
k−1
∑
h=1

1
hπ
∫

(h+1)π

hπ
(1 − cos(u))du,

where I1 = ∫
π

0
1−cos(u)

u du <∞. Therefore,

∫
π/2

0

1 − cos(2kθ)
θ

dθ ≤ I1 +
k−1
∑
h=1

1
h
= O(log(k))

and (5.43) gives that bAD
k,1 = O(log(k)/k2), which proves the lemma. Note that∑∞k=1

log(k)
k2 =

−1
6π

2(−12 log(A) + γ + log(2) + log(π)) <∞, where A and γ are the Glaisher–Kinkelin
and Euler–Mascheroni constants, respectively.

Remark 5.2.8. Lemma 5.2.7 also shows that ψAD
1 ∈ L2

d−1[−1,1].

Proof of P+ ⊂ S in i) in Theorem 5.2.2. The proof goes along two steps.

Step 1. Assume in this step that W is the Dirac’s delta on the point Fd−1(x) ∈ (0,1],
δFd−1(x), given by x ∈ (−1,1]. Clearly, W (Fd−1(A)) = δx(A) for A ⊂ [−1,1], and therefore
from (5.3) we have

P
δFd−1(x)
n,d−1 = nEγ ({Fn,γ(x) − Fd−1(x)}2) = Fd−1(x)2

n
Eγ

⎛
⎝
{

n

∑
i=1

1{γ′Xi≤x}
Fd−1(x)

− 1}
2⎞
⎠
. (5.44)

Given x ∈ [−1,1], the function fxd−1(z) defined in Lemma 5.2.5 is bounded, thus fxd−1 ∈
L2
d−1[−1,1]. Also, its first Gegenbauer coefficient equals one since: if d = 2, we have that

b0,1 =
1
c0,1
∫

1

−1
fx1 (z)(1 − z2)−1/2 dz = 1

πF1(x)
B (1

2 ,
1
2)F1(x) = 1,

and, if d ≥ 3, the Legendre duplication formula gives

b0,d−1 =
1

c0,d−1
∫

1

−1
F xd−1(z)(1 − z2)(d−3)/2 dz

= 2d−2Γ (d/2)2

π(d − 2)Γ(d − 2)
1

Fd−1(x)
B (1

2 ,
d−1
2 )Fd−1(x) = 1.

Based on (2.11), denote by (1+2k/(d−2))vxk,d−1 to the remaining Gegenbauer coefficients
of F xd−1 for d ≥ 2 (employing extension (2.9) if d = 2). By showing ∑∞k=1(vxk,d−1)

2`k,d−1 <

∞, (5.44) and (2.10) would give the equality P
δFd−1(x)
n,d−1 = Fd−1(x)2Sn,d−1(fxd−1) and the

proof will be completed for the case W = δFd−1(x).

5.2 Connection with the Sobolev class 117



For d = 2, dk,1 = 2 for k ≥ 1 so, by Lemma 5.2.5, ∑∞k=1 2(vxk,d−1)
2 <∞ as desired. For d ≥ 3,

according to (2.6), `k,d−1 ∼ kd−2, so by Lemma 5.2.5 we have that (vxk,d−1)
2`k,d−1 ∼ k−2

and therefore ∑∞k=1(vxk,d−1)
2`k,d−1 <∞ as sought.

Step 2. Assume now that W is a probability measure defined on the Borel sets on
[0,1] with W ({0}) = 0. The first step is to make explicit the relation between the func-
tions ψ̃

δFd−1(x)
d−1 and gfx

d−1
(defined in (5.17) and (2.13), respectively). Since P

δFd−1(x)
n,d−1 =

Fd−1(x)2Sn,d−1(fxd−1) holds for every x ∈ [−1,1] and n ≥ 1, if we apply this relation

with n = 1, from (5.17) and (2.13), we obtain that ψ̃
δFd−1(x)
d−1 (θii) = Fd−1(x)2gfx

d−1
(X′

iXi)
for every i = 1, . . . , n. From here, and (5.17) and (2.13) with n = 2, we obtain that
ψ̃
δFd−1(x)
d−1 (θ12) = Fd−1(x)2gfx

d−1
(X′

1X2) for every selection of X1,X2 ∈ Ωd−1, therefore
implying that

ψ̃
δFd−1(x)
d−1 (θ) = Fd−1(x)2gfx

d−1
(cos θ), for all θ ∈ [0, π]. (5.45)

Additionally, notice that ψ̃
δFd−1(x)
d−1 (θ) = A(θ, x) − Fd−1(x)2 due to (5.17) and since the

Gegenbauer coefficients of gFx
d−1

are 0 and (1 + 2k/(d − 2))(vxk,d−1)
2 for k ≥ 1 by (2.12).

Now, consider the projected ecdf statistic PWn,d−1 with kernel ψ̃Wd−1. We have that

PWn,d−1 = ∫
1

−1
[nEγ ({Fn,γ(x) − Fd−1(x)}2)] dW (Fd−1(x))

= ∫
1

−1
P
δFd−1(x)
n,d−1 dW (Fd−1(x))

= 1
n

n

∑
i,j=1
∫

1

−1
Fd−1(x)2gfx

d−1
(X′

iXj)dW (Fd−1(x)),

where the last equality follows from (5.15) and (5.45). Let us consider the function

gW (z) ∶= ∫
1

−1
Fd−1(x)2gfx

d−1
(z)dW (Fd−1(x)), z ∈ [−1,1]. (5.46)

We have that

∣Fd−1(x)2gfx
d−1

(z)∣ = ∣ψ̃
δFd−1(x)
d−1 (cos−1(z))∣ = ∣A(cos−1(z), x) − Fd−1(x)2∣ ≤ 1,

thus gW is bounded and gW ∈ L2
d−1[−1,1]. Denote by (1 + 2k/(d − 2))uWk,d−1, k ≥ 1, to

its Gegenbauer coefficients. If we prove that uW0,d−1 = 0, uWk,d−1 ≥ 0, k ≥ 1, and that

∑∞k=1 u
W
k,d−1`k,d−1 < ∞, from (2.13), we would have that PWn,d−1 = Sn,d−1({vWk,d−1}) for

vWk,d−1 ∶= (uWk,d−1)
1/2 and P+ ⊂ S would be proved. Since the map (x, z)↦ Fd−1(x)2gfx

d−1
(z)

is bounded, Fubini’s theorem gives for q ≥ 1 and k ≥ 1 that

uWk,d−1 = 1
(1+ 2k

d−2 )ck,d−1
∫

1

−1
gW (z)C(d−2)/2

k (z)(1 − z2)(d−3)/2 dz
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= 1
(1+ 2k

d−2 )ck,d−1
∫

1

−1
Fd−1(x)2 [∫

1

−1
gfx
d−1

(z)C
d−2
2

k (z)(1 − z2)
d−3
2 dz]dW (Fd−1(x))

= ∫
1

−1
(Fd−1(x)vxk,d−1)

2 dW (Fd−1(x)) ≥ 0.

This reasoning also shows that uW0,d−1 = 0. Moreover, from here and Lemma 5.2.5 we
have

uWk,d−1 ≤ ∫
1

−1
dW (Fd−1(x))

22d−3 (Γ (d2))
4

π2Fd−1(x)2 O ((k + (d − 1)/2)−d)

for d ≥ 3, which implies that ∑∞k=1 u
W
k,d−1`k,d−1 <∞ for d ≥ 2.

Proof of PAD
n,d−1 ∈ S in i) in Theorem 5.2.2. For d ≥ 3, relation (5.38) shows that, for every

ε > 0, there exists a finite and positive measure W ε such that

ψAD
d (θ) = ψW

ε

d (θ) + h(ε),

where h is a real function depending on ε but not on θ. Therefore, ψAD
d−1 equals to a

constant plus the L2
d−1[−1,1] map z ↦ ψW

ε

d−1(cos(z)).

Consequently, ψAD
d−1 ∈ L

2
d−1[−1,1] and all its Gegenbauer coefficients for k ≥ 1, denoted

by (1 + 2k/(d − 2))uAD
k,d−1, coincide with those of ψW

ε

d−1, which are positive and satisfy
that ∑∞k=1 u

AD
k,d−1`k,d−1 <∞ because, trivially, the proof when W is a probability can be

extended to cover W ε for fixed ε > 0.

With respect to d = 2, in Proposition 5.2.22 we obtain the Gegenbauer coefficients
of ψAD

1 , {bAD
k,1 }, which are obviously non-negative. Moreover, Lemma 5.2.7 shows

that bAD
k,1 = O(log(k)/k2), so there exists a function f ∈ L2

d−1[−1,1] whose Gegenbauer
coefficients are 1 and (bAD

k,1 )
1/2, k ≥ 1. This shows that PAD

n,1 = Sn,1(f) since dk,1 = 2 for
k ≥ 1.

Remark 5.2.9. The contention P+ ⊂ S is strict since PAD
n,d−1 ∈ S while PAD

n,d−1 ∉ P+.

Notice that in the proof of the previous theorem we have proved relation (5.45) that we
state separately for further reference.

Corollary 5.2.10. Let x ∈ [−1,1]. Consider the functions fxd−1, ψ̃
δFd−1(x)
d−1 and gfx

d−1
defined

in Lemma 5.2.5, in (5.17) and in (2.13), respectively. Then for d ≥ 2 and any θ ∈ [0, π],

ψ̃
δFd−1(x)
d−1 (θ) = Fd−1(x)2gfx

d−1
(cos θ).

Remark 5.2.11. In Step 1 of the proof of P+ ⊂ S, we set the function fxd−1(z) = (Fd−1(x))−1

1{z≤x} and obtain that P
δFd−1(x)
n,d−1 = Fd−1(x)2Sn,d−1(F xd−1). Step 2, (5.46) with W = δFd−1(x)
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gives a different function, gδFd−1(x) , such that its Gegenbauer coefficients (v
δFd−1(x)
k,d−1 )2

, satisfy

P
δFd−1(x)
n,d−1 = Sn,d−1({v

δFd−1(x)
k,d−1 }). Taking f δFd−1(x)(z) = 1{z≤x} − Fd−1(x) + 1, it is simple to

check that P
δFd−1(x)
n,d−1 = Sn,d−1(f δFd−1(x)).

The proof of ii) in Theorem 5.2.2 requires some results on integral equations that are
given in Section 2.7 and Theorem 5.2.12. In such theorem we show how to apply
Proposition 2.7.3 to the kernel (s, t)↦ A(cos−1(s), t) with A defined as in Proposition
5.1.4. Note that this is trivially an L2-kernel due to its boundedness.

Theorem 5.2.12. Let be the L2-kernel K(s, t) = A(cos−1(s), t), s, t ∈ [−1,1], and let
{([un, vn];µn)}∞n=1 be a singular system of K. Let y ∈ L2[−1,1] satisfying a) in Proposition
2.7.3. Then, there exists g ∈ L2[−1,1] such that

y(s) = ∫
1

−1
K(s, t)g(t)dt for almost every s ∈ [−1,1]

Proof. Since condition a) in Proposition 2.7.3 holds by assumption, only condition
b) remains to be proved. For this, since K∗(s, t) = A(cos−1(t), s), we show that if

∫
1
−1A(cos−1(s), t)u(s)ds = 0 for almost every t ∈ [−1,1] and u ∈ L2[−1,1], then u(s) = 0

for almost every s ∈ [−1,1].

Assume d ≥ 3. By (5.13) and since cos(2 cos−1(s)) = 2s2 − 1,

A(cos−1(s), t) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

2Fd−1(t) − 1, −1 ≤ s ≤ 2t2 − 1,
1
2 −

cos−1(s)
2π + 2 ∫

t
0 Fd−2 (

z tan(cos−1(s)/2)
(1−z2)1/2 ) dFd−1(z), 2t2 − 1 ≤ s < 1.

(5.47)

Also, by assumption, for any t ∈ [−1,1], we have

∂

∂t
∫

1

−1
A(cos−1(s), t)u(s)ds = 0. (5.48)

Therefore,

0 = ∂

∂t
(∫

2t2−1

−1
A(cos−1(s), t)u(s)ds + ∫

1

2t2−1
A(cos−1(s), t)u(s)ds)

= 4t(2Fd−1(t) − 1)u(2t2 − 1) + ∫
2t2−1

−1

∂

∂t
A(cos−1(s), t)u(s)ds

− 4tu(2t2 − 1)(1
2
− cos−1(2t2 − 1)

2π

+2∫
t

0
Fd−2 (

z√
1 − z2

tan(cos−1(2t2 − 1)
2

))dFd−1(z))
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+ ∫
1

2t2−1

∂

∂t
A(cos−1(s), t)u(s)ds

= 4tu(2t2 − 1)gd−1(t) + ∫
1

−1

∂

∂t
A(cos−1(s), t)u(s)ds

= 4tu(2t2 − 1)gd−1(t),

with gd−1(t) ∶= 2Fd−1(t) − 3
2 +

cos−1(2t2−1)
2π + 2 ∫

t
0 Fd−2 ( z√

1−z2 tan ( cos−1(2t2−1)
2 ))dFd−1(z)

and where the last equality follows from (5.48) by exchanging integral and differential.
Hence, since Fd−1(t) > Fd−1(0) = 1/2, the result follows because gd−1(t) ≥ 1 − 3/2 +
∫
t

0 dFd−1(y) > −1/2 + Fd−1(t) > 0.

Showing that ∂A(cos−1(s), t)/∂t exists and is bounded is enough to guarantee that
switching differentiation and integration in (5.48) is possible. From (5.47), we have

∂

∂t
A(cos−1(s), t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

2fd−1(t), −1 ≤ s ≤ 2t2 − 1,

2Fd−2 (
t tan(cos−1(s)/2)

(1−t2)1/2 )Fd−1(t), 2t2 − 1 ≤ s < 1,

which is obviously bounded by the definitions of the functions fd−1 and Fd−2, and since
d ≥ 3.

Assume now that d = 2. Obviously, it suffices to show that ∫
1
−1A(cos−1(s), t)u(s)ds = 0

for almost every t ∈ (0,1) implies u ≡ 0 almost everywhere. Then, by assumption,

∫
1
−1 Ã(cos−1(s), t)u(s)ds = 0 for almost every t ∈ (0,1), with

Ã(cos−1(s), t) ∶= (1 − t2)A(cos−1(s), t)

=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(1 − t2) (1 − 2
π cos−1(t)) , −1 ≤ s ≤ 2t2 − 1,

(1 − t2) (1 − 1
π cos−1(t) − 1

2π cos−1(s)) , 2t2 − 1 ≤ s < 1,

due to Proposition 5.1.4. Therefore,

0 = ∂

∂t
∫

1

−1
Ã(cos−1(s), t)u(s)ds

= ∂

∂t
(∫

2t2−1

−1
Ã(cos−1(s), t)u(s)ds + ∫

1

2t2−1
Ã(cos−1(s), t)u(s)ds) (5.49)

= 4tu(2t2 − 1)(−2t(1 − 2
π

cos−1(t)) + 2(1 − t2)1/2

π
) + ∫

2t2−1

−1

∂

∂t
Ã(cos−1(s), t)u(s)ds

− 4tu(2t2 − 1)(−2t(1 − 1
π

cos−1(t) − 1
2π

cos−1(2t2 − 1)) + (1 − t2)1/2

π
)

+ ∫
1

2t2−1

∂

∂t
Ã(cos−1(s), t)u(s)ds

= 4tu(2t2 − 1)g1(t) + ∫
1

−1

∂

∂t
Ã(cos−1(s), t)u(s)ds
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= 4tu(2t2 − 1)g1(t),

with g1(t) ∶= (1 − t2)1/2 /π, because cos−1(2t2 − 1) = 2 cos−1(t) since t ∈ (0,1). Then, the
result follows because g1(t) > 0 for t ∈ (0,1).

Notice that the exchange of integral and differential in (5.49) is possible because by
Proposition 5.1.4 it is easy to see that

∂

∂t
Ã(cos−1(s), t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

−2t (1 − 2
π cos−1(t)) + 2

π
(1 − t2)1/2

, −1 ≤ s ≤ 2t2 − 1,

−2t (1 − 1
π cos−1(t) − 1

2π cos−1(s)) + 1
π
(1 − t2)1/2

, 2t2 − 1 ≤ s < 1

is well-defined and bounded.

Proof of ii) in Theorem 5.2.2. Under the conditions of Theorem 5.2.12 in the Appendix,
if we additionally consider that the first Gegenbauer coefficient of f is one, then there
exists an absolutely continuous finite, potentially signed, Borel measure on [−1,1]
such that Sn,d−1(f) = PWn,d−1. This result follows directly from Theorem 5.2.12 in the
Appendix, because this measure is the one whose density with respect to the Lebesgue
measure is f , which acts as g in the statement of such theorem.

Remark 5.2.13. The contention P+ ⊂ S is strict since PAD
n,d−1 ∈ S while PAD

n,d−1 ∉ P+.

Remark 5.2.14. The proof of P+ ⊂ S does not guarantee the non-negativeness of f̃ ∈ Fd−1

such that PWn,d−1 = Sn,d−1(f̃), unless W is a Dirac’s delta. This is allowed, as Fd−1 contains
non-positive functions, but obscures the local optimality view of Sn,d−1(f̃). Of course, when
κ→ 0, (2.15) is always well-defined as a pdf, even if f is non-positive.

Remark 5.2.15. The next counterexample shows that P± /⊂ S. If d = 2 and W (x) =
cos(4πx), then, by Proposition 5.1.5, ψ1(θ) = 1− (cos(θ) sin(θ)) /(2π) and its Gegenbauer
coefficients are bk,1 = ((−1)k − 1)/(π2(4 − k2)) /≥ 0, hence it can not be written as (2.13).

5.2.2 Asymptotic null distributions and local optimality

In virtue of Theorem 5.2.2, all the projected-ecdf statistics within the class P+ belong to
the Sobolev class. Therefore, the asymptotic distribution and local optimality results
stated in Theorem 2.6.3 readily apply to the class of statistics P+ ∪ {PAD

n,d−1}. This is
collected in the next corollary, which follows directly from Theorems 2.6.3 and i by
noting that the Gegenbauer coefficients of ψWd−1 equal to (1+ 2k/(d− 2))vk,d−1 by (2.12).
Remember that the coefficients `k,d−1 were defined in (2.6).
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Corollary 5.2.16 (Asymptotic null distribution and local optimality). Let W be a proba-
bility on [0,1] or the Anderson–Darling measure. For d ≥ 2, the Gegenbauer and Chebyshev
coefficients of ψWd−1, defined as

bWk,d−1 ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
ck,1
∫

π

0
ψWd−1(θ)Tk(cos θ)dθ, d = 2,

1
ck,d−1

∫
π

0
ψWd−1(θ)C

(d−2)/2
k (cos θ) sind−2(θ)dθ, d ≥ 3

(5.50)

for k ≥ 0, are non-negative sequences satisfying ∑∞k=1 b
W
k,d−1`k,d−1 <∞. Under H0,

PWn,d−1
d↝

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∞
∑
k=1

2−1bWk,1Yk, d = 2,
∞
∑
k=1

(1 + 2k
d − 2

)
−1
bWk,d−1Yk, d ≥ 3,

where Yk
d= χ2

`k,d−1
, k ≥ 1, are independent rv’s. In addition, the test that rejects for large

values of PWn,d−1 is asymptotically and locally (in κ→ 0) most powerful rotation-invariant
(except O(κ3) terms) against any pdf (2.15) based on ∣vk,d−1∣ = (bWk,d−1)

1/2. Furthermore,
if bWk,d−1 > 0, for all k ≥ 1, the test is consistent against all non-uniform alternatives with
pdf in L2(Ωd−1, νd−1).

