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Abstract—We study the performance of the Message Queuing
Telemetry Transport Protocol (MQTT) over QUIC. QUIC has
been recently proposed as a new transport protocol, and it is
gaining relevance at a very fast pace, favored by the support of
key players, such as Google. It overcomes some of the limitations
of the more widespread alternative, TCP, especially regarding
the overhead of connection establishment. However, its use for
Internet of Things (IoT) scenarios is still under consideration.
In this paper we integrate a GO-based implementation of the
QUIC protocol with MQTT, and we compare the performance
of this combination with that exhibited by the more traditional
MQTT/TLS/TCP approach. We use Linux Containers and we
emulate various wireless network technologies by means of the ns-
3 simulator. The results of an extensive measurement campaign,
show that QUIC protocol can indeed yield good performances
for typical IoT use cases.

Index Terms—Quic UDP Internet Connections (QUIC), In-
ternet of Things (IoT), Message Queuing Telemetry Transport
(MQTT), Lossy Networks, Performance Analysis

I. INTRODUCTION

Industry and companies are witnessing a deep transforma-
tion, known as Industry 4.0, which is indeed considered as the
fourth industrial revolution. This term, introduced in 2011 by
the German government, sprung as a novel initiative towards
the digitalization of its industry, based on four principles: inter-
connection, information transparency, decentralized decisions
and technical assistance [1]. Industry 4.0 yields a remarkable
productivity boost, thanks to (among other functionalities) the
collection and analysis of real-time data [2].

One of the key technologies behind this industry digital
transformation is the IoT paradigm, which enables the con-
nection of industrial components, to collect data, monitor sys-
tems, exchange information, and analyze the environment [2].
However, the development of industrial 4.0 applications and
services introduces stringent requirements. It is worth men-
tioning the following ones: low latency communications, high
reliability and availability, energy and cost efficiency, and
security and privacy [3].

Energy and cost efficiency is a pivotal feature. In order
to monitor the industrial environment, a huge deployment of
sensors and connected devices is required, but this deployment

should not cause a cost increase of the manufacturing pro-
cess. Besides, the connected devices and sensors must reach
different locations and isolated areas and, in many cases,
this will imply the use of battery-powered elements, which
should stay alive for a long time. Low latency communications
are also essential in many industrial applications. Very fast
responses might be crucial in some scenarios in order to
enhance manufacturing processes, to guarantee the security of
many involved elements, and to provide the chance to enable
remote control functions in real industrial scenarios.

The well-known MQTT protocol [4], [5] is widely used
in IoT applications, due to its small code footprint, easy
integration and good performance. It traditionally lays, as its
transport protocol, on TCP [6], which offers a reliable end-
to-end communication service. However, TCP suffers from
many disadvantages, specially those related to the ossification
of internet protocols, which are not able to adapt to the fast-
changing technologies [7]. Dealing with lossy networks has
been shown to be very challenging for TCP, drastically jeop-
ardizing its performance and increasing end-to-end delay [8].
Moreover, the extremely low communication delay require-
ment of some applications is not appropriately guaranteed by
TCP [9]. Therefore, many alternatives have emerged, some of
them being TCP modifications or updates, such as SCTP [10],
Real-Time TCP [11] and Network Coded TCP [12] among
others. One of these alternatives is QUIC [13], an experimental
transport protocol, whose main design principles were to
reduce connection establishment and transport latencies, as
well as to improve security standards with default end-to-end
encryption in HTTP-based applications [14].

In this paper we propose to integrate IoT protocols (MQTT
in particular) with QUIC, in order to assess the performance
of such combination and to analyze the benefits that novel
transport protocol approaches can bring to the IoT realm,
compared to legacy ones.

The contributions of this paper are:

• Integration of a fully operational MQTT implementation
(in GO programming language) with a QUIC GO imple-
mentation.



• All the code has been made available in a public git
repository.

• Performance analysis of MQTT over QUIC, over various
network technologies, by means of an extensive measure-
ment campaign carried out over the ns-3 framework and
Linux containers.

