
Data flow analysis from UML/MARTE models based on binary
traces

Héctor Posadas, Javier Merino, Eugenio Villar
University of Cantabria

Santander, Spain
{posadash, javierm, villar}@teisa.unican.es

Abstract - The design of increasingly complex embedded
systems requires powerful solutions from the very beginning of
the design process. Model Based Design (MBD) and early
simulation have proven to be capable technologies to perform
initial design space analysis to optimize system design.
Traditional MBD methods and tools typically rely on fixed
elements, which makes difficult the evaluation of different
platform configurations, communication alternatives or models
of computation. Addressing these challenges require flexible
design technologies able to support, from a high-level abstract
model, full design space exploration, including system
specification, binary generation and performance evaluation.
In this context, this paper proposes a UML/MARTE based
approach able to address the challenges mentioned above by
improving design flexibility and evaluation capabilities,
including automatic code generation, trace execution collection
and trace analysis from the initial UML models. The approach
focuses on the definition and analysis of the paths data follow
through the different application components, as a way to
understand the behavior or the different design solutions.

I Introduction
Embedded Cyber-Physical Systems (ECPSs) are the

cornerstones of the new services that are being deployed on
the Internet of Things. Their importance will even grow with
the full deployment of the Internet of Everything (IoE), when
almost all objects in our living environment will be smart
and interconnected among them and with the cloud [1].

One of the most critical aspects to solve during this design
process is to ensure that system reaction times satisfy the
strict timing requirements usually imposed with respect to
the data got from and produced to the physical environment
where the ECPSs typically operate. This strict timing
behavior goes beyond traditional real-time system design [2].
Thus, being able to specify, analyze, simulate and verify
timing constraints to lead the design of such complex
systems is still an open problem not yet satisfactorily solved.

Timing constraints must be verified all along the design
process to ensure that they are satisfied after each design

stage. Especially important is the verification process at the
initial design stages, when the impact of the architectural
decisions taken is potentially higher. In this context, early
design-space exploration is essential to take the adequate
design decisions that will enable satisfying these non-
functional constraints in the final product.

Model Based Design has proven to be a powerful
technology to address the development of increasingly
complex embedded systems such as ECPSs [3]. For that
purpose, standard solutions, such as the Unified Modelling
Language (UML), are very important, since it can provide a
common, graphical-based formalism for capturing,
analyzing and sharing system models, which can also
include the refinements and modifications done during the
design process. Thus, UML is being proposed not only for
initial static design and analysis, but also as a solution to
collect information and be used as input for later design steps,
such as simulation-based design space exploration [4].

Selecting an optimized architectural mapping is critical in
the final system timings, but deciding the most adequate
communication and synchronization solutions and the
concurrent architecture in general is also critical. However,
to perform this exploration, powerful high-level design
solutions are required. Once the system is modeled,
requirements traceability acquires an important role.
Verification of timing constraints on complex systems
requires analyzing the system operation, on real prototypes
or with simulations when a prototype is not available.

One of the most common mechanisms to perform this
analysis is by collecting traces of the events that occurs
during execution. Event tracing allows to verify and validate
the input constraints at different abstraction levels. Moreover,
monitoring methods have an important role in verification
and validation steps, while providing information about
system state, that can be processed (e.g. filtered, interpolated,
etc.) to obtain indications about parameters (e.g., workload
characterization, debug action), or characterize specific
components (e.g., cache memories, buses, etc.). For example,
application components produce and/or consume events
associated to the services provided and required at the
component interfaces that can be collected and analyzing to
evaluate the timing behavior of the system.

In such a context, this work presents an approach capable

This work has been funded by the EU and the Spanish
MICINN/AEI through the ECSEL Comp4Drones and the
TEC2017-86722-C4-3-R PLATINO projects.

 .

