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Abstract - The design of increasingly complex embedded 
systems requires powerful solutions from the very beginning of 
the design process. Model Based Design (MBD) and early 
simulation have proven to be capable technologies to perform 
initial design space analysis to optimize system design. 
Traditional MBD methods and tools typically rely on fixed 
elements, which makes difficult the evaluation of different 
platform configurations, communication alternatives or models 
of computation. Addressing these challenges require flexible 
design technologies able to support, from a high-level abstract 
model, full design space exploration, including system 
specification, binary generation and performance evaluation. 
In this context, this paper proposes a UML/MARTE based 
approach able to address the challenges mentioned above by 
improving design flexibility and evaluation capabilities, 
including automatic code generation, trace execution collection 
and trace analysis from the initial UML models. The approach 
focuses on the definition and analysis of the paths data follow 
through the different application components, as a way to 
understand the behavior or the different design solutions.  

I Introduction 
Embedded Cyber-Physical Systems (ECPSs) are the 

cornerstones of the new services that are being deployed on 
the Internet of Things. Their importance will even grow with 
the full deployment of the Internet of Everything (IoE), when 
almost all objects in our living environment will be smart 
and interconnected among them and with the cloud [1].  

One of the most critical aspects to solve during this design 
process is to ensure that system reaction times satisfy the 
strict timing requirements usually imposed with respect to 
the data got from and produced to the physical environment 
where the ECPSs typically operate. This strict timing 
behavior goes beyond traditional real-time system design [2]. 
Thus, being able to specify, analyze, simulate and verify 
timing constraints to lead the design of such complex 
systems is still an open problem not yet satisfactorily solved.  

Timing constraints must be verified all along the design 
process to ensure that they are satisfied after each design 

stage. Especially important is the verification process at the 
initial design stages, when the impact of the architectural 
decisions taken is potentially higher. In this context, early 
design-space exploration is essential to take the adequate 
design decisions that will enable satisfying these non-
functional constraints in the final product.  

Model Based Design has proven to be a powerful 
technology to address the development of increasingly 
complex embedded systems such as ECPSs [3]. For that 
purpose, standard solutions, such as the Unified Modelling 
Language (UML), are very important, since it can provide a 
common, graphical-based formalism for capturing, 
analyzing and sharing system models, which can also 
include the refinements and modifications done during the 
design process. Thus, UML is being proposed not only for 
initial static design and analysis, but also as a solution to 
collect information and be used as input for later design steps, 
such as simulation-based design space exploration [4]. 

Selecting an optimized architectural mapping is critical in 
the final system timings, but deciding the most adequate 
communication and synchronization solutions and the 
concurrent architecture in general is also critical. However, 
to perform this exploration, powerful high-level design 
solutions are required. Once the system is modeled, 
requirements traceability acquires an important role. 
Verification of timing constraints on complex systems 
requires analyzing the system operation, on real prototypes 
or with simulations when a prototype is not available.  

One of the most common mechanisms to perform this 
analysis is by collecting traces of the events that occurs 
during execution. Event tracing allows to verify and validate 
the input constraints at different abstraction levels. Moreover, 
monitoring methods have an important role in verification 
and validation steps, while providing information about 
system state, that can be processed (e.g. filtered, interpolated, 
etc.) to obtain indications about parameters (e.g., workload 
characterization, debug action), or characterize specific 
components (e.g., cache memories, buses, etc.). For example, 
application components produce and/or consume events 
associated to the services provided and required at the 
component interfaces that can be collected and analyzing to 
evaluate the timing behavior of the system. 

In such a context, this work presents an approach capable 
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of generating and analyzing traces during the initial steps of 
the design process. For that purpose, the system must be 
specified in UML, following a methodology oriented to 
enable easy design exploration. Then, this UML model is 
automatically translated into a simulation model, that 
generates event traces during simulation. Once simulation 
has finished, the obtained traces are analyzed to extract 
timing information. To analyze the required internal timing 
behavior, the user must define, in the UML model, internal 
data paths to be monitored. These data paths automatically 
drive the trace collection and the later timing analysis. 

