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Abstract

This paper provides several tests for skewness and kurtosis for the error terms

in a one-way fixed-effects varying coefficient panel data model. To obtain these tests,

estimators of higher-order moments of both error components are obtained as solutions

of estimating equations. Additionally, to obtain the nonparametric residuals, a local

constant estimator based on a pairwise differencing transformation is proposed. The

asymptotic properties of these estimators and tests are established. The proposed

estimators and test statistics are augmented by simulation studies, and they are also

illustrated in an empirical analysis regarding the technical efficiency of European Union

companies.[1]
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1 Introduction

Testing for skewness and kurtosis is a relevant topic in many fields in economics, among others

in finance and productivity analysis. In finance, commonly used financial models, such as the

capital asset pricing model (see Sharpe (1964) and Lintner (1965)) and the options pricing

model (see Black and Sholes (1973)) are developed based on the assumption of symmetry.

Furthermore, in Mandelbrot (1963) has been observed the presence of leptokurtosis in the

empirical distribution of price changes. This fact has motivated the development of financial

data models based on nonnormal distributions. In productivity analysis, one main stream to

introduce inefficiency in production function models has been the use of stochastic frontier

models (see Aigner et al. (1977), Meeusen and van den Broeck (1977) and Battese and Coelli

(1988) for panel data). These models decompose the error structure in the econometric model

into two terms, an idiosyncratic symmetric error component and an asymmetric error term

that accounts for the inefficiency. In this framework, a test for skewness in this second error

component is of great interest because it is equivalent to a test for inefficiency at firm levels.

Given the importance of skewness and kurtosis in these fields of economics, it is useful to

have tests and, in general, estimators of higher-order moments that can correctly identify

these features.

In the context of cross-sectional and time series data, there is an extensive literature

that studies the issues raised above. See Bai and Ng (2005), Dufour et al. (2003), Jarque

and Bera (1981), Montes-Rojas and Sosa-Escudero (2011) and Premaratne and Bera (2005),

among others. In the panel data framework, techniques to estimate higher-order moments

and tests of skewness and kurtosis for the different random components are much more

scarce. A natural complication with detecting departures away from normality or skewness

is the identification of which component is causing the departure. Assuming that the

regression function is fully parametric, in Horowitz and Markatou (1996) the densities of the

error components are estimated nonparametrically, but they avoid testing the distributional

features of these terms. In this same context, in Wu et al. (2012) and Galvao et al. (2013)
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estimators for higher-order moments and tests for skewness and kurtosis are derived. The

asymptotic properties of these estimators are not robust either to the presence of correlation

between the individual heterogeneity term and the explanatory variables (i.e., fixed-effects)

or to misspecification of the (parametric) form of the regression function.

This paper extends the contributions in Cox and Hall (2002) and Wu et al. (2012);

we propose estimators of higher-order moments and tests of skewness and kurtosis for the

different components of a fixed-effects panel data model where the regression function has the

form of a nonparametric varying coefficient model. It turns out that by a proper combination

of polynomial functions of the residuals, we can obtain higher-order moment estimators,

which are asymptotically normal and have the same limit variance as if the unknown errors

were known. Since the estimators of higher-order moments require the previous estimation of

the varying coefficient functions, in this paper, we also propose a new estimation technique

based on a pairwise differencing transformation. The interesting feature of the resulting

nonparametric estimators is that it achieves nearly optimal rates of convergence without

having to resort to iterative procedures, such as those proposed in Wang (2003), Henderson

et al. (2008), Qian and Wang (2012), and Rodriguez-Poo and Soberon (2015), among others.

Varying coefficient models are currently very common in the specification of econometric

models, which is due to several reasons: First, varying coefficient models encompass a great

variety of econometric models, such as partially linear models. Second, they mitigate the

“curse of dimensionality”. Third, they have been justified on the grounds of economic theory;

see Chamberlain (1992). To the best of our knowledge, this is a completely new proposal,

and the easy-to-compute closed-form expressions of these estimators can be used in many

fields such as nonlinear, semi-parametric or nonparametric panel data models.

We would like to emphasize that our proposal to estimate higher-order moments and

the battery of tests could be also based on root-N consistent residuals obtained from a

fully parametric model. To our knowledge, this simpler specification has not been studied

yet. However, we have chosen to use nonparametric residuals to generalize our results to
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estimators that are more robust to misspecification in the conditional mean. To assess the

finite sample performance of the proposed estimators and test statistics of this paper, a

Monte Carlo study is conducted. Finally, an empirical study on the production efficiency of

European Union (EU) companies is implemented.

The rest of the paper is organized as follows: In Section 2, we set up the model of interest,

we introduce the pairwise difference estimator and we give its asymptotic properties. In

Section 3, we present the estimators of higher-order moments and we provide their asymptotic

properties. In Section 4, we derive some tests for skewness, kurtosis, and normality and study

their asymptotic distributions. In Section 5, we apply our results to a production efficiency

study and compare the estimators and test statistics considered via Monte Carlo experiments.

Section 6 provides a summary of the paper. The detailed mathematical proofs of the main

results and additional Monte Carlo results are collected in the supplement, Appendix C.

2 Econometric model and estimation procedure

Assume that data are available from a varying coefficient panel data model of the form

Yit = X>itm(Zit) + εit, and εit = bi + vit, i = 1, . . . , N ; t = 1, . . . , T, (2.1)

where Yit denotes the response variable of the individual i in the period t, Zit and Xit are

vectors of covariates of dimension q × 1 and d × 1, respectively, and m(·) is a d × 1 vector

of unknown functions to estimate. The relationship between Yit and Xit described by (2.1)

contains an unknown individual heterogeneity effect bi, and an idiosyncratic error term vit.

Assumptions about all components of the model will be formally stated below.

As is well known, differencing techniques are usually used to remove the unobserved

individual heterogeneity from the regression model to be estimated. However, the

transformed regression model appears as an additive function, and iterative techniques such

as marginal integration or backfitting are needed; see Wang (2003), Henderson et al. (2008),
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Qian and Wang (2012), and Rodriguez-Poo and Soberon (2015), among others.

To overcome these difficulties, a very appealing alternative pairwise differencing

transformation is proposed in this section. First, this approach removes the individual

effects from the regression model to be estimated. Second, it enables us to obtain some

gains in efficiency because this transformation considers all time-dependencies within the

observations of each individual. Third, the resulting estimator almost achieves optimality in

only one step.

Inspired by Stromberg et al. (2000) and Honoré and Powell (2005), the pairwise

differencing transformation implies subtracting time s from time t of (2.1), yielding

Yit − Yis = X>itm(Zit)−X>ism(Zis) + vit − vis, i = 1, . . . , N ; t, s = 1, . . . , T, t < s. (2.2)

Nevertheless, the application of any standard nonparametric technique in (2.2) ends up

with a non-negligible asymptotic bias. See Rodriguez-Poo and Soberon (2015) for a more

detailed explanation about this issue. To solve it, in this paper we propose to estimate the

quantities of interest by defining a kernel weight, which controls the distance between any

(Zit, Zis). Thus, for a given point z ∈ IRq and for Zit and Zis in a neighborhood of z, the

unknown β = m(z) can be estimated by minimizing the following local constant criterion

function:

N∑
i=1

T−1∑
t=1

T∑
s=t+1

(
Ỹits − X̃>itsβ

)2
KH(Zit − z)KH(Zis − z), (2.3)

with respect to β, where Ỹits = Yit − Yis and X̃its = Xit −Xis. See Fan and Gijbels (1995)

and Ruppert and Wand (1994) for a detailed description of this technique. Note that H is

a q × q symmetric positive-definite bandwidth matrix that needs to be selected empirically

and, for each u, K a multivariate kernel such as

∫
K(u)du = 1 and KH(u) = |H|−1/2K(H−1/2u).
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Let β̂ be the minimizer of (2.3). It is equal to

m̂(z;H) = S−1
X̃X̃

(z)SX̃Ỹ (z), (2.4)

where

SX̃X̃(z) =

(
T

2

)−1
1

N

N∑
i=1

T−1∑
t=1

T∑
s=t+1

KH(Zit − z)KH(Zis − z)X̃itsX̃
>
its,

and

SX̃Ỹ (z) =

(
T

2

)−1
1

N

N∑
i=1

T−1∑
t=1

T∑
s=t+1

KH(Zit − z)KH(Zis − z)X̃itsỸits.

Following this technique, it is straightforward to provide a local linear estimator for m(·).

However, we believe that the local constant estimator is sufficient to obtain residuals with

good properties for the estimation of the higher-order moments, as we will show in the

following section.

To investigate the asymptotic properties of the nonparametric estimator of the varying

coefficient function, we consider the following assumptions. Some additional notation is

needed as well. More precisely, let v·t = (v1t, . . . , vNt)
> and η·t = (η1t, . . . , ηNt)

> be vectors

of N × 1 dimension. Additionally, for a matrix A we have ‖A‖ =
√
tr(A>A).

Assumption 2.1 Let {(Zit, Xit)} be a set of independent and identically distributed (i.i.d.)

IRq+d-random variables in the subscript i for each fixed t, and strictly stationary over t for

fixed i.

Assumption 2.2 Let v·t = Ωη·t be a N × 1 dimensional vector, where Ω is a N × N

nonstochastic definite positive weighting matrix that does not contain unknown parameters

and whose elements are known by the researcher. The random error ηit is i.i.d. for i and

t with zero mean and finite variance σ2
η. For some δ > 0, E |ηit|4+δ < ∞ and ηit is

independent of Xit and Zit for all i and t. Let ωij be the (i, j) element of Ω, and assuming

limN→∞N
−1∑N

i=1

∑N
j=1 ω

2
ij <∞.
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Assumption 2.3 Zit has a bounded density function fZi1(·) and it is continuously

differentiable in all its arguments, at any point of its support. Furthermore, the joint density

of distinct elements of (Zit, Zis), for s > t, is bounded and continuously differentiable in all

its arguments, at any point of its support.

Assumption 2.4 For κ = |t − s|, where κ ∈ {1, . . . , (T − 1)}, the matrix

functions E
[
‖X̃i11X̃

>
i11‖2|Zi1 = z1, Zi(1+κ) = z2

]
, E

[
X̃i1X̃

>
i1(1+κ)|Zi1 = z1, Zi(1+κ) = z2

]
, and

E
[
X̃i1(1+κ)X

>
i1|Zi1 = z1, Zi(1+κ) = z2

]
are bounded and uniformly continuous at any interior

point, (z1, z2), in the support of fZi1,Ziκ(z1, z2).

Assumption 2.5 For κ = |t − s|, where κ ∈ {1, . . . , (T − 1)}, the matrix function

E
[
Xi1X̃

>
i1(1+κ)|Zit = z1, Zis = z2

]
is positive definite at any interior point, (z1, z2), in the

support of fZi1,Zi(1+κ)(z1, z2).

Assumption 2.6 All second-order derivatives of m1(·),m2(·), . . . ,md(·) are bounded and

uniformly continuous at any interior point in the support of fZi1(·).

Assumption 2.7 The q-variate kernel functions K are compactly supported and bounded

such that
∫
uu>K(u)du = µ2(K)Iq and

∫
K2(u)du = R(K), where µ2(K) 6= 0 and R(K) 6= 0

are scalars and Iq is the q×q identity matrix. In addition, all odd-order moments of K vanish,

that is,
∫
uι11 . . . u

ιq
q K(u)du = 0, for all non-negative integers ι1, . . . , ιq such that their sum is

odd.

Assumption 2.8 The bandwidth matrix H is symmetric and strictly definite positive.

Additionally, as N → ∞ each entry of the matrix tends to zero in such a way that

N |H| → ∞.

Assumption 2.9 For some δ > 0, the function E
[
|Xi1X

>
i1|2+δ|Zi1 = z1, Zi(1+κ) = z2

]
is bounded and uniformly continuous at any interior point, (z1, z2), in the support of

fZi1,Zi(1+κ)(z1, z2).
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Assumption 2.1 is rather standard in panel data analysis although other time-dependence

settings could be considered, such as strong mixing conditions or nonstationary time series.

However, since the asymptotic properties of the proposed estimator are analyzed for panels

with large cross-sections and fixed time-series dimensions, it is sufficient to assume strict

stationarity. Assumption 2.2 determines the behavior of the cross-sectional dependence,

and it is slightly weaker than condition C.3 in Bai and Ng (2002). It implies that the

largest eigenvalue (and hence all of the eigenvalues) of ΩΩ> are bounded by maxi
∑N

j=1 ω
2
ij.

Assumptions 2.3, 2.4 and 2.6 are basically smoothness and boundedness conditions on the

density function and moments functionals. Assumption 2.5 is a generalization of the rank

condition of parametric models that guarantees that m(·) is identified. Further, since t and s

are integers, this assumption provides us with a lower positive bound for all t, s, when t < s.

Assumptions 2.7 and 2.8 are standard in the literature of the local linear regression for the

kernel function and bandwidth matrix. Finally, Assumptions 2.2 and 2.9 guarantee that a

multivariate version of the Lindeberg-Lévy central limit theorem for N → ∞ and fixed T

can be used to establish the asymptotic normality of this estimator.

Under these assumptions, we obtain the following result for m̂(z;H).

Theorem 2.1 Under Assumptions 2.1-2.9, as N tends to infinity and T is fixed,

√
N |H| (m̂(z;H)−m(z)−B(z;H))

d−−→ N (0, V (z;H)),

where

B(z;H) = µ2(K)B−1
XX̃

(z, z)BXX̃(z, z)
[
diagd (tr(HDf (z)Dmr(z))) ıdf

−1
Zi1,Zi(1+κ)

(z, z)

+
1

2
diagd (tr(HHmr(z))) ıd

]
,

V (z;H) = σ2
ηωNR

2(K)B−1
XX̃

(z, z)BV
XX̃

(z, z)B−1
X̃X

(z, z),

and ωN = N−1
∑N

i=1

∑N
j=1 ω

2
ij. For r = 1, . . . , d, Dmr is the first-order derivative vector
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of the rth component of m(·), Hmr(z) the Hessian matrix, Df (z) the first-order derivative

vector of the density function, and

B
XX̃

(z, z) =
T−1∑
κ=1

(
1− κ

T

)
E
[
Xi1X̃

>
i1(1+κ)|Zi1 = z, Zi(1+κ) = z

]
fZi1,Zi(1+κ)(z, z),

B
X̃X

(z, z) =
T−1∑
κ=1

(
1− κ

T

)
E
[
X̃i1(1+κ)X

>
i1|Zi1 = z, Zi(1+κ) = z

]
fZi1,Zi(1+κ)(z, z),

BV
XX̃

(z, z) =

T−1∑
κ=1

(
1− κ

T

)2
E
[
Xi1X̃

>
i1(1+κ)|Zi1 = z, Zi(1+κ) = z

]
fZi1,Zi(1+κ)(z, z).

In addition, diagd(tr(HHmr(z))) and diagd(tr(HDf (z)Dmr(z))) stand for a diagonal matrix

of elements of tr(HHmr(z)) and tr(HDf (z)Dmr(z)), respectively, being ıd a d×1 unit vector.

The proof of this theorem is postponed to the supplement, Appendix A. Furthermore, in

order to obtain the convergence results for higher-order moments we need the following

result:

Theorem 2.2 Under Assumptions 2.1-2.9, as N tends to infinity and T is fixed,

sup
z∈A
‖m̂(z;H)−m(z)‖ = OP

(
tr(H) +

(
logN

N |H|

)1/2
)
.

The proof of this result follows the same lines as in Theorem 8 in Hansen (2008), so it is

omitted.

