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Abstract An analysis of the evolution of sedimentation rates and disasters caused by surface geologic
processes during the last century, at a global scale, is presented. Results show that erosion/sedimentation
processes and frequency of such disasters increased substantially, especially after midtwentieth century,
coinciding with the period of intense change known as the “Great Acceleration.” Increases for this type of
disasters are significantly greater than for other disasters related to natural processes, and about 1 order of
magnitude in little more than half a century. This implies an important “global geomorphic change.”
Comparisons and correlations between changes observed in those processes and potential natural (rainfall)
and human (degree of land surface transformation) drivers showed a strong relationship with the latter,
and not so clear with the former. This suggests that the intensification of surface geologic processes is most
likely due to a greater extent to a land transformation/geomorphic processes coupling than a
climate/geomorphic processes one.

Plain Language Summary It is usually assumed that geologic processes change extremely
slowly, and this is in general the case when considered within a human time frame. However, geologic
activity affecting land surface appears to be changing very rapidly. Data gathered in very different parts of
the world show that since the end of the nineteenth century, very especially after midtwentieth century,
sediment is accumulating more and more rapidly in very different sedimentation environments. This
indicates that erosion (and soil loss) is becoming more intense in all sorts of environments and under very
varied climate conditions. Also, the frequency of disasters caused by floods and landslides is increasing in a
similar manner. Over tenfold increases seem to have taken place in less than a century. Of course,
population growth implies greater exposure and therefore higher probability of disasters, but the magnitude
of the increase observed can hardly be explained by this. Results point to an intensification of processes due
to the interaction between water and land surface (geomorphic processes), as well as related (not so
“natural”) hazards. It appears to be one of characteristics of the so called Anthropocene (the age of humans).
An analysis of the variations experienced by rainfall and by indicators of the intensity of human activities
suggests that this expression of global change (global geomorphic change) is very likely caused mainly
by land surface modification, rather than by climate change. If this were confirmed, it would have important
implications. It would probably be better to focus mitigation of both undesirable effects not only on
climate change (surely necessary) but mainly on land usemanagement and practices. Whereas results on the
former require international, global action, in the latter case results could be obtained through national or
local policies.

1. Introduction

The objective of this contribution is to analyze data on two indicators of geomorphic processes, in order to
determine whether there is a trend toward their intensification, at a global level, during the last century
or so. If so, to examine possible causes of that change, including human influence.

The first indicator is the rate of sedimentation, which is the consequence of a variety of geomorphic pro-
cesses that generate sediment in different environments and climate conditions. Data have been compiled
for five large study regions and grouped for analysis by both sedimentary environments and geographical
areas. Of course, the relationship between erosion and sedimentation is complex and influenced by many
variables, among others connectivity and sediment storage (Rohel, 1962; Dearing & Jones, 2003; Bracken
et al., 2014), themselves affected by human activities. For a general approach, we can assume that if
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sedimentation rates increase at a global level, this reflects a global increase of erosion rates, regardless of
where in the landscape such erosion is taking place (with possible differences at a local or regional scale).
Sedimentation rates (particularly in continental and coastal environments) could thus provide some
information on the regular, long‐term intensity of geomorphic processes in general, because most of these
generate sediment.

The second indicator is the frequency of geomorphic events which cause disasters. The frequency of disasters
related to natural processes depends on the frequency of intense (high‐energy/area affected) natural events
and on human factors related to exposure and vulnerability (Bankoff, 2019), all of which change with time.
Thus, disaster frequency could provide some information on the frequency of violent geomorphic episodes.

Rainfall and human activities were considered as possible drivers of changes in the abovementioned
processes. The importance of human activities in the modification of natural processes in general and
erosion/sedimentation in particular is well known and has been pointed out by different authors (for
instance, Marsh, 1864; Stoppani, 1871–73; Vernadsky, 1929; Brown, 1956 [who referred to “technological
denudation”]; Judson, 1983; Ter‐Stepanian, 1988; Goudie, 1993, 1995; Hooke, 1994, 1999, 2000; Syvitski
et al., 2005; Remondo et al., 2005; Walling, 2006; Rivas et al., 2006; Cendrero et al., 2006; Syvitski &
Kettner, 2011; Bruschi et al., 2013; Vanmaercke et al., 2015; Forte, 2017; Tan et al., 2017). It is common
knowledge that construction, mining, agriculture, or forestry activities contribute significantly to sediment
generation (and consequent sedimentation). Due to the relationship between climate and geomorphic
processes, climate change also affects sediment generation (e.g., Kemp et al., 2016; Slaymaker et al., 2009).