The rest of the paper is structured as follows. Section II
discusses related works. Section III sketches the integration
of MQTT and QUIC protocol. Section IV depicts the setup
that was used to carry out the experiments, and discusses
the results that were obtained, comparing the performance of
the proposed scheme with a more traditional solution. Finally,
Section V concludes the paper, outlining the aspects that we
will tackle in our future work.

II. RELATED WORK

A. MQTT

MQTT [4] is a popular lightweight network protocol based
on the publish-subscribe model. It has been widely imple-
mented across a variety of industries since 1999 to connect
small devices, thanks to its small code footprint and low
network bandwidth required. Version 3.1.1 was submitted in
2014 by IBM, and it was standardized by International Or-
ganization for Standardization (ISO) and Organization for the
Advancement of Structured Information Standards (OASIS).
Furthermore, version 5.0 has been recently standardized [5].

In MQTT there exist three types of devices: subscriber,
publisher and broker. Publishers are usually small sensors,
which generate information and publish it into a common
broker on specific topics. On the other hand, a subscriber
consumes the data produced by the publishers. In this sense,
they subscribe to a topic, and they would thus receive all
published messages on that particular topic, by any publisher.
Publishers and Subscribers can be both seen as clients on the
corresponding network topology. The key element of MQTT
is the broker server, which manages the subscriptions. All
messages published in the network are sent to the broker,
which takes care of distributing the information to the corre-
sponding subscribers. The broker also considers the various
Quality of Service (QoS) levels for the clients and so the
potential retransmissions. Although the clients only interact
with a broker, the system may contain several brokers, which
exchange data based on their current subscribers’ topics.

One of the strong aspects of MQTT is the isolation between
producers and consumers. This facilitates the implementa-
tion of such functionalities in low computational devices,
which can interact amongst them by means of the publish-
subscription paradigm. Another advantage is that the publisher
can send new content whenever it becomes available, thus de-
coupling the temporary relationship between a node’s interest
and the publication of the information.

B. QUIC

QUIC is a transport protocol originally developed by Google
Inc. [14] and currently standardized by IETF [13]. QUIC ad-
dresses two big challenges of today’s web traffic: minimizing
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latency for a better user experience; and securing the com-
munications (end-to-end payload and header encryption [13],
[15]), as Internet is shifting to a more secure web traffic [14].
Figure 1 depicts the QUIC protocol stack, comparing it with
the traditional TLS/TCP approach, when used to transport http
traffic.

QUIC reduces handshake latency, establishing a connection
secured with TLS 1.3 in just 1 Round Trip Time (RTT), 0 RTT
if the endpoints have previously established a communication
[15], and the data can be sent before handshake happens in
0-RTT packets [13]. On the other hand, the legacy TCP 3-way
handshake allows an endpoint to send data only after 1 RTT
[6]. TCP alone does not encrypt its payload, and additional
protocols, such as TLS, are required to establish a secure
connection. TLS 1.2 connection establishment takes 2 RTT
[16] and TLS 1.3 takes 1 RTT [17], leading to an overall
TLS/TCP handshake of 3 or 2 RTT, respectively.

The information within a QUIC connection is organized
in streams, which enables QUIC to prevent delays caused
by head-of-line blocking. When a packet loss occurs, only
streams with data in such packet are blocked waiting for a
retransmission to be received, while other streams can go
on [13]. QUIC also reduces latency with its loss detection
algorithms, which include early retransmits and tail loss probes
[18].

QUIC has been designed to overcome TCP ossification [7],
[14]. QUIC uses UDP datagrams, so middleboxes consider it
as UDP payload. Its header and payload encryption avoids
incurring a dependency on middleboxes [13]. QUIC is im-
plemented in user-space, which gives more freedom in terms
of computational resources, and thus richer logging, more
interaction with server systems and an easier protocol update
[14]. However, implementation at user-space is not mandatory,
and QUIC can be embedded into kernel for boosting its
performance [19].

QUIC includes a version negotiation mechanism, enabling
coexistence of different QUIC modifications. This simplifies
protocol update, and enables protocol extension and cus-
tomization. QUIC extensions could even be designed as plug-



ins for a major protocol extension, which allows an endpoint
to share an extension that another endpoint is missing [20].