The results shown in Theorem 2.1 are rather standard. However, there are some

differences that need to be pointed out. More precisely, as far as we have more curvature

in m(·), the bias is enlarged. On its part, the variance will be penalized when H is large

and there is sparser data near z. In addition, a useful feature of this estimation scheme is

its computational simplicity. In one step, it is possible to obtain a nonparametric estimator

that almost achieves the optimal rate of convergence of this type of problems, i.e., N |H|1/2.
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3 Estimation of moments

To achieve one of the main aims of this paper, that is, to propose and develop some tests

for symmetry and kurtosis for both the individual heterogeneity effects and the idiosyncratic

error term, higher-order moments are needed. We will assume the following:

Assumption 3.1 The ηit’s are random variables with finite 8-th order moments, i.e. γ8η <

∞ and the bi’s are i.i.d. zero-mean random variables also with finite 8-th order moments,

i.e., γ8b <∞. Moreover, bi is independent of all ηit. Additionally, for fixed i, there is a δ > 0

such that E‖Xk
itvit‖2+δ <∞ and E‖Xk

itbi‖2+δ <∞, for k = 2, . . . , 8.

Assumption 3.1 is needed to bound the higher-order moments related to the residuals that

were obtained in a nonparametric framework. Furthermore, we have included an assumption

about the behavior of bi. We could have included it before, but we want to point out that

indeed, no assumption about bi is needed to obtain the results in Theorem 2.1. This type of

assumption is only needed to show the asymptotic results that follow.

Let us now introduce a new technique to obtain
√
N -consistent estimators for these

moments. To do so following the same ideas as in Wu et al. (2012), we present special

nonlinear functions of the composite error terms that will be important tools to derive

estimating equations for

γkb = E
(
bki
)

and γkv = E
(
vkit
)

i = 1, . . . , N ; t = 1, . . . , T,

where k ∈ {2, . . . , 8} is the k-th order moment in which we are interested. Using Assumption

3.1, the following set of nonlinear functions is introduced:

fkj (i) =
T∑
t=1

εjit

[
T∑
t=1

εit

]k−j
, 1 ≤ j ≤ k.

Moreover, to obtain the suitable combination that provides the estimators for the

higher-order moments, the following lemma is crucial:
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Lemma 3.1 Let a ∧ b and a ∨ b be the minimum and maximum, respectively, of two real

numbers a and b, we have

fkj (i) =
k∑
`=0

`∧j∑
r=(`−k+j)∨0

(
j

r

)(
k − j
`− r

)( T∑
t=1

vrit

)(
T∑
t=1

vit

)`−r

bk−`i T k−j−`+r.

This lemma is based on simple arithmetic. When we take expectations, usually many of the

terms in the expansion of fkj (i) will be set equal to zero, mainly because the vit’s and bi’s are

centered and independent. Moreover, by taking proper linear combinations of the functions,

fkj (i), we should be able to represent the moments γkb and γkv in terms of the functions

obtaining the estimating equations that will lead to the associated estimators. For example,

if we are interested in the estimation of second order moments, i.e. σ2
v ≡ γ2v = E(v2it) and

σ2
b ≡ γ2b = E(b2i ), using Lemma 3.1, we obtain

f 2
2 (i) =

T∑
t=1

v2it + Tb2i + 2bi

T∑
t=1

vit,

f 2
1 (i) = T 2b2i + 2Tbi

T∑
t=1

vit +

(
T∑
t=1

vit

)2

.

Hence, in terms of the f ’s, σ2
v can be represented as

E
[
Tf 2

2 (i)− f 2
1 (i)

]
= T (T − 1)σ2

v .

As the reader can notice, this equation does not incorporate bi, so it may serve as a basis

for the estimation of σ2
v . Then, averaging over 1 ≤ i ≤ N and replacing the unknown εit

with the residuals ε̂it, the estimator of σ2
v has the form

σ̂2
v =

1

NT (T − 1)

N∑
i=1

T T∑
t=1

ε̂2it −

(
T∑
t=1

ε̂it

)2
 , (3.1)

where ε̂it = Yit −X>it m̂(Zit;H) and m̂(Zit;H) is the pairwise differencing estimator.
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Similarly, combining these expressions as

E[f 2
1 (i)− f 2

2 (i)] = T (T − 1)σ2
b

the following estimator for σ2
b can be proposed

σ̂2
b =

1

NT (T − 1)

N∑
i=1

( T∑
t=1

ε̂it

)2

−
T∑
t=1

ε̂2it

 . (3.2)

As pointed out in Wu et al. (2012), this lemma enables us to obtain estimators for

the second-order moment without having to impose distributional assumptions on bi or vit.

Focusing on the estimation of higher-order moments, i.e., γkb and γkv for k = 3, 4, . . ., things

are somewhat more complex than before. In these particular cases, there are several fkj (i)

to combine, and some of them can lead to inefficient estimators. In the following, we present

the suitable combinations that provides efficient estimators.

Considering the estimation of the third-order moments. From Lemma 3.1, and proceeding

in the same way as before to obtain (3.1) and (3.2) we now obtain

E[2f 3
1 (i) + T 2f 3

3 (i)− 3Tf 3
2 (i)] = T (T − 1)(T − 2)γ3v

from which the estimator for γ3v has the form

γ̂3v =
1

NT (T − 1)(T − 2)

N∑
i=1

2

(
T∑
t=1

ε̂it

)3

+ T 2

T∑
t=1

ε̂3it − 3T

(
T∑
t=1

ε̂2it

)
T∑
t=1

ε̂it

 . (3.3)

Similarly, for γ3b , we obtain the following estimating equation:

E[f 3
1 (i)− 3f 3

2 (i) + 2f 3
3 (i)] = T (T − 1)(T − 2)γ3b .
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Thus, the resulting estimator for γ3b is

γ̂3b =
1

NT (T − 1)(T − 2)

N∑
i=1

( T∑
t=1

ε̂it

)3

− 3

(
T∑
t=1

ε̂2it

)
T∑
t=1

ε̂it + 2
T∑
t=1

ε̂3it

 . (3.4)

For the fourth-order moment, in addition to the fkj (i) with j ≤ k, we need

f 4
5 (i) =

(
T∑
t=1

ε2it

)2

.

The proper combination that provides the efficient estimator for γ4v is

E
[
(T 2 − 2T + 3)(Tf 4

4 (i)− 4f 4
3 (i)) + 6Tf 4

2 (i)− 3f 4
1 (i)− 3(2T − 3)f 4

5 (i)
]

= T (T−1)(T−2)(T−3)γ4v .

Therefore, the resulting estimator for γ4v is

γ̂4v =
1

NT (T − 1)(T − 2)(T − 3)

N∑
i=1

[
(T 2 − 2T + 3)

(
T

T∑
t=1

ε̂4it − 4
T∑
t=1

ε̂3it

T∑
t=1

ε̂it

)

+ 6T
T∑
t=1

ε̂2it

(
T∑
t=1

ε̂it

)2

− 3

(
T∑
t=1

ε̂it

)4

− 3(2T − 3)

(
T∑
t=1

ε̂2it

)2
 . (3.5)

Meanwhile, for γ4b we propose the following estimating equation

E
[
f 4
1 (i)− 6f 4

2 (i) + 8f 4
3 (i) + 6f 4

4 (i) + 3f 4
5 (i)

]
= T (T − 1)(T − 2)(T − 3)γ4b .

Thus, the resulting estimator for γ4b is of the form

γ̂4b =
1

NT (T − 1)(T − 2)(T − 3)

N∑
i=1

( T∑
t=1

ε̂it

)4

− 6
T∑
t=1

ε̂2it

(
T∑
t=1

ε̂it

)2

+ 8
T∑
t=1

ε̂3it

T∑
t=1

ε̂it

− 6
T∑
t=1

ε̂4it + 3

(
T∑
t=1

ε̂2it

)2
 . (3.6)
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The estimators given in (3.5) and (3.6) have been obtained also using Lemma 3.1 and

proceeding in the same way as before to obtain (3.1) and (3.2).

The next theorem contains the main statistical properties of the variance estimators of

both random error and unobserved individual heterogeneity. For the sake of simplicity, we

assume that Ω is an identity matrix. Of course, these results can be extended to specific

error structures, such as in Assumption 2.2, but at the price of considerably enlarging the

complexity of the proofs.

Theorem 3.1 Under Assumptions 2.1-2.9 and 3.1, as N →∞ and T is fixed, we have

√
N(σ̂2

v − σ2
v)

d−−→ N (0, µ2,v), (3.7)

and

√
N(σ̂2

b − σ2
b )

d−−→ N (0, µ2,b), (3.8)

where µ2,v = γ4v
T
− σ4

v

T
+ σ4

v

T (T−1) and µ2,b = γ4b − σ4
b + 4

T
σ2
bσ

2
v + σ4

v

T (T−1) .

The proof of this result is shown in the supplement, Appendix A. It is interesting to note

that (3.7) and (3.8) will be shown by verifying

√
N (σ̂2

v − σ2
v) = 1√

NT

∑
it (v2it − σ2

v) + oP(1),

and

√
N(σ̂2

b − σ2
b ) = 1√

N

∑
i (b

2
i − σ2

b ) + 2√
NT

∑
it bivit + 1√

NT (T−1)

∑
its vitvis + oP(1).

In other words, σ̂2
v and σ̂2

b are as efficient as the moment estimators based on the true (but

unknown) vit and bi.

Finally, the following theorem contains the main asymptotic properties of the estimators

for the third- and fourth-order moments of both bi and vit.
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Theorem 3.2 Under Assumptions 2.1-2.9 and 3.1, as N →∞ and T is fixed,

√
N(γ̂3v − γ3v)

d−−→ N (0, µ3,v) ,
√
N(γ̂3b − γ3b )

d−−→ N (0, µ3,b),

and

√
N(γ̂4v − γ4v)

d−−→ N (0, µ4,v) ,
√
N(γ̂4b − γ4b )

d−−→ N (0, µ4,b),

where µ3,b = γ6b − (γ3b )
2 + 9

T
γ4bσ

2
v +

9σ2
bσ

4
v

T (T−1) + σ6
v

T (T−1)(T−2) , µ3,v = γ6v
T
− (γ3v)

2

T
−
(

6T−15
2T (T−1)

)
γ4vσ

2
v +

9(γ3v)
2

2T (T−1) +
(

3(T−2)2+8
2T (T−1)(T−2)

)
σ6
v, µ4,b = γ8b − (γ4b )

2 + 16
T
γ6bσ

2
v +

36γ4bσ
4
v

T (T−1) +
16σ2

bσ
6
v

T (T−1)(T−2) +

σ8
v

T (T−1)(T−2)(T−3) , µ4,v = γ8v
T
− (γ4v)

2

T
− 4
T
γ5vγ

3
v+ 8

T (T−1)γ
6
vσ

2
v+

8
T (T−1)(γ

4
v)

2+
(

8(T−2)2+36
3T (T−1)(T−2)

)
(γ3v)

2σ2
v−(

16T−20
T (T−1)(T−2)

)
γ4vσ

4
v +

(
3(T−3)2+9

T (T−1)(T−2)(T−3)

)
σ8
v.

The proof of this result is shown in the supplement, Appendix A. For second moments, these

quantities denote the minimum variances, which may be achieved for empirical estimators

based on the true vit and bi, respectively. The main interest of Theorems 3.1 and 3.2 is that

it is possible to make inference on several moments of both bi and vit without having to

assume a prespecified distribution. Only the existence of higher-order moments is needed.

Furthermore, an-easy-to-compute expression for the estimators of the asymptotic variances is

provided just by plugging consistent estimators of the fifth-, sixth- and eighth-order moments

of vit and bi into the expressions for µ2,v, µ2,b, µ3,v, µ3,b, µ4,v and µ4,b given in the theorems.

Indeed, they can be easily obtained using Lemma 3.1. These consistent estimators are given

in the supplement, Appendix B. Under the assumptions of Theorem 4.4 it is possible to

show that γ̂5v
p−→ γ5v , γ̂

6
v

p−→ γ6v , and γ̂8v
p−→ γ8v , as N →∞ and T is fixed. Similar results are

obtained for bi. The asymptotic variances of the test statistics of next section are estimated

in the same way. Finally, note that the properties of these estimators would hold also for

root-N residuals. That is, for a econometric model where the regression function is fully

parametric.
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4 Testing

In this section, we provide tests for skewness, kurtosis, and normality in the individual and

the idiosyncratic error components.

4.1 Testing for skewness

To test for skewness in both the individual heterogeneity and the remainder components,

the quantities of interest for vit and bi are SKv = γ3v/σ
3
v and SKb = γ3b /σ

3
b , respectively. In

this section, we derive the limiting distribution of the corresponding test statistics under any

value of SKv and SKb. Further, the simplicity of this result enables us to propose a test for

symmetry, that is, testing the null hypothesis of SKv = 0 and/or SKb = 0.

In this case, the proposed test statistics would be

ŜKv =
γ̂3v
σ̂3
v

and ŜKb =
γ̂3b
σ̂3
b

, (4.1)

where σ̂3
v = (σ̂2

v)
3/2 and σ̂3

b = (σ̂2
b )

3/2, while γ̂3v , γ̂
3
b , σ̂

2
v , and σ̂2

b are the estimators for γ3v , γ
3
b ,

σ2
v , and σ2

b , respectively.

Theorem 4.1 Under Assumptions 2.1-2.9 and 3.1, as N →∞ and T is fixed, we have

√
N(ŜKv − SKv)

d−−→ N
(

0,
α>v Γvαv
Tσ6

v

)
,

√
N(ŜKb − SKb)

d−−→ N
(

0,
α>b Γbαb
σ6
b

)

where αv =
(
1,−3SKvσv

2

)>
and αb =

(
1,−3SKbσb

2

)>
are vectors of dimension 2× 1, while Γv

and Γb are 2× 2 matrices of the form

Γv =

 µ3,v µ32,v

µ32,v µ2,v

 and Γb =

 µ3,b µ32,b

µ32,b µ2,b

 ,
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where µ32,v = γ5v
T
−
(

5T−11
2T (T−1)

)
σ2
vγ

3
v and µ32,b = γ5b − γ3bσ2

b + 6
T
γ3bσ

2
v.

The proof of this result is shown in the supplement, Appendix A.

In what follows, by standardizing the previous results, the distribution of these test

statistics under the null hypothesis of symmetry is obtained.

Theorem 4.2 Let Assumptions 2.1-2.9 and 3.1 hold, under the null hypothesis of symmetry,

i.e. SKv = 0 and/or SKb = 0, as N →∞ and T is fixed,

π̂v3 =

√
NŜKv

sd(ŜKv)

d−−→ N (0, 1),

π̂b3 =

√
NŜKb

sd(ŜKb)

d−−→ N (0, 1),

where sd(ŜKv) = (µ̂3,v0/(T σ̂
6
v))

1/2 and sd(ŜKb) = (µ̂3,b0/σ̂
6
b )

1/2. We remark that σ̂2
v, σ̂2

b , µ̂3,v0

and µ̂3,b0 are consistent estimators for σ2
v, σ2

b , µ3,v0 and µ3,b0, respectively. In addition, µ3,v0

and µ3,b0 are the values of µ3,v and µ3,b, respectively, when the null hypothesis of symmetry

is imposed.

The proof of this theorem follows the same lines as the corresponding proof for Theorem 4.1,

so it is omitted.

This theorem indicates that a t-test for skewness can be implemented by standardizing

ŜKv and ŜKb. It is important to notice that, under H0 : SKv = 0, the statistic ŜKv is

robust to the presence of skewness (or kurtosis) in bi; however, it is not robust to kurtosis

on its own. Similarly, under H0 : SKb = 0, the statistic ŜKb is not affected by skewness (or

kurtosis) in the random error (vit), but it is not robust to kurtosis on its own. These facts

are confirmed by simulations in the next section.