To present this approach, the paper is organized as 
follows: Section II presents the state of the art regarding 
modeling and trace-based analysis of ECPSs. Section III 
describes the problem solved. Section IV presents the UML 
modeling methodology, and section V describes the analysis 
process. Finally, Section VI presents application results and 
section VII closes the paper with some conclusions. 

II State of the Art 
An Embedded Cyber-Physical System (ECPS) is an 

integration of computation within a physical environment. In 
such a domain, design challenges arising from the close 
interaction among the physical processes, the embedded 
functionality and the communication infrastructure, have to 
be solved [5]. One of the most important problems to address 
is ensuring the correct temporal behavior of the system as a 
whole [6].  Nevertheless, there is a lack in the definition of 
approaches that try to consider timing requirements into a 
unified design flow, while considering traceability and link 
between models and run-time execution.  

Several Model Based Design (MBD) commercial tools 
are available for high-level modelling and simulation. One 
of the most popular is Matlab/Simulink [7]. However, being 
based on a single Model of Computation and 
Communication (MoCC) is the main limitation affecting 
simulation speed and code generation efficiency. CoFluent 
is other commercial tool extended to model IoT systems [8]. 
Although supporting more interaction models that 
Matlab/Simulink, it is also limited in the way components 
may interact among them. In both cases, the model is 
functional and no performance analysis is made depending 
on the underlying heterogeneous platform. 

Another alternative is to use UML language as a base for 
MBD [9]. The problem is that UML is very flexible but lacks 
the semantical content required in most application domains. 
Therefore, the tendency has been the proliferation of 
Domain-Specific Languages (DSLs) [10].  Metamorph is a 
good example of a framework following this approach [11]. 

Among the available DSLs, UML/MARTE is the standard 
language for real-time and embedded systems design [12]. 
Several modeling environments such as Modelio [13] and 
Papyrus [14] support UML/MARTE. Nevertheless, its 
flexibility and semantical richness requires the definition of 
efficient modelling methodologies [9].  

One of them is Time4Sys, a framework developed as a 
Polarsys pluging with the objective to bridge design and 
analysis tools without changing the development framework. 
The main goal is timing analysis. It supports schedulability 
analysis based on ‘Worst-Case Execution Times’ (WCET). 
The tool also supports workload simulation assigning 
constant execution times to the tasks (subtasks) [15].  

UML also allows the specification of timing constraints 
using activity diagrams [16]. Due to the importance of 
timing behavior in embedded systems design, MARTE 
extends the UML capability in specifying timing relations 
among events with the Clock Constraint Specification 
Language (CCSL) [17].  Nevertheless, few methods allow to 
specify the timing constraints and verify them during system 
simulation 

On the other hand, there are examples of software based 
profiling systems, that depend of the application (e.g., Gprof 
[18], LTTng [19]), but are not linked with high-level 
methodologies. Furthermore, software profiling necessarily 
introduces some overheads on execution time and, 
considering the sampling approach, it has some grade of 
statistical inaccuracy. Regarding unifying design and 
monitoring approaches, the work in [20] use time triggered 
run-time verification that seeks to minimize the software 
overhead of run-time verification for multi-core systems. 
[21] presents a runtime verification system that utilizes live 
sequence charts, that are similar to UML sequence diagrams 
and enable support modeling multiple system behaviors, 
conditional execution sequences, and activation timing, 
using Linear Temporal Logic (LTL). Copilot [22] is a 
compiler-assisted approach that automatically instruments a 
software binary with custom verification code compiled 
from a requirements specification language. It generates 
verification code, capable of statically analyze timings.  

Moreover, there is a lack of tools able to generate 
performance models of the system depending on the 
architectural mapping over heterogeneous platforms [9]. 
This is the background technology we propose to extend to 
support trace-based timing constraint verification of the 
PSM, considering the HW resources selected. 

III Problem description 
As stated above, the development of complex embedded 

systems is a difficult and time-consuming task. To minimize 
these problems, it is required to have a tool providing 
flexibility, scalability and reusability capabilities, specially 
at the beginning of the design process. To accomplish this 
goal, this paper uses a component-based UML/MARTE 
system modeling methodology. Components are usually 
isolated pieces of functionality that can be developed 
independently of its use and reused in different projects. This 
is also the case of legacy or third-party components. 