2

of generating and analyzing traces during the initial steps of
the design process. For that purpose, the system must be
specified in UML, following a methodology oriented to
enable easy design exploration. Then, this UML model is
automatically translated into a simulation model, that
generates event traces during simulation. Once simulation
has finished, the obtained traces are analyzed to extract
timing information. To analyze the required internal timing
behavior, the user must define, in the UML model, internal
data paths to be monitored. These data paths automatically
drive the trace collection and the later timing analysis.

To present this approach, the paper is organized as
follows: Section II presents the state of the art regarding
modeling and trace-based analysis of ECPSs. Section III
describes the problem solved. Section IV presents the UML
modeling methodology, and section V describes the analysis
process. Finally, Section VI presents application results and
section VII closes the paper with some conclusions.

II State of the Art
An Embedded Cyber-Physical System (ECPS) is an

integration of computation within a physical environment. In
such a domain, design challenges arising from the close
interaction among the physical processes, the embedded
functionality and the communication infrastructure, have to
be solved [5]. One of the most important problems to address
is ensuring the correct temporal behavior of the system as a
whole [6]. Nevertheless, there is a lack in the definition of
approaches that try to consider timing requirements into a
unified design flow, while considering traceability and link
between models and run-time execution.

Several Model Based Design (MBD) commercial tools
are available for high-level modelling and simulation. One
of the most popular is Matlab/Simulink [7]. However, being
based on a single Model of Computation and
Communication (MoCC) is the main limitation affecting
simulation speed and code generation efficiency. CoFluent
is other commercial tool extended to model IoT systems [8].
Although supporting more interaction models that
Matlab/Simulink, it is also limited in the way components
may interact among them. In both cases, the model is
functional and no performance analysis is made depending
on the underlying heterogeneous platform.

Another alternative is to use UML language as a base for
MBD [9]. The problem is that UML is very flexible but lacks
the semantical content required in most application domains.
Therefore, the tendency has been the proliferation of
Domain-Specific Languages (DSLs) [10]. Metamorph is a
good example of a framework following this approach [11].

Among the available DSLs, UML/MARTE is the standard
language for real-time and embedded systems design [12].
Several modeling environments such as Modelio [13] and
Papyrus [14] support UML/MARTE. Nevertheless, its
flexibility and semantical richness requires the definition of
efficient modelling methodologies [9].

One of them is Time4Sys, a framework developed as a
Polarsys pluging with the objective to bridge design and
analysis tools without changing the development framework.
The main goal is timing analysis. It supports schedulability
analysis based on ‘Worst-Case Execution Times’ (WCET).
The tool also supports workload simulation assigning
constant execution times to the tasks (subtasks) [15].

UML also allows the specification of timing constraints
using activity diagrams [16]. Due to the importance of
timing behavior in embedded systems design, MARTE
extends the UML capability in specifying timing relations
among events with the Clock Constraint Specification
Language (CCSL) [17]. Nevertheless, few methods allow to
specify the timing constraints and verify them during system
simulation

On the other hand, there are examples of software based
profiling systems, that depend of the application (e.g., Gprof
[18], LTTng [19]), but are not linked with high-level
methodologies. Furthermore, software profiling necessarily
introduces some overheads on execution time and,
considering the sampling approach, it has some grade of
statistical inaccuracy. Regarding unifying design and
monitoring approaches, the work in [20] use time triggered
run-time verification that seeks to minimize the software
overhead of run-time verification for multi-core systems.
[21] presents a runtime verification system that utilizes live
sequence charts, that are similar to UML sequence diagrams
and enable support modeling multiple system behaviors,
conditional execution sequences, and activation timing,
using Linear Temporal Logic (LTL). Copilot [22] is a
compiler-assisted approach that automatically instruments a
software binary with custom verification code compiled
from a requirements specification language. It generates
verification code, capable of statically analyze timings.

Moreover, there is a lack of tools able to generate
performance models of the system depending on the
architectural mapping over heterogeneous platforms [9].
This is the background technology we propose to extend to
support trace-based timing constraint verification of the
PSM, considering the HW resources selected.