4.2 Testing for kurtosis

For the test of kurtosis, the quantities of interest for the random error and the individual

effects are KUv = γ4v/σ
4
v and KUb = γ4b /σ

4
b , respectively. As in the previous subsection,
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we will proceed first by deriving the limiting distribution of the proposed statistics under

any value of KUv and KUb, and we will apply these results to the particular case in which

KUv = 3 and/or KUb = 3.

To construct the test statistics for kurtosis, we replace the population expressions with

sample moments, obtaining the following statistics:

K̂U v =
γ̂4v
σ̂4
v

and K̂U b =
γ̂4b
σ̂4
b

, (4.2)

where γ̂4v , γ̂
4
b , σ̂

4
v and σ̂4

b are estimators for γ4v , γ
4
b , σ

4
v and σ4

b , respectively.

Theorem 4.3 Under Assumptions 2.1-2.9 and 3.1, as N →∞ and T is fixed,

√
N(K̂U v −KUv)

d−−→ N
(

0,
β>v Φvβv
Tσ8

v

)
,

√
N(K̂U b −KUb)

d−−→ N
(

0,
β>b Φbβb
σ8
b

)
,

where βv = (1,−2KUvσ
2
v)
> and βb = (1,−2KUbσ

2
b )
> are vectors of dimension 2 × 1, while

Φv and Φb are 2× 2 matrices of the form

Φv =

 µ4,v µ42,v

µ42,v µ2,v

 and Φb =

 µ4,b µ42,b

µ42,b µ2,b

 ,

where µ42,v = γ6v
T
−
(

T−5
T (T−1)

)
γ4vσ

2
v − 2

T
(γ3v)

2 − 2
T (T−1)σ

6
v and µ42,b = γ6b − γ4bσ

2
b + 8

T
γ4bσ

2
v +

6
T (T−1)σ

2
bσ

4
v.

The proof of this result is shown in the supplement, Appendix A.

In the particular case where we are interested in testing whether the kurtosis coefficient

is equal to 3, the null hypothesis will be KUv = 3 for the idiosyncratic error term or KUb = 3

for the individual heterogeneity. Then, by standardizing the results above, we obtain the

following.
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Theorem 4.4 Suppose Assumptions 2.1-2.9 and 3.1 hold, under the null hypothesis that the

kurtosis coefficient is equal to 3, i.e. KUv = 3 and/or KUb = 3, as N →∞ and T is fixed,

π̂v4 =

√
N(K̂U v − 3)

sd(K̂U v)

d−−→ N (0, 1) ,

π̂b4 =

√
N(K̂U b − 3)

sd(K̂U b)

d−−→ N (0, 1) ,

where sd(K̂U v) =
(
β̂>v3Φ̂v3β̂v3/(T σ̂

8
v)
)1/2

and sd(K̂U b) =
(
β̂>b3Φ̂b3β̂b3/σ̂

8
b

)1/2
. We remark

that β̂v3, β̂b3, Φ̂v3, and Φ̂b3 are consistent estimators for βv3, βb3, Φv3, and Φb3, respectively.

Additionally, βv3, βb3, Φv3 and Φb3 are the values of βv, βb, Φv and Φb, respectively, when

the null hypothesis of kurtosis is imposed.

The proof of this Theorem follows the same lines as the corresponding proof for Theorem

4.3, so it is therefore omitted.

From this theorem, it can be pointed out that under H0 : KUv = 3, the statistic K̂U v

is not affected by kurtosis (or skewness) in bi. Similarly, under H0 : KUb = 3, K̂U b is not

affected by kurtosis (or skewness) in vit. However, one of the main criticisms when testing

for kurtosis based on moment conditions is that skewness might influence kurtosis. See Bai

and Ng (2005) and Galvao et al. (2013) for further details. As the reader can appreciate

in Theorem 4.4, both statistics K̂U v and K̂U b are affected by its own skewness coefficient.

Therefore, underestimated K̂U v and K̂U b are expected in practice given that the skewness

coefficient can cause these statistics to deviate substantially from their true values. That

result will be confirmed later by simulations.

Finally, note that these statistics of skewness and kurtosis are very useful because they

enable us to provide a joint test for each component of the error, which assesses whether

the data conform to any distribution of interest. Let π̃v3 and π̃v4 be the test statistics for

skewness and kurtosis, respectively, evaluated under the null hypothesis of normality of the

random errors, i.e., SKv = 0 and KUv = 3. In this situation, it is shown in the supplement,
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Appendix A, that π̃v3 and π̃v4 are asymptotically independent. Thus, by extending the

proposal in Jarque and Bera (1981) to panel data models, the proposed statistic to test for

the normality of the random errors is of the form

π̃v34 = π̃2
v3 + π̃2

v4. (4.3)

Similarly, under the null hypothesis of normality of the individual effects, SKb = 0 and

KUb = 3, so the proposed statistic is

π̃b34 = π̃2
b3 + π̃2

b4, (4.4)

where π̃b3 and π̃b4 are the corresponding test statistics for skewness and kurtosis evaluated

under the null, respectively.

Theorem 4.5 Suppose Assumptions 2.1-2.9 and 3.1 hold. Under the null hypothesis of

normality, as N →∞ and T is fixed,

π̃v34
d−−→ χ2

2,

π̃b34
d−−→ χ2

2.

The proof of this results is straightforward if we are able to show that both statistics are

asymptotically independent. This is shown in the supplement, Appendix A. Although the

need of testing for normality in a nonparametric regression context does not look very

appealing, in this setting, it can be justified on the grounds of efficiency. That is, in a

varying coefficient parameter setting, if the normality assumption of the error terms is not

rejected, then through the use of local maximum likelihood techniques, it is possible to obtain

more efficient estimators than those obtained here in the previous section.
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5 Monte Carlo simulations and application

To illustrate the feasibility and possible gains of the proposed method in this paper, we first

carry out some simulation studies. Later, we apply the proposed estimator and test statistics

to analyze a real data example.

5.1 Monte Carlo experiment

To evaluate whether the nonparametric estimators and test statistics proposed in this article

are valid for several distributions and to check their sensibility to the presence of technical

inefficiency, three sets of simulations are conducted: one set with the random error exhibiting

technical inefficiency and the other sets under no technical inefficiency.

In both sets of experiments the data generating process (DGP) is as such:

Yit = X>itm(Zit) + bi + vit, i = 1, . . . , N ; t = 1, . . . , T,

vit = νit − uit,

where vit is a composed error term that has two components, a non-negative error term to

account for technical inefficiency, uit, and a symmetric error term to account of other random

errors, νit. Following Aigner et al. (1977), it is assumed that νit ∼ i.i.d.0.5N (0, σ2
ν) and it

is independent of the uit, that is assumed to be uit ∼ i.i.d.N+(0, σ2
u). The notation “+”

indicates that the underlying distribution is truncated from below at zero so that uit ≥ 0.

Additionally, to generate data for the simulation, the chosen functional form is m(Zit) =

sin(Zitπ), while Xit and Zit are random variables satisfying Xit = 0.5Xi(t−1) + ξit and Zit =

$it +$i(t−1), where $it ∼ i.i.d.U [0, π/2] and ξit ∼ i.i.d.N (0, 1).

For the above sets of experiments, we consider different processes for both the composed

error term, vit, and the individual effects, bi. Further, the variance ratio λ = σu/σν may

affect model estimation. Therefore, in the following, we hold σ2
ν fixed at 0.1 and consider

alternative values of λ.
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Case A: no technical inefficiency and symmetric distributions (i.e., vit = νit):

DGP.A1. νit ∼ i.i.d. 0.5N (0, 1) ; bi ∼ i.i.d. 0.5N (0, 1);

DGP.A2. νit ∼ i.i.d. 0.5N (0, 1) ; bi ∼ i.i.d. 0.5t(9);

DGP.A3. νit ∼ i.i.d. 0.5t(9) ; bi ∼ i.i.d. 0.5N (0, 1);

DGP.A4. νit ∼ i.i.d. 0.5t(9) ; bi ∼ i.i.d. 0.5t(9).

Case B: no technical inefficiency and asymmetric distributions (i.e., vit = νit):

DGP.B1. νit ∼ i.i.d. 0.5N (0, 1) ; bi ∼ i.i.d. 0.5exp(N (0, 1)));

DGP.B2. νit ∼ i.i.d. 0.5exp(N (0, 1)) ; bi ∼ i.i.d. 0.5N (0, 1);

DGP.B3. νit ∼ i.i.d. 0.5exp(N (0, 1)) ; bi ∼ i.i.d. 0.5exp(N (0, 1)).

Case C: technical inefficiency (i.e., vit = νit − uit), where νit ∼ i.i.d.0.5N (0, σ2
ν):

DGP.C1. uit ∼ i.i.d. N+(0, σ2νλ
2) ; bi ∼ i.i.d. 0.5N (0, 1) ; λ = 0.5;

DGP.C2. uit ∼ i.i.d. N+(0, σ2νλ
2) ; bi ∼ i.i.d. 0.5N (0, 1) ; λ = 0.75;

DGP.C3. uit ∼ i.i.d. N+(0, σ2νλ
2) ; bi ∼ i.i.d. 0.5N (0, 1) ; λ = 1.

The simulation results are based on 1000 samples of data {(Xit, Zit, Yit) : i = 1, . . . , N, t =

1, . . . , T}. The number of time observations T is set up at 4, while the number of

cross-sections N is either 50, 100 and 150. The Epanechnikov kernel has been used, and

for simplicity the bandwidth is chosen following Silverman’s rule-of-thumb, i.e., Ĥ = ĥI =

σ̂z(NT )−1/5, where σ̂z is the sample standard deviation of Zit. Of course, a more specific

bandwidth technique could be used, but this is beyond the scope of this paper. To save space,

in Tables 1-3, we report only the simulations results for DGP.A1-DGP.A2, DGP.B1-DGP.B2,

and DGP.C2. The complete set of simulation results is available in the supplement, Appendix

C, of this paper.

Finite sample performance of the proposed estimators. The behavior of the estimator for
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m(·) is assessed via the following root mean squared error (RMSE)

RMSE(m̂(z;H)) =

[
1

NT

N∑
i=1

T∑
t=1

(m̂ϕ(z;H)−mϕ(z))2
]1/2

.

We are also interested in the performance of the nonparametric estimator proposed in this

paper with respect to other estimators proposed in the literature for this type of models.

Then, in Table 1 the mean and standard deviation (Sd) of the above expression for the

pairwise difference estimator (PDE) are compared to those obtained for the fixed-effects

(FEE) and one-step backfitting (OBE) estimators proposed in Rodriguez-Poo and Soberon

(2015), and the profile least square estimator (PLSE) presented in Sun et al. (2009).

Table 1. Mean and Sd of the RMSE of the estimators for the nonparametric component.

N Results FEE OBE PLSE PDE N Results FEE OBE PLSE PDE
DGP.A1 50 Mean 0.500 0.555 0.769 0.513 DGP.B1 50 Mean 0.500 0.556 0.759 0.513

Sd 0.086 0.029 0.049 0.040 Sd 0.084 0.028 0.049 0.040
100 Mean 0.448 0.528 0.763 0.479 100 Mean 0.449 0.529 0.764 0.481

Sd 0.061 0.028 0.046 0.030 Sd 0.060 0.053 0.048 0.030
150 Mean 0.426 0.510 0.769 0.461 150 Mean 0.430 0.511 0.767 0.464

Sd 0.051 0.018 0.045 0.025 Sd 0.049 0.018 0.048 0.026
DGP.A2 50 Mean 0.503 0.555 0.756 0.511 DGP.B2 50 Mean 0.494 0.555 0.760 0.511

Sd 0.087 0.027 0.051 0.039 Sd 0.080 0.028 0.051 0.040
100 Mean 0.447 0.529 0.751 0.479 100 Mean 0.448 0.529 0.765 0.481

Sd 0.058 0.026 0.043 0.029 Sd 0.060 0.026 0.046 0.030
150 Mean 0.425 0.511 0.750 0.462 150 Mean 0.431 0.514 0.768 0.465

Sd 0.055 0.018 0.050 0.025 Sd 0.046 0.016 0.051 0.020
DGP.A3 50 Mean 0.498 0.554 0.772 0.511 DGP.C2 50 Mean 0.490 0.552 0.755 0.508

Sd 0.086 0.031 0.054 0.045 Sd 0.081 0.026 0.047 0.037
100 Mean 0.445 0.526 0.766 0.476 100 Mean 0.456 0.527 0.756 0.481

Sd 0.066 0.026 0.046 0.034 Sd 0.061 0.025 0.042 0.027
150 Mean 0.433 0.514 0.764 0.465 150 Mean 0.411 0.509 0.772 0.455

Sd 0.050 0.019 0.043 0.025 Sd 0.052 0.019 0.041 0.023

In Tables 1-2, it is proved that the finite sample performance of the estimators proposed

in this paper is robust to alternative distributional processes. As it is expected from their

theoretical properties, the RMSEs of all these estimators are lower in all cases of study.

Further, the results in Table 1 show that the PDE is very competitive; in only one step

does it achieve rather similar results to the OEB, corroborating our theoretical findings. In

addition, these estimators are even closer as the sample size increases. Therefore, the gain

of this new estimation method is corroborated.
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Table 2. Bias, Sd, and RMSE of the estimators for higher-order moments.

Remainder component Individual component
N Results σ̂2

v γ̂3v γ̂4v σ̂2
b γ̂3b γ̂4b

DGP.A1 True 0.250 0.000 0.187 0.250 0.000 0.187
50 Bias 0.320 -0.004 0.992 0.015 0.007 0.014

Sd 0.077 0.151 0.564 0.094 0.144 0.261
RMSE 0.328 0.151 1.140 0.074 0.113 0.228

100 Bias 0.291 0.001 0.820 0.007 0.011 0.013
Sd 0.050 0.093 0.319 0.066 0.096 0.171
RMSE 0.295 0.095 0.879 0.049 0.075 0.151

150 Bias 0.274 -0.003 0.762 0.005 0.001 0.012
Sd 0.041 0.077 0.264 0.050 0.076 0.129
RMSE 0.277 0.078 0.805 0.038 0.064 0.112

DGP.A2 True 0.250 0.000 0.187 0.321 0.000 0.444
50 Bias 0.320 -0.009 0.959 0.011 0.017 0.040

Sd 0.079 0.148 0.542 0.123 0.271 0.684
RMSE 0.329 0.149 1.100 0.082 0.156 0.394

100 Bias 0.285 -0.004 0.799 0.010 0.007 0.021
Sd 0.047 0.093 0.299 0.083 0.170 0.386
RMSE 0.288 0.095 0.852 0.055 0.107 0.242

150 Bias 0.269 0.001 0.758 0.007 0.003 0.001
Sd 0.040 0.073 0.221 0.067 0.149 0.408
RMSE 0.272 0.075 0.789 0.039 0.071 0.188

DGP.A3 True 0.321 0.000 0.434 0.250 0.002 0.187
50 Bias 0.318 0.008 1.123 0.008 0.013 0.023

Sd 0.097 0.212 0.816 0.097 0.148 0.266
RMSE 0.329 0.202 1.339 0.074 0.121 0.232

100 Bias 0.282 0.007 0.896 0.002 0.002 0.010
Sd 0.058 0.133 0.524 0.067 0.101 0.162
RMSE 0.286 0.126 0.990 0.052 0.087 0.150

150 Bias 0.277 0.001 0.889 0.002 0.002 0.006
Sd 0.048 0.105 0.427 0.050 0.076 0.132
RMSE 0.280 0.099 0.973 0.039 0.057 0.116

DGP.B1 True 0.250 0.000 0.187 1.857 12.887 273.23
50 Bias 0.319 0.009 0.967 0.009 0.019 0.138

Sd 0.075 0.144 0.510 0.279 1.947 18.977
RMSE 0.327 0.145 1.091 0.087 0.346 3.488

100 Bias 0.292 -0.003 0.854 0.007 0.024 0.854
Sd 0.053 0.095 0.339 0.202 1.875 12.790
RMSE 0.296 0.094 0.981 0.062 0.319 2.441

150 Bias 0.275 -0.002 0.776 0.004 0.002 0.019
Sd 0.040 0.086 0.260 0.130 0.758 5.903
RMSE 0.277 0.085 0.817 0.041 0.131 1.053

DGP.B2 True 1.847 11.280 188.9 0.250 0.000 0.187
50 Bias 0.215 -0.226 0.229 0.264 0.421 0.507

Sd 0.128 0.910 9.151 0.124 0.219 0.408
RMSE 0.228 0.363 2.443 0.280 0.454 0.610

100 Bias 0.185 -0.228 -0.128 0.271 0.429 0.532
Sd 0.100 0.883 7.517 0.083 0.150 0.294
RMSE 0.191 0.303 2.261 0.279 0.446 0.590

150 Bias 0.167 -0.201 0.073 0.273 0.437 0.534
Sd 0.073 0.596 7.133 0.068 0.109 0.199
RMSE 0.171 0.248 0.444 0.278 0.444 0.559

DGP.C2 True 0.100 -0.049 0.030 0.250 0.000 0.187
50 Bias 0.270 0.095 0.671 -0.049 -0.179 -0.070

Sd 0.066 0.113 0.393 0.076 0.111 0.196
RMSE 0.278 0.149 0.779 0.079 0.202 0.193

100 Bias 0.254 0.093 0.641 -0.049 -0.179 -0.076
Sd 0.046 0.077 0.263 0.054 0.077 0.124
RMSE 0.258 0.120 0.693 0.067 0.191 0.140

150 Bias 0.224 0.093 0.508 -0.051 -0.176 -0.075
Sd 0.032 0.055 0.144 0.044 0.039 0.075
RMSE 0.226 0.106 0.527 0.060 0.179 0.099
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Table 3. Size and power of the symmetry, kurtosis, and normality tests.