However, achieving the independency required to 
separate development and reuse is not so simple. On the one 
hand, components must be as platform independent as 
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possible. The target platform where they will be executed 
can be unknown during development, or it can change when 
being reused. On the other hand, when reused, the 
architecture of the system application can be quite different. 
Thus, a reused component can be integrated in a completely 
different structure compared with the design where it was 
originally developed: services can be requested with 
different communication semantics, or the functionality has 
to be run in a completely different model of computation. 

To design components completely independent from its 
implementation and use, first, component internal 
functionality must be designed in a platform independent 
way. Additionally, components should support 
interconnections among them without restrictions, specially 
in terms of communication semantics, synchronization 
mechanisms or model of computation.  

To achieve so, application components must be developed 
separating functionality and communication. Additionally, 
all the information about synchronism, communication 
buffers or concurrency as component parameters in the UML 
model instead of in the source code. Then, an automatic code 
generation tool is used to create the glue code required to 
implement this information. 

This approach also improves exploration possibilities, 
since the proposed automation makes it easy to evaluate 
system performance when each component operates under 
different concurrency and communication parameters. As a 
result, the information added in the UML model can be used 
to define the Model of Computation (MoC) under each 
component will operate, including MoCs such as Kahn 
Process Network (KPN), Synchronous Data Flow (SDF), 
Timed Data Flow (TDF), Synchronous Reactive (SR), etc.  

However, these MoCs are typically defined to ensure that 
the resulting system has certain characteristics, but 
considering that all the components of the system follows the 
same MoC. For example, in KPN, no input data is lost during 
the computation process. However, if we use a set of periodic 
processes that communicate using shared variables, it is very 
likely that some data will be overwritten on that intermediate 
variables before used.  

To analyze so, the proposal we present in this article is to 
define the most important paths followed by the data 
internally through the system.  These data paths are defined 
as the list of services each data must cross from the input to 
the output, or between two internal services of the system. 

 
Figure 1.- UML system description 

Analyzing data flow on these paths, and putting 
constraints, such as the maximum latency for an specific 
path from input to output, can let the designer to have a more 
clear idea of the resulting operation, and to drive the 
exploration process, selecting or rejecting different 
alternatives. That way, the traces collected at the specific 
marks added in the automatically generated glue code and 
their later analysis can help designers to optimize the system.  

IV UML Modeling Methodology 
A.- Methodology Overview 
The first step in the proposed design process is the 

modeling of the full system in UML. To do so, the modeling 
methodology must fulfill three requirements. First, it has to 
minimize the modeling effort and to reduce the number of 
mistakes, the modeling methodology should be simple. But, 
at the same time, the model must include all the information 
required to automatically perform the evaluation of each 
design alternative the designer selects, as described in next 
section. Additionally, the capability to reuse components or 
to integrate legacy or third-party components requires the 
use of standards. Thus, in this paper, the OMG standards 
UML and MARTE, are used to specify the system. 

To capture all the relevant information in a simple way, 
the system model is divided in ‘views’ which conforms three 
sub-models: Platform-Independent Model (PIM), Platform 
Description Model (PDM) and Platform-Specific Model 
(PSM). The PIM describes the functional application, 
independently on the target platform, the PDM describe the 
target platform, and the PSM describes how the application 
is mapped into the resource of the platform. 

As stated before, the fundamental modeling element is the 
component. Thus, the definition of the application (PIM) is 
divided in two parts: the description of the application 
components themselves, and the description of how these 
components interconnect to create the full application.  

Components communicate with other components 
through ports in a client/server approach. Ports contain 
interfaces which define the communication methods, called 
services. The components either require communication 
services through required interfaces and/or offer 
communication services through provided interfaces (Figure 
1). Ports and interfaces specify the semantics of each 
communication. Using them, it is possible to define if a 
service call will be synchronous or asynchronous; if multiple 
calls can be executed in parallel or they must be protected; if 
its execution must be immediate or a request can be stored 
in a queue; the definition of timeouts, retries, etc.   