C. QUIC for IoT scenarios

Although QUIC development is still ongoing, some re-
searchers have already included it within IoT protocol stack
[21], [22]. However, to the best of our knowledge, there do
not exist many works addressing the evaluation of QUIC in
IoT scenarios.

Liri et al. assessed QUIC as an IoT protocol in [23]. Their
study reveals that QUIC, as a replacement to more traditional
IoT protocols, is outperformed by CoAP [24]. However, QUIC
performance in lossy and disruptive environments is compa-
rable to MQTT-SN (MQTT - Sensor Networks), a variant
of MQTT for constrained devices. The authors suggest that
a more streamlined version of QUIC could be a potential
request-response IoT protocol alternative to CoAP.

Kumar and Dezfouli studied Google QUIC performance
over IoT scenarios in [25]. They compared MQTT perfor-
mance over QUIC and TCP in different testbeds, built with
Raspberri Pi 3B devices. The performance was assessed in
terms of packet overhead of connection establishment, latency
in the presence of random packet erasures, processor and mem-
ory usage when one of the endpoints dropped its connection
(half-open connection) and throughput drops during connec-
tion migration. Their results show that QUIC outperforms TCP
in multiple aspects, and they identify some points that QUIC
should improve for a better performance in IoT scenarios.

Lars Eggert has recently analyzed the feasibility of deploy-
ing QUIC over constrained IoT devices [26]. He used, for the
prelimary evaluation, more constrained devices than those used
in [25]: Particle Argon and ESP32-DevKitC V4. In order to
reduce QUIC memory usage in low-end devices, some of the
original QUIC features, considered impractical for IoT, were
changed or removed. By evaluating memory usage and energy
consumption of low-end devices running the modified QUIC,
the paper concludes that it is indeed a practical alternative to
be considered for IoT edge devices.

This paper analyzes QUIC, as defined in [13], performance
over IoT scenarios. Rather than focusing on how well QUIC
deployment adapts to the impairments of low-end devices, as
was the main goal of [26], we broaden the evaluation of QUIC,
paying special attention to its reduced latency. We consider
different IoT scenarios, over which devices communicate by
means of MQTT on top of both QUIC and TCP. We study the
overall communication time, comparing the performance of
both transport protocols over error-free and erasure channels
with realistic values of Frame Error Rate (FER).

III. IMPLEMENTATION

In this paper, we use a QUIC implementation in GO, quic-
go1. It follows the IETF QUIC draft, which is heavily under
development.

1A QUIC implementation in pure go. https://github.com/lucas-
clemente/quic-go, version v0.15.1.

The MQTT client, as well as the server broker, are based on
the open-source Eclipse Paho2 and VolantMQ3, respectively,
both of them also implemented in GO. They support the full
specification of MQTT, 3.1 and 3.1.1 versions. The client can
connect with the broker using TCP, TLS or WebSocket. We
started from the open-source implementations of the MQTT
client and broker, and we integrated QUIC on both projects.

Our client implementation has been made available, and
can be accessed at a public git repository4. In short, all the
functionalities at the transport layer, i.e opening and closing
connections, or sending and receiving packets, are managed
from the net.go interface. Thanks to this approach, we are
able to integrate QUIC, with very few additional changes
within the remainder of the code. This is of utter relevance,
since we avoid changes in the MQTT Client and so support
TCP, TCP+TLS, QUIC and WebSocket connections. In order
to support QUIC connections, the net.go interface calls, from
quic-go, the client.go interface. Due to 0-RTT approach, we
make use of DialAddrEarly function to keep the ticket for
resumption sessions and exchange ”early” data before the
handshake completes.

On the other hand, the Broker implementation is also
publicly available in a git repository5. In this case, the trans-
port level functionalities are implemented using the trans-
port/conn.go interface. Due to implementation restrictions, the
incompatibilities between the connection interfaces offered by
TCP and QUIC, this MQTT server implementation only sup-
ports QUIC connections. We integrate quic udp.go interface
which calls the listener from server.go interface (quic-go). The
listener function is ListenAddrEarly to enable 0-RTT on the
server broker side.