III Problem description
As stated above, the development of complex embedded

systems is a difficult and time-consuming task. To minimize
these problems, it is required to have a tool providing
flexibility, scalability and reusability capabilities, specially
at the beginning of the design process. To accomplish this
goal, this paper uses a component-based UML/MARTE
system modeling methodology. Components are usually
isolated pieces of functionality that can be developed
independently of its use and reused in different projects. This
is also the case of legacy or third-party components.

However, achieving the independency required to
separate development and reuse is not so simple. On the one
hand, components must be as platform independent as

 3

possible. The target platform where they will be executed
can be unknown during development, or it can change when
being reused. On the other hand, when reused, the
architecture of the system application can be quite different.
Thus, a reused component can be integrated in a completely
different structure compared with the design where it was
originally developed: services can be requested with
different communication semantics, or the functionality has
to be run in a completely different model of computation.

To design components completely independent from its
implementation and use, first, component internal
functionality must be designed in a platform independent
way. Additionally, components should support
interconnections among them without restrictions, specially
in terms of communication semantics, synchronization
mechanisms or model of computation.

To achieve so, application components must be developed
separating functionality and communication. Additionally,
all the information about synchronism, communication
buffers or concurrency as component parameters in the UML
model instead of in the source code. Then, an automatic code
generation tool is used to create the glue code required to
implement this information.

This approach also improves exploration possibilities,
since the proposed automation makes it easy to evaluate
system performance when each component operates under
different concurrency and communication parameters. As a
result, the information added in the UML model can be used
to define the Model of Computation (MoC) under each
component will operate, including MoCs such as Kahn
Process Network (KPN), Synchronous Data Flow (SDF),
Timed Data Flow (TDF), Synchronous Reactive (SR), etc.

However, these MoCs are typically defined to ensure that
the resulting system has certain characteristics, but
considering that all the components of the system follows the
same MoC. For example, in KPN, no input data is lost during
the computation process. However, if we use a set of periodic
processes that communicate using shared variables, it is very
likely that some data will be overwritten on that intermediate
variables before used.

To analyze so, the proposal we present in this article is to
define the most important paths followed by the data
internally through the system. These data paths are defined
as the list of services each data must cross from the input to
the output, or between two internal services of the system.

Figure 1.- UML system description

Analyzing data flow on these paths, and putting
constraints, such as the maximum latency for an specific
path from input to output, can let the designer to have a more
clear idea of the resulting operation, and to drive the
exploration process, selecting or rejecting different
alternatives. That way, the traces collected at the specific
marks added in the automatically generated glue code and
their later analysis can help designers to optimize the system.

IV UML Modeling Methodology
A.- Methodology Overview
The first step in the proposed design process is the

modeling of the full system in UML. To do so, the modeling
methodology must fulfill three requirements. First, it has to
minimize the modeling effort and to reduce the number of
mistakes, the modeling methodology should be simple. But,
at the same time, the model must include all the information
required to automatically perform the evaluation of each
design alternative the designer selects, as described in next
section. Additionally, the capability to reuse components or
to integrate legacy or third-party components requires the
use of standards. Thus, in this paper, the OMG standards
UML and MARTE, are used to specify the system.

To capture all the relevant information in a simple way,
the system model is divided in ‘views’ which conforms three
sub-models: Platform-Independent Model (PIM), Platform
Description Model (PDM) and Platform-Specific Model
(PSM). The PIM describes the functional application,
independently on the target platform, the PDM describe the
target platform, and the PSM describes how the application
is mapped into the resource of the platform.

As stated before, the fundamental modeling element is the
component. Thus, the definition of the application (PIM) is
divided in two parts: the description of the application
components themselves, and the description of how these
components interconnect to create the full application.

Components communicate with other components
through ports in a client/server approach. Ports contain
interfaces which define the communication methods, called
services. The components either require communication
services through required interfaces and/or offer
communication services through provided interfaces (Figure
1). Ports and interfaces specify the semantics of each
communication. Using them, it is possible to define if a
service call will be synchronous or asynchronous; if multiple
calls can be executed in parallel or they must be protected; if
its execution must be immediate or a request can be stored
in a queue; the definition of timeouts, retries, etc.