Application components also specify its internal 
functionality. As a preferred solution, each component is 
linked to the C++ files containing its functional code. In our 
approach, application components have two ways for 
executing its internal functionality. First, each component 
can have an internal execution flow, which automatically 
starts when the component is created. This functionality can 
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have any pattern, but it is usually based on a loop that 
executes periodically, or depending on a certain event. 
Secondly, components provide services that are executed 
when a client requests them. 

Additionally, functional and extra-functional constraints 
may be imposed to the application components and to the 
services, that must be verified during system development. 

Then, the system application is conceived as a 
hierarchical network of application components. Once the 
components are specified, the system functionality is 
obtained as a composition of such components, connected 
each other through concrete, compatible ports and interfaces. 

Once the application is defined, it is required to describe 
the HW platform, also in a hierarchical component-based 
approach. A complex system can have several nodes, being 
each node composed by one or several processors, with 
busses, memories and peripherals. Finally, depending on the 
platform details, application components are grouped in 
memory spaces that lead to the creation of one or several 
executables (one per memory space), which are mapped into 
the hardware resources. Mode details can be found in [4]. 

 
B.- Data path definition 
This paper proposes analyzing the internal 

communications to know the behavior of the resulting 
system when multiple MoCs are used in it. Our proposal is 
to define the most important paths that data follow within the 
system, from input to output, or between internal points. For 
example, to define a data path we can consider an input data 
A that is used by service 1 to generate data B, which is used 
by service 2 to generate data C, which again is used by 
service 3 to generate data D, and so until the output. These 
services or internal loops can be part of the same or different 
components. Once one data is received in a component, it 
can be computed internally by its internal loop (or not), and 
it can be sent to another component through a call to a 
service of this component.  

To be able to get and analyze this information, the most 
important data paths must be described in the UML model. 
The modeling of these data paths in UML is done as shown 
in Fig 2. The modeling proposed is based on a sequence 
diagram, where each lifeline represents an application 
component. Service calls are identified in the diagram by 
arrows with the name of the corresponding service. Internal 
component loops are defined by a rectangle located in the 
lifeline. When an arrow starts from a rectangle, it is 
considered that it is executed by the component internal loop. 
When it directly connects with the lifeline (no rectangle) it 
is considered that it is executed by the service executed as a 
result of the previous incoming service request. For example, 
in figure 2, service trHightFreqBCP is requested by loc_c1 
and provided by loc_c2. As a result of the call, the 
D_BestComputedPosition datum is sent from loc_c1 to 
loc_c2.  Then, this datum is computed internally in the 
component loop and the result is gathered by traj_r1 calling 

to getCurentBCP service, which gets this data from loc_c2. 
Additionally, it is important to note that service calls can 
deliver or gather data, depending on whether the data is read 
or written in the service call. This fact specially impacts the 
later analysis: each service is monitored by three control 
points: the service request, the execution start and the end of 
the service (In loops, it corresponds to the beginning and the 
end of each iteration). Depending on the type of service and 
the communication semantics these tree points are 
considered in a different way: the analysis is not the same in 
an asynchronous call, than in a rendezvous. 

 
Figure 2.- Data path model 

Two more elements must be considered when defining the 
graph. The first element appears when a service call acts both 
as a deployer and a gatherer (inout argument). As a result, 
the data path must continue from the client instead of from 
the server. To detect so, the analyzer identifies the type of the 
service depending on the location of previous and next 
arrows. The second problem is service call chaining. A 
service can call another service inside its code, resulting in 
deployer or gatherer chains.  

Finally, constrains can be specified for the data path. As a 
result, only chains fulfilling the constraint are considered 
correct. For example, in figure 2 a deadline value is defined, 
specified the maximum amount of time of a data path, from 
the input to the output. 