In our implementation effort, we have also identified some
aspects that are yet not fully operational in QUIC. For exam-
ple, an interesting scenario might encompass periodical data
bursts from publishers. Transport protocols, TCP in particu-
lar, are able to combine multiple packets from higher level
protocols in one single transport packet. We found that quic-
go v0.15.1 is unable to group multiple short MQTT packets
coming from the same data stream. We could not thus analyze
such scenarios, which are left for future work.

IV. RESULTS

In order to assess the performance of the combination of
MQTT and QUIC we have carried out an extensive simulation
campaign over the ns-3 framework, a widespread discrete-
event network simulator. In particular, we exploit the feature
that allows us to connect real application traffic, running over
Linux containers, over a simulated network. We build an
emulated environment, which is depicted in Fig. 2. As can

2Eclipse Paho MQTT client. https://github.com/eclipse/paho.mqtt.golang,
version v1.2.0.

3High-Perforance MQTT Server. https://github.com/VolantMQ/volantmq,
version v0.4.0-rc.6.

4Eclipse Paho MQTT client with QUIC support.
https://github.com/pgOrtiz90/paho.mqtt.golang

5High-Perforance MQTT Server with QUIC support.
https://github.com/fatimafp95/volantmq 2
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TABLE I
NETWORK PARAMETER RANGES FOR DIFFERENT WIRELESS

TECHNOLOGIES

NetType1 NetType2 NetType3

WiFi 4G/LTE Satellite

Capacity [Mbps] 20 10 1.5
RTT [ms] 25 100 600
Loss [%] 0 .. 5 0 .. 5 0 .. 5

be seen, it entails two Linux containers connected through
ns-3, which is used to simulate various wireless technologies,
modeled by means of two parameters: bandwidth and delay.
One Linux container runs the client application, which consists
on a publisher and a subscriber, while another Linux container
hosts the broker server. The containers are seen as ghost nodes
by the ns-3 instance, each connected over a CSMA network
to a node, which could be interpreted as the network router.
The capacity of this connection is rather high, to ensure that
the bottleneck is over the wireless link, which is where our
interest lies. Routers are then connected over a point-to-point
link, which can be configured with different combinations of
bandwidth, delay and loss rates, mimicking various network
technologies and conditions.

In Table I, we show how the parameters that were used to
reflect different network technologies. Although there exists
evidence that cellular networks maintain buffer sizes larger
than the path’s Bandwidth Delay Product (BDP), leading to
the so-called bufferbloat effect [27], we adjust all buffers to
be one BDP.

In our first scenario, which is depicted in Figure 3a, we send
1000 MQTT packets from the publisher to the broker, which
then sends the corresponding message to the subscriber. We
use one single MQTT connection, which is not closed during
the experiment. We configure the MQTT service to follow a
stop & wait behavior, so that the ith packet is only sent after
receiving the reply for the previous one. We measure the time
required to finish with the transmission of all packets when
using both TCP and QUIC: TTCP, TQUIC, respectively. We then
define the completion ratio, ξ as:

ξ =
TQUIC

TTCP
(1)

Hence, when ξ < 1, we could infer that QUIC outperforms
TCP, since the required time would be shorter. We used the
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Fig. 3. Scenarios used during the experiments

three network configurations that are depicted in Table I,
with various packet loss rates. For each configuration, we
carried out 20 independent experiments, and Figure 4 shows
the whisker plots of the completion ratio. As can be seen,
QUIC outperforms TCP in all cases, especially over networks
with low RTTs (WiFi). This improvement gets more relevant
over lossy networks. The results yield an almost 40% reduction
when the FER is 0.05 over the WiFi network. We can indeed
see that when the RTT gets higher, becoming the prominent
contribution in the corresponding delay, the improvement
yielded by QUIC is much less noticeable, especially for the
satellite connection. In any case, QUIC is not outperformed
by TCP, regardless of the configuration. Since the packets that
are being transmitted are rather short, we can also say that the
impact of the bandwidth over the delayed is almost negligible.