A complete description of the procedure and information sources used for the analysis presented can be
accessed at this site (http://hdl.handle.net/10902/11396). The following two sections present a short descrip-
tion of the approach and data used.

2. Evolution of Sedimentation Rates

To obtain data that could give a global insight on sedimentation rates, a literature survey was carried out.
Data presented are part of a systematic review, without excluding any region of the planet. The search
was carried out using a set of selected key words, through Web of Science, Scopus, Google Scholar, etc., as
well as bibliographic catalogs from universities and research centers from different parts of the world.
Over 100 journals were also consulted using the same search criteria.

The keywords/expressions used include the following: erosion rates, sedimentation rates, acceleration of
sedimentation rates, human impact on erosion and sedimentation rates, sedimentation rates during the
Holocene, sedimentation rates during the late Holocene, sedimentation rates during the human age,
geochronology of recent sediments, sediment geochronology, natural and human drivers on erosion and
sedimentation, effects of climate and humans on erosion and sedimentation, sedimentation rates in lakes,
sedimentation rates in coastal areas, sedimentation rates in estuaries, sedimentation rates in rivers and
floodplains, sedimentation rates in reservoirs, geomorphic effects of dam construction, sedimentation rates
upstream of dams, sediment transport downstream of dams. A general search was carried out initially and
then specifically for continents, regions, or countries. For instance, sedimentation rates in Australia. The
database on sedimentation rates presented here has been conceived as a systematic and continuous review
work, with the purpose of generating a global database that can be permanently updated, expanded, revised,
and made available to interested researchers.

Table S1 in the supporting information summarizes the results for the countries/regions where the highest
density of information was obtained, with no other exclusion criteria: China (201 data points, d.p.), India (92
d.p.), USA (415 d.p.), Europe (206 d.p.), and Australia (143 d.p). They cover about 25% of the global continen-
tal area, excluding Antarctica. Relevant information has also been obtained from other regions and is pre-
sently under analysis. It will be incorporated into the database when greater information density is obtained.

Data on over 1,000 locations were obtained and analyzed. Part of the works consulted included determina-
tion of sedimentation rates, but in other cases the objectives were different (ecological analyses, pollution
studies, etc.). Thus, some of the contributions did present specific age data and calculated sedimentation
rates for different periods. But in others, rates were estimates or had to be calculated from data presented
by the original authors.
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Part of the works from which information was obtained provided sedimentation rates for a number of time
intervals, but in other cases rates were averages for fairly long periods, some of them only for “presettlement”
and “postsettlement” times (with a limit around the end of the nineteenth century). Therefore, temporal
groups of data could only be established for three time intervals: (A) pre‐1900; (B) 1900–1950; (C) post
1950. Limits between the three intervals represented in the figures (Figures 1 and S1) are approximate
because, as expected, time limits used for the studies in the different locations vary. Time limits are clearly
indicated in the table (Table S1) in each case. Those time lapses happen to reflect three distinct periods from
the point of view of activities affecting land use and their effects on geomorphic processes. Prior to 1900 the
introduction of agricultural or construction machinery was very limited, and in some regions (USA,
Australia) there were vast territories with very low population density (presettlement). Between the
beginning and midtwentieth century the use of machinery extended to most countries, and formerly thinly
populated territories were colonized. After the midtwentieth, following World War II—the “Great
Acceleration” (Steffen et al., 2011; Steffen et al., 2015)—human activities and influence on natural systems
grew sharply. In each one of the regions analyzed, data were grouped by both sedimentation environments
(lakes, reservoirs, coastal wetlands, and lagoons, estuaries, river channel deposits, flood plain deposits,
coastal platforms, etc.) and geographical areas. In both cases results were represented for all points with data
as well as only for points with data for the three time lapses considered.

Data above were compared with annual rainfall trends (GPCC; IPCC, 2013). Of course, amount, intensity,
and frequency of precipitation determine, to a great extent, the magnitude of erosion, with intensity as
the most critical (Blanco & Lal, 2010; Wischmeier & Smith, 1978; Zachar, 1982). We could not obtain
adequate time series on rainstorm frequency/intensity for the regions analyzed, but it is not reasonable to
expect that they increased in all of them, irrespectively of the considerable differences in annual rainfall
trends. According to the IPCC (2013), “There are likely more regions where the number of heavy precipita-
tion events has increased than where it has decreased. The frequency or intensity of heavy precipitation
events has likely increased in North America and Europe. In other continents, confidence in changes in
heavy precipitation events is at most medium.”