Remainder component Individual component
N α SKu KUu π̂v3 π̂v4 π̃v34 SKb KUb π̂b3 π̂b4 π̃b34

DGP.A1 50 0.05 0 3 0.047 0.052 0.033 0 3 0.065 0.037 0.029
100 0.05 0 3 0.055 0.054 0.052 0 3 0.036 0.061 0.032
150 0.05 0 3 0.051 0.057 0.052 0 3 0.054 0.054 0.052

DGP.A2 50 0.05 0 3 0.053 0.039 0.035 0 4.309 0.035 0.067 0.040
100 0.05 0 3 0.051 0.040 0.041 0 4.309 0.038 0.102 0.078
150 0.05 0 3 0.049 0.055 0.045 0 4.309 0.047 0.132 0.093

DGP.A3 50 0.05 0 4.309 0.050 0.085 0.046 0 3 0.058 0.039 0.042
100 0.05 0 4.309 0.045 0.153 0.084 0 3 0.062 0.056 0.051
150 0.05 0 4.309 0.050 0.227 0.140 0 3 0.051 0.055 0.042

DGP.B1 50 0.05 0 3 0.027 0.090 0.014 5.092 79.233 0.442 0.145 0.225
100 0.05 0 3 0.029 0.102 0.024 5.092 79.233 0.475 0.223 0.254
150 0.05 0 3 0.045 0.106 0.033 5.092 79.233 0.506 0.235 0.287

DGP.B2 50 0.05 5.092 79.233 0.280 0.047 0.200 0 3 0.075 0.016 0.060
100 0.05 5.092 79.233 0.502 0.104 0.349 0 3 0.061 0.021 0.035
150 0.05 5.092 79.233 0.586 0.176 0.367 0 3 0.053 0.039 0.049

DGP.C2 50 0.05 -1.549 3 0.617 0.005 0.598 0 3 0.048 0.029 0.044
100 0.05 -1.549 3 0.657 0.002 0.655 0 3 0.026 0.037 0.041
150 0.05 -1.549 3 0.659 0.004 0.659 0 3 0.020 0.025 0.035

Finite sample performance of the skewness coefficient, kurtosis and normality test. For

practical implementation, the following Wald test statistics are used to test for skewness,

(i) π̂2
v3 and (ii) π̂2

b3. For kurtosis we use (iii) π̂2
v4, (iv) π̂2

b4, whereas for normality, the

corresponding statistics are (v) π̃v34 and (vi) π̃b34. Thus, under the corresponding null

hypotheses, the statistics (i), (ii), (iii), and (iv) have χ2
1 asymptotic distribution, whereas (v)

and (vi) have χ2
2 asymptotic distribution. In Table 3, the size and power of these tests are

displayed.

In DGP.A1, νit ∼ 0.5N (0, 1) and bi ∼ 0.5N (0, 1) is considered. All of the proposed tests

are expected to have empirical size close to 0.05. The results in Table 3 corroborate the

expectation. Even for smaller sample sizes, all of the tests achieve the correct empirical size.

In DGP.A2-DGP.A3 a t9-Student distribution is considered to analyze the effect of

kurtosis in one element but not in the other. In the first case, it is expected that the

test for kurtosis in bi has relevant power, while the tests for skewness in bi and skewness

and kurtosis in the random error do not. The results for DGP.A2 corroborate that expected

behavior. More precisely, the kurtosis test for bi has power increasing with N (for N = 50 the

rejection rate is 0.067 and it increases to 0.132 for N = 150) and the remaining tests have size

close to the nominal size. Additionally, the test for skewness starts with undersized values
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for N = 50 but increases to 0.047 when N = 150. All of those observations corroborate

that the skewness test is robust to the presence of kurtosis in the other element, but not to

its own kurtosis. Further, although the kurtosis test for bi has power to reject kurtosis, the

power is not very large. Because of this fact, the normality test has low power. This result

is expected when a distribution is symmetric and a larger sample size should be considered.

See Bai and Ng (2002) for a deeper discussion. Opposite results are obtained for DGP.A3,

corroborating the theoretical findings in Section 4.

In DGP.B1-DGP.B2 the results for a log-normal distribution that exhibits an

asymmetric behavior with a high level of kurtosis are reported. In this situation, it is expected

that the power of the tests for skewness and kurtosis of the composed error increases with

the sample size. Looking at the results in DGP.B1 we see that the tests for bi effectively

have non-trivial empirical power, while the tests for the other component have empirical

sizes close to the level of significance. The opposite is obtained for DGP.B2.

To corroborate the fact that skewness affects kurtosis, in DGP.C2 we consider a

distribution with both skewness and kurtosis. The results in Table 3 reveal that the proposed

test for the composed error is effectively able to detect departures from symmetry, but the

power of the kurtosis test has been negatively affected (the largest rejection rate is 0.037

for N = 100). In contrast, the skewness, kurtosis and normality test for the individual

heterogeneity remain unchanged to the presence of skewness in the other component. As

can be seen in the supplement, Appendix C, all of those results hold for the different values

of λ considered in this experiment.

In summary, it can be remarked that the proposed tests detect departures from the null

hypothesis of skewness and/or kurtosis in each component. In addition, these tests are robust

to the presence of skewness and/or kurtosis in the other component.

26



5.2 Application

To illustrate our proposed method, in this section, we perform an empirical analysis of

the technical efficiency in a panel of EU companies. Traditionally, studies of this type are

based on the parametric stochastic frontier analysis (SFA), proposed originally in Aigner

et al. (1977) and Meeusen and van den Broeck (1977)). Despite its limited computational

complexity, they exhibit the following important drawbacks.

First, the stochastic frontier production function is characterized by an error term that

has two components, a non-negative error term to account for technical inefficiency and a

symmetric error term to account for other random effects. In this situation, the estimation

procedure in the panel data context is considerably more complicated, especially when the

unobserved individual heterogeneity is correlated with the covariates of the model. See

Greene (2005) and Wang and Ho (2010) for further details. Second, testing symmetry of

the composed error is of great interest in this literature. The reason is that researchers

who estimate this type of models typically reject models, samples, or both when residuals

have skewness in the “wrong” direction, i.e., when the expected and the estimated sign

of the skewness of the composer error are different. See the proposals in Coelli (1995),

Simar and Wilson (2010) and Wang et al. (2011), among others. In addition, tests on

the distributional features of the error components are harder to derive without further

identification conditions. Third, these parametric models are characterized by a lack of

flexibility. Thus, the risk of misspecification of the production function is high and it can

lead to misleading conclusions. To overcome this latter limitation, several semi-parametric

and nonparametric techniques have been introduced in the literature, see Fan et al. (1996)

or Kumbhakar et al. (2007) for example.

Recently, Li et al. (2002) or Ahmad et al. (2005), among others, have found that capital

and labor elasticities vary according to other features of the companies such as the R&D

expenses, and varying coefficient models can be understood as a natural way to solve it.

Further, a standard belief in this literature is that the level of R&D has some impact on
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the marginal productivity of the fixed capital but not in the liquid capital. To corroborate

this fact and trying to overcome most of the previous difficulties, we propose to estimate a

varying coefficient panel data model of the following form:

lnYit = lnWitβ1(Zit) + lnLitβ2(Zit) + lnKitβ3(Zit) + bi + vit, i = 1, . . . , N ; t = 1, . . . , T,

where Y represents the sales of the firm, W the liquid capital, L the labor input, K the

fixed capital, and Z the firm’s R&D expenses. Note that in SFA models the R&D variable

usually has a neutral effect on the production function, but in this specification, it affects the

marginal productivity of both labor and capital. In addition, vit = νit − uit is a composite

error term where νit is the idiosyncratic error term with zero mean, and uit represents the

technical inefficiency of the firm i. Independence between νit and uit is assumed. Then, the

composite error term vit has an expected value equal to E(vit) = −E(uit) and a third central

moment such as

E(vit − E(vit))
3 = E(νit − uit + E(uit))

3 = −E(uit − E(uit))
3.

Therefore, a positively skewed distribution of the inefficiencies uit implies that the composed

error term vit has a negative skewness, so γ3v < 0 is expected in the presence of inefficiencies,

see Greene (2000) and Carree (2002), among others.

The data used for this study are drawn from the Analyze Major Database from European

Sources (AMADEUS), which contains information about the accounting and financial

statements of around 10 million private and public European companies. After removing

firms with missing values, we obtain a final sample of 1, 120 observations, i.e., 160 companies

and 7 time periods. The variables used in this study are defined in Table 4, including some

basic statistics.

In the following figures, varying coefficient estimates are plotted against the R&D

expenses, where the continuous line denotes the estimated varying coefficients and the dotted
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Table 4. Statistics of the variables: mean and standard deviation in brackets.

Variable Description Mean Std

ln Y Logarithm of the firm’ sales of the firm 12.393 (2.8040)
ln W Logarithm of the firm’s liquid capital 10.930 (2.8060)
ln L Logarithm of the firm’s labor input 6.9735 (2.7991)
ln K Logarithm of the firm’s fixed capital 10.757 (2.8978)
Z Logarithm of the firm’s R&D expenses 8.8431 (2.7850)

lines represent pointwise 95% confidence intervals obtained using the results of Section 4.

Figures 1 and 2 show the results for the marginal productivity of liquid and fixed capital,

respectively. Figure 3 exhibits the estimation results of the marginal productivity of labor.

Finally, Figure 4 graphs the returns to scale function defined as β1(z) + β2(z) + β3(z).

Focusing on the results of Figure 1, we can realize that the marginal productivity of liquid

capital does not appear to be affected by the level of R&D, corroborating the standard beliefs

in this literature. On the boundaries, some nonlinearities can be observed, but they might be

due to the boundary effects. Figure 2 exhibits a general upward trend with R&D, indicating

that firms with large R&D expenses yield relatively higher marginal productivity of fixed

capital. In this way, those companies with larger expenses do have incentives to increase

their R&D expenses, since that will end up in higher marginal productivity of fixed capital.

Figure 3 shows that the marginal productivity of labor is a nonlinear function of R&D

expenses. In general, the marginal productivity of labor first increases with R&D and then

decreases as these expenses increase further. This bell shape of the curve corroborates what

is obtained in Ahmad et al. (2005), for example. This behavior suggests that, while modest

R&D tends to improve labor productivity, higher R&D expenses are related to lower labor

productivity. Note that a different behavior is obtained for the extreme cases of this kind

of expense. Finally, Figure 4 shows that the returns to scale are well below one (i.e., the

constant return to scale level) in general. Firms with lower levels of R&D expenses exhibit

decreasing returns to scale, whereas companies with larger expenditures in R&D exhibit
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Figure 1.
Marginal productivity liquid capital

Figure 2.
Marginal productivity fixed capital

Figure 3.
Marginal productivity labor

Figure 4.
Returns to scale function
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increasing returns to scale.

From all these results, it can be summed up that there exists a highly nonlinear

relationship between the marginal productivity of both fixed capital and labor input and

the R&D expenses. However, the marginal productivity of liquid capital does not appear to

be sensitive to these kind of expenses. More precisely, companies with larger R&D expenses

exhibit increasing returns to scale and higher marginal productivity of both fixed and labor

input.

Finally, Table 5 contains the estimated parameters for the higher-order moments of bi

and vit and the proposed test statistics.

Table 5.
Estimated parameters for the stochastic frontier model.

σ̂2 γ̂3 γ̂4 Skewness Kurtosis Normality
vit 0.132 -0.069 0.332 -0.007 0.001 -0.005
bi 31.576 202.672 1457.847 60.391 5.481 65.727

The empirical results denote that vit exhibits a nearly Gaussian distribution with a slight

asymmetry. In fact the null hypothesis H0 : SKv = 0 and KUv = 3 cannot be rejected.

Therefore, no technical inefficiencies are present in this data set at the firm level. On the

other side, the behavior of the heterogeneity term, bi, is largely asymmetric and exhibits

excess kurtosis (rejecting the corresponding null hypothesis at the 1% significance level). In

fact, as we have pointed out both in Section 4 and the simulations section, the symmetry

(kurtosis) test of bi might be affected by its kurtosis (asymmetry); therefore, the results are

not very reliable.

In view of these results, it is clear that this varying coefficient model effectively enables

us to capture some relevant features of the covariates that were not possible with fully

parametric or nonparametric models.
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6 Conclusion

In this paper, a new technique to test for skewness and kurtosis in varying coefficient panel

data models is proposed. This new proposal is robust to fixed-effects and distributional

assumptions. In this paper, a pairwise difference estimator to compute these varying

coefficients parameters is also introduced. This nonparametric estimator is almost

asymptotically efficient, and it exhibits nice computational properties. Further, some

simulations are used to examine the finite-sample performance of the estimators and tests

proposed in this paper, and they are also illustrated in an empirical application regarding

the production efficiency of EU companies.
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This supplement contains three sections. Appendix A provides the proofs of the main
results presented in the paper. Appendix B collects the proposed estimators for the higher-order
moments up to the eight moment for both individual heterogeneity and random error.
Appendix C includes additional simulations to that discussed in the paper.

Appendix A

Proof of Theorem 2.1. The proof of this theorem consists of three parts. First, the
bias of the local constant estimator in (3.5) in the paper is obtained. Second, we give the
variance term of this estimator and we conclude by obtaining the asymptotic distribution of
our estimator.

For the sake of simplicity, let us denote

Kit = |H|−1/2K
(
H−1/2(Zit − z)

)
and Kis = |H|−1/2K

(
H−1/2(Zis − z)

)
.

Let Y·t = (Y1t, . . . , YNt)
>, v·t = (v1t, . . . , vNt)

>, and b = (b1, . . . , bN)> be vectors of N × 1
dimension, it is possible to rewrite (2.1) in the paper in vectorial form as

Y·t = Υ·t(X,m(Z)) + b+ v·t, t = 1, . . . , T, (A.1)

where Υ·t(X,m(Z)) stacks all the individual observations of X>itm(Zit) in a N -dimensional
vector such as Υ·t(X,m(Z)) = (X>1tm(Z1t), . . . , X

>
Ntm(ZNt))

>.