V Evaluation process 
The execution flow of the infrastructure developed for the 

analysis of the system data paths is shown in figure 3. The 
flow starts with the development of the UML/MARTE 
model. Eclipse/papyrus is used for that purpose. Then, this 
model has to be executed to generate the traces for the 
analysis. The glue code generated is standard C++ code that 
can be compiled and used in most simulators or in real 
boards, so the proposed approach is no limited to a single 
simulation tool. In order to obtain results for this paper, the 
tool described in [4] has been adapted to automatically 
generate simulation models using Vippe[23] simulation tool, 
which uses host-compiled annotation.  
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In order to create the simulation model, three elements are 
required: the application executable codes, the makefiles 
required to compile them, and the XML files used to 
configure the platform model in the simulation tool (number 
of cores, processor frequency…). Executable codes are 
automatically created from the information stored in the 
UML model, combining the internal component 
functionality with synthesized glue code used to implement 
the specified communication semantics. This glue code also 
includes the trace points at the beginning and end of the 
services for later analysis, avoiding manual user intervention.   

 
Figure 3.- Data path analysis flow 

Once all the elements required for the simulation are 
created, the simulation is performed, collecting traces which 
are automatically analyzed reporting information about the 
system behavior, such as the execution times of the different 
services, number of calls to them, data paths correctly 
executed, internal data overwritten or read multiple times. 

To collect the traces, the binary CTF (common trace 
format) format has been used. This format enables collecting 
large amount of data in a reduced memory area. For that 
collection, the LTTng tracing application has been used as 
SW monitor. Additionally, babeltrace tool has been used to 
decode the binary CTF files. The decoded output is 
dynamically loaded by a specifically generated C program 
that performs the analysis, following the information 
specified in the model, specially the data paths. As a result, 
the tool reports information about the correct path iterations, 
and their timing characteristics (maximum, mean and 
minimum time), duplicated and lost data paths, number of 
correct data paths accomplishing the constraints sets, etc. 

Currently, only remote procedure call (RPC) and 
rendezvous (RV) communication semantics have been 
covered, while other characteristics such as FIFOs, retries or 
timeouts will be covered in the future. 

VI Results 
The proposed approach has been applied to a safety-

critical Flight Management System (FMS) of an airplane, 
provided by Thales. The purpose of the FMS is to provide 
the crew with centralized control for the aircraft navigation 
sensors, computer-based flight planning, and geographical 

situation information. From pre-set flight plans (take-off 
airport to landing airport), the FMS is responsible for the 
plane localization, the trajectory computation allowing the 
plane to follow the flight plan, and the reaction to pilot 
directives. The FMS has been decomposed into several 
components, as shown in figure 1. It computes various data 
(i.e., exact location, trajectories, and nearest airports list 
among many others) and it sends guidance instructions to the 
autopilot and to a display. 

The example has been used to analyze the system 
behavior under different platform architectures and 
communication semantics. Thus, the goal of the example is 
not to demonstrate the best implementation for the FSM 
code, but the possibilities the analysis infrastructure 
proposed can provide to system designers. All simulations 
have been created automatically from the UML model, 
minimizing designers time and effort. 

Table 1: Simulation data for RPC system implementation 

The code has been simulated under different platform 
configurations, changing the number of cores and processors’ 
frequency. Additionally, the communication semantics of a 
set of services have been modified, generating two 
implementations: a synchronous RPC (remote procedure 
call) implementation, and another where half of the internal 
system communications have been changed from RPC to RV. 
Additionally, the change from RPC to RV has forced 
multiple tasks to lost their waiting periods, relying on the RV 
synchronization to get new data. As a result, four tables have 
been generated: Tables 1 and 3 with general simulation 
information for both full RPC and RPC+RV and tables 2 and 
4 with the analysis of data the path described in figure 2. 

Table 2: Data path info for RPC system implementation 

Cores GHz 
Simulated  
time (sec) Total events Data In Data Out 

1 1500 4022 648323 20114 804 
 750 4022 648323 20114 804 
 325 4022 608783 18884 804 
  150 4022 287545 5206 804 
2 1500 4022 648326 20114 804 
 750 4022 648326 20114 804 
 325 4022 648326 20114 804 
  150 4022 505571 17324 804 
4 1500 4022 648330 20114 804 
 750 4022 648330 20114 804 
 325 4022 648330 20114 804 
  150 4022 648330 20114 804 

Cores GHz 
Max 
time 

Min 
time 

Mean 
time 

Full 
Path 

Data 
Rep. 