It is not easy to identify an indicator of the intensity of human activities with global coverage and long time
series (on the order of one century), which could enable meaningful comparisons between very different
countries or regions. Population is a possible indicator, but we think that GDP (global domestic product;
total, not per capita) could be more appropriate. This might seem, at a first glance, a bit far‐fetched, but total
GDP of any country or region is the result of population, economy and technology (Cendrero et al., 2006;
Kolbert, 2011) and probably reflects better the capacity of any society to transform its environment, as
pointed out by Hooke (2000) with respect to the degree of technological advance. Thus, growing GDP implies
growing human activities, including those that modify land surface and contribute to sediment generation
(urban expansion, infrastructure development, mining, and quarrying, agriculture, forestry, etc.). Surely,
it would be better to use indicators more directly linked to land transformation, such as GDP due to con-
struction ormining activities, or area affected by agriculture or forestry activities, but we have not found long
time series with global coverage. In some areas (Bonachea et al., 2010; Bruschi et al., 2013; Restrepo, 2015),
GDP for such activities was obtained and they followed trends very similar to those of total GDP. Average
GDP (Bolt et al., 2018; Bolt & van Zanden, 2013; Madison, 2007) was calculated for the three periods indi-
cated in the five regions for which data on sedimentation rates were obtained.

Results are summarized in Figure 1. Full data, description of the procedure used to obtain rates in each case
and existing uncertainties, as well as the complete list of references, are presented in Table S1. A graphic
representation of results for the geographical areas and sedimentation environments analyzed in each region
is presented in Figure S1.

Almost all the results (Figures 1a and S1) show an increase of sedimentation rates with time. Out of 120
groups of data (taking all and only points with data for the three considered periods), corresponding to sedi-
mentation environments (59) and geographical regions (61), all but one show a clear increase from the initial
period (pre‐1900) to the third one (post‐1950). The exception corresponds to floodplain deposits in the
United States, using only points with data for the three periods (5). When all points (35) are considered,
the trend is similar to the rest. In the vast majority of cases, rates increase from the first to the second period
and from this to the third. There are some exceptions, most of them corresponding to groupings with very

10.1029/2019EF001305Earth's Future

CENDRERO ET AL. 3 of 13



Figure 1. Sedimentation rates and possible drivers: (a) Sedimentation rates (brute averages; yellow: all points with data;
brown: points with data for the three periods considered), and GDP (Geary‐Khamis dollars, 1990; Bolt & van
Zanden, 2013) in the regions analyzed; (b) rainfall evolution (IPCC, 2013; thin lines, annual mean; thick lines, 10‐year
moving average).
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few data. A reduction of sedimentation rates from the first to the second period has been found in two cases,
and from the second to the third in six cases. The increase is normally greatest after 1950 (with the exceptions
indicated). This general intensification of sedimentation suggests there was a general increase of denudation
by all sorts of geomorphic processes in very different geographical areas, especially after midtwentienth
century.

Significant increase factors for the whole period covered have been found in quite different environments.
Considering only points with data for the three periods considered, factors >3 were found in China in lakes
and flood‐prone depressions (both not connected and connected to the dynamics of large rivers); >4 in del-
tas, prodeltas, estuaries, and adjacent coastal sectors; >11 in floodplain deposits. In India, >7 in coastal
lagoons. In USA >3 in fluvial channel deposits; around 2.5 in both bays/estuaries and coastal
wetlands/lagoons. In Europe, nearly 5 in floodplain lakes/wetlands; >3 in floodplain deposits and about
2.5 in bays/estuaries. In Australia, very high factors were found in flood plain lakes and wetlands (>33),
and coastal lagoons (>20). An extremely high (264) but not very significant value, because it corresponds
to a single data point, was found for bays/estuaries.