Let Ỹ·ts and ṽ·ts be N -dimensional vectors such that Ỹts = [Ỹ1ts, . . . , ỸNts]
> and ṽts =

[ṽ1ts, . . . , ṽNts]
>, respectively. Using the multivariate Taylor’s theorem in (A.1) we obtain

Ỹ·ts = X̃·tsm(z) + (D·t(z)−D·s(z)) +
1

2
(H·t(z)−H·s(z)) + (R·t(z)−R·s(z)) + ṽ·ts,

where R·t(z) and R·s(z) are the residual terms of the Taylor expansion. Additionally, X̃·ts =

[X̃>1ts, . . . , X̃
>
Nts]

> is a matrix of N × d dimension, and D·t(z) = [D>1t, . . . , D
>
Nt]
>, H·t(z) =

[H>1t, . . . , H
>
Nt]
> and R·t(z) = [R>1t, . . . , R

>
Nt]
> are N -dimensional vectors whose corresponding

entries are

Dit(z) = X>it ⊗ (Zit − z)>Dm(z), Hit(z) = X>it ⊗ (Zit − z)>Hm(z)(Zit − z),
Rit(z) = X>it ⊗ (Zit − z)>Rm(Zit, z)(Zit − z).

Similar definitions for D·s(z), H·s(z), and R·s(z). Additionally, Dm(z) is a dq×1 vector such
that Dm(z) = vec(∂m(z)/∂z>) is the first-order derivative vector of m(·), Hm(z) is a dq× q
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matrix such that Hm(z) = ∂m(z)/∂z∂z> is the Hessian matrix of m(·), and Rm(Zit, z) =
(R>m1

(Zit, z), . . . ,R>md(Zit; z))> is a d-dimensional vector where

Rmr(Zit, z) =

∫ 1

0

[
∂2mr

∂z∂z>
(z + ϕ(Zit − z))− ∂2mr(z)

∂z∂z>

]
(1− ϕ)dϕ, (A.2)

ϕ is a weight function and r = 1, . . . , d. There is a similar definition for Rm(Zis, z).
Replacing (A.2) in (2.4) in the paper and rearranging terms, m̂(z;H) can be written as

m̂(z;H)−m(z) = Ψ−1N

(
A

(1)
N + A

(2)
N + UN +RN

)
, (A.3)

where

ΨN =
(
T
2

)−1 1
N

∑
ts X̃

>
tsW·ts(z)X̃·ts, A

(1)
N =

(
T
2

)−1 1
N

∑
ts X̃

>
·tsW·ts(z)(D·t(z)−D·s(z)),

UN =
(
T
2

)−1 1
N

∑
ts X̃

>
·tsW·ts(z)ṽ·ts, A

(2)
N =

(
T
2

)−1 1
2N

∑
ts X̃

>
·tsW·ts(z)(H·t(z)−H·s(z)),

RN =
(
T
2

)−1 1
N

∑
ts X̃

>
·tsW·ts(z)(R·t(z)−R·s(z)),

and W·ts(z) = diag (KH(Z1t − z)KH(Z1s − z), . . . , KH(ZNt − z)KH(ZNs − z)) is a N × N
dimensional matrix.

Then, to analyze the asymptotic behavior of this estimator, it is sufficient to show√
N |H| (m̂(z;H)−m(z))−

√
N |H|Ψ−1N

(
A

(1)
N + A

(2)
N +RN(z)

)
=
√
N |H|Ψ−1N UN , (A.4)

where we will demonstrate that Ψ−1N A
(j)
N , for j = 1, 2, contributes to the asymptotic bias,

whereas the right-hand side term of (A.4) is asymptotically normal.
Starting with the bias term of this estimator, we first focus on Ψ−1N . Under Assumption

2.1 Xit are i.i.d. across i, for each fixed t. Then, as N tends to infinity and T is fixed, we
obtain

ΨN =
2

(T − 1)
BXX̃(z, z)(1 + oP(1)), (A.5)

where BXX̃(z, z) is a q × q matrix of the form

B
XX̃

(z, z) =

T−1∑
κ=1

(
1− κ

T

)
E
[
Xi1X̃

>
i1(1+κ)|Zi1 = z, Zi(1+κ) = z

]
fZi1,Zi(1+κ)(z, z)

and X̃i1(1+κ) = Xi1 − Xi(1+κ). To show this result, by taking expectation and under
Assumption 2.1,

E (ΨN ) =
2

NT (T − 1)

∑
its

E[(Xit −Xis)(Xit −Xis)
>KitKis]

=
4

N(T − 1)

∑
iκ

(
1− κ

T

)
E[Xi1(Xi1 −Xi(1+κ))

>Ki1Ki(1+κ)]

=
4

(T − 1)

∑
κ

∫
E[Xi1X̃

>
i(1+κ)|Zi1 = z +H1/2u, Zi(1+κ) = z +H1/2v]

× fZi1,Zi(1+κ)(Zi1 = z +H1/2u, Zi(1+κ) = z +H1/2v)K(u)K(v)dudv,

2



and by a Taylor expansion the expression (A.5) holds. Additionally, to complete the proof,
it is necessary to show that V ar(ΨN)→ 0 as N →∞.

V ar (ΨN) =
4

N

(
T

2

)−2∑
κ

(1− κ)2 V ar[Xi1X̃
>
i1(1+κ)Ki1Ki(1+κ)]

+
4

N

(
T

2

)−2∑
κ

∑
κ<κ′

(1− κ) (1− κ′)Cov[Xi1X̃
>
i1(1+κ)Ki1Ki(1+κ), Xi1X̃

>
i1(1+κ′)Ki1Ki(1+κ′)]

where, under Assumptions 2.1 and 2.8, the first element is OP

(
1

N |H|

)
, whereas the second

one is oP

(
1

N |H|

)
. Then, as N |H| → ∞ the variance term tends to zero and (A.5) holds.

Using this result and the inverse matrix of ΨN , by the Cramér-Wold device it is proved
that

Ψ−1N =
(T − 1)

4
B−1
XX̃

(z, z) + oP(1). (A.6)

Similarly, by the law of iterated expectations and the stationarity condition, we can show

E
(
A

(1)
N

)
=

2

(T − 1)

∑
κ

(
1− κ

T

)∫ (
E(X̃i1(1+κ)X

>
i1|Zi1 = z, Zi(1+κ) = z)Df (z)(H1/2u)

)
⊗ (H1/2u)>Dm(z)K(u)K(v)dudv

− 2

(T − 1)

∑
κ

(
1− κ

T

)∫ (
E(X̃i1(1+κ)X

>
i(1+κ)|Zi1 = z, Zi(1+κ) = z)Df (z)(H1/2v)

)
⊗ (H1/2v)>Dm(z)K(u)K(v)dudv

=
4µ2(K)

(T − 1)
BXX̃(z, z)diagd (tr(HDfr(z)Dmr(z))) ıdf

−1
Zi1,Zi(1+κ)

(z, z) + oP(tr(H)), (A.7)

where, for r = 1, . . . , d, Dfr(z) and Dmr are the first-order derivative vector of the rth
component of f(·) and m(·), respectively, and ıd is a d× 1 unit vector.

Following a similar procedure, it is straightforward to show that

E
(
A

(2)
N

)
=

1

(T − 1)

∑
κ

E(X̃i1(1+κ)X
>
i1|Zi1 = z, Zi(1+κ) = z)fZi1,Zi(1κ)(z, z)

⊗ tr(HHmr(z))

∫
u>uK(u)K(v)dudv

− 1

(T − 1)

∑
κ

E(X̃i1(1+κ)X
>
i(1+κ)|Zi1 = z, Zi(1+κ) = z)fZi1,Zi(1+κ)(z, z)

⊗ tr(HHmr(z))

∫
v>vK(u)K(v)dudv

=
2µ2(K)

(T − 1)
BXX̃(z, z)diagd (tr(HHmr(z))) ıd + oP(tr(H)), (A.8)

where Hmr(z) is the Hessian matrix of the rth component of m(·). Additionally, using

similar arguments as above, we can show that any component of the variance of A
(1)
N and

A
(2)
N converges to zero as H → 0 and N |H| → ∞.
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Finally, to show that the local constant estimator m̂(z;H) is asymptotically unbiased, it
is necessary to show that the residual terms of the Taylor expansion are negligible as N goes
to infinity and T is fixed. To analyze the asymptotic behavior of RN , we add and subtract

X̃itsX
>
is(Zis − z)>Rm(Zit; z)(Zis − z). Then, rearranging terms, it is possible to decompose

RN into the following two terms:

RN =
1

N

(
T

2

)−1∑
its

X̃its

(
X>it ⊗ (Zit − z)>Rm(Zit; z)(Zit − z)−X>is ⊗ (Zis − z)>Rm(Zis; z)(Zis − z)

)
× KitKis

= Λ1(z)− Λ2(z),

where

Λ1(z) =
1

N

(
T

2

)−1∑
its

X̃its

(
X>it ⊗ (Zit − z)>Rm(Zit; z)(Zit − z)−X>is ⊗ (Zis − z)>Rm(Zit; z)(Zis − z)

)
× KitKis

Λ2(z) =
1

N

(
T

2

)−1∑
its

X̃itsX
>
is ⊗ (Zis − z)>(Rm(Zit; z)−Rm(Zis; z))(Zis − z)KitKis.

Thus, what we need to show is that as N →∞ and T is fixed,

E(RN) = oP(tr(H)). (A.9)

Analysing Λ1(z) and Λ2(z) separately, under Assumption 2.1 and following a similar procedure
as above,

E(Λ1(z)) =
2

(T − 1)

∑
κ

(
1− κ

T

)∫
E[X̃i1(1+κ)X

>
i1|Zi1 = z +H1/2u, Zi(1+κ) = z +H1/2v]⊗ (H1/2u)>

× Rm(z +H1/2u, z)(H1/2u)fZi1,Zi(1+κ)(z +H1/2u, z +H1/2v)K(u)K(v)dudv,

− 2

(T − 1)

∑
κ

(
1− κ

T

)∫
E[X̃i1(1+κ)X

>
i(1+κ)|Zi1 = z +H1/2u, Zi(1+κ) = z +H1/2v]⊗ (H1/2v)>

× Rm(z +H1/2u, z)(H1/2v)fZi1,Zi(1+κ)(z +H1/2u, z +H1/2v)K(u)K(v)dudv.

By definition (A.2) and Assumption 2.3, for r = 1, . . . , d,

|Rmr(z +H1/2u; z)| ≤
∫ 1

0

ς(ϕ‖H1/2u‖)(1− ϕ)dϕ,

where ς(·) is the modulus of continuity of ∂2mr(z)
∂z∂z>

. Hence, under Assumptions 2.3-2.4, and

given that we impose ς(ϕ‖H1/2u‖)→ 0 as N →∞,

E|Λ1(z)| ≤ C1

∫ ∫ 1

0

|(H1/2u)>||ς(ϕ‖H1/2u‖)||H1/2u||K(u)||K(v)|(1− ϕ)dudvdϕ

− C2

∫ ∫ 1

0

|(H1/2v)>||ς(ϕ‖H1/2u‖)||H1/2v||K(u)||K(v)|(1− ϕ)dudvdϕ+ oP(tr(H))

= oP(tr(H)).
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Focus now on ε2(z). By the law of iterated expectations and Assumption 2.1,

E(Λ2(z)) =
2

(T − 1)

∑
κ

(
1− κ

T

)∫
E[X̃i1(1+κ)X

>
i(1+κ)|Zi1 = z +H1/2u, Zi(1+κ) = z +H1/2v]⊗ (H1/2v)>

×
(
Rm(z +H1/2u)−Rm(z +H1/2v)

)
(H1/2v)fZi1,Zi(1+κ)(z +H1/2u, z +H1/2v)K(u)K(v)dudv

and following a similar procedure as previously

E|Λ2(z)| ≤ C2

∫ ∫ 1

0
|(H1/2v)>||ς(ϕ‖H1/2u‖ − ϕ‖H1/2v‖)||H1/2v||K(u)||K(v)|(1− ϕ)dudvdϕ+ oP(tr(H)).

Under the dominated convergence, ς(ϕ‖H1/2u‖)→ 0 and ς(ϕ‖H1/2v‖)→ 0 as N →∞,
so E(Λ2(z)) = oP(tr(H)) is proved and (A.9) holds.

Then, using (A.6)-(A.9) and applying the Cramér-Wold device it is proved that the
asymptotic bias of m̂(z;H) is

Ψ−1N

(
A

(1)
N +A

(2)
N +RN

)
= µ2(K)B−1

XX̃
(z, z)B

XX̃
(z, z)

(
diagd (tr(HDfr(z)Dmr(z))) ıdf

−1
Zi1,Zi(1+κ)

(z, z)

+
1

2
diagd (tr(HHmr(z))ıd)

)
+ oP(tr(H)) + oP

(
1√
N |H|

)
. (A.10)

Thus, the first part of the proof is done.
To obtain the asymptotic variance of the right-hand side of (A.4), we have to analyze

the behavior of UN . Let X be the vector of observed covariates. By the law of iterated
expectations, Assumption 2.1 and strict stationarity,

V ar(UN ) =
1

N2

(
T

2

)−2 T−1∑
κ=1

T−1∑
κ′=1

(T − κ)(T − κ′)E[X̃>·1(1+κ)W·1(1+κ)(z)E(ṽ·1(1+κ)ṽ
>
·1(1+κ′)|X)W·1(1+κ′)(z)X̃·1(1+κ′)]

and by (A.1) we know E(ṽi1(1+κ)ṽj1(1+κ)|X) = 0, for ∀i 6= j, and

E
(
ṽ·1(1+κ)ṽ

>
·1(1+κ′)|X

)
=

{
2σ2

ηΩΩ> for κ = κ′,
σ2
ηΩΩ> for κ 6= κ′.

In addition, remember that by Assumption 2.2, ηit is i.i.d in i. Then, by the law of
iterated expectations and Assumptions 2.1, 2.3-2.4, and 2.7,

N |H|V ar(UN) =
1

N

∑
ij

ω2
ij

8σ2
η|H|

(T − 1)2

∑
κ

(
1− κ

T

)2
E
[
X̃i1(1+κ)X̃

>
i1(1+κ)K

2
i1K

2
i(1+κ)

]
+

1

N

∑
ij

ω2
ij

4σ2
η|H|

(T − 1)2

∑
κ

∑
κ6=κ′

(
1− κ

T

)2
E
[
X̃i1(1+κ)X̃

>
i1(1+κ′)K

2
itKi(1+κ)Ki(1+κ′)

]
= I1N + I2N .

Analysing each of these terms separately, we obtain

N |H|V ar(UN) =
16σ2

ηR
2(K)

(T − 1)2
$NBVXX̃(z, z)(1 + oP(1))
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where

BV
XX̃

(z, z) =
T−1∑
κ=1

(
1− κ

T

)2
E[Xi1X̃

>
i1(1+κ)|Zi1 = z, Zi(1+κ) = z]fZi1,Zi(1+κ)(z, z).

With the aim of showing this result, under similar arguments as above, it can be proved that

I1N =
16σ2

ηR
2(K)

(T − 1)2
$N

∑
κ

(
1− κ

T

)2
E[Xi1X̃

>
i1(1+κ)|Zi1 = z, Zi(1+κ) = z]fZi1,Zi(1+κ)(z, z)(1 + oP(1))

and I2N = OP(H1/2), so the expression (A.11) holds.
Then, using (A.5) and (A.11), by the Cramér-Wold device, as N |H| → ∞,

N |H|V ar
(
Ψ−1N UN

)
= σ2

ηR
2(K)$NB−1XX̃(z, z)BV

XX̃
(z, z)B−1

X̃X
(z, z)(1 + oP(1)). (A.11)

Note that the conditions established for H are sufficient to show that the other terms of the
variance are oP(1).