Application components also specify its internal
functionality. As a preferred solution, each component is
linked to the C++ files containing its functional code. In our
approach, application components have two ways for
executing its internal functionality. First, each component
can have an internal execution flow, which automatically
starts when the component is created. This functionality can

 .

4

have any pattern, but it is usually based on a loop that
executes periodically, or depending on a certain event.
Secondly, components provide services that are executed
when a client requests them.

Additionally, functional and extra-functional constraints
may be imposed to the application components and to the
services, that must be verified during system development.

Then, the system application is conceived as a
hierarchical network of application components. Once the
components are specified, the system functionality is
obtained as a composition of such components, connected
each other through concrete, compatible ports and interfaces.

Once the application is defined, it is required to describe
the HW platform, also in a hierarchical component-based
approach. A complex system can have several nodes, being
each node composed by one or several processors, with
busses, memories and peripherals. Finally, depending on the
platform details, application components are grouped in
memory spaces that lead to the creation of one or several
executables (one per memory space), which are mapped into
the hardware resources. Mode details can be found in [4].

B.- Data path definition
This paper proposes analyzing the internal

communications to know the behavior of the resulting
system when multiple MoCs are used in it. Our proposal is
to define the most important paths that data follow within the
system, from input to output, or between internal points. For
example, to define a data path we can consider an input data
A that is used by service 1 to generate data B, which is used
by service 2 to generate data C, which again is used by
service 3 to generate data D, and so until the output. These
services or internal loops can be part of the same or different
components. Once one data is received in a component, it
can be computed internally by its internal loop (or not), and
it can be sent to another component through a call to a
service of this component.

To be able to get and analyze this information, the most
important data paths must be described in the UML model.
The modeling of these data paths in UML is done as shown
in Fig 2. The modeling proposed is based on a sequence
diagram, where each lifeline represents an application
component. Service calls are identified in the diagram by
arrows with the name of the corresponding service. Internal
component loops are defined by a rectangle located in the
lifeline. When an arrow starts from a rectangle, it is
considered that it is executed by the component internal loop.
When it directly connects with the lifeline (no rectangle) it
is considered that it is executed by the service executed as a
result of the previous incoming service request. For example,
in figure 2, service trHightFreqBCP is requested by loc_c1
and provided by loc_c2. As a result of the call, the
D_BestComputedPosition datum is sent from loc_c1 to
loc_c2. Then, this datum is computed internally in the
component loop and the result is gathered by traj_r1 calling

to getCurentBCP service, which gets this data from loc_c2.
Additionally, it is important to note that service calls can
deliver or gather data, depending on whether the data is read
or written in the service call. This fact specially impacts the
later analysis: each service is monitored by three control
points: the service request, the execution start and the end of
the service (In loops, it corresponds to the beginning and the
end of each iteration). Depending on the type of service and
the communication semantics these tree points are
considered in a different way: the analysis is not the same in
an asynchronous call, than in a rendezvous.

Figure 2.- Data path model

Two more elements must be considered when defining the
graph. The first element appears when a service call acts both
as a deployer and a gatherer (inout argument). As a result,
the data path must continue from the client instead of from
the server. To detect so, the analyzer identifies the type of the
service depending on the location of previous and next
arrows. The second problem is service call chaining. A
service can call another service inside its code, resulting in
deployer or gatherer chains.

Finally, constrains can be specified for the data path. As a
result, only chains fulfilling the constraint are considered
correct. For example, in figure 2 a deadline value is defined,
specified the maximum amount of time of a data path, from
the input to the output.

V Evaluation process
The execution flow of the infrastructure developed for the

analysis of the system data paths is shown in figure 3. The
flow starts with the development of the UML/MARTE
model. Eclipse/papyrus is used for that purpose. Then, this
model has to be executed to generate the traces for the
analysis. The glue code generated is standard C++ code that
can be compiled and used in most simulators or in real
boards, so the proposed approach is no limited to a single
simulation tool. In order to obtain results for this paper, the
tool described in [4] has been adapted to automatically
generate simulation models using Vippe[23] simulation tool,
which uses host-compiled annotation.