Data 
Lost 

Deadl. 
Lost 

1 1500 2780 1370 2075 804 0 19283 0 
 750 2940 1580 2272 804 0 19283 0 
 325 3110 1320 2301 804 0 18053 93 
  150 6101 2371 4202 804 0 4393 768 
2 1500 2785 1385 2087 804 0 19283 0 
 750 2770 1370 2072 804 0 19283 0 
 325 2940 1550 2247 804 0 19283 0 
  150 3150 1371 2373 804 0 16495 131 
4 1500 2795 1395 2097 804 0 19283 0 
 750 2780 1380 2081 804 0 19283 0 
 325 2750 1350 2052 804 0 19283 0 
  150 2860 1260 2157 804 0 19283 0 

 
UML/MARTE model 

Eclipse / Papyrus 

Simulation model builder 
Eclipse plugin 

 

XXX simulation tool Trace collection 
lttng 

Trace decoding 
babeltrace 

Trace analysis 
C program 
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As results show (table 1), in RPC, the frequency reduction 
implies a reduction on the number of events, and input data 
read, since the processor can reach 100% CPU utilization, 
especially in the case of 1 and 2 cores. As a result, the 
minimum time required to execute the full data path is 
reduced as frequency increases (table 2). The reason is that, 
typically, data needs to wait the next iteration of each task to 
be computed. However, as the CPU reaches 100% utilization 
deadlines are lost, tasks execution order is altered, leading to 
punctual smaller minimum data path times, while the mean 
and max times are maintained or even increased. 
Additionally, all output data are the result for different input 
data (full paths), while multiple input data have not 
generated output data (data lost). Thus, an exploration of the 
most adequate task order could improve system latency. 

Table 3: Simulation data for RPC+RV system implementation 

In RPC+RV (table 3), synchronizations modify data 
operation. A lot of blockages occur in the system, especially 
as the frequency decreases. Thus, the execution time of the 
proposed test-bench increases, and so, the number of events. 
However, as calls are synchronized by rendezvous, the min, 
mean and max times required to execute the data path always 
increase when the CPU utilization reaches 100% (table 4). 
At the same time, as the period of the last task has been 
removed, more output data are obtained, however, the 
generated amount of output data is not constant. Additionally, 
most of the output data are duplicated (data rep) due to 
multiple readings of intermediate data variables.  

Table 4: Data path info for RPC+RV system implementation 

Cores GHz 
Max 
time 

Min 
time 

Mean 
time 

Full 
Path 

Data 
Rep. 

Data 
Lost 

Deadl. 
lost 

1 1500 390 220 242 4022 16086 16088 0 
 750 309 260 270 4022 16087 16088 0 
 325 1790 928 1269 6091 7722 14016 0 
  150 4860 2850 3747 14523 32 5586 14380 
2 1500 410 225 365 4022 16086 16088 0 
 750 410 240 370 4022 16087 16088 0 
 325 460 260 337 4022 16087 16088 0 
  150 2199 1209 1693 7394 4429 12715 0 

VII Conclusions 
The paper presents an integrated solution, that from a 

UML model of the system, is capable of automatically 
generate a simulation model, collect execution traces and 
analyze the results. To drive the trace collection and analysis, 
it is possible to specify data paths within the system.  

According to them, the designer can understand the 
system internal behavior and easily analyze different design 

alternatives, including different platform configuration and 
different communication semantics, and in the end models 
of computation. Currently, only remote procedure call (RPC) 
and rendezvous (RV) communication semantics have been 
covered, while other characteristics such as FIFOs, retries or 
timeouts will be covered as a future work. 
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Cores GHz 
Simulated 
time(sec) Total events Data In Data Out 

1 1500 4022 816986 20114 20114 
 750 4022 816986 20114 20114 
 325 6035 768023 20113 13817 
  150 18755s 1028516 20113 14558 
2 1500 4022 816988 20114 20114 
 750 4022 816988 20114 20114 
 325 4022s 816988 20114 20114 
  150 7393s 768988 20113 11826 
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