According to works by Dearing et al. (1981), Oldfield and Dearing (2003), Foster et al. (2011, 2012), and
Foster and Boardman (2018), very similar patterns have been found in quite different areas. Several reviews
on the recent evolution of sedimentation rates in the regions analyzed in this work also show, in most cases,
a significant increase in rates, particularly in the second half of the twentieth century (van der Post
et al., 1997; Rose et al., 2011; Xu et al., 2017). Van der Post et al. (1997) carried out an analysis of 37 lakes
and reservoirs in Great Britain with 210Pb‐dated records and found that in 84% of them sedimentation rates
increased, especially after 1945, whereas in 11% decreased and in 5% remained stable. Rose et al. (2011),
compiled data from cores in 207 European lakes, also dated by means of 210Pb. They found that in 71%, sur-
face (present) rates were higher than basal (nineteenth century) ones, 11% showed no changes and 18%
reductions. In all cases present rates were higher than the reference ones (pre‐1850), and in general the
increase occurred after the midtwentieth century. Xu et al. (2017), in a study of 14 lakes in the middle‐low
Yangtze basin (China), with records dated using 210Pb and 137Cs, found a significant increase of sedimen-
tation rates after 1900, and especially between 1930 and 1990.

However, numerous contributions have pointed out the sediment load reduction experienced bymany rivers
as a result of human activities (Chang et al., 2019; Dang et al., 2010; Dearing & Jones, 2003; Golosov &
Walling, 2019; Gupta et al., 2012; Hu et al., 2009; Hu et al., 2019; Latrubesse et al., 2017; Li et al., 2016;
Miao et al., 2011; Rahman et al., 2018; Shi et al., 2017; Vinh et al., 2014; Wang et al., 2011; Wang et al., 2015;
Wu et al., 2018; Yang et al., 2002; Yang et al., 2015; Yu et al., 2013; Zhang et al., 2016; Zhou et al., 2016).
Reservoir construction, and other modifications of river courses, considerably reduces connectivity between
erosion areas in the basins and channel sectors downstream dams, the latter playing a main role
(Kondolf, 1997; Graf, 1999, 2001, 2005, 2006; Magilligan & Nislow, 2001, 2005; Magilligan et al., 2003;
Nilsson et al., 2005; Petts, 2009; Dai & Liu, 2013; Magilligan et al., 2013; Petts & Gurnell, 2013; Pal, 2016).
The reduction of solid load transported by rivers to the oceans as a consequence of dam construction has
been analyzed, among others, by Walling and Fang (2003), Walling (2006, 2008, 2012), Vörösmarti et al.
(2003), Syvitski et al. (2005), and Syvitski and Kettner (2011). Vörösmarty et al. (2003) estimated that about
53% of sediment load in regulated rivers was trapped in dams. According to Syvitski et al. (2005), sediment
transport due to soil erosion increased by 2,3 × 109 t/year, from pre‐Anthropocene to Anthropocene times.
During the same period, sediment supply to the oceans decreased by 1.3 × 109 t/year, as a result of sediment
trapping in reservoirs. An analysis by Golosov andWalling (2019) showed an 84% average reduction of sedi-
ment load in rivers (again reflecting the impact of reservoirs and other regulation works), and a considerable
magnitude of erosion in many of the regions analyzed. Walling and Fang (2003), studying sediment load in
145 large river basins for a period >25 years, found that about 70 showed no significant change, 68 showed
reductions attributable to reservoir construction, and 7 experienced increases that could be explained by
land use changes. Many other contributions (Wang et al., 2007, 2011; Zhang & Lu, 2009; Miao et al., 2011;
Du & Shi, 2012; Gupta et al., 2012; Yang et al., 2015; Li et al., 2016; Liu et al., 2017; Wu et al., 2018; Hu
et al., 2019; Chang et al., 2019) have attributed the reduction of sediment load mainly to human activities,
among which dams appear to be the most important. In particular, Yang et al. (2015) concluded that
between 1950–1968 and 2003–2012 the reduction of sediment load observed in rivers could be explained
by reservoirs (~88%), other human activities (~7%), and rainfall changes (~5%); and Syvitski et al. (2005)
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estimated (eliminating the effects of dams) that sediment generation rates during the Anthropocene
increased 16–24% with respect to the previous period. Dearing and Jones (2003) concluded that “… small
basins are the most responsive to impacts and show the largest changes in sediment flux”. This implies that
the increases in sediment flux to the coasts is caused mainly by disturbance of small and medium basins. It
must also be borne in mind that dam construction (and consequent sediment trapping) was particularly
important well after 1950 (Hossain et al., 2012). Thus, its effects on sedimentation rates have been important
in the last few decades and might not be sufficiently reflected in the data we have so far gathered.

