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Abstract 
 
The calculation of dispersion diagrams and field patterns of metallic rectangular waveguides 
filled with an inhomogeneous dielectric whose permittivity varies continuously along the 
broad size of the guide is considered. In general, this problem has no exact solution, thus 
numerical techniques should be used. In this letter, the pseudospectral frequency-domain 
(PSFD) method is proposed to address the problem. Starting from the Helmholtz equation, a 
matrix eigenvalue problem is obtained by applying the collocation technique with Chebyshev 
polynomials as basis functions. The results obtained are compared with those calculated by 
the conventional finite-difference frequency-domain method showing that the PSFD 
technique provides an excellent accuracy. 
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1 INTRODUCTION 
 
The recently introduced transformation electromagnetics (also referred to as transformation 
optics) is a powerful technique for designing novel microwave and optical devices such as 
electromagnetic cloaks, field concentrators and rotators, planar focusing antennas, 
waveguide bends and couplers, etc.1,2 The implementation of transformation 
electromagnetics devices requires the use of spatially inhomogeneous materials which has 
boost a renewed interest in artificial materials.3 
 
The characterization of waveguiding structures is a fundamental problem in microwave 
engineering. In this work, we consider the analysis of uniform metallic rectangular 
waveguides filled with an inhomogeneous dielectric material whose permittivity varies 
continuously along the transverse direction x, as shown in Figure 1. In general, this problem 
has no exact solution.4,5 Hence, numerical techniques are needed to obtain the propagation 
constants and field patterns of inhomogeneously filled rectangular waveguides. 



 
The numerical analysis of the waveguide depicted in Figure 1 has previously been addressed 
by means of the Galerkin method.6,7 A drawback of this approach is that the integrals arising 
in the formulation should be recalculated for each permittivity profile. Furthermore, only cut-
off frequencies are computed. Besides, the formulation used involves the numerical 
searching for the zeros of a matrix determinant of large dimension, which is a complicated 
numerical task. 
 
To overcome the abovementioned limitations, in this letter we propose an alternative 
numerical technique for the analysis of the rectangular waveguide shown in Figure 1. This 
technique is based on the pseudospectral frequency-domain (PSFD) method, which has been 
successfully applied to several microwave and optical problems.8,9 The PSFD method is a 
global collocation technique that provides high accuracy and flexibility while being free of 
integral calculations. In addition, not only cut-off frequencies but also dispersion diagrams 
and field patterns are calculated. For comparison purposes, the results obtained by the PSFD 
method are compared with those computed by the finite-difference frequency-domain 
(FDFD) method.10 
 
As an alternative to the frequency domain, the dispersion characteristics of uniform 
waveguiding structures can be analysed by using the pseudospectral time-domain method.11 
However, due to the eigenvalue (resonant) nature of the problem, the spectral analysis of the 
transient response of the waveguide cross section becomes a difficult task.12 

 
2 THEORY 
 
2.1 Differential problem 
 
Consider a metallic rectangular waveguide of dimensions a b , filled with an 
inhomogeneous dielectric material whose permittivity varies continuously along the x  
direction, as shown in Figure 1. The waveguide structure is assumed to be uniform along the 
propagation direction z. Thus, the time-harmonic electromagnetic fields can be expressed as 
 ( , , ) ( , ) exp( )x y z x y z E e  
 ( , , ) ( , ) exp( )x y z x y z H h   
where j     is the propagation constant, with  and   being the attenuation and 
phase constants, respectively. 
 
Since the permittivity varies along the x direction only, the waveguide under study supports 
two different sets of modes: the longitudinal section electric (LSE) modes and the 
longitudinal section magnetic (LSM) modes.7 The LSE modes are characterized by 0xE  , 

and the LSM modes by 0xH  . The LSE modes with no field variation along the y direction 

reduce to standard transverse electric (TEz) modes. 
The solution for the LSE modes can be obtained by solving the scalar Helmholtz equation 
for ye : 
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where 0k  is the free-space wavenumber and ( )r x  the relative permittivity. By applying 

the method of separation of variables, ye  is found to be of the form  
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with n = 0,1,2,3,…, and where ( )X x is the solution of 
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subjected to the boundary condition (0) ( ) 0X X a  . 
 