Finally, to complete the proof of Theorem 2.1 it is necessary to show that, as N tends to
infinity, for T fixed,√
N |H| (m̂(z,H)−m(z)−B(z,H))

d−−−→ N
(

0, σ2ηR
2(K)$NB−1

XX̃
(z, z)BV

XX̃
(z, z)B−1

X̃X
(z, z)

)
,(A.12)

where

B(z,H) = µ2(K)B−1
XX̃

(z, z)BXX̃(z, z)
(
diagd(tr(HDfr(z)Dmr(z)))ıdf

−1
Zi1,Zi(1+κ)

(z, z)

+
1

2
diagd(tr(HHmr(z)))ıd

)
+ oP(tr(H)).

To verify the Lindeberg condition, it suffices to check the Lyapounov condition in the
following expression:√

N |H|
N

(
T

2

)−1∑
ts

X̃>·tsW·ts(z)ṽ·ts =
1√
N

(
T

2

)−1∑
i

θi, (A.13)

where, under strict stationarity,

θi =
2|H|1/2

(T − 1)

∑
κ

(
1− κ

T

)
Ki1Ki(1+κ)X̃i1(1+κ)ṽi1(1+κ).

Using the results of Theorem 2.1, V ar (
∑

i θi) = N (2+δ)/2. Additionally, by the Minkowsky
inequality, the Cauchy-Schwarz inequality, and the assumptions of this theorem, it is straightforward
to show E|θi|(2+δ) = OP(|H|−δ/2). Hence,

N−(2+δ)/2
∑
i

E |θi|2+δ ≤ COP
(
(N |H|)−δ/2

)
.

Then, it is proved that this term tends to zero as N |H| → ∞, so the Lindeberg condition
is verified. Therefore, the Lyapunov Central Limit Theorem can be used to verify (A.12),
and the proof of Theorem 2.1 is done.
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Proof of Theorem 3.1. We first focus on the asymptotic properties of σ̂2
v and later

on σ̂2
b . Inserting (2.1) of the paper into ε̂it = Yit −X>it m̂(Zit;H), throughout the proof, the

residuals are written as ε̂it = εit−X>it [m̂(Zit;H)−m(Zit;H)], and the expression to analyze
is

σ̂2v =
1

NT (T − 1)

N∑
i=1

T∑
t

(
εit −X>it [m̂(Zit;H)−m(Zit)]

)2
−

(∑
t

[
εit −XT

it [m̂(Zit;H)−m(Zit)]
])2


=

1

NT

∑
it

v2it −
1

NT (T − 1)

∑
its

vitvis + II(1)v − II(2)v + II(3)v − II(4)v , (A.14)

where after rearranging terms

II(1)v =
1

NT

∑
it

(
X>it [m̂(Zit;H)−m(Zit)]

)2
,

II(2)v =
1

NT

∑
it

εitX
>
it [m̂(Zit;H)−m(Zit)],

II(3)v =
1

NT (T − 1)

∑
its

X>it [m̂(Zit;H)−m(Zit)]X
>
is [m̂(Zis;H)−m(Zis)]

II(4)v =
1

NT (T − 1)

∑
its

X>it [m̂(Zit;H)−m(Zit)]εis.

As we will show, of these six terms of (A.14), only the first two will be the leading terms,

whereas II
(1)
v , II

(2)
v , II

(3)
v , and II

(4)
v are residual terms. Analysing each term separately and

using uniform convergence results as the ones established in Theorem 6 in Masry (1996), by
Assumptions 2.1-2.3 and rearranging terms,

II(1)v ≤ 1

NT

∑
it

|X>itXit| sup
{Zit∈A}

| (m̂(Zit;H)−m(Zit))
> || sup

{Zit∈A}
|m̂(Zit;H)−m(Zit)|

= OP

(
tr(H)2 +

logN

N |H|

)
, (A.15)

since (NT )−1
∑

it |XitX
>
it | = OP(1). A similar result holds for II

(3)
v .

Additionally, under the same reasoning as above, it is straightforward to show that

II(2)v ≤ 2

NT

∑
it

|εitX>it | sup
{Zit∈A}

|m̂(Zit;H)−m(Zit)| = op

(
1√
N

)
. (A.16)

Given that, under Assumption 2.8, it can be proved that the first term is op(N
−1/2) using

the same argument as that in Lemma 2 in Gao (1995), whereas by Theorem 2.2 the second

one is op(1). Following this same procedure, we obtain a similar result for II
(4)
v .

Using these results in (A.14) and under Assumption 2.8,

√
N
(
σ̂2
v − σ2

v

)
=

1√
NT

∑
it

(
v2it − σ2

v

)
+ oP(1) (A.17)
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and by the central limit theorem the first part of Theorem 3.1 is proved.
Focusing now on σ̂2

b , equation (3.2) of the paper can be rewritten as

σ̂2
b =

1

N

∑
i

b2i +
2

NT

∑
it

bivit +
1

NT (T − 1)

∑
its

vitvis + I
(1)
b − 2I

(2)
b , (A.18)

where

I
(1)
b =

1

NT (T − 1)

∑
its

X>it [m̂(Zit;H)−m(Zit)]X
>
is [m̂(Zis;H)−m(Zis)],

I
(2)
b =

1

NT (T − 1)

∑
its

εitX
>
is [m̂(Zis;H)−m(Zis)].

Using similar arguments as those above, we can show that as N goes to infinity and T is
fixed,

√
N(σ̂2

b − σ2
b ) =

1√
N

∑
i

(
b2i − σ2

b

)
+

2√
NT

∑
it

bivit +
1√

NT (T − 1)

∑
its

vitvis + oP(1)(A.19)

from which it follows that the second part of Theorem 3.1 holds.

Proof of Theorem 3.2. Following the same argument as in the proof above, we
first focus on the behavior of the estimators of the third-order moments and later on the
fourth-order moments. As previously, using the same argument as that in proving Lemma
2 in Gao (1995), the result of Theorem 2.2 and Assumption 3.1, all contributions involving
X>it (m̂(Zit;H)−m(Zit)) may be neglected. Then, the final expressions to study are

√
Nγ̂3v =

1√
NT

∑
it

v3it − 3

(T − 1)

∑
s 6=t

v2itvis +
2

(T − 1)(T − 2)

∑
s 6=t

∑
r 6=s

vitvisvir

+ oP(1) (A.20)

and

√
Nγ̂3b =

1√
N

∑
i

[
b3i +

3

T

∑
t

b2i vit +
3

T (T − 1)

∑
ts

bivitvis +
1

T (T − 1)(T − 2)

∑
tsr

vitvisvir

]
+ oP(1)

(A.21)

where, after centering v3it and ε3it, respectively, the first part of Theorem 3.2 is provided by
the central limit theorem.

Similarly, if we again ignore the higher-order terms of X>it (m̂(Zit;H) − m(Zit)) for the
estimators of the fourth-order moment, we obtain

√
Nγ̂4v =

1√
NT

∑
it

[
v4it −

4

(T − 1)

∑
s6=t

v3itvis +
6

(T − 1)(T − 2)

∑
s 6=t

∑
r 6=s

v2itvisvir

− 3

(T − 1)(T − 2)(T − 3)

∑
s 6=t

∑
r 6=s

T∑
h6=r

vitvisvirvih

]
+ oP(1) (A.22)
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and

√
Nγ̂4b =

1√
N

∑
i

[
b4i +

4

T

∑
t

b3i vit +
6

T (T − 1)

∑
ts

b2i vitvis +
4

T (T − 1)(T − 2)

∑
tsr

bivitvisvir

+
1

T (T − 1)(T − 2)(T − 3)

∑
tsrh

vitvisvirvih

]
+ oP(1). (A.23)

Finally, as previously, after centering these expressions and using the central limit theorem,
the second part of Theorem 3.2 holds.

Proof of Theorem 4.1. To prove the results of this theorem, we follow the standard
proof scheme as in Bai and Ng (2005). First, we focus on the behavior of ŜKv, and later,

we analyze the properties of ŜKb.

ŜKv − SKv =

(
γ̂3v − γ3v
σ̂3
v

)
− SKv

(
(σ̂v)

3/2 − (σ2
v)

3/2

σ̂3
v

)
.

For any estimator of the variance, i.e., σ̂2, by the delta method, we obtain

√
N
(
(σ̂2)k/2 − (σ2)k/2

)
=
k

2
(σ2)k/2−1

√
N
(
σ̂2 − σ2

)
+ oP(1). (A.24)

Then, for k = 3, we replace (A.17), (A.20) and (A.24) in the previous equation and rearrange
terms, so the expression to analyze is

√
NT (ŜKv − SKv) =

α>v
σ̂3
v

1√
NT

N∑
i=1

T∑
t=1

SKv,it + oP(1), (A.25)

where αv =
[
1, 3SKvσv

2

]>
and SKv,it = [SKv,1it, SKv,2it]

> are 2× 1 vectors and

SKv,1it = (v3it − γ3v)−
3

(T − 1)

∑
s 6=t

v2itvis +
2

(T − 1)(T − 2)

∑
s 6=t

∑
r 6=s

vitvisvir

SKv,2it = (v2it − σ2
v)−

1

(T − 1)

∑
s 6=t

vitvis.

Under the assumptions of Theorem 4.1, it is easy to show that E
[

1√
NT

∑
it SKv,it

]
= 0 and

its variance-covariance matrix is

Γv =

[
Γv,1 Γv,2
Γv,2 Γv,3

]
. (A.26)
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Specifically, under the assumptions of the theorem it is straightforward to show

Γv,1 =
1

NT

N∑
i=1

T∑
t=1

T∑
t′=1

E[SKv,1itSKv,1it′ ]

=
γ6v
T
− (γ3v)

2

T
−
(

6T − 15

2T (T − 1)

)
γ4vσ

2
v +

9

2T (T − 1)
(γ3v)

2 +

(
3(T − 2)2 + 8

2T (T − 1)(T − 2)

)
σ6
v ,

Γv,2 =
1

NT

N∑
i=1

T∑
t=1

T∑
t′=1

E[SKv,1itSKv,2it′ ] =
γ5v
T
−
(

5T − 11

2T (T − 1)

)
γ3vσ

2
v ,

Γv,3 =
1

NT

N∑
i=1

T∑
t=1

T∑
t′=1

E[SKv,2itSKv,2it′ ] =
γ4v
T
− σ4

v

T
+

σ4
v

T (T − 1)
.

By Theorem 3.1, σ̂2
v

p−→ σ2
v . Then, using this result and by the central limit theorem the

first part of Theorem 4.1 is proved.
Similarly, focusing on the properties of the skewness statistic for the individual effects

and using (A.20), (A.21) and (A.24) for k = 3, it can be written

√
N(ŜKb − SKb) =

α>b
σ̂3
b

1√
N

N∑
i=1

SKb,i + oP(1), (A.27)

where αb =
[
1, 3SKbσb

2

]>
and SKb,it = [SKb,1i, SKb,2i] are 2× 1 vectors and

SKb,1i = (b3i − γ3b ) +
3

T

∑
t

b2i vit +
3

T (T − 1)

∑
t

∑
s 6=t

bivitvis +
1

T (T − 1)(T − 2)

∑
t

∑
s 6=t

∑
r 6=s

vitvisvir,

SKb,2i = (b2i − σ2
b ) +

2

T

∑
t

bivit +
1

T (T − 1)

∑
t

∑
s6=t

vitvis.

Under the assumptions of this theorem, E
[

1√
N

∑N
i=1 SKb,i

]
= 0 and its variance-covariance

matrix is

Γb =

[
Γb,1 Γb,2
Γb,2 Γb,3

]
,

where it can be shown that

Γb,1 =
1

N

∑
i

E[SK2
b,1i] = γ6b − (γ3b )

2 +
9

T
γ4bσ

2
v +

9

T (T − 1)
σ2
bσ

4
v +

σ6
v

T (T − 1)(T − 2)
,

Γb,2 =
1

N

∑
i

E[SKb,1iSKb,2i] = γ5b − γ3bσ2
b +

6

T
γ3bσ

2
v ,

Γb,3 =
1

N

∑
i

E[SK2
b,2i] = γ4b − σ4

b +
4

T
σ2
bσ

2
v +

σ4
v

T (T − 1)
.

Finally, using the results of Theorem 3.1, σ̂2
b

p−→ σ2
b , and by the central limit theorem, the

second part of Theorem 4.1 holds.

10



Proof of Theorem 4.3. Focus on the properties of K̂U v when k = 4. It can be written

K̂U b −KUb =

(
γ̂4v − γ4v
σ̂4
v

)
−KUv

(
(σ̂2

v)
2 − (σ2

v)
2

σ̂4
v

)
and using (A.24), for k = 4, (A.17) and (A.22), the previous equation turns into

√
NT (K̂U v −KUv) =

β>v
σ̂4
v

1√
NT

∑
it

KUv,it + oP(1), (A.28)

where βv = [1,−2KUvσ
2
v ]
>

and KUv,it = [KUv,1it, SKv,2it]
> are 2× 1 vectors and

KUv,1it = (v4it − γ4v)−
4

(T − 1)

∑
s 6=t

v3itvis +
6

(T − 1)(T − 2)

∑
s 6=t

∑
r 6=s

v2itvisvir

− 3

(T − 1)(T − 2)(T − 3)

∑
s 6=t

∑
r 6=s

∑
h6=r

vitvisvirvik.

Again, under the assumptions of Theorem 4.3 it can be proved that E
[

1√
NT

∑
itKUv,it

]
= 0,

and V ar
[

1√
NT

∑
itKUv,it

]
is of the form

Φv =

[
Φv,1 Φv,2

Φv,2 Φv,4

]
,

where it is easy to show

Φv,1 =
1

NT

N∑
i=1

T∑
t=1

T∑
t′=1

E[KUv,1itKUv,1it′ ] =
γ8v
T
− (γ4v)

2

T
− 4

T
γ5vγ

3
v +

(8γ6vσ
2
v + 8(γ4v)

2)

T (T − 1)

+
(8(T − 2)2 + 36)(γ3v)

2σ2
v

T (T − 1)(T − 2)
− (16T − 20)γ4vσ

4
v

T (T − 1)(T − 2)
+

3(T − 3)2 + 9)σ8
v

T (T − 1)(T − 2)(T − 3)
,

Φv,2 =
1

NT

N∑
i=1

T∑
t=1

T∑
t′=1

E[KUv,1itSKv,2it′ ] =
γ6v
T
−
(

T − 5

T (T − 1)

)
γ4vσ

4
v −

2

T
(γ3v)

2 − 2

T (T − 1)
σ6
v ,

Φv,3 =
1

NT

N∑
i=1

T∑
t=1

T∑
t′=1

E[SKv,2itSKv,2it′ ] =
γ4v
T
− σ4

v

T
+

σ4
v

T (T − 1)
.

Then, using Theorem 3.1 and the central limit theorem, the first part of the Theorem is
proved.

Focus now on the behavior of K̂U b. The expression to analyze is

√
N(K̂U b −KUb) =

β>b
σ̂4
b

1√
N

∑
i

KUb,i + oP(1), (A.29)
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where βb = [1,−2KUbσ
2
b ]
> and KUb,i = [KUb,i1, SKb,i2]

> are 2× 1 vectors of the form and

KUb,i1 = (b4i − γ4b ) +
4

T

∑
t

b3i vit
6

T (T − 1)

∑
t

∑
s 6=t

b2i vitvis +
4

T (T − 1))(T − 2)

∑
t

∑
s 6=t

∑
r 6=s

bivitvisvir

+
1

T (T − 1)(T − 2)(T − 3)

∑
t

∑
s 6=t

∑
r 6=s

∑
h6=r

vitvisvirvih.