The asymptotic distribution and local optimality of the (P+ ∪ {PAD
n,d−1})-based tests are

governed by (5.50). The following results are aimed to facilitate these coefficients.

Theorem 5.2.17. For x ∈ [−1,1] and θ ∈ [0, π], consider A(θ, x) defined as in (5.8). Then,
for d ≥ 2,

A(θ, x) =
∞
∑
k=0

axk,d−1C
(d−2)/2
k (cos θ),

where ax0,d−1 ∶= Fd−1(x)2 and, for k ≥ 1,

axk,d−1 ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
k2π2 (1 − T2k(x)) , d = 2,

(1 + 2k
d − 2

)(2d−2Γ (d/2)2 Γ(k)
πΓ(k + d − 1)

)
2

(1 − x2)(d − 1) (Cd/2k−1(x))
2
, d ≥ 3.

Proof. Suppose first that d = 2 and k ≥ 1. By Proposition 5.1.4 the Gegenbauer coeffi-
cients of A(θ, x) are

bxk,1 =
1
ck,1
∫

π

0
A(θ, x)Tk(cos(θ)) sind−2(θ)dθ

= 2
π
∫

π

0
A(θ, x) cos(kθ)dθ
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= 2
π

(∫
2 cos−1(x)

0
(1 − cos−1(x)

π
− θ

2π
) cos(kθ)dθ

+ ∫
π

2 cos−1(x)
(1 − 2 cos−1(x)

π
) cos(kθ)dθ)

= 2
π
∫

2 cos−1(x)

0
(cos−1(x)

π
− θ

2
) cos(kθ)dθ, (5.51)

where (5.51) follows from the orthogonality of the Gegenbauer polynomials. Hence

axk,1 =
2
π

⎛
⎝

1
kπ

cos−1(x) [sin(kθ)]2 cos−1(x)
0 − [ 1

2k2π
cos(kθ) + θ

2kπ
sin(kθ)]

2 cos−1(x)

0

⎞
⎠

= 1
k2π2 (1 − cos(2k cos−1(x))) .

For k = 0, Proposition 5.1.4 gives that

ax0,1 =
1
π
∫

π

0
A(θ, x)dθ

= 1
π
∫

π

0
(2F1(x) − 1 + 1

π
(cos−1(x) − θ

2
)
+
) dθ

= 2F1(x) − 1 + 1
π2 ∫

2 cos−1(x)

0
(cos−1(x) − θ

2
) dθ

= 2F1(x) − 1 + 1
π2 (cos−1(x))2

= (F1(x))2 ,

where the last equality follows from (2.4).

Assume d ≥ 3. From Corollary 5.2.10 and the identity ψ̃
δFd−1(x)
d−1 (θ) = A(θ, x) − Fd−1(x)2,

we have that

A(θ, x) = Fd−1(x)2(1 + gfx
d−1

(cos θ))

= Fd−1(x)2 +
∞
∑
k=1

(vxk,d−1Fd−1(x))
2 (1 + 2k

d − 2
)C(d−2)/2

k (cos θ),

and the Gegenbauer coefficients of A(θ, x) are obtained from Corollary 5.2.6 for k ≥ 1,
and from the equality C(d−2)/2

k (x) = 1 when k = 0.

Corollary 5.2.18 (Gegenbauer coefficients of ψWd−1). Let PWn,d−1 ∈ Pσ+ ∪ P±. Then the
Gegenbauer coefficients of ψWd−1 are bWk,d−1 = ∫

1
−1 a

x
k,d−1 dW (Fd−1(x)), for d ≥ 2 and k ≥ 0.

Proof. The coefficients of ψWd−1 are trivially deduced from (5.16) and Theorem 5.2.17.
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The Rayleigh [115] and Bingham [19] statistics belong to S1, the former with v1,d−1 =
δk1 and the latter with v2,d−1 = δk2 (the rest of vk,d−1’s being null). The next result,
consequence of Theorem 5.2.2 and Corollary 5.2.18, identifies, in the circular case, the
statistic in P± equating them and any other statistic in S1. It also highlights that any
P±-statistic is decomposable into a weighted difference of two P+-statistics.

Corollary 5.2.19. For any circular statistic Sn,1({vk,1}) ∈ S`, with ` ≥ 1, the weights

w({vk,1})(x) ∶=
`

∑
k=1

v2
k,1wk(x) and wk(x) ∶= −2π2k2 cos(2kxπ), with k ≥ 1

generates PW ({vk,1})
n,1 ∈ P± such that Sn,1({vk,1}) = P

W ({vk,1})
n,1 . Also, there exist PW

+({vk,1})
n,1 ,

P
W−({vk,1})
n,1 ∈ P+ and a+, a− ≥ 0 such that PW ({vk,1})

n,1 = a+PW
+({vk,1})

n,1 − a−PW
−({vk,1})

n,1 .

Proof. Since F−1
1 (x) = − cos(πx), then

wk(x) = −2π2k2 cos(2kxπ) = −2π2k2 cos(2k cos−1(F−1
1 (x))) = −2k2π2T2k(F−1

1 (x)).

Consider the signed measure Wk associated to wk. From Corollary 5.2.18, we have

bWk
j,1 = ∫

1

−1
axj,1wk(F1(x))dF1(x)

= −2k2π2∫
1

−1

1
j2π2 (1 − T2j(x))T2k(x)dF1(x)

= 2k2

j2π ∫
1

−1
T2j(x)T2k(x)(1 − x2)−1/2 dx

= δjk.

Therefore, w({vk,1})(x) = ∑`k=1 v
2
k,1wk(x) is such that bW ({vk,1})

j,1 = v2
k,1, k ≥ 1, and

Sn,1({vk,1}) = P
W ({vk,1})
n,1 . Defining w̃±({vk,1})(x) ∶= max(±w({vk,1})(x),0), then

w({vk,1}) = a+w+({vk,1}) − a−w−({vk,1}), where (a±)−1 ∶= ∫
1
−1 w̃

±({vk,1})(x)dx ≥ 0 and
w±({vk,1}) ∶= (a±)−1w̃({vk,1}) with associated measure W ±({vk,1}). Then, PW ({vk,1})

n,1 =
a+P

W+({vk,1})
n,1 − a−PW

−({vk,1})
n,1 .

The following results provide relatively explicit control on the Gegenbauer coefficients
of ψRt

d−1, ψCvM
d−1 , and ψAD

d−1. The first is a direct consequence of Theorem 5.2.17, whereas
the latter involve direct computations on the kernel functions. General closed-form
expressions for bAD

k,d−1 are highly challenging to obtain, except for d = 2,3.
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Corollary 5.2.20 (Gegenbauer coefficients for ψRt
d−1). Let tm defined as in Proposition

5.1.10 and axk,d−1 as in Theorem 5.2.17. The Gegenbauer coefficients of ψRt
d−1 for d ≥ 2 are

bRtk,d−1 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

2
k2π2 sin2 (kπtm) , d = 2,

a
F−1
d−1(tm)
k,d−1 , d ≥ 3,

bRt0,d−1 =
1
2
− tm(1 − tm), d ≥ 2.

Proof. Assume d ≥ 3 and k ≥ 1. Due to the symmetry of x↦ axk,d−1, by Corollary 5.2.18,

bRtk,d−1 = ∫
1

−1
axk,d−1 dWt(Fd−1(x)) =

1
2
a
F−1
d−1(1−tm)
k,d−1 + 1

2
a
F−1
d−1(tm)
k,d−1 = aF

−1
d−1(tm)
k,d−1 .

The particular case d = 2 is obtained from F−1
1 (x) = cos(π(1 − x)) and sin2(x) = (1 −

cos(2x))/2. For k = 0, by the definition of Gegenbauer coefficients and Proposition
5.1.12, we have

bRt0,d−1 = ∫
1

−1
Fd−1(x)2 dWt(Fd−1(x)) = 1

2 ((Fd−1(F−1
d−1(1 − tm)))2 + (Fd−1(F−1

d−1(tm)))2)

= 1
2 ((1 − tm)2 + t2m) .

Proposition 5.2.21 (Gegenbauer coefficients for ψCvM
d−1 ). The Gegenbauer coefficients of

ψCvM
d−1 for d = 2,3,4 are

bCvM
k,d−1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
π2k2 , d = 2,

1
2(2k + 3)(2k − 1)

, d = 3,

35
72π2 1{k=1} +

1
2π2

3k2 + 6k + 4
k2(k + 1)(k + 2)2 1{k>1}, d = 4,

and if d ≥ 3,

bCvM
k,d−1 =

(d−2)2(2k+d−2)Γ( d−2
2 )3Γ( 3(d−1)

2 )

8π(d−1)2Γ( d−1
2 )3Γ( 3d−2

2 ) 4F3 (1 − k, d − 1 + k, d2 ,
3(d−1)

2 ;d, d−1
2 + 1, 3d−2

2 ; 1)

Additionally, b0,d−1 = 1/3 for d ≥ 2. Therefore, bCvM
k,d−1 > 0 for k ≥ 0 and d = 2,3,4.

Proof. If d = 2, by Corollary 5.2.18, the Gegenbauer coefficients of ψCvM
1 are, for k ≥ 1,

bCvM
k,1 =∫

1

−1
axk,1 dF1(x)

= 1
k2π3 ∫

1

−1
(1 − T2k(x)) (1 − x2)−1/2 dx

= 1
k2π3 ∫

1

−1
(1 − cos (2k cos−1(x))) (1 − x2)−1/2 dx
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= 1
π2k2 , (5.52)

where (5.52) follows from the orthogonality of the Gegenbauer polynomials.

If d ≥ 3, by Corollary 5.2.18, the Gegenbauer coefficients of ψCvM
d−1 are, for k ≤ 1,

bCvM
k,d−1 =∫

1

−1
axk,d−1 dFd−1(x)

=(1 + 2k
d − 2

)(2d−2Γ (d/2)2 Γ(k)
πΓ(k + d − 1)

)
2 1

B (1
2 ,

d−1
2 ) ∫

1

−1
(1 − x2)(3d−5)/2 (Cd/2k−1(x))

2
dx

=(1 + 2k
d − 2

)(2d−2Γ (d/2)2 Γ(k)
πΓ(k + d − 1)

)
2 1

B (1
2 ,

d−1
2 )

B (3(d−1)
2 , 1

2)

((k − 1)B(d, k − 1))2 (5.53)

4F3 (1 − k, d − 1 + k, d
2
,
3(d − 1)

2
;d, d − 1

2
+ 1, 3d − 2

2
; 1)

=
(d−2)2(2k+d−2)Γ( d−2

2 )3Γ( 3(d−1)
2 )

32πΓ( d−1
2 +1)2Γ( d−1

2 )Γ( 3d−2
2 ) 4F3 (1 − k, d − 1 + k, d2 ,

3(d − 1)
2

;d, d−1
2 + 1, 3d−2

2 ; 1)

=
(d−2)2(2k+d−2)Γ( d−2

2 )3Γ( 3(d−1)
2 )

8π(d−1)2Γ( d−1
2 )3Γ( 3d−2

2 ) 4F3 (1 − k, d − 1 + k, d
2
,
3(d − 1)

2
;d, d − 1

2
+ 1, 3d − 2

2
; 1)

(5.54)

where the last equality follows from the Legendre duplication formula and (5.53) follows
from equations (16) and (18) in Laursen and Mita [96].

For d = 3, by equation (21) in Laursen and Mita [96], we have a special expression of
(5.53):

bCvM
k,2 = (1 + 2k)

2
( Γ(k)

2Γ(k + 2)
)

2 4Γ(k + 2)(2 + (k − 1)(k + 2))
(k − 1)!(2k − 1)(2k + 1)(2k + 3)

= 1
2

Γ(k)
Γ(k + 2)

(2 + (k − 1)(k + 2))
(2k − 1)(2k + 3)

= 1
2(2k − 1)(2k + 3)

.

If d = 4, (5.54) becomes in

bCvM
k,3 ∶= 35 (1 + k)

144π2 4F3 (1 − k,3 + k,2, 9
2

; 4, 5
2
,5; 1) ,

however this expression is not easily tractable. For that reason, we directly work with
the definition of the Gegenbauer coefficients, i.e. using ψCvM

3 = ψCvM
1 + sin(θ)(π − θ −

sin(θ))/((4π2)(1 + cos(θ))). We employ that the Gegenbauer polynomials of order 1
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coincide with the Chebyshev polynomials of the second type (equation 18.5.2 in [46])
to obtain the Gegenbauer coefficients of ψCvM

3 for k > 1:

bCvM
k,3 ∶= 2

π
∫

π

0
ψ3(θ) sin((k + 1)θ) sin(θ)dθ

= 1
π
∫

π

0
(1 + 1

2π2 {θ(θ − 2π) + sin(θ)(π − θ − sin(θ))
(1 + cos(θ))

}) sin((k + 1)θ) sin(θ)dθ

= 1
π

( 1
2π2 ∫

π

0
(1 − cos(θ))(π − θ − sin(θ)) sin((k + 1)θ)dθ

+∫
π

0
sin((k + 1)θ) sin(θ)dθ + 1

2π2 ∫
π

0
θ(θ − 2π) sin((k + 1)θ) sin(θ)dθ)

= 1
π

( 1
8π2 [ 2

k2 sin(kθ) − 2
k (k

2 sin(θ)
k2−1 + θ − π) cos(kθ) + 2 cos(θ) sin(kθ)

k2−1 − 2
k sin(kθ)

+ 1
k+1 sin((k + 1)θ) − 4

(k+1)2 sin((k + 1)θ) + 2
k+2 sin((k + 2)θ)

+ 2
(k+2)2 sin((k + 2)θ) − 1

k+3 sin((k + 3)θ) − 4(π−θ)
k+1 cos((k + 1)θ)

− 2θ
k+2 cos((k + 2)θ) + 2π

k+2 cos((k + 2)θ)]π0 +
1
2 [ sin(kθ)

k − sin((k+2)θ)
k+2 ]

π

0

+ 1
2π2 [− π

k2 cos(kθ) − π
k θ sin(kθ) + θ cos(kθ)

k2 + 1
2k3 (k2θ2 − 2) sin(kθ)

− ((k + 2)2θ2 − 2) sin((k + 2)θ) + 2(k + 2)θ cos((k + 2)θ)
2(k + 2)3

+ π

k + 2
θ sin((k + 2)θ) + π

(k + 2)2 cos((k + 2)θ)]
π

0
)

= 1
2π2

3k2 + 6k + 4
k2(k + 1)(k + 2)2 .

For k = 1, we have

bCvM
1,3 ∶= 4

π
∫

π

0
ψCvM

3 (θ) sin2(θ) cos(θ)dθ

= 1
π3 {∫

π

0
θ(θ − 2π) sin2(θ) cos(θ)dθ

+∫
π

0
(π − θ − sin(θ))(1 − cos(θ)) sin(θ) cos(θ))dθ}

= 35
72π2 .

If k = 0 and d ≥ 2, by Corollary 5.2.18, we have that

bCvM
0,d−1 = ∫

1

−1
Fd−1(x)2fd−1(x)dx = 1

3
[Fd−1(x)3]1

−1 =
1
3
.
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Proposition 5.2.22 (Gegenbauer coefficients for ψAD
d ). The Gegenbauer coefficients of

ψAD
1 and ψAD

2 are

bAD
k,d−1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
πk2 ∫

π
0

1−cos(2kθ)
(π−θ)θ dθ, d = 2,

1
k(k+1) , d = 3,

bAD
0,d−1 = −1, d ≥ 2.

Therefore, bAD
k,d−1 > 0 for k ≥ 1 and d = 2,3.

Proof. If d = 2 and k ≥ 1, by Corollary 5.2.18 we have that

bAD
k,1 = ∫

1

−1
axk,2

f1(x)
F1(x)(1 − F1(x))

dx

= 1
k2π ∫

π

0
(1 − T2k(x))

(1 − x2)−1/2

(π − cos−1(x))(cos−1(x))2 dx

= 1
πk2 ∫

π

0

1 − cos(2kθ)
(π − θ)θ

dθ.

If d = 3 and k ≥ 1, by Corollary 5.2.18 we have that

bAD
k,2 = ∫

1

−1
axk,2

f2(x)
F2(x)(1 − F2(x))

dx

= 2 (1 + 2k)(2Γ (3/2)2 Γ(k)
πΓ(k + 2)

)
2

∫
1

−1
(1 − x2) (C3/2

k−1(x))
2

dx

= 4
π

(Γ(3/2))2 Γ(k)
Γ(k + 2)

(5.55)

= 1
k(k + 1)

where (5.55) follows from equation ET II 281(8) in Gradshteyn and Ryzhik [74] with
ν = 3/2.