 5

In order to create the simulation model, three elements are
required: the application executable codes, the makefiles
required to compile them, and the XML files used to
configure the platform model in the simulation tool (number
of cores, processor frequency…). Executable codes are
automatically created from the information stored in the
UML model, combining the internal component
functionality with synthesized glue code used to implement
the specified communication semantics. This glue code also
includes the trace points at the beginning and end of the
services for later analysis, avoiding manual user intervention.

Figure 3.- Data path analysis flow

Once all the elements required for the simulation are
created, the simulation is performed, collecting traces which
are automatically analyzed reporting information about the
system behavior, such as the execution times of the different
services, number of calls to them, data paths correctly
executed, internal data overwritten or read multiple times.

To collect the traces, the binary CTF (common trace
format) format has been used. This format enables collecting
large amount of data in a reduced memory area. For that
collection, the LTTng tracing application has been used as
SW monitor. Additionally, babeltrace tool has been used to
decode the binary CTF files. The decoded output is
dynamically loaded by a specifically generated C program
that performs the analysis, following the information
specified in the model, specially the data paths. As a result,
the tool reports information about the correct path iterations,
and their timing characteristics (maximum, mean and
minimum time), duplicated and lost data paths, number of
correct data paths accomplishing the constraints sets, etc.

Currently, only remote procedure call (RPC) and
rendezvous (RV) communication semantics have been
covered, while other characteristics such as FIFOs, retries or
timeouts will be covered in the future.

VI Results
The proposed approach has been applied to a safety-

critical Flight Management System (FMS) of an airplane,
provided by Thales. The purpose of the FMS is to provide
the crew with centralized control for the aircraft navigation
sensors, computer-based flight planning, and geographical

situation information. From pre-set flight plans (take-off
airport to landing airport), the FMS is responsible for the
plane localization, the trajectory computation allowing the
plane to follow the flight plan, and the reaction to pilot
directives. The FMS has been decomposed into several
components, as shown in figure 1. It computes various data
(i.e., exact location, trajectories, and nearest airports list
among many others) and it sends guidance instructions to the
autopilot and to a display.

The example has been used to analyze the system
behavior under different platform architectures and
communication semantics. Thus, the goal of the example is
not to demonstrate the best implementation for the FSM
code, but the possibilities the analysis infrastructure
proposed can provide to system designers. All simulations
have been created automatically from the UML model,
minimizing designers time and effort.

Table 1: Simulation data for RPC system implementation

The code has been simulated under different platform
configurations, changing the number of cores and processors’
frequency. Additionally, the communication semantics of a
set of services have been modified, generating two
implementations: a synchronous RPC (remote procedure
call) implementation, and another where half of the internal
system communications have been changed from RPC to RV.
Additionally, the change from RPC to RV has forced
multiple tasks to lost their waiting periods, relying on the RV
synchronization to get new data. As a result, four tables have
been generated: Tables 1 and 3 with general simulation
information for both full RPC and RPC+RV and tables 2 and
4 with the analysis of data the path described in figure 2.

Table 2: Data path info for RPC system implementation

Cores GHz
Simulated
time (sec) Total events Data In Data Out

1 1500 4022 648323 20114 804
 750 4022 648323 20114 804
 325 4022 608783 18884 804
 150 4022 287545 5206 804
2 1500 4022 648326 20114 804
 750 4022 648326 20114 804
 325 4022 648326 20114 804
 150 4022 505571 17324 804
4 1500 4022 648330 20114 804
 750 4022 648330 20114 804
 325 4022 648330 20114 804
 150 4022 648330 20114 804

Cores GHz
Max
time

Min
time

Mean
time

Full
Path

Data
Rep.