The above, according to different authors (Besset et al., 2017; Besset et al., 2019; Syvitski, 2007; Syvitski
et al., 2009; Syvitski & Kettner, 2011), is linked to delta retreat. A large number of deltas in the world have
experienced erosion and retreat, but many show stability or even accretion. They point out that delta retreat
could be attributed mainly to sediment starvation caused by dams but also to sediment compaction and sub-
sidence, sea level rise, or increased storminess.

Being aware of this apparent contradiction, the above‐presented results suggest a general increase of denu-
dation rates and sediment generation all over the world and in very different geomorphic environments.

Looking at potential drivers (Figure 1), it can be observed that annual rainfall (only a rough indicator, as
mentioned above) presents quite different variation trends (Figure 1b). On the other hand, the shape of
the graphs and magnitude of relative GDP increases (Figure 1a) show a much greater similarity with
sedimentation rates.

Thus, this coarse grain analysis points to a general increase of sediment generation rates (between late 19th
and early 21st centuries) in very different environments in the five regions analyzed, which is compatible
with sediment flux reduction in many basins. The increase appears to be more closely related to increasing
human activity (and its effects on land surface), than to changes in rainfall. The possibility of a threshold
effect (a small rainfall increase leading to a large increase in erosion/sedimentation), cannot be ruled out
completely, but it appears unlikely, especially considering the results on disaster frequency presented below.

3. Evolution of Disasters Frequency

The frequency of disasters (EM‐DAT) related to natural events is presented in Figure 2a. Although disasters
related to the functioning of natural processes can hardly be considered as fully natural at the present time,
because in most cases they are influenced to a greater or lesser extent by human factors (e.g., Bankoff, 2019),
the distinction made by EM‐DAT between “natural” and “technological” disasters, is useful for the present
analysis. Not all disasters are included in this database. Inclusion criteria are 10 or more people killed; 100 or
more people affected; declaration of a state of emergency; call for international assistance.

“Natural” disasters in the EM‐DAT database were grouped into three categories (“Geologic,” including vol-
canism and seismicity; “Climate,” including windstorms, droughts, heat and cold waves; “Geomorphic,”
including those caused by water/land interaction, floods, and landslides). It is very clear that there has been
a considerable increase, both at global level and in all continents.

It is well known that the occurrence of disasters is a function of hazard (violent natural event), exposure
(persons and human elements potentially affected), and vulnerability (degree to which persons or human
elements can be damaged if affected) (UNDRO, 1991). Not all dangerous natural events cause disasters,
and the frequency of disasters reported in international databases reflects only in part the frequency of such
events. The functional dependence is a multiplication. Therefore, if one of the factors (E, V) is zero, the pro-
duct will be zero, no matter how big H is. It follows from the relationship above that the number of all kinds
of “natural” disasters registered in databases should grow as population plus vulnerable material elements
increase (and show a positive relationship with GDP), even if the frequency of dangerous natural events
did not increase. This is so because population growth and related increase in the number of material ele-
ments will increase exposure. Growth of total GDP (which reflects both per capita increase and population
growth) with time has occurred in all countries, with practically no exceptions. This means that there are
more persons, buildings, infrastructures, economic activities, and so forth, which imply an increase in expo-
sure. One should also expect, due to better development, that improvement of mitigation measures should
lead to a reduction of vulnerability. Mitigation capacity varies widely, of course, depending on the kind of
process, but it is logical to assume that it has contributed to the reduction of all disasters. That is, if

10.1029/2019EF001305Earth's Future

CENDRERO ET AL. 6 of 13



Figure 2. Geomorphic disasters and possible drivers: (a) Disaster frequency (EM‐DAT; 5‐year moving average);
(b) correlation geomorphic disasters frequency/GDP (L, linear; NP, nonparametric).
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disaster frequency increases, either exposure, hazard, or both have increased. Greater GDP and development
also imply more complete data‐gathering procedures. Thus, as time goes by compilation of data on disasters
should improve and contain a higher percentage of total event occurrence.

Various types of hazardous events, such as windstorms, cold and heat waves, intense rainstorms, floods,
landslides, and so forth are associated to climatic hazards. Although there are different degrees of confidence
as well as different trends, depending on the region (IPCC, 2013), climate change seems to be linked to a
greater frequency of extreme climate events. Thus, a growing number of such disasters might reflect a grow-
ing frequency of extreme climate events (greater hazard). Of course, this would not affect disasters caused by
earthquakes or volcanic eruptions.