The solution for the LSM modes can be determined by solving the scalar Helmholtz equation 
for yh . Analogously to the LSE case, after applying the method of separation of variables, 

yh  can be expressed as 
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with n = 1,2,3,…, and where ( )X x  is the solution of 
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subjected to the boundary conditions 
(0) ( )

0.
dX dX a

dx dx
   

 
It is worth noting that if the permittivity varies with both transverse coordinates, i.e. 

( , )r r x y  , the waveguide solutions are no longer LSE and LSM modes, in general. 

Consequently, in such a case, the vector Helmholtz equation (instead of the scalar one) need 
to be solved.10   

 
2.2 Numerical solution: the PSFD method 
 
To illustrate the application of the Chebyshev PSFD method to the present problem, we 
consider the LSE case. Since the Chebyshev polynomials are defined for [ 1,1]x  , we 
initially consider this mathematical interval as the domain of solution. 
The Chebyshev PSFD method is based on approximating the unknown function ( )X x in (1) 
as a linear combination of Chebyshev polynomials as 
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with [ 1,1]x  , where pa  are unknown coefficients and 1( ) cos cos ( )pT x p x     is the 



pth-order Chebyshev polynomial.13 
 
The solution interval [ 1,1]  is discretized by considering 1N   collocation points defined 
as  
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with 0,1,...,i N . These points are known as Chebyshev-Gauss-Lobatto points. They are 
composed of the extrema of ( )NT x  along with the endpoints -1 and 1. 

 
An alternative and equivalent way to express (2) is as a linear combination of Chebyshev 
cardinal basis functions:  
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with 0 2Nc c   and 1ic   for 1, 2,..., 1i N  . The unknown coefficients iX  in (3) are 

the values of the function X  at the collocation points, i.e. ( )i iX X x . 

 
By using (3), the first derivative of X  at the collocation point kx  is calculated simply as  
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Then, the first-order derivative of X  at the whole set of collocation points can be 
expressed in matrix-vector form as the product xD X , where 0 1[ , ,..., ]T

NX X XX  and xD  

is the first-order Chebyshev differentiation matrix of dimension ( 1) ( 1)N N   . The 
elements of xD  are the derivatives of the cardinal functions at the grid points 
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where 2ic   for 0,i N  and 1ic   otherwise. The second-order differentiation matrix 

can be calculated simply as .xx x xD D D   

 
Now, the discretization of (1) is carried out by replacing each term of this equation by its 
pseudospectral counterpart, which leads to the following ordinary eigenvalue problem for

2 :  



2 AX X      (4) 
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where 0 1diag[ ( ), ( ), ..., ( )]r r r r Nx x x  E  is a diagonal matrix with the relative permittivity 

values and U  is the ( 1) ( 1)N N    identity matrix. Note that the solution interval for the 
physical problem is [0, ]a . Thus, the differentiation matrix xD  calculated on [ 1,1]  has 

been scaled by the factor 2 / a . 
 
The boundary conditions 0 0NX X   can easily be imposed by simply removing the first 

and last rows and columns of (4), which leads to  
2 AX X  

where A  denotes the restricted A  matrix and X  contains the elements of X  at the 
interior grid points only. 
The direct computing of the cut-off frequencies can be done by simple letting 0   in (4) 

and rewriting the resulting expression as a generalized eigenvalue problem for 2
0k : 
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Since we have forced the condition 0  , 0k  in (5) should be understood as the cut-off 

wavenumber. 
 
 
3 RESULTS 
 
To illustrate the accuracy of the PSFD method, the calculation of the cut-off wavelength, c
, of the TE10, TE50, TE10,0 and TE15,0 modes of an empty rectangular waveguide is firstly 
considered. Figure 2 shows a log-log graph of the relative error in the cut-off wavelength as 
a function of N . As it can be seen, the PSFD errors decrease exponentially until they reach 
values around 1310 % . Beyond this level, round-off errors are dominant and convergence 
curves become nearly flat. For comparison purposes, the results obtained by using the FDFD 
method10 are also shown in Figure 2. As expected, the FDFD method exhibits a linear 
convergence rate with slope -2, which is a much poorer behaviour than the one obtained with 
the PSFD method. 
 