If k = 0 and for any d ≥ 2, from (5.38) we have that

ψAD
d−1(θ) = lim

ε→0
(ψAD,ε

d−1 (θ) + log (1 − Fd−1(1 − ε)) + log (Fd−1(1 − ε)))

= lim
ε→0

(∫
1−ε

−1+ε
A(θ,x)

Fd−1(x)(1−Fd−1(x))dFd−1(x)+log (1−Fd−1(1−ε)) + log (Fd−1(1−ε))) ,

and consequently by Corollary 5.2.18 we have that

bAD
0,d−1 =

1
c0,d−1

∫
π

0
ψAD
d−1(θ) sind−2(θ)dθ

= 1
c0,d−1

∫
π

0
lim
ε→0

(∫
1−ε

−1+ε

A(θ, x)
Fd−1(x)(1 − Fd−1(x))

dFd−1(x) + log (Fd−1(−1 + ε))
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+ log (Fd−1(1 − ε))) sind−2(θ)dθ

= lim
ε→0

{ 1
c0,d−1

∫
π

0
(∫

1−ε

−1+ε

A(θ, x)
Fd−1(x)(1 − Fd−1(x))

dFd−1(x)) sind−2(θ)dθ

+ log (Fd−1(−1 + ε)) + log (Fd−1(1 − ε))} (5.56)

= lim
ε→0

{∫
1−ε

−1+ε

Fd−1(x)2dFd−1(x)
Fd−1(x)(1 − Fd−1(x))

+ log (Fd−1(−1 + ε)) + log (Fd−1(1 − ε))}

(5.57)

= lim
ε→0

{− [Fd−1(x)]1−ε
−1+ε + 2 log (Fd−1(1 − ε))} = −1,

where (5.57) trivially follows from Fubini’s Theorem and (5.56) is obtained from the
dominated convergence theorem, which can be applied since ∣ψAD

d−1(θ)∣ is bounded
because by Proposition 5.1.15, we have

∣ψAD
d−1(θ)∣ = ∣− log(4) + 4∫

cos(θ/2)

0
log( Fd−1(t)

1−Fd−1(t)
)(1 − Fd−2 (

t tan (θ/2)
(1 − t2)1/2 ))dFd−1(t)∣

≤ log(4) + 4∫
cos(θ/2)

0
∣log( Fd−1(t)

1 − Fd−1(t)
)∣dFd−1(t)

= log(4) + 4∫
Fd−1(cos(θ/2))

1/2
log ( u

1 − u
)du

≤ log(4) + 4∫
1

1/2
log ( u

1 − u
)du

= 6 log(2).

The previous results do not guarantee the omnibussness for d ≥ 2 of the tests based on
PCvM
n,d−1 and PAD

n,d−1. The next corollary gives a simple sufficient condition, satisfied by
these tests, to guarantee omnibussness. It also shows that non-omnibus tests, related
with very specific discrete measures W , are somehow a rarity in the projected-ecdf
class.

Corollary 5.2.23 (Omnibusness of projected-ecdf tests). The statistic PWn,d−1 ∈ Pσ+
generates an omnibus test if and only if W does not concentrate its measure entirely in
Fd−1(Zd−1), Zd−1 ∶= [−1,1] ∩ (∪k≥1Zk,d−1), where

Zk,d−1 ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

{cos(m/kπ) ∶m = 0,1, . . . , k}, d = 2,

{−1,1} ∪ {x ∈ (−1,1) ∶ Cd/2k−1(x) = 0}, d ≥ 3.

In particular, any W that assigns a positive measure to a fixed set of [0,1] with non-zero
Lebesgue measure, generates an omnibus projected-ecdf test.
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Proof. By Theorem 5.2.17, the k-th Gegenbauer coefficient of θ ↦ A(x, θ) is axk,d−1. Due
to the properties of orthogonal polynomials, the function x ↦ axk,d−1 has exactly k − 1
different real zeros in (−1,1) for d ≥ 3, hence k+1 different zeros in [−1,1]. For d = 2, the
k + 1 different roots for T2k(x) = 1 with x ∈ [−1,1] are xm = cos(m/kπ), m = 0,1, . . . , k.
Then, the sets Zk,d−1 have cardinality k − 1 and Zd−1 ⊂ [−1,1] is an at most denumerable
set.

From the previous statements, for any x∗ ∈ [−1,1]/Zd−1, ax
∗

k,d−1 > 0, for all k ≥ 1. As
a consequence, for any x∗ ∈ Zd−1 there is an associated Wx∗ ∶= δFd−1(x∗) whose kernel
ψ
Wx∗

d−1 has positive coefficients bWx∗

k,d−1 = a
x∗

k,d−1, therefore generating an omnibus test by
Theorem 2.6.3. In addition, any σ-finite measure W that assigns a positive measure to
[0,1]/Fd−1(Zd−1) generates a test with coefficients bWk,d−1 = ∫

1
−1 a

x
k,d−1 dW (Fd−1(x)) > 0,

hence omnibus.

Finally, since Fd−1(Zd−1) has null Lebesgue measure, trivially every L ⊂ [0,1] with
non-null Lebesgue measure satisfying L ∩ ([0,1]/Fd−1(Zd−1)) ≠ ∅, thus a measure W
such that W (L) > 0 gives an omnibus test.

Remark 5.2.24. Since F1(Z1) = Q ∩ [0,1], any measure W concentrated on Q ∩ [0,1]
generates a non-omnibus projected-ecdf test. This is the case of the PRt

n,1-based test with
t ∈ Q ∩ [0,1] (if t ∈ I ∩ [0,1], the test is omnibus). For d ≥ 3, the explicit characterization
of Fd−1(Zd−1) is more cumbersome, since it depends on the zeros of the Gegenbauer
polynomials (see, e.g., Theorem 2 in Dimitrov and Nikolov [45] for their lower and upper
bounds). Nevertheless, it is easy to see that {0,1/2,1} ⊂ Fd−1(Zd−1), thus, as already
known, the P

R1/2
n,d−1-based test is not omnibus.

5.2.3 Computation of asymptotic tail probabilities

Computing tail probabilities in the asymptotic distribution ∑∞k=1wkYk in (2.14) is not
trivial. [114] provided approximations, for specific choices of {wk}, based on inverting
the characteristic function [16]. A more general approach is to compute, for a sufficiently
large K, the tail probability of ∑Kk=1wkYk by the fast Hall–Buckley–Eagleson (HBE)
approximation (three-moment match to a Gamma distribution, see [23]) or by [82]’s
exact method; see [21] for a review of approaches for evaluating the cdf of ∑Kk=1wkYk.

Our proposal is to use Algorithm 5 for computation of asymptotic tail probabilities.

According to the desired precision, Step 2) in Algorithm 5 can be omitted taking a
reduced Kmax since in our empirical investigations we have seen that, for dimensions
2 ≤ d ≤ 11 and the previous statistics, such step can be effectively omitted. Indeed,
values of Kmax = 103,104 and 5 × 104 omitting in Step 2) give a uniform tail probability
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Algorithm 5: Asymptotic p-value computation for a test based on PWn,d−1 ∈ Pσ+,P±

1) Compute the sequence {bWk,d−1} for k = 1, . . . ,Kmax using the most adequate
expression in Corollaries 5.2.18 and 5.2.20 or Propositions 5.2.21 and 5.2.22.

2) Reduce Kmax to Kδ,x = min{K ≥ 1 ∶ ∣pHBE
Kmax,x

− pHBE
K,x ∣ ≤ δ} for δ ∈ [0,1], where pHBE

K,x

represents the HBE-approximated tail probability P[∑Kk=1(vWk,d−1)
2Yk > x], {vWk,d−1}

stem from {bWk,d−1} using (2.12), and x equals the observed statistic PWn,d−1.

3) Use Imhof [82]’s method to compute P[∑Kδ,xk=1 (vWk,d−1)
2
Yk > x].

accuracy (in x ∈ [0,1]) of two, three, and four digits, respectively. Due to this, we set
Kmax = 5 × 104 for the application of Algorithm 5 in the next sections.

However, Step 2) could be useful if we consider Kmax ≥ 105 and δ =K−1
max or if d is larger

because the accuracy deteriorates as d increases, e.g., with d = 51 a one digit accuracy is
lost.

5.3 Simulation study

We compare through simulations the empirical performance of three new projected-ecdf
tests: CvM, Anderson–Darling (AD), and Rothman with t = 1/3 (Rt). We do so by: i)
evaluating the accuracy of their obtained asymptotic distributions in Section 5.3.1; ii)
comparing their empirical powers with well-known uniformity tests for Ωd−1, d ≥ 3, in
Section 5.3.2.

We consider M = 106 Monte Carlo replicates, dimensions d = 2,3,4,11, and sample
sizes n = 50,100,200. The implementations of the projected-ecdf test statistics rely
on the explicit expressions given in Propositions 5.1.6, 5.1.12, and 5.1.15. Gauss–
Legendre quadrature with 160 nodes is used for approximating the integrals in the
kernel functions.

5.3.1 Asymptotic null distribution accuracy

Table 5.2 reveals that the exact-n critical values (i.e. the critical values are computed
with the Monte Carlo method using a sample of size n), approximated by M Monte
Carlo replicates, quickly converges to the asymptotic critical values, irrespectively
of the investigated dimensions, significance levels or projected-ecdf tests. Table 5.3
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Table 5.2.: Exact-n and asymptotic critical values for the significance levels α = 0.10, 0.05, 0.01 of the
CvM, AD, and Rt uniformity tests on Ωd−1, for d = 2,3,4,11. The exact-n critical values
are approximated by M Monte Carlo replicates, whereas the asymptotic critical values are
computed using Algorithm 5.

Test d
α = 0.10 α = 0.05 α = 0.01

n=50 n=100 n=200 n=∞ n=50 n=100 n=200 n=∞ n=50 n=100 n=200 n=∞

CvM 2 0.3025 0.3029 0.3031 0.3035 0.3713 0.3723 0.3731 0.3738 0.5303 0.5336 0.5356 0.5368
3 0.2759 0.2764 0.2769 0.2769 0.3270 0.3277 0.3289 0.3291 0.4412 0.4442 0.4465 0.4469
4 0.2598 0.2605 0.2607 0.2608 0.3010 0.3020 0.3031 0.3029 0.3929 0.3941 0.3960 0.3963

11 0.2202 0.2206 0.2206 0.2208 0.2406 0.2411 0.2412 0.2414 0.2831 0.2844 0.2848 0.2849

AD 2 1.6824 1.6832 1.6855 1.6875 2.0170 2.0236 2.0272 2.0304 2.7982 2.8122 2.8194 2.8252
3 1.5555 1.5577 1.5613 1.5612 1.8112 1.8156 1.8216 1.8227 2.3856 2.3993 2.4111 2.4122
4 1.4773 1.4805 1.4818 1.4824 1.6869 1.6911 1.6972 1.6961 2.1531 2.1585 2.1690 2.1695

11 1.2780 1.2797 1.2798 1.2810 1.3836 1.3863 1.3863 1.3880 1.6044 1.6100 1.6124 1.6130

Rt 2 0.4248 0.4254 0.4259 0.4264 0.5282 0.5297 0.5304 0.5318 0.7666 0.7716 0.7744 0.7764
3 0.3830 0.3837 0.3844 0.3844 0.4585 0.4594 0.4614 0.4617 0.6280 0.6322 0.6355 0.6361
4 0.3584 0.3593 0.3597 0.3598 0.4191 0.4204 0.4220 0.4217 0.5534 0.5556 0.5579 0.5589

11 0.2997 0.3002 0.3002 0.3005 0.3292 0.3299 0.3299 0.3304 0.3907 0.3924 0.3930 0.3933

corroborates that the exact-n rejection frequencies remain within the normal 99%
confidence interval for n = 200 when the asymptotic critical values are employed in the
test decision. For n = 50,100, the rejection frequencies are either inside the confidence
interval or quite close to the significance level on the conservative side.

Table 5.3.: Rejection frequencies using asymptotic critical values for the significance levels α =

0.10,0.05,0.01 of the CvM, AD, and Rt uniformity tests on Ωd−1, for d = 2,3,4,11. The
rejection frequencies are approximated by M Monte Carlo replicates, whereas the asymptotic
critical values are computed with Algorithm 5. Boldfaces denote that the rejection rate is
within the normal 99% confidence interval for α.

Test d
α = 0.10 α = 0.05 α = 0.01

n=50 n=100 n=200 n=50 n=100 n=200 n=50 n=100 n=200

CvM 2 0.0990 0.0993 0.0996 0.0488 0.0493 0.0497 0.0094 0.0097 0.0099
3 0.0987 0.0993 0.1000 0.0485 0.0490 0.0499 0.0092 0.0096 0.0099
4 0.0984 0.0995 0.0999 0.0484 0.0492 0.0502 0.0094 0.0096 0.0099

11 0.0982 0.0994 0.0996 0.0485 0.0495 0.0496 0.0093 0.0098 0.0100

AD 2 0.0989 0.0991 0.0996 0.0486 0.0493 0.0497 0.0095 0.0097 0.0099
3 0.0984 0.0991 0.1000 0.0484 0.0490 0.0498 0.0093 0.0097 0.0100
4 0.0983 0.0994 0.0998 0.0484 0.0492 0.0502 0.0094 0.0096 0.0100

11 0.0980 0.0992 0.0992 0.0486 0.0494 0.0494 0.0094 0.0098 0.0100

Rt 2 0.0989 0.0994 0.0996 0.0488 0.0493 0.0495 0.0094 0.0097 0.0099
3 0.0987 0.0993 0.1000 0.0486 0.0490 0.0499 0.0092 0.0096 0.0099
4 0.0985 0.0994 0.0999 0.0485 0.0492 0.0502 0.0093 0.0096 0.0099

11 0.0982 0.0993 0.0993 0.0485 0.0494 0.0495 0.0093 0.0097 0.0099

5.3.2 Empirical power investigation

We compare the CvM, AD, and Rt projected-ecdf tests with the following classic unifor-
mity tests: Rayleigh (Rayleigh [115]), Bingham (Bingham [19]), Ajne (Ajne [4] and
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Prentice [114]), Giné’s Gn and Fn (Giné [71] and Prentice [114]), and Cuesta-Albertos
et al. [37], henceforth abbreviated CCF09. Except the latter (already reviewed in Section
5.1.1), all of them belong to the Sobolev class. The main properties of the competing
tests are summarized next (see García-Portugués and Verdebout [64] for a more detailed
review):

- All of them are valid for arbitrary dimensions.

- Only Bakshaev and CCF09 are omnibus tests.

- The Rayleigh and Ajne tests are not consistent against axial alternatives (symmetric
pdfs with respect to 0).

- The Bingham and Giné’s Gn tests are designed for axial alternatives, sacrificing
power against unimodal alternatives.

- The Rayleigh and Bingham tests are the most powerful rotation invariant tests
with respect to von Mises–Fisher and Watson alternatives, respectively.

- The CCF09 test requires simulating k random directions and then performing a
Monte Carlo calibration conditionally on those random directions. Following the
recommendation in CCF09, we considered k = 50, then run the simulation study
conditionally on a fixed set of k random directions.

We employ six different Data Generating Processes (DGPs). The first three are based on
the local alternatives for which a PWn,d−1-based projected-ecdf test is locally asymptotically
most powerful rotation-invariant in virtue of Corollary 5.2.16:

fWµ,κ(x) ∶= 1 − κ
ωd−1

+ κf
W (x′µ)
ωd−1

, fW (z) ∶= 1 +
∞
∑
k=1

(1 + 2k
d−2) (b

W
k,d−1)

1/2C(d−2)/2
k (z). (5.58)

Considering µ = (0d−1,1), the first three DGPs use (5.58) with the next coefficients:

CvM {bCvM
k,d−1} given in Proposition 5.2.21 for d = 2,3,4, and computed numerically for

d = 11 using Corollary 5.2.18 and Gauss–Legendre quadrature with 5120 nodes.

AD {bAD
k,d−1} given in Proposition 5.2.22 for d = 2 and computed numerically for d ≥ 3

under the previous conditions.

Rt bR1/3
k,d−1 given in Corollary 5.2.20.

These DGPs can be seen as “unimodal” alternatives: CvM and AD concentrate probability
mass about µ, while Rt does so in a constant cap about µ.

The remaining DGPs include the optimally-detected alternatives for the Rayleigh and
Bingham tests, and an alternative without an optimal test among the inspected:
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vMF Von Mises–Fisher pdf x ↦ cvMF
d−1,η exp(ηx′µ), with η ≥ 0 and µ ∈ Ωd−1. We set η = κ

and µ = (0d−1,1).

Wat Watson pdf x ↦ cW
d−1,η exp(η(x′µ)2), with η ∈ R and µ ∈ Ωd−1. We set η = 2.5κ and

µ = (0d−1,1).

SC Small-circle pdf x ↦ cSC
d−1,τ,η exp(η(x′µ − τ)2), with η ∈ R, τ ∈ [−1,1], and µ ∈ Ωd−1.

We set η = −1.5κ, τ = 0.50, and µ = (0d−1,1).

The deviation from uniformity is controlled by κ ≥ 0 (κ ≤ 1 necessarily for (5.58)).

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Cramér−von Mises

z

(ω
d−

2
ω

d−
1)

fC
vM

(z
)(

1
−

z2 )(d
−

3)
/2

d = 2
d = 3
d = 4
d = 6
d = 11

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Rothman with t = 1/3

z

(ω
d−

2
ω

d−
1)

fR
t (z

)(
1

−
z2 )(d

−
3)

/2
d = 2
d = 3
d = 4
d = 6
d = 11

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Anderson−Darling

z

(ω
d−

2
ω

d−
1)

fA
D
(z

)(
1

−
z2 )(d

−
3)

/2

d = 2
d = 3
d = 4
d = 6
d = 11

Figure 5.2.: From left to right, depiction of the projected densities z ↦ ωd−2
ωd−1

fW (z)(1 − z2
)
(d−3)/2 on

[−1,1] generated by fCvM, fR1/3 , and fAD, for d = 2,3,4,6,11. The series in (5.58) is
truncated such that 99.9% of the norm in L2

d−1[−1,1] is retained.

The simulation of all the alternatives was done through the tangent-normal decom-
position implemented in the rotasym package García-Portugués et al. [69] and the
(numerical) inversion method to simulate from the pdfs of the projections along µ,
which for fW are z ↦ (ωd−2/ωd−1)fW (z)(1 − z2)(d−3)/2 (see Figure 5.2). The series in
fW is truncated to its first Kr terms explaining r = 99.95% of the L2

d−1[−1,1]-norm of
the series computed with Kmax = 5 × 104 terms. The simulation from Rt is exact thanks
to the closed-form expression fRt(z) = 1{z≥F−1

d−1(t)}
+ t and its projected quantile function

F−1
Rt (u) = F

−1
d−1((u+ t)/(1+ t))1{u>t2} +F−1

d−1(u/t)1{u≤t2}. Sampling from CvM for d = 2 is
simplified due to the closed-form expression fCvM(z) = 1 −

√
2 log(2(1 − z))/(2π).2

For the sake of equity, all the tests are calibrated with exact-n critical values approxi-
mated by M Monte Carlo replicates at the α = 0.05 significance level. Table 5.4 collects
the empirical powers for d = 2,3,4,11, n = 100, and κ = 0.50. The remaining combi-
nations for n = 50,100,200 and κ = 0.25,0.50,0.75 are relegated to the Appendix. The
following conclusions are extracted from all the tables:

2Differs from f(θ) = θ2
/(2π2

) in Mardia and Jupp [102, page 114] for the Watson test, which is not a
circular pdf nor generates the Watson statistic from the book’s equation (6.3.70).
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(i). Overall, the CvM test improves over CCF09. It does so with an average (absolute)
power gain equal to 0.0315 for all DGPs but Wat. The “[5%,95%] Interquantile
Range” (IR) of these power gains (taken over all variations of n and κ, henceforth
implicit) is [0,0.0930]. In Wat, the only axial alternative, the IR is [−0.0703,0.0085].
The power gap between CvM and CCF09 stretches with d due to the increasing
difficulty of capturing the most H0-separating directions on Ωd−1 by random
sampling.