The second setup is depicted in Figure 3b. In this case, we
force the MQTT to close after one single publish message
transmission. The goal is thus to analyze the improvements
brought by the lightweight connection establishment promoted
by QUIC, compared to the heavier TCP/TLS traditional
scheme. We measure the time since the connection was ini-
tially established until the moment when the publish message
is sent. We establish two connections in each experiment, and
we run an experiment for 20 times. Hence, we have 40 samples
per configuration. Figure 5 shows the box plot of such times,
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Fig. 5. MQTT performance over TCP and QUIC: time required to publish a
message after connection establishment. Red Whiskers is for QUIC and Blue
ones is for TCP

for both transport protocols, and the three networks that were
previously introduced.

As can be seen, the performance of QUIC is slightly better
than the one exhibited by the TCP protocol. We can see that
the times are statistically tighter (showing less variability),
especially for the cellular and satellite networks, while the
corresponding average times are alike. However, we might
have expected a bigger advantage, since the 0-RTT approach
promoted by QUIC should have yielded shorter times.

This behavior is due to the fact that the quic-go server is
not reading 0-RTT packets from its buffer before the client
retransmits 0-RTT data in subsequent 1-RTT packets.

In order to assess the validity of this assumption, we
modified the configuration of Wireshark6 so it could correctly
interpret QUIC protected payload. Figure 6 shows the corre-
sponding packet exchange, captured with Wireshark in one
of our experiments. It can be seen how the test message
for 0-RTT packet (#16) is repeated in a short-header packet
(#18), which should not be generated before 1-RTT protection
is ready [13]. We are currently working towards tuning this

6https://www.wireshark.org/

Fig. 6. QUIC connection establishment captured by Wireshark. Packet 16
corresponds to the 0-RTT packet with the test message ”Probando Probando....
Ikerlan University of Cantabria”. It can be seen that this message is repeated
in the packet 18, which has a short header.

behavior, which hinders the benefit that would be obtained
with the 0-RTT connection establishment mechanism.

V. CONCLUSIONS

In this paper we have studied the performance exhibited
by the QUIC protocol when it is used over IoT scenarios.
We have integrated a GO-based QUIC implementation with
MQTT client/server. Thanks to Linux Containers technology
and the emulation possibilities offered by the ns-3 platform, we
have carried out an extensive measurement campaign, in which
we compare the performance of the combination MQTT/QUIC
with that exhibited by the more traditional MQTT/TLS/TCP
combination.

We have established two complementary scenarios. On the
first one, in which multiple publish/subscribe exchanges occur
after the connection establishment, we have seen that the
QUIC protocol clearly outperforms TCP, especially for con-
nections having a low RTT. This improvement is more relevant
when there are packet losses over the wireless network. As
could have been expected the impact of the bandwidth is



almost negligible, since we are considering sporadic exchange
of short packets.

The second scenario was conceived to ascertain the benefits
brought by the 0-RTT scheme that QUIC promotes. Although
the results are promising, since QUIC yields less variability
than TCP, we will need to perform more in-depth analysis,
since a shorter time could have been expected.

Provided that QUIC implementation is still under heavy
development, there are features that are not yet included in
its implementation, but we plan to analyze in our future work.
One example would be the possibility to group various MQTT
messages into a single QUIC packet. We will also exploit the
methodology and setup that we have introduced in this paper to
study the performance of more complex scenarios, comprising
various types of IoT devices, as well as fog/cloud nodes,
which would conform a multi-tier IoT architecture, tailored
for industrial applications.

ACKNOWLEDGMENT

The authors are grateful for the funding of the Industrial
Doctorates Program from the University of Cantabria (Call
2018). This work has been partially supported by the Basque
Government through the Elkartek program under the DIGITAL
project (Grant agreement no. KK-2019/00095), as well as by
the Spanish Government (Ministerio de Economı́a y Com-
petitividad, Fondo Europeo de Desarrollo Regional, FEDER)
by means of the project FIERCE: Future Internet Enabled
Resilient smart CitiEs (RTI2018-093475-AI00).

REFERENCES

[1] M. Hermann, T. Pentek, and B. Otto, “Design Principles for Industrie
4.0 Scenarios,” in 2016 49th Hawaii International Conference on System
Sciences (HICSS), 2016, pp. 3928–3937.

[2] G. Aceto, V. Persico, and A. Pescapé, “A Survey on Information and
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