Under the assumptions of this theorem, the mean of 1√
N

∑
iKUb,i is zero and the variance-covariance

matrix is

Φb =

[
Φb,1 Φb,2

Φb,2 Φb,3

]
, (A.30)

where

Φb,1 =
1

N

∑
i

E[KU2
b,1i] = γ8b − (γ4b )

2 +
16

T
γ6bσ

2
v +

36

T (T − 1)
γ4bσ

4
v +

16σ2
bσ

6
v

T (T − 1)(T − 2)

+
σ8
v

T (T − 1)(T − 2)(T − 3)
,

Φb,2 =
1

N

∑
i

E[KUb,1iSKb,2i] = γ6b − γ4bσ2
v +

8

T
γ4bσ

2
v +

6

T (T − 1)
σ2
bσ

4
v ,

Φb,3 =
1

N

∑
i

E[SK2
b,2i] = γ4b − (σ2

b )
2 +

4

T
σ2
bσ

2
v +

σ4
v

T (T − 1)
.

Finally, using the results of Theorem 3.1, σ̂2
b

p−→ σ2
b , and by the central limit theorem, the

second part of Theorem 4.3 holds.

Proof of Theorem 4.5 As it is pointed out in Bai and Ng (2005), in order to show that

π̃v34
d−→ χ2

2 it suffices to prove that π̂v3 and π̂v4 are asymptotically independent so that the
squared value of these terms are also asymptotically independent.

In this situation, the limit of π̂v3 is determined only by the behavior of SKv,it = SKv,1it

because the second element of αv is zero under normality. Meanwhile, the limit of π̂v4 is
determined by KUv,it, with γ4v = 3σ4

v . Following a similar procedure as in the proofs of

Theorems 4.1 and 4.3, it is straightforward to show that E
[

1√
NT

∑
it SKv,itKUv,it

]
= 0

under normality. Further, this reasoning is also valid for π̃b34 .

Appendix B

As in the paper, using Lemma 2.1 and rearranging terms, the proposed estimators for the
higher-order moments up to the eight moment of both individual heterogeneity and random
error are of the form

12



γ̂5v =
1

NT (T − 1)τ5

N∑
i=1

[
T 3(2T 2 − 3T + 15)

∑
t

ε̂5it − 5T 2(T 2 − 2T + 11)
∑
t

ε̂4it
∑
t

ε̂it

− 10T (T − 7)
∑
t

ε̂3it

(∑
t

ε̂it

)2

+ 10(T 2 − 3)
∑
t

ε̂2it

(∑
t

ε̂it

)3

− (7T − 3)

(∑
t

ε̂it

)5
 , (A.31)

γ̂5b =
1

NT (T − 1)(T − 2)τ5

N∑
i=1

(2T 2 + 8T − 9)

(∑
t

ε̂it

)5

− 20T (T − 2)
∑
t

ε̂2it (ε̂it)
3

− 10(2T 2 + 6T − 5)
∑
t

ε̂3it (ε̂it)
2

+ 5(2T 3 + 8T 2 − 12T − 27)
∑
t

ε̂4itε̂it − (10T 3 + 7T 2 + 18T − 54)
∑
t

ε̂5it

]
,

(A.32)

where τ5 = 2T 4 − 6T 3 + 19T 2 − 36T + 27. In addition,

γ̂6v =
1

NT (T − 1)(T − 2)τ6

N∑
i=1

[
2T (T 6 − 15T 5 + 40T 4 − 237T 3 + 613T 2 − 264T − 60)

∑
t

ε̂6it

− 3(2T 6 + 30T 5 − 203T 4 + 75T 3 + 471T 2 + 48T − 666)
∑
t

ε̂5it

(∑
t

ε̂it

)

− 15T (16T 2 − 72T − 25)
∑
t

ε̂4it

(∑
t

ε̂it

)2

− 30(3T 3 − 16T 2 − 5)
∑
t

ε̂3it

(∑
t

ε̂it

)3

− 30(T − 1)(T 2 + T − 9)
∑
t

ε̂2it

(∑
t

ε̂it

)4

+ 3(8T 2 − 15T + 16)

(∑
t

ε̂it

)6

+ 5(2T 6 − 15T 5 + 77T 4 − 213T 3 + 284T 2 − 132T − 30)

(∑
t

ε̂3it

)2


+
45

τ6

[
(T − 2)(2T 3 + 8T 2 − 35T + 34)(σ̂2

v)3 − (2T 6 − 19T 5 + 17T 4 − 50T 3 + 444T 2 − 120T + 50)σ̂2
b (σ̂2

v)2
]
,

(A.33)

γ̂6b =
1

NT (T − 1)(T − 2)τ6

N∑
i=1

2(T − 1)(T 2 + 6T − 10)

(∑
t

ε̂it

)6

− 30(T − 2)(T 2 − T − 3)
∑
t

ε̂2it (ε̂it)
4

+ 10(5T 3 − 39T 2 + 103T − 66)
∑
t

ε̂3it (ε̂it)
3 − 30(5T 3 − 33T 2 + 76T − 45)

∑
t

ε̂4it (ε̂it)
2

+ 6(5T 4 + 24T 3 − 194T 2 + 315T − 54)
∑
t

ε̂5it
∑
t

ε̂it − 3(T − 2)(5T 4 + 65T 3 − 113T 2 − 182T + 84)
∑
t

ε̂6it

+ 5(3T 5 + 27T 4 − 149T 3 + 120T 2 + 146T − 132)

(∑
t

ε̂3it

)2
+

30

τ6
(T − 2)(2T 3 − 14T 2 + 13T − 8)(σ̂2

v)3

+
45

τ6
(T 5 − 33T 4 + 167T 3 − 354T 2 + 192T + 96)σ̂2

b (σ̂2
v)2, (A.34)
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where τ6 = 2T 6 − 18T 5 + 41T 4 − 141T 3 + 569T 2 − 786T + 252. Finally,

γ̂8v =
1

NT (T − 1)(T − 2)

N∑
i=1

T 2
T∑

t=1

ε̂8it − 3T

T∑
t=1

ε̂7it

(
T∑

s=1

ε̂is

)
+ 2

T∑
t=1

ε̂6it

(
T∑

t=1

ε̂it

)2


− 1

(T − 2)

[
2γ̂6v σ̂

2
v + 40γ̂3b γ̂

3
v σ̂

2
v + (9T − 30)σ̂2

b γ̂
6
v + 30σ̂2

b σ̂
2
v γ̂

4
v + (5T − 40)γ̂3b γ̂

5
v

− (5T + 30)γ̂4b γ̂
4
v − (9T + 12)γ̂5b γ̂

3
v + 30γ̂4b (σ̂2

v)2 − 5T γ̂6b σ̂
2
v

]
, (A.35)

γ̂8b =
1

NT (T − 1)(T − 2)

N∑
i=1

 T∑
t=1

ε̂6it

(
T∑

t=1

ε̂it

)2

− 3

T∑
t=1

ε̂7it

(
T∑

t=1

ε̂it

)
+ 2

T∑
t=1

ε̂8it


− 1

(T − 2)

[
γ̂6v σ̂

2
v + 15σ̂2

b σ̂
2
v γ̂

4
v + (T − 8)σ̂2

b γ̂
6
v + 20γ̂3b γ̂

3
v σ̂

2
v + (6T − 27)γ̂3b γ̂

5
v

+ (15T − 50)γ̂4b γ̂
4
v + 15γ̂4b (σ̂2

v)2 + (20T − 55)γ̂5b γ̂
3
v + (15T − 35)γ̂6b σ̂

2
v

]
. (A.36)

Appendix C

0.1 Monte Carlo experiment

In the paper we consider the following data generating process (DGP),

Yit = X>itm(Zit) + bi + vit, i = 1, . . . , N ; t = 1, . . . , T, (A.37)

where vit is a composed error term, which has two components: a non-negative error term to
account for technical inefficiency, uit, and a symmetric error term to account of other random
errors, νit. Following Aigner et al. (1977), it is assumed that νit ∼ i.i.d.0.5N (0, σ2

ν) and it is
independent of uit, that is assumed to be uit ∼ i.i.d.N+(0, σ2

u). The notation “+” indicates
that the underlying distribution is truncated from below at zero so that uit ≥ 0. Additionally,
to generate data for simulation, the chosen functional form is m(Zit) = sin(Zitπ), while Xit

and Zit are random variables satisfying Xit = 0.5Xi(t−1) + ξit and Zit = $it +$i(t−1), where
$it ∼ i.i.d.U [0, π/2] and ξit ∼ i.i.d.N (0, 1).

For the above sets of experiments, we consider different processes for both the composed
error term, vit, and the individual effects, bi. Further, the variance ratio λ = σu/σν may
affect model estimation. Therefore, in the following we hold σ2

ν fixed at 0.1 and consider
alternative values of λ.

Case A: no technical inefficiency and symmetric distributions (i.e., vit = νit):

DGP.A1. νit ∼ i.i.d. 0.5N (0, 1) ; bi ∼ i.i.d. 0.5N (0, 1);
DGP.A2. νit ∼ i.i.d. 0.5N (0, 1) ; bi ∼ i.i.d. 0.5t(9);
DGP.A3. νit ∼ i.i.d. 0.5t(9) ; bi ∼ i.i.d. 0.5N (0, 1);
DGP.A4. νit ∼ i.i.d. 0.5t(9) ; bi ∼ i.i.d. 0.5t(9).
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Case B: no technical inefficiency and asymmetric distributions (i.e., vit = νit):

DGP.B1. νit ∼ i.i.d. 0.5N (0, 1) ; bi ∼ i.i.d. 0.5exp(N (0, 1)));
DGP.B2. νit ∼ i.i.d. 0.5exp(N (0, 1)) ; bi ∼ i.i.d. 0.5N (0, 1);
DGP.B3. νit ∼ i.i.d. 0.5exp(N (0, 1)) ; bi ∼ i.i.d. 0.5exp(N (0, 1)).

Case C: technical inefficiency (i.e., vit = νit − uit), where νit ∼ i.i.d.0.5N (0, σ2
ν):

DGP.C1. uit ∼ i.i.d. N+(0, σ2νλ
2) ; bi ∼ i.i.d. 0.5N (0, 1) ; λ = 0.5;

DGP.C2. uit ∼ i.i.d. N+(0, σ2νλ
2) ; bi ∼ i.i.d. 0.5N (0, 1) ; λ = 0.75;

DGP.C3. uit ∼ i.i.d. N+(0, σ2νλ
2) ; bi ∼ i.i.d. 0.5N (0, 1) ; λ = 1.

The simulation results are based on 1000 samples of data {(Xit, Zit, Yit) : i = 1, . . . , N, t =
1, . . . , T}. The number of time observations T is set at 4, while the number of cross-sections
N is 50, 100, or 150. A complete set of simulation results is given in Tables 1-5.
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Table 1. Mean and standard deviation (Sd) of the RMSE of the estimators for the
nonparametric component.

N Results FEE OBE PLSE PDE
DGP.A1 50 Mean 0.500 0.555 0.769 0.513

Sd 0.086 0.029 0.049 0.040
100 Mean 0.448 0.528 0.763 0.479

Sd 0.061 0.028 0.046 0.030
150 Mean 0.426 0.510 0.769 0.461

Sd 0.051 0.018 0.045 0.025
DGP.A2 50 Mean 0.503 0.555 0.756 0.511

Sd 0.087 0.027 0.051 0.039
100 Mean 0.447 0.529 0.751 0.479

Sd 0.058 0.026 0.043 0.029
150 Mean 0.425 0.511 0.750 0.462

Sd 0.055 0.018 0.050 0.025
DGP.A3 50 Mean 0.498 0.554 0.772 0.511

Sd 0.086 0.031 0.054 0.045
100 Mean 0.445 0.526 0.766 0.476

Sd 0.066 0.026 0.046 0.034
150 Mean 0.433 0.514 0.764 0.465

Sd 0.050 0.019 0.043 0.025
DGP.A4 50 Mean 0.498 0.555 0.767 0.510

Sd 0.088 0.030 0.047 0.045
100 Mean 0.450 0.529 0.765 0.483

Sd 0.058 0.029 0.046 0.031
150 Mean 0.431 0.514 0.758 0.465

Sd 0.053 0.017 0.041 0.023
DGP.B1 50 Mean 0.500 0.556 0.759 0.513

Sd 0.084 0.028 0.049 0.040
100 Mean 0.449 0.529 0.764 0.481

Sd 0.060 0.053 0.048 0.030
150 Mean 0.430 0.511 0.767 0.464

Sd 0.049 0.018 0.048 0.026
DGP.B2 50 Mean 0.494 0.555 0.760 0.511

Sd 0.080 0.028 0.051 0.040
100 Mean 0.448 0.529 0.765 0.481

Sd 0.060 0.026 0.046 0.030
150 Mean 0.431 0.514 0.768 0.465

Sd 0.046 0.016 0.051 0.020
DGP.B3 50 Mean 0.495 0.553 0.758 0.510

Sd 0.081 0.028 0.051 0.039
100 Mean 0.442 0.525 0.771 0.478

Sd 0.062 0.025 0.051 0.028
150 Mean 0.430 0.515 0.765 0.465

Sd 0.058 0.021 0.044 0.021
DGP.C1 50 Mean 0.491 0.552 0.756 0.508

Sd 0.077 0.025 0.049 0.037
100 Mean 0.447 0.528 0.766 0.479

Sd 0.059 0.024 0.048 0.029
150 Mean 0.421 0.511 0.759 0.462

Sd 0.053 0.016 0.041 0.024
DGP.C2 50 Mean 0.490 0.552 0.755 0.508

Sd 0.081 0.026 0.047 0.037
100 Mean 0.456 0.527 0.756 0.481

Sd 0.061 0.025 0.042 0.027
150 Mean 0.411 0.509 0.772 0.455

Sd 0.052 0.019 0.041 0.023
DGP.C3 50 Mean 0.490 0.552 0.755 0.508

Sd 0.081 0.026 0.047 0.037
100 Mean 0.456 0.528 0.756 0.481

Sd 0.061 0.025 0.042 0.027
150 Mean 0.429 0.512 0.759 0.461

Sd 0.061 0.016 0.039 0.021
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Table 2. Bias, standard deviation (Sd), and RMSE of the estimators for higher-order
moments.