Data
Lost

Deadl.
Lost

1 1500 2780 1370 2075 804 0 19283 0
 750 2940 1580 2272 804 0 19283 0
 325 3110 1320 2301 804 0 18053 93
 150 6101 2371 4202 804 0 4393 768
2 1500 2785 1385 2087 804 0 19283 0
 750 2770 1370 2072 804 0 19283 0
 325 2940 1550 2247 804 0 19283 0
 150 3150 1371 2373 804 0 16495 131
4 1500 2795 1395 2097 804 0 19283 0
 750 2780 1380 2081 804 0 19283 0
 325 2750 1350 2052 804 0 19283 0
 150 2860 1260 2157 804 0 19283 0

UML/MARTE model

Eclipse / Papyrus

Simulation model builder
Eclipse plugin

XXX simulation tool Trace collection
lttng

Trace decoding
babeltrace

Trace analysis
C program

 .

6

As results show (table 1), in RPC, the frequency reduction
implies a reduction on the number of events, and input data
read, since the processor can reach 100% CPU utilization,
especially in the case of 1 and 2 cores. As a result, the
minimum time required to execute the full data path is
reduced as frequency increases (table 2). The reason is that,
typically, data needs to wait the next iteration of each task to
be computed. However, as the CPU reaches 100% utilization
deadlines are lost, tasks execution order is altered, leading to
punctual smaller minimum data path times, while the mean
and max times are maintained or even increased.
Additionally, all output data are the result for different input
data (full paths), while multiple input data have not
generated output data (data lost). Thus, an exploration of the
most adequate task order could improve system latency.

Table 3: Simulation data for RPC+RV system implementation

In RPC+RV (table 3), synchronizations modify data
operation. A lot of blockages occur in the system, especially
as the frequency decreases. Thus, the execution time of the
proposed test-bench increases, and so, the number of events.
However, as calls are synchronized by rendezvous, the min,
mean and max times required to execute the data path always
increase when the CPU utilization reaches 100% (table 4).
At the same time, as the period of the last task has been
removed, more output data are obtained, however, the
generated amount of output data is not constant. Additionally,
most of the output data are duplicated (data rep) due to
multiple readings of intermediate data variables.

Table 4: Data path info for RPC+RV system implementation

Cores GHz
Max
time

Min
time

Mean
time

Full
Path

Data
Rep.

Data
Lost

Deadl.
lost

1 1500 390 220 242 4022 16086 16088 0
 750 309 260 270 4022 16087 16088 0
 325 1790 928 1269 6091 7722 14016 0
 150 4860 2850 3747 14523 32 5586 14380
2 1500 410 225 365 4022 16086 16088 0
 750 410 240 370 4022 16087 16088 0
 325 460 260 337 4022 16087 16088 0
 150 2199 1209 1693 7394 4429 12715 0

VII Conclusions
The paper presents an integrated solution, that from a

UML model of the system, is capable of automatically
generate a simulation model, collect execution traces and
analyze the results. To drive the trace collection and analysis,
it is possible to specify data paths within the system.

According to them, the designer can understand the
system internal behavior and easily analyze different design

alternatives, including different platform configuration and
different communication semantics, and in the end models
of computation. Currently, only remote procedure call (RPC)
and rendezvous (RV) communication semantics have been
covered, while other characteristics such as FIFOs, retries or
timeouts will be covered as a future work.