(ii). The AD test performs just slightly better (0.0005) than CvM on all DGPs except Wat,
where AD notably improves CvM. In Wat, the gains for AD have average 0.0553
and IR [0.0002,0.2331]. AD test an edge against axial alternatives, dominating the
CCF09 test for all the DGPs considered (IR: [0,0.1085]).

(iii). The Rt test performs very similarly to CvM in all alternatives except Wat, where it
is clearly outperformed by the latter (IR: [−0.144,0.002]).

(iv). The Bakshaev test is slightly (−0.0026) outperformed by CvM in all alternatives
except vMF, where it behaves similarly to the latter (0.0002).

(v). Unimodal alternatives are well-detected by projected-ecdf tests: (a) the CvM, AD,
and Rt tests have very similar performance in their corresponding DGPs; (b) in the
vMF alternative, the optimal Rayleigh test is barely superior to the projected-ecdf
tests; e.g., its average power gain with respect to CvM is just 0.002.

(vi). The non-unimodal and non-axial alternative SC is well-detected by the AD test. It
outperforms the rest of tests in the majority of situations (especially n = 100,200).

(vii). The axial alternative Wat is much harder to detect by projected-ecdf tests. Their
performance is consistently below the Bingham test, whose average power gain
with respect to AD is 0.253, a sharp contrast with the situation in the vMF alterna-
tive.

(viii). Local asymptotic optimalities have very small effect sizes, and many are actually
undetected for the settings considered in the study. Indeed, the AD test is among
the most powerful tests in most of the CvM and Rt alternatives. This result can be
explained by several factors: (a) the very small effect sizes of local optimalities;
(b) the numerical inaccuracy on sampling exactly (5.58); (c) the limitation of the
explored values for κ and n; (d) the Monte Carlo noise.

(ix). The Rayleigh and Ajne tests perform really similarly. So do the Bingham and Giné’s
Gn tests. Even in the vMF and Wat alternatives, where Rayleigh and Bingham are
respectively the optimal tests, the power difference is minimal.
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(x). Overall, the qualitative behaviour of all the tests except Bingham and Giné’s Gn is
highly similar, a reflection of (v) and (vi).

(xi). Though all alternatives are harder to detect when d increases, SC and especially
Wat have the larger power dropouts in their optimal tests.

Based on the previous conclusions, we regard the AD test as a reference test of uniformity
on Ωd−1 due to its omnibussness, great performance against unimodal alternatives, and
relative robustness against non-unimodal alternatives.

We conclude by pointing that (viii) and (ix) may seem surprising, yet they had been
partially reported in the literature. Related with (viii), Stephens [126] studied the
powers of Ajne and Watson tests under the Rt alternative with t = 1/2 and different
values of κ, finding that Ajne was only barely more powerful (see his Table 3). With
respect to (ix), Figueiredo and Gomes [60] compared the Bingham and Giné’s Gn tests
under different dimensions, sample sizes, and concentrations, finding no remarkable
differences between them (see their Table 3). Figueiredo [59] conducted a similar
analysis for the Rayleigh and Ajne tests with identical conclusions (see her Tables 2–4).
A simulation experiment in the Appendix gives insights about (viii).

Table 5.4.: Empirical powers for the investigated uniformity tests on Ω1 for n = 100 and κ = 0.50.
Boldfaces indicate the tests whose empirical powers are not significantly smaller
than the largest empirical power for each row, according to a McNemar’s exact
one-sided test Fay [55] performed at 5% significance level.

DGP d Rayleigh Bingham Ajne Giné CCF09 Bakshaev CvM AD Rt

CvM 2 0.2773 0.1004 0.2793 0.1021 0.2653 0.2879 0.2897 0.2918 0.2879
3 0.2367 0.0794 0.2377 0.0801 0.2083 0.2424 0.2424 0.2434 0.2414
4 0.2064 0.0692 0.2068 0.0696 0.1839 0.2098 0.2095 0.2104 0.2087

11 0.1326 0.0554 0.1327 0.0554 0.1049 0.1328 0.1328 0.1328 0.1328

AD 2 0.9002 0.4463 0.9071 0.4776 0.9019 0.9234 0.9271 0.9319 0.9225
3 0.8507 0.3110 0.8542 0.3213 0.8037 0.8670 0.8670 0.8710 0.8637
4 0.8092 0.2378 0.8113 0.2426 0.7497 0.8218 0.8209 0.8241 0.8180

11 0.6201 0.1021 0.6204 0.1023 0.4625 0.6241 0.6234 0.6246 0.6224

Rt 2 0.4020 0.1282 0.4014 0.1303 0.4124 0.4175 0.4203 0.4225 0.4213
3 0.3362 0.0820 0.3360 0.0833 0.3127 0.3413 0.3413 0.3414 0.3413
4 0.2902 0.0686 0.2903 0.0694 0.2756 0.2924 0.2924 0.2923 0.2922

11 0.1744 0.0543 0.1745 0.0544 0.1410 0.1742 0.1742 0.1740 0.1744

vMF 2 0.8867 0.0634 0.8859 0.0634 0.8451 0.8837 0.8816 0.8769 0.8823
3 0.6648 0.0558 0.6638 0.0556 0.5895 0.6606 0.6606 0.6560 0.6628
4 0.4806 0.0530 0.4798 0.0532 0.4247 0.4774 0.4779 0.4749 0.4791

11 0.1265 0.0503 0.1264 0.0503 0.1031 0.1261 0.1262 0.1259 0.1264

SC 2 0.9843 0.3243 0.9841 0.3212 0.9891 0.9910 0.9918 0.9922 0.9919
3 0.8716 0.1489 0.8711 0.1480 0.8545 0.8858 0.8858 0.8887 0.8836
4 0.7111 0.0933 0.7104 0.0933 0.6767 0.7192 0.7187 0.7202 0.7170

11 0.2092 0.0526 0.2092 0.0525 0.1612 0.2086 0.2088 0.2083 0.2090

W 2 0.0538 0.9785 0.0547 0.9773 0.5358 0.3560 0.4916 0.6396 0.4946
3 0.0536 0.8850 0.0543 0.8823 0.2031 0.1643 0.1643 0.2570 0.1265
4 0.0526 0.6728 0.0529 0.6698 0.1065 0.0980 0.0916 0.1216 0.0769

11 0.0504 0.0832 0.0505 0.0831 0.0515 0.0523 0.0518 0.0526 0.0512
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5.4 Real data applications

We illustrate the practical relevance of the proposed tests with three real data applica-
tions in astronomy. The first two build on previous applications in Ω1 and Ω2, while
the third is a novel case study. The end-to-end reproduction of the three applications
is possible trough the sphunif package García-Portugués and Verdebout [65]. The
asymptotic p-values were computed using Algorithm 5.

5.4.1 Sunspots

Sunspots are darker regions of the Sun generated by local concentrations of the solar
magnetic field. They appear in a rotationally symmetric fashion emerging due to the
wrapping of the field by the Sun’s differential rotation Babcock [10]. As this wrapping
advances, sunspots progressively span at lower latitudes until approximately 11 years,
when the field reverses its polarity and wrapping is restarted, constituting a solar cycle.
Non-rotationally symmetric patterns may be triggered by “preferred zones of occurrence”
where sunspots had originated previously Babcock [10, pages 574 and 581].

The significance of non-rotationally symmetric patterns was investigated in García-
Portugués et al. [68] using processed data from the Debrecen photoheliographic sunspot
catalogue Baranyi et al. [12] and Győri et al. [75]. Their analysis considered tests for
rotational symmetry that inspect the circular uniformity of the longitudes of sunspots
with respect to an axis θ. However, due to the non-omnibusness of the tests employed
in their analysis, non-rotationally symmetric deviations for which the tests are not
consistent may have been undetected.

To further investigate the rotational symmetry of sunspots, we applied the CvM, AD,
and Rt tests to the longitudes about the north pole θ = (0,0,1)′ of the 5373 sunspots
observed in the cycle 23 (1996–2008), obtaining the asymptotic p-values 0.3595, 0.8393,
and 0.3285, respectively. We repeated the analysis for the cycle 22 (1986–1996; 4551
sunspots), obtaining the asymptotic p-values 0.0067, 0.0139, and 0.0091. The outcomes
of the analysis are coherent with those in García-Portugués et al. [68], where the p-values
of a non-omnibus test for rotational symmetry about θ are 0.2710 and 0.0103 for the
cycles 23 and 22, respectively. Therefore, our analysis shows that these outcomes hold
when omnibus tests are used and highlights the varying behaviour of different cycles.
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5.4.2 Long-period comets

Orbits of celestial bodies, such as planets and comets, have attracted scientists’ attention
for a long time. [17] already discussed whether the clustering of the planets’ orbits
about the ecliptic, nowadays explained by their origin in the protoplanetary disk, could
have happened “by chance”. The study of comet orbits has been more intricate. Long-
period comets (with periods larger than 200 years) are thought to arise from the roughly
spherical Oort cloud, containing icy planetesimals that were ejected from protoplanetary
disks by giant planets. These icy planetesimals became heliocentric comets when their
orbits were affected by random perturbations of passing stars and the galactic tide (see,
e.g., Sections 5 and 7.2 in Dones et al. [47] and references therein). This conjectured
past of the Oort cloud explains the nearly isotropic distribution of long-period comets
[evidenced, e.g., in 140], sharply contrasting with the ecliptic-clustered orbits of short-
period comets originating in the flattened Kuiper Belt.

As illustrated in [137] and [90], assessing the uniformity of orbits can be formalized
as testing the uniformity on the sphere of their directed unit normal vectors. An orbit
with inclination i ∈ [0, π] and longitude of the ascending node Ω ∈ [0,2π) (see [90]) has
directed normal vector (sin(i) sin(Ω),− sin(i) cos(Ω), cos(i))′ to the orbit’s plane. The
sign of the vector reflects if the orbit is prograde or retrograde.

We applied the CvM, AD, and Rt tests to revisit [137]’s testing of the uniformity of
the planets’ orbits with updated measurements on (i,Ω). Unsurprisingly, uniformity is
rejected with null Monte Carlo p-values. More interesting is the analysis of long-period
comets, for which we:

i) considered the 208 long-period elliptic-type single-apparition comets, as of 7th of
December 2007, used in Cuesta-Albertos et al. [37].

ii) performed the same search in [37], restricted to comets with distinct (i,Ω) up to
the second digit, obtaining 438 comets as of 7th May 2020. The source of both
datasets is the JPL Small-Body Database Search Engine (https://ssd.jpl.nasa.

gov/sbdb_query.cgi).

The dynamic nature of the database, with additions of first-ever observed comets and
updates on the data for former comets, generated the noticeable differences between (i)
and (ii).

In (i), the asymptotic p-values for the CvM, AD, and Rt tests are, respectively, 0.1011,
0.0744, and 0.1207. Therefore, uniformity is not rejected at significance level 5% and the
outcome is in agreement with the analysis in [37]. In (ii), however, the same tests gave
asymptotic p-values 0.0041, 0.0023, and 0.0052. Therefore, contrarily to the analysis
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Table 5.5.: Asymptotic p-values of the CvM, AD, and Rt tests when applied to the crater locations
of the planets and moons with more than 30 IUA-named craters.

Class Name Craters CvM AD Rt

Planets Mars 1127 0 0 1 ⋅ 10−8

Venus 881 0.2726 0.2749 0.2806
Mercury 409 0 0 0

Dwarf Ceres 115 0.0133 0.0127 0.0150

Moons Moon 1578 0 1 ⋅ 10−8 1 ⋅ 10−8

Callisto 141 0 0 3 ⋅ 10−8

Ganymede 129 0.0132 0.0087 0.0184
Europa 41 0.0010 0.0009 0.0010

Saturn’s Rhea 128 0.2793 0.2954 0.2705
moons Dione 73 0.5195 0.4989 0.5418

Iapetus 58 0.0034 0.0037 0.0032
Enceladus 53 1 ⋅ 10−7 2 ⋅ 10−8 5 ⋅ 10−7

Tethys 50 0.7910 0.8425 0.7199
Mimas 35 0.1701 0.1704 0.1754

in (i), significant non-uniformity is detected in the orbits of long-period comets with
updated records. The observational bias of long-period comets, as described in [90],
may explain the leading rejection cause.

5.4.3 Craters on Rhea

Craters are roughly circular depressions resulting from impact or volcanic activity.
Impact craters give valuable insights on the planetary subsurface structure, past geologic
processes, resurfacing history, and relative surfaces ages Barlow [13]. Indeed, crater
counting is the primary method for determining remotely the relative age of a planetary
surface; see Fassett [54] for a review on crater statistics and their applications.

Short-period comets, especially dominant of the cratering process in the outer Solar
System, are among the main generators of non-isotropic impact cratering (see Zahnle et
al. [141] and references therein). To evaluate the rareness of uniform crater distributions
in the Solar System, we analysed the named craters from the Gazetteer of Planetary
Nomenclature database (https://planetarynames.wr.usgs.gov/AdvancedSearch) of the
International Astronomical Union (IUA). As of May 31st 2020, the database contained
5235 craters for 44 bodies. Filtering for non-asteroid bodies with at least 30 craters
results in 4818 observations on Ω2 containing the planetocentric coordinates of the
craters’ centers. Table 5.5 reveals that, for this dataset, crater uniformity is rejected
at significance level 5% in all bodies except Venus and four Saturnian moons. These
few non-rejections, however, are suspected to be driven by a uniformity bias in the
data: well-separated craters that cover the body are likely more probable to be named
than those that cluster (see Figure 5.3). Bypassing this source limitation requires from
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Table 5.6.: Asymptotic p-values of the CvM, AD, and Rt tests when applied to [78]’s Rhea crater
database.

Diameter Craters CvM AD Rt

15km < D < 20km 867 0.1176 0.0721 0.1856
D > 20km 1373 2 ⋅ 10−9 0 3 ⋅ 10−9

D > 15km 2240 2 ⋅ 10−8 0 3 ⋅ 10−8

detailed crater databases, available only for certain bodies such as Venus (see, e.g., the
analysis in García-Portugués et al. [70]) and Rhea.

We investigate in detail the crater distribution of Rhea, the second most cratered body
in Table 5.5 with a uniform-like distribution. Rhea orbits Saturn synchronously, thus it
has a leading hemisphere that always faces forward into the orbit motion and a trailing
hemisphere that faces backward (see Figure 5.3). Preferred cratering on the leading
hemisphere is expected from heliocentric impactors, whereas planetocentric impactors
weakly favour the centers of the leading and trailing hemispheres, referred to as apex
and antapex, respectively (see Hirata [78] and references therein). Both populations
of impactors may therefore induce a non-uniform crater distribution. Hirata [78]
found apex-antapex asymmetry for large craters (diameter D larger than 20km) and
no apparent apex-antapex asymmetry in small craters (15km < D < 20km). We assess
the significance of these findings, for the stronger hypothesis of uniformity, from his
database of 2440 craters with D > 15km. (The full database contains 3596 craters, but
[78]’s analysis only considers those with D > 15km as the detection of almost all craters
above this diameter threshold is guaranteed from the available imagery of Rhea.)

The tests in Table 5.6 reveal that uniformity:

i) is not rejected for small craters (15km <D < 20km) at significance level 5%.

ii) is emphatically rejected for large craters (D > 20km); (iii) is emphatically rejected
for all reliable-detected craters (D > 15km).

The non-rejection in (i) may be attributed to Rhea’s “crater saturation” Squyres et al.
[124] or to the dominance of planetocentric impactors Hirata [78], as the largest craters
generated by the debris ejected from large crater impacts is D ≈ 20km Alvarellos et
al. [5]. In turn, the rejections in (ii) and (iii) may be explained by the predominantly
heliocentric origins of the impactors associated to large craters Hirata [78].

5.4 Real data applications 141



Figure 5.3.: Craters on Rhea. The upper (lower) row shows the leading (trailing) hemisphere. The north
and south poles on each hemisphere correspond to the usual top and bottom positions. From
left to right, the columns represent the locations of craters for the IUA-named database,
and the [78] database for 15km < D < 20km and D > 20km, respectively. The locations
are superimposed over the PIA 18438 map produced by NASA/JPL-Caltech/Space Science
Institute/Lunar and Planetary Institute using data from the Cassini spacecraft.
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Future work 6
This research leaves several open problems, some of them were posed from its beginning
and other have been arisen through its development. We summarise now some of these
interesting issues that remain open for future research. We divide them according to the
topic that they tackle:

- Open problems linked to outlier detection:

a) In this work, we focus on high-dimensional outlier analysis (see Chapters 3
and 4), but it still remains the extension to the infinite-dimensional scenario
which seems completely feasible.

b) Extension to other families of distributions (such as generalized elliptical fam-
ilies) and even to the non-parametric case. In those cases the unidimensional
procedure could be, for instance, based on bootstrap or on kernel density
functions.

- Other applications of sequential analysis:

a) As we exposed in the Introduction, the sequential analysis can be applied to
other type of problems with the possibility of developing a general theory
which can include different tests (even in the functional case). These prob-
lems should have some type of linear invariance such as those proposed in
[32] to [39] (excluding Cuesta-Albertos et al. [35]).

- Open problems related to uniformity tests on the hypersphere:

a) A very clear alternative research direction is to proceed à la Escanciano [50]
and replace νd−1 by Fn,γ in (5.2). This approach replaces the analytically
challenging integration on Ωd−1 by a sum of n addends, thought, it would
have less explicit connection with dimension-specific tests. Moreover if we
suppose that the calculations are made with the exact expressions of the
statistics (as in (5.15)) and fix d, we would replace a test with complexity
O(n2) by one with O(n3). However, if we admit that the expressions of the
statistics can be approximated, the complexities will depend on how these
approximations are made.
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b) Another alternative is to replace the CvM norm in (5.3) by the “3-point CvM
statistic” of Feltz and Goldin [58].

c) As we mentioned in Subsection 5.1.2, Proposition 5.1.5 allows to construct
new uniformity tests based on determined choices of W . For instance, the
consideration of Wa,b(x) ∶= Ix(a, b), where a, b are strictly positive constants,
generates a flexible and fairly general two-parameter family of uniformity
tests on Ωd−1, although with somehow challenging forms for ψWd−1.

This is just one among the many W -specific instances of PWn,d−1 that could
be constructed. Moreover, the extension to higher dimensions of other well-
known tests could be studied.

d) Goodness-of-fit testing of non-uniform distributions on Ωd−1 is possible, yet
challenging, by determining the proper substitute for Fd−1 in (5.2).

e) Bakshaev [11] proposed a uniformity test for which he only obtained the
asymptotic distribution in dimensions 2 and 3 (and not explicitly). The
fact that this test belongs to the family introduced here (see Remark 5.1.8)
makes us consider the possibility of obtaining an explicit expression for this
distribution in any dimension.
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[12]T. Baranyi, L. Győri, and A. Ludmány, “On-line tools for solar data compiled at the
Debrecen observatory and their extensions with the Greenwich sunspot data”, Sol. Phys.,
vol. 291, no. 9, pp. 3081–3102, 2016 (cit. on p. 138).