Secondly, we consider a WR75 rectangular waveguide filled with a dielectric material whose 
relative permittivity varies linearly with the position as  ( ) 1 /r x d x a   , where d  is a 

parameter ranging form -1 to 2. Note that 0d   corresponds to the empty case and for 1d   
the waveguide is partially filled with a negative permittivity. Figure 3 depicts the normalized 
cut-off wavelength, /c a , against the parameter d  for the first LSEmn modes. As expected, 

c  decreases as d  increases. The field pattern for the yE   component of the LSE10 (TE10) 

mode is shown in Figure 4 for 2d  . In this case, the permittivity is positive for / 0.5x a   



and negative for / 0.5x a  .  It can be seen that the electric field tends to concentrate in the 
region with positive permittivity. 
 
As a third example, the dispersion curves for the first LSEmn modes of a WR75 rectangular 

waveguide filled by a dielectric with parabolic permittivity profile  2
( ) 1 /r x x a    is 

shown in Figure 5. The normalized phase constant, 0/ k , is plotted for propagating modes 

and the normalized attenuation constant, 0/ k , for modes under cut-off. The results 

obtained by the PSFD method with 14N   are compared with those calculated by the FDFD 
formulation with 80 cells. Although both methods provide the same results within the scale 
of the plot, if, for instance, we focus on the LSE40 mode at 15 GHz, it is found that the PSFD 
method computes its attenuation constant providing 6 exact figures 1( 607.766 m )   
while the FDFD method only provides 3 of them. 
 
Finally, we consider a WR75 rectangular waveguide filled with a dielectric with Gaussian 
permittivity profile  

2 210 [( / ) 0.5]
2 1 2( ) ( ) x a

r r r rx e         

where 1 1r   and 2 9r  . Figure 6 illustrates the relative error in the cut-off wavelength of 

the TE10 and the TE20 modes as a function of N . For the sake of comparison, the results 
obtained by the PSFD and the FDTD methods are both shown. The relative error has been 
calculated by using the cut-off wavelength computed by the PSFD method with 50N   as 
exact value. Even though we are now dealing with a non polynomial permittivity profile, it 
can be seen that the convergence curves exhibit the same behaviour as in the homogeneous 
case shown in Figure 2 and discussed above. 
 
 
4 CONCLUSION 
 
The pseudospectral frequency-domain (PSFD) method has been successfully applied to the 
analysis of rectangular waveguides filled with an inhomogeneous dielectric whose 
permittivity varies continuously. Several permittivity profiles such as linear, parabolic and 
Gaussian profiles have been considered. Starting from the Helmholtz equation, a matrix 
eigenvalue problem has been obtained for computing cut-off frequencies, dispersion 
diagrams and field patterns of the waveguide problem. The results obtained have been 
compared with those calculated by the conventional second-order FDFD method showing 
that the PSFD technique provides excellent convergence and accuracy. 
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Figure Captions 
 
Figure 1. Uniform metallic rectangular waveguide filled with an inhomogeneous dielectric. 
 
Figure 2. Cut-off wavelength relative error as a function of the number of collocation points, 
N , for several TEm0 modes of an empty WR75 waveguide. 
 
Figure 3. Normalized cut-off wavelength, /c a , against the parameter d  for the first 

LSEmn modes of a WR75 waveguide filled with a linear relative permittivity. 
  
Figure 4. Field pattern for the yE  component of the LSE10 mode for the case 2d   in 

Figure 3. 
 
Figure 5. Dispersion curves for the first LSEmn modes of a WR75 waveguide filled with a 
parabolic relative permittivity. The positive part of the y axis represents 0/ k   and the 

negative part represents 0/ k .  

 
Figure 6. Cut-off wavelength relative error as a function of the number of collocation points, 
N , for a WR75 waveguide filled with a Gaussian permittivity profile. 
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