REFERENCES
[1] L. Jóźwiak, “Advanced mobile and wearable systems”,
Microprocessors and Microsystems, V.50, 2017, pp.202-221
[2] E. A. Lee and S. A. Seshia, “Introduction to Embedded Systems: A
Cyber-Physical Systems Approach”, Second Edition, MIT Press, 2017.
[3] F. Mallet, E. Villar, F. Herrera, "MARTE for CPS and CPSoS", in S.
Nakajima, J.P. Talpin, M. Toyoshima and H. Yu: "Cyber-Physical
System Design from an Architecture Analysis Viewpoint:
Communications of NII Shonan Meetings", Springer, 2017.
[4] H. Posadas, E. Villar et all., “Mega-Modeling of complex,
distributed, heterogeneous CPS systems”. Microprocessors and
Microsystems, Springer, Accepted.
[5] Y. Z. Lun, A. D’Innocenzo, F. Smarra, I. Malavolta, and M. D. D.
Benedetto, “State of the art of cyber-physical systems security: An
automatic control perspective,” Journal of Systems and Software, 2019.
[6] A. Shrivastava et al., "Time in cyber-physical systems," Proc. of
CODES+ISSS, IEEE, 2016, pp. 1-10.
[7] Simulink, https://es.mathworks.com/products/simulink.html.
[8] Cofluent, https://www.intel.es/content/www/es/es/cofluent/
cofluent-studio.html.
[9] F. Herrera, J. Medina, E. Villar, "Modeling Hardware/Software
Embedded Systems with UML/MARTE: A Single-Source Design
approach", in Soonhoi Ha and Jürgen Teich (Eds): "Handbook of
Hardware/Software Codesign", Springer. 2017.
[10] M. Brambilla, J. Cabot & M. Wimmer, “Model-Driven Software
Engineering in Practice”, Morgan & Claypool Publishers, 2017.
[11] Metamorph, https://www.metamorphsoftware.com/.
[12] MARTE, https://www.omg.org/spec/MARTE/1.0/PDF.
[13] Modelio, https://www.modelio.org/.
[14] Papyrus, https://www.eclipse.org/papyrus/.
[15] Time4Sys, https://www.polarsys.org/time4sys/.
[16] L. Xuandong, C. Meng, P. Yu, Z. Jianhua and Z. Guoliang,
"Timing Analysis of UML Activity Diagrams", in M. Gogolla and C.
Kobryn, Cris, “UML 2001 - The Unified Modeling Language.
Modeling Languages, Concepts, and Tools", Springer, 2001.
[17] F. Mallet, “Logical Time @ Work for the Modeling and Analysis
of Embedded Systems”, Lambert Academic Publishing, 2011.
[18] S. L. Graham, P. B. Kessler, and M. K. Mckusick, “Gprof: A call
graph execution profiler,” Proc. of SIGPLAN, 1982, p.120–126.
[19] LTTng: an open source tracing framework for Linux, 2020
(accessed: 18.04.2020). https://lttng.org/.
[20] S. Navabpour, B. Bonakdarpour, and S. Fischmeister, “Time-
triggered runtime verification of component-based multi-core systems,”
in Runtime Verification (E. Bartocci and R. Majumdar, eds.), pp. 153–
168, Springer International Publishing, 2015.
[21] M. Chai and B.-H. Schlingloff, “Monitoring systems with
extended live sequence charts,” in Runtime Verification (B.
Bonakdarpour and S. A. Smolka, eds.), pp. 48–63, Springer
International Publishing, 2014.
[22] A. Nassar, F. J. Kurdahi, and W. Elsharkasy, “Nuva: Architectural
support for runtime verification of parametric specifications over
multicores,” in Proc. of CASES, 2015.
[23] L. Diaz, E. Gonzalez, E. Villar, P. Sanchez, "VIPPE, parallel
simulation and performance analysis of multi-core embedded systems
on multi-core platforms", DCIS, 2014

Cores GHz
Simulated
time(sec) Total events Data In Data Out

1 1500 4022 816986 20114 20114
 750 4022 816986 20114 20114
 325 6035 768023 20113 13817
 150 18755s 1028516 20113 14558
2 1500 4022 816988 20114 20114
 750 4022 816988 20114 20114
 325 4022s 816988 20114 20114
 150 7393s 768988 20113 11826

http://leeseshia.org/index.html
http://leeseshia.org/index.html
https://es.mathworks.com/products/simulink.html
https://www.intel.es/content/www/es/es/cofluent/%20cofluent-studio.html
https://www.intel.es/content/www/es/es/cofluent/%20cofluent-studio.html
https://www.metamorphsoftware.com/
https://www.omg.org/spec/MARTE/1.0/PDF
https://www.modelio.org/
https://www.eclipse.org/papyrus/
https://www.polarsys.org/time4sys/
https://lttng.org/