[13]N. G. Barlow, “Constraining geologic properties and processes through the use of impact
craters”, Geomorphology, vol. 240, pp. 18–33, 2015 (cit. on p. 140).

[14]V. Barnett and T. Lewis, Outliers in Statistical Data, ser. Wiley Series in Probability and
Statistics. Chichester: Wiley, 1994 (cit. on pp. xx, 4, 16).

145



[15]C. Becker and U. Gather, “The masking breakdown point of multivariate outlier identifica-
tion rules”, J. Amer. Statist. Assoc., vol. 94, no. 447, pp. 947–955, 1999 (cit. on pp. 14, 16,
72).

[16]R. J. Beran, “Testing for uniformity on a compact homogeneous space”, J. Appl. Probab,
vol. 5, no. 1, pp. 177–195, 1968 (cit. on pp. 22, 23, 131).

[17]D. Bernoulli, “Quelle est la cause physique de l’inclinaison des plans des orbites des
planètes par rapport au plan de l’équateur de la révolution du soleil autour de son axe; et
d’où vient que les inclinaisons de ces orbites sont différentes en elles”, in Recueil des pièces
qui ont remporté le prix de l’Académie Royale des Sciences, A. R. des Sciences, Ed., vol. 3,
Paris: Académie Royale des Sciences, 1735, pp. 93–122 (cit. on p. 139).

[18]P. J. Bickel and E. Levina, “Regularized estimation of large covariance matrices”, Ann.
Statist., vol. 36, no. 1, pp. 199–227, 2008 (cit. on p. 18).

[19]C. Bingham, “An antipodally symmetric distribution on the sphere”, Ann. Statist., vol. 2,
no. 6, pp. 1201–1225, 1974 (cit. on pp. 26, 125, 133).

[20]E. Bingham and H. Mannila, “Random projection in dimensionality reduction: Applications
to image and text data”, in Proceedings of the Seventh ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, New York, NY, USA: Association for Computing
Machinery, 2001, pp. 245–250 (cit. on pp. xvii, 1).

[21]D. A. Bodenham and N. M. Adams, “A comparison of efficient approximations for a
weighted sum of chi-squared random variables”, Stat. Comput., vol. 26, no. 4, pp. 917–
928, 2016 (cit. on p. 131).

[22]G. E. Box, A. Luceño, and M. C. Paniagua-Quinones, Statistical Control by Monitoring and
Adjustment. Hoboken, New Jersey: John Wiley & Sons, 2009 (cit. on p. 28).

[23]M. Buckley and G. Eagleson, “An approximation to the distribution of quadratic forms in
normal random variables”, Aust. N. Z. J. Stat., vol. 30A, no. 1, pp. 150–159, 1988 (cit. on
p. 131).

[24]T. Cai and W. Liu, “Adaptive thresholding for sparse covariance matrix estimation”, J.
Amer. Statist. Assoc., vol. 106, no. 494, pp. 672–684, 2011 (cit. on p. 18).

[25]T. Cai, J. Fan, and T. Jiang, “Distributions of angles in random packing on spheres”, J.
Mach. Learn. Res., vol. 14, pp. 1837–1864, 2013 (cit. on pp. xxiii, xxiv, 7).

[26]H. Cardot, A. Mas, and P. Sarda, “CLT in functional linear regression models”, Probab.
Theory and Related Fields, vol. 138, no. 3-4, pp. 325–361, 2007 (cit. on p. 19).

[27]A. Cerioli, “Multivariate outlier detection with high-breakdown estimators”, J. Amer. Statist.
Assoc., vol. 105, no. 489, pp. 147–156, 2010 (cit. on pp. 14, 17).

[28]A. Cerioli, M. Riani, and A. C. Atkinson, “Controlling the size of multivariate outlier tests
with the mcd estimator of scatter”, Stat. Comput., vol. 19, no. 3, pp. 341–353, 2009 (cit. on
pp. 14, 72).

[29]S. Chang, P. C. Cosman, and L. B. Milstein, “Chernoff-type bounds for the gaussian error
function”, IEEE Trans. Commun., vol. 59, no. 11, pp. 2939–2944, 2011 (cit. on p. 48).

146 Bibliography



[30]H. Cramér and H. Wold, “Some theorems on distribution functions”, J. Lond. Math. Soc.,
vol. 11, no. 4, pp. 290–294, 1936 (cit. on pp. xvii, 1).
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Appendix A
A.1 Additional tables of Chapter 3

Table A.1.: Estimation of the probability of declaring as an outlier a vector such that ∥X∥Σ = Cd
n,

for different values of n, d and Σ = Σd
i with i = 1, . . . ,4 when we use the values of a

and b computed with Proposition 3.5.4. We also show the sample mean of K. This
table is Table 3.6 expanded to n = 100,500 and d = 5.

d n k1
I k̂1 Σd1 k̂2 Σd2 k̂3 Σd3 k̂4 Σd4

5 50 50 58 0.0534 51 0.0516 73 0.0638 51 0.0482
100 119 0.0490 104 0.0524 147 0.0734 101 0.0508

100 50 58 0.0544 52 0.0570 76 0.0698 50 0.0490
100 120 0.0536 104 0.0622 147 0.0702 100 0.0528

500 50 58 0.0534 54 0.0578 75 0.0644 50 0.0588
100 122 0.0486 106 0.0502 152 0.0734 100 0.0542

50 50 50 49 0.0544 51 0.0528 190 0.0492 50 0.0448
100 101 0.0504 103 0.0534 379 0.0510 100 0.0508

100 50 51 0.0484 49 0.0484 189 0.0466 50 0.0524
100 100 0.0502 97 0.0546 374 0.0478 100 0.0492

500 50 50 0.0518 50 0.0572 190 0.0504 52 0.0518
100 100 0.0454 100 0.0522 392 0.0504 96 0.0510

100 50 50 51 0.0500 50 0.0460 262 0.0474 50 0.0470
100 101 0.0498 99 0.0478 516 0.0466 101 0.0542

100 50 50 0.0552 49 0.0500 260 0.0474 50 0.0514
100 99 0.0482 100 0.0510 546 0.0458 99 0.0456

500 50 50 0.0562 49 0.0496 252 0.0482 50 0.0556
100 101 0.0572 100 0.0508 525 0.0472 99 0.0500

500 50 50 51 0.0476 49 0.0498 548 0.0416 51 0.0498
100 99 0.0556 98 0.0514 1184 0.0484 102 0.0552

100 50 50 0.0514 49 0.0528 589 0.0474 50 0.0492
100 99 0.0502 100 0.0578 1195 0.0470 101 0.0512

500 50 50 0.0488 50 0.0564 578 0.0496 51 0.0490
100 100 0.0490 99 0.0536 1185 0.0480 99 0.0498

1000 50 50 50 0.0494 50 0.0520 846 0.0500 50 0.0510
100 101 0.0530 101 0.0515 1610 0.0415 96 0.0525

100 50 50 0.0430 49 0.0510 824 0.0502 51 0.0510
100 103 0.0400 101 0.0515 1744 0.0430 111 0.0470

500 50 49 0.0496 51 0.0468 823 0.0456 50 0.0500
100 98 0.0520 101 0.0450 1696 0.0465 96 0.0540
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Table A.2.: Estimation of the probability of declaring as an outlier a vector such that ∥X∥Σ = rCd
n

with r = 1.2,2. We also show the sample mean of K. This table expands Table 3.7
to n = 100,500 and d = 5 and its description applies.

d n ∥X∥Σ k1
I k̂I Id k̂1 Σd1 k̂2 Σd2 k̂3 Σd3 k̂4 Σd4

5 50 1.2Cdn 50 15 0.7698 28 0.5356 21 0.6414 25 0.6056 15 0.7458
100 18 0.8472 41 0.6162 30 0.7206 34 0.7010 19 0.8488

2Cdn 50 3 0.9727 5 0.9336 4 0.9566 4 0.9410 3 0.9714
100 3 0.9887 6 0.9648 4 0.9742 5 0.9706 3 0.9860

100 1.2Cdn 50 15 0.7654 28 0.5184 22 0.6330 24 0.6072 15 0.7624
100 18 0.8588 43 0.6106 30 0.7256 33 0.7062 19 0.8452

2Cdn 50 3 0.9657 5 0.9334 4 0.9590 4 0.9454 3 0.9722
100 3 0.9887 5 0.9584 4 0.9738 5 0.9710 3 0.9860

500 1.2Cdn 50 15 0.7684 28 0.5202 20 0.6452 24 0.6016 16 0.7490
100 18 0.8500 43 0.6164 31 0.7320 34 0.7024 19 0.8458

2Cdn 50 3 0.9673 5 0.9324 4 0.9602 4 0.9444 3 0.9688
100 3 0.9900 5 0.9572 4 0.9758 5 0.9704 3 0.9846

50 50 1.2Cdn 50 43 0.3124 44 0.2816 43 0.3020 148 0.2070 44 0.3188
100 82 0.3638 84 0.3112 82 0.3460 287 0.2122 79 0.3590

2Cdn 50 8 0.9220 9 0.9146 8 0.9230 34 0.7224 8 0.9226
100 10 0.9463 11 0.9470 10 0.9526 49 0.7786 10 0.9576

100 1.2Cdn 50 44 0.3196 45 0.2862 44 0.2974 149 0.2016 44 0.3076
100 81 0.3672 84 0.3102 84 0.3512 284 0.2192 83 0.3648

2Cdn 50 8 0.9247 9 0.9120 8 0.9192 34 0.7112 8 0.9286
100 10 0.9560 11 0.9414 10 0.9562 48 0.7820 10 0.9570

500 1.2Cdn 50 44 0.3008 44 0.2752 42 0.3090 149 0.1950 43 0.2930
100 81 0.3556 84 0.3106 80 0.3484 289 0.2170 79 0.3714

2Cdn 50 8 0.9240 9 0.9114 8 0.9220 33 0.7296 8 0.9190
100 10 0.9580 12 0.9444 10 0.9508 50 0.7752 10 0.9536

100 50 1.2Cdn 50 44 0.3018 46 0.2854 45 0.2890 218 0.1910 45 0.2956
100 84 0.3354 87 0.3138 83 0.3454 418 0.2034 83 0.3492

2Cdn 50 9 0.9163 9 0.9152 9 0.9136 49 0.6960 9 0.9156
100 11 0.9513 12 0.9440 11 0.9452 73 0.7376 11 0.9420

100 1.2Cdn 50 44 0.2874 45 0.2750 45 0.2874 219 0.1836 44 0.2834
100 83 0.3448 86 0.3100 84 0.3310 406 0.1948 82 0.3392

2Cdn 50 8 0.9213 9 0.9114 9 0.9106 47 0.6922 8 0.9116
100 11 0.9427 12 0.9454 11 0.9494 72 0.7546 11 0.9526

500 1.2Cdn 50 44 0.2922 46 0.2838 44 0.2932 211 0.1960 45 0.2956
100 83 0.3312 87 0.3062 83 0.3368 410 0.1996 83 0.3398

2Cdn 50 8 0.9280 9 0.9156 9 0.9200 47 0.7036 8 0.9210
100 11 0.9513 12 0.9552 11 0.9512 74 0.7406 10 0.9466

500 50 1.2Cdn 50 46 0.2824 45 0.2818 45 0.2790 488 0.1958 45 0.2808
100 86 0.3324 88 0.3106 87 0.3174 932 0.1912 88 0.3294

2Cdn 50 9 0.9007 9 0.9124 9 0.9106 106 0.6764 9 0.9142
100 11 0.9493 11 0.9426 11 0.9520 164 0.7196 11 0.9488

100 1.2Cdn 50 45 0.2876 47 0.2790 46 0.2802 487 0.1828 44 0.2852
100 83 0.3270 86 0.3074 84 0.3202 916 0.1826 86 0.3266

2Cdn 50 9 0.9173 9 0.9118 9 0.9174 106 0.6782 9 0.9128
100 11 0.9437 12 0.9450 11 0.9446 166 0.7192 11 0.9428

500 1.2Cdn 50 46 0.2900 44 0.2824 46 0.2728 480 0.1748 45 0.2758
100 83 0.3366 86 0.3006 85 0.3254 918 0.1856 87 0.3324

2Cdn 50 9 0.9207 9 0.9168 9 0.9228 105 0.6756 9 0.9200
100 11 0.9503 11 0.9462 11 0.9476 166 0.7108 11 0.9482

1000 50 1.2Cdn 50 45 0.2753 45 0.2840 45 0.2815 660 0.1810 46 0.2755
100 86 0.3140 84 0.3095 86 0.3255 1367 0.1875 83 0.3215

2Cdn 50 9 0.9127 9 0.9147 9 0.9193 152 0.6867 9 0.9123
100 11 0.9430 11 0.9447 11 0.9443 237 0.7043 12 0.9463

100 1.2Cdn 50 46 0.2867 46 0.2682 46 0.2828 687 0.1778 46 0.2688
100 85 0.3320 86 0.3250 88 0.3100 1300 0.1875 85 0.3275

2Cdn 50 9 0.9053 9 0.9137 9 0.9123 155 0.6697 9 0.9093
100 12 0.9460 11 0.9427 11 0.9420 227 0.7250 11 0.9523

500 1.2Cdn 50 45 0.2833 47 0.2828 47 0.2730 672 0.1882 45 0.2920
100 88 0.3287 87 0.3210 85 0.3145 1303 0.2025 82 0.3270

2Cdn 50 9 0.9083 9 0.9093 9 0.9123 152 0.6683 9 0.9057
100 12 0.9383 12 0.9397 11 0.9437 228 0.7227 11 0.9483
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Table A.3.: Estimation of the probability of declaring as an outlier a vector such that ∥X∥Σ = Cd
n,

for different values of n, d and Σ using a and b from Proposition 3.5.4 and kmax =
1/(1−F (b, t)+F (a, t)). We also show the sample mean of the required projections.
This table extends Table 3.8 to n = 100,500 and d = 5.

d n k1
I k̂I Id k̂1 Σd1 k̂2 Σd2 k̂3 Σd3 k̂4 Σd4

5 50 50 32 0.0334 33 0.0350 32 0.0320 34 0.0282 32 0.0326
100 64 0.0340 66 0.0298 65 0.0304 67 0.0292 64 0.0314

100 50 32 0.0314 33 0.0366 32 0.0344 34 0.0372 32 0.0366
100 64 0.0356 67 0.0288 63 0.0328 67 0.0256 63 0.0324

500 50 32 0.0344 33 0.0332 33 0.0328 34 0.0320 32 0.0338
100 64 0.0296 65 0.0312 64 0.0322 66 0.0258 64 0.0320

50 50 50 32 0.0300 33 0.0310 32 0.0306 38 0.0130 33 0.0326
100 65 0.0306 64 0.0364 63 0.0344 75 0.0106 64 0.0358

100 50 32 0.0298 33 0.0322 32 0.0322 38 0.0110 32 0.0352
100 64 0.0334 64 0.0346 63 0.0342 75 0.0096 63 0.0298

500 50 32 0.0350 32 0.0326 32 0.0328 38 0.0114 32 0.0328
100 64 0.0328 64 0.0312 64 0.0298 76 0.0090 64 0.0304

100 50 50 32 0.0310 32 0.0326 32 0.0318 40 0.0092 32 0.0268
100 64 0.0316 65 0.0280 64 0.0338 78 0.0066 64 0.0326

100 50 32 0.0334 32 0.0300 32 0.0336 39 0.0096 32 0.0340
100 64 0.0302 64 0.0326 64 0.0296 78 0.0068 64 0.0328

500 50 32 0.0302 32 0.0316 32 0.0292 40 0.0088 32 0.0364
100 63 0.0322 64 0.0330 63 0.0316 79 0.0062 64 0.0248

500 50 50 32 0.0316 32 0.0342 32 0.0304 43 0.0044 32 0.0350
100 64 0.0362 64 0.0324 64 0.0326 85 0.0054 64 0.0282

100 50 32 0.0288 32 0.0342 32 0.0300 42 0.0052 32 0.0306
100 64 0.0292 64 0.0320 64 0.0324 83 0.0042 64 0.0344

500 50 32 0.0330 32 0.0376 32 0.0342 42 0.0052 32 0.0306
100 64 0.0324 64 0.0362 64 0.0334 84 0.0060 64 0.0316

1000 50 50 32 0.0337 33 0.0340 33 0.0373 43 0.0053 32 0.0320
100 63 0.0322 63 0.0377 64 0.0337 86 0.0027 64 0.0247

100 50 32 0.0323 32 0.0267 32 0.0360 44 0.0040 32 0.0340
100 65 0.0321 64 0.0297 63 0.0373 86 0.0030 64 0.0297

500 50 33 0.0337 32 0.0340 32 0.0450 43 0.0047 32 0.0303
100 64 0.0314 64 0.0297 63 0.0330 87 0.0043 62 0.0370
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Table A.4.: Estimation of the probability of declaring as an outlier a vector such that ∥X∥Σ =
rCd

n, r = 1.2,2 when we truncate by kmax = 1/(1 − F (b, t) + F (a, t)). This table
expands Table 3.9 to n = 100,500 and d = 5 and its description applies.

d n ∥X∥Σ k1
I k̂I Id k̂1 Σd1 k̂2 Σd2 k̂3 Σd3 k̂4 Σd4

5 50 1.2Cdn 50 14 0.7376 21 0.4722 17 0.6130 20 0.5326 15 0.7220
100 15 0.7366 35 0.5724 27 0.7068 31 0.6620 19 0.8524

2Cdn 50 3 0.9726 5 0.9266 4 0.9588 5 0.9468 3 0.9728
100 3 0.9858 5 0.9626 4 0.9776 5 0.9734 3 0.9844

100 1.2Cdn 50 15 0.7388 21 0.4758 18 0.6012 21 0.5204 15 0.7282
100 15 0.7396 36 0.5598 28 0.6966 30 0.6752 18 0.8424

2Cdn 50 3 0.9742 5 0.9228 4 0.9586 4 0.9422 3 0.9704
100 3 0.9858 6 0.9650 4 0.9770 5 0.9698 3 0.9868

500 1.2Cdn 50 15 0.7370 21 0.4726 18 0.6068 21 0.5298 15 0.7240
100 15 0.7364 35 0.5702 26 0.7014 30 0.6688 19 0.8378

2Cdn 50 3 0.9730 5 0.9248 3 0.9556 4 0.9494 3 0.9726
100 3 0.9828 5 0.9630 4 0.9786 5 0.9710 3 0.9856