Disasters associated to the interaction between water and land surface (events such as floods or landslides)
are affected not only by the former factors but also by land use change (the extent of which is dependent on
the intensity of human activities). Construction and excavation or accumulation of soil and rock for different
purposes, as well as forestry and agriculture activities tend to increase runoff and reduce the resilience of the
surface layer. A greater frequency of floods or landslides should thus be expected as a consequence.
However, this would not affect disasters related to earthquakes, volcanoes, or strictly climatic events.

An axiomatic hypothesis is therefore that the number of the so‐called “natural” disasters recorded in data-
bases (such as the EM‐DAT) should increase with time, reflecting growing population and economic activ-
ities as well as climate change. We would therefore expect (despite the probable effect of improved
mitigation) an increase with time of all such disasters recorded in databases. And also a positive correlation
with GDP (a rough indicator of the intensity of human activities that modify land surface). The increase
should be lowest for disasters related to volcanism or seismicity and greatest for geomorphic disasters.
The same should be the case with the correlation disaster frequency/GDP; best for geomorphic disasters
and worst for those due to internal earth processes. The evolution of disasters frequency at world and

Table 1
(a) Growth factor of natural disasters' frequency (EM‐DAT); (b) linear and nonparametric correlation coefficients GDP/disaster frequency

Growth factor of natural disasters' frequencya Correlation coefficient GDP/Disaster frequency

Regions (2000–2010/1900–2010) (2000–2010/1950–1960) Linear Non‐parametric

Geologic Climatic Geom. Geologic Climatic Geom. Geologic Climatic Geom. Geologic Climatic Geom.
E Africa b 2.53 N.A. 4.22 5.18 15.15 67.57 0.450 0.792 0.871 0.781 0.766 0.956
Central Africaa N.A. N.A. N.A. 2.18 3.09 12.00 0.165 0.166 0.683 0.000 0.032 0.649
N Africa 1.30 N.A. 2.61 1.02 3.64 15.75 0.176 0.346 0.686 0.410 0.413 0.860
S Africa N.A. N.A. N.A. 0.55 11.82 13.64 0.100 0.433 0.564 0.000 0.647 0.573
W Africa c 0.00 1.12 3.24 0.00 1.25 27.00 0.450 0.792 0.871 0.781 0.766 0.956
AFRICA 2.42 2.54 2.78 5.82 5.43 17.09 0.521 0.802 0.869 0.723 0.849 0.971
Caribean 2.30 2.63 4.27 5.24 36.61 79.36 0.353 0.574 0.567 0.260 0.570 0.609
Central America 2.00 8.45 10.36 4.67 14.80 18.14 0.472 0.621 0.784 0.733 0.640 0.824
N America 1.35 2.27 3.36 3.82 10.70 19.50 0.211 0.830 0.775 0.374 0.962 0.770
S America 1.53 2.72 2.58 1.85 40.09 17.55 0.523 0.643 0.812 0.576 0.621 0.920
AMERICA 1.79 3.94 3.75 3.37 25.07 19.05 0.696 0.911 0.918 0.768 0.986 0.919
Central Asiad N.A. N.A. N.A. 1.82 1.36 1.87 0.384 0.024 0.266 0.241 0.000 0.312
E Asia 3.10 3.16 3.70 10.14 5.75 8.14 0.809 0.812 0.879 0.839 0.929 0.918
SE Asia 2.46 2.59 4.22 7.22 7.85 96.00 0.583 0.836 0.902 0.563 0.851 0.896
S Asia 2.56 2.13 3.52 5.36 7.57 8.19 0.679 0.745 0.933 0.866 0.853 0.941
W Asia 1.43 N.A. N.A. 2.05 5.72 14.32 0.280 0.442 0.706 0.529 0.684 0.756
ASIA 3.04 3.20 4.57 6.20 7.17 13.29 0.823 0.860 0.965 0.904 0.953 0.984
E Europeb 2.16 2.58 2.78 7.09 14.18 33.00 0.593 0.536 0.499 0.565 0.469 0.705
N Europe 1.64 1.29 2.00 1.60 10.80 8.80 0.136 0.297 0.484 0.000 0.220 0.486
S Europe 1.02 2.35 3.44 2.73 8.18 9.56 0.212 0.524 0.657 0.739 0.493 0.869
W Europe 0.64 1.77 1.97 0.30 7.39 4.70 0.138 0.409 0.498 0.080 0.861 0.683
EUROPE 2.50 2.89 4.03 16.59 51.52 15.97 0.775 0.630 0.746 0.842 0.852 0.870
OCEANIA 0.00 1.35 1.52 0.00 4.24 11.64 −0.291 0.454 0.477 0.211 0.616 0.454
WORLD 2.85 3.66 4.85 6.05 13.72 19.04 0.804 0.801 0.804 0.828 0.838 0.877