Remainder component Individual component
N Results σ̂2

v γ̂3v γ̂4v σ̂2
b γ̂3b γ̂4b

DGP.A1 True 0.250 0.000 0.187 0.250 0.000 0.187
50 Bias 0.320 -0.004 0.992 0.015 0.007 0.014

Sd 0.077 0.151 0.564 0.094 0.144 0.261
RMSE 0.328 0.151 1.140 0.074 0.113 0.228

100 Bias 0.291 0.001 0.820 0.007 0.011 0.013
Sd 0.050 0.093 0.319 0.066 0.096 0.171
RMSE 0.295 0.095 0.879 0.049 0.075 0.151

150 Bias 0.274 -0.003 0.762 0.005 0.001 0.012
Sd 0.041 0.077 0.264 0.050 0.076 0.129
RMSE 0.277 0.078 0.805 0.038 0.064 0.112

DGP.A2 True 0.250 0.000 0.187 0.321 0.000 0.444
50 Bias 0.320 -0.009 0.959 0.011 0.017 0.040

Sd 0.079 0.148 0.542 0.123 0.271 0.684
RMSE 0.329 0.149 1.100 0.082 0.156 0.394

100 Bias 0.285 -0.004 0.799 0.010 0.007 0.021
Sd 0.047 0.093 0.299 0.083 0.170 0.386
RMSE 0.288 0.095 0.852 0.055 0.107 0.242

150 Bias 0.269 0.001 0.758 0.007 0.003 0.001
Sd 0.040 0.073 0.221 0.067 0.149 0.408
RMSE 0.272 0.075 0.789 0.039 0.071 0.188

DGP.A3 True 0.321 0.000 0.434 0.250 0.002 0.187
50 Bias 0.318 0.008 1.123 0.008 0.013 0.023

Sd 0.097 0.212 0.816 0.097 0.148 0.266
RMSE 0.329 0.202 1.339 0.074 0.121 0.232

100 Bias 0.282 0.007 0.896 0.002 0.002 0.010
Sd 0.058 0.133 0.524 0.067 0.101 0.162
RMSE 0.286 0.126 0.990 0.052 0.087 0.150

150 Bias 0.277 0.001 0.889 0.002 0.002 0.006
Sd 0.048 0.105 0.427 0.050 0.076 0.132
RMSE 0.280 0.099 0.973 0.039 0.057 0.116

DGP.A4 True 0.321 0.000 0.434 0.321 0.002 0.444
50 Bias 0.310 0.005 1.053 0.011 -0.008 0.013

Sd 0.089 0.189 0.757 0.126 0.265 0.766
RMSE 0.320 0.177 1.256 0.086 0.157 0.352

100 Bias 0.290 0.004 0.950 0.008 -0.006 0.017
Sd 0.057 0.128 0.464 0.084 0.166 0.347
RMSE 0.295 0.122 1.041 0.058 0.113 0.352

150 Bias 0.277 0.003 0.880 0.013 0.007 0.036
Sd 0.047 0.099 0.354 0.076 0.135 0.312
RMSE 0.276 0.089 0.934 0.047 0.090 0.213

DGP.B1 True 0.250 0.000 0.187 1.857 12.887 273.23
50 Bias 0.319 0.009 0.967 0.009 0.019 0.138

Sd 0.075 0.144 0.510 0.279 1.947 18.977
RMSE 0.327 0.145 1.091 0.087 0.346 3.488

100 Bias 0.292 -0.003 0.854 0.007 0.024 0.854
Sd 0.053 0.095 0.339 0.202 1.875 12.790
RMSE 0.296 0.094 0.981 0.062 0.319 2.441

150 Bias 0.275 -0.002 0.776 0.004 0.002 0.019
Sd 0.040 0.086 0.260 0.130 0.758 5.903
RMSE 0.277 0.085 0.817 0.041 0.131 1.053
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Table 3. Bias, standard deviation (Sd), and RMSE of the estimators for higher-order
moments.

Remainder component Individual component
N Results σ̂2

v γ̂3v γ̂4v σ̂2
b γ̂3b γ̂4b

DGP.B2 True 1.847 11.280 188.9 0.250 0.000 0.187
50 Bias 0.215 -0.226 0.229 0.264 0.421 0.507

Sd 0.128 0.910 9.151 0.124 0.219 0.408
RMSE 0.228 0.363 2.443 0.280 0.454 0.610

100 Bias 0.185 -0.228 -0.128 0.271 0.429 0.532
Sd 0.100 0.883 7.517 0.083 0.150 0.294
RMSE 0.191 0.303 2.261 0.279 0.446 0.590

150 Bias 0.167 -0.201 0.073 0.273 0.437 0.534
Sd 0.073 0.596 7.133 0.068 0.109 0.199
RMSE 0.171 0.248 0.444 0.278 0.444 0.559

DGP.B3 True 1.847 11.280 188.9 1.847 12.887 273.23
50 Bias 0.207 -0.274 -0.929 0.809 2.629 15.980

Sd 0.195 3.375 77.863 1.360 18.778 325.851
RMSE 0.222 0.805 17.766 0.832 3.268 38.696

100 Bias 0.152 -0.219 -0.210 0.940 3.298 28.262
Sd 0.139 1.354 19.478 1.250 12.744 296.265
RMSE 0.173 0.318 5.097 0.781 3.216 28.8319

150 Bias 0.165 -0.244 -0.250 0.822 2.536 12.689
Sd 0.102 1.209 11.932 0.878 10.715 169.130
RMSE 0.172 0.349 2.752 0.829 2.727 18.808

DGP.C1 True 0.075 -0.031 0.016 0.250 0.000 0.187
50 Bias 0.292 0.074 0.681 -0.053 -0.146 -0.081

Sd 0.072 0.110 0.384 0.077 0.108 0.384
RMSE 0.301 0.134 0.781 0.083 0.168 0.181

100 Bias 0.264 0.070 0.594 -0.045 -0.148 -0.071
Sd 0.045 0.070 0.237 0.055 0.073 0.123
RMSE 0.268 0.099 0.639 0.062 0.159 0.124

150 Bias 0.240 0.075 0.521 -0.044 -0.145 -0.087
Sd 0.037 0.056 0.226 0.039 0.056 0.105
RMSE 0.243 0.094 0.568 0.053 0.151 0.103

DGP.C2 True 0.100 -0.049 0.030 0.250 0.000 0.187
50 Bias 0.270 0.095 0.671 -0.049 -0.179 -0.070

Sd 0.066 0.113 0.393 0.076 0.111 0.196
RMSE 0.278 0.149 0.779 0.079 0.202 0.193

100 Bias 0.254 0.093 0.641 -0.049 -0.179 -0.076
Sd 0.046 0.077 0.263 0.054 0.077 0.124
RMSE 0.258 0.120 0.693 0.067 0.191 0.140

150 Bias 0.224 0.093 0.508 -0.051 -0.176 -0.075
Sd 0.032 0.055 0.144 0.044 0.039 0.075
RMSE 0.226 0.106 0.527 0.060 0.179 0.099

DGP.C3 True 0.047 -0.069 1.696 0.250 0.000 0.187
50 Bias 0.255 0.121 0.668 -0.049 -0.205 -0.071

Sd 0.067 0.116 0.405 0.077 0.112 0.197
RMSE 0.264 0.169 0.782 0.082 0.227 0.197

100 Bias 0.238 0.118 0.639 -0.049 -0.206 -0.077
Sd 0.047 0.078 0.271 0.054 0.077 0.125
RMSE 0.243 0.142 0.693 0.068 0.217 0.143

150 Bias 0.215 0.113 0.510 -0.052 -0.206 -0.084
Sd 0.039 0.056 0.223 0.043 0.048 0.078
RMSE 0.219 0.125 0.556 0.064 0.211 0.106
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Table 4. Size and power of the symmetry, kurtosis, and normality tests.

Remainder component Individual component
N α SKu KUu π̂v3 π̂v4 π̃v34 SKb KUb π̂b3 π̂b4 π̃b34

DGP.A1 50 0.10 0 3 0.087 0.093 0.072 0 3 0.132 0.079 0.070
0.05 0 3 0.047 0.052 0.033 0 3 0.065 0.037 0.029
0.01 0 3 0.017 0.016 0.006 0 3 0.006 0.009 0.004

100 0.10 0 3 0.108 0.083 0.090 0 3 0.098 0.104 0.074
0.05 0 3 0.055 0.054 0.052 0 3 0.036 0.061 0.032
0.01 0 3 0.020 0.017 0.007 0 3 0.003 0.017 0.002

150 0.10 0 3 0.109 0.105 0.107 0 3 0.114 0.107 0.101
0.05 0 3 0.051 0.057 0.052 0 3 0.054 0.054 0.052
0.01 0 3 0.012 0.020 0.006 0 3 0.005 0.029 0.008

DGP.A2 50 0.10 0 3 0.086 0.062 0.063 0 4.309 0.093 0.114 0.089
0.05 0 3 0.053 0.039 0.035 0 4.309 0.035 0.067 0.040
0.01 0 3 0.018 0.007 0.002 0 4.309 0.005 0.020 0.003

100 0.10 0 3 0.091 0.067 0.078 0 4.309 0.091 0.178 0.133
0.05 0 3 0.051 0.040 0.041 0 4.309 0.038 0.102 0.078
0.01 0 3 0.013 0.012 0.003 0 4.309 0.004 0.028 0.006

150 0.10 0 3 0.094 0.094 0.099 0 4.309 0.101 0.225 0.162
0.05 0 3 0.049 0.055 0.045 0 4.309 0.047 0.132 0.093
0.01 0 3 0.011 0.012 0.002 0 4.309 0.006 0.036 0.008

DGP.A3 50 0.10 0 4.309 0.087 0.164 0.103 0 3 0.113 0.075 0.068
0.05 0 4.309 0.050 0.085 0.046 0 3 0.058 0.039 0.042
0.01 0 4.309 0.013 0.025 0.002 0 3 0.011 0.010 0.004

100 0.10 0 4.309 0.090 0.264 0.162 0 3 0.122 0.103 0.086
0.05 0 4.309 0.045 0.153 0.084 0 3 0.062 0.056 0.051
0.01 0 4.309 0.008 0.037 0.007 0 3 0.014 0.025 0.013

150 0.10 0 4.309 0.116 0.348 0.247 0 3 0.105 0.100 0.094
0.05 0 4.309 0.050 0.227 0.140 0 3 0.051 0.055 0.042
0.01 0 4.309 0.010 0.064 0.020 0 3 0.008 0.019 0.001

DGP.A4 50 0.10 0 4.309 0.109 0.115 0.120 0 4.309 0.094 0.095 0.103
0.05 0 4.309 0.065 0.062 0.070 0 4.309 0.040 0.067 0.060
0.01 0 4.309 0.028 0.026 0.039 0 4.309 0.007 0.036 0.030

100 0.10 0 4.309 0.109 0.234 0.190 0 4.309 0.096 0.159 0.152
0.05 0 4.309 0.074 0.144 0.125 0 4.309 0.039 0.111 0.106
0.01 0 4.309 0.027 0.050 0.049 0 4.309 0.005 0.060 0.049

150 0.10 0 4.309 0.119 0.280 0.225 0 4.309 0.095 0.209 0.196
0.05 0 4.309 0.067 0.182 0.146 0 4.309 0.041 0.143 0.126
0.01 0 4.309 0.025 0.070 0.055 0 4.309 0.008 0.075 0.064

DGP.B1 50 0.10 0 3 0.035 0.117 0.020 5.092 79.233 0.624 0.253 0.357
0.05 0 3 0.027 0.090 0.014 5.092 79.233 0.442 0.145 0.225
0.01 0 3 0.015 0.039 0.003 5.092 79.233 0.120 0.041 0.033

100 0.10 0 3 0.053 0.114 0.026 5.092 79.233 0.646 0.391 0.373
0.05 0 3 0.029 0.102 0.024 5.092 79.233 0.475 0.223 0.254
0.01 0 3 0.016 0.047 0.004 5.092 79.233 0.202 0.072 0.035

150 0.10 0 3 0.098 0.111 0.038 5.092 79.233 0.623 0.422 0.408
0.05 0 3 0.045 0.106 0.033 5.092 79.233 0.506 0.235 0.287
0.01 0 3 0.019 0.057 0.004 5.092 79.233 0.184 0.088 0.045
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Table 5. Size and power of the symmetry, kurtosis, and normality tests.

Remainder component Individual component
N α SKu KUu π̂v3 π̂v4 π̃v34 SKb KUb π̂b3 π̂b4 π̃b34

DGP.B2 50 0.10 5.092 79.233 0.528 0.140 0.397 0 3 0.116 0.023 0.087
0.05 5.092 79.233 0.280 0.047 0.200 0 3 0.075 0.016 0.060
0.01 5.092 79.233 0.028 0.001 0.015 0 3 0.031 0.003 0.015

100 0.10 5.092 79.233 0.696 0.277 0.505 0 3 0.084 0.046 0.056
0.05 5.092 79.233 0.502 0.104 0.349 0 3 0.061 0.021 0.035
0.01 5.092 79.233 0.142 0.010 0.043 0 3 0.023 0.003 0.003

150 0.10 5.092 79.233 0.715 0.382 0.529 0 3 0.094 0.097 0.081
0.05 5.092 79.233 0.586 0.176 0.367 0 3 0.053 0.039 0.049
0.01 5.092 79.233 0.214 0.020 0.063 0 3 0.022 0.004 0.002

DGP.B3 50 0.10 5.092 79.233 0.201 0.024 0.092 5.092 79.233 0.699 0.077 0.643
0.05 5.092 79.233 0.419 0.007 0.047 5.092 79.233 0.609 0.043 0.547
0.01 5.092 79.233 0.599 0.004 0.017 5.092 79.233 0.428 0.027 0.359

100 0.10 5.092 79.233 0.419 0.024 0.237 5.092 79.233 0.723 0.090 0.675
0.05 5.092 79.233 0.184 0.007 0.110 5.092 79.233 0.647 0.062 0.591
0.01 5.092 79.233 0.046 0.004 0.035 5.092 79.233 0.496 0.027 0.437

150 0.10 5.092 79.233 0.599 0.069 0.442 5.092 79.233 0.785 0.134 0.744
0.05 5.092 79.233 0.404 0.023 0.265 5.092 79.233 0.726 0.097 0.673
0.01 5.092 79.233 0.102 0.013 0.073 5.092 79.233 0.560 0.033 0.525

DGP.C1 50 0.10 -1.509 2.844 0.504 0.002 0.565 0 3 0.069 0.051 0.082
0.05 -1.509 2.844 0.580 0.002 0.526 0 3 0.045 0.040 0.059
0.01 -1.509 2.844 0.508 0.001 0.445 0 3 0.015 0.025 0.026

100 0.10 -1.509 2.844 0.604 0.002 0.592 0 3 0.058 0.052 0.061
0.05 0.088 2.844 0.590 0.001 0.591 0 3 0.032 0.038 0.040
0.01 -1.509 2.844 0.508 0.001 0.584 0 3 0.007 0.022 0.024

150 0.10 -1.509 2.844 0.604 0.001 0.601 0 3 0.054 0.050 0.068
0.05 -1.509 2.844 0.603 0.001 0.601 0 3 0.029 0.033 0.036
0.01 -1.509 2.844 0.601 0.001 0.600 0 3 0.004 0.017 0.013

DGP.C2 50 0.10 -1.549 3 0.618 0.005 0.612 0 3 0.069 0.037 0.065
0.05 -1.549 3 0.617 0.005 0.598 0 3 0.048 0.029 0.044
0.01 -1.549 3 0.588 0.001 0.553 0 3 0.017 0.014 0.016

100 0.10 -1.549 3 0.657 0.002 0.656 0 3 0.044 0.053 0.063
0.05 -1.549 3 0.657 0.002 0.655 0 3 0.026 0.037 0.041
0.01 -1.549 3 0.656 0.002 0.655 0 3 0.011 0.023 0.021

150 0.10 -1.549 3 0.679 0.004 0.669 0 3 0.035 0.042 0.048
0.05 -1.549 3 0.659 0.004 0.659 0 3 0.020 0.025 0.035
0.01 -1.549 3 0.659 0.001 0.658 0 3 0.011 0.011 0.015

DGP.C3 50 0.10 -6.772 767.77 0.643 0.002 0.643 0 3 0.078 0.028 0.063
0.05 -6.772 767.77 0.642 0.001 0.641 0 3 0.049 0.022 0.037
0.01 -6.772 767.77 0.640 0.001 0.631 0 3 0.015 0.015 0.018

100 0.10 -6.772 767.77 0.653 0.002 0.656 0 3 0.040 0.049 0.057
0.05 -6.772 767.77 0.652 0.000 0.656 0 3 0.022 0.034 0.035
0.01 -6.772 767.77 0.650 0.000 0.655 0 3 0.009 0.019 0.021

150 0.10 -6.772 767.77 0.678 0.005 0.679 0 3 0.036 0.027 0.038
0.05 -6.772 767.77 0.676 0.005 0.678 0 3 0.019 0.019 0.022
0.01 -6.772 767.77 0.670 0.002 0.677 0 3 0.003 0.011 0.007
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