50 50 1.2Cdn 50 30 0.2126 31 0.2050 31 0.2104 38 0.0628 30 0.2118
100 57 0.2714 59 0.2338 59 0.2488 75 0.0690 59 0.2574

2Cdn 50 8 0.9186 9 0.9042 8 0.9182 23 0.5714 8 0.9198
100 10 0.9566 11 0.9434 10 0.9540 40 0.6504 10 0.9574

100 1.2Cdn 50 30 0.2164 30 0.1988 30 0.2062 38 0.0640 30 0.2042
100 59 0.2600 58 0.2240 57 0.2546 75 0.0654 58 0.2620

2Cdn 50 8 0.9272 9 0.9092 8 0.9194 23 0.5670 8 0.9228
100 10 0.9534 12 0.9404 11 0.9516 39 0.6638 10 0.9606

500 1.2Cdn 50 30 0.2062 30 0.2068 30 0.2156 37 0.0648 31 0.2030
100 58 0.2558 58 0.2286 58 0.2494 74 0.0708 58 0.2544

2Cdn 50 8 0.9258 9 0.9050 8 0.9132 23 0.5712 8 0.9190
100 10 0.9544 12 0.9400 10 0.9550 39 0.6710 10 0.9560

100 50 1.2Cdn 50 30 0.2014 31 0.2010 30 0.1986 39 0.0504 31 0.1956
100 58 0.2466 60 0.2256 59 0.2374 78 0.0466 59 0.2398

2Cdn 50 8 0.9184 9 0.9106 9 0.9106 27 0.4804 8 0.9172
100 11 0.9468 12 0.9368 11 0.956 46 0.5752 11 0.9432

100 1.2Cdn 50 31 0.1928 31 0.1962 31 0.2040 39 0.0514 31 0.2042
100 58 0.2334 60 0.2238 59 0.2340 78 0.0528 58 0.2372

2Cdn 50 9 0.9208 9 0.9094 9 0.9158 27 0.4932 8 0.9206
100 10 0.9462 12 0.9452 11 0.953 47 0.5694 11 0.9458

500 1.2Cdn 50 31 0.1972 30 0.1920 31 0.1936 39 0.0568 31 0.2024
100 59 0.2492 60 0.2262 58 0.2448 77 0.0566 58 0.2438

2Cdn 50 9 0.9214 9 0.9118 9 0.9142 27 0.4776 9 0.9180
100 11 0.9456 12 0.9522 11 0.947 47 0.5790 11 0.9484

500 50 1.2Cdn 50 31 0.1898 31 0.1844 31 0.1878 43 0.0260 31 0.1904
100 60 0.2198 60 0.2210 59 0.2134 84 0.0268 60 0.2244

2Cdn 50 9 0.9100 9 0.9116 9 0.9128 34 0.3262 9 0.9098
100 11 0.9430 12 0.9442 11 0.9496 64 0.3834 11 0.9468

100 1.2Cdn 50 30 0.1928 31 0.1946 31 0.1908 43 0.0292 31 0.1912
100 60 0.2248 60 0.2224 60 0.2196 84 0.0264 60 0.2260

2Cdn 50 9 0.9150 9 0.9120 9 0.9104 33 0.3416 9 0.9184
100 11 0.9458 11 0.9422 11 0.9418 62 0.4028 11 0.9464

500 1.2Cdn 50 31 0.1855 31 0.1910 31 0.1892 43 0.0306 31 0.1906
100 59 0.2268 60 0.2228 60 0.2142 85 0.0292 59 0.2178

2Cdn 50 9 0.9072 9 0.9054 9 0.9058 33 0.3358 9 0.9168
100 11 0.9468 11 0.9490 11 0.9494 63 0.3922 12 0.9504

1000 50 1.2Cdn 50 31 0.1950 31 0.1880 31 0.1797 44 0.0230 31 0.1993
100 58 0.2381 60 0.2307 60 0.2110 87 0.0227 59 0.2153

2Cdn 50 9 0.9160 9 0.9130 9 0.9120 36 0.2693 9 0.9097
100 11 0.9450 12 0.9380 11 0.9477 68 0.3363 11 0.9477

100 1.2Cdn 50 31 0.2021 31 0.1837 30 0.1913 44 0.0233 31 0.1883
100 61 0.2334 59 0.2293 60 0.2160 88 0.0217 59 0.2267

2Cdn 50 9 0.9057 9 0.9003 9 0.9060 36 0.2927 9 0.9133
100 11 0.9427 12 0.9490 11 0.9483 67 0.3347 11 0.9510

500 1.2Cdn 50 30 0.1923 31 0.1827 31 0.1907 43 0.0317 31 0.1827
100 61 0.2138 59 0.2247 61 0.2143 86 0.0243 59 0.2307

2Cdn 50 9 0.9080 9 0.9167 9 0.9093 35 0.2943 9 0.9030
100 12 0.9477 11 0.9493 11 0.9517 68 0.3373 11 0.9453

158 Appendix A

Appendix



A.2 Additional tables of Chapter 4

Table A.5.: Obtained values of (a, b) when Σ = Id for different values of n, d and k1
I and

Cd
n ≡ Cd

n(0.05). This is the counterpart of Table 4.1 for the non-robust version.

n = 50 n = 100 n = 500
k1
I = 50 k1

I = 100 k1
I = 50 k1

I = 100 k1
I = 50 k1

I = 100

d a b a b a b a b a b a b

5 0.0585 5.1122 0.0293 5.2463 0.0597 4.9761 0.0306 5.0557 0.0642 5.0333 0.0318 5.1007
50 0.0326 4.5159 0.0163 4.7797 0.0328 4.3838 0.0165 4.6543 0.0337 4.3975 0.0168 4.6273

100 0.0299 4.2508 0.0150 4.5520 0.0294 4.1322 0.0151 4.3927 0.0305 4.1120 0.0154 4.3485
500 0.0269 3.8995 0.0134 4.1358 0.0265 3.7599 0.0134 3.9849 0.0264 3.6948 0.0131 3.8957

1000 0.0260 3.7950 0.0130 4.0536 0.0258 3.6550 0.0132 3.8897 0.0260 3.5884 0.0130 3.7879

Table A.6.: Approximated values of bΣ for Σ = Σd
i with i = 1, . . . ,4, and different values of n

and d. The a’s are the values obtained in Table 4.1 for l1I = 50,100. The values of l̂11
are also shown.

n = 50 n = 100 n = 500
l1I=50 l1I=100 l1I=50 l1I=100 l1I=50 l1I=100

d Σ bΣ l̂11 bΣ l̂11 bΣ l̂11 bΣ l̂11 bΣ l̂11 bΣ l̂11

5 Σd1 5.0184 55 5.1241 108 4.9185 54 4.9781 107 5.0139 53 5.0735 109
Σd2 6.0112 52 6.3086 102 5.4728 47 5.6175 101 5.1618 50 5.2590 100
Σd3 6.0573 73 6.4004 157 5.4914 78 5.6877 161 5.1718 76 5.2804 156
Σd4 6.0346 49 6.3624 102 5.4755 51 5.6643 99 5.1693 50 5.2697 102

50 Σd1 5.0236 49 5.3996 99 4.6351 51 4.9236 97 4.4517 48 4.7039 100
Σd2 4.9995 50 5.4076 100 4.6284 48 4.9289 99 4.4522 48 4.6932 101
Σd3 5.1413 189 5.4932 389 4.6374 192 4.9504 384 4.4439 180 4.6858 381
Σd4 5.0236 51 5.3798 125 4.6194 49 4.9075 103 4.4520 51 4.7080 99

100 Σd1 4.7425 51 5.0891 101 4.3529 51 4.6494 93 4.1477 50 4.4083 99
Σd2 4.7425 50 5.1213 100 4.3538 52 4.6387 99 4.1471 49 4.4056 98
Σd3 4.8813 260 5.1857 541 4.3539 269 4.6494 525 4.1399 260 4.3691 530
Σd4 4.7523 48 5.1052 110 4.3497 51 4.6467 98 4.1458 49 4.3922 100

500 Σd1 4.3012 51 4.6556 100 3.9438 49 4.2325 99 3.7279 48 3.9533 102
Σd2 4.3244 48 4.6361 99 3.9701 49 4.2069 99 3.7421 51 3.9509 97
Σd3 4.3244 580 4.6946 1162 4.0248 590 4.2460 1180 3.7421 580 3.9143 1195
Σd4 4.3219 49 4.6166 100 3.9613 51 4.2216 101 3.7509 49 3.9475 102

1000 Σd1 4.2058 50 4.5254 100 3.8623 48 4.1146 101 3.6276 49 3.8192 98
Σd2 4.2272 50 4.5385 100 3.8442 48 4.1094 101 3.6236 50 3.8363 101
Σd3 4.3129 830 4.6166 1678 3.9221 805 4.1094 1610 3.6080 834 3.8168 1620
Σd4 4.2272 49 4.5385 102 3.8442 51 4.1094 100 3.6080 50 3.8326 101
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Table A.7.: Approximated values of bΣ for Σ = Σd
i with i = 1, . . . ,4, and different values of n

and d. The a’s are the values obtained in Table A.5 for k1
I = 50,100. The values of

k̂1
1 are also shown. This table is the non-robust counterpart of Table A.6.

n = 50 n = 100 n = 500
k1
I=50 k1

I=100 k1
I=50 k1

I=100 k1
I=50 k1

I=100

d Σ bΣ k̂1
1 bΣ k̂1

1 bΣ k̂1
1 bΣ k̂1

1 bΣ k̂1
1 bΣ k̂1

1

5 Σd1 5.0184 55 5.1241 108 4.9185 54 4.9781 107 5.0139 53 5.0735 109
Σd2 5.0727 52 5.1954 103 4.9281 53 5.0164 102 5.0309 53 5.0908 106
Σd3 5.0687 79 5.1814 161 4.9569 80 5.0360 154 5.0333 78 5.1004 160
Σd4 5.0727 50 5.2247 100 4.9617 51 5.0544 100 5.0285 51 5.1004 100

50 Σd1 4.5155 49 4.7796 99 4.3796 50 4.6453 98 4.3933 49 4.6271 100
Σd2 4.4896 50 4.7704 100 4.3796 49 4.6362 98 4.3972 49 4.6183 99
Σd3 4.4984 188 4.7611 390 4.3796 193 4.6453 386 4.3890 188 4.6228 380
Σd4 4.4984 51 4.7727 127 4.3833 49 4.6452 102 4.3954 50 4.6228 101

100 Σd1 4.2495 50 4.5343 100 4.1321 51 4.3799 94 4.1040 50 4.3443 99
Σd2 4.2507 50 4.5343 101 4.1319 51 4.3831 99 4.1115 49 4.3379 98
Σd3 4.2497 263 4.5166 540 4.1161 270 4.3585 527 4.1120 265 4.3316 529
Σd4 4.2466 49 4.5471 117 4.1241 51 4.3876 99 4.1118 50 4.3474 98

500 Σd1 3.8919 50 4.1353 100 3.7597 50 3.9772 99 3.6877 49 3.8948 103
Σd2 3.8919 49 4.1197 99 3.7563 51 3.9772 98 3.6877 51 3.8954 102
Σd3 3.8988 584 4.1277 1162 3.7595 594 3.9791 1183 3.6877 593 3.8806 1199
Σd4 3.8919 50 4.1197 99 3.7581 51 3.9808 99 3.6805 50 3.8955 103

1000 Σd1 3.7922 50 4.0427 100 3.6539 49 3.8745 102 3.5745 50 3.7806 97
Σd2 3.7949 50 4.0516 100 3.6532 49 3.8745 98 3.5849 50 3.7856 99
Σd3 3.7803 833 4.0378 1688 3.6549 816 3.8594 1618 3.5745 832 3.7732 1624
Σd4 3.7929 50 4.0477 101 3.6515 50 3.8859 98 3.5858 50 3.7875 101

Table A.8.: Estimation of the probability of declaring as an outlier a vector such that ∥X∥Σ = Cd
n

with the non-robust procedure, for n = 50 and several values of d and Σ. We also
show the sample means of Kn. This table is the non-robust version of Table 4.6.

d k1
I k̂1

I Id k̂1
1 Σd1 k̂1

2 Σd2 k̂1
3 Σd3 k̂1

4 Σd4

50 50 50 0.0464 50 0.0533 49 0.0491 188 0.0537 50 0.0473
100 96 0.0516 99 0.0528 98 0.0550 384 0.0519 100 0.0514

100 50 50 0.0478 50 0.0509 51 0.0529 270 0.0560 50 0.0538
100 101 0.0509 97 0.0504 100 0.0509 535 0.0484 100 0.0558

500 50 50 0.0517 49 0.0482 50 0.0491 591 0.0530 49 0.0527
100 99 0.0504 99 0.0512 99 0.0486 1175 0.0468 100 0.0500

1000 50 51 0.0517 50 0.0520 51 0.0522 824 0.0496 51 0.0553
100 101 0.0498 98 0.0533 102 0.0500 1653 0.0510 101 0.0492
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Table A.9.: Estimation of the probability of declaring as an outlier a vector such that ∥X∥Σ =
Cd

n. We also show the sample means of Ln. This table is Table 4.6 expanded to
n = 100,500 and its description applies.

d n l1I l̂1I Id l̂11 Σd1 l̂12 Σd2 l̂13 Σd3 l̂14 Σd4
50 50 50 51 0.0528 49 0.0571 49 0.0541 186 0.0668 50 0.0569

100 98 0.0560 99 0.0558 103 0.0553 366 0.0580 99 0.0572
100 50 50 0.0497 52 0.0528 50 0.0511 186 0.0566 49 0.0477

100 102 0.0478 101 0.0535 100 0.0535 382 0.0510 101 0.0539
500 50 50 0.0501 50 0.0537 50 0.0484 194 0.0537 50 0.0558

100 99 0.0533 99 0.0484 99 0.0492 387 0.0499 98 0.0487

100 50 50 49 0.0507 48 0.0496 50 0.0501 249 0.0628 50 0.0489
100 100 0.0538 101 0.0519 100 0.0526 526 0.0603 98 0.0494

100 50 50 0.0535 51 0.0496 48 0.0548 251 0.0560 49 0.0528
100 99 0.0479 99 0.0495 99 0.0490 508 0.0540 99 0.0481

500 50 50 0.0547 49 0.0538 50 0.0538 264 0.0573 50 0.0536
100 97 0.0557 98 0.0572 100 0.0523 516 0.0494 97 0.0507

500 50 50 49 0.0481 50 0.0507 50 0.0518 552 0.0628 50 0.0483
100 100 0.0520 102 0.0509 99 0.0545 1111 0.0589 101 0.0538

100 50 49 0.0543 50 0.0532 50 0.054 571 0.0588 50 0.0527
100 101 0.0522 102 0.0518 100 0.0511 1136 0.0549 99 0.0550

500 50 51 0.0508 50 0.0530 50 0.0502 596 0.0538 50 0.0506
100 103 0.0520 100 0.0540 102 0.0470 1199 0.0489 102 0.0505

1000 50 50 50 0.0496 50 0.0538 49 0.0534 790 0.0586 50 0.0500
100 100 0.0520 101 0.0476 102 0.0507 1601 0.0549 99 0.0553

100 50 49 0.0564 50 0.0556 50 0.0509 775 0.0599 50 0.0513
100 100 0.0516 101 0.0518 101 0.0534 1650 0.0545 101 0.0571

500 50 51 0.0588 50 0.0508 49 0.0536 830 0.0543 49 0.0539
100 100 0.0500 100 0.0529 98 0.0569 1688 0.0444 100 0.0568

Table A.10.: Estimation of the probability of declaring as an outlier a vector such that ∥X∥Σ =
rCd

n, r = 1.2,2 with the non-robust procedure with n = 50. We also show the
sample means of Kn. It is the non-robust version of Table 4.7.

d ∥X∥Σ krI k̂rI Id k̂r1 Σd1 k̂r2 Σd2 k̂r3 Σd3 k̂r4 Σd4

50 1.2Cdn 50 46 .2630 50 .2398 48 .2486 163 .1774 48 .2908
100 92 .2990 94 .2500 93 .2864 325 .1772 89 .2924

2Cdn 50 10 .9106 11 .8975 10 .9054 39 .6933 9 .9138
100 12 .9374 14 .9293 13 .9361 61 .7377 12 .9467

100 1.2Cdn 50 45 .2764 46 .2542 47 .2538 218 .1808 46 .2664
100 90 .2914 91 .2730 91 .2792 448 .1770 89 .2846

2Cdn 50 10 .9053 10 .8998 10 .9055 56 .6736 10 .9073
100 13 .9338 14 .9275 14 .9350 90 .7124 13 .9337

500 1.2Cdn 50 47 .2532 46 .2412 46 .2532 495 .1732 48 .2496
100 89 .2952 88 .2772 89 .2980 977 .1844 89 .2948

2Cdn 50 10 .9014 10 .8968 11 .8993 127 .6536 11 .8973
100 13 .9391 14 .9366 14 .9357 199 .6942 14 .9418

1000 1.2Cdn 50 46 .253 46 .261 49 .285 769 .158 48 .241
100 90 .277 95 .306 92 .262 1430 .194 96 .301

2Cdn 50 10 .8964 11 .8956 10 .8997 178 .6486 10 .9023
100 14 .9361 14 .9356 14 .9360 285 .6907 14 .9346
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Table A.11.: Estimation of the probability of declaring as an outlier a vector such that ∥X∥Σ =
rCd

n with r = 1.2,2, for several values of n, d and Σ. It is the expansion of part of
the Table 4.7 to n = 100 and n = 500. We also show the sample means of Ln.

d n ∥X∥Σ l1I l̂1.2I Id l̂1.21 Σd1 l̂1.22 Σd2 l̂1.23 Σd3 l̂1.24 Σd4

50 50 1.2Cdn 50 48 0.2378 48 0.2247 48 0.2338 163 0.1752 48 0.2333
100 93 0.2729 96 0.2412 95 0.2617 313 0.1867 92 0.2639

2Cdn 50 12 0.8817 13 0.8660 12 0.8830 47 0.6575 12 0.8912
100 16 0.9259 19 0.9061 16 0.9153 74 0.6985 16 0.9229

100 1.2Cdn 50 47 0.2618 48 0.2403 47 0.2530 163 0.1764 47 0.2626
100 89 0.3057 91 0.2731 88 0.2935 307 0.1968 88 0.3006

2Cdn 50 50 0.9101 11 0.8880 10 0.9009 40 0.6801 10 0.9053
100 12 0.9349 15 0.9257 13 0.9372 62 0.7393 13 0.9375

500 1.2Cdn 50 44 0.3079 45 0.2702 44 0.2897 152 0.1957 45 0.2991
100 82 0.3471 87 0.2985 84 0.3306 296 0.2054 82 0.3412