Note: Bold indicates growth factor/correlation coefficient according to prediction.
aFactor calculated as frequency for the last decade/average frequency for the period 1900–2010, and frequency for the last decade/frequency for 1950–1960
(or first decade with data). bFirst decade: 1955–1965. cFirst decade: 1966–1976. dData available since 1990.
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continental level (Figure 2a) shows that in all cases geologic disasters increased least and geomorphic
ones most.

Correlations between disaster frequency and GDP can be explored, because both parameters have compar-
able, long time series with annual resolution (Figure 2b, Table 1). Both linear and nonparametric (Core
Team, 2018; Siegel, 1982) correlation coefficients, at world and continental level, are very high, as should
be expected from the reasons explained above. The only exception is Oceania, where the number of registered
disasters is low. As shown in the table, correlation is best for geomorphic and worse for geologic disasters.

Comparisons between geomorphic disaster frequency and rainfall variations in different regions are
presented in Figure 3. It is interesting to point out that the number of annual disasters has grown very
significantly in all regions, whereas rainfall has increased in some cases and remained stable or decreased
in others. GDP, of course, has also grown in all regions, and with trends similar to those of geomorphic
disasters. Again, the results presented suggest that land surface changes caused by human activities are
likely to be a more determining factor than climate for the increasing frequency of geomorphic disasters
observed. That is, these disasters are not so “natural.”

It is very interesting to point out the existence of decreasing trend in GDP/geomorphic disasters frequency in
the last few years (Figure 2b). As GDP grows in all cases, the X axis in the figure also has a temporal meaning.
If the growing frequency of disasters with time during the whole period covered were due to greater
frequency of rainstorms (manifestation of climate change), this decrease in the last decade or so would be
difficult to explain. A reduction of rainstorm frequency in all continents? However, if the main driver were
land surface modification (geomorphic change), there is a logical (but not yet proven) explanation. On the
one hand, growing GDP and development normally bring about better implementation of flood and land-
slide mitigation measures, which favor the decoupling between economic growth and the consequences of
land use changes. On the other hand, economic growth in recent years has been linked, to a greater extent
than in previous periods, to activities such as information and telecommunication technologies or electronic
industry, with very limited impact on land.

Figure 3. Regional geomorphic disasters, GDP and rainfall. Disaster frequency (EM‐DAT). GDP (Bolt & van Zanden, 2013). Annual rainfall 1975–2000 with
respect to the 1950–1975 average (after GPCC).
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4. Conclusions

The results presented indicate that a human‐driven, global geomorphic change is taking place, and that this
change is particularly intense since midtwentieth century, because human activities are affecting more and
more the operation of geomorphic processes, in particular erosion/sedimentation rates. It thus seems that
geomorphic change, a consequence of the growing role of humans as geomorphic agents, could be one of
the characteristics of the Anthropocene, and that there is a “great geomorphic acceleration” as a part of
the “Great Acceleration.”

Whereas the change in the indicators analyzed can hardly be disputed, an explanation of the main driving
agent is less clear. The data gathered and results obtained through comparison and correlations with the
indicators used, point to human‐driven changes in land surface (geomorphic change) as a more significant
driver than climate change (also human‐driven). But this can by no means be considered as firmly
established. We feel it should be considered as a reasonable hypothesis worth testing further, better by other
researchers using different data and approaches. If the hypothesis were confirmed, it would probably help to
better focus efforts toward the mitigation of flood and landslide disasters. As is well known, mitigation
efforts directed toward climate change require global action, particularly by countries that are the main
generators (whether through production or demand) of greenhouse gases. Thus, results obtained by most
countries will rather depend on actions taken by others than by themselves. Actions to mitigate geomorphic
change can be implemented at national or even local level, and their effects would also be felt locally, not
completely but to a considerable extent independently of actions taken by others.
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