2Cdn 50 8 0.9193 9 0.9116 9 0.9185 35 0.7134 8 0.9205
100 10 0.9506 12 0.9391 11 0.9509 51 0.7658 10 0.9502

100 50 1.2Cdn 50 48 0.2235 49 0.2093 48 0.2146 223 0.1729 49 0.2191
100 97 0.2387 97 0.2236 95 0.2320 460 0.1723 96 0.2487

2Cdn 50 13 0.8829 13 0.8678 13 0.8734 70 0.6289 13 0.8743
100 18 0.9150 19 0.9081 18 0.9115 113 0.6738 18 0.9160

100 1.2Cdn 50 46 0.2501 47 0.2331 47 0.2527 218 0.1803 47 0.2571
100 90 0.2795 90 0.2605 91 0.2766 418 0.1832 90 0.2884

2Cdn 50 10 0.9009 11 0.8924 11 0.9019 56 0.6631 10 0.9003
100 13 0.9369 15 0.9251 14 0.9351 90 0.7050 14 0.9353

500 1.2Cdn 50 45 0.2930 46 0.2746 45 0.2863 209 0.1917 45 0.3002
100 84 0.3319 85 0.3080 85 0.3220 409 0.2026 84 0.3296

2Cdn 50 9 0.9240 9 0.9109 9 0.9134 49 0.6858 9 0.9182
100 11 0.9480 12 0.9379 11 0.9434 74 0.7329 11 0.9446

500 50 1.2Cdn 50 50 0.2160 48 0.2132 49 0.2168 518 0.1711 50 0.2198
100 97 0.2454 99 0.2375 96 0.2399 973 0.1761 97 0.2412

2Cdn 50 13 0.8771 13 0.8617 13 0.8780 150 0.6139 13 0.8726
100 18 0.9166 18 0.9185 18 0.9075 249 0.6513 18 0.9090

100 1.2Cdn 50 46 0.2647 47 0.2575 47 0.2569 474 0.1766 47 0.2558
100 91 0.2795 91 0.2810 90 0.2737 963 0.1821 91 0.2766

2Cdn 50 11 0.8985 11 0.8992 11 0.8981 124 0.6488 11 0.8949
100 14 0.9355 15 0.9307 14 0.9273 204 0.6901 14 0.9313

500 1.2Cdn 50 46 0.2690 46 0.2701 46 0.2831 483 0.1844 46 0.2709
100 89 0.3196 88 0.3139 87 0.3191 961 0.1954 86 0.3104

2Cdn 50 9 0.9089 9 0.9133 9 0.9137 114 0.6708 9 0.9113
100 12 0.9451 12 0.9421 12 0.9450 173 0.7119 12 0.9410

1000 50 1.2Cdn 50 49 0.2202 51 0.2136 49 0.2159 700 0.1632 49 0.2156
100 98 0.2470 97 0.2338 97 0.2429 1383 0.1616 96 0.2366

2Cdn 50 13 0.8797 13 0.8728 13 0.8729 214 0.6128 13 0.8674
100 19 0.9116 19 0.9134 19 0.9093 360 0.6551 19 0.9124

100 1.2Cdn 50 46 0.2545 46 0.2575 47 0.2536 651 0.1720 46 0.2583
100 92 0.2883 92 0.2828 91 0.2809 1373 0.1778 90 0.2835

2Cdn 50 11 0.8994 11 0.8986 11 0.8947 182 0.6508 10 0.8956
100 14 0.9315 15 0.9300 14 0.9300 283 0.6894 14 0.9288

500 1.2Cdn 50 45 0.2790 46 0.2726 46 0.2723 689 0.1823 45 0.2805
100 88 0.3172 85 0.3210 84 0.3213 1333 0.1963 86 0.3173

2Cdn 50 9 0.9143 9 0.9105 9 0.9136 154 0.6683 9 0.9080
100 12 0.9409 12 0.9412 12 0.9477 238 0.7128 12 0.9432
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Table A.12.: Proportion of outliers found in a clean data set for several covariance matrices.

MDP PCOut RP
n d Σd1 Σd2 Σd3 Σd4 Σd1 Σd2 Σd3 Σd4 Σd1 Σd2 Σd3 Σd4

50 50 .2460 .1372 .2509 .1348 .1118 .1026 .1082 .1043 .1077 .1160 .1326 .1095
500 .0884 .0579 .3748 .1291 .0963 .0974 .0964 .0946 .1104 .1104 .1368 .1099

1000 — — — — .0978 .1043 .0977 .0970 .1144 .1145 .1462 .1109

100 50 .2209 .0758 .0797 .0746 .1111 .1013 .1056 .1029 .1019 .1046 .1088 .1027
500 .0702 .0552 .2310 .0833 .0803 .0833 .0794 .0788 .1069 .1106 .1228 .1090

1000 — — — — .0813 .0809 .0806 .0784 .1128 .1121 .1249 .1116

Table A.13.: Samples contain 10% of real outliers. Columns show the proportion of them
correctly identified.

MDP PCOut RP
n d Σd1 Σd2 Σd3 Σd4 Σd1 Σd2 Σd3 Σd4 Σd1 Σd2 Σd3 Σd4

50 50 .2545 .1865 .2886 .1942 .2064 .1636 .1724 .1596 .2736 .2844 .2412 .2868
500 .0933 .0803 .1826 .1859 .1196 .1224 .1104 .1352 .1636 .1680 .1776 .1604

1000 — — — — .1136 .1312 .1184 .1248 .1440 .1452 .1612 .1592

100 50 .2241 .1282 .2581 .1320 .2736 .2360 .2482 .2376 .2812 .3020 .2310 .2986
500 .0747 .0935 .3330 .1419 .0996 .0964 .0990 .0952 .1636 .1638 .1584 .1760

1000 — — — — .0874 .0982 .0892 .0972 .1548 .1504 .1598 .1476

A.3 Additional tables and further simulations of Chapter 5

We perform next an independent simulation study to elucidate the reasons of the
somehow surprising conclusion (viii) in Section 5.3.2. The tests of the simulation study
in such section are benchmarked with respect to the Invariant Likelihood Ratio Test
(ILRT) for testing uniformity against the alternative (5.58). If f0 denotes the uniform
pdf on Ωd−1, the ILRT for testing uniformity against (5.58) for a specified 0 < κ < 1, that
is, for testing

H0 ∶ f = f0 vs. H1,κ ∶ f ∈ {fµ,κ ∶ µ ∈ Ωd−1} (A.1)

is the test that rejects for large values of the ILRT statistic:

Lκ ∶= ∫Ωd−1

n

∏
i=1
fµ,γ(Xi)ωd−1(dγ).

We focus on the simplest DGP (5.58) among CvM, AD, and Rt that admits a tractable
ILRT. This DGP is Rt with t = 1/2 for d = 2, therefore coinciding with [4]’s “semicircle

A.3 Additional tables and further simulations of Chapter 5 163



deviation”. In this setting, each sample observation can be parametrized as Xi =
(cos Θi, sin Θi)′ for Θi ∈ [0,2π) and fRt(z) = 1{z≥0} + 1/2. Thus the ILRT statistic
becomes

Lκ = ∫
2π

0

n

∏
i=1
gκ(Θi − θ)dθ =

2n
∑
j=1
∫
Ij

n

∏
i=1
gκ(Θi − θ)dθ =

2n
∑
j=1

n

∏
i=1
gκ(θj)`j ,

where gκ(ϕ) ∶= 1
2π {1 + κ (1{cos(ϕ)≥0} − 1

2)}, {Ij}2n
j=1 are certain intervals defined below,

and `j is the length of Ij and θj its midpoint. The intervals {Ij}2n
j=1 are constructed

by first augmenting the sample {Θi}ni=1 to {Θ̃i}2n
i=1, where Θ̃i = (Θi − π/2) mod 2π

and Θ̃i+n = (Θi + π/2) mod 2π for i = 1, . . . , n, and then setting Ij ∶= [Θ̃(j), Θ̃(j+1)),
j = 1, . . . ,2n, where Θ̃(2n+1) ∶= Θ̃(1) + 2π.

We consider M = 108 Monte Carlo replicates to reduce the Monte Carlo noise and
capture smaller power effects. We employ the tests considered in Section 5.3.2 (Ajne is
omitted since it coincides with Rt for t = 1/2) plus the ILRT for (A.1). We use sample size
n = 50 and the local deviations κ = 0.05k, k = 0, . . . ,20. As in Section 5.3.2, the statistics
are calibrated under the null hypothesis by Monte Carlo. The obtained empirical powers
are collected in Figures A.1 and A.2 and give the following conclusions:

(a). The optimality of the ILRT is verified and evidenced to be smaller than 10−3 for
the investigated κ’s (Figure A.1). Therefore, the power gap between the optimal
test for (A.1) and other tests is fairly small, as is also reflected in the virtual
equivalence of the powers shown in Figure A.2. The Monte Carlo noise explains
that the empirical power of Rt is larger than the power of the ILRT.

(b). The Rt test is locally equivalent to the ILRT for κ ≈ 0, both being indistinguishable
(at the 95% confidence) within the Monte Carlo noise until κ approaches 0.10. The
Rt test clearly outperforms the remaining tests except the ILRT.

(c). An apparently high number of Monte Carlo replicates such as 106 is still insufficient
to fully capture optimalities in the investigated DGP. We conjecture this is a
prevalent issue with all the alternatives (5.58) investigated in Section 5.3.2.

(d). Unsurprisingly, the Bingham and Giné tests are blind against this alternative and
have the nominal significance level as power. A difference in power is evidenced
for the Rayleigh and Ajne test (here acting as the Rt test), yet again it is fairly
small.

We conclude mentioning that this kind DGP was already considered in Stephens [126].
In particular, his Table 3 compares the powers of Ajne, Watson, and Kuiper [92] tests
for the circle at significance level 10% using 5000 Monte Carlo replicates. However, his
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study does not show that the Ajne test is significantly (with a 95% confidence) more
powerful than the competing tests for this alternative.
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Figure A.1.: Difference of empirical powers with respect to the ILRT for different deviations κ. The
dashed lines represent the 99% confidence interval about the ILRT power. For κ = 0, the
testing problem (A.1) is undefined, and its power is replaced by the significance level, 5%.
The vertical axis is on the scale 10−4.
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Figure A.2.: Empirical powers for different deviations κ.
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Table A.14.: Empirical powers for the uniformity tests on Ω1. The description of Table 5.4
applies.

DGP n κ Rayleigh Bingham Ajne Giné CCF09 Bakshaev CvM AD Rt

CvM 50 0.25 0.0746 0.0557 0.0749 0.0559 0.0735 0.0755 0.0757 0.0760 0.0755
0.50 0.1570 0.0743 0.1580 0.0749 0.1512 0.1619 0.1627 0.1635 0.1617
0.75 0.3077 0.1073 0.3104 0.1096 0.2949 0.3201 0.3222 0.3244 0.3197

100 0.25 0.1006 0.0619 0.1010 0.0619 0.0980 0.1025 0.1027 0.1028 0.1024
0.50 0.2773 0.1004 0.2793 0.1021 0.2653 0.2879 0.2897 0.2918 0.2879
0.75 0.5580 0.1709 0.5628 0.1760 0.5398 0.5806 0.5845 0.5885 0.5801

200 0.25 0.1571 0.0744 0.1582 0.0751 0.1509 0.1614 0.1620 0.1628 0.1613
0.50 0.5063 0.1566 0.5113 0.1609 0.4886 0.5284 0.5321 0.5365 0.5282
0.75 0.8599 0.3066 0.8650 0.3194 0.8484 0.8802 0.8833 0.8866 0.8799

AD 50 0.25 0.1897 0.0933 0.1924 0.0960 0.1884 0.1998 0.2020 0.2053 0.1995
0.50 0.6134 0.2429 0.6235 0.2578 0.6117 0.6480 0.6545 0.6635 0.6468
0.75 0.9377 0.4936 0.9424 0.5255 0.9351 0.9521 0.9542 0.9568 0.9514

100 0.25 0.3419 0.1409 0.3478 0.1471 0.3399 0.3647 0.3696 0.3765 0.3642
0.50 0.9002 0.4463 0.9071 0.4776 0.9019 0.9234 0.9271 0.9319 0.9225
0.75 0.9989 0.8023 0.9992 0.8361 0.9989 0.9994 0.9995 0.9996 0.9994

200 0.25 0.6113 0.2438 0.6227 0.2586 0.6144 0.6509 0.6588 0.6698 0.6501
0.50 0.9966 0.7517 0.9973 0.7914 0.9972 0.9985 0.9986 0.9989 0.9984
0.75 1.0000 0.9818 1.0000 0.9894 1.0000 1.0000 1.0000 1.0000 1.0000

Rt 50 0.25 0.0867 0.0588 0.0867 0.0590 0.0845 0.0875 0.0875 0.0876 0.0875
0.50 0.2136 0.0870 0.2136 0.0880 0.2099 0.2179 0.2187 0.2190 0.2191
0.75 0.4514 0.1383 0.4511 0.1411 0.4701 0.4707 0.4742 0.4780 0.4756

100 0.25 0.1271 0.0678 0.1268 0.0682 0.1233 0.1286 0.1287 0.1285 0.1287
0.50 0.4020 0.1282 0.4014 0.1303 0.4124 0.4175 0.4203 0.4225 0.4213
0.75 0.7776 0.2380 0.7775 0.2453 0.8305 0.8125 0.8186 0.8250 0.8199

200 0.25 0.2154 0.0871 0.2152 0.0881 0.2122 0.2205 0.2210 0.2213 0.2221
0.50 0.7091 0.2158 0.7091 0.2217 0.7506 0.7402 0.7455 0.7510 0.7470
0.75 0.9795 0.4381 0.9798 0.4540 0.9938 0.9894 0.9905 0.9917 0.9907

vMF 50 0.25 0.1816 0.0504 0.1814 0.0506 0.1642 0.1804 0.1792 0.1770 0.1795
0.50 0.5842 0.0562 0.5830 0.0562 0.5301 0.5797 0.5767 0.5700 0.5778
0.75 0.9112 0.0816 0.9105 0.0813 0.8747 0.9085 0.9067 0.9026 0.9076

100 0.25 0.3302 0.0511 0.3291 0.0511 0.2946 0.3272 0.3251 0.3203 0.3257
0.50 0.8867 0.0634 0.8859 0.0634 0.8451 0.8837 0.8816 0.8769 0.8823
0.75 0.9979 0.1164 0.9978 0.1155 0.9951 0.9977 0.9976 0.9973 0.9976

200 0.25 0.5991 0.0521 0.5979 0.0522 0.5433 0.5943 0.5910 0.5843 0.5927
0.50 0.9956 0.0782 0.9956 0.0778 0.9912 0.9954 0.9952 0.9949 0.9953
0.75 1.0000 0.1925 1.0000 0.1909 1.0000 1.0000 1.0000 1.0000 1.0000

SC 50 0.25 0.3017 0.0969 0.3014 0.0964 0.2891 0.3080 0.3088 0.3085 0.3092
0.50 0.7906 0.1780 0.7906 0.1765 0.7987 0.8170 0.8211 0.8237 0.8216
0.75 0.9738 0.2405 0.9741 0.2380 0.9823 0.9849 0.9861 0.9869 0.9862

100 0.25 0.5643 0.1498 0.5634 0.1486 0.5584 0.5844 0.5875 0.5887 0.5883
0.50 0.9843 0.3243 0.9841 0.3212 0.9891 0.9910 0.9918 0.9922 0.9919
0.75 0.9999 0.4487 0.9999 0.4446 1.0000 1.0000 1.0000 1.0000 1.0000

200 0.25 0.8767 0.2640 0.8760 0.2615 0.8845 0.8982 0.9013 0.9033 0.9022
0.50 1.0000 0.5913 1.0000 0.5868 1.0000 1.0000 1.0000 1.0000 1.0000
0.75 1.0000 0.7605 1.0000 0.7561 1.0000 1.0000 1.0000 1.0000 1.0000

W 50 0.25 0.0514 0.2580 0.0518 0.2559 0.0888 0.0683 0.0746 0.0854 0.0742
0.50 0.0540 0.7809 0.0551 0.7763 0.2482 0.1438 0.1906 0.2662 0.1906
0.75 0.0575 0.9854 0.0594 0.9846 0.5442 0.3535 0.4981 0.6568 0.5024

100 0.25 0.0513 0.4808 0.0516 0.4767 0.1394 0.0901 0.1075 0.1374 0.1073
0.50 0.0538 0.9785 0.0547 0.9773 0.5358 0.3560 0.4916 0.6396 0.4946
0.75 0.0573 1.0000 0.0590 1.0000 0.9283 0.8734 0.9493 0.9826 0.9510

200 0.25 0.0512 0.7959 0.0514 0.7918 0.2689 0.1576 0.2122 0.2948 0.2131
0.50 0.0535 0.9999 0.0545 0.9999 0.9146 0.8528 0.9350 0.9751 0.9370
0.75 0.0569 1.0000 0.0589 1.0000 0.9999 0.9999 1.0000 1.0000 1.0000
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Table A.15.: Empirical powers for the uniformity tests on Ω2. The description of Table 5.4
applies.

DGP n κ Rayleigh Bingham Ajne Giné CCF09 Bakshaev CvM AD Rt

CvM 50 0.25 0.0700 0.0537 0.0700 0.0539 0.0672 0.0704 0.0704 0.0705 0.0705
0.50 0.1360 0.0645 0.1362 0.0649 0.1233 0.1383 0.1383 0.1390 0.1379
0.75 0.2622 0.0840 0.2630 0.0851 0.2303 0.2686 0.2686 0.2700 0.2673

100 0.25 0.0905 0.0567 0.0905 0.0568 0.0844 0.0914 0.0914 0.0916 0.0913
0.50 0.2367 0.0794 0.2377 0.0801 0.2083 0.2424 0.2424 0.2434 0.2414
0.75 0.4918 0.1216 0.4941 0.1237 0.4330 0.5043 0.5043 0.5068 0.5022

200 0.25 0.1359 0.0638 0.1362 0.0640 0.1230 0.1377 0.1377 0.1380 0.1374
0.50 0.4411 0.1118 0.4432 0.1137 0.3870 0.4528 0.4528 0.4555 0.4500
0.75 0.8096 0.2070 0.8124 0.2124 0.7499 0.8231 0.8231 0.8259 0.8200

AD 50 0.25 0.1607 0.0759 0.1615 0.0766 0.1462 0.1656 0.1656 0.1674 0.1645
0.50 0.5367 0.1691 0.5408 0.1735 0.4824 0.5555 0.5555 0.5607 0.5515
0.75 0.8969 0.3460 0.8993 0.3568 0.8543 0.9075 0.9075 0.9096 0.9054

100 0.25 0.2887 0.1038 0.2910 0.1056 0.2560 0.3004 0.3004 0.3038 0.2979
0.50 0.8507 0.3110 0.8542 0.3213 0.8037 0.8670 0.8670 0.8710 0.8637
0.75 0.9969 0.6342 0.9971 0.6510 0.9931 0.9977 0.9977 0.9978 0.9975

200 0.25 0.5361 0.1669 0.5403 0.1715 0.4824 0.5578 0.5578 0.5640 0.5525
0.50 0.9919 0.5815 0.9924 0.5995 0.9853 0.9941 0.9941 0.9946 0.9937
0.75 1.0000 0.9225 1.0000 0.9320 1.0000 1.0000 1.0000 1.0000 1.0000

Rt 50 0.25 0.0785 0.0540 0.0785 0.0541 0.0749 0.0787 0.0787 0.0786 0.0787
0.50 0.1778 0.0657 0.1777 0.0664 0.1636 0.1788 0.1788 0.1787 0.1790
0.75 0.3765 0.0865 0.3763 0.0883 0.3543 0.3825 0.3825 0.3831 0.3821

100 0.25 0.1095 0.0575 0.1093 0.0578 0.1013 0.1100 0.1100 0.1098 0.1101
0.50 0.3362 0.0820 0.3360 0.0833 0.3127 0.3413 0.3413 0.3414 0.3413
0.75 0.7019 0.1292 0.7019 0.1336 0.6965 0.7192 0.7192 0.7232 0.7174

200 0.25 0.1798 0.0651 0.1796 0.0655 0.1646 0.1809 0.1809 0.1808 0.1807
0.50 0.6288 0.1186 0.6286 0.1221 0.6158 0.6428 0.6428 0.6456 0.6411
0.75 0.9612 0.2282 0.9612 0.2402 0.9696 0.9701 0.9701 0.9722 0.9691

vMF 50 0.25 0.1180 0.0506 0.1176 0.0506 0.1065 0.1172 0.1172 0.1167 0.1177
0.50 0.3622 0.0533 0.3614 0.0532 0.3124 0.3595 0.3595 0.3563 0.3610
0.75 0.7091 0.0645 0.7080 0.0642 0.6346 0.7048 0.7048 0.7003 0.7066

100 0.25 0.1980 0.0507 0.1977 0.0504 0.1725 0.1966 0.1966 0.1950 0.1973
0.50 0.6648 0.0558 0.6638 0.0556 0.5895 0.6606 0.6606 0.6560 0.6628
0.75 0.9602 0.0809 0.9597 0.0805 0.9286 0.9585 0.9585 0.9568 0.9593

200 0.25 0.3698 0.0508 0.3690 0.0509 0.3174 0.3662 0.3662 0.3629 0.3675
0.50 0.9396 0.0620 0.9391 0.0617 0.8998 0.9374 0.9374 0.9353 0.9383
0.75 0.9998 0.1140 0.9998 0.1132 0.9990 0.9997 0.9997 0.9997 0.9998

SC 50 0.25 0.1797 0.0672 0.1793 0.0669 0.1624 0.1805 0.1805 0.1801 0.1808
0.50 0.5316 0.0942 0.5313 0.0939 0.4932 0.5402 0.5402 0.5412 0.5388
0.75 0.8378 0.1135 0.8380 0.1127 0.8187 0.8521 0.8521 0.8548 0.8495

100 0.25 0.3410 0.0857 0.3403 0.0855 0.3077 0.3458 0.3458 0.3460 0.3456
0.50 0.8716 0.1489 0.8711 0.1480 0.8545 0.8858 0.8858 0.8887 0.8836
0.75 0.9942 0.1951 0.9941 0.1937 0.9943 0.9964 0.9964 0.9968 0.9961

200 0.25 0.6389 0.1293 0.6378 0.1285 0.6015 0.6529 0.6529 0.6557 0.6504
0.50 0.9962 0.2788 0.9961 0.2765 0.9962 0.9977 0.9977 0.9980 0.9975
0.75 1.0000 0.3846 1.0000 0.3813 1.0000 1.0000 1.0000 1.0000 1.0000

W 50 0.25 0.0514 0.1540 0.0514 0.1528 0.0597 0.0591 0.0591 0.0632 0.0570
0.50 0.0539 0.5682 0.0545 0.5640 0.1081 0.0947 0.0947 0.1231 0.0824
0.75 0.0576 0.9315 0.0592 0.9294 0.2457 0.1940 0.1940 0.3124 0.1466

100 0.25 0.0513 0.2807 0.0514 0.2782 0.0705 0.0677 0.0677 0.0774 0.0634
0.50 0.0536 0.8850 0.0543 0.8823 0.2031 0.1643 0.1643 0.2570 0.1265
0.75 0.0573 0.9991 0.0588 0.9990 0.5830 0.5265 0.5265 0.7639 0.3614

200 0.25 0.0509 0.5377 0.0510 0.5343 0.0988 0.0884 0.0884 0.1138 0.0772
0.50 0.0531 0.9966 0.0536 0.9964 0.4843 0.4183 0.4183 0.6500 0.2816
0.75 0.0567 1.0000 0.0581 1.0000 0.9695 0.9741 0.9741 0.9973 0.8987
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Table A.16.: Empirical powers for the uniformity tests on Ω3. The description of Table 5.4
applies.

DGP n κ Rayleigh Bingham Ajne Giné CCF09 Bakshaev CvM AD Rt

CvM 50 0.25 0.0663 0.0522 0.0665 0.0522 0.0648 0.0668 0.0667 0.0667 0.0665
0.50 0.1214 0.0589 0.1218 0.0589 0.1126 0.1230 0.1230 0.1231 0.1224
0.75 0.2288 0.0711 0.2295 0.0718 0.2039 0.2327 0.2325 0.2330 0.2314

100 0.25 0.0835 0.0546 0.0834 0.0547 0.0796 0.0839 0.0839 0.0839 0.0837
0.50 0.2064 0.0692 0.2068 0.0696 0.1839 0.2098 0.2095 0.2104 0.2087
0.75 0.4378 0.0965 0.4387 0.0975 0.3835 0.4449 0.4445 0.4460 0.4428

200 0.25 0.1198 0.0586 0.1198 0.0588 0.1110 0.1209 0.1209 0.1211 0.1205
0.50 0.3895 0.0899 0.3903 0.0907 0.3414 0.3965 0.3961 0.3976 0.3942
0.75 0.7583 0.1524 0.7599 0.1549 0.6906 0.7676 0.7671 0.7688 0.7649

AD 50 0.25 0.1434 0.0675 0.1442 0.0679 0.1317 0.1466 0.1464 0.1471 0.1455
0.50 0.4837 0.1333 0.4862 0.1353 0.4298 0.4962 0.4952 0.4984 0.4922
0.75 0.8620 0.2639 0.8636 0.2688 0.8070 0.8698 0.8694 0.8707 0.8676

100 0.25 0.2547 0.0874 0.2557 0.0883 0.2268 0.2619 0.2613 0.2637 0.2594
0.50 0.8092 0.2378 0.8113 0.2426 0.7497 0.8218 0.8209 0.8241 0.8180
0.75 0.9942 0.5102 0.9943 0.5193 0.9866 0.9950 0.9950 0.9951 0.9948

200 0.25 0.4832 0.1316 0.4852 0.1333 0.4290 0.4973 0.4964 0.5004 0.4927
0.50 0.9860 0.4602 0.9865 0.4698 0.9733 0.9884 0.9883 0.9888 0.9877
0.75 1.0000 0.8404 1.0000 0.8483 1.0000 1.0000 1.0000 1.0000 1.0000

Rt 50 0.25 0.0732 0.0523 0.0734 0.0525 0.0713 0.0735 0.0735 0.0732 0.0734
0.50 0.1548 0.0586 0.1551 0.0589 0.1464 0.1552 0.1553 0.1547 0.1552
0.75 0.3247 0.0702 0.3252 0.0709 0.3094 0.3272 0.3272 0.3265 0.3269

100 0.25 0.0988 0.0544 0.0987 0.0548 0.0946 0.0988 0.0989 0.0987 0.0988
0.50 0.2902 0.0686 0.2903 0.0694 0.2756 0.2924 0.2924 0.2923 0.2922
0.75 0.6357 0.0951 0.6360 0.0973 0.6285 0.6453 0.6446 0.6467 0.6431

200 0.25 0.1558 0.0586 0.1556 0.0589 0.1472 0.1562 0.1564 0.1560 0.1562
0.50 0.5639 0.0893 0.5639 0.0911 0.5528 0.5718 0.5714 0.5727 0.5699
0.75 0.9377 0.1508 0.9380 0.1562 0.9450 0.9458 0.9453 0.9473 0.9437

vMF 50 0.25 0.0918 0.0497 0.0920 0.0498 0.0868 0.0918 0.0919 0.0913 0.0919
0.50 0.2477 0.0513 0.2474 0.0513 0.2208 0.2461 0.2464 0.2446 0.2469
0.75 0.5260 0.0570 0.5255 0.0568 0.4667 0.5224 0.5231 0.5193 0.5244

100 0.25 0.1406 0.0507 0.1403 0.0507 0.1287 0.1399 0.1400 0.1393 0.1403
0.50 0.4806 0.0530 0.4798 0.0532 0.4247 0.4774 0.4779 0.4749 0.4791
0.75 0.8577 0.0659 0.8570 0.0659 0.8012 0.8548 0.8553 0.8525 0.8565

200 0.25 0.2513 0.0498 0.2507 0.0498 0.2242 0.2492 0.2497 0.2476 0.2503
0.50 0.8142 0.0558 0.8133 0.0559 0.7535 0.8109 0.8115 0.8083 0.8127
0.75 0.9944 0.0817 0.9944 0.0815 0.9868 0.9941 0.9942 0.9939 0.9943

SC 50 0.25 0.1305 0.0578 0.1305 0.0578 0.1223 0.1305 0.1306 0.1301 0.1305
0.50 0.3750 0.0695 0.3753 0.0694 0.3463 0.3766 0.3768 0.3755 0.3764
0.75 0.6760 0.0769 0.6765 0.0766 0.6424 0.6818 0.6816 0.6811 0.6804

100 0.25 0.2337 0.0670 0.2334 0.0670 0.2138 0.2350 0.2350 0.2347 0.2347
0.50 0.7111 0.0933 0.7104 0.0933 0.6767 0.7192 0.7187 0.7202 0.7170
0.75 0.9612 0.1109 0.9612 0.1106 0.9532 0.9663 0.9660 0.9671 0.9648

200 0.25 0.4579 0.0860 0.4569 0.0858 0.4238 0.4634 0.4632 0.4637 0.4617
0.50 0.9685 0.1503 0.9683 0.1496 0.9615 0.9732 0.9729 0.9740 0.9718
0.75 0.9999 0.1942 0.9999 0.1929 0.9999 0.9999 0.9999 0.9999 0.9999

W 50 0.25 0.0510 0.1019 0.0511 0.1015 0.0546 0.0547 0.0543 0.0561 0.0532
0.50 0.0529 0.3584 0.0533 0.3555 0.0739 0.0726 0.0701 0.0811 0.0640
0.75 0.0560 0.7738 0.0570 0.7706 0.1322 0.1170 0.1083 0.1508 0.0884

100 0.25 0.0508 0.1677 0.0508 0.1668 0.0582 0.0584 0.0575 0.0615 0.0553
0.50 0.0526 0.6728 0.0529 0.6698 0.1065 0.0980 0.0916 0.1216 0.0769
0.75 0.0559 0.9814 0.0567 0.9808 0.2860 0.2339 0.2027 0.3514 0.1374

200 0.25 0.0502 0.3189 0.0501 0.3167 0.0674 0.0665 0.0645 0.0735 0.0595
0.50 0.0517 0.9511 0.0520 0.9497 0.2119 0.1747 0.1547 0.2540 0.1106
0.75 0.0548 1.0000 0.0557 1.0000 0.7051 0.6403 0.5543 0.8363 0.3176
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Table A.17.: Empirical powers for the uniformity tests on Ω10. The description of Table 5.4
applies.

DGP n κ Rayleigh Bingham Ajne Giné CCF09 Bakshaev CvM AD Rt

CvM 50 0.25 0.0585 0.0506 0.0586 0.0507 0.0557 0.0585 0.0585 0.0585 0.0585
0.50 0.0867 0.0524 0.0868 0.0524 0.0751 0.0870 0.0869 0.0870 0.0869
0.75 0.1453 0.0554 0.1456 0.0554 0.1124 0.1462 0.1460 0.1462 0.1458

100 0.25 0.0668 0.0517 0.0669 0.0518 0.0619 0.0670 0.0669 0.0671 0.0669
0.50 0.1326 0.0554 0.1327 0.0554 0.1049 0.1328 0.1328 0.1328 0.1328
0.75 0.2735 0.0620 0.2736 0.0621 0.1978 0.2745 0.2743 0.2746 0.2742

200 0.25 0.0874 0.0528 0.0874 0.0527 0.0757 0.0877 0.0877 0.0877 0.0876
0.50 0.2444 0.0604 0.2446 0.0605 0.1777 0.2458 0.2459 0.2460 0.2453
0.75 0.5525 0.0751 0.5528 0.0752 0.4012 0.5548 0.5546 0.5550 0.5541

AD 50 0.25 0.0999 0.0550 0.1001 0.0549 0.0836 0.1005 0.1003 0.1008 0.1002
0.50 0.3142 0.0735 0.3146 0.0734 0.2273 0.3170 0.3164 0.3174 0.3157
0.75 0.6854 0.1106 0.6858 0.1108 0.5219 0.6878 0.6875 0.6880 0.6870

100 0.25 0.1636 0.0611 0.1638 0.0611 0.1251 0.1649 0.1646 0.1650 0.1644
0.50 0.6201 0.1021 0.6204 0.1023 0.4625 0.6241 0.6234 0.6246 0.6224
0.75 0.9624 0.1935 0.9624 0.1943 0.8790 0.9630 0.9629 0.9630 0.9628

200 0.25 0.3166 0.0725 0.3168 0.0727 0.2272 0.3199 0.3194 0.3204 0.3185
0.50 0.9341 0.1716 0.9342 0.1724 0.8257 0.9361 0.9358 0.9363 0.9353
0.75 0.9999 0.3941 0.9999 0.3953 0.9979 0.9999 0.9999 0.9999 0.9999

Rt 50 0.25 0.0619 0.0504 0.0620 0.0505 0.0583 0.0619 0.0618 0.0620 0.0619
0.50 0.1026 0.0522 0.1027 0.0520 0.0884 0.1025 0.1024 0.1025 0.1026
0.75 0.1915 0.0539 0.1916 0.0540 0.1533 0.1914 0.1915 0.1913 0.1915

100 0.25 0.0745 0.0515 0.0744 0.0517 0.0680 0.0745 0.0745 0.0745 0.0745
0.50 0.1744 0.0543 0.1745 0.0544 0.1410 0.1742 0.1742 0.1740 0.1744
0.75 0.4020 0.0594 0.4021 0.0596 0.3161 0.4023 0.4025 0.4021 0.4026

200 0.25 0.1053 0.0524 0.1054 0.0524 0.0904 0.1053 0.1055 0.1053 0.1054
0.50 0.3553 0.0584 0.3554 0.0587 0.2797 0.3557 0.3560 0.3555 0.3559
0.75 0.7788 0.0698 0.7791 0.0699 0.6686 0.7810 0.7809 0.7810 0.7803

vMF 50 0.25 0.0579 0.0498 0.0580 0.0497 0.0555 0.0580 0.0579 0.0580 0.0579
0.50 0.0840 0.0498 0.0842 0.0497 0.0739 0.0838 0.0839 0.0838 0.0841
0.75 0.1372 0.0501 0.1373 0.0501 0.1099 0.1370 0.1370 0.1370 0.1371

100 0.25 0.0657 0.0505 0.0658 0.0505 0.0610 0.0657 0.0657 0.0656 0.0657
0.50 0.1265 0.0503 0.1264 0.0503 0.1031 0.1261 0.1262 0.1259 0.1264
0.75 0.2585 0.0509 0.2583 0.0510 0.1927 0.2573 0.2576 0.2569 0.2580

200 0.25 0.0847 0.0500 0.0846 0.0500 0.0747 0.0846 0.0847 0.0846 0.0847
0.50 0.2315 0.0506 0.2314 0.0507 0.1749 0.2309 0.2313 0.2307 0.2314
0.75 0.5305 0.0519 0.5302 0.0519 0.3967 0.5287 0.5296 0.5282 0.5301

SC 50 0.25 0.0655 0.0508 0.0657 0.0508 0.0609 0.0657 0.0656 0.0657 0.0656
0.50 0.1161 0.0516 0.1163 0.0515 0.0968 0.1160 0.1161 0.1160 0.1162
0.75 0.2096 0.0519 0.2098 0.0519 0.1624 0.2088 0.2090 0.2085 0.2094

100 0.25 0.0846 0.0511 0.0846 0.0511 0.0744 0.0845 0.0845 0.0845 0.0846
0.50 0.2092 0.0526 0.2092 0.0525 0.1612 0.2086 0.2088 0.2083 0.2090
0.75 0.4415 0.0533 0.4413 0.0532 0.3315 0.4400 0.4405 0.4394 0.4411

200 0.25 0.1283 0.0527 0.1283 0.0526 0.1050 0.1282 0.1283 0.1282 0.1284
0.50 0.4360 0.0557 0.4359 0.0558 0.3280 0.4354 0.4360 0.4351 0.4361
0.75 0.8191 0.0571 0.8190 0.0571 0.6824 0.8191 0.8196 0.8188 0.8196

W 50 0.25 0.0499 0.0533 0.0500 0.0533 0.0499 0.0502 0.0500 0.0503 0.0500
0.50 0.0501 0.0655 0.0502 0.0653 0.0504 0.0511 0.0508 0.0514 0.0505
0.75 0.0506 0.0964 0.0507 0.0962 0.0517 0.0531 0.0523 0.0536 0.0517

100 0.25 0.0502 0.0561 0.0502 0.0560 0.0507 0.0506 0.0505 0.0507 0.0504
0.50 0.0504 0.0832 0.0505 0.0831 0.0515 0.0523 0.0518 0.0526 0.0512
0.75 0.0510 0.1581 0.0511 0.1578 0.0536 0.0559 0.0545 0.0569 0.0531

200 0.25 0.0504 0.0633 0.0505 0.0632 0.0508 0.0513 0.0511 0.0514 0.0509
0.50 0.0507 0.1263 0.0507 0.1259 0.0526 0.0544 0.0535 0.0552 0.0524
0.75 0.0512 0.3150 0.0512 0.3144 0.0572 0.0615 0.0587 0.0637 0